QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1 | // Copyright 2016 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #include "net/third_party/quiche/src/quic/core/congestion_control/bbr_sender.h" |
| 6 | |
| 7 | #include <algorithm> |
| 8 | #include <sstream> |
vasilvv | 872e7a3 | 2019-03-12 16:42:44 -0700 | [diff] [blame^] | 9 | #include <string> |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 10 | |
| 11 | #include "net/third_party/quiche/src/quic/core/congestion_control/rtt_stats.h" |
| 12 | #include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h" |
| 13 | #include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h" |
| 14 | #include "net/third_party/quiche/src/quic/platform/api/quic_fallthrough.h" |
| 15 | #include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h" |
| 16 | #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" |
| 17 | #include "net/third_party/quiche/src/quic/platform/api/quic_logging.h" |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 18 | |
| 19 | namespace quic { |
| 20 | |
| 21 | namespace { |
| 22 | // Constants based on TCP defaults. |
| 23 | // The minimum CWND to ensure delayed acks don't reduce bandwidth measurements. |
| 24 | // Does not inflate the pacing rate. |
| 25 | const QuicByteCount kDefaultMinimumCongestionWindow = 4 * kMaxSegmentSize; |
| 26 | |
| 27 | // The gain used for the STARTUP, equal to 2/ln(2). |
| 28 | const float kDefaultHighGain = 2.885f; |
| 29 | // The newly derived gain for STARTUP, equal to 4 * ln(2) |
| 30 | const float kDerivedHighGain = 2.773f; |
| 31 | // The newly derived CWND gain for STARTUP, 2. |
| 32 | const float kDerivedHighCWNDGain = 2.773f; |
| 33 | // The gain used in STARTUP after loss has been detected. |
| 34 | // 1.5 is enough to allow for 25% exogenous loss and still observe a 25% growth |
| 35 | // in measured bandwidth. |
| 36 | const float kStartupAfterLossGain = 1.5f; |
| 37 | // The cycle of gains used during the PROBE_BW stage. |
| 38 | const float kPacingGain[] = {1.25, 0.75, 1, 1, 1, 1, 1, 1}; |
| 39 | |
| 40 | // The length of the gain cycle. |
| 41 | const size_t kGainCycleLength = sizeof(kPacingGain) / sizeof(kPacingGain[0]); |
| 42 | // The size of the bandwidth filter window, in round-trips. |
| 43 | const QuicRoundTripCount kBandwidthWindowSize = kGainCycleLength + 2; |
| 44 | |
| 45 | // The time after which the current min_rtt value expires. |
| 46 | const QuicTime::Delta kMinRttExpiry = QuicTime::Delta::FromSeconds(10); |
| 47 | // The minimum time the connection can spend in PROBE_RTT mode. |
| 48 | const QuicTime::Delta kProbeRttTime = QuicTime::Delta::FromMilliseconds(200); |
| 49 | // If the bandwidth does not increase by the factor of |kStartupGrowthTarget| |
| 50 | // within |kRoundTripsWithoutGrowthBeforeExitingStartup| rounds, the connection |
| 51 | // will exit the STARTUP mode. |
| 52 | const float kStartupGrowthTarget = 1.25; |
| 53 | const QuicRoundTripCount kRoundTripsWithoutGrowthBeforeExitingStartup = 3; |
| 54 | // Coefficient of target congestion window to use when basing PROBE_RTT on BDP. |
| 55 | const float kModerateProbeRttMultiplier = 0.75; |
| 56 | // Coefficient to determine if a new RTT is sufficiently similar to min_rtt that |
| 57 | // we don't need to enter PROBE_RTT. |
| 58 | const float kSimilarMinRttThreshold = 1.125; |
| 59 | |
| 60 | } // namespace |
| 61 | |
| 62 | BbrSender::DebugState::DebugState(const BbrSender& sender) |
| 63 | : mode(sender.mode_), |
| 64 | max_bandwidth(sender.max_bandwidth_.GetBest()), |
| 65 | round_trip_count(sender.round_trip_count_), |
| 66 | gain_cycle_index(sender.cycle_current_offset_), |
| 67 | congestion_window(sender.congestion_window_), |
| 68 | is_at_full_bandwidth(sender.is_at_full_bandwidth_), |
| 69 | bandwidth_at_last_round(sender.bandwidth_at_last_round_), |
| 70 | rounds_without_bandwidth_gain(sender.rounds_without_bandwidth_gain_), |
| 71 | min_rtt(sender.min_rtt_), |
| 72 | min_rtt_timestamp(sender.min_rtt_timestamp_), |
| 73 | recovery_state(sender.recovery_state_), |
| 74 | recovery_window(sender.recovery_window_), |
| 75 | last_sample_is_app_limited(sender.last_sample_is_app_limited_), |
| 76 | end_of_app_limited_phase(sender.sampler_.end_of_app_limited_phase()) {} |
| 77 | |
| 78 | BbrSender::DebugState::DebugState(const DebugState& state) = default; |
| 79 | |
| 80 | BbrSender::BbrSender(const RttStats* rtt_stats, |
| 81 | const QuicUnackedPacketMap* unacked_packets, |
| 82 | QuicPacketCount initial_tcp_congestion_window, |
| 83 | QuicPacketCount max_tcp_congestion_window, |
| 84 | QuicRandom* random) |
| 85 | : rtt_stats_(rtt_stats), |
| 86 | unacked_packets_(unacked_packets), |
| 87 | random_(random), |
| 88 | mode_(STARTUP), |
| 89 | round_trip_count_(0), |
| 90 | max_bandwidth_(kBandwidthWindowSize, QuicBandwidth::Zero(), 0), |
| 91 | max_ack_height_(kBandwidthWindowSize, 0, 0), |
| 92 | aggregation_epoch_start_time_(QuicTime::Zero()), |
| 93 | aggregation_epoch_bytes_(0), |
| 94 | min_rtt_(QuicTime::Delta::Zero()), |
