Project import generated by Copybara.
PiperOrigin-RevId: 237361882
Change-Id: I109a68f44db867b20f8c6a7732b0ce657133e52a
diff --git a/quic/core/quic_sent_packet_manager.cc b/quic/core/quic_sent_packet_manager.cc
new file mode 100644
index 0000000..6d6710f
--- /dev/null
+++ b/quic/core/quic_sent_packet_manager.cc
@@ -0,0 +1,1202 @@
+// Copyright 2013 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "net/third_party/quiche/src/quic/core/quic_sent_packet_manager.h"
+
+#include <algorithm>
+
+#include "net/third_party/quiche/src/quic/core/congestion_control/general_loss_algorithm.h"
+#include "net/third_party/quiche/src/quic/core/congestion_control/pacing_sender.h"
+#include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h"
+#include "net/third_party/quiche/src/quic/core/proto/cached_network_parameters.pb.h"
+#include "net/third_party/quiche/src/quic/core/quic_connection_stats.h"
+#include "net/third_party/quiche/src/quic/core/quic_pending_retransmission.h"
+#include "net/third_party/quiche/src/quic/core/quic_utils.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_flags.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_logging.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_string.h"
+
+namespace quic {
+
+namespace {
+static const int64_t kDefaultRetransmissionTimeMs = 500;
+static const int64_t kMaxRetransmissionTimeMs = 60000;
+// Maximum number of exponential backoffs used for RTO timeouts.
+static const size_t kMaxRetransmissions = 10;
+// Maximum number of packets retransmitted upon an RTO.
+static const size_t kMaxRetransmissionsOnTimeout = 2;
+// The path degrading delay is the sum of this number of consecutive RTO delays.
+const size_t kNumRetransmissionDelaysForPathDegradingDelay = 2;
+
+// Ensure the handshake timer isnt't faster than 10ms.
+// This limits the tenth retransmitted packet to 10s after the initial CHLO.
+static const int64_t kMinHandshakeTimeoutMs = 10;
+
+// Sends up to two tail loss probes before firing an RTO,
+// per draft RFC draft-dukkipati-tcpm-tcp-loss-probe.
+static const size_t kDefaultMaxTailLossProbes = 2;
+
+inline bool HasCryptoHandshake(const QuicTransmissionInfo& transmission_info) {
+ DCHECK(!transmission_info.has_crypto_handshake ||
+ !transmission_info.retransmittable_frames.empty());
+ return transmission_info.has_crypto_handshake;
+}
+
+// Returns true if retransmissions the specified type leave the data in flight.
+inline bool RetransmissionLeavesBytesInFlight(
+ TransmissionType transmission_type) {
+ // Both TLP and the new RTO leave the packets in flight and let the loss
+ // detection decide if packets are lost.
+ return transmission_type == TLP_RETRANSMISSION ||
+ transmission_type == PROBING_RETRANSMISSION ||
+ transmission_type == RTO_RETRANSMISSION;
+}
+
+// Returns true of retransmissions of the specified type should retransmit
+// the frames directly (as opposed to resulting in a loss notification).
+inline bool ShouldForceRetransmission(TransmissionType transmission_type) {
+ return transmission_type == HANDSHAKE_RETRANSMISSION ||
+ transmission_type == TLP_RETRANSMISSION ||
+ transmission_type == PROBING_RETRANSMISSION ||
+ transmission_type == RTO_RETRANSMISSION;
+}
+
+} // namespace
+
+#define ENDPOINT \
+ (unacked_packets_.perspective() == Perspective::IS_SERVER ? "Server: " \
+ : "Client: ")
+
+QuicSentPacketManager::QuicSentPacketManager(
+ Perspective perspective,
+ const QuicClock* clock,
+ QuicConnectionStats* stats,
+ CongestionControlType congestion_control_type,
+ LossDetectionType loss_type)
+ : unacked_packets_(perspective),
+ clock_(clock),
+ stats_(stats),
+ debug_delegate_(nullptr),
+ network_change_visitor_(nullptr),
+ initial_congestion_window_(kInitialCongestionWindow),
+ loss_algorithm_(
+ unacked_packets_.use_uber_loss_algorithm()
+ ? dynamic_cast<LossDetectionInterface*>(&uber_loss_algorithm_)
+ : dynamic_cast<LossDetectionInterface*>(
+ &general_loss_algorithm_)),
+ general_loss_algorithm_(loss_type),
+ uber_loss_algorithm_(loss_type),
+ consecutive_rto_count_(0),
+ consecutive_tlp_count_(0),
+ consecutive_crypto_retransmission_count_(0),
+ pending_timer_transmission_count_(0),
+ max_tail_loss_probes_(kDefaultMaxTailLossProbes),
+ max_rto_packets_(kMaxRetransmissionsOnTimeout),
+ enable_half_rtt_tail_loss_probe_(false),
+ using_pacing_(false),
+ use_new_rto_(false),
+ conservative_handshake_retransmits_(false),
+ min_tlp_timeout_(
+ QuicTime::Delta::FromMilliseconds(kMinTailLossProbeTimeoutMs)),
+ min_rto_timeout_(
+ QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs)),
+ ietf_style_tlp_(false),
+ ietf_style_2x_tlp_(false),
+ largest_mtu_acked_(0),
+ handshake_confirmed_(false),
+ delayed_ack_time_(
+ QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs)),
+ rtt_updated_(false),
+ acked_packets_iter_(last_ack_frame_.packets.rbegin()) {
+ SetSendAlgorithm(congestion_control_type);
+}
+
+QuicSentPacketManager::~QuicSentPacketManager() {}
+
+void QuicSentPacketManager::SetFromConfig(const QuicConfig& config) {
+ const Perspective perspective = unacked_packets_.perspective();
+ if (config.HasReceivedInitialRoundTripTimeUs() &&
+ config.ReceivedInitialRoundTripTimeUs() > 0) {
+ if (!config.HasClientSentConnectionOption(kNRTT, perspective)) {
+ SetInitialRtt(QuicTime::Delta::FromMicroseconds(
+ config.ReceivedInitialRoundTripTimeUs()));
+ }
+ } else if (config.HasInitialRoundTripTimeUsToSend() &&
+ config.GetInitialRoundTripTimeUsToSend() > 0) {
+ SetInitialRtt(QuicTime::Delta::FromMicroseconds(
+ config.GetInitialRoundTripTimeUsToSend()));
+ }
+ if (config.HasClientSentConnectionOption(kMAD0, perspective)) {
+ rtt_stats_.set_ignore_max_ack_delay(true);
+ }
+ if (config.HasClientSentConnectionOption(kMAD1, perspective)) {
+ rtt_stats_.set_initial_max_ack_delay(delayed_ack_time_);
+ }
+ if (config.HasClientSentConnectionOption(kMAD2, perspective)) {
+ min_tlp_timeout_ = QuicTime::Delta::Zero();
+ }
+ if (config.HasClientSentConnectionOption(kMAD3, perspective)) {
+ min_rto_timeout_ = QuicTime::Delta::Zero();
+ }
+ if (config.HasClientSentConnectionOption(kMAD4, perspective)) {
+ ietf_style_tlp_ = true;
+ }
+ if (config.HasClientSentConnectionOption(kMAD5, perspective)) {
+ ietf_style_2x_tlp_ = true;
+ }
+
+ // Configure congestion control.
