QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1 | // Copyright 2013 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #include "net/third_party/quiche/src/quic/core/quic_sent_packet_manager.h" |
| 6 | |
| 7 | #include <algorithm> |
vasilvv | 872e7a3 | 2019-03-12 16:42:44 -0700 | [diff] [blame] | 8 | #include <string> |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 9 | |
| 10 | #include "net/third_party/quiche/src/quic/core/congestion_control/general_loss_algorithm.h" |
| 11 | #include "net/third_party/quiche/src/quic/core/congestion_control/pacing_sender.h" |
| 12 | #include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h" |
| 13 | #include "net/third_party/quiche/src/quic/core/proto/cached_network_parameters.pb.h" |
| 14 | #include "net/third_party/quiche/src/quic/core/quic_connection_stats.h" |
| 15 | #include "net/third_party/quiche/src/quic/core/quic_pending_retransmission.h" |
| 16 | #include "net/third_party/quiche/src/quic/core/quic_utils.h" |
| 17 | #include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h" |
| 18 | #include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h" |
| 19 | #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" |
| 20 | #include "net/third_party/quiche/src/quic/platform/api/quic_logging.h" |
| 21 | #include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h" |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 22 | |
| 23 | namespace quic { |
| 24 | |
| 25 | namespace { |
| 26 | static const int64_t kDefaultRetransmissionTimeMs = 500; |
| 27 | static const int64_t kMaxRetransmissionTimeMs = 60000; |
| 28 | // Maximum number of exponential backoffs used for RTO timeouts. |
| 29 | static const size_t kMaxRetransmissions = 10; |
| 30 | // Maximum number of packets retransmitted upon an RTO. |
| 31 | static const size_t kMaxRetransmissionsOnTimeout = 2; |
| 32 | // The path degrading delay is the sum of this number of consecutive RTO delays. |
| 33 | const size_t kNumRetransmissionDelaysForPathDegradingDelay = 2; |
| 34 | |
| 35 | // Ensure the handshake timer isnt't faster than 10ms. |
| 36 | // This limits the tenth retransmitted packet to 10s after the initial CHLO. |
| 37 | static const int64_t kMinHandshakeTimeoutMs = 10; |
| 38 | |
| 39 | // Sends up to two tail loss probes before firing an RTO, |
| 40 | // per draft RFC draft-dukkipati-tcpm-tcp-loss-probe. |
| 41 | static const size_t kDefaultMaxTailLossProbes = 2; |
| 42 | |
| 43 | inline bool HasCryptoHandshake(const QuicTransmissionInfo& transmission_info) { |
| 44 | DCHECK(!transmission_info.has_crypto_handshake || |
| 45 | !transmission_info.retransmittable_frames.empty()); |
| 46 | return transmission_info.has_crypto_handshake; |
| 47 | } |
| 48 | |
| 49 | // Returns true if retransmissions the specified type leave the data in flight. |
| 50 | inline bool RetransmissionLeavesBytesInFlight( |
| 51 | TransmissionType transmission_type) { |
| 52 | // Both TLP and the new RTO leave the packets in flight and let the loss |
| 53 | // detection decide if packets are lost. |
| 54 | return transmission_type == TLP_RETRANSMISSION || |
| 55 | transmission_type == PROBING_RETRANSMISSION || |
| 56 | transmission_type == RTO_RETRANSMISSION; |
| 57 | } |
| 58 | |
| 59 | // Returns true of retransmissions of the specified type should retransmit |
| 60 | // the frames directly (as opposed to resulting in a loss notification). |
| 61 | inline bool ShouldForceRetransmission(TransmissionType transmission_type) { |
| 62 | return transmission_type == HANDSHAKE_RETRANSMISSION || |
| 63 | transmission_type == TLP_RETRANSMISSION || |
| 64 | transmission_type == PROBING_RETRANSMISSION || |
| 65 | transmission_type == RTO_RETRANSMISSION; |
| 66 | } |
| 67 | |
| 68 | } // namespace |
| 69 | |
| 70 | #define ENDPOINT \ |
| 71 | (unacked_packets_.perspective() == Perspective::IS_SERVER ? "Server: " \ |
| 72 | : "Client: ") |
| 73 | |
| 74 | QuicSentPacketManager::QuicSentPacketManager( |
| 75 | Perspective perspective, |
| 76 | const QuicClock* clock, |
| 77 | QuicConnectionStats* stats, |
| 78 | CongestionControlType congestion_control_type, |
| 79 | LossDetectionType loss_type) |
| 80 | : unacked_packets_(perspective), |
| 81 | clock_(clock), |
| 82 | stats_(stats), |
| 83 | debug_delegate_(nullptr), |
| 84 | network_change_visitor_(nullptr), |
| 85 | initial_congestion_window_(kInitialCongestionWindow), |
| 86 | loss_algorithm_( |
| 87 | unacked_packets_.use_uber_loss_algorithm() |
| 88 | ? dynamic_cast<LossDetectionInterface*>(&uber_loss_algorithm_) |
| 89 | : dynamic_cast<LossDetectionInterface*>( |
| 90 | &general_loss_algorithm_)), |
| 91 | general_loss_algorithm_(loss_type), |
| 92 | uber_loss_algorithm_(loss_type), |
| 93 | consecutive_rto_count_(0), |
| 94 | consecutive_tlp_count_(0), |
| 95 | consecutive_crypto_retransmission_count_(0), |
| 96 | pending_timer_transmission_count_(0), |
| 97 | max_tail_loss_probes_(kDefaultMaxTailLossProbes), |
| 98 | max_rto_packets_(kMaxRetransmissionsOnTimeout), |
| 99 | enable_half_rtt_tail_loss_probe_(false), |
| 100 | using_pacing_(false), |
| 101 | use_new_rto_(false), |
| 102 | conservative_handshake_retransmits_(false), |
| 103 | min_tlp_timeout_( |
| 104 | QuicTime::Delta::FromMilliseconds(kMinTailLossProbeTimeoutMs)), |
| 105 | min_rto_timeout_( |
| 106 | QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs)), |
| 107 | ietf_style_tlp_(false), |
| 108 | ietf_style_2x_tlp_(false), |
| 109 | largest_mtu_acked_(0), |
| 110 | handshake_confirmed_(false), |
| 111 | delayed_ack_time_( |
| 112 | QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs)), |
| 113 | rtt_updated_(false), |
QUICHE team | 9929cc4 | 2019-03-13 08:17:43 -0700 | [diff] [blame^] | 114 | acked_packets_iter_(last_ack_frame_.packets.rbegin()), |
| 115 | tolerate_reneging_(GetQuicReloadableFlag(quic_tolerate_reneging)) { |
| 116 | if (tolerate_reneging_) { |
| 117 | QUIC_RELOADABLE_FLAG_COUNT(quic_tolerate_reneging); |
| 118 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 119 | SetSendAlgorithm(congestion_control_type); |
| 120 | } |
| 121 | |
| 122 | QuicSentPacketManager::~QuicSentPacketManager() {} |
| 123 | |
| 124 | void QuicSentPacketManager::SetFromConfig(const QuicConfig& config) { |
| 125 | const Perspective perspective = unacked_packets_.perspective(); |
| 126 | if (config.HasReceivedInitialRoundTripTimeUs() && |
| 127 | config.ReceivedInitialRoundTripTimeUs() > 0) { |
| 128 | if (!config.HasClientSentConnectionOption(kNRTT, perspective)) { |
| 129 | SetInitialRtt(QuicTime::Delta::FromMicroseconds( |
| 130 | config.ReceivedInitialRoundTripTimeUs())); |
| 131 | } |
| 132 | } else if (config.HasInitialRoundTripTimeUsToSend() && |
| 133 | config.GetInitialRoundTripTimeUsToSend() > 0) { |
| 134 | SetInitialRtt(QuicTime::Delta::FromMicroseconds( |
| 135 | config.GetInitialRoundTripTimeUsToSend())); |
| 136 | } |
| 137 | if (config.HasClientSentConnectionOption(kMAD0, perspective)) { |
| 138 | rtt_stats_.set_ignore_max_ack_delay(true); |
| 139 | } |