| 95 | min_rtt_timestamp_(QuicTime::Zero()), |
| 96 | congestion_window_(initial_tcp_congestion_window * kDefaultTCPMSS), |
| 97 | initial_congestion_window_(initial_tcp_congestion_window * |
| 98 | kDefaultTCPMSS), |
| 99 | max_congestion_window_(max_tcp_congestion_window * kDefaultTCPMSS), |
| 100 | min_congestion_window_(kDefaultMinimumCongestionWindow), |
| 101 | high_gain_(kDefaultHighGain), |
| 102 | high_cwnd_gain_(kDefaultHighGain), |
| 103 | drain_gain_(1.f / kDefaultHighGain), |
| 104 | pacing_rate_(QuicBandwidth::Zero()), |
| 105 | pacing_gain_(1), |
| 106 | congestion_window_gain_(1), |
| 107 | congestion_window_gain_constant_( |
| 108 | static_cast<float>(FLAGS_quic_bbr_cwnd_gain)), |
| 109 | num_startup_rtts_(kRoundTripsWithoutGrowthBeforeExitingStartup), |
| 110 | exit_startup_on_loss_(false), |
| 111 | cycle_current_offset_(0), |
| 112 | last_cycle_start_(QuicTime::Zero()), |
| 113 | is_at_full_bandwidth_(false), |
| 114 | rounds_without_bandwidth_gain_(0), |
| 115 | bandwidth_at_last_round_(QuicBandwidth::Zero()), |
| 116 | exiting_quiescence_(false), |
| 117 | exit_probe_rtt_at_(QuicTime::Zero()), |
| 118 | probe_rtt_round_passed_(false), |
| 119 | last_sample_is_app_limited_(false), |
| 120 | has_non_app_limited_sample_(false), |
| 121 | flexible_app_limited_(false), |
| 122 | recovery_state_(NOT_IN_RECOVERY), |
| 123 | recovery_window_(max_congestion_window_), |
| 124 | is_app_limited_recovery_(false), |
| 125 | slower_startup_(false), |
| 126 | rate_based_startup_(false), |
| 127 | startup_rate_reduction_multiplier_(0), |
| 128 | startup_bytes_lost_(0), |
| 129 | enable_ack_aggregation_during_startup_(false), |
| 130 | expire_ack_aggregation_in_startup_(false), |
| 131 | drain_to_target_(false), |
| 132 | probe_rtt_based_on_bdp_(false), |
| 133 | probe_rtt_skipped_if_similar_rtt_(false), |
| 134 | probe_rtt_disabled_if_app_limited_(false), |
| 135 | app_limited_since_last_probe_rtt_(false), |
| 136 | min_rtt_since_last_probe_rtt_(QuicTime::Delta::Infinite()) { |
| 137 | EnterStartupMode(); |
| 138 | } |
| 139 | |
| 140 | BbrSender::~BbrSender() {} |
| 141 | |
| 142 | void BbrSender::SetInitialCongestionWindowInPackets( |
| 143 | QuicPacketCount congestion_window) { |
| 144 | if (mode_ == STARTUP) { |
| 145 | initial_congestion_window_ = congestion_window * kDefaultTCPMSS; |
| 146 | congestion_window_ = congestion_window * kDefaultTCPMSS; |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | bool BbrSender::InSlowStart() const { |
| 151 | return mode_ == STARTUP; |
| 152 | } |
| 153 | |
| 154 | void BbrSender::OnPacketSent(QuicTime sent_time, |
| 155 | QuicByteCount bytes_in_flight, |
| 156 | QuicPacketNumber packet_number, |
| 157 | QuicByteCount bytes, |
| 158 | HasRetransmittableData is_retransmittable) { |
| 159 | last_sent_packet_ = packet_number; |
| 160 | |
| 161 | if (bytes_in_flight == 0 && sampler_.is_app_limited()) { |
| 162 | exiting_quiescence_ = true; |
| 163 | } |
| 164 | |
| 165 | if (!aggregation_epoch_start_time_.IsInitialized()) { |
| 166 | aggregation_epoch_start_time_ = sent_time; |
| 167 | } |
| 168 | |
| 169 | sampler_.OnPacketSent(sent_time, packet_number, bytes, bytes_in_flight, |
| 170 | is_retransmittable); |
| 171 | } |
| 172 | |
| 173 | bool BbrSender::CanSend(QuicByteCount bytes_in_flight) { |
| 174 | return bytes_in_flight < GetCongestionWindow(); |
| 175 | } |
| 176 | |
| 177 | QuicBandwidth BbrSender::PacingRate(QuicByteCount bytes_in_flight) const { |
| 178 | if (pacing_rate_.IsZero()) { |
| 179 | return high_gain_ * QuicBandwidth::FromBytesAndTimeDelta( |
| 180 | initial_congestion_window_, GetMinRtt()); |
| 181 | } |
| 182 | return pacing_rate_; |
| 183 | } |
| 184 | |
| 185 | QuicBandwidth BbrSender::BandwidthEstimate() const { |
| 186 | return max_bandwidth_.GetBest(); |
| 187 | } |
| 188 | |
| 189 | QuicByteCount BbrSender::GetCongestionWindow() const { |
| 190 | if (mode_ == PROBE_RTT) { |
| 191 | return ProbeRttCongestionWindow(); |
| 192 | } |
| 193 | |
| 194 | if (InRecovery() && !(rate_based_startup_ && mode_ == STARTUP)) { |
| 195 | return std::min(congestion_window_, recovery_window_); |
| 196 | } |
| 197 | |
| 198 | return congestion_window_; |
| 199 | } |
| 200 | |
| 201 | QuicByteCount BbrSender::GetSlowStartThreshold() const { |
| 202 | return 0; |
| 203 | } |
| 204 | |
| 205 | bool BbrSender::InRecovery() const { |
| 206 | return recovery_state_ != NOT_IN_RECOVERY; |
| 207 | } |
| 208 | |
| 209 | bool BbrSender::ShouldSendProbingPacket() const { |
| 210 | if (pacing_gain_ <= 1) { |
| 211 | return false; |
| 212 | } |
| 213 | |
| 214 | // TODO(b/77975811): If the pipe is highly under-utilized, consider not |
| 215 | // sending a probing transmission, because the extra bandwidth is not needed. |
| 216 | // If flexible_app_limited is enabled, check if the pipe is sufficiently full. |
| 217 | if (flexible_app_limited_) { |
| 218 | return !IsPipeSufficientlyFull(); |
| 219 | } else { |
| 220 | return true; |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | bool BbrSender::IsPipeSufficientlyFull() const { |
