QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1 | // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #include "net/third_party/quiche/src/quic/core/quic_utils.h" |
| 6 | |
| 7 | #include <algorithm> |
| 8 | #include <cstdint> |
vasilvv | 872e7a3 | 2019-03-12 16:42:44 -0700 | [diff] [blame] | 9 | #include <string> |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 10 | |
| 11 | #include "net/third_party/quiche/src/quic/core/quic_constants.h" |
| 12 | #include "net/third_party/quiche/src/quic/core/quic_types.h" |
| 13 | #include "net/third_party/quiche/src/quic/platform/api/quic_aligned.h" |
| 14 | #include "net/third_party/quiche/src/quic/platform/api/quic_arraysize.h" |
| 15 | #include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h" |
| 16 | #include "net/third_party/quiche/src/quic/platform/api/quic_endian.h" |
| 17 | #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" |
| 18 | #include "net/third_party/quiche/src/quic/platform/api/quic_prefetch.h" |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 19 | #include "net/third_party/quiche/src/quic/platform/api/quic_uint128.h" |
| 20 | |
| 21 | namespace quic { |
| 22 | namespace { |
| 23 | |
| 24 | // We know that >= GCC 4.8 and Clang have a __uint128_t intrinsic. Other |
| 25 | // compilers don't necessarily, notably MSVC. |
| 26 | #if defined(__x86_64__) && \ |
| 27 | ((defined(__GNUC__) && \ |
| 28 | (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) || \ |
| 29 | defined(__clang__)) |
| 30 | #define QUIC_UTIL_HAS_UINT128 1 |
| 31 | #endif |
| 32 | |
| 33 | #ifdef QUIC_UTIL_HAS_UINT128 |
| 34 | QuicUint128 IncrementalHashFast(QuicUint128 uhash, QuicStringPiece data) { |
| 35 | // This code ends up faster than the naive implementation for 2 reasons: |
| 36 | // 1. QuicUint128 is sufficiently complicated that the compiler |
| 37 | // cannot transform the multiplication by kPrime into a shift-multiply-add; |
| 38 | // it has go through all of the instructions for a 128-bit multiply. |
| 39 | // 2. Because there are so fewer instructions (around 13), the hot loop fits |
| 40 | // nicely in the instruction queue of many Intel CPUs. |
| 41 | // kPrime = 309485009821345068724781371 |
| 42 | static const QuicUint128 kPrime = |
| 43 | (static_cast<QuicUint128>(16777216) << 64) + 315; |
| 44 | auto hi = QuicUint128High64(uhash); |
| 45 | auto lo = QuicUint128Low64(uhash); |
| 46 | QuicUint128 xhash = (static_cast<QuicUint128>(hi) << 64) + lo; |
| 47 | const uint8_t* octets = reinterpret_cast<const uint8_t*>(data.data()); |
| 48 | for (size_t i = 0; i < data.length(); ++i) { |
| 49 | xhash = (xhash ^ static_cast<uint32_t>(octets[i])) * kPrime; |
| 50 | } |
| 51 | return MakeQuicUint128(QuicUint128High64(xhash), QuicUint128Low64(xhash)); |
| 52 | } |
| 53 | #endif |
| 54 | |
| 55 | #ifndef QUIC_UTIL_HAS_UINT128 |
| 56 | // Slow implementation of IncrementalHash. In practice, only used by Chromium. |
| 57 | QuicUint128 IncrementalHashSlow(QuicUint128 hash, QuicStringPiece data) { |