+ if (config.HasClientRequestedIndependentOption(kTBBR, perspective)) {
+ SetSendAlgorithm(kBBR);
+ }
+ if (config.HasClientRequestedIndependentOption(kRENO, perspective)) {
+ SetSendAlgorithm(kRenoBytes);
+ } else if (config.HasClientRequestedIndependentOption(kBYTE, perspective) ||
+ (GetQuicReloadableFlag(quic_default_to_bbr) &&
+ config.HasClientRequestedIndependentOption(kQBIC, perspective))) {
+ SetSendAlgorithm(kCubicBytes);
+ } else if (GetQuicReloadableFlag(quic_enable_pcc3) &&
+ config.HasClientRequestedIndependentOption(kTPCC, perspective)) {
+ SetSendAlgorithm(kPCC);
+ }
+ // Initial window.
+ if (GetQuicReloadableFlag(quic_unified_iw_options)) {
+ if (config.HasClientRequestedIndependentOption(kIW03, perspective)) {
+ initial_congestion_window_ = 3;
+ send_algorithm_->SetInitialCongestionWindowInPackets(3);
+ }
+ if (config.HasClientRequestedIndependentOption(kIW10, perspective)) {
+ initial_congestion_window_ = 10;
+ send_algorithm_->SetInitialCongestionWindowInPackets(10);
+ }
+ if (config.HasClientRequestedIndependentOption(kIW20, perspective)) {
+ initial_congestion_window_ = 20;
+ send_algorithm_->SetInitialCongestionWindowInPackets(20);
+ }
+ if (config.HasClientRequestedIndependentOption(kIW50, perspective)) {
+ initial_congestion_window_ = 50;
+ send_algorithm_->SetInitialCongestionWindowInPackets(50);
+ }
+ }
+
+ using_pacing_ = !FLAGS_quic_disable_pacing_for_perf_tests;
+
+ if (config.HasClientSentConnectionOption(k1CON, perspective)) {
+ send_algorithm_->SetNumEmulatedConnections(1);
+ }
+ if (config.HasClientSentConnectionOption(kNTLP, perspective)) {
+ max_tail_loss_probes_ = 0;
+ }
+ if (config.HasClientSentConnectionOption(k1TLP, perspective)) {
+ max_tail_loss_probes_ = 1;
+ }
+ if (config.HasClientSentConnectionOption(k1RTO, perspective)) {
+ max_rto_packets_ = 1;
+ }
+ if (config.HasClientSentConnectionOption(kTLPR, perspective)) {
+ enable_half_rtt_tail_loss_probe_ = true;
+ }
+ if (config.HasClientSentConnectionOption(kNRTO, perspective)) {
+ use_new_rto_ = true;
+ }
+ // Configure loss detection.
+ if (config.HasClientRequestedIndependentOption(kTIME, perspective)) {
+ if (unacked_packets_.use_uber_loss_algorithm()) {
+ uber_loss_algorithm_.SetLossDetectionType(kTime);
+ } else {
+ general_loss_algorithm_.SetLossDetectionType(kTime);
+ }
+ }
+ if (config.HasClientRequestedIndependentOption(kATIM, perspective)) {
+ if (unacked_packets_.use_uber_loss_algorithm()) {
+ uber_loss_algorithm_.SetLossDetectionType(kAdaptiveTime);
+ } else {
+ general_loss_algorithm_.SetLossDetectionType(kAdaptiveTime);
+ }
+ }
+ if (config.HasClientRequestedIndependentOption(kLFAK, perspective)) {
+ if (unacked_packets_.use_uber_loss_algorithm()) {
+ uber_loss_algorithm_.SetLossDetectionType(kLazyFack);
+ } else {
+ general_loss_algorithm_.SetLossDetectionType(kLazyFack);
+ }
+ }
+ if (config.HasClientSentConnectionOption(kCONH, perspective)) {
+ conservative_handshake_retransmits_ = true;
+ }
+ send_algorithm_->SetFromConfig(config, perspective);
+
+ if (network_change_visitor_ != nullptr) {
+ network_change_visitor_->OnCongestionChange();
+ }
+}
+
+void QuicSentPacketManager::ResumeConnectionState(
+ const CachedNetworkParameters& cached_network_params,
+ bool max_bandwidth_resumption) {
+ QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond(
+ max_bandwidth_resumption
+ ? cached_network_params.max_bandwidth_estimate_bytes_per_second()
+ : cached_network_params.bandwidth_estimate_bytes_per_second());
+ QuicTime::Delta rtt =
+ QuicTime::Delta::FromMilliseconds(cached_network_params.min_rtt_ms());
+ AdjustNetworkParameters(bandwidth, rtt);
+}
+
+void QuicSentPacketManager::AdjustNetworkParameters(QuicBandwidth bandwidth,
+ QuicTime::Delta rtt) {
+ if (!rtt.IsZero()) {
+ SetInitialRtt(rtt);
+ }
+ send_algorithm_->AdjustNetworkParameters(bandwidth, rtt);
+ if (debug_delegate_ != nullptr) {
+ debug_delegate_->OnAdjustNetworkParameters(bandwidth, rtt);
+ }
+}
+
+void QuicSentPacketManager::SetHandshakeConfirmed() {
+ handshake_confirmed_ = true;
+ if (unacked_packets_.use_uber_loss_algorithm()) {
+ NeuterHandshakePackets();
+ }
+}
+
+void QuicSentPacketManager::PostProcessAfterMarkingPacketHandled(
+ const QuicAckFrame& ack_frame,
+ QuicTime ack_receive_time,
+ bool rtt_updated,
+ QuicByteCount prior_bytes_in_flight) {
+ if (session_decides_what_to_write()) {
+ unacked_packets_.NotifyAggregatedStreamFrameAcked(
+ last_ack_frame_.ack_delay_time);
+ }
+ InvokeLossDetection(ack_receive_time);
+ // Ignore losses in RTO mode.
+ if (consecutive_rto_count_ > 0 && !use_new_rto_) {
+ packets_lost_.clear();
+ }
+ MaybeInvokeCongestionEvent(rtt_updated, prior_bytes_in_flight,
+ ack_receive_time);
+ unacked_packets_.RemoveObsoletePackets();
+
+ sustained_bandwidth_recorder_.RecordEstimate(
+ send_algorithm_->InRecovery(), send_algorithm_->InSlowStart(),
+ send_algorithm_->BandwidthEstimate(), ack_receive_time, clock_->WallNow(),
+ rtt_stats_.smoothed_rtt());
+
+ // Anytime we are making forward progress and have a new RTT estimate, reset
+ // the backoff counters.