| 225 | // See if we need more bytes in flight to see more bandwidth. |
| 226 | if (mode_ == STARTUP) { |
| 227 | // STARTUP exits if it doesn't observe a 25% bandwidth increase, so the CWND |
| 228 | // must be more than 25% above the target. |
| 229 | return unacked_packets_->bytes_in_flight() >= |
| 230 | GetTargetCongestionWindow(1.5); |
| 231 | } |
| 232 | if (pacing_gain_ > 1) { |
| 233 | // Super-unity PROBE_BW doesn't exit until 1.25 * BDP is achieved. |
| 234 | return unacked_packets_->bytes_in_flight() >= |
| 235 | GetTargetCongestionWindow(pacing_gain_); |
| 236 | } |
| 237 | // If bytes_in_flight are above the target congestion window, it should be |
| 238 | // possible to observe the same or more bandwidth if it's available. |
| 239 | return unacked_packets_->bytes_in_flight() >= GetTargetCongestionWindow(1.1); |
| 240 | } |
| 241 | |
| 242 | void BbrSender::SetFromConfig(const QuicConfig& config, |
| 243 | Perspective perspective) { |
| 244 | if (config.HasClientRequestedIndependentOption(kLRTT, perspective)) { |
| 245 | exit_startup_on_loss_ = true; |
| 246 | } |
| 247 | if (config.HasClientRequestedIndependentOption(k1RTT, perspective)) { |
| 248 | num_startup_rtts_ = 1; |
| 249 | } |
| 250 | if (config.HasClientRequestedIndependentOption(k2RTT, perspective)) { |
| 251 | num_startup_rtts_ = 2; |
| 252 | } |
| 253 | if (config.HasClientRequestedIndependentOption(kBBRS, perspective)) { |
| 254 | slower_startup_ = true; |
| 255 | } |
| 256 | if (config.HasClientRequestedIndependentOption(kBBR3, perspective)) { |
| 257 | drain_to_target_ = true; |
| 258 | } |
| 259 | if (config.HasClientRequestedIndependentOption(kBBS1, perspective)) { |
| 260 | rate_based_startup_ = true; |
| 261 | } |
| 262 | if (GetQuicReloadableFlag(quic_bbr_startup_rate_reduction) && |
| 263 | config.HasClientRequestedIndependentOption(kBBS4, perspective)) { |
| 264 | rate_based_startup_ = true; |
| 265 | // Hits 1.25x pacing multiplier when ~2/3 CWND is lost. |
| 266 | startup_rate_reduction_multiplier_ = 1; |
| 267 | } |
| 268 | if (GetQuicReloadableFlag(quic_bbr_startup_rate_reduction) && |
| 269 | config.HasClientRequestedIndependentOption(kBBS5, perspective)) { |
| 270 | rate_based_startup_ = true; |
| 271 | // Hits 1.25x pacing multiplier when ~1/3 CWND is lost. |
| 272 | startup_rate_reduction_multiplier_ = 2; |
| 273 | } |
| 274 | if (config.HasClientRequestedIndependentOption(kBBR4, perspective)) { |
| 275 | max_ack_height_.SetWindowLength(2 * kBandwidthWindowSize); |
| 276 | } |
| 277 | if (config.HasClientRequestedIndependentOption(kBBR5, perspective)) { |
| 278 | max_ack_height_.SetWindowLength(4 * kBandwidthWindowSize); |
| 279 | } |
| 280 | if (GetQuicReloadableFlag(quic_bbr_less_probe_rtt) && |
| 281 | config.HasClientRequestedIndependentOption(kBBR6, perspective)) { |
| 282 | QUIC_RELOADABLE_FLAG_COUNT_N(quic_bbr_less_probe_rtt, 1, 3); |
| 283 | probe_rtt_based_on_bdp_ = true; |
| 284 | } |
| 285 | if (GetQuicReloadableFlag(quic_bbr_less_probe_rtt) && |
| 286 | config.HasClientRequestedIndependentOption(kBBR7, perspective)) { |
| 287 | QUIC_RELOADABLE_FLAG_COUNT_N(quic_bbr_less_probe_rtt, 2, 3); |
| 288 | probe_rtt_skipped_if_similar_rtt_ = true; |
| 289 | } |
| 290 | if (GetQuicReloadableFlag(quic_bbr_less_probe_rtt) && |
| 291 | config.HasClientRequestedIndependentOption(kBBR8, perspective)) { |
| 292 | QUIC_RELOADABLE_FLAG_COUNT_N(quic_bbr_less_probe_rtt, 3, 3); |
| 293 | probe_rtt_disabled_if_app_limited_ = true; |
| 294 | } |
| 295 | if (GetQuicReloadableFlag(quic_bbr_flexible_app_limited) && |
| 296 | config.HasClientRequestedIndependentOption(kBBR9, perspective)) { |
| 297 | QUIC_RELOADABLE_FLAG_COUNT(quic_bbr_flexible_app_limited); |
| 298 | flexible_app_limited_ = true; |
| 299 | } |
| 300 | if (GetQuicReloadableFlag(quic_bbr_slower_startup3) && |
| 301 | config.HasClientRequestedIndependentOption(kBBQ1, perspective)) { |
| 302 | QUIC_RELOADABLE_FLAG_COUNT_N(quic_bbr_slower_startup3, 1, 4); |
| 303 | set_high_gain(kDerivedHighGain); |
| 304 | set_high_cwnd_gain(kDerivedHighGain); |
| 305 | set_drain_gain(1.f / kDerivedHighGain); |
| 306 | } |
| 307 | if (GetQuicReloadableFlag(quic_bbr_slower_startup3) && |
| 308 | config.HasClientRequestedIndependentOption(kBBQ2, perspective)) { |
| 309 | QUIC_RELOADABLE_FLAG_COUNT_N(quic_bbr_slower_startup3, 2, 4); |
| 310 | set_high_cwnd_gain(kDerivedHighCWNDGain); |
| 311 | } |
| 312 | if (GetQuicReloadableFlag(quic_bbr_slower_startup3) && |
| 313 | config.HasClientRequestedIndependentOption(kBBQ3, perspective)) { |
| 314 | QUIC_RELOADABLE_FLAG_COUNT_N(quic_bbr_slower_startup3, 3, 4); |
| 315 | enable_ack_aggregation_during_startup_ = true; |
| 316 | } |
| 317 | if (GetQuicReloadableFlag(quic_bbr_slower_startup3) && |
| 318 | config.HasClientRequestedIndependentOption(kBBQ4, perspective)) { |
| 319 | QUIC_RELOADABLE_FLAG_COUNT_N(quic_bbr_slower_startup3, 4, 4); |
| 320 | set_drain_gain(kModerateProbeRttMultiplier); |
| 321 | } |