| 58 | // kPrime = 309485009821345068724781371 |
| 59 | static const QuicUint128 kPrime = MakeQuicUint128(16777216, 315); |
| 60 | const uint8_t* octets = reinterpret_cast<const uint8_t*>(data.data()); |
| 61 | for (size_t i = 0; i < data.length(); ++i) { |
| 62 | hash = hash ^ MakeQuicUint128(0, octets[i]); |
| 63 | hash = hash * kPrime; |
| 64 | } |
| 65 | return hash; |
| 66 | } |
| 67 | #endif |
| 68 | |
| 69 | QuicUint128 IncrementalHash(QuicUint128 hash, QuicStringPiece data) { |
| 70 | #ifdef QUIC_UTIL_HAS_UINT128 |
| 71 | return IncrementalHashFast(hash, data); |
| 72 | #else |
| 73 | return IncrementalHashSlow(hash, data); |
| 74 | #endif |
| 75 | } |
| 76 | |
| 77 | } // namespace |
| 78 | |
| 79 | // static |
| 80 | uint64_t QuicUtils::FNV1a_64_Hash(QuicStringPiece data) { |
| 81 | static const uint64_t kOffset = UINT64_C(14695981039346656037); |
| 82 | static const uint64_t kPrime = UINT64_C(1099511628211); |
| 83 | |
| 84 | const uint8_t* octets = reinterpret_cast<const uint8_t*>(data.data()); |
| 85 | |
| 86 | uint64_t hash = kOffset; |
| 87 | |
| 88 | for (size_t i = 0; i < data.length(); ++i) { |
| 89 | hash = hash ^ octets[i]; |
| 90 | hash = hash * kPrime; |
| 91 | } |
| 92 | |
| 93 | return hash; |
| 94 | } |
| 95 | |
| 96 | // static |
| 97 | QuicUint128 QuicUtils::FNV1a_128_Hash(QuicStringPiece data) { |
| 98 | return FNV1a_128_Hash_Three(data, QuicStringPiece(), QuicStringPiece()); |
| 99 | } |
| 100 | |
| 101 | // static |
| 102 | QuicUint128 QuicUtils::FNV1a_128_Hash_Two(QuicStringPiece data1, |
| 103 | QuicStringPiece data2) { |
| 104 | return FNV1a_128_Hash_Three(data1, data2, QuicStringPiece()); |
| 105 | } |
| 106 | |
| 107 | // static |
| 108 | QuicUint128 QuicUtils::FNV1a_128_Hash_Three(QuicStringPiece data1, |
| 109 | QuicStringPiece data2, |
| 110 | QuicStringPiece data3) { |
| 111 | // The two constants are defined as part of the hash algorithm. |
| 112 | // see http://www.isthe.com/chongo/tech/comp/fnv/ |
| 113 | // kOffset = 144066263297769815596495629667062367629 |
| 114 | const QuicUint128 kOffset = MakeQuicUint128(UINT64_C(7809847782465536322), |
| 115 | UINT64_C(7113472399480571277)); |
| 116 | |
| 117 | QuicUint128 hash = IncrementalHash(kOffset, data1); |
| 118 | if (data2.empty()) { |
| 119 | return hash; |
| 120 | } |
| 121 | |
| 122 | hash = IncrementalHash(hash, data2); |
| 123 | if (data3.empty()) { |
| 124 | return hash; |
| 125 | } |
| 126 | return IncrementalHash(hash, data3); |
| 127 | } |
| 128 | |
| 129 | // static |
| 130 | void QuicUtils::SerializeUint128Short(QuicUint128 v, uint8_t* out) { |
| 131 | const uint64_t lo = QuicUint128Low64(v); |
| 132 | const uint64_t hi = QuicUint128High64(v); |
| 133 | // This assumes that the system is little-endian. |
| 134 | memcpy(out, &lo, sizeof(lo)); |
| 135 | memcpy(out + sizeof(lo), &hi, sizeof(hi) / 2); |
| 136 | } |
| 137 | |
| 138 | #define RETURN_STRING_LITERAL(x) \ |
| 139 | case x: \ |
| 140 | return #x; |
| 141 | |
| 142 | // static |