+ if (rtt_updated) {
+ if (consecutive_rto_count_ > 0) {
+ // If the ack acknowledges data sent prior to the RTO,
+ // the RTO was spurious.
+ if (LargestAcked(ack_frame) < first_rto_transmission_) {
+ // Replace SRTT with latest_rtt and increase the variance to prevent
+ // a spurious RTO from happening again.
+ rtt_stats_.ExpireSmoothedMetrics();
+ } else {
+ if (!use_new_rto_) {
+ send_algorithm_->OnRetransmissionTimeout(true);
+ }
+ }
+ }
+ // Reset all retransmit counters any time a new packet is acked.
+ consecutive_rto_count_ = 0;
+ consecutive_tlp_count_ = 0;
+ consecutive_crypto_retransmission_count_ = 0;
+ }
+
+ if (debug_delegate_ != nullptr) {
+ debug_delegate_->OnIncomingAck(ack_frame, ack_receive_time,
+ LargestAcked(ack_frame), rtt_updated,
+ GetLeastUnacked());
+ }
+ // Remove packets below least unacked from all_packets_acked_ and
+ // last_ack_frame_.
+ last_ack_frame_.packets.RemoveUpTo(unacked_packets_.GetLeastUnacked());
+ last_ack_frame_.received_packet_times.clear();
+}
+
+void QuicSentPacketManager::MaybeInvokeCongestionEvent(
+ bool rtt_updated,
+ QuicByteCount prior_in_flight,
+ QuicTime event_time) {
+ if (!rtt_updated && packets_acked_.empty() && packets_lost_.empty()) {
+ return;
+ }
+ if (using_pacing_) {
+ pacing_sender_.OnCongestionEvent(rtt_updated, prior_in_flight, event_time,
+ packets_acked_, packets_lost_);
+ } else {
+ send_algorithm_->OnCongestionEvent(rtt_updated, prior_in_flight, event_time,
+ packets_acked_, packets_lost_);
+ }
+ packets_acked_.clear();
+ packets_lost_.clear();
+ if (network_change_visitor_ != nullptr) {
+ network_change_visitor_->OnCongestionChange();
+ }
+}
+
+void QuicSentPacketManager::RetransmitUnackedPackets(
+ TransmissionType retransmission_type) {
+ DCHECK(retransmission_type == ALL_UNACKED_RETRANSMISSION ||
+ retransmission_type == ALL_INITIAL_RETRANSMISSION);
+ QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
+ for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
+ it != unacked_packets_.end(); ++it, ++packet_number) {
+ if ((retransmission_type == ALL_UNACKED_RETRANSMISSION ||
+ it->encryption_level == ENCRYPTION_ZERO_RTT) &&
+ unacked_packets_.HasRetransmittableFrames(*it)) {
+ MarkForRetransmission(packet_number, retransmission_type);
+ }
+ }
+}
+
+void QuicSentPacketManager::NeuterUnencryptedPackets() {
+ QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
+ if (session_decides_what_to_write()) {
+ for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
+ it != unacked_packets_.end(); ++it, ++packet_number) {
+ if (!it->retransmittable_frames.empty() &&
+ it->encryption_level == ENCRYPTION_NONE) {
+ // Once the connection swithes to forward secure, no unencrypted packets
+ // will be sent. The data has been abandoned in the cryto stream. Remove
+ // it from in flight.
+ unacked_packets_.RemoveFromInFlight(packet_number);
+ }
+ }
+ return;
+ }
+ for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
+ it != unacked_packets_.end(); ++it, ++packet_number) {
+ if (it->encryption_level == ENCRYPTION_NONE &&
+ unacked_packets_.HasRetransmittableFrames(*it)) {
+ // Once you're forward secure, no unencrypted packets will be sent, crypto
+ // or otherwise. Unencrypted packets are neutered and abandoned, to ensure
+ // they are not retransmitted or considered lost from a congestion control
+ // perspective.
+ pending_retransmissions_.erase(packet_number);
+ unacked_packets_.RemoveFromInFlight(packet_number);
+ unacked_packets_.RemoveRetransmittability(packet_number);
+ }
+ }
+}
+
+void QuicSentPacketManager::NeuterHandshakePackets() {
+ DCHECK(unacked_packets_.use_uber_loss_algorithm());
+ QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
+ for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
+ it != unacked_packets_.end(); ++it, ++packet_number) {
+ if (session_decides_what_to_write()) {
+ if (!it->retransmittable_frames.empty() &&
+ unacked_packets_.GetPacketNumberSpace(it->encryption_level) ==
+ HANDSHAKE_DATA) {
+ unacked_packets_.RemoveFromInFlight(packet_number);
+ }
+ continue;
+ }
+ if (unacked_packets_.GetPacketNumberSpace(it->encryption_level) ==
+ HANDSHAKE_DATA &&
+ unacked_packets_.HasRetransmittableFrames(*it)) {
+ pending_retransmissions_.erase(packet_number);
+ unacked_packets_.RemoveFromInFlight(packet_number);
+ unacked_packets_.RemoveRetransmittability(packet_number);
+ }
+ }
+}
+
+void QuicSentPacketManager::MarkForRetransmission(
+ QuicPacketNumber packet_number,
+ TransmissionType transmission_type) {
+ QuicTransmissionInfo* transmission_info =
+ unacked_packets_.GetMutableTransmissionInfo(packet_number);
+ // When session decides what to write, a previous RTO retransmission may cause
+ // connection close; packets without retransmittable frames can be marked for
+ // loss retransmissions.
+ QUIC_BUG_IF((transmission_type != LOSS_RETRANSMISSION &&
+ (!session_decides_what_to_write() ||
+ transmission_type != RTO_RETRANSMISSION)) &&
+ !unacked_packets_.HasRetransmittableFrames(*transmission_info))
+ << "transmission_type: "
+ << QuicUtils::TransmissionTypeToString(transmission_type);
+ // Handshake packets should never be sent as probing retransmissions.
+ DCHECK(!transmission_info->has_crypto_handshake ||
+ transmission_type != PROBING_RETRANSMISSION);
+ if (!RetransmissionLeavesBytesInFlight(transmission_type)) {
+ unacked_packets_.RemoveFromInFlight(transmission_info);
+ }
+
+ if (!session_decides_what_to_write()) {
+ if (!unacked_packets_.HasRetransmittableFrames(*transmission_info)) {
+ return;
+ }
+ if (!QuicContainsKey(pending_retransmissions_, packet_number)) {
+ pending_retransmissions_[packet_number] = transmission_type;
+ }
+ return;
+ }
+
+ HandleRetransmission(transmission_type, transmission_info);
+
+ // Update packet state according to transmission type.