| 140 | if (config.HasClientSentConnectionOption(kMAD1, perspective)) { |
| 141 | rtt_stats_.set_initial_max_ack_delay(delayed_ack_time_); |
| 142 | } |
| 143 | if (config.HasClientSentConnectionOption(kMAD2, perspective)) { |
| 144 | min_tlp_timeout_ = QuicTime::Delta::Zero(); |
| 145 | } |
| 146 | if (config.HasClientSentConnectionOption(kMAD3, perspective)) { |
| 147 | min_rto_timeout_ = QuicTime::Delta::Zero(); |
| 148 | } |
| 149 | if (config.HasClientSentConnectionOption(kMAD4, perspective)) { |
| 150 | ietf_style_tlp_ = true; |
| 151 | } |
| 152 | if (config.HasClientSentConnectionOption(kMAD5, perspective)) { |
| 153 | ietf_style_2x_tlp_ = true; |
| 154 | } |
| 155 | |
| 156 | // Configure congestion control. |
| 157 | if (config.HasClientRequestedIndependentOption(kTBBR, perspective)) { |
| 158 | SetSendAlgorithm(kBBR); |
| 159 | } |
| 160 | if (config.HasClientRequestedIndependentOption(kRENO, perspective)) { |
| 161 | SetSendAlgorithm(kRenoBytes); |
| 162 | } else if (config.HasClientRequestedIndependentOption(kBYTE, perspective) || |
| 163 | (GetQuicReloadableFlag(quic_default_to_bbr) && |
| 164 | config.HasClientRequestedIndependentOption(kQBIC, perspective))) { |
| 165 | SetSendAlgorithm(kCubicBytes); |
| 166 | } else if (GetQuicReloadableFlag(quic_enable_pcc3) && |
| 167 | config.HasClientRequestedIndependentOption(kTPCC, perspective)) { |
| 168 | SetSendAlgorithm(kPCC); |
| 169 | } |
| 170 | // Initial window. |
| 171 | if (GetQuicReloadableFlag(quic_unified_iw_options)) { |
| 172 | if (config.HasClientRequestedIndependentOption(kIW03, perspective)) { |
| 173 | initial_congestion_window_ = 3; |
| 174 | send_algorithm_->SetInitialCongestionWindowInPackets(3); |
| 175 | } |
| 176 | if (config.HasClientRequestedIndependentOption(kIW10, perspective)) { |
| 177 | initial_congestion_window_ = 10; |
| 178 | send_algorithm_->SetInitialCongestionWindowInPackets(10); |
| 179 | } |
| 180 | if (config.HasClientRequestedIndependentOption(kIW20, perspective)) { |
| 181 | initial_congestion_window_ = 20; |
| 182 | send_algorithm_->SetInitialCongestionWindowInPackets(20); |
| 183 | } |
| 184 | if (config.HasClientRequestedIndependentOption(kIW50, perspective)) { |
| 185 | initial_congestion_window_ = 50; |
| 186 | send_algorithm_->SetInitialCongestionWindowInPackets(50); |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | using_pacing_ = !FLAGS_quic_disable_pacing_for_perf_tests; |
| 191 | |
| 192 | if (config.HasClientSentConnectionOption(k1CON, perspective)) { |
| 193 | send_algorithm_->SetNumEmulatedConnections(1); |
| 194 | } |
| 195 | if (config.HasClientSentConnectionOption(kNTLP, perspective)) { |
| 196 | max_tail_loss_probes_ = 0; |
| 197 | } |
| 198 | if (config.HasClientSentConnectionOption(k1TLP, perspective)) { |
| 199 | max_tail_loss_probes_ = 1; |
| 200 | } |
| 201 | if (config.HasClientSentConnectionOption(k1RTO, perspective)) { |
| 202 | max_rto_packets_ = 1; |
| 203 | } |
| 204 | if (config.HasClientSentConnectionOption(kTLPR, perspective)) { |
| 205 | enable_half_rtt_tail_loss_probe_ = true; |
| 206 | } |
| 207 | if (config.HasClientSentConnectionOption(kNRTO, perspective)) { |
| 208 | use_new_rto_ = true; |
| 209 | } |
| 210 | // Configure loss detection. |
| 211 | if (config.HasClientRequestedIndependentOption(kTIME, perspective)) { |
| 212 | if (unacked_packets_.use_uber_loss_algorithm()) { |
| 213 | uber_loss_algorithm_.SetLossDetectionType(kTime); |
| 214 | } else { |
| 215 | general_loss_algorithm_.SetLossDetectionType(kTime); |
| 216 | } |
| 217 | } |
| 218 | if (config.HasClientRequestedIndependentOption(kATIM, perspective)) { |
| 219 | if (unacked_packets_.use_uber_loss_algorithm()) { |
| 220 | uber_loss_algorithm_.SetLossDetectionType(kAdaptiveTime); |
| 221 | } else { |
| 222 | general_loss_algorithm_.SetLossDetectionType(kAdaptiveTime); |
| 223 | } |
| 224 | } |
| 225 | if (config.HasClientRequestedIndependentOption(kLFAK, perspective)) { |
| 226 | if (unacked_packets_.use_uber_loss_algorithm()) { |
| 227 | uber_loss_algorithm_.SetLossDetectionType(kLazyFack); |
| 228 | } else { |
| 229 | general_loss_algorithm_.SetLossDetectionType(kLazyFack); |
| 230 | } |
| 231 | } |
| 232 | if (config.HasClientSentConnectionOption(kCONH, perspective)) { |
| 233 | conservative_handshake_retransmits_ = true; |
| 234 | } |
| 235 | send_algorithm_->SetFromConfig(config, perspective); |
| 236 | |
| 237 | if (network_change_visitor_ != nullptr) { |
| 238 | network_change_visitor_->OnCongestionChange(); |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | void QuicSentPacketManager::ResumeConnectionState( |
| 243 | const CachedNetworkParameters& cached_network_params, |
| 244 | bool max_bandwidth_resumption) { |
| 245 | QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond( |
| 246 | max_bandwidth_resumption |
| 247 | ? cached_network_params.max_bandwidth_estimate_bytes_per_second() |
| 248 | : cached_network_params.bandwidth_estimate_bytes_per_second()); |
| 249 | QuicTime::Delta rtt = |
| 250 | QuicTime::Delta::FromMilliseconds(cached_network_params.min_rtt_ms()); |
| 251 | AdjustNetworkParameters(bandwidth, rtt); |
| 252 | } |
| 253 | |
| 254 | void QuicSentPacketManager::AdjustNetworkParameters(QuicBandwidth bandwidth, |
| 255 | QuicTime::Delta rtt) { |
| 256 | if (!rtt.IsZero()) { |
| 257 | SetInitialRtt(rtt); |
| 258 | } |
| 259 | send_algorithm_->AdjustNetworkParameters(bandwidth, rtt); |
| 260 | if (debug_delegate_ != nullptr) { |
| 261 | debug_delegate_->OnAdjustNetworkParameters(bandwidth, rtt); |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | void QuicSentPacketManager::SetHandshakeConfirmed() { |
| 266 | handshake_confirmed_ = true; |
| 267 | if (unacked_packets_.use_uber_loss_algorithm()) { |
| 268 | NeuterHandshakePackets(); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | void QuicSentPacketManager::PostProcessAfterMarkingPacketHandled( |
| 273 | const QuicAckFrame& ack_frame, |
| 274 | QuicTime ack_receive_time, |
| 275 | bool rtt_updated, |
| 276 | QuicByteCount prior_bytes_in_flight) { |
| 277 | if (session_decides_what_to_write()) { |
| 278 | unacked_packets_.NotifyAggregatedStreamFrameAcked( |
| 279 | last_ack_frame_.ack_delay_time); |
| 280 | } |
| 281 | InvokeLossDetection(ack_receive_time); |
| 282 | // Ignore losses in RTO mode. |
| 283 | if (consecutive_rto_count_ > 0 && !use_new_rto_) { |
| 284 | packets_lost_.clear(); |
| 285 | } |
| 286 | MaybeInvokeCongestionEvent(rtt_updated, prior_bytes_in_flight, |
| 287 | ack_receive_time); |
| 288 | unacked_packets_.RemoveObsoletePackets(); |
| 289 | |
| 290 | sustained_bandwidth_recorder_.RecordEstimate( |
| 291 | send_algorithm_->InRecovery(), send_algorithm_->InSlowStart(), |
| 292 | send_algorithm_->BandwidthEstimate(), ack_receive_time, clock_->WallNow(), |
| 293 | rtt_stats_.smoothed_rtt()); |
| 294 | |
| 295 | // Anytime we are making forward progress and have a new RTT estimate, reset |
| 296 | // the backoff counters. |
| 297 | if (rtt_updated) { |
| 298 | if (consecutive_rto_count_ > 0) { |