| 143 | const char* QuicUtils::EncryptionLevelToString(EncryptionLevel level) { |
| 144 | switch (level) { |
QUICHE team | 6987b4a | 2019-03-15 16:23:04 -0700 | [diff] [blame^] | 145 | RETURN_STRING_LITERAL(ENCRYPTION_INITIAL); |
QUICHE team | 88ea008 | 2019-03-15 10:05:26 -0700 | [diff] [blame] | 146 | RETURN_STRING_LITERAL(ENCRYPTION_HANDSHAKE); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 147 | RETURN_STRING_LITERAL(ENCRYPTION_ZERO_RTT); |
| 148 | RETURN_STRING_LITERAL(ENCRYPTION_FORWARD_SECURE); |
| 149 | RETURN_STRING_LITERAL(NUM_ENCRYPTION_LEVELS); |
| 150 | } |
| 151 | return "INVALID_ENCRYPTION_LEVEL"; |
| 152 | } |
| 153 | |
| 154 | // static |
| 155 | const char* QuicUtils::TransmissionTypeToString(TransmissionType type) { |
| 156 | switch (type) { |
| 157 | RETURN_STRING_LITERAL(NOT_RETRANSMISSION); |
| 158 | RETURN_STRING_LITERAL(HANDSHAKE_RETRANSMISSION); |
| 159 | RETURN_STRING_LITERAL(LOSS_RETRANSMISSION); |
| 160 | RETURN_STRING_LITERAL(ALL_UNACKED_RETRANSMISSION); |
| 161 | RETURN_STRING_LITERAL(ALL_INITIAL_RETRANSMISSION); |
| 162 | RETURN_STRING_LITERAL(RTO_RETRANSMISSION); |
| 163 | RETURN_STRING_LITERAL(TLP_RETRANSMISSION); |
| 164 | RETURN_STRING_LITERAL(PROBING_RETRANSMISSION); |
| 165 | } |
| 166 | return "INVALID_TRANSMISSION_TYPE"; |
| 167 | } |
| 168 | |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 169 | std::string QuicUtils::AddressChangeTypeToString(AddressChangeType type) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 170 | switch (type) { |
| 171 | RETURN_STRING_LITERAL(NO_CHANGE); |
| 172 | RETURN_STRING_LITERAL(PORT_CHANGE); |
| 173 | RETURN_STRING_LITERAL(IPV4_SUBNET_CHANGE); |
| 174 | RETURN_STRING_LITERAL(IPV4_TO_IPV6_CHANGE); |
| 175 | RETURN_STRING_LITERAL(IPV6_TO_IPV4_CHANGE); |
| 176 | RETURN_STRING_LITERAL(IPV6_TO_IPV6_CHANGE); |
| 177 | RETURN_STRING_LITERAL(IPV4_TO_IPV4_CHANGE); |
| 178 | } |
| 179 | return "INVALID_ADDRESS_CHANGE_TYPE"; |
| 180 | } |
| 181 | |
| 182 | const char* QuicUtils::SentPacketStateToString(SentPacketState state) { |
| 183 | switch (state) { |
| 184 | RETURN_STRING_LITERAL(OUTSTANDING); |
| 185 | RETURN_STRING_LITERAL(NEVER_SENT); |
| 186 | RETURN_STRING_LITERAL(ACKED); |
| 187 | RETURN_STRING_LITERAL(UNACKABLE); |
| 188 | RETURN_STRING_LITERAL(HANDSHAKE_RETRANSMITTED); |
| 189 | RETURN_STRING_LITERAL(LOST); |
| 190 | RETURN_STRING_LITERAL(TLP_RETRANSMITTED); |
| 191 | RETURN_STRING_LITERAL(RTO_RETRANSMITTED); |
| 192 | RETURN_STRING_LITERAL(PROBE_RETRANSMITTED); |
| 193 | } |
| 194 | return "INVALID_SENT_PACKET_STATE"; |
| 195 | } |
| 196 | |
| 197 | // static |
| 198 | const char* QuicUtils::QuicLongHeaderTypetoString(QuicLongHeaderType type) { |
| 199 | switch (type) { |
| 200 | RETURN_STRING_LITERAL(VERSION_NEGOTIATION); |
| 201 | RETURN_STRING_LITERAL(INITIAL); |
| 202 | RETURN_STRING_LITERAL(RETRY); |
| 203 | RETURN_STRING_LITERAL(HANDSHAKE); |
| 204 | RETURN_STRING_LITERAL(ZERO_RTT_PROTECTED); |
| 205 | default: |