+ transmission_info->state =
+ QuicUtils::RetransmissionTypeToPacketState(transmission_type);
+}
+
+void QuicSentPacketManager::HandleRetransmission(
+ TransmissionType transmission_type,
+ QuicTransmissionInfo* transmission_info) {
+ DCHECK(session_decides_what_to_write());
+ if (ShouldForceRetransmission(transmission_type)) {
+ // TODO(fayang): Consider to make RTO and PROBING retransmission
+ // strategies be configurable by applications. Today, TLP, RTO and PROBING
+ // retransmissions are handled similarly, i.e., always retranmist the
+ // oldest outstanding data. This is not ideal in general because different
+ // applications may want different strategies. For example, some
+ // applications may want to use higher priority stream data for bandwidth
+ // probing, and some applications want to consider RTO is an indication of
+ // loss, etc.
+ unacked_packets_.RetransmitFrames(*transmission_info, transmission_type);
+ return;
+ }
+
+ unacked_packets_.NotifyFramesLost(*transmission_info, transmission_type);
+ if (transmission_info->retransmittable_frames.empty()) {
+ return;
+ }
+
+ if (transmission_type == LOSS_RETRANSMISSION) {
+ // Record the first packet sent after loss, which allows to wait 1
+ // more RTT before giving up on this lost packet.
+ transmission_info->retransmission =
+ unacked_packets_.largest_sent_packet() + 1;
+ } else {
+ // Clear the recorded first packet sent after loss when version or
+ // encryption changes.
+ transmission_info->retransmission.Clear();
+ }
+}
+
+void QuicSentPacketManager::RecordOneSpuriousRetransmission(
+ const QuicTransmissionInfo& info) {
+ stats_->bytes_spuriously_retransmitted += info.bytes_sent;
+ ++stats_->packets_spuriously_retransmitted;
+ if (debug_delegate_ != nullptr) {
+ debug_delegate_->OnSpuriousPacketRetransmission(info.transmission_type,
+ info.bytes_sent);
+ }
+}
+
+void QuicSentPacketManager::RecordSpuriousRetransmissions(
+ const QuicTransmissionInfo& info,
+ QuicPacketNumber acked_packet_number) {
+ if (session_decides_what_to_write()) {
+ RecordOneSpuriousRetransmission(info);
+ if (info.transmission_type == LOSS_RETRANSMISSION) {
+ // Only inform the loss detection of spurious retransmits it caused.
+ loss_algorithm_->SpuriousRetransmitDetected(
+ unacked_packets_, clock_->Now(), rtt_stats_, acked_packet_number);
+ }
+ return;
+ }
+ QuicPacketNumber retransmission = info.retransmission;
+ while (retransmission.IsInitialized()) {
+ const QuicTransmissionInfo& retransmit_info =
+ unacked_packets_.GetTransmissionInfo(retransmission);
+ retransmission = retransmit_info.retransmission;
+ RecordOneSpuriousRetransmission(retransmit_info);
+ }
+ // Only inform the loss detection of spurious retransmits it caused.
+ if (unacked_packets_.GetTransmissionInfo(info.retransmission)
+ .transmission_type == LOSS_RETRANSMISSION) {
+ loss_algorithm_->SpuriousRetransmitDetected(
+ unacked_packets_, clock_->Now(), rtt_stats_, info.retransmission);
+ }
+}
+
+QuicPendingRetransmission QuicSentPacketManager::NextPendingRetransmission() {
+ QUIC_BUG_IF(pending_retransmissions_.empty())
+ << "Unexpected call to NextPendingRetransmission() with empty pending "
+ << "retransmission list. Corrupted memory usage imminent.";
+ QUIC_BUG_IF(session_decides_what_to_write())
+ << "Unexpected call to NextPendingRetransmission() when session handles "
+ "retransmissions";
+ QuicPacketNumber packet_number = pending_retransmissions_.begin()->first;
+ TransmissionType transmission_type = pending_retransmissions_.begin()->second;
+ if (unacked_packets_.HasPendingCryptoPackets()) {
+ // Ensure crypto packets are retransmitted before other packets.
+ for (const auto& pair : pending_retransmissions_) {
+ if (HasCryptoHandshake(
+ unacked_packets_.GetTransmissionInfo(pair.first))) {
+ packet_number = pair.first;
+ transmission_type = pair.second;
+ break;
+ }
+ }
+ }
+ DCHECK(unacked_packets_.IsUnacked(packet_number)) << packet_number;
+ const QuicTransmissionInfo& transmission_info =
+ unacked_packets_.GetTransmissionInfo(packet_number);
+ DCHECK(unacked_packets_.HasRetransmittableFrames(transmission_info));
+
+ return QuicPendingRetransmission(packet_number, transmission_type,
+ transmission_info);
+}
+
+QuicPacketNumber QuicSentPacketManager::GetNewestRetransmission(
+ QuicPacketNumber packet_number,
+ const QuicTransmissionInfo& transmission_info) const {
+ if (session_decides_what_to_write()) {
+ return packet_number;
+ }
+ QuicPacketNumber retransmission = transmission_info.retransmission;
+ while (retransmission.IsInitialized()) {
+ packet_number = retransmission;
+ retransmission =
+ unacked_packets_.GetTransmissionInfo(retransmission).retransmission;
+ }
+ return packet_number;
+}
+
+void QuicSentPacketManager::MarkPacketHandled(QuicPacketNumber packet_number,
+ QuicTransmissionInfo* info,
+ QuicTime::Delta ack_delay_time) {
+ QuicPacketNumber newest_transmission =
+ GetNewestRetransmission(packet_number, *info);
+ // Remove the most recent packet, if it is pending retransmission.
+ pending_retransmissions_.erase(newest_transmission);
+
+ if (newest_transmission == packet_number) {
+ // Try to aggregate acked stream frames if acked packet is not a
+ // retransmission.
+ const bool fast_path = session_decides_what_to_write() &&
+ info->transmission_type == NOT_RETRANSMISSION;
+ if (fast_path) {
+ unacked_packets_.MaybeAggregateAckedStreamFrame(*info, ack_delay_time);
+ } else {
+ if (session_decides_what_to_write()) {
+ unacked_packets_.NotifyAggregatedStreamFrameAcked(ack_delay_time);
+ }
+ const bool new_data_acked =
+ unacked_packets_.NotifyFramesAcked(*info, ack_delay_time);
+ if (session_decides_what_to_write() && !new_data_acked &&
+ info->transmission_type != NOT_RETRANSMISSION) {
+ // Record as a spurious retransmission if this packet is a
+ // retransmission and no new data gets acked.
