blob: 75ee18b8a1942c85da773f4a966ebb698ab17083 [file] [log] [blame]
QUICHE teama6ef0a62019-03-07 20:34:33 -05001// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "net/third_party/quiche/src/quic/core/quic_framer.h"
6
7#include <cstddef>
8#include <cstdint>
9#include <memory>
vasilvv872e7a32019-03-12 16:42:44 -070010#include <string>
QUICHE teama6ef0a62019-03-07 20:34:33 -050011
12#include "net/third_party/quiche/src/quic/core/crypto/crypto_framer.h"
nharper55fa6132019-05-07 19:37:21 -070013#include "net/third_party/quiche/src/quic/core/crypto/crypto_handshake.h"
QUICHE teama6ef0a62019-03-07 20:34:33 -050014#include "net/third_party/quiche/src/quic/core/crypto/crypto_handshake_message.h"
15#include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h"
nharper55fa6132019-05-07 19:37:21 -070016#include "net/third_party/quiche/src/quic/core/crypto/crypto_utils.h"
QUICHE teama6ef0a62019-03-07 20:34:33 -050017#include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h"
18#include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h"
19#include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h"
20#include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h"
21#include "net/third_party/quiche/src/quic/core/crypto/quic_random.h"
22#include "net/third_party/quiche/src/quic/core/quic_connection_id.h"
23#include "net/third_party/quiche/src/quic/core/quic_constants.h"
24#include "net/third_party/quiche/src/quic/core/quic_data_reader.h"
25#include "net/third_party/quiche/src/quic/core/quic_data_writer.h"
ianswett97b690b2019-05-02 15:12:43 -070026#include "net/third_party/quiche/src/quic/core/quic_error_codes.h"
QUICHE teama6ef0a62019-03-07 20:34:33 -050027#include "net/third_party/quiche/src/quic/core/quic_socket_address_coder.h"
28#include "net/third_party/quiche/src/quic/core/quic_stream_frame_data_producer.h"
29#include "net/third_party/quiche/src/quic/core/quic_types.h"
30#include "net/third_party/quiche/src/quic/core/quic_utils.h"
31#include "net/third_party/quiche/src/quic/core/quic_versions.h"
32#include "net/third_party/quiche/src/quic/platform/api/quic_aligned.h"
dschinazie8d7fa72019-04-05 14:44:40 -070033#include "net/third_party/quiche/src/quic/platform/api/quic_arraysize.h"
QUICHE teama6ef0a62019-03-07 20:34:33 -050034#include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h"
35#include "net/third_party/quiche/src/quic/platform/api/quic_client_stats.h"
36#include "net/third_party/quiche/src/quic/platform/api/quic_endian.h"
37#include "net/third_party/quiche/src/quic/platform/api/quic_fallthrough.h"
38#include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h"
39#include "net/third_party/quiche/src/quic/platform/api/quic_flags.h"
40#include "net/third_party/quiche/src/quic/platform/api/quic_logging.h"
41#include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h"
42#include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h"
43#include "net/third_party/quiche/src/quic/platform/api/quic_stack_trace.h"
44#include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h"
QUICHE teama6ef0a62019-03-07 20:34:33 -050045#include "net/third_party/quiche/src/quic/platform/api/quic_text_utils.h"
46
47namespace quic {
48
49namespace {
50
51#define ENDPOINT \
52 (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ")
53
54// How much to shift the timestamp in the IETF Ack frame.
55// TODO(fkastenholz) when we get real IETF QUIC, need to get
56// the currect shift from the transport parameters.
57const int kIetfAckTimestampShift = 3;
58
59// Number of bits the packet number length bits are shifted from the right
60// edge of the header.
61const uint8_t kPublicHeaderSequenceNumberShift = 4;
62
63// There are two interpretations for the Frame Type byte in the QUIC protocol,
64// resulting in two Frame Types: Special Frame Types and Regular Frame Types.
65//
66// Regular Frame Types use the Frame Type byte simply. Currently defined
67// Regular Frame Types are:
68// Padding : 0b 00000000 (0x00)
69// ResetStream : 0b 00000001 (0x01)
70// ConnectionClose : 0b 00000010 (0x02)
71// GoAway : 0b 00000011 (0x03)
72// WindowUpdate : 0b 00000100 (0x04)
73// Blocked : 0b 00000101 (0x05)
74//
75// Special Frame Types encode both a Frame Type and corresponding flags
76// all in the Frame Type byte. Currently defined Special Frame Types
77// are:
78// Stream : 0b 1xxxxxxx
79// Ack : 0b 01xxxxxx
80//
81// Semantics of the flag bits above (the x bits) depends on the frame type.
82
83// Masks to determine if the frame type is a special use
84// and for specific special frame types.
85const uint8_t kQuicFrameTypeBrokenMask = 0xE0; // 0b 11100000
86const uint8_t kQuicFrameTypeSpecialMask = 0xC0; // 0b 11000000
87const uint8_t kQuicFrameTypeStreamMask = 0x80;
88const uint8_t kQuicFrameTypeAckMask = 0x40;
89static_assert(kQuicFrameTypeSpecialMask ==
90 (kQuicFrameTypeStreamMask | kQuicFrameTypeAckMask),
91 "Invalid kQuicFrameTypeSpecialMask");
92
93// The stream type format is 1FDOOOSS, where
94// F is the fin bit.
95// D is the data length bit (0 or 2 bytes).
96// OO/OOO are the size of the offset.
97// SS is the size of the stream ID.
98// Note that the stream encoding can not be determined by inspection. It can
99// be determined only by knowing the QUIC Version.
100// Stream frame relative shifts and masks for interpreting the stream flags.
101// StreamID may be 1, 2, 3, or 4 bytes.
102const uint8_t kQuicStreamIdShift = 2;
103const uint8_t kQuicStreamIDLengthMask = 0x03;
104
105// Offset may be 0, 2, 4, or 8 bytes.
106const uint8_t kQuicStreamShift = 3;
107const uint8_t kQuicStreamOffsetMask = 0x07;
108
109// Data length may be 0 or 2 bytes.
110const uint8_t kQuicStreamDataLengthShift = 1;
111const uint8_t kQuicStreamDataLengthMask = 0x01;
112
113// Fin bit may be set or not.
114const uint8_t kQuicStreamFinShift = 1;
115const uint8_t kQuicStreamFinMask = 0x01;
116
117// The format is 01M0LLOO, where
118// M if set, there are multiple ack blocks in the frame.
119// LL is the size of the largest ack field.
120// OO is the size of the ack blocks offset field.
121// packet number size shift used in AckFrames.
122const uint8_t kQuicSequenceNumberLengthNumBits = 2;
123const uint8_t kActBlockLengthOffset = 0;
124const uint8_t kLargestAckedOffset = 2;
125
126// Acks may have only one ack block.
127const uint8_t kQuicHasMultipleAckBlocksOffset = 5;
128
129// Timestamps are 4 bytes followed by 2 bytes.
130const uint8_t kQuicNumTimestampsLength = 1;
131const uint8_t kQuicFirstTimestampLength = 4;
132const uint8_t kQuicTimestampLength = 2;
133// Gaps between packet numbers are 1 byte.