| 299 | // If the ack acknowledges data sent prior to the RTO, |
| 300 | // the RTO was spurious. |
| 301 | if (LargestAcked(ack_frame) < first_rto_transmission_) { |
| 302 | // Replace SRTT with latest_rtt and increase the variance to prevent |
| 303 | // a spurious RTO from happening again. |
| 304 | rtt_stats_.ExpireSmoothedMetrics(); |
| 305 | } else { |
| 306 | if (!use_new_rto_) { |
| 307 | send_algorithm_->OnRetransmissionTimeout(true); |
| 308 | } |
| 309 | } |
| 310 | } |
| 311 | // Reset all retransmit counters any time a new packet is acked. |
| 312 | consecutive_rto_count_ = 0; |
| 313 | consecutive_tlp_count_ = 0; |
| 314 | consecutive_crypto_retransmission_count_ = 0; |
| 315 | } |
| 316 | |
| 317 | if (debug_delegate_ != nullptr) { |
| 318 | debug_delegate_->OnIncomingAck(ack_frame, ack_receive_time, |
| 319 | LargestAcked(ack_frame), rtt_updated, |
| 320 | GetLeastUnacked()); |
| 321 | } |
| 322 | // Remove packets below least unacked from all_packets_acked_ and |
| 323 | // last_ack_frame_. |
| 324 | last_ack_frame_.packets.RemoveUpTo(unacked_packets_.GetLeastUnacked()); |
| 325 | last_ack_frame_.received_packet_times.clear(); |
| 326 | } |
| 327 | |
| 328 | void QuicSentPacketManager::MaybeInvokeCongestionEvent( |
| 329 | bool rtt_updated, |
| 330 | QuicByteCount prior_in_flight, |
| 331 | QuicTime event_time) { |
| 332 | if (!rtt_updated && packets_acked_.empty() && packets_lost_.empty()) { |
| 333 | return; |
| 334 | } |
| 335 | if (using_pacing_) { |
| 336 | pacing_sender_.OnCongestionEvent(rtt_updated, prior_in_flight, event_time, |
| 337 | packets_acked_, packets_lost_); |
| 338 | } else { |
| 339 | send_algorithm_->OnCongestionEvent(rtt_updated, prior_in_flight, event_time, |
| 340 | packets_acked_, packets_lost_); |
| 341 | } |
| 342 | packets_acked_.clear(); |
| 343 | packets_lost_.clear(); |
| 344 | if (network_change_visitor_ != nullptr) { |
| 345 | network_change_visitor_->OnCongestionChange(); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | void QuicSentPacketManager::RetransmitUnackedPackets( |
| 350 | TransmissionType retransmission_type) { |
| 351 | DCHECK(retransmission_type == ALL_UNACKED_RETRANSMISSION || |
| 352 | retransmission_type == ALL_INITIAL_RETRANSMISSION); |
| 353 | QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| 354 | for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| 355 | it != unacked_packets_.end(); ++it, ++packet_number) { |
| 356 | if ((retransmission_type == ALL_UNACKED_RETRANSMISSION || |
| 357 | it->encryption_level == ENCRYPTION_ZERO_RTT) && |
| 358 | unacked_packets_.HasRetransmittableFrames(*it)) { |
| 359 | MarkForRetransmission(packet_number, retransmission_type); |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | void QuicSentPacketManager::NeuterUnencryptedPackets() { |
| 365 | QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| 366 | if (session_decides_what_to_write()) { |
| 367 | for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| 368 | it != unacked_packets_.end(); ++it, ++packet_number) { |
| 369 | if (!it->retransmittable_frames.empty() && |
| 370 | it->encryption_level == ENCRYPTION_NONE) { |
| 371 | // Once the connection swithes to forward secure, no unencrypted packets |
| 372 | // will be sent. The data has been abandoned in the cryto stream. Remove |
| 373 | // it from in flight. |
| 374 | unacked_packets_.RemoveFromInFlight(packet_number); |
| 375 | } |
| 376 | } |
| 377 | return; |
| 378 | } |
| 379 | for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| 380 | it != unacked_packets_.end(); ++it, ++packet_number) { |
| 381 | if (it->encryption_level == ENCRYPTION_NONE && |
| 382 | unacked_packets_.HasRetransmittableFrames(*it)) { |
| 383 | // Once you're forward secure, no unencrypted packets will be sent, crypto |
| 384 | // or otherwise. Unencrypted packets are neutered and abandoned, to ensure |
| 385 | // they are not retransmitted or considered lost from a congestion control |
| 386 | // perspective. |
| 387 | pending_retransmissions_.erase(packet_number); |
| 388 | unacked_packets_.RemoveFromInFlight(packet_number); |
| 389 | unacked_packets_.RemoveRetransmittability(packet_number); |
| 390 | } |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | void QuicSentPacketManager::NeuterHandshakePackets() { |
| 395 | DCHECK(unacked_packets_.use_uber_loss_algorithm()); |
| 396 | QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| 397 | for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| 398 | it != unacked_packets_.end(); ++it, ++packet_number) { |
| 399 | if (session_decides_what_to_write()) { |
| 400 | if (!it->retransmittable_frames.empty() && |
| 401 | unacked_packets_.GetPacketNumberSpace(it->encryption_level) == |
| 402 | HANDSHAKE_DATA) { |
| 403 | unacked_packets_.RemoveFromInFlight(packet_number); |
| 404 | } |
| 405 | continue; |
| 406 | } |
| 407 | if (unacked_packets_.GetPacketNumberSpace(it->encryption_level) == |
| 408 | HANDSHAKE_DATA && |
| 409 | unacked_packets_.HasRetransmittableFrames(*it)) { |
| 410 | pending_retransmissions_.erase(packet_number); |
| 411 | unacked_packets_.RemoveFromInFlight(packet_number); |
| 412 | unacked_packets_.RemoveRetransmittability(packet_number); |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | void QuicSentPacketManager::MarkForRetransmission( |
| 418 | QuicPacketNumber packet_number, |
| 419 | TransmissionType transmission_type) { |
| 420 | QuicTransmissionInfo* transmission_info = |
| 421 | unacked_packets_.GetMutableTransmissionInfo(packet_number); |
| 422 | // When session decides what to write, a previous RTO retransmission may cause |
| 423 | // connection close; packets without retransmittable frames can be marked for |
| 424 | // loss retransmissions. |
| 425 | QUIC_BUG_IF((transmission_type != LOSS_RETRANSMISSION && |
| 426 | (!session_decides_what_to_write() || |
| 427 | transmission_type != RTO_RETRANSMISSION)) && |
| 428 | !unacked_packets_.HasRetransmittableFrames(*transmission_info)) |
| 429 | << "transmission_type: " |
| 430 | << QuicUtils::TransmissionTypeToString(transmission_type); |
| 431 | // Handshake packets should never be sent as probing retransmissions. |
| 432 | DCHECK(!transmission_info->has_crypto_handshake || |
| 433 | transmission_type != PROBING_RETRANSMISSION); |
| 434 | if (!RetransmissionLeavesBytesInFlight(transmission_type)) { |
| 435 | unacked_packets_.RemoveFromInFlight(transmission_info); |
| 436 | } |
| 437 | |
| 438 | if (!session_decides_what_to_write()) { |
| 439 | if (!unacked_packets_.HasRetransmittableFrames(*transmission_info)) { |
| 440 | return; |
| 441 | } |
| 442 | if (!QuicContainsKey(pending_retransmissions_, packet_number)) { |
| 443 | pending_retransmissions_[packet_number] = transmission_type; |
| 444 | } |
| 445 | return; |
| 446 | } |
| 447 | |
| 448 | HandleRetransmission(transmission_type, transmission_info); |
| 449 | |
| 450 | // Update packet state according to transmission type. |
| 451 | transmission_info->state = |