+ QUIC_DVLOG(1) << "Detect spurious retransmitted packet "
+ << packet_number << " transmission type: "
+ << QuicUtils::TransmissionTypeToString(
+ info->transmission_type);
+ RecordSpuriousRetransmissions(*info, packet_number);
+ }
+ }
+ } else {
+ DCHECK(!session_decides_what_to_write());
+ RecordSpuriousRetransmissions(*info, packet_number);
+ // Remove the most recent packet from flight if it's a crypto handshake
+ // packet, since they won't be acked now that one has been processed.
+ // Other crypto handshake packets won't be in flight, only the newest
+ // transmission of a crypto packet is in flight at once.
+ // TODO(ianswett): Instead of handling all crypto packets special,
+ // only handle nullptr encrypted packets in a special way.
+ const QuicTransmissionInfo& newest_transmission_info =
+ unacked_packets_.GetTransmissionInfo(newest_transmission);
+ unacked_packets_.NotifyFramesAcked(newest_transmission_info,
+ ack_delay_time);
+ if (HasCryptoHandshake(newest_transmission_info)) {
+ unacked_packets_.RemoveFromInFlight(newest_transmission);
+ }
+ }
+
+ if (network_change_visitor_ != nullptr &&
+ info->bytes_sent > largest_mtu_acked_) {
+ largest_mtu_acked_ = info->bytes_sent;
+ network_change_visitor_->OnPathMtuIncreased(largest_mtu_acked_);
+ }
+ unacked_packets_.RemoveFromInFlight(info);
+ unacked_packets_.RemoveRetransmittability(info);
+ info->state = ACKED;
+}
+
+bool QuicSentPacketManager::OnPacketSent(
+ SerializedPacket* serialized_packet,
+ QuicPacketNumber original_packet_number,
+ QuicTime sent_time,
+ TransmissionType transmission_type,
+ HasRetransmittableData has_retransmittable_data) {
+ QuicPacketNumber packet_number = serialized_packet->packet_number;
+ DCHECK_LE(FirstSendingPacketNumber(), packet_number);
+ DCHECK(!unacked_packets_.IsUnacked(packet_number));
+ QUIC_BUG_IF(serialized_packet->encrypted_length == 0)
+ << "Cannot send empty packets.";
+
+ if (original_packet_number.IsInitialized()) {
+ pending_retransmissions_.erase(original_packet_number);
+ }
+
+ if (pending_timer_transmission_count_ > 0) {
+ --pending_timer_transmission_count_;
+ }
+
+ bool in_flight = has_retransmittable_data == HAS_RETRANSMITTABLE_DATA;
+ if (using_pacing_) {
+ pacing_sender_.OnPacketSent(
+ sent_time, unacked_packets_.bytes_in_flight(), packet_number,
+ serialized_packet->encrypted_length, has_retransmittable_data);
+ } else {
+ send_algorithm_->OnPacketSent(
+ sent_time, unacked_packets_.bytes_in_flight(), packet_number,
+ serialized_packet->encrypted_length, has_retransmittable_data);
+ }
+
+ unacked_packets_.AddSentPacket(serialized_packet, original_packet_number,
+ transmission_type, sent_time, in_flight);
+ // Reset the retransmission timer anytime a pending packet is sent.
+ return in_flight;
+}
+
+void QuicSentPacketManager::OnRetransmissionTimeout() {
+ DCHECK(unacked_packets_.HasInFlightPackets());
+ DCHECK_EQ(0u, pending_timer_transmission_count_);
+ // Handshake retransmission, timer based loss detection, TLP, and RTO are
+ // implemented with a single alarm. The handshake alarm is set when the
+ // handshake has not completed, the loss alarm is set when the loss detection
+ // algorithm says to, and the TLP and RTO alarms are set after that.
+ // The TLP alarm is always set to run for under an RTO.
+ switch (GetRetransmissionMode()) {
+ case HANDSHAKE_MODE:
+ ++stats_->crypto_retransmit_count;
+ RetransmitCryptoPackets();
+ return;
+ case LOSS_MODE: {
+ ++stats_->loss_timeout_count;
+ QuicByteCount prior_in_flight = unacked_packets_.bytes_in_flight();
+ const QuicTime now = clock_->Now();
+ InvokeLossDetection(now);
+ MaybeInvokeCongestionEvent(false, prior_in_flight, now);
+ return;
+ }
+ case TLP_MODE:
+ ++stats_->tlp_count;
+ ++consecutive_tlp_count_;
+ pending_timer_transmission_count_ = 1;
+ // TLPs prefer sending new data instead of retransmitting data, so
+ // give the connection a chance to write before completing the TLP.
+ return;
+ case RTO_MODE:
+ ++stats_->rto_count;
+ RetransmitRtoPackets();
+ return;
+ }
+}
+
+void QuicSentPacketManager::RetransmitCryptoPackets() {
+ DCHECK_EQ(HANDSHAKE_MODE, GetRetransmissionMode());
+ ++consecutive_crypto_retransmission_count_;
+ bool packet_retransmitted = false;
+ QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
+ std::vector<QuicPacketNumber> crypto_retransmissions;
+ for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
+ it != unacked_packets_.end(); ++it, ++packet_number) {
+ // Only retransmit frames which are in flight, and therefore have been sent.
+ if (!it->in_flight ||
+ (session_decides_what_to_write() && it->state != OUTSTANDING) ||
+ !it->has_crypto_handshake ||
+ !unacked_packets_.HasRetransmittableFrames(*it)) {
+ continue;
+ }
+ packet_retransmitted = true;
+ if (session_decides_what_to_write()) {
+ crypto_retransmissions.push_back(packet_number);
+ } else {
+ MarkForRetransmission(packet_number, HANDSHAKE_RETRANSMISSION);
+ }
+ ++pending_timer_transmission_count_;
+ }
+ DCHECK(packet_retransmitted) << "No crypto packets found to retransmit.";
+ if (session_decides_what_to_write()) {
+ for (QuicPacketNumber retransmission : crypto_retransmissions) {
+ MarkForRetransmission(retransmission, HANDSHAKE_RETRANSMISSION);
+ }
+ }
+}
+
+bool QuicSentPacketManager::MaybeRetransmitTailLossProbe() {
+ if (pending_timer_transmission_count_ == 0) {
+ return false;
+ }
+ if (!MaybeRetransmitOldestPacket(TLP_RETRANSMISSION)) {
+ // If no tail loss probe can be sent, because there are no retransmittable
+ // packets, execute a conventional RTO to abandon old packets.
+ if (GetQuicReloadableFlag(quic_optimize_inflight_check)) {
+ QUIC_RELOADABLE_FLAG_COUNT(quic_optimize_inflight_check);
+ pending_timer_transmission_count_ = 0;
+ RetransmitRtoPackets();
+ }
+ return false;
+ }
+ return true;
+}
+
+bool QuicSentPacketManager::MaybeRetransmitOldestPacket(TransmissionType type) {
+ QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
+ for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
+ it != unacked_packets_.end(); ++it, ++packet_number) {
+ // Only retransmit frames which are in flight, and therefore have been sent.