134const uint8_t kQuicTimestampPacketNumberGapLength = 1;
135
136// Maximum length of encoded error strings.
137const int kMaxErrorStringLength = 256;
138
139const uint8_t kConnectionIdLengthAdjustment = 3;
140const uint8_t kDestinationConnectionIdLengthMask = 0xF0;
141const uint8_t kSourceConnectionIdLengthMask = 0x0F;
142
143// Returns the absolute value of the difference between |a| and |b|.
144uint64_t Delta(uint64_t a, uint64_t b) {
145 // Since these are unsigned numbers, we can't just return abs(a - b)
146 if (a < b) {
147 return b - a;
148 }
149 return a - b;
150}
151
152uint64_t ClosestTo(uint64_t target, uint64_t a, uint64_t b) {
153 return (Delta(target, a) < Delta(target, b)) ? a : b;
154}
155
156uint64_t PacketNumberIntervalLength(
157 const QuicInterval<QuicPacketNumber>& interval) {
158 if (interval.Empty()) {
159 return 0u;
160 }
161 return interval.max() - interval.min();
162}
163
164QuicPacketNumberLength ReadSequenceNumberLength(uint8_t flags) {
165 switch (flags & PACKET_FLAGS_8BYTE_PACKET) {
166 case PACKET_FLAGS_8BYTE_PACKET:
167 return PACKET_6BYTE_PACKET_NUMBER;
168 case PACKET_FLAGS_4BYTE_PACKET:
169 return PACKET_4BYTE_PACKET_NUMBER;
170 case PACKET_FLAGS_2BYTE_PACKET:
171 return PACKET_2BYTE_PACKET_NUMBER;
172 case PACKET_FLAGS_1BYTE_PACKET:
173 return PACKET_1BYTE_PACKET_NUMBER;
174 default:
175 QUIC_BUG << "Unreachable case statement.";
176 return PACKET_6BYTE_PACKET_NUMBER;
177 }
178}
179
180QuicPacketNumberLength ReadAckPacketNumberLength(QuicTransportVersion version,
181 uint8_t flags) {
182 switch (flags & PACKET_FLAGS_8BYTE_PACKET) {
183 case PACKET_FLAGS_8BYTE_PACKET:
184 return PACKET_6BYTE_PACKET_NUMBER;
185 case PACKET_FLAGS_4BYTE_PACKET:
186 return PACKET_4BYTE_PACKET_NUMBER;
187 case PACKET_FLAGS_2BYTE_PACKET:
188 return PACKET_2BYTE_PACKET_NUMBER;
189 case PACKET_FLAGS_1BYTE_PACKET:
190 return PACKET_1BYTE_PACKET_NUMBER;
191 default:
192 QUIC_BUG << "Unreachable case statement.";
193 return PACKET_6BYTE_PACKET_NUMBER;
194 }
195}
196
197uint8_t PacketNumberLengthToOnWireValue(
198 QuicTransportVersion version,
199 QuicPacketNumberLength packet_number_length) {
200 if (version > QUIC_VERSION_44) {
201 return packet_number_length - 1;
202 }
203 switch (packet_number_length) {
204 case PACKET_1BYTE_PACKET_NUMBER:
205 return 0;
206 case PACKET_2BYTE_PACKET_NUMBER:
207 return 1;
208 case PACKET_4BYTE_PACKET_NUMBER:
209 return 2;
210 default:
211 QUIC_BUG << "Invalid packet number length.";
212 return 0;
213 }
214}
215
216bool GetShortHeaderPacketNumberLength(
217 QuicTransportVersion version,
218 uint8_t type,
219 bool infer_packet_header_type_from_version,
220 QuicPacketNumberLength* packet_number_length) {
221 DCHECK(!(type & FLAGS_LONG_HEADER));
222 const bool two_bits_packet_number_length =
223 infer_packet_header_type_from_version ? version > QUIC_VERSION_44
224 : (type & FLAGS_FIXED_BIT);
225 if (two_bits_packet_number_length) {
226 *packet_number_length =
227 static_cast<QuicPacketNumberLength>((type & 0x03) + 1);
228 return true;
229 }
230 switch (type & 0x07) {
231 case 0:
232 *packet_number_length = PACKET_1BYTE_PACKET_NUMBER;
233 break;
234 case 1:
235 *packet_number_length = PACKET_2BYTE_PACKET_NUMBER;
236 break;
237 case 2:
238 *packet_number_length = PACKET_4BYTE_PACKET_NUMBER;
239 break;
240 default:
241 *packet_number_length = PACKET_6BYTE_PACKET_NUMBER;
242 return false;
243 }
244 return true;
245}
246
247uint8_t LongHeaderTypeToOnWireValue(QuicTransportVersion version,
248 QuicLongHeaderType type) {
249 switch (type) {
250 case INITIAL:
251 return version > QUIC_VERSION_44 ? 0 : 0x7F;
252 case ZERO_RTT_PROTECTED:
253 return version > QUIC_VERSION_44 ? 1 << 4 : 0x7C;
254 case HANDSHAKE:
255 return version > QUIC_VERSION_44 ? 2 << 4 : 0x7D;
256 case RETRY:
257 return version > QUIC_VERSION_44 ? 3 << 4 : 0x7E;
258 case VERSION_NEGOTIATION:
259 return 0xF0; // Value does not matter
260 default:
261 QUIC_BUG << "Invalid long header type: " << type;
262 return 0xFF;
263 }
264}
265
266bool GetLongHeaderType(QuicTransportVersion version,
267 uint8_t type,
268 QuicLongHeaderType* long_header_type) {
269 DCHECK((type & FLAGS_LONG_HEADER) && version != QUIC_VERSION_UNSUPPORTED);
270 if (version > QUIC_VERSION_44) {
271 switch ((type & 0x30) >> 4) {
272 case 0:
273 *long_header_type = INITIAL;
274 break;
275 case 1:
276 *long_header_type = ZERO_RTT_PROTECTED;
277 break;
278 case 2:
279 *long_header_type = HANDSHAKE;
280 break;
281 case 3:
282 *long_header_type = RETRY;
283 break;
284 default:
285 QUIC_BUG << "Unreachable statement";
dschinazi072da7c2019-05-07 17:57:42 -0700286 *long_header_type = INVALID_PACKET_TYPE;
QUICHE teama6ef0a62019-03-07 20:34:33 -0500287 return false;
288 }
289 return true;
290 }
291
292 switch (type & 0x7F) {
293 case 0x7F:
294 *long_header_type = INITIAL;
295 break;
296 case 0x7C:
297 *long_header_type = ZERO_RTT_PROTECTED;
298 break;
299 case 0x7D:
300 *long_header_type = HANDSHAKE;
301 break;
302 case 0x7E:
303 *long_header_type = RETRY;
304 break;
305 default:
306 // Invalid packet header type. Whether a packet is version negotiation is
307 // determined by the version field.