| 452 | QuicUtils::RetransmissionTypeToPacketState(transmission_type); |
| 453 | } |
| 454 | |
| 455 | void QuicSentPacketManager::HandleRetransmission( |
| 456 | TransmissionType transmission_type, |
| 457 | QuicTransmissionInfo* transmission_info) { |
| 458 | DCHECK(session_decides_what_to_write()); |
| 459 | if (ShouldForceRetransmission(transmission_type)) { |
| 460 | // TODO(fayang): Consider to make RTO and PROBING retransmission |
| 461 | // strategies be configurable by applications. Today, TLP, RTO and PROBING |
| 462 | // retransmissions are handled similarly, i.e., always retranmist the |
| 463 | // oldest outstanding data. This is not ideal in general because different |
| 464 | // applications may want different strategies. For example, some |
| 465 | // applications may want to use higher priority stream data for bandwidth |
| 466 | // probing, and some applications want to consider RTO is an indication of |
| 467 | // loss, etc. |
| 468 | unacked_packets_.RetransmitFrames(*transmission_info, transmission_type); |
| 469 | return; |
| 470 | } |
| 471 | |
| 472 | unacked_packets_.NotifyFramesLost(*transmission_info, transmission_type); |
| 473 | if (transmission_info->retransmittable_frames.empty()) { |
| 474 | return; |
| 475 | } |
| 476 | |
| 477 | if (transmission_type == LOSS_RETRANSMISSION) { |
| 478 | // Record the first packet sent after loss, which allows to wait 1 |
| 479 | // more RTT before giving up on this lost packet. |
| 480 | transmission_info->retransmission = |
| 481 | unacked_packets_.largest_sent_packet() + 1; |
| 482 | } else { |
| 483 | // Clear the recorded first packet sent after loss when version or |
| 484 | // encryption changes. |
| 485 | transmission_info->retransmission.Clear(); |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | void QuicSentPacketManager::RecordOneSpuriousRetransmission( |
| 490 | const QuicTransmissionInfo& info) { |
| 491 | stats_->bytes_spuriously_retransmitted += info.bytes_sent; |
| 492 | ++stats_->packets_spuriously_retransmitted; |
| 493 | if (debug_delegate_ != nullptr) { |
| 494 | debug_delegate_->OnSpuriousPacketRetransmission(info.transmission_type, |
| 495 | info.bytes_sent); |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | void QuicSentPacketManager::RecordSpuriousRetransmissions( |
| 500 | const QuicTransmissionInfo& info, |
| 501 | QuicPacketNumber acked_packet_number) { |
| 502 | if (session_decides_what_to_write()) { |
| 503 | RecordOneSpuriousRetransmission(info); |
| 504 | if (info.transmission_type == LOSS_RETRANSMISSION) { |
| 505 | // Only inform the loss detection of spurious retransmits it caused. |
| 506 | loss_algorithm_->SpuriousRetransmitDetected( |
| 507 | unacked_packets_, clock_->Now(), rtt_stats_, acked_packet_number); |
| 508 | } |
| 509 | return; |
| 510 | } |
| 511 | QuicPacketNumber retransmission = info.retransmission; |
| 512 | while (retransmission.IsInitialized()) { |
| 513 | const QuicTransmissionInfo& retransmit_info = |
| 514 | unacked_packets_.GetTransmissionInfo(retransmission); |
| 515 | retransmission = retransmit_info.retransmission; |
| 516 | RecordOneSpuriousRetransmission(retransmit_info); |
| 517 | } |
| 518 | // Only inform the loss detection of spurious retransmits it caused. |
| 519 | if (unacked_packets_.GetTransmissionInfo(info.retransmission) |
| 520 | .transmission_type == LOSS_RETRANSMISSION) { |
| 521 | loss_algorithm_->SpuriousRetransmitDetected( |
| 522 | unacked_packets_, clock_->Now(), rtt_stats_, info.retransmission); |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | QuicPendingRetransmission QuicSentPacketManager::NextPendingRetransmission() { |
| 527 | QUIC_BUG_IF(pending_retransmissions_.empty()) |
| 528 | << "Unexpected call to NextPendingRetransmission() with empty pending " |
| 529 | << "retransmission list. Corrupted memory usage imminent."; |
| 530 | QUIC_BUG_IF(session_decides_what_to_write()) |
| 531 | << "Unexpected call to NextPendingRetransmission() when session handles " |
| 532 | "retransmissions"; |
| 533 | QuicPacketNumber packet_number = pending_retransmissions_.begin()->first; |
| 534 | TransmissionType transmission_type = pending_retransmissions_.begin()->second; |
| 535 | if (unacked_packets_.HasPendingCryptoPackets()) { |
| 536 | // Ensure crypto packets are retransmitted before other packets. |
| 537 | for (const auto& pair : pending_retransmissions_) { |
| 538 | if (HasCryptoHandshake( |
| 539 | unacked_packets_.GetTransmissionInfo(pair.first))) { |
| 540 | packet_number = pair.first; |
| 541 | transmission_type = pair.second; |
| 542 | break; |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | DCHECK(unacked_packets_.IsUnacked(packet_number)) << packet_number; |
| 547 | const QuicTransmissionInfo& transmission_info = |
| 548 | unacked_packets_.GetTransmissionInfo(packet_number); |
| 549 | DCHECK(unacked_packets_.HasRetransmittableFrames(transmission_info)); |
| 550 | |
| 551 | return QuicPendingRetransmission(packet_number, transmission_type, |
| 552 | transmission_info); |
| 553 | } |
| 554 | |
| 555 | QuicPacketNumber QuicSentPacketManager::GetNewestRetransmission( |
| 556 | QuicPacketNumber packet_number, |
| 557 | const QuicTransmissionInfo& transmission_info) const { |
| 558 | if (session_decides_what_to_write()) { |
| 559 | return packet_number; |
| 560 | } |
| 561 | QuicPacketNumber retransmission = transmission_info.retransmission; |
| 562 | while (retransmission.IsInitialized()) { |
| 563 | packet_number = retransmission; |
| 564 | retransmission = |
| 565 | unacked_packets_.GetTransmissionInfo(retransmission).retransmission; |
| 566 | } |
| 567 | return packet_number; |
| 568 | } |
| 569 | |
| 570 | void QuicSentPacketManager::MarkPacketHandled(QuicPacketNumber packet_number, |
| 571 | QuicTransmissionInfo* info, |
| 572 | QuicTime::Delta ack_delay_time) { |
| 573 | QuicPacketNumber newest_transmission = |
| 574 | GetNewestRetransmission(packet_number, *info); |
| 575 | // Remove the most recent packet, if it is pending retransmission. |
| 576 | pending_retransmissions_.erase(newest_transmission); |
| 577 | |
| 578 | if (newest_transmission == packet_number) { |
| 579 | // Try to aggregate acked stream frames if acked packet is not a |
| 580 | // retransmission. |
| 581 | const bool fast_path = session_decides_what_to_write() && |
| 582 | info->transmission_type == NOT_RETRANSMISSION; |
| 583 | if (fast_path) { |
| 584 | unacked_packets_.MaybeAggregateAckedStreamFrame(*info, ack_delay_time); |
| 585 | } else { |
| 586 | if (session_decides_what_to_write()) { |
| 587 | unacked_packets_.NotifyAggregatedStreamFrameAcked(ack_delay_time); |
| 588 | } |
| 589 | const bool new_data_acked = |
| 590 | unacked_packets_.NotifyFramesAcked(*info, ack_delay_time); |
| 591 | if (session_decides_what_to_write() && !new_data_acked && |
| 592 | info->transmission_type != NOT_RETRANSMISSION) { |
| 593 | // Record as a spurious retransmission if this packet is a |
| 594 | // retransmission and no new data gets acked. |