| 322 | if (GetQuicReloadableFlag(quic_bbr_slower_startup4) && |
| 323 | config.HasClientRequestedIndependentOption(kBBQ5, perspective)) { |
| 324 | QUIC_RELOADABLE_FLAG_COUNT(quic_bbr_slower_startup4); |
| 325 | expire_ack_aggregation_in_startup_ = true; |
| 326 | } |
| 327 | if (config.HasClientRequestedIndependentOption(kMIN1, perspective)) { |
| 328 | min_congestion_window_ = kMaxSegmentSize; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | void BbrSender::AdjustNetworkParameters(QuicBandwidth bandwidth, |
| 333 | QuicTime::Delta rtt) { |
| 334 | if (!bandwidth.IsZero()) { |
| 335 | max_bandwidth_.Update(bandwidth, round_trip_count_); |
| 336 | } |
| 337 | if (!rtt.IsZero() && (min_rtt_ > rtt || min_rtt_.IsZero())) { |
| 338 | min_rtt_ = rtt; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | void BbrSender::OnCongestionEvent(bool /*rtt_updated*/, |
| 343 | QuicByteCount prior_in_flight, |
| 344 | QuicTime event_time, |
| 345 | const AckedPacketVector& acked_packets, |
| 346 | const LostPacketVector& lost_packets) { |
| 347 | const QuicByteCount total_bytes_acked_before = sampler_.total_bytes_acked(); |
| 348 | |
| 349 | bool is_round_start = false; |
| 350 | bool min_rtt_expired = false; |
| 351 | |
| 352 | DiscardLostPackets(lost_packets); |
| 353 | |
| 354 | // Input the new data into the BBR model of the connection. |
| 355 | QuicByteCount excess_acked = 0; |
| 356 | if (!acked_packets.empty()) { |
| 357 | QuicPacketNumber last_acked_packet = acked_packets.rbegin()->packet_number; |
| 358 | is_round_start = UpdateRoundTripCounter(last_acked_packet); |
| 359 | min_rtt_expired = UpdateBandwidthAndMinRtt(event_time, acked_packets); |
| 360 | UpdateRecoveryState(last_acked_packet, !lost_packets.empty(), |
| 361 | is_round_start); |
| 362 | |
| 363 | const QuicByteCount bytes_acked = |
| 364 | sampler_.total_bytes_acked() - total_bytes_acked_before; |
| 365 | |
| 366 | excess_acked = UpdateAckAggregationBytes(event_time, bytes_acked); |
| 367 | } |
| 368 | |
| 369 | // Handle logic specific to PROBE_BW mode. |
| 370 | if (mode_ == PROBE_BW) { |
| 371 | UpdateGainCyclePhase(event_time, prior_in_flight, !lost_packets.empty()); |
| 372 | } |
| 373 | |
| 374 | // Handle logic specific to STARTUP and DRAIN modes. |
| 375 | if (is_round_start && !is_at_full_bandwidth_) { |
| 376 | CheckIfFullBandwidthReached(); |
| 377 | } |
| 378 | MaybeExitStartupOrDrain(event_time); |
| 379 | |
| 380 | // Handle logic specific to PROBE_RTT. |
| 381 | MaybeEnterOrExitProbeRtt(event_time, is_round_start, min_rtt_expired); |
| 382 | |
| 383 | // Calculate number of packets acked and lost. |
| 384 | QuicByteCount bytes_acked = |
| 385 | sampler_.total_bytes_acked() - total_bytes_acked_before; |
| 386 | QuicByteCount bytes_lost = 0; |
| 387 | for (const auto& packet : lost_packets) { |
| 388 | bytes_lost += packet.bytes_lost; |
| 389 | } |
| 390 | |
| 391 | // After the model is updated, recalculate the pacing rate and congestion |
| 392 | // window. |
| 393 | CalculatePacingRate(); |
| 394 | CalculateCongestionWindow(bytes_acked, excess_acked); |
| 395 | CalculateRecoveryWindow(bytes_acked, bytes_lost); |
| 396 | |
| 397 | // Cleanup internal state. |
| 398 | sampler_.RemoveObsoletePackets(unacked_packets_->GetLeastUnacked()); |
| 399 | } |
| 400 | |
| 401 | CongestionControlType BbrSender::GetCongestionControlType() const { |
| 402 | return kBBR; |
| 403 | } |
| 404 | |
| 405 | QuicTime::Delta BbrSender::GetMinRtt() const { |
| 406 | return !min_rtt_.IsZero() ? min_rtt_ : rtt_stats_->initial_rtt(); |
| 407 | } |
| 408 | |
| 409 | QuicByteCount BbrSender::GetTargetCongestionWindow(float gain) const { |
| 410 | QuicByteCount bdp = GetMinRtt() * BandwidthEstimate(); |
| 411 | QuicByteCount congestion_window = gain * bdp; |
| 412 | |
| 413 | // BDP estimate will be zero if no bandwidth samples are available yet. |
| 414 | if (congestion_window == 0) { |
| 415 | congestion_window = gain * initial_congestion_window_; |
| 416 | } |
| 417 | |
| 418 | return std::max(congestion_window, min_congestion_window_); |
| 419 | } |
| 420 | |
| 421 | QuicByteCount BbrSender::ProbeRttCongestionWindow() const { |
| 422 | if (probe_rtt_based_on_bdp_) { |
| 423 | return GetTargetCongestionWindow(kModerateProbeRttMultiplier); |
| 424 | } |
| 425 | return min_congestion_window_; |
| 426 | } |
| 427 | |
| 428 | void BbrSender::EnterStartupMode() { |
| 429 | mode_ = STARTUP; |
| 430 | pacing_gain_ = high_gain_; |
| 431 | congestion_window_gain_ = high_cwnd_gain_; |
| 432 | } |
| 433 | |
| 434 | void BbrSender::EnterProbeBandwidthMode(QuicTime now) { |
| 435 | mode_ = PROBE_BW; |
| 436 | congestion_window_gain_ = congestion_window_gain_constant_; |
| 437 | |
| 438 | // Pick a random offset for the gain cycle out of {0, 2..7} range. 1 is |
| 439 | // excluded because in that case increased gain and decreased gain would not |
| 440 | // follow each other. |
| 441 | cycle_current_offset_ = random_->RandUint64() % (kGainCycleLength - 1); |
| 442 | if (cycle_current_offset_ >= 1) { |
| 443 | cycle_current_offset_ += 1; |