308 *long_header_type = INVALID_PACKET_TYPE;
309 return false;
310 }
311 return true;
312}
313
314QuicPacketNumberLength GetLongHeaderPacketNumberLength(
315 QuicTransportVersion version,
316 uint8_t type) {
317 if (version > QUIC_VERSION_44) {
318 return static_cast<QuicPacketNumberLength>((type & 0x03) + 1);
319 }
320 return PACKET_4BYTE_PACKET_NUMBER;
321}
322
QUICHE team10b22a12019-03-21 15:31:42 -0700323// Used to get packet number space before packet gets decrypted.
324PacketNumberSpace GetPacketNumberSpace(const QuicPacketHeader& header) {
325 switch (header.form) {
326 case GOOGLE_QUIC_PACKET:
327 QUIC_BUG << "Try to get packet number space of Google QUIC packet";
328 break;
329 case IETF_QUIC_SHORT_HEADER_PACKET:
330 return APPLICATION_DATA;
331 case IETF_QUIC_LONG_HEADER_PACKET:
332 switch (header.long_packet_type) {
333 case INITIAL:
334 return INITIAL_DATA;
335 case HANDSHAKE:
336 return HANDSHAKE_DATA;
337 case ZERO_RTT_PROTECTED:
338 return APPLICATION_DATA;
339 case VERSION_NEGOTIATION:
340 case RETRY:
341 case INVALID_PACKET_TYPE:
342 QUIC_BUG << "Try to get packet number space of long header type: "
343 << QuicUtils::QuicLongHeaderTypetoString(
344 header.long_packet_type);
345 break;
346 }
347 }
348
349 return NUM_PACKET_NUMBER_SPACES;
350}
351
zhongyi546cc452019-04-12 15:27:49 -0700352EncryptionLevel GetEncryptionLevel(const QuicPacketHeader& header) {
353 switch (header.form) {
354 case GOOGLE_QUIC_PACKET:
355 QUIC_BUG << "Cannot determine EncryptionLevel from Google QUIC header";
356 break;
357 case IETF_QUIC_SHORT_HEADER_PACKET:
358 return ENCRYPTION_FORWARD_SECURE;
359 case IETF_QUIC_LONG_HEADER_PACKET:
360 switch (header.long_packet_type) {
361 case INITIAL:
362 return ENCRYPTION_INITIAL;
363 case HANDSHAKE:
364 return ENCRYPTION_HANDSHAKE;
365 case ZERO_RTT_PROTECTED:
366 return ENCRYPTION_ZERO_RTT;
367 case VERSION_NEGOTIATION:
368 case RETRY:
369 case INVALID_PACKET_TYPE:
370 QUIC_BUG << "No encryption used with type "
371 << QuicUtils::QuicLongHeaderTypetoString(
372 header.long_packet_type);
373 }
374 }
375 return NUM_ENCRYPTION_LEVELS;
376}
377
QUICHE teama6ef0a62019-03-07 20:34:33 -0500378QuicStringPiece TruncateErrorString(QuicStringPiece error) {
379 if (error.length() <= kMaxErrorStringLength) {
380 return error;
381 }
382 return QuicStringPiece(error.data(), kMaxErrorStringLength);
383}
384
385size_t TruncatedErrorStringSize(const QuicStringPiece& error) {
386 if (error.length() < kMaxErrorStringLength) {
387 return error.length();
388 }
389 return kMaxErrorStringLength;
390}
391
392uint8_t GetConnectionIdLengthValue(QuicConnectionIdLength length) {
393 if (length == 0) {
394 return 0;
395 }
396 return static_cast<uint8_t>(length - kConnectionIdLengthAdjustment);
397}
398
399bool IsValidPacketNumberLength(QuicPacketNumberLength packet_number_length) {
400 size_t length = packet_number_length;
401 return length == 1 || length == 2 || length == 4 || length == 6 ||
402 length == 8;
403}
404
405bool IsValidFullPacketNumber(uint64_t full_packet_number,
406 QuicTransportVersion version) {
QUICHE team577718a2019-03-20 09:00:59 -0700407 return full_packet_number > 0 || version == QUIC_VERSION_99;
QUICHE teama6ef0a62019-03-07 20:34:33 -0500408}
409
QUICHE teama6ef0a62019-03-07 20:34:33 -0500410bool AppendIetfConnectionIdsNew(bool version_flag,
411 QuicConnectionId destination_connection_id,
412 QuicConnectionId source_connection_id,
413 QuicDataWriter* writer) {
414 if (!version_flag) {
415 return writer->WriteConnectionId(destination_connection_id);
416 }
417
418 // Compute connection ID length byte.
419 uint8_t dcil = GetConnectionIdLengthValue(
420 static_cast<QuicConnectionIdLength>(destination_connection_id.length()));
421 uint8_t scil = GetConnectionIdLengthValue(
422 static_cast<QuicConnectionIdLength>(source_connection_id.length()));
423 uint8_t connection_id_length = dcil << 4 | scil;
424
425 return writer->WriteUInt8(connection_id_length) &&
426 writer->WriteConnectionId(destination_connection_id) &&
427 writer->WriteConnectionId(source_connection_id);
428}
429
430enum class DroppedPacketReason {
431 // General errors
432 INVALID_PUBLIC_HEADER,
433 VERSION_MISMATCH,
434 // Version negotiation packet errors
435 INVALID_VERSION_NEGOTIATION_PACKET,
436 // Public reset packet errors, pre-v44
437 INVALID_PUBLIC_RESET_PACKET,
438 // Data packet errors
439 INVALID_PACKET_NUMBER,
440 INVALID_DIVERSIFICATION_NONCE,
441 DECRYPTION_FAILURE,
442 NUM_REASONS,
443};
444
445void RecordDroppedPacketReason(DroppedPacketReason reason) {
446 QUIC_CLIENT_HISTOGRAM_ENUM("QuicDroppedPacketReason", reason,
447 DroppedPacketReason::NUM_REASONS,
448 "The reason a packet was not processed. Recorded "
449 "each time such a packet is dropped");
450}
451
452} // namespace
453
454QuicFramer::QuicFramer(const ParsedQuicVersionVector& supported_versions,
455 QuicTime creation_time,
456 Perspective perspective,
457 uint8_t expected_connection_id_length)
458 : visitor_(nullptr),
459 error_(QUIC_NO_ERROR),
460 last_serialized_connection_id_(EmptyQuicConnectionId()),
461 last_version_label_(0),
462 version_(PROTOCOL_UNSUPPORTED, QUIC_VERSION_UNSUPPORTED),
463 supported_versions_(supported_versions),
QUICHE team6987b4a2019-03-15 16:23:04 -0700464 decrypter_level_(ENCRYPTION_INITIAL),
QUICHE team76086e42019-03-25 15:12:29 -0700465 alternative_decrypter_level_(NUM_ENCRYPTION_LEVELS),
QUICHE teama6ef0a62019-03-07 20:34:33 -0500466 alternative_decrypter_latch_(false),
467 perspective_(perspective),
468 validate_flags_(true),
469 process_timestamps_(false),
470 creation_time_(creation_time),
471 last_timestamp_(QuicTime::Delta::Zero()),
472 first_sending_packet_number_(FirstSendingPacketNumber()),
473 data_producer_(nullptr),