| 595 | QUIC_DVLOG(1) << "Detect spurious retransmitted packet " |
| 596 | << packet_number << " transmission type: " |
| 597 | << QuicUtils::TransmissionTypeToString( |
| 598 | info->transmission_type); |
| 599 | RecordSpuriousRetransmissions(*info, packet_number); |
| 600 | } |
| 601 | } |
| 602 | } else { |
| 603 | DCHECK(!session_decides_what_to_write()); |
| 604 | RecordSpuriousRetransmissions(*info, packet_number); |
| 605 | // Remove the most recent packet from flight if it's a crypto handshake |
| 606 | // packet, since they won't be acked now that one has been processed. |
| 607 | // Other crypto handshake packets won't be in flight, only the newest |
| 608 | // transmission of a crypto packet is in flight at once. |
| 609 | // TODO(ianswett): Instead of handling all crypto packets special, |
| 610 | // only handle nullptr encrypted packets in a special way. |
| 611 | const QuicTransmissionInfo& newest_transmission_info = |
| 612 | unacked_packets_.GetTransmissionInfo(newest_transmission); |
| 613 | unacked_packets_.NotifyFramesAcked(newest_transmission_info, |
| 614 | ack_delay_time); |
| 615 | if (HasCryptoHandshake(newest_transmission_info)) { |
| 616 | unacked_packets_.RemoveFromInFlight(newest_transmission); |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | if (network_change_visitor_ != nullptr && |
| 621 | info->bytes_sent > largest_mtu_acked_) { |
| 622 | largest_mtu_acked_ = info->bytes_sent; |
| 623 | network_change_visitor_->OnPathMtuIncreased(largest_mtu_acked_); |
| 624 | } |
| 625 | unacked_packets_.RemoveFromInFlight(info); |
| 626 | unacked_packets_.RemoveRetransmittability(info); |
| 627 | info->state = ACKED; |
| 628 | } |
| 629 | |
| 630 | bool QuicSentPacketManager::OnPacketSent( |
| 631 | SerializedPacket* serialized_packet, |
| 632 | QuicPacketNumber original_packet_number, |
| 633 | QuicTime sent_time, |
| 634 | TransmissionType transmission_type, |
| 635 | HasRetransmittableData has_retransmittable_data) { |
| 636 | QuicPacketNumber packet_number = serialized_packet->packet_number; |
| 637 | DCHECK_LE(FirstSendingPacketNumber(), packet_number); |
| 638 | DCHECK(!unacked_packets_.IsUnacked(packet_number)); |
| 639 | QUIC_BUG_IF(serialized_packet->encrypted_length == 0) |
| 640 | << "Cannot send empty packets."; |
| 641 | |
| 642 | if (original_packet_number.IsInitialized()) { |
| 643 | pending_retransmissions_.erase(original_packet_number); |
| 644 | } |
| 645 | |
| 646 | if (pending_timer_transmission_count_ > 0) { |
| 647 | --pending_timer_transmission_count_; |
| 648 | } |
| 649 | |
| 650 | bool in_flight = has_retransmittable_data == HAS_RETRANSMITTABLE_DATA; |
| 651 | if (using_pacing_) { |
| 652 | pacing_sender_.OnPacketSent( |
| 653 | sent_time, unacked_packets_.bytes_in_flight(), packet_number, |
| 654 | serialized_packet->encrypted_length, has_retransmittable_data); |
| 655 | } else { |
| 656 | send_algorithm_->OnPacketSent( |
| 657 | sent_time, unacked_packets_.bytes_in_flight(), packet_number, |
| 658 | serialized_packet->encrypted_length, has_retransmittable_data); |
| 659 | } |
| 660 | |
| 661 | unacked_packets_.AddSentPacket(serialized_packet, original_packet_number, |
| 662 | transmission_type, sent_time, in_flight); |
| 663 | // Reset the retransmission timer anytime a pending packet is sent. |
| 664 | return in_flight; |
| 665 | } |
| 666 | |
| 667 | void QuicSentPacketManager::OnRetransmissionTimeout() { |
| 668 | DCHECK(unacked_packets_.HasInFlightPackets()); |
| 669 | DCHECK_EQ(0u, pending_timer_transmission_count_); |
| 670 | // Handshake retransmission, timer based loss detection, TLP, and RTO are |
| 671 | // implemented with a single alarm. The handshake alarm is set when the |
| 672 | // handshake has not completed, the loss alarm is set when the loss detection |
| 673 | // algorithm says to, and the TLP and RTO alarms are set after that. |
| 674 | // The TLP alarm is always set to run for under an RTO. |
| 675 | switch (GetRetransmissionMode()) { |
| 676 | case HANDSHAKE_MODE: |
| 677 | ++stats_->crypto_retransmit_count; |
| 678 | RetransmitCryptoPackets(); |
| 679 | return; |
| 680 | case LOSS_MODE: { |
| 681 | ++stats_->loss_timeout_count; |
| 682 | QuicByteCount prior_in_flight = unacked_packets_.bytes_in_flight(); |
| 683 | const QuicTime now = clock_->Now(); |
| 684 | InvokeLossDetection(now); |
| 685 | MaybeInvokeCongestionEvent(false, prior_in_flight, now); |
| 686 | return; |
| 687 | } |
| 688 | case TLP_MODE: |
| 689 | ++stats_->tlp_count; |
| 690 | ++consecutive_tlp_count_; |
| 691 | pending_timer_transmission_count_ = 1; |
| 692 | // TLPs prefer sending new data instead of retransmitting data, so |
| 693 | // give the connection a chance to write before completing the TLP. |
| 694 | return; |
| 695 | case RTO_MODE: |
| 696 | ++stats_->rto_count; |
| 697 | RetransmitRtoPackets(); |
| 698 | return; |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | void QuicSentPacketManager::RetransmitCryptoPackets() { |
| 703 | DCHECK_EQ(HANDSHAKE_MODE, GetRetransmissionMode()); |
| 704 | ++consecutive_crypto_retransmission_count_; |
| 705 | bool packet_retransmitted = false; |
| 706 | QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| 707 | std::vector<QuicPacketNumber> crypto_retransmissions; |
| 708 | for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| 709 | it != unacked_packets_.end(); ++it, ++packet_number) { |
| 710 | // Only retransmit frames which are in flight, and therefore have been sent. |
| 711 | if (!it->in_flight || |
| 712 | (session_decides_what_to_write() && it->state != OUTSTANDING) || |
| 713 | !it->has_crypto_handshake || |
| 714 | !unacked_packets_.HasRetransmittableFrames(*it)) { |
| 715 | continue; |
| 716 | } |
| 717 | packet_retransmitted = true; |
| 718 | if (session_decides_what_to_write()) { |
| 719 | crypto_retransmissions.push_back(packet_number); |
| 720 | } else { |
| 721 | MarkForRetransmission(packet_number, HANDSHAKE_RETRANSMISSION); |
| 722 | } |
| 723 | ++pending_timer_transmission_count_; |
| 724 | } |
| 725 | DCHECK(packet_retransmitted) << "No crypto packets found to retransmit."; |
| 726 | if (session_decides_what_to_write()) { |
| 727 | for (QuicPacketNumber retransmission : crypto_retransmissions) { |
| 728 | MarkForRetransmission(retransmission, HANDSHAKE_RETRANSMISSION); |
| 729 | } |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | bool QuicSentPacketManager::MaybeRetransmitTailLossProbe() { |
| 734 | if (pending_timer_transmission_count_ == 0) { |
| 735 | return false; |
| 736 | } |
| 737 | if (!MaybeRetransmitOldestPacket(TLP_RETRANSMISSION)) { |
| 738 | // If no tail loss probe can be sent, because there are no retransmittable |
| 739 | // packets, execute a conventional RTO to abandon old packets. |
| 740 | if (GetQuicReloadableFlag(quic_optimize_inflight_check)) { |
| 741 | QUIC_RELOADABLE_FLAG_COUNT(quic_optimize_inflight_check); |
| 742 | pending_timer_transmission_count_ = 0; |
| 743 | RetransmitRtoPackets(); |
| 744 | } |
| 745 | return false; |
| 746 | } |