| 444 | } |
| 445 | |
| 446 | last_cycle_start_ = now; |
| 447 | pacing_gain_ = kPacingGain[cycle_current_offset_]; |
| 448 | } |
| 449 | |
| 450 | void BbrSender::DiscardLostPackets(const LostPacketVector& lost_packets) { |
| 451 | for (const LostPacket& packet : lost_packets) { |
| 452 | sampler_.OnPacketLost(packet.packet_number); |
| 453 | if (startup_rate_reduction_multiplier_ != 0 && mode_ == STARTUP) { |
| 454 | startup_bytes_lost_ += packet.bytes_lost; |
| 455 | } |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | bool BbrSender::UpdateRoundTripCounter(QuicPacketNumber last_acked_packet) { |
| 460 | if (!current_round_trip_end_.IsInitialized() || |
| 461 | last_acked_packet > current_round_trip_end_) { |
| 462 | round_trip_count_++; |
| 463 | current_round_trip_end_ = last_sent_packet_; |
| 464 | return true; |
| 465 | } |
| 466 | |
| 467 | return false; |
| 468 | } |
| 469 | |
| 470 | bool BbrSender::UpdateBandwidthAndMinRtt( |
| 471 | QuicTime now, |
| 472 | const AckedPacketVector& acked_packets) { |
| 473 | QuicTime::Delta sample_min_rtt = QuicTime::Delta::Infinite(); |
| 474 | for (const auto& packet : acked_packets) { |
| 475 | if (packet.bytes_acked == 0) { |
| 476 | // Skip acked packets with 0 in flight bytes when updating bandwidth. |
| 477 | continue; |
| 478 | } |
| 479 | BandwidthSample bandwidth_sample = |
| 480 | sampler_.OnPacketAcknowledged(now, packet.packet_number); |
| 481 | last_sample_is_app_limited_ = bandwidth_sample.is_app_limited; |
| 482 | has_non_app_limited_sample_ |= !bandwidth_sample.is_app_limited; |
| 483 | if (!bandwidth_sample.rtt.IsZero()) { |
| 484 | sample_min_rtt = std::min(sample_min_rtt, bandwidth_sample.rtt); |
| 485 | } |
| 486 | |
| 487 | if (!bandwidth_sample.is_app_limited || |
| 488 | bandwidth_sample.bandwidth > BandwidthEstimate()) { |
| 489 | max_bandwidth_.Update(bandwidth_sample.bandwidth, round_trip_count_); |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | // If none of the RTT samples are valid, return immediately. |
| 494 | if (sample_min_rtt.IsInfinite()) { |
| 495 | return false; |
| 496 | } |
| 497 | min_rtt_since_last_probe_rtt_ = |
| 498 | std::min(min_rtt_since_last_probe_rtt_, sample_min_rtt); |
| 499 | |
| 500 | // Do not expire min_rtt if none was ever available. |
| 501 | bool min_rtt_expired = |
| 502 | !min_rtt_.IsZero() && (now > (min_rtt_timestamp_ + kMinRttExpiry)); |
| 503 | |
| 504 | if (min_rtt_expired || sample_min_rtt < min_rtt_ || min_rtt_.IsZero()) { |
| 505 | QUIC_DVLOG(2) << "Min RTT updated, old value: " << min_rtt_ |
| 506 | << ", new value: " << sample_min_rtt |
| 507 | << ", current time: " << now.ToDebuggingValue(); |
| 508 | |
| 509 | if (min_rtt_expired && ShouldExtendMinRttExpiry()) { |
| 510 | min_rtt_expired = false; |
| 511 | } else { |
| 512 | min_rtt_ = sample_min_rtt; |
| 513 | } |
| 514 | min_rtt_timestamp_ = now; |
| 515 | // Reset since_last_probe_rtt fields. |
| 516 | min_rtt_since_last_probe_rtt_ = QuicTime::Delta::Infinite(); |
| 517 | app_limited_since_last_probe_rtt_ = false; |
| 518 | } |
| 519 | DCHECK(!min_rtt_.IsZero()); |
| 520 | |
| 521 | return min_rtt_expired; |
| 522 | } |
| 523 | |
| 524 | bool BbrSender::ShouldExtendMinRttExpiry() const { |
| 525 | if (probe_rtt_disabled_if_app_limited_ && app_limited_since_last_probe_rtt_) { |
| 526 | // Extend the current min_rtt if we've been app limited recently. |
| 527 | return true; |
| 528 | } |
| 529 | const bool min_rtt_increased_since_last_probe = |
| 530 | min_rtt_since_last_probe_rtt_ > min_rtt_ * kSimilarMinRttThreshold; |
| 531 | if (probe_rtt_skipped_if_similar_rtt_ && app_limited_since_last_probe_rtt_ && |
| 532 | !min_rtt_increased_since_last_probe) { |
| 533 | // Extend the current min_rtt if we've been app limited recently and an rtt |
| 534 | // has been measured in that time that's less than 12.5% more than the |
| 535 | // current min_rtt. |
| 536 | return true; |
| 537 | } |
| 538 | return false; |
| 539 | } |
| 540 | |
| 541 | void BbrSender::UpdateGainCyclePhase(QuicTime now, |
| 542 | QuicByteCount prior_in_flight, |
| 543 | bool has_losses) { |
| 544 | const QuicByteCount bytes_in_flight = unacked_packets_->bytes_in_flight(); |
| 545 | // In most cases, the cycle is advanced after an RTT passes. |
| 546 | bool should_advance_gain_cycling = now - last_cycle_start_ > GetMinRtt(); |
| 547 | |
| 548 | // If the pacing gain is above 1.0, the connection is trying to probe the |
| 549 | // bandwidth by increasing the number of bytes in flight to at least |
| 550 | // pacing_gain * BDP. Make sure that it actually reaches the target, as long |
| 551 | // as there are no losses suggesting that the buffers are not able to hold |
| 552 | // that much. |
| 553 | if (pacing_gain_ > 1.0 && !has_losses && |
| 554 | prior_in_flight < GetTargetCongestionWindow(pacing_gain_)) { |
| 555 | should_advance_gain_cycling = false; |
| 556 | } |
| 557 | |
| 558 | // If pacing gain is below 1.0, the connection is trying to drain the extra |