474 infer_packet_header_type_from_version_(perspective ==
475 Perspective::IS_CLIENT),
QUICHE team4d9d6292019-03-11 14:25:33 -0700476 expected_connection_id_length_(expected_connection_id_length),
QUICHE team10b22a12019-03-21 15:31:42 -0700477 should_update_expected_connection_id_length_(false),
nharper55fa6132019-05-07 19:37:21 -0700478 supports_multiple_packet_number_spaces_(false),
479 last_written_packet_number_length_(0) {
QUICHE teama6ef0a62019-03-07 20:34:33 -0500480 DCHECK(!supported_versions.empty());
481 version_ = supported_versions_[0];
QUICHE team76086e42019-03-25 15:12:29 -0700482 decrypter_[ENCRYPTION_INITIAL] = QuicMakeUnique<NullDecrypter>(perspective);
QUICHE team6987b4a2019-03-15 16:23:04 -0700483 encrypter_[ENCRYPTION_INITIAL] = QuicMakeUnique<NullEncrypter>(perspective);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500484}
485
486QuicFramer::~QuicFramer() {}
487
488// static
489size_t QuicFramer::GetMinStreamFrameSize(QuicTransportVersion version,
490 QuicStreamId stream_id,
491 QuicStreamOffset offset,
492 bool last_frame_in_packet,
493 QuicPacketLength data_length) {
494 if (version == QUIC_VERSION_99) {
495 return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_id) +
496 (last_frame_in_packet
497 ? 0
498 : QuicDataWriter::GetVarInt62Len(data_length)) +
499 (offset != 0 ? QuicDataWriter::GetVarInt62Len(offset) : 0);
500 }
501 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
502 GetStreamOffsetSize(version, offset) +
503 (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize);
504}
505
506// static
507size_t QuicFramer::GetMinCryptoFrameSize(QuicStreamOffset offset,
508 QuicPacketLength data_length) {
509 return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(offset) +
510 QuicDataWriter::GetVarInt62Len(data_length);
511}
512
513// static
514size_t QuicFramer::GetMessageFrameSize(QuicTransportVersion version,
515 bool last_frame_in_packet,
516 QuicByteCount length) {
517 QUIC_BUG_IF(version <= QUIC_VERSION_44)
518 << "Try to serialize MESSAGE frame in " << version;
519 return kQuicFrameTypeSize +
520 (last_frame_in_packet ? 0 : QuicDataWriter::GetVarInt62Len(length)) +
521 length;
522}
523
524// static
525size_t QuicFramer::GetMinAckFrameSize(
526 QuicTransportVersion version,
527 QuicPacketNumberLength largest_observed_length) {
528 if (version == QUIC_VERSION_99) {
529 // The minimal ack frame consists of the following four fields: Largest
530 // Acknowledged, ACK Delay, ACK Block Count, and First ACK Block. Minimum
531 // size of each is 1 byte.
532 return kQuicFrameTypeSize + 4;
533 }
534 size_t min_size = kQuicFrameTypeSize + largest_observed_length +
535 kQuicDeltaTimeLargestObservedSize;
536 return min_size + kQuicNumTimestampsSize;
537}
538
539// static
540size_t QuicFramer::GetStopWaitingFrameSize(
541 QuicTransportVersion version,
542 QuicPacketNumberLength packet_number_length) {
543 size_t min_size = kQuicFrameTypeSize + packet_number_length;
544 return min_size;
545}
546
547// static
548size_t QuicFramer::GetRstStreamFrameSize(QuicTransportVersion version,
549 const QuicRstStreamFrame& frame) {
550 if (version == QUIC_VERSION_99) {
551 return QuicDataWriter::GetVarInt62Len(frame.stream_id) +
552 QuicDataWriter::GetVarInt62Len(frame.byte_offset) +
553 kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize;
554 }
555 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize +
556 kQuicErrorCodeSize;
557}
558
559// static
fkastenholza037b8b2019-05-07 06:00:05 -0700560size_t QuicFramer::GetConnectionCloseFrameSize(
QUICHE teama6ef0a62019-03-07 20:34:33 -0500561 QuicTransportVersion version,
562 const QuicConnectionCloseFrame& frame) {
fkastenholza037b8b2019-05-07 06:00:05 -0700563 if (version != QUIC_VERSION_99) {
564 // Not version 99/IETF QUIC, return Google QUIC CONNECTION CLOSE frame size.
565 return kQuicFrameTypeSize + kQuicErrorCodeSize +
566 kQuicErrorDetailsLengthSize +
567 TruncatedErrorStringSize(frame.error_details);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500568 }
fkastenholza037b8b2019-05-07 06:00:05 -0700569 // TODO(fkastenholz): For complete support of IETF QUIC CONNECTION_CLOSE,
570 // check if the frame is a Transport close and if the frame's
571 // extracted_error_code is not QUIC_IETF_GQUIC_ERROR_MISSING. If so,
572 // extend the error string to include " QuicErrorCode: #"
573 const size_t truncated_error_string_size =
574 TruncatedErrorStringSize(frame.error_details);
575 const size_t frame_size =
576 truncated_error_string_size +
577 QuicDataWriter::GetVarInt62Len(truncated_error_string_size) +
578 kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize;
579 if (frame.close_type == IETF_QUIC_APPLICATION_CONNECTION_CLOSE) {
580 return frame_size;
581 }
582 // frame includes the transport_close_frame_type, so include its length.
583 return frame_size +
584 QuicDataWriter::GetVarInt62Len(frame.transport_close_frame_type);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500585}
586
587// static
QUICHE teama6ef0a62019-03-07 20:34:33 -0500588size_t QuicFramer::GetMinGoAwayFrameSize() {
589 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
590 kQuicMaxStreamIdSize;
591}
592
593// static
594size_t QuicFramer::GetWindowUpdateFrameSize(
595 QuicTransportVersion version,
596 const QuicWindowUpdateFrame& frame) {
597 if (version != QUIC_VERSION_99) {
598 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
599 }
600 if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) {
601 // Frame would be a MAX DATA frame, which has only a Maximum Data field.
602 return kQuicFrameTypeSize +
603 QuicDataWriter::GetVarInt62Len(frame.byte_offset);
604 }
605 // Frame would be MAX STREAM DATA, has Maximum Stream Data and Stream ID
606 // fields.