| 206 | return "INVALID_PACKET_TYPE"; |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | // static |
| 211 | AddressChangeType QuicUtils::DetermineAddressChangeType( |
| 212 | const QuicSocketAddress& old_address, |
| 213 | const QuicSocketAddress& new_address) { |
| 214 | if (!old_address.IsInitialized() || !new_address.IsInitialized() || |
| 215 | old_address == new_address) { |
| 216 | return NO_CHANGE; |
| 217 | } |
| 218 | |
| 219 | if (old_address.host() == new_address.host()) { |
| 220 | return PORT_CHANGE; |
| 221 | } |
| 222 | |
| 223 | bool old_ip_is_ipv4 = old_address.host().IsIPv4() ? true : false; |
| 224 | bool migrating_ip_is_ipv4 = new_address.host().IsIPv4() ? true : false; |
| 225 | if (old_ip_is_ipv4 && !migrating_ip_is_ipv4) { |
| 226 | return IPV4_TO_IPV6_CHANGE; |
| 227 | } |
| 228 | |
| 229 | if (!old_ip_is_ipv4) { |
| 230 | return migrating_ip_is_ipv4 ? IPV6_TO_IPV4_CHANGE : IPV6_TO_IPV6_CHANGE; |
| 231 | } |
| 232 | |
| 233 | const int kSubnetMaskLength = 24; |
| 234 | if (old_address.host().InSameSubnet(new_address.host(), kSubnetMaskLength)) { |
| 235 | // Subnet part does not change (here, we use /24), which is considered to be |
| 236 | // caused by NATs. |
| 237 | return IPV4_SUBNET_CHANGE; |
| 238 | } |
| 239 | |
| 240 | return IPV4_TO_IPV4_CHANGE; |
| 241 | } |
| 242 | |
| 243 | // static |
| 244 | void QuicUtils::CopyToBuffer(const struct iovec* iov, |
| 245 | int iov_count, |
| 246 | size_t iov_offset, |
| 247 | size_t buffer_length, |
| 248 | char* buffer) { |
| 249 | int iovnum = 0; |
| 250 | while (iovnum < iov_count && iov_offset >= iov[iovnum].iov_len) { |
| 251 | iov_offset -= iov[iovnum].iov_len; |
| 252 | ++iovnum; |
| 253 | } |
| 254 | DCHECK_LE(iovnum, iov_count); |
| 255 | DCHECK_LE(iov_offset, iov[iovnum].iov_len); |
| 256 | if (iovnum >= iov_count || buffer_length == 0) { |
| 257 | return; |
| 258 | } |
| 259 | |
| 260 | // Unroll the first iteration that handles iov_offset. |
| 261 | const size_t iov_available = iov[iovnum].iov_len - iov_offset; |
| 262 | size_t copy_len = std::min(buffer_length, iov_available); |
| 263 | |
| 264 | // Try to prefetch the next iov if there is at least one more after the |
| 265 | // current. Otherwise, it looks like an irregular access that the hardware |
| 266 | // prefetcher won't speculatively prefetch. Only prefetch one iov because |
| 267 | // generally, the iov_offset is not 0, input iov consists of 2K buffers and |
| 268 | // the output buffer is ~1.4K. |
| 269 | if (copy_len == iov_available && iovnum + 1 < iov_count) { |
| 270 | char* next_base = static_cast<char*>(iov[iovnum + 1].iov_base); |
| 271 | // Prefetch 2 cachelines worth of data to get the prefetcher started; leave |
| 272 | // it to the hardware prefetcher after that. |
| 273 | QuicPrefetchT0(next_base); |
| 274 | if (iov[iovnum + 1].iov_len >= 64) { |
| 275 | QuicPrefetchT0(next_base + QUIC_CACHELINE_SIZE); |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | const char* src = static_cast<char*>(iov[iovnum].iov_base) + iov_offset; |