+ if (!it->in_flight ||
+ (session_decides_what_to_write() && it->state != OUTSTANDING) ||
+ !unacked_packets_.HasRetransmittableFrames(*it)) {
+ continue;
+ }
+ MarkForRetransmission(packet_number, type);
+ return true;
+ }
+ QUIC_DVLOG(1)
+ << "No retransmittable packets, so RetransmitOldestPacket failed.";
+ return false;
+}
+
+void QuicSentPacketManager::RetransmitRtoPackets() {
+ QUIC_BUG_IF(pending_timer_transmission_count_ > 0)
+ << "Retransmissions already queued:" << pending_timer_transmission_count_;
+ // Mark two packets for retransmission.
+ QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
+ std::vector<QuicPacketNumber> retransmissions;
+ for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
+ it != unacked_packets_.end(); ++it, ++packet_number) {
+ if ((!session_decides_what_to_write() || it->state == OUTSTANDING) &&
+ unacked_packets_.HasRetransmittableFrames(*it) &&
+ pending_timer_transmission_count_ < max_rto_packets_) {
+ if (session_decides_what_to_write()) {
+ retransmissions.push_back(packet_number);
+ } else {
+ MarkForRetransmission(packet_number, RTO_RETRANSMISSION);
+ }
+ ++pending_timer_transmission_count_;
+ }
+ // Abandon non-retransmittable data that's in flight to ensure it doesn't
+ // fill up the congestion window.
+ bool has_retransmissions = it->retransmission.IsInitialized();
+ if (session_decides_what_to_write()) {
+ has_retransmissions = it->state != OUTSTANDING;
+ }
+ if (it->in_flight && !has_retransmissions &&
+ !unacked_packets_.HasRetransmittableFrames(*it)) {
+ // Log only for non-retransmittable data.
+ // Retransmittable data is marked as lost during loss detection, and will
+ // be logged later.
+ unacked_packets_.RemoveFromInFlight(packet_number);
+ if (debug_delegate_ != nullptr) {
+ debug_delegate_->OnPacketLoss(packet_number, RTO_RETRANSMISSION,
+ clock_->Now());
+ }
+ }
+ }
+ if (pending_timer_transmission_count_ > 0) {
+ if (consecutive_rto_count_ == 0) {
+ first_rto_transmission_ = unacked_packets_.largest_sent_packet() + 1;
+ }
+ ++consecutive_rto_count_;
+ }
+ if (session_decides_what_to_write()) {
+ for (QuicPacketNumber retransmission : retransmissions) {
+ MarkForRetransmission(retransmission, RTO_RETRANSMISSION);
+ }
+ }
+}
+
+QuicSentPacketManager::RetransmissionTimeoutMode
+QuicSentPacketManager::GetRetransmissionMode() const {
+ DCHECK(unacked_packets_.HasInFlightPackets());
+ if (!handshake_confirmed_ && unacked_packets_.HasPendingCryptoPackets()) {
+ return HANDSHAKE_MODE;
+ }
+ if (loss_algorithm_->GetLossTimeout() != QuicTime::Zero()) {
+ return LOSS_MODE;
+ }
+ if (consecutive_tlp_count_ < max_tail_loss_probes_) {
+ if (GetQuicReloadableFlag(quic_optimize_inflight_check) ||
+ unacked_packets_.HasUnackedRetransmittableFrames()) {
+ return TLP_MODE;
+ }
+ }
+ return RTO_MODE;
+}
+
+void QuicSentPacketManager::InvokeLossDetection(QuicTime time) {
+ if (!packets_acked_.empty()) {
+ DCHECK_LE(packets_acked_.front().packet_number,
+ packets_acked_.back().packet_number);
+ largest_newly_acked_ = packets_acked_.back().packet_number;
+ }
+ loss_algorithm_->DetectLosses(unacked_packets_, time, rtt_stats_,
+ largest_newly_acked_, packets_acked_,
+ &packets_lost_);
+ for (const LostPacket& packet : packets_lost_) {
+ ++stats_->packets_lost;
+ if (debug_delegate_ != nullptr) {
+ debug_delegate_->OnPacketLoss(packet.packet_number, LOSS_RETRANSMISSION,
+ time);
+ }
+
+ MarkForRetransmission(packet.packet_number, LOSS_RETRANSMISSION);
+ }
+}
+
+bool QuicSentPacketManager::MaybeUpdateRTT(QuicPacketNumber largest_acked,
+ QuicTime::Delta ack_delay_time,
+ QuicTime ack_receive_time) {
+ // We rely on ack_delay_time to compute an RTT estimate, so we
+ // only update rtt when the largest observed gets acked.
+ if (!unacked_packets_.IsUnacked(largest_acked)) {
+ return false;
+ }
+ // We calculate the RTT based on the highest ACKed packet number, the lower
+ // packet numbers will include the ACK aggregation delay.
+ const QuicTransmissionInfo& transmission_info =
+ unacked_packets_.GetTransmissionInfo(largest_acked);
+ // Ensure the packet has a valid sent time.
+ if (transmission_info.sent_time == QuicTime::Zero()) {
+ QUIC_BUG << "Acked packet has zero sent time, largest_acked:"
+ << largest_acked;
+ return false;
+ }
+ if (transmission_info.sent_time > ack_receive_time) {
+ QUIC_CODE_COUNT(quic_receive_acked_before_sending);
+ }
+
+ QuicTime::Delta send_delta = ack_receive_time - transmission_info.sent_time;
+ rtt_stats_.UpdateRtt(send_delta, ack_delay_time, ack_receive_time);
+
+ return true;
+}
+
+QuicTime::Delta QuicSentPacketManager::TimeUntilSend(QuicTime now) const {
+ // The TLP logic is entirely contained within QuicSentPacketManager, so the
+ // send algorithm does not need to be consulted.
+ if (pending_timer_transmission_count_ > 0) {
+ return QuicTime::Delta::Zero();
+ }
+
+ if (using_pacing_) {
+ return pacing_sender_.TimeUntilSend(now,
+ unacked_packets_.bytes_in_flight());
+ }
+
+ return send_algorithm_->CanSend(unacked_packets_.bytes_in_flight())
+ ? QuicTime::Delta::Zero()
+ : QuicTime::Delta::Infinite();
+}
+
+const QuicTime QuicSentPacketManager::GetRetransmissionTime() const {
+ // Don't set the timer if there is nothing to retransmit or we've already
+ // queued a tlp transmission and it hasn't been sent yet.