| 747 | return true; |
| 748 | } |
| 749 | |
| 750 | bool QuicSentPacketManager::MaybeRetransmitOldestPacket(TransmissionType type) { |
| 751 | QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| 752 | for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| 753 | it != unacked_packets_.end(); ++it, ++packet_number) { |
| 754 | // Only retransmit frames which are in flight, and therefore have been sent. |
| 755 | if (!it->in_flight || |
| 756 | (session_decides_what_to_write() && it->state != OUTSTANDING) || |
| 757 | !unacked_packets_.HasRetransmittableFrames(*it)) { |
| 758 | continue; |
| 759 | } |
| 760 | MarkForRetransmission(packet_number, type); |
| 761 | return true; |
| 762 | } |
| 763 | QUIC_DVLOG(1) |
| 764 | << "No retransmittable packets, so RetransmitOldestPacket failed."; |
| 765 | return false; |
| 766 | } |
| 767 | |
| 768 | void QuicSentPacketManager::RetransmitRtoPackets() { |
| 769 | QUIC_BUG_IF(pending_timer_transmission_count_ > 0) |
| 770 | << "Retransmissions already queued:" << pending_timer_transmission_count_; |
| 771 | // Mark two packets for retransmission. |
| 772 | QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked(); |
| 773 | std::vector<QuicPacketNumber> retransmissions; |
| 774 | for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| 775 | it != unacked_packets_.end(); ++it, ++packet_number) { |
| 776 | if ((!session_decides_what_to_write() || it->state == OUTSTANDING) && |
| 777 | unacked_packets_.HasRetransmittableFrames(*it) && |
| 778 | pending_timer_transmission_count_ < max_rto_packets_) { |
| 779 | if (session_decides_what_to_write()) { |
| 780 | retransmissions.push_back(packet_number); |
| 781 | } else { |
| 782 | MarkForRetransmission(packet_number, RTO_RETRANSMISSION); |
| 783 | } |
| 784 | ++pending_timer_transmission_count_; |
| 785 | } |
| 786 | // Abandon non-retransmittable data that's in flight to ensure it doesn't |
| 787 | // fill up the congestion window. |
| 788 | bool has_retransmissions = it->retransmission.IsInitialized(); |
| 789 | if (session_decides_what_to_write()) { |
| 790 | has_retransmissions = it->state != OUTSTANDING; |
| 791 | } |
| 792 | if (it->in_flight && !has_retransmissions && |
| 793 | !unacked_packets_.HasRetransmittableFrames(*it)) { |
| 794 | // Log only for non-retransmittable data. |
| 795 | // Retransmittable data is marked as lost during loss detection, and will |
| 796 | // be logged later. |
| 797 | unacked_packets_.RemoveFromInFlight(packet_number); |
| 798 | if (debug_delegate_ != nullptr) { |
| 799 | debug_delegate_->OnPacketLoss(packet_number, RTO_RETRANSMISSION, |
| 800 | clock_->Now()); |
| 801 | } |
| 802 | } |
| 803 | } |
| 804 | if (pending_timer_transmission_count_ > 0) { |
| 805 | if (consecutive_rto_count_ == 0) { |
| 806 | first_rto_transmission_ = unacked_packets_.largest_sent_packet() + 1; |
| 807 | } |
| 808 | ++consecutive_rto_count_; |
| 809 | } |
| 810 | if (session_decides_what_to_write()) { |
| 811 | for (QuicPacketNumber retransmission : retransmissions) { |
| 812 | MarkForRetransmission(retransmission, RTO_RETRANSMISSION); |
| 813 | } |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | QuicSentPacketManager::RetransmissionTimeoutMode |
| 818 | QuicSentPacketManager::GetRetransmissionMode() const { |
| 819 | DCHECK(unacked_packets_.HasInFlightPackets()); |
| 820 | if (!handshake_confirmed_ && unacked_packets_.HasPendingCryptoPackets()) { |
| 821 | return HANDSHAKE_MODE; |
| 822 | } |
| 823 | if (loss_algorithm_->GetLossTimeout() != QuicTime::Zero()) { |
| 824 | return LOSS_MODE; |
| 825 | } |
| 826 | if (consecutive_tlp_count_ < max_tail_loss_probes_) { |
| 827 | if (GetQuicReloadableFlag(quic_optimize_inflight_check) || |
| 828 | unacked_packets_.HasUnackedRetransmittableFrames()) { |
| 829 | return TLP_MODE; |
| 830 | } |
| 831 | } |
| 832 | return RTO_MODE; |
| 833 | } |
| 834 | |
| 835 | void QuicSentPacketManager::InvokeLossDetection(QuicTime time) { |
| 836 | if (!packets_acked_.empty()) { |
| 837 | DCHECK_LE(packets_acked_.front().packet_number, |
| 838 | packets_acked_.back().packet_number); |
| 839 | largest_newly_acked_ = packets_acked_.back().packet_number; |
| 840 | } |
| 841 | loss_algorithm_->DetectLosses(unacked_packets_, time, rtt_stats_, |
| 842 | largest_newly_acked_, packets_acked_, |
| 843 | &packets_lost_); |
| 844 | for (const LostPacket& packet : packets_lost_) { |
| 845 | ++stats_->packets_lost; |
| 846 | if (debug_delegate_ != nullptr) { |
| 847 | debug_delegate_->OnPacketLoss(packet.packet_number, LOSS_RETRANSMISSION, |
| 848 | time); |
| 849 | } |
| 850 | |
| 851 | MarkForRetransmission(packet.packet_number, LOSS_RETRANSMISSION); |
| 852 | } |
| 853 | } |
| 854 | |
| 855 | bool QuicSentPacketManager::MaybeUpdateRTT(QuicPacketNumber largest_acked, |
| 856 | QuicTime::Delta ack_delay_time, |
| 857 | QuicTime ack_receive_time) { |
| 858 | // We rely on ack_delay_time to compute an RTT estimate, so we |
| 859 | // only update rtt when the largest observed gets acked. |
| 860 | if (!unacked_packets_.IsUnacked(largest_acked)) { |
| 861 | return false; |
| 862 | } |
| 863 | // We calculate the RTT based on the highest ACKed packet number, the lower |
| 864 | // packet numbers will include the ACK aggregation delay. |
| 865 | const QuicTransmissionInfo& transmission_info = |
| 866 | unacked_packets_.GetTransmissionInfo(largest_acked); |
| 867 | // Ensure the packet has a valid sent time. |
| 868 | if (transmission_info.sent_time == QuicTime::Zero()) { |
| 869 | QUIC_BUG << "Acked packet has zero sent time, largest_acked:" |
| 870 | << largest_acked; |
| 871 | return false; |
| 872 | } |
| 873 | if (transmission_info.sent_time > ack_receive_time) { |
| 874 | QUIC_CODE_COUNT(quic_receive_acked_before_sending); |
| 875 | } |
| 876 | |
| 877 | QuicTime::Delta send_delta = ack_receive_time - transmission_info.sent_time; |
| 878 | rtt_stats_.UpdateRtt(send_delta, ack_delay_time, ack_receive_time); |
| 879 | |
| 880 | return true; |
| 881 | } |
| 882 | |
| 883 | QuicTime::Delta QuicSentPacketManager::TimeUntilSend(QuicTime now) const { |
| 884 | // The TLP logic is entirely contained within QuicSentPacketManager, so the |
| 885 | // send algorithm does not need to be consulted. |
| 886 | if (pending_timer_transmission_count_ > 0) { |
| 887 | return QuicTime::Delta::Zero(); |
| 888 | } |
| 889 | |
| 890 | if (using_pacing_) { |
| 891 | return pacing_sender_.TimeUntilSend(now, |
| 892 | unacked_packets_.bytes_in_flight()); |
| 893 | } |
| 894 | |
| 895 | return send_algorithm_->CanSend(unacked_packets_.bytes_in_flight()) |
| 896 | ? QuicTime::Delta::Zero() |
| 897 | : QuicTime::Delta::Infinite(); |
| 898 | } |
| 899 | |
| 900 | const QuicTime QuicSentPacketManager::GetRetransmissionTime() const { |
| 901 | // Don't set the timer if there is nothing to retransmit or we've already |
| 902 | // queued a tlp transmission and it hasn't been sent yet. |
| 903 | if (!unacked_packets_.HasInFlightPackets() || |
| 904 | pending_timer_transmission_count_ > 0) { |