607 return kQuicFrameTypeSize +
608 QuicDataWriter::GetVarInt62Len(frame.byte_offset) +
609 QuicDataWriter::GetVarInt62Len(frame.stream_id);
610}
611
612// static
613size_t QuicFramer::GetMaxStreamsFrameSize(QuicTransportVersion version,
fkastenholz3c4eabf2019-04-22 07:49:59 -0700614 const QuicMaxStreamsFrame& frame) {
QUICHE teama6ef0a62019-03-07 20:34:33 -0500615 if (version != QUIC_VERSION_99) {
616 QUIC_BUG << "In version " << version
fkastenholz3c4eabf2019-04-22 07:49:59 -0700617 << " - not 99 - and tried to serialize MaxStreams Frame.";
QUICHE teama6ef0a62019-03-07 20:34:33 -0500618 }
fkastenholz3c4eabf2019-04-22 07:49:59 -0700619 return kQuicFrameTypeSize +
620 QuicDataWriter::GetVarInt62Len(frame.stream_count);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500621}
622
623// static
624size_t QuicFramer::GetStreamsBlockedFrameSize(
625 QuicTransportVersion version,
fkastenholz3c4eabf2019-04-22 07:49:59 -0700626 const QuicStreamsBlockedFrame& frame) {
QUICHE teama6ef0a62019-03-07 20:34:33 -0500627 if (version != QUIC_VERSION_99) {
628 QUIC_BUG << "In version " << version
fkastenholz3c4eabf2019-04-22 07:49:59 -0700629 << " - not 99 - and tried to serialize StreamsBlocked Frame.";
QUICHE teama6ef0a62019-03-07 20:34:33 -0500630 }
631
fkastenholz3c4eabf2019-04-22 07:49:59 -0700632 return kQuicFrameTypeSize +
633 QuicDataWriter::GetVarInt62Len(frame.stream_count);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500634}
635
636// static
637size_t QuicFramer::GetBlockedFrameSize(QuicTransportVersion version,
638 const QuicBlockedFrame& frame) {
639 if (version != QUIC_VERSION_99) {
640 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
641 }
642 if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) {
643 // return size of IETF QUIC Blocked frame
644 return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset);
645 }
646 // return size of IETF QUIC Stream Blocked frame.
647 return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset) +
648 QuicDataWriter::GetVarInt62Len(frame.stream_id);
649}
650
651// static
652size_t QuicFramer::GetStopSendingFrameSize(const QuicStopSendingFrame& frame) {
653 return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.stream_id) +
654 sizeof(QuicApplicationErrorCode);
655}
656
657// static
658size_t QuicFramer::GetPathChallengeFrameSize(
659 const QuicPathChallengeFrame& frame) {
660 return kQuicFrameTypeSize + sizeof(frame.data_buffer);
661}
662
663// static
664size_t QuicFramer::GetPathResponseFrameSize(
665 const QuicPathResponseFrame& frame) {
666 return kQuicFrameTypeSize + sizeof(frame.data_buffer);
667}
668
669// static
670size_t QuicFramer::GetRetransmittableControlFrameSize(
671 QuicTransportVersion version,
672 const QuicFrame& frame) {
673 switch (frame.type) {
674 case PING_FRAME:
675 // Ping has no payload.
676 return kQuicFrameTypeSize;
677 case RST_STREAM_FRAME:
678 return GetRstStreamFrameSize(version, *frame.rst_stream_frame);
679 case CONNECTION_CLOSE_FRAME:
fkastenholza037b8b2019-05-07 06:00:05 -0700680 return GetConnectionCloseFrameSize(version,
681 *frame.connection_close_frame);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500682 case GOAWAY_FRAME:
683 return GetMinGoAwayFrameSize() +
684 TruncatedErrorStringSize(frame.goaway_frame->reason_phrase);
685 case WINDOW_UPDATE_FRAME:
686 // For version 99, this could be either a MAX DATA or MAX STREAM DATA.
687 // GetWindowUpdateFrameSize figures this out and returns the correct
688 // length.
689 return GetWindowUpdateFrameSize(version, *frame.window_update_frame);
690 case BLOCKED_FRAME:
691 return GetBlockedFrameSize(version, *frame.blocked_frame);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500692 case NEW_CONNECTION_ID_FRAME:
693 return GetNewConnectionIdFrameSize(*frame.new_connection_id_frame);
694 case RETIRE_CONNECTION_ID_FRAME:
695 return GetRetireConnectionIdFrameSize(*frame.retire_connection_id_frame);
696 case NEW_TOKEN_FRAME:
697 return GetNewTokenFrameSize(*frame.new_token_frame);
fkastenholz3c4eabf2019-04-22 07:49:59 -0700698 case MAX_STREAMS_FRAME:
699 return GetMaxStreamsFrameSize(version, frame.max_streams_frame);
700 case STREAMS_BLOCKED_FRAME:
701 return GetStreamsBlockedFrameSize(version, frame.streams_blocked_frame);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500702 case PATH_RESPONSE_FRAME:
703 return GetPathResponseFrameSize(*frame.path_response_frame);
704 case PATH_CHALLENGE_FRAME:
705 return GetPathChallengeFrameSize(*frame.path_challenge_frame);
706 case STOP_SENDING_FRAME:
707 return GetStopSendingFrameSize(*frame.stop_sending_frame);
708
709 case STREAM_FRAME:
710 case ACK_FRAME:
711 case STOP_WAITING_FRAME:
712 case MTU_DISCOVERY_FRAME:
713 case PADDING_FRAME:
714 case MESSAGE_FRAME:
715 case CRYPTO_FRAME:
716 case NUM_FRAME_TYPES:
717 DCHECK(false);
718 return 0;
719 }
720
721 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
722 DCHECK(false);
723 return 0;
724}
725
726// static
727size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
728 // Sizes are 1 through 4 bytes.
729 for (int i = 1; i <= 4; ++i) {
730 stream_id >>= 8;
731 if (stream_id == 0) {
732 return i;
733 }
734 }
735 QUIC_BUG << "Failed to determine StreamIDSize.";
736 return 4;
737}
738
739// static
740size_t QuicFramer::GetStreamOffsetSize(QuicTransportVersion version,
741 QuicStreamOffset offset) {
742 // 0 is a special case.
743 if (offset == 0) {
744 return 0;
745 }
746 // 2 through 8 are the remaining sizes.
747 offset >>= 8;
748 for (int i = 2; i <= 8; ++i) {
749 offset >>= 8;
750 if (offset == 0) {
751 return i;
752 }
753 }
754 QUIC_BUG << "Failed to determine StreamOffsetSize.";
755 return 8;
756}
757
758// static
759size_t QuicFramer::GetNewConnectionIdFrameSize(
760 const QuicNewConnectionIdFrame& frame) {
761 return kQuicFrameTypeSize +
762 QuicDataWriter::GetVarInt62Len(frame.sequence_number) +
763 kConnectionIdLengthSize + frame.connection_id.length() +
764 sizeof(frame.stateless_reset_token);
765}
766
767// static
768size_t QuicFramer::GetRetireConnectionIdFrameSize(
769 const QuicRetireConnectionIdFrame& frame) {
770 return kQuicFrameTypeSize +
771 QuicDataWriter::GetVarInt62Len(frame.sequence_number);
772}
773
774// static
775size_t QuicFramer::GetNewTokenFrameSize(const QuicNewTokenFrame& frame) {
776 return kQuicFrameTypeSize +
777 QuicDataWriter::GetVarInt62Len(frame.token.length()) +
778 frame.token.length();
779}
780
781// TODO(nharper): Change this method to take a ParsedQuicVersion.