| 280 | while (true) { |
| 281 | memcpy(buffer, src, copy_len); |
| 282 | buffer_length -= copy_len; |
| 283 | buffer += copy_len; |
| 284 | if (buffer_length == 0 || ++iovnum >= iov_count) { |
| 285 | break; |
| 286 | } |
| 287 | src = static_cast<char*>(iov[iovnum].iov_base); |
| 288 | copy_len = std::min(buffer_length, iov[iovnum].iov_len); |
| 289 | } |
| 290 | QUIC_BUG_IF(buffer_length > 0) << "Failed to copy entire length to buffer."; |
| 291 | } |
| 292 | |
| 293 | // static |
| 294 | struct iovec QuicUtils::MakeIovec(QuicStringPiece data) { |
| 295 | struct iovec iov = {const_cast<char*>(data.data()), |
| 296 | static_cast<size_t>(data.size())}; |
| 297 | return iov; |
| 298 | } |
| 299 | |
| 300 | // static |
| 301 | bool QuicUtils::IsAckable(SentPacketState state) { |
| 302 | return state != NEVER_SENT && state != ACKED && state != UNACKABLE; |
| 303 | } |
| 304 | |
| 305 | // static |
| 306 | bool QuicUtils::IsRetransmittableFrame(QuicFrameType type) { |
| 307 | switch (type) { |
| 308 | case ACK_FRAME: |
| 309 | case PADDING_FRAME: |
| 310 | case STOP_WAITING_FRAME: |
| 311 | case MTU_DISCOVERY_FRAME: |
| 312 | return false; |
| 313 | default: |
| 314 | return true; |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | // static |
| 319 | bool QuicUtils::IsHandshakeFrame(const QuicFrame& frame, |
| 320 | QuicTransportVersion transport_version) { |
QUICHE team | ea74008 | 2019-03-11 17:58:43 -0700 | [diff] [blame] | 321 | if (!QuicVersionUsesCryptoFrames(transport_version)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 322 | return frame.type == STREAM_FRAME && |
| 323 | frame.stream_frame.stream_id == GetCryptoStreamId(transport_version); |
| 324 | } else { |
| 325 | return frame.type == CRYPTO_FRAME; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | // static |
| 330 | SentPacketState QuicUtils::RetransmissionTypeToPacketState( |
| 331 | TransmissionType retransmission_type) { |
| 332 | switch (retransmission_type) { |
| 333 | case ALL_UNACKED_RETRANSMISSION: |
| 334 | case ALL_INITIAL_RETRANSMISSION: |
| 335 | return UNACKABLE; |
| 336 | case HANDSHAKE_RETRANSMISSION: |
| 337 | return HANDSHAKE_RETRANSMITTED; |
| 338 | case LOSS_RETRANSMISSION: |
| 339 | return LOST; |
| 340 | case TLP_RETRANSMISSION: |
| 341 | return TLP_RETRANSMITTED; |
| 342 | case RTO_RETRANSMISSION: |
| 343 | return RTO_RETRANSMITTED; |
| 344 | case PROBING_RETRANSMISSION: |
| 345 | return PROBE_RETRANSMITTED; |
| 346 | default: |
| 347 | QUIC_BUG << QuicUtils::TransmissionTypeToString(retransmission_type) |
| 348 | << " is not a retransmission_type"; |
| 349 | return UNACKABLE; |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | // static |
| 354 | bool QuicUtils::IsIetfPacketHeader(uint8_t first_byte) { |
| 355 | return (first_byte & FLAGS_LONG_HEADER) || (first_byte & FLAGS_FIXED_BIT) || |
| 356 | !(first_byte & FLAGS_DEMULTIPLEXING_BIT); |
| 357 | } |
| 358 | |
| 359 | // static |
| 360 | bool QuicUtils::IsIetfPacketShortHeader(uint8_t first_byte) { |