| 905 | return QuicTime::Zero(); |
| 906 | } |
| 907 | if (!GetQuicReloadableFlag(quic_optimize_inflight_check) && |
| 908 | !unacked_packets_.HasUnackedRetransmittableFrames()) { |
| 909 | return QuicTime::Zero(); |
| 910 | } |
| 911 | switch (GetRetransmissionMode()) { |
| 912 | case HANDSHAKE_MODE: |
| 913 | return unacked_packets_.GetLastCryptoPacketSentTime() + |
| 914 | GetCryptoRetransmissionDelay(); |
| 915 | case LOSS_MODE: |
| 916 | return loss_algorithm_->GetLossTimeout(); |
| 917 | case TLP_MODE: { |
| 918 | // TODO(ianswett): When CWND is available, it would be preferable to |
| 919 | // set the timer based on the earliest retransmittable packet. |
| 920 | // Base the updated timer on the send time of the last packet. |
| 921 | const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime(); |
| 922 | const QuicTime tlp_time = sent_time + GetTailLossProbeDelay(); |
| 923 | // Ensure the TLP timer never gets set to a time in the past. |
| 924 | return std::max(clock_->ApproximateNow(), tlp_time); |
| 925 | } |
| 926 | case RTO_MODE: { |
| 927 | // The RTO is based on the first outstanding packet. |
| 928 | const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime(); |
| 929 | QuicTime rto_time = sent_time + GetRetransmissionDelay(); |
| 930 | // Wait for TLP packets to be acked before an RTO fires. |
| 931 | QuicTime tlp_time = |
| 932 | unacked_packets_.GetLastPacketSentTime() + GetTailLossProbeDelay(); |
| 933 | return std::max(tlp_time, rto_time); |
| 934 | } |
| 935 | } |
| 936 | DCHECK(false); |
| 937 | return QuicTime::Zero(); |
| 938 | } |
| 939 | |
| 940 | const QuicTime::Delta QuicSentPacketManager::GetPathDegradingDelay() const { |
| 941 | QuicTime::Delta delay = QuicTime::Delta::Zero(); |
| 942 | for (size_t i = 0; i < max_tail_loss_probes_; ++i) { |
| 943 | delay = delay + GetTailLossProbeDelay(i); |
| 944 | } |
| 945 | for (size_t i = 0; i < kNumRetransmissionDelaysForPathDegradingDelay; ++i) { |
| 946 | delay = delay + GetRetransmissionDelay(i); |
| 947 | } |
| 948 | return delay; |
| 949 | } |
| 950 | |
| 951 | const QuicTime::Delta QuicSentPacketManager::GetCryptoRetransmissionDelay() |
| 952 | const { |
| 953 | // This is equivalent to the TailLossProbeDelay, but slightly more aggressive |
| 954 | // because crypto handshake messages don't incur a delayed ack time. |
| 955 | QuicTime::Delta srtt = rtt_stats_.SmoothedOrInitialRtt(); |
| 956 | int64_t delay_ms; |
| 957 | if (conservative_handshake_retransmits_) { |
| 958 | // Using the delayed ack time directly could cause conservative handshake |
| 959 | // retransmissions to actually be more aggressive than the default. |
| 960 | delay_ms = std::max(delayed_ack_time_.ToMilliseconds(), |
| 961 | static_cast<int64_t>(2 * srtt.ToMilliseconds())); |
| 962 | } else { |
| 963 | delay_ms = std::max(kMinHandshakeTimeoutMs, |
| 964 | static_cast<int64_t>(1.5 * srtt.ToMilliseconds())); |
| 965 | } |
| 966 | return QuicTime::Delta::FromMilliseconds( |
| 967 | delay_ms << consecutive_crypto_retransmission_count_); |
| 968 | } |
| 969 | |
| 970 | const QuicTime::Delta QuicSentPacketManager::GetTailLossProbeDelay( |
| 971 | size_t consecutive_tlp_count) const { |
| 972 | QuicTime::Delta srtt = rtt_stats_.SmoothedOrInitialRtt(); |
| 973 | if (enable_half_rtt_tail_loss_probe_ && consecutive_tlp_count == 0u) { |
| 974 | return std::max(min_tlp_timeout_, srtt * 0.5); |
| 975 | } |
| 976 | if (ietf_style_tlp_) { |
| 977 | return std::max(min_tlp_timeout_, 1.5 * srtt + rtt_stats_.max_ack_delay()); |
| 978 | } |
| 979 | if (ietf_style_2x_tlp_) { |
| 980 | return std::max(min_tlp_timeout_, 2 * srtt + rtt_stats_.max_ack_delay()); |
| 981 | } |
| 982 | if (!unacked_packets_.HasMultipleInFlightPackets()) { |
| 983 | // This expression really should be using the delayed ack time, but in TCP |
| 984 | // MinRTO was traditionally set to 2x the delayed ack timer and this |
| 985 | // expression assumed QUIC did the same. |
| 986 | return std::max(2 * srtt, 1.5 * srtt + (min_rto_timeout_ * 0.5)); |
| 987 | } |
| 988 | return std::max(min_tlp_timeout_, 2 * srtt); |
| 989 | } |
| 990 | |
| 991 | const QuicTime::Delta QuicSentPacketManager::GetRetransmissionDelay( |
| 992 | size_t consecutive_rto_count) const { |
| 993 | QuicTime::Delta retransmission_delay = QuicTime::Delta::Zero(); |
| 994 | if (rtt_stats_.smoothed_rtt().IsZero()) { |
| 995 | // We are in the initial state, use default timeout values. |
| 996 | retransmission_delay = |
| 997 | QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); |
| 998 | } else { |
| 999 | retransmission_delay = |
| 1000 | rtt_stats_.smoothed_rtt() + 4 * rtt_stats_.mean_deviation(); |
| 1001 | if (retransmission_delay < min_rto_timeout_) { |
| 1002 | retransmission_delay = min_rto_timeout_; |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | // Calculate exponential back off. |
| 1007 | retransmission_delay = |
| 1008 | retransmission_delay * |
| 1009 | (1 << std::min<size_t>(consecutive_rto_count, kMaxRetransmissions)); |
| 1010 | |
| 1011 | if (retransmission_delay.ToMilliseconds() > kMaxRetransmissionTimeMs) { |
| 1012 | return QuicTime::Delta::FromMilliseconds(kMaxRetransmissionTimeMs); |
| 1013 | } |
| 1014 | return retransmission_delay; |
| 1015 | } |
| 1016 | |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 1017 | std::string QuicSentPacketManager::GetDebugState() const { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1018 | return send_algorithm_->GetDebugState(); |
| 1019 | } |
| 1020 | |
| 1021 | void QuicSentPacketManager::CancelRetransmissionsForStream( |
| 1022 | QuicStreamId stream_id) { |
| 1023 | if (session_decides_what_to_write()) { |
| 1024 | return; |
| 1025 | } |
| 1026 | unacked_packets_.CancelRetransmissionsForStream(stream_id); |
| 1027 | auto it = pending_retransmissions_.begin(); |
| 1028 | while (it != pending_retransmissions_.end()) { |
| 1029 | if (unacked_packets_.HasRetransmittableFrames(it->first)) { |
| 1030 | ++it; |
| 1031 | continue; |
| 1032 | } |
| 1033 | it = pending_retransmissions_.erase(it); |
| 1034 | } |
| 1035 | } |
| 1036 | |
| 1037 | void QuicSentPacketManager::SetSendAlgorithm( |
| 1038 | CongestionControlType congestion_control_type) { |
| 1039 | SetSendAlgorithm(SendAlgorithmInterface::Create( |
| 1040 | clock_, &rtt_stats_, &unacked_packets_, congestion_control_type, |
| 1041 | QuicRandom::GetInstance(), stats_, initial_congestion_window_)); |
| 1042 | } |
| 1043 | |
| 1044 | void QuicSentPacketManager::SetSendAlgorithm( |
| 1045 | SendAlgorithmInterface* send_algorithm) { |
| 1046 | send_algorithm_.reset(send_algorithm); |
| 1047 | pacing_sender_.set_sender(send_algorithm); |
| 1048 | } |
| 1049 | |
| 1050 | void QuicSentPacketManager::OnConnectionMigration(AddressChangeType type) { |
| 1051 | if (type == PORT_CHANGE || type == IPV4_SUBNET_CHANGE) { |
| 1052 | // Rtt and cwnd do not need to be reset when the peer address change is |
| 1053 | // considered to be caused by NATs. |
| 1054 | return; |
| 1055 | } |