| 559 | // queue which could have been incurred by probing prior to it. If the number |
| 560 | // of bytes in flight falls down to the estimated BDP value earlier, conclude |
| 561 | // that the queue has been successfully drained and exit this cycle early. |
| 562 | if (pacing_gain_ < 1.0 && bytes_in_flight <= GetTargetCongestionWindow(1)) { |
| 563 | should_advance_gain_cycling = true; |
| 564 | } |
| 565 | |
| 566 | if (should_advance_gain_cycling) { |
| 567 | cycle_current_offset_ = (cycle_current_offset_ + 1) % kGainCycleLength; |
| 568 | last_cycle_start_ = now; |
| 569 | // Stay in low gain mode until the target BDP is hit. |
| 570 | // Low gain mode will be exited immediately when the target BDP is achieved. |
| 571 | if (drain_to_target_ && pacing_gain_ < 1 && |
| 572 | kPacingGain[cycle_current_offset_] == 1 && |
| 573 | bytes_in_flight > GetTargetCongestionWindow(1)) { |
| 574 | return; |
| 575 | } |
| 576 | pacing_gain_ = kPacingGain[cycle_current_offset_]; |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | void BbrSender::CheckIfFullBandwidthReached() { |
| 581 | if (last_sample_is_app_limited_) { |
| 582 | return; |
| 583 | } |
| 584 | |
| 585 | QuicBandwidth target = bandwidth_at_last_round_ * kStartupGrowthTarget; |
| 586 | if (BandwidthEstimate() >= target) { |
| 587 | bandwidth_at_last_round_ = BandwidthEstimate(); |
| 588 | rounds_without_bandwidth_gain_ = 0; |
| 589 | if (expire_ack_aggregation_in_startup_) { |
| 590 | // Expire old excess delivery measurements now that bandwidth increased. |
| 591 | max_ack_height_.Reset(0, round_trip_count_); |
| 592 | } |
| 593 | return; |
| 594 | } |
| 595 | |
| 596 | rounds_without_bandwidth_gain_++; |
| 597 | if ((rounds_without_bandwidth_gain_ >= num_startup_rtts_) || |
| 598 | (exit_startup_on_loss_ && InRecovery())) { |
| 599 | DCHECK(has_non_app_limited_sample_); |
| 600 | is_at_full_bandwidth_ = true; |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | void BbrSender::MaybeExitStartupOrDrain(QuicTime now) { |
| 605 | if (mode_ == STARTUP && is_at_full_bandwidth_) { |
| 606 | mode_ = DRAIN; |
| 607 | pacing_gain_ = drain_gain_; |
| 608 | congestion_window_gain_ = high_cwnd_gain_; |
| 609 | } |
| 610 | if (mode_ == DRAIN && |
| 611 | unacked_packets_->bytes_in_flight() <= GetTargetCongestionWindow(1)) { |
| 612 | EnterProbeBandwidthMode(now); |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | void BbrSender::MaybeEnterOrExitProbeRtt(QuicTime now, |
| 617 | bool is_round_start, |
| 618 | bool min_rtt_expired) { |
| 619 | if (min_rtt_expired && !exiting_quiescence_ && mode_ != PROBE_RTT) { |
| 620 | mode_ = PROBE_RTT; |
| 621 | pacing_gain_ = 1; |
| 622 | // Do not decide on the time to exit PROBE_RTT until the |bytes_in_flight| |
| 623 | // is at the target small value. |
| 624 | exit_probe_rtt_at_ = QuicTime::Zero(); |
| 625 | } |
| 626 | |
| 627 | if (mode_ == PROBE_RTT) { |
| 628 | sampler_.OnAppLimited(); |
| 629 | |
| 630 | if (exit_probe_rtt_at_ == QuicTime::Zero()) { |
| 631 | // If the window has reached the appropriate size, schedule exiting |
| 632 | // PROBE_RTT. The CWND during PROBE_RTT is kMinimumCongestionWindow, but |
| 633 | // we allow an extra packet since QUIC checks CWND before sending a |
| 634 | // packet. |
| 635 | if (unacked_packets_->bytes_in_flight() < |
| 636 | ProbeRttCongestionWindow() + kMaxPacketSize) { |
| 637 | exit_probe_rtt_at_ = now + kProbeRttTime; |
| 638 | probe_rtt_round_passed_ = false; |
| 639 | } |
| 640 | } else { |
| 641 | if (is_round_start) { |
| 642 | probe_rtt_round_passed_ = true; |
| 643 | } |
| 644 | if (now >= exit_probe_rtt_at_ && probe_rtt_round_passed_) { |
| 645 | min_rtt_timestamp_ = now; |
| 646 | if (!is_at_full_bandwidth_) { |
| 647 | EnterStartupMode(); |
| 648 | } else { |
| 649 | EnterProbeBandwidthMode(now); |
| 650 | } |
| 651 | } |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | exiting_quiescence_ = false; |
| 656 | } |
| 657 | |
| 658 | void BbrSender::UpdateRecoveryState(QuicPacketNumber last_acked_packet, |
| 659 | bool has_losses, |
| 660 | bool is_round_start) { |
| 661 | // Exit recovery when there are no losses for a round. |
| 662 | if (has_losses) { |
| 663 | end_recovery_at_ = last_sent_packet_; |
| 664 | } |
| 665 | |
| 666 | switch (recovery_state_) { |
| 667 | case NOT_IN_RECOVERY: |
| 668 | // Enter conservation on the first loss. |
| 669 | if (has_losses) { |
| 670 | recovery_state_ = CONSERVATION; |
| 671 | // This will cause the |recovery_window_| to be set to the correct |
| 672 | // value in CalculateRecoveryWindow(). |
| 673 | recovery_window_ = 0; |
| 674 | // Since the conservation phase is meant to be lasting for a whole |
| 675 | // round, extend the current round as if it were started right now. |
| 676 | current_round_trip_end_ = last_sent_packet_; |
| 677 | if (GetQuicReloadableFlag(quic_bbr_app_limited_recovery) && |
| 678 | last_sample_is_app_limited_) { |
| 679 | QUIC_RELOADABLE_FLAG_COUNT(quic_bbr_app_limited_recovery); |
| 680 | is_app_limited_recovery_ = true; |
| 681 | } |