782bool QuicFramer::IsSupportedTransportVersion(
783 const QuicTransportVersion version) const {
784 for (ParsedQuicVersion supported_version : supported_versions_) {
785 if (version == supported_version.transport_version) {
786 return true;
787 }
788 }
789 return false;
790}
791
792bool QuicFramer::IsSupportedVersion(const ParsedQuicVersion version) const {
793 for (const ParsedQuicVersion& supported_version : supported_versions_) {
794 if (version == supported_version) {
795 return true;
796 }
797 }
798 return false;
799}
800
801size_t QuicFramer::GetSerializedFrameLength(
802 const QuicFrame& frame,
803 size_t free_bytes,
804 bool first_frame,
805 bool last_frame,
806 QuicPacketNumberLength packet_number_length) {
807 // Prevent a rare crash reported in b/19458523.
808 if (frame.type == ACK_FRAME && frame.ack_frame == nullptr) {
809 QUIC_BUG << "Cannot compute the length of a null ack frame. free_bytes:"
810 << free_bytes << " first_frame:" << first_frame
811 << " last_frame:" << last_frame
812 << " seq num length:" << packet_number_length;
813 set_error(QUIC_INTERNAL_ERROR);
814 visitor_->OnError(this);
815 return 0;
816 }
817 if (frame.type == PADDING_FRAME) {
818 if (frame.padding_frame.num_padding_bytes == -1) {
819 // Full padding to the end of the packet.
820 return free_bytes;
821 } else {
822 // Lite padding.
823 return free_bytes <
824 static_cast<size_t>(frame.padding_frame.num_padding_bytes)
825 ? free_bytes
826 : frame.padding_frame.num_padding_bytes;
827 }
828 }
829
830 size_t frame_len =
831 ComputeFrameLength(frame, last_frame, packet_number_length);
832 if (frame_len <= free_bytes) {
833 // Frame fits within packet. Note that acks may be truncated.
834 return frame_len;
835 }
836 // Only truncate the first frame in a packet, so if subsequent ones go
837 // over, stop including more frames.
838 if (!first_frame) {
839 return 0;
840 }
841 bool can_truncate =
842 frame.type == ACK_FRAME &&
843 free_bytes >= GetMinAckFrameSize(version_.transport_version,
844 PACKET_6BYTE_PACKET_NUMBER);
845 if (can_truncate) {
dschinazi66dea072019-04-09 11:41:06 -0700846 // Truncate the frame so the packet will not exceed kMaxOutgoingPacketSize.
QUICHE teama6ef0a62019-03-07 20:34:33 -0500847 // Note that we may not use every byte of the writer in this case.
848 QUIC_DLOG(INFO) << ENDPOINT
849 << "Truncating large frame, free bytes: " << free_bytes;
850 return free_bytes;
851 }
852 return 0;
853}
854
855QuicFramer::AckFrameInfo::AckFrameInfo()
856 : max_block_length(0), first_block_length(0), num_ack_blocks(0) {}
857
858QuicFramer::AckFrameInfo::AckFrameInfo(const AckFrameInfo& other) = default;
859
860QuicFramer::AckFrameInfo::~AckFrameInfo() {}
861
862bool QuicFramer::WriteIetfLongHeaderLength(const QuicPacketHeader& header,
863 QuicDataWriter* writer,
864 size_t length_field_offset,
865 EncryptionLevel level) {
866 if (!QuicVersionHasLongHeaderLengths(transport_version()) ||
867 !header.version_flag || length_field_offset == 0) {
868 return true;
869 }
870 if (writer->length() < length_field_offset ||
871 writer->length() - length_field_offset <
872 kQuicDefaultLongHeaderLengthLength) {
873 set_detailed_error("Invalid length_field_offset.");
874 QUIC_BUG << "Invalid length_field_offset.";
875 return false;
876 }
877 size_t length_to_write = writer->length() - length_field_offset -
878 kQuicDefaultLongHeaderLengthLength;
879 // Add length of auth tag.
880 length_to_write = GetCiphertextSize(level, length_to_write);
881
882 QuicDataWriter length_writer(writer->length() - length_field_offset,
883 writer->data() + length_field_offset);
884 if (!length_writer.WriteVarInt62(length_to_write,
885 kQuicDefaultLongHeaderLengthLength)) {
886 set_detailed_error("Failed to overwrite long header length.");
887 QUIC_BUG << "Failed to overwrite long header length.";
888 return false;
889 }
890 return true;
891}
892
893size_t QuicFramer::BuildDataPacket(const QuicPacketHeader& header,
894 const QuicFrames& frames,
895 char* buffer,
896 size_t packet_length,
897 EncryptionLevel level) {
898 QuicDataWriter writer(packet_length, buffer);
899 size_t length_field_offset = 0;
900 if (!AppendPacketHeader(header, &writer, &length_field_offset)) {
901 QUIC_BUG << "AppendPacketHeader failed";
902 return 0;
903 }
904
905 if (transport_version() == QUIC_VERSION_99) {
906 if (AppendIetfFrames(frames, &writer) == 0) {
907 return 0;
908 }
909 if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset,
910 level)) {
911 return 0;
912 }
913 return writer.length();
914 }
915 // TODO(dschinazi) if we enable long header lengths before v99, we need to
916 // add support for fixing up lengths in QuicFramer::BuildDataPacket.
917 DCHECK(!QuicVersionHasLongHeaderLengths(transport_version()));
918
919 size_t i = 0;
920 for (const QuicFrame& frame : frames) {
921 // Determine if we should write stream frame length in header.
922 const bool last_frame_in_packet = i == frames.size() - 1;
923 if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) {
924 QUIC_BUG << "AppendTypeByte failed";
925 return 0;
926 }
927
928 switch (frame.type) {
929 case PADDING_FRAME:
930 if (!AppendPaddingFrame(frame.padding_frame, &writer)) {
931 QUIC_BUG << "AppendPaddingFrame of "
932 << frame.padding_frame.num_padding_bytes << " failed";
933 return 0;
934 }
935 break;
936 case STREAM_FRAME:
937 if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet,
938 &writer)) {
939 QUIC_BUG << "AppendStreamFrame failed";
940 return 0;
941 }
942 break;
943 case ACK_FRAME:
944 if (!AppendAckFrameAndTypeByte(*frame.ack_frame, &writer)) {
945 QUIC_BUG << "AppendAckFrameAndTypeByte failed: " << detailed_error_;
946 return 0;
947 }
948 break;
949 case STOP_WAITING_FRAME:
950 if (!AppendStopWaitingFrame(header, frame.stop_waiting_frame,
951 &writer)) {
952 QUIC_BUG << "AppendStopWaitingFrame failed";
953 return 0;
954 }
955 break;
956 case MTU_DISCOVERY_FRAME:
957 // MTU discovery frames are serialized as ping frames.
958 QUIC_FALLTHROUGH_INTENDED;
959 case PING_FRAME:
960 // Ping has no payload.