| 1056 | consecutive_rto_count_ = 0; |
| 1057 | consecutive_tlp_count_ = 0; |
| 1058 | rtt_stats_.OnConnectionMigration(); |
| 1059 | send_algorithm_->OnConnectionMigration(); |
| 1060 | } |
| 1061 | |
| 1062 | void QuicSentPacketManager::OnAckFrameStart(QuicPacketNumber largest_acked, |
| 1063 | QuicTime::Delta ack_delay_time, |
| 1064 | QuicTime ack_receive_time) { |
| 1065 | DCHECK(packets_acked_.empty()); |
| 1066 | DCHECK_LE(largest_acked, unacked_packets_.largest_sent_packet()); |
| 1067 | rtt_updated_ = |
| 1068 | MaybeUpdateRTT(largest_acked, ack_delay_time, ack_receive_time); |
| 1069 | DCHECK(!unacked_packets_.largest_acked().IsInitialized() || |
QUICHE team | 9929cc4 | 2019-03-13 08:17:43 -0700 | [diff] [blame^] | 1070 | largest_acked >= unacked_packets_.largest_acked() || |
| 1071 | tolerate_reneging_); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1072 | last_ack_frame_.ack_delay_time = ack_delay_time; |
| 1073 | acked_packets_iter_ = last_ack_frame_.packets.rbegin(); |
| 1074 | } |
| 1075 | |
| 1076 | void QuicSentPacketManager::OnAckRange(QuicPacketNumber start, |
| 1077 | QuicPacketNumber end) { |
| 1078 | if (!last_ack_frame_.largest_acked.IsInitialized() || |
| 1079 | end > last_ack_frame_.largest_acked + 1) { |
| 1080 | // Largest acked increases. |
| 1081 | unacked_packets_.IncreaseLargestAcked(end - 1); |
| 1082 | last_ack_frame_.largest_acked = end - 1; |
| 1083 | } |
| 1084 | // Drop ack ranges which ack packets below least_unacked. |
| 1085 | QuicPacketNumber least_unacked = unacked_packets_.GetLeastUnacked(); |
| 1086 | if (least_unacked.IsInitialized() && end <= least_unacked) { |
| 1087 | return; |
| 1088 | } |
| 1089 | start = std::max(start, least_unacked); |
| 1090 | do { |
| 1091 | QuicPacketNumber newly_acked_start = start; |
| 1092 | if (acked_packets_iter_ != last_ack_frame_.packets.rend()) { |
| 1093 | newly_acked_start = std::max(start, acked_packets_iter_->max()); |
| 1094 | } |
| 1095 | for (QuicPacketNumber acked = end - 1; acked >= newly_acked_start; |
| 1096 | --acked) { |
| 1097 | // Check if end is above the current range. If so add newly acked packets |
| 1098 | // in descending order. |
| 1099 | packets_acked_.push_back(AckedPacket(acked, 0, QuicTime::Zero())); |
| 1100 | if (acked == FirstSendingPacketNumber()) { |
| 1101 | break; |
| 1102 | } |
| 1103 | } |
| 1104 | if (acked_packets_iter_ == last_ack_frame_.packets.rend() || |
| 1105 | start > acked_packets_iter_->min()) { |
| 1106 | // Finish adding all newly acked packets. |
| 1107 | return; |
| 1108 | } |
| 1109 | end = std::min(end, acked_packets_iter_->min()); |
| 1110 | ++acked_packets_iter_; |
| 1111 | } while (start < end); |
| 1112 | } |
| 1113 | |
| 1114 | void QuicSentPacketManager::OnAckTimestamp(QuicPacketNumber packet_number, |
| 1115 | QuicTime timestamp) { |
| 1116 | last_ack_frame_.received_packet_times.push_back({packet_number, timestamp}); |
| 1117 | for (AckedPacket& packet : packets_acked_) { |
| 1118 | if (packet.packet_number == packet_number) { |
| 1119 | packet.receive_timestamp = timestamp; |
| 1120 | return; |
| 1121 | } |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | bool QuicSentPacketManager::OnAckFrameEnd(QuicTime ack_receive_time) { |
| 1126 | QuicByteCount prior_bytes_in_flight = unacked_packets_.bytes_in_flight(); |
| 1127 | // Reverse packets_acked_ so that it is in ascending order. |
| 1128 | reverse(packets_acked_.begin(), packets_acked_.end()); |
| 1129 | for (AckedPacket& acked_packet : packets_acked_) { |
| 1130 | QuicTransmissionInfo* info = |
| 1131 | unacked_packets_.GetMutableTransmissionInfo(acked_packet.packet_number); |
| 1132 | if (!QuicUtils::IsAckable(info->state)) { |
| 1133 | if (info->state == ACKED) { |
| 1134 | QUIC_BUG << "Trying to ack an already acked packet: " |
| 1135 | << acked_packet.packet_number |
| 1136 | << ", last_ack_frame_: " << last_ack_frame_ |
| 1137 | << ", least_unacked: " << unacked_packets_.GetLeastUnacked() |
| 1138 | << ", packets_acked_: " << packets_acked_; |
| 1139 | } else { |
| 1140 | QUIC_PEER_BUG << "Received ack for unackable packet: " |
| 1141 | << acked_packet.packet_number << " with state: " |
| 1142 | << QuicUtils::SentPacketStateToString(info->state); |
| 1143 | } |
| 1144 | continue; |
| 1145 | } |
| 1146 | QUIC_DVLOG(1) << ENDPOINT << "Got an ack for packet " |
| 1147 | << acked_packet.packet_number; |
| 1148 | last_ack_frame_.packets.Add(acked_packet.packet_number); |
| 1149 | if (info->largest_acked.IsInitialized()) { |
| 1150 | if (largest_packet_peer_knows_is_acked_.IsInitialized()) { |
| 1151 | largest_packet_peer_knows_is_acked_ = |
| 1152 | std::max(largest_packet_peer_knows_is_acked_, info->largest_acked); |
| 1153 | } else { |
| 1154 | largest_packet_peer_knows_is_acked_ = info->largest_acked; |
| 1155 | } |
| 1156 | } |
| 1157 | // If data is associated with the most recent transmission of this |
| 1158 | // packet, then inform the caller. |
| 1159 | if (info->in_flight) { |
| 1160 | acked_packet.bytes_acked = info->bytes_sent; |
| 1161 | } else { |
| 1162 | // Unackable packets are skipped earlier. |
| 1163 | largest_newly_acked_ = acked_packet.packet_number; |
| 1164 | } |
| 1165 | if (unacked_packets_.use_uber_loss_algorithm()) { |
| 1166 | unacked_packets_.MaybeUpdateLargestAckedOfPacketNumberSpace( |
| 1167 | info->encryption_level, acked_packet.packet_number); |
| 1168 | } |
| 1169 | MarkPacketHandled(acked_packet.packet_number, info, |
| 1170 | last_ack_frame_.ack_delay_time); |
| 1171 | } |
| 1172 | const bool acked_new_packet = !packets_acked_.empty(); |
| 1173 | PostProcessAfterMarkingPacketHandled(last_ack_frame_, ack_receive_time, |
| 1174 | rtt_updated_, prior_bytes_in_flight); |
| 1175 | |
| 1176 | return acked_new_packet; |
| 1177 | } |
| 1178 | |
| 1179 | void QuicSentPacketManager::SetDebugDelegate(DebugDelegate* debug_delegate) { |
| 1180 | debug_delegate_ = debug_delegate; |
| 1181 | } |
| 1182 | |
| 1183 | void QuicSentPacketManager::OnApplicationLimited() { |
| 1184 | if (using_pacing_) { |
| 1185 | pacing_sender_.OnApplicationLimited(); |
| 1186 | } |
| 1187 | send_algorithm_->OnApplicationLimited(unacked_packets_.bytes_in_flight()); |
| 1188 | if (debug_delegate_ != nullptr) { |
| 1189 | debug_delegate_->OnApplicationLimited(); |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | QuicTime QuicSentPacketManager::GetNextReleaseTime() const { |
| 1194 | return using_pacing_ ? pacing_sender_.ideal_next_packet_send_time() |
| 1195 | : QuicTime::Zero(); |
| 1196 | } |
| 1197 | |
| 1198 | void QuicSentPacketManager::SetInitialRtt(QuicTime::Delta rtt) { |
| 1199 | const QuicTime::Delta min_rtt = |
| 1200 | QuicTime::Delta::FromMicroseconds(kMinInitialRoundTripTimeUs); |
| 1201 | const QuicTime::Delta max_rtt = |
| 1202 | QuicTime::Delta::FromMicroseconds(kMaxInitialRoundTripTimeUs); |
| 1203 | rtt_stats_.set_initial_rtt(std::max(min_rtt, std::min(max_rtt, rtt))); |
| 1204 | } |
| 1205 | |
| 1206 | #undef ENDPOINT // undef for jumbo builds |
| 1207 | } // namespace quic |