| 361 | return IsIetfPacketHeader(first_byte) && !(first_byte & FLAGS_LONG_HEADER); |
| 362 | } |
| 363 | |
| 364 | // static |
| 365 | QuicStreamId QuicUtils::GetInvalidStreamId(QuicTransportVersion version) { |
| 366 | return version == QUIC_VERSION_99 ? std::numeric_limits<QuicStreamId>::max() |
| 367 | : 0; |
| 368 | } |
| 369 | |
| 370 | // static |
| 371 | QuicStreamId QuicUtils::GetCryptoStreamId(QuicTransportVersion version) { |
| 372 | // TODO(nharper): Change this to return GetInvalidStreamId for version 47 or |
| 373 | // greater. Currently, too many things break with that change. |
| 374 | return version == QUIC_VERSION_99 ? 0 : 1; |
| 375 | } |
| 376 | |
| 377 | // static |
| 378 | QuicStreamId QuicUtils::GetHeadersStreamId(QuicTransportVersion version) { |
| 379 | return version == QUIC_VERSION_99 ? 4 : 3; |
| 380 | } |
| 381 | |
| 382 | // static |
| 383 | bool QuicUtils::IsClientInitiatedStreamId(QuicTransportVersion version, |
| 384 | QuicStreamId id) { |
| 385 | if (id == GetInvalidStreamId(version)) { |
| 386 | return false; |
| 387 | } |
| 388 | return version == QUIC_VERSION_99 ? id % 2 == 0 : id % 2 != 0; |
| 389 | } |
| 390 | |
| 391 | // static |
| 392 | bool QuicUtils::IsServerInitiatedStreamId(QuicTransportVersion version, |
| 393 | QuicStreamId id) { |
| 394 | if (id == GetInvalidStreamId(version)) { |
| 395 | return false; |
| 396 | } |
| 397 | return version == QUIC_VERSION_99 ? id % 2 != 0 : id % 2 == 0; |
| 398 | } |
| 399 | |
| 400 | // static |
| 401 | bool QuicUtils::IsBidirectionalStreamId(QuicStreamId id) { |
| 402 | return id % 4 < 2; |
| 403 | } |
| 404 | |
| 405 | // static |
| 406 | StreamType QuicUtils::GetStreamType(QuicStreamId id, |
| 407 | Perspective perspective, |
| 408 | bool peer_initiated) { |
| 409 | if (IsBidirectionalStreamId(id)) { |
| 410 | return BIDIRECTIONAL; |
| 411 | } |
| 412 | |
| 413 | if (peer_initiated) { |
| 414 | if (perspective == Perspective::IS_SERVER) { |
| 415 | DCHECK_EQ(2u, id % 4); |
| 416 | } else { |
| 417 | DCHECK_EQ(Perspective::IS_CLIENT, perspective); |
| 418 | DCHECK_EQ(3u, id % 4); |
| 419 | } |
| 420 | return READ_UNIDIRECTIONAL; |
| 421 | } |
| 422 | |
| 423 | if (perspective == Perspective::IS_SERVER) { |
| 424 | DCHECK_EQ(3u, id % 4); |
| 425 | } else { |
| 426 | DCHECK_EQ(Perspective::IS_CLIENT, perspective); |
| 427 | DCHECK_EQ(2u, id % 4); |
| 428 | } |
| 429 | return WRITE_UNIDIRECTIONAL; |
| 430 | } |
| 431 | |
| 432 | // static |
| 433 | QuicStreamId QuicUtils::StreamIdDelta(QuicTransportVersion version) { |
| 434 | return version == QUIC_VERSION_99 ? 4 : 2; |
| 435 | } |
| 436 | |
| 437 | // static |
| 438 | QuicStreamId QuicUtils::GetFirstBidirectionalStreamId( |
| 439 | QuicTransportVersion version, |
| 440 | Perspective perspective) { |
| 441 | if (perspective == Perspective::IS_CLIENT) { |
| 442 | return version == QUIC_VERSION_99 ? 4 : 3; |
| 443 | } |
| 444 | return version == QUIC_VERSION_99 ? 1 : 2; |
| 445 | } |
| 446 | |