961 break;
962 case RST_STREAM_FRAME:
963 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
964 QUIC_BUG << "AppendRstStreamFrame failed";
965 return 0;
966 }
967 break;
968 case CONNECTION_CLOSE_FRAME:
969 if (!AppendConnectionCloseFrame(*frame.connection_close_frame,
970 &writer)) {
971 QUIC_BUG << "AppendConnectionCloseFrame failed";
972 return 0;
973 }
974 break;
975 case GOAWAY_FRAME:
976 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
977 QUIC_BUG << "AppendGoAwayFrame failed";
978 return 0;
979 }
980 break;
981 case WINDOW_UPDATE_FRAME:
982 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
983 QUIC_BUG << "AppendWindowUpdateFrame failed";
984 return 0;
985 }
986 break;
987 case BLOCKED_FRAME:
988 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
989 QUIC_BUG << "AppendBlockedFrame failed";
990 return 0;
991 }
992 break;
QUICHE teama6ef0a62019-03-07 20:34:33 -0500993 case NEW_CONNECTION_ID_FRAME:
994 set_detailed_error(
995 "Attempt to append NEW_CONNECTION_ID frame and not in version 99.");
996 return RaiseError(QUIC_INTERNAL_ERROR);
997 case RETIRE_CONNECTION_ID_FRAME:
998 set_detailed_error(
999 "Attempt to append RETIRE_CONNECTION_ID frame and not in version "
1000 "99.");
1001 return RaiseError(QUIC_INTERNAL_ERROR);
1002 case NEW_TOKEN_FRAME:
1003 set_detailed_error(
1004 "Attempt to append NEW_TOKEN_ID frame and not in version 99.");
1005 return RaiseError(QUIC_INTERNAL_ERROR);
fkastenholz3c4eabf2019-04-22 07:49:59 -07001006 case MAX_STREAMS_FRAME:
QUICHE teama6ef0a62019-03-07 20:34:33 -05001007 set_detailed_error(
fkastenholz3c4eabf2019-04-22 07:49:59 -07001008 "Attempt to append MAX_STREAMS frame and not in version 99.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05001009 return RaiseError(QUIC_INTERNAL_ERROR);
fkastenholz3c4eabf2019-04-22 07:49:59 -07001010 case STREAMS_BLOCKED_FRAME:
QUICHE teama6ef0a62019-03-07 20:34:33 -05001011 set_detailed_error(
fkastenholz3c4eabf2019-04-22 07:49:59 -07001012 "Attempt to append STREAMS_BLOCKED frame and not in version 99.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05001013 return RaiseError(QUIC_INTERNAL_ERROR);
1014 case PATH_RESPONSE_FRAME:
1015 set_detailed_error(
1016 "Attempt to append PATH_RESPONSE frame and not in version 99.");
1017 return RaiseError(QUIC_INTERNAL_ERROR);
1018 case PATH_CHALLENGE_FRAME:
1019 set_detailed_error(
1020 "Attempt to append PATH_CHALLENGE frame and not in version 99.");
1021 return RaiseError(QUIC_INTERNAL_ERROR);
1022 case STOP_SENDING_FRAME:
1023 set_detailed_error(
1024 "Attempt to append STOP_SENDING frame and not in version 99.");
1025 return RaiseError(QUIC_INTERNAL_ERROR);
1026 case MESSAGE_FRAME:
1027 if (!AppendMessageFrameAndTypeByte(*frame.message_frame,
1028 last_frame_in_packet, &writer)) {
1029 QUIC_BUG << "AppendMessageFrame failed";
1030 return 0;
1031 }
1032 break;
1033 case CRYPTO_FRAME:
QUICHE teamea740082019-03-11 17:58:43 -07001034 if (!QuicVersionUsesCryptoFrames(version_.transport_version)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001035 set_detailed_error(
1036 "Attempt to append CRYPTO frame in version prior to 47.");
1037 return RaiseError(QUIC_INTERNAL_ERROR);
1038 }
1039 if (!AppendCryptoFrame(*frame.crypto_frame, &writer)) {
1040 QUIC_BUG << "AppendCryptoFrame failed";
1041 return 0;
1042 }
1043 break;
1044 default:
1045 RaiseError(QUIC_INVALID_FRAME_DATA);
1046 QUIC_BUG << "QUIC_INVALID_FRAME_DATA";
1047 return 0;
1048 }
1049 ++i;
1050 }
1051
1052 return writer.length();
1053}
1054
1055size_t QuicFramer::AppendIetfFrames(const QuicFrames& frames,
1056 QuicDataWriter* writer) {
1057 size_t i = 0;
1058 for (const QuicFrame& frame : frames) {
1059 // Determine if we should write stream frame length in header.
1060 const bool last_frame_in_packet = i == frames.size() - 1;
1061 if (!AppendIetfTypeByte(frame, last_frame_in_packet, writer)) {
1062 QUIC_BUG << "AppendIetfTypeByte failed: " << detailed_error();
1063 return 0;
1064 }
1065
1066 switch (frame.type) {
1067 case PADDING_FRAME:
1068 if (!AppendPaddingFrame(frame.padding_frame, writer)) {
1069 QUIC_BUG << "AppendPaddingFrame of "
1070 << frame.padding_frame.num_padding_bytes
1071 << " failed: " << detailed_error();
1072 return 0;
1073 }
1074 break;
1075 case STREAM_FRAME:
1076 if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet,
1077 writer)) {
1078 QUIC_BUG << "AppendStreamFrame failed: " << detailed_error();
1079 return 0;
1080 }
1081 break;
1082 case ACK_FRAME:
1083 if (!AppendIetfAckFrameAndTypeByte(*frame.ack_frame, writer)) {
QUICHE team4fe0b942019-03-08 09:25:06 -05001084 QUIC_BUG << "AppendIetfAckFrameAndTypeByte failed: "
1085 << detailed_error();
QUICHE teama6ef0a62019-03-07 20:34:33 -05001086 return 0;
1087 }
1088 break;
1089 case STOP_WAITING_FRAME:
1090 set_detailed_error(
1091 "Attempt to append STOP WAITING frame in version 99.");
1092 return RaiseError(QUIC_INTERNAL_ERROR);
1093 case MTU_DISCOVERY_FRAME:
1094 // MTU discovery frames are serialized as ping frames.
1095 QUIC_FALLTHROUGH_INTENDED;
1096 case PING_FRAME:
1097 // Ping has no payload.
1098 break;
1099 case RST_STREAM_FRAME:
1100 if (!AppendRstStreamFrame(*frame.rst_stream_frame, writer)) {
1101 QUIC_BUG << "AppendRstStreamFrame failed: " << detailed_error();
1102 return 0;
1103 }
1104 break;
1105 case CONNECTION_CLOSE_FRAME:
fkastenholz72f509b2019-04-10 09:17:49 -07001106 if (!AppendIetfConnectionCloseFrame(*frame.connection_close_frame,
1107 writer)) {
1108 QUIC_BUG << "AppendIetfConnectionCloseFrame failed: "
1109 << detailed_error();
QUICHE teama6ef0a62019-03-07 20:34:33 -05001110 return 0;
1111 }
1112 break;
1113 case GOAWAY_FRAME:
1114 set_detailed_error("Attempt to append GOAWAY frame in version 99.");
1115 return RaiseError(QUIC_INTERNAL_ERROR);
1116 case WINDOW_UPDATE_FRAME:
1117 // Depending on whether there is a stream ID or not, will be either a
1118 // MAX STREAM DATA frame or a MAX DATA frame.