+ if (!unacked_packets_.HasInFlightPackets() ||
+ pending_timer_transmission_count_ > 0) {
+ return QuicTime::Zero();
+ }
+ if (!GetQuicReloadableFlag(quic_optimize_inflight_check) &&
+ !unacked_packets_.HasUnackedRetransmittableFrames()) {
+ return QuicTime::Zero();
+ }
+ switch (GetRetransmissionMode()) {
+ case HANDSHAKE_MODE:
+ return unacked_packets_.GetLastCryptoPacketSentTime() +
+ GetCryptoRetransmissionDelay();
+ case LOSS_MODE:
+ return loss_algorithm_->GetLossTimeout();
+ case TLP_MODE: {
+ // TODO(ianswett): When CWND is available, it would be preferable to
+ // set the timer based on the earliest retransmittable packet.
+ // Base the updated timer on the send time of the last packet.
+ const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime();
+ const QuicTime tlp_time = sent_time + GetTailLossProbeDelay();
+ // Ensure the TLP timer never gets set to a time in the past.
+ return std::max(clock_->ApproximateNow(), tlp_time);
+ }
+ case RTO_MODE: {
+ // The RTO is based on the first outstanding packet.
+ const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime();
+ QuicTime rto_time = sent_time + GetRetransmissionDelay();
+ // Wait for TLP packets to be acked before an RTO fires.
+ QuicTime tlp_time =
+ unacked_packets_.GetLastPacketSentTime() + GetTailLossProbeDelay();
+ return std::max(tlp_time, rto_time);
+ }
+ }
+ DCHECK(false);
+ return QuicTime::Zero();
+}
+
+const QuicTime::Delta QuicSentPacketManager::GetPathDegradingDelay() const {
+ QuicTime::Delta delay = QuicTime::Delta::Zero();
+ for (size_t i = 0; i < max_tail_loss_probes_; ++i) {
+ delay = delay + GetTailLossProbeDelay(i);
+ }
+ for (size_t i = 0; i < kNumRetransmissionDelaysForPathDegradingDelay; ++i) {
+ delay = delay + GetRetransmissionDelay(i);
+ }
+ return delay;
+}
+
+const QuicTime::Delta QuicSentPacketManager::GetCryptoRetransmissionDelay()
+ const {
+ // This is equivalent to the TailLossProbeDelay, but slightly more aggressive
+ // because crypto handshake messages don't incur a delayed ack time.
+ QuicTime::Delta srtt = rtt_stats_.SmoothedOrInitialRtt();
+ int64_t delay_ms;
+ if (conservative_handshake_retransmits_) {
+ // Using the delayed ack time directly could cause conservative handshake
+ // retransmissions to actually be more aggressive than the default.
+ delay_ms = std::max(delayed_ack_time_.ToMilliseconds(),
+ static_cast<int64_t>(2 * srtt.ToMilliseconds()));
+ } else {
+ delay_ms = std::max(kMinHandshakeTimeoutMs,
+ static_cast<int64_t>(1.5 * srtt.ToMilliseconds()));
+ }
+ return QuicTime::Delta::FromMilliseconds(
+ delay_ms << consecutive_crypto_retransmission_count_);
+}
+
+const QuicTime::Delta QuicSentPacketManager::GetTailLossProbeDelay(
+ size_t consecutive_tlp_count) const {
+ QuicTime::Delta srtt = rtt_stats_.SmoothedOrInitialRtt();
+ if (enable_half_rtt_tail_loss_probe_ && consecutive_tlp_count == 0u) {
+ return std::max(min_tlp_timeout_, srtt * 0.5);
+ }
+ if (ietf_style_tlp_) {
+ return std::max(min_tlp_timeout_, 1.5 * srtt + rtt_stats_.max_ack_delay());
+ }
+ if (ietf_style_2x_tlp_) {
+ return std::max(min_tlp_timeout_, 2 * srtt + rtt_stats_.max_ack_delay());
+ }
+ if (!unacked_packets_.HasMultipleInFlightPackets()) {
+ // This expression really should be using the delayed ack time, but in TCP
+ // MinRTO was traditionally set to 2x the delayed ack timer and this
+ // expression assumed QUIC did the same.
+ return std::max(2 * srtt, 1.5 * srtt + (min_rto_timeout_ * 0.5));
+ }
+ return std::max(min_tlp_timeout_, 2 * srtt);
+}
+
+const QuicTime::Delta QuicSentPacketManager::GetRetransmissionDelay(
+ size_t consecutive_rto_count) const {
+ QuicTime::Delta retransmission_delay = QuicTime::Delta::Zero();
+ if (rtt_stats_.smoothed_rtt().IsZero()) {
+ // We are in the initial state, use default timeout values.
+ retransmission_delay =
+ QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
+ } else {
+ retransmission_delay =
+ rtt_stats_.smoothed_rtt() + 4 * rtt_stats_.mean_deviation();
+ if (retransmission_delay < min_rto_timeout_) {
+ retransmission_delay = min_rto_timeout_;
+ }
+ }
+
+ // Calculate exponential back off.
+ retransmission_delay =
+ retransmission_delay *
+ (1 << std::min<size_t>(consecutive_rto_count, kMaxRetransmissions));
+
+ if (retransmission_delay.ToMilliseconds() > kMaxRetransmissionTimeMs) {
+ return QuicTime::Delta::FromMilliseconds(kMaxRetransmissionTimeMs);
+ }
+ return retransmission_delay;
+}
+
+QuicString QuicSentPacketManager::GetDebugState() const {
+ return send_algorithm_->GetDebugState();
+}
+
+void QuicSentPacketManager::CancelRetransmissionsForStream(
+ QuicStreamId stream_id) {
+ if (session_decides_what_to_write()) {
+ return;
+ }
+ unacked_packets_.CancelRetransmissionsForStream(stream_id);
+ auto it = pending_retransmissions_.begin();
+ while (it != pending_retransmissions_.end()) {
+ if (unacked_packets_.HasRetransmittableFrames(it->first)) {
+ ++it;
+ continue;
+ }
+ it = pending_retransmissions_.erase(it);
+ }
+}
+
+void QuicSentPacketManager::SetSendAlgorithm(
+ CongestionControlType congestion_control_type) {
+ SetSendAlgorithm(SendAlgorithmInterface::Create(
+ clock_, &rtt_stats_, &unacked_packets_, congestion_control_type,
+ QuicRandom::GetInstance(), stats_, initial_congestion_window_));
+}
+
+void QuicSentPacketManager::SetSendAlgorithm(
+ SendAlgorithmInterface* send_algorithm) {
+ send_algorithm_.reset(send_algorithm);
+ pacing_sender_.set_sender(send_algorithm);
+}
+
+void QuicSentPacketManager::OnConnectionMigration(AddressChangeType type) {
+ if (type == PORT_CHANGE || type == IPV4_SUBNET_CHANGE) {
+ // Rtt and cwnd do not need to be reset when the peer address change is
+ // considered to be caused by NATs.