| 447 | // static |
| 448 | QuicStreamId QuicUtils::GetFirstUnidirectionalStreamId( |
| 449 | QuicTransportVersion version, |
| 450 | Perspective perspective) { |
| 451 | if (perspective == Perspective::IS_CLIENT) { |
| 452 | return version == QUIC_VERSION_99 ? 2 : 3; |
| 453 | } |
| 454 | return version == QUIC_VERSION_99 ? 3 : 2; |
| 455 | } |
| 456 | |
| 457 | // static |
| 458 | QuicConnectionId QuicUtils::CreateRandomConnectionId() { |
| 459 | return CreateRandomConnectionId(QuicRandom::GetInstance()); |
| 460 | } |
| 461 | |
| 462 | // static |
| 463 | QuicConnectionId QuicUtils::CreateRandomConnectionId(QuicRandom* random) { |
| 464 | char connection_id_bytes[kQuicDefaultConnectionIdLength]; |
| 465 | random->RandBytes(connection_id_bytes, QUIC_ARRAYSIZE(connection_id_bytes)); |
| 466 | return QuicConnectionId(static_cast<char*>(connection_id_bytes), |
| 467 | QUIC_ARRAYSIZE(connection_id_bytes)); |
| 468 | } |
| 469 | |
| 470 | // static |
| 471 | bool QuicUtils::VariableLengthConnectionIdAllowedForVersion( |
| 472 | QuicTransportVersion version) { |
QUICHE team | 8e2e453 | 2019-03-14 14:37:56 -0700 | [diff] [blame] | 473 | return version == QUIC_VERSION_99; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 474 | } |
| 475 | |
| 476 | // static |
| 477 | QuicConnectionId QuicUtils::CreateZeroConnectionId( |
| 478 | QuicTransportVersion version) { |
| 479 | if (!VariableLengthConnectionIdAllowedForVersion(version)) { |
| 480 | char connection_id_bytes[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 481 | return QuicConnectionId(static_cast<char*>(connection_id_bytes), |
| 482 | QUIC_ARRAYSIZE(connection_id_bytes)); |
| 483 | } |
| 484 | return EmptyQuicConnectionId(); |
| 485 | } |
| 486 | |
| 487 | // static |
| 488 | bool QuicUtils::IsConnectionIdValidForVersion(QuicConnectionId connection_id, |
| 489 | QuicTransportVersion version) { |
| 490 | if (VariableLengthConnectionIdAllowedForVersion(version)) { |
| 491 | return true; |
| 492 | } |
| 493 | return connection_id.length() == kQuicDefaultConnectionIdLength; |
| 494 | } |
| 495 | |
| 496 | QuicUint128 QuicUtils::GenerateStatelessResetToken( |
| 497 | QuicConnectionId connection_id) { |
| 498 | uint64_t data_bytes[3] = {0, 0, 0}; |
| 499 | static_assert(sizeof(data_bytes) >= kQuicMaxConnectionIdLength, |
| 500 | "kQuicMaxConnectionIdLength changed"); |
| 501 | memcpy(data_bytes, connection_id.data(), connection_id.length()); |
| 502 | // This is designed so that the common case of 64bit connection IDs |
| 503 | // produces a stateless reset token that is equal to the connection ID |
| 504 | // interpreted as a 64bit unsigned integer, to facilitate debugging. |
| 505 | return MakeQuicUint128( |
| 506 | QuicEndian::NetToHost64(sizeof(uint64_t) ^ connection_id.length() ^ |
| 507 | data_bytes[1] ^ data_bytes[2]), |
| 508 | QuicEndian::NetToHost64(data_bytes[0])); |
| 509 | } |
| 510 | |
| 511 | #undef RETURN_STRING_LITERAL // undef for jumbo builds |
| 512 | } // namespace quic |