| 682 | } |
| 683 | break; |
| 684 | |
| 685 | case CONSERVATION: |
| 686 | if (is_round_start) { |
| 687 | recovery_state_ = GROWTH; |
| 688 | } |
| 689 | QUIC_FALLTHROUGH_INTENDED; |
| 690 | |
| 691 | case GROWTH: |
| 692 | // Exit recovery if appropriate. |
| 693 | if (!has_losses && last_acked_packet > end_recovery_at_) { |
| 694 | recovery_state_ = NOT_IN_RECOVERY; |
| 695 | is_app_limited_recovery_ = false; |
| 696 | } |
| 697 | |
| 698 | break; |
| 699 | } |
| 700 | if (recovery_state_ != NOT_IN_RECOVERY && is_app_limited_recovery_) { |
| 701 | sampler_.OnAppLimited(); |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | // TODO(ianswett): Move this logic into BandwidthSampler. |
| 706 | QuicByteCount BbrSender::UpdateAckAggregationBytes( |
| 707 | QuicTime ack_time, |
| 708 | QuicByteCount newly_acked_bytes) { |
| 709 | // Compute how many bytes are expected to be delivered, assuming max bandwidth |
| 710 | // is correct. |
| 711 | QuicByteCount expected_bytes_acked = |
| 712 | max_bandwidth_.GetBest() * (ack_time - aggregation_epoch_start_time_); |
| 713 | // Reset the current aggregation epoch as soon as the ack arrival rate is less |
| 714 | // than or equal to the max bandwidth. |
| 715 | if (aggregation_epoch_bytes_ <= expected_bytes_acked) { |
| 716 | // Reset to start measuring a new aggregation epoch. |
| 717 | aggregation_epoch_bytes_ = newly_acked_bytes; |
| 718 | aggregation_epoch_start_time_ = ack_time; |
| 719 | return 0; |
| 720 | } |
| 721 | |
| 722 | // Compute how many extra bytes were delivered vs max bandwidth. |
| 723 | // Include the bytes most recently acknowledged to account for stretch acks. |
| 724 | aggregation_epoch_bytes_ += newly_acked_bytes; |
| 725 | max_ack_height_.Update(aggregation_epoch_bytes_ - expected_bytes_acked, |
| 726 | round_trip_count_); |
| 727 | return aggregation_epoch_bytes_ - expected_bytes_acked; |
| 728 | } |
| 729 | |
| 730 | void BbrSender::CalculatePacingRate() { |
| 731 | if (BandwidthEstimate().IsZero()) { |
| 732 | return; |
| 733 | } |
| 734 | |
| 735 | QuicBandwidth target_rate = pacing_gain_ * BandwidthEstimate(); |
| 736 | if (is_at_full_bandwidth_) { |
| 737 | pacing_rate_ = target_rate; |
| 738 | return; |
| 739 | } |
| 740 | |
| 741 | // Pace at the rate of initial_window / RTT as soon as RTT measurements are |
| 742 | // available. |
| 743 | if (pacing_rate_.IsZero() && !rtt_stats_->min_rtt().IsZero()) { |
| 744 | pacing_rate_ = QuicBandwidth::FromBytesAndTimeDelta( |
| 745 | initial_congestion_window_, rtt_stats_->min_rtt()); |
| 746 | return; |
| 747 | } |
| 748 | // Slow the pacing rate in STARTUP once loss has ever been detected. |
| 749 | const bool has_ever_detected_loss = end_recovery_at_.IsInitialized(); |
| 750 | if (slower_startup_ && has_ever_detected_loss && |
| 751 | has_non_app_limited_sample_) { |
| 752 | pacing_rate_ = kStartupAfterLossGain * BandwidthEstimate(); |
| 753 | return; |
| 754 | } |
| 755 | |
| 756 | // Slow the pacing rate in STARTUP by the bytes_lost / CWND. |
| 757 | if (startup_rate_reduction_multiplier_ != 0 && has_ever_detected_loss && |
| 758 | has_non_app_limited_sample_) { |
| 759 | pacing_rate_ = |
| 760 | (1 - (startup_bytes_lost_ * startup_rate_reduction_multiplier_ * 1.0f / |
| 761 | congestion_window_)) * |
| 762 | target_rate; |
| 763 | // Ensure the pacing rate doesn't drop below the startup growth target times |
| 764 | // the bandwidth estimate. |
| 765 | pacing_rate_ = |
| 766 | std::max(pacing_rate_, kStartupGrowthTarget * BandwidthEstimate()); |
| 767 | return; |
| 768 | } |
| 769 | |
| 770 | // Do not decrease the pacing rate during startup. |
| 771 | pacing_rate_ = std::max(pacing_rate_, target_rate); |
| 772 | } |
| 773 | |
| 774 | void BbrSender::CalculateCongestionWindow(QuicByteCount bytes_acked, |
| 775 | QuicByteCount excess_acked) { |
| 776 | if (mode_ == PROBE_RTT) { |
| 777 | return; |
| 778 | } |
| 779 | |
| 780 | QuicByteCount target_window = |
| 781 | GetTargetCongestionWindow(congestion_window_gain_); |
| 782 | if (is_at_full_bandwidth_) { |
| 783 | // Add the max recently measured ack aggregation to CWND. |
| 784 | target_window += max_ack_height_.GetBest(); |
| 785 | } else if (enable_ack_aggregation_during_startup_) { |
| 786 | // Add the most recent excess acked. Because CWND never decreases in |
| 787 | // STARTUP, this will automatically create a very localized max filter. |
| 788 | target_window += excess_acked; |
| 789 | } |
| 790 | |
| 791 | // Instead of immediately setting the target CWND as the new one, BBR grows |
| 792 | // the CWND towards |target_window| by only increasing it |bytes_acked| at a |
| 793 | // time. |
| 794 | const bool add_bytes_acked = |
| 795 | !GetQuicReloadableFlag(quic_bbr_no_bytes_acked_in_startup_recovery) || |
| 796 | !InRecovery(); |
| 797 | if (is_at_full_bandwidth_) { |
| 798 | congestion_window_ = |
| 799 | std::min(target_window, congestion_window_ + bytes_acked); |
| 800 | } else if (add_bytes_acked && |
| 801 | (congestion_window_ < target_window || |