+ return;
+ }
+ consecutive_rto_count_ = 0;
+ consecutive_tlp_count_ = 0;
+ rtt_stats_.OnConnectionMigration();
+ send_algorithm_->OnConnectionMigration();
+}
+
+void QuicSentPacketManager::OnAckFrameStart(QuicPacketNumber largest_acked,
+ QuicTime::Delta ack_delay_time,
+ QuicTime ack_receive_time) {
+ DCHECK(packets_acked_.empty());
+ DCHECK_LE(largest_acked, unacked_packets_.largest_sent_packet());
+ rtt_updated_ =
+ MaybeUpdateRTT(largest_acked, ack_delay_time, ack_receive_time);
+ DCHECK(!unacked_packets_.largest_acked().IsInitialized() ||
+ largest_acked >= unacked_packets_.largest_acked());
+ last_ack_frame_.ack_delay_time = ack_delay_time;
+ acked_packets_iter_ = last_ack_frame_.packets.rbegin();
+}
+
+void QuicSentPacketManager::OnAckRange(QuicPacketNumber start,
+ QuicPacketNumber end) {
+ if (!last_ack_frame_.largest_acked.IsInitialized() ||
+ end > last_ack_frame_.largest_acked + 1) {
+ // Largest acked increases.
+ unacked_packets_.IncreaseLargestAcked(end - 1);
+ last_ack_frame_.largest_acked = end - 1;
+ }
+ // Drop ack ranges which ack packets below least_unacked.
+ QuicPacketNumber least_unacked = unacked_packets_.GetLeastUnacked();
+ if (least_unacked.IsInitialized() && end <= least_unacked) {
+ return;
+ }
+ start = std::max(start, least_unacked);
+ do {
+ QuicPacketNumber newly_acked_start = start;
+ if (acked_packets_iter_ != last_ack_frame_.packets.rend()) {
+ newly_acked_start = std::max(start, acked_packets_iter_->max());
+ }
+ for (QuicPacketNumber acked = end - 1; acked >= newly_acked_start;
+ --acked) {
+ // Check if end is above the current range. If so add newly acked packets
+ // in descending order.
+ packets_acked_.push_back(AckedPacket(acked, 0, QuicTime::Zero()));
+ if (acked == FirstSendingPacketNumber()) {
+ break;
+ }
+ }
+ if (acked_packets_iter_ == last_ack_frame_.packets.rend() ||
+ start > acked_packets_iter_->min()) {
+ // Finish adding all newly acked packets.
+ return;
+ }
+ end = std::min(end, acked_packets_iter_->min());
+ ++acked_packets_iter_;
+ } while (start < end);
+}
+
+void QuicSentPacketManager::OnAckTimestamp(QuicPacketNumber packet_number,
+ QuicTime timestamp) {
+ last_ack_frame_.received_packet_times.push_back({packet_number, timestamp});
+ for (AckedPacket& packet : packets_acked_) {
+ if (packet.packet_number == packet_number) {
+ packet.receive_timestamp = timestamp;
+ return;
+ }
+ }
+}
+
+bool QuicSentPacketManager::OnAckFrameEnd(QuicTime ack_receive_time) {
+ QuicByteCount prior_bytes_in_flight = unacked_packets_.bytes_in_flight();
+ // Reverse packets_acked_ so that it is in ascending order.
+ reverse(packets_acked_.begin(), packets_acked_.end());
+ for (AckedPacket& acked_packet : packets_acked_) {
+ QuicTransmissionInfo* info =
+ unacked_packets_.GetMutableTransmissionInfo(acked_packet.packet_number);
+ if (!QuicUtils::IsAckable(info->state)) {
+ if (info->state == ACKED) {
+ QUIC_BUG << "Trying to ack an already acked packet: "
+ << acked_packet.packet_number
+ << ", last_ack_frame_: " << last_ack_frame_
+ << ", least_unacked: " << unacked_packets_.GetLeastUnacked()
+ << ", packets_acked_: " << packets_acked_;
+ } else {
+ QUIC_PEER_BUG << "Received ack for unackable packet: "
+ << acked_packet.packet_number << " with state: "
+ << QuicUtils::SentPacketStateToString(info->state);
+ }
+ continue;
+ }
+ QUIC_DVLOG(1) << ENDPOINT << "Got an ack for packet "
+ << acked_packet.packet_number;
+ last_ack_frame_.packets.Add(acked_packet.packet_number);
+ if (info->largest_acked.IsInitialized()) {
+ if (largest_packet_peer_knows_is_acked_.IsInitialized()) {
+ largest_packet_peer_knows_is_acked_ =
+ std::max(largest_packet_peer_knows_is_acked_, info->largest_acked);
+ } else {
+ largest_packet_peer_knows_is_acked_ = info->largest_acked;
+ }
+ }
+ // If data is associated with the most recent transmission of this
+ // packet, then inform the caller.
+ if (info->in_flight) {
+ acked_packet.bytes_acked = info->bytes_sent;
+ } else {
+ // Unackable packets are skipped earlier.
+ largest_newly_acked_ = acked_packet.packet_number;
+ }
+ if (unacked_packets_.use_uber_loss_algorithm()) {
+ unacked_packets_.MaybeUpdateLargestAckedOfPacketNumberSpace(
+ info->encryption_level, acked_packet.packet_number);
+ }
+ MarkPacketHandled(acked_packet.packet_number, info,
+ last_ack_frame_.ack_delay_time);
+ }
+ const bool acked_new_packet = !packets_acked_.empty();
+ PostProcessAfterMarkingPacketHandled(last_ack_frame_, ack_receive_time,
+ rtt_updated_, prior_bytes_in_flight);
+
+ return acked_new_packet;
+}
+
+void QuicSentPacketManager::SetDebugDelegate(DebugDelegate* debug_delegate) {
+ debug_delegate_ = debug_delegate;
+}
+
+void QuicSentPacketManager::OnApplicationLimited() {
+ if (using_pacing_) {
+ pacing_sender_.OnApplicationLimited();
+ }
+ send_algorithm_->OnApplicationLimited(unacked_packets_.bytes_in_flight());
+ if (debug_delegate_ != nullptr) {
+ debug_delegate_->OnApplicationLimited();
+ }
+}
+
+QuicTime QuicSentPacketManager::GetNextReleaseTime() const {
+ return using_pacing_ ? pacing_sender_.ideal_next_packet_send_time()
+ : QuicTime::Zero();
+}
+
+void QuicSentPacketManager::SetInitialRtt(QuicTime::Delta rtt) {
+ const QuicTime::Delta min_rtt =
+ QuicTime::Delta::FromMicroseconds(kMinInitialRoundTripTimeUs);
+ const QuicTime::Delta max_rtt =
+ QuicTime::Delta::FromMicroseconds(kMaxInitialRoundTripTimeUs);
+ rtt_stats_.set_initial_rtt(std::max(min_rtt, std::min(max_rtt, rtt)));
+}
+
+#undef ENDPOINT // undef for jumbo builds
+} // namespace quic