| 802 | sampler_.total_bytes_acked() < initial_congestion_window_)) { |
| 803 | // If the connection is not yet out of startup phase, do not decrease the |
| 804 | // window. |
| 805 | congestion_window_ = congestion_window_ + bytes_acked; |
| 806 | } |
| 807 | |
| 808 | // Enforce the limits on the congestion window. |
| 809 | congestion_window_ = std::max(congestion_window_, min_congestion_window_); |
| 810 | congestion_window_ = std::min(congestion_window_, max_congestion_window_); |
| 811 | } |
| 812 | |
| 813 | void BbrSender::CalculateRecoveryWindow(QuicByteCount bytes_acked, |
| 814 | QuicByteCount bytes_lost) { |
| 815 | if (rate_based_startup_ && mode_ == STARTUP) { |
| 816 | return; |
| 817 | } |
| 818 | |
| 819 | if (recovery_state_ == NOT_IN_RECOVERY) { |
| 820 | return; |
| 821 | } |
| 822 | |
| 823 | // Set up the initial recovery window. |
| 824 | if (recovery_window_ == 0) { |
| 825 | recovery_window_ = unacked_packets_->bytes_in_flight() + bytes_acked; |
| 826 | recovery_window_ = std::max(min_congestion_window_, recovery_window_); |
| 827 | return; |
| 828 | } |
| 829 | |
| 830 | // Remove losses from the recovery window, while accounting for a potential |
| 831 | // integer underflow. |
| 832 | recovery_window_ = recovery_window_ >= bytes_lost |
| 833 | ? recovery_window_ - bytes_lost |
| 834 | : kMaxSegmentSize; |
| 835 | |
| 836 | // In CONSERVATION mode, just subtracting losses is sufficient. In GROWTH, |
| 837 | // release additional |bytes_acked| to achieve a slow-start-like behavior. |
| 838 | if (recovery_state_ == GROWTH) { |
| 839 | recovery_window_ += bytes_acked; |
| 840 | } |
| 841 | |
| 842 | // Sanity checks. Ensure that we always allow to send at least an MSS or |
| 843 | // |bytes_acked| in response, whichever is larger. |
| 844 | recovery_window_ = std::max( |
| 845 | recovery_window_, unacked_packets_->bytes_in_flight() + bytes_acked); |
| 846 | if (GetQuicReloadableFlag(quic_bbr_one_mss_conservation)) { |
| 847 | recovery_window_ = |
| 848 | std::max(recovery_window_, |
| 849 | unacked_packets_->bytes_in_flight() + kMaxSegmentSize); |
| 850 | } |
| 851 | recovery_window_ = std::max(min_congestion_window_, recovery_window_); |
| 852 | } |
| 853 | |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 854 | std::string BbrSender::GetDebugState() const { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 855 | std::ostringstream stream; |
| 856 | stream << ExportDebugState(); |
| 857 | return stream.str(); |
| 858 | } |
| 859 | |
| 860 | void BbrSender::OnApplicationLimited(QuicByteCount bytes_in_flight) { |
| 861 | if (bytes_in_flight >= GetCongestionWindow()) { |
| 862 | return; |
| 863 | } |
| 864 | if (flexible_app_limited_ && IsPipeSufficientlyFull()) { |
| 865 | return; |
| 866 | } |
| 867 | |
| 868 | app_limited_since_last_probe_rtt_ = true; |
| 869 | sampler_.OnAppLimited(); |
| 870 | QUIC_DVLOG(2) << "Becoming application limited. Last sent packet: " |
| 871 | << last_sent_packet_ << ", CWND: " << GetCongestionWindow(); |
| 872 | } |
| 873 | |
| 874 | BbrSender::DebugState BbrSender::ExportDebugState() const { |
| 875 | return DebugState(*this); |
| 876 | } |
| 877 | |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 878 | static std::string ModeToString(BbrSender::Mode mode) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 879 | switch (mode) { |
| 880 | case BbrSender::STARTUP: |
| 881 | return "STARTUP"; |
| 882 | case BbrSender::DRAIN: |
| 883 | return "DRAIN"; |
| 884 | case BbrSender::PROBE_BW: |
| 885 | return "PROBE_BW"; |
| 886 | case BbrSender::PROBE_RTT: |
| 887 | return "PROBE_RTT"; |
| 888 | } |
| 889 | return "???"; |
| 890 | } |
| 891 | |
| 892 | std::ostream& operator<<(std::ostream& os, const BbrSender::Mode& mode) { |
| 893 | os << ModeToString(mode); |
| 894 | return os; |
| 895 | } |
| 896 | |
| 897 | std::ostream& operator<<(std::ostream& os, const BbrSender::DebugState& state) { |
| 898 | os << "Mode: " << ModeToString(state.mode) << std::endl; |
| 899 | os << "Maximum bandwidth: " << state.max_bandwidth << std::endl; |
| 900 | os << "Round trip counter: " << state.round_trip_count << std::endl; |
| 901 | os << "Gain cycle index: " << static_cast<int>(state.gain_cycle_index) |
| 902 | << std::endl; |
| 903 | os << "Congestion window: " << state.congestion_window << " bytes" |
| 904 | << std::endl; |
| 905 | |
| 906 | if (state.mode == BbrSender::STARTUP) { |
| 907 | os << "(startup) Bandwidth at last round: " << state.bandwidth_at_last_round |
| 908 | << std::endl; |
| 909 | os << "(startup) Rounds without gain: " |
| 910 | << state.rounds_without_bandwidth_gain << std::endl; |
| 911 | } |
| 912 | |
| 913 | os << "Minimum RTT: " << state.min_rtt << std::endl; |
| 914 | os << "Minimum RTT timestamp: " << state.min_rtt_timestamp.ToDebuggingValue() |
| 915 | << std::endl; |
| 916 | |
| 917 | os << "Last sample is app-limited: " |
| 918 | << (state.last_sample_is_app_limited ? "yes" : "no"); |
| 919 | |
| 920 | return os; |
| 921 | } |
| 922 | |
| 923 | } // namespace quic |