1119 if (frame.window_update_frame->stream_id ==
1120 QuicUtils::GetInvalidStreamId(transport_version())) {
1121 if (!AppendMaxDataFrame(*frame.window_update_frame, writer)) {
1122 QUIC_BUG << "AppendMaxDataFrame failed: " << detailed_error();
1123 return 0;
1124 }
1125 } else {
1126 if (!AppendMaxStreamDataFrame(*frame.window_update_frame, writer)) {
1127 QUIC_BUG << "AppendMaxStreamDataFrame failed: " << detailed_error();
1128 return 0;
1129 }
1130 }
1131 break;
1132 case BLOCKED_FRAME:
1133 if (!AppendBlockedFrame(*frame.blocked_frame, writer)) {
1134 QUIC_BUG << "AppendBlockedFrame failed: " << detailed_error();
1135 return 0;
1136 }
1137 break;
fkastenholz3c4eabf2019-04-22 07:49:59 -07001138 case MAX_STREAMS_FRAME:
1139 if (!AppendMaxStreamsFrame(frame.max_streams_frame, writer)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001140 QUIC_BUG << "AppendMaxStreamsFrame failed" << detailed_error();
1141 return 0;
1142 }
1143 break;
fkastenholz3c4eabf2019-04-22 07:49:59 -07001144 case STREAMS_BLOCKED_FRAME:
1145 if (!AppendStreamsBlockedFrame(frame.streams_blocked_frame, writer)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001146 QUIC_BUG << "AppendStreamsBlockedFrame failed" << detailed_error();
1147 return 0;
1148 }
1149 break;
1150 case NEW_CONNECTION_ID_FRAME:
1151 if (!AppendNewConnectionIdFrame(*frame.new_connection_id_frame,
1152 writer)) {
1153 QUIC_BUG << "AppendNewConnectionIdFrame failed: " << detailed_error();
1154 return 0;
1155 }
1156 break;
1157 case RETIRE_CONNECTION_ID_FRAME:
1158 if (!AppendRetireConnectionIdFrame(*frame.retire_connection_id_frame,
1159 writer)) {
1160 QUIC_BUG << "AppendRetireConnectionIdFrame failed: "
1161 << detailed_error();
1162 return 0;
1163 }
1164 break;
1165 case NEW_TOKEN_FRAME:
1166 if (!AppendNewTokenFrame(*frame.new_token_frame, writer)) {
1167 QUIC_BUG << "AppendNewTokenFrame failed: " << detailed_error();
1168 return 0;
1169 }
1170 break;
1171 case STOP_SENDING_FRAME:
1172 if (!AppendStopSendingFrame(*frame.stop_sending_frame, writer)) {
1173 QUIC_BUG << "AppendStopSendingFrame failed: " << detailed_error();
1174 return 0;
1175 }
1176 break;
1177 case PATH_CHALLENGE_FRAME:
1178 if (!AppendPathChallengeFrame(*frame.path_challenge_frame, writer)) {
1179 QUIC_BUG << "AppendPathChallengeFrame failed: " << detailed_error();
1180 return 0;
1181 }
1182 break;
1183 case PATH_RESPONSE_FRAME:
1184 if (!AppendPathResponseFrame(*frame.path_response_frame, writer)) {
1185 QUIC_BUG << "AppendPathResponseFrame failed: " << detailed_error();
1186 return 0;
1187 }
1188 break;
1189 case MESSAGE_FRAME:
1190 if (!AppendMessageFrameAndTypeByte(*frame.message_frame,
1191 last_frame_in_packet, writer)) {
1192 QUIC_BUG << "AppendMessageFrame failed: " << detailed_error();
1193 return 0;
1194 }
1195 break;
1196 case CRYPTO_FRAME:
1197 if (!AppendCryptoFrame(*frame.crypto_frame, writer)) {
1198 QUIC_BUG << "AppendCryptoFrame failed: " << detailed_error();
1199 return 0;
1200 }
1201 break;
1202 default:
1203 RaiseError(QUIC_INVALID_FRAME_DATA);
1204 set_detailed_error("Tried to append unknown frame type.");
1205 QUIC_BUG << "QUIC_INVALID_FRAME_DATA";
1206 return 0;
1207 }
1208 ++i;
1209 }
1210
1211 return writer->length();
1212}
1213
rch67cb9df2019-03-26 16:52:07 -07001214size_t QuicFramer::BuildConnectivityProbingPacket(
QUICHE teama6ef0a62019-03-07 20:34:33 -05001215 const QuicPacketHeader& header,
1216 char* buffer,
1217 size_t packet_length,
1218 EncryptionLevel level) {
1219 QuicFrames frames;
1220
1221 // Write a PING frame, which has no data payload.
1222 QuicPingFrame ping_frame;
1223 frames.push_back(QuicFrame(ping_frame));
1224
1225 // Add padding to the rest of the packet.
1226 QuicPaddingFrame padding_frame;
1227 frames.push_back(QuicFrame(padding_frame));
1228
1229 return BuildDataPacket(header, frames, buffer, packet_length, level);
1230}
1231
QUICHE teama6ef0a62019-03-07 20:34:33 -05001232size_t QuicFramer::BuildPaddedPathChallengePacket(
1233 const QuicPacketHeader& header,
1234 char* buffer,
1235 size_t packet_length,
1236 QuicPathFrameBuffer* payload,
1237 QuicRandom* randomizer,
1238 EncryptionLevel level) {
1239 if (version_.transport_version != QUIC_VERSION_99) {
1240 QUIC_BUG << "Attempt to build a PATH_CHALLENGE Connectivity Probing "
1241 "packet and not doing IETF QUIC";
1242 return 0;
1243 }
1244 QuicFrames frames;
1245
1246 // Write a PATH_CHALLENGE frame, which has a random 8-byte payload
1247 randomizer->RandBytes(payload->data(), payload->size());
1248
1249 QuicPathChallengeFrame path_challenge_frame(0, *payload);
1250 frames.push_back(QuicFrame(&path_challenge_frame));
1251
1252 // Add padding to the rest of the packet in order to assess Path MTU
1253 // characteristics.
1254 QuicPaddingFrame padding_frame;
1255 frames.push_back(QuicFrame(padding_frame));
1256
1257 return BuildDataPacket(header, frames, buffer, packet_length, level);
1258}
1259
1260size_t QuicFramer::BuildPathResponsePacket(
1261 const QuicPacketHeader& header,
1262 char* buffer,
1263 size_t packet_length,
1264 const QuicDeque<QuicPathFrameBuffer>& payloads,
1265 const bool is_padded,
1266 EncryptionLevel level) {
1267 if (payloads.empty()) {
1268 QUIC_BUG
1269 << "Attempt to generate connectivity response with no request payloads";
1270 return 0;
1271 }
1272 if (version_.transport_version != QUIC_VERSION_99) {
1273 QUIC_BUG << "Attempt to build a PATH_RESPONSE Connectivity Probing "
1274 "packet and not doing IETF QUIC";
1275 return 0;
1276 }
1277
1278 std::vector<std::unique_ptr<QuicPathResponseFrame>> path_response_frames;
1279 for (const QuicPathFrameBuffer& payload : payloads) {
1280 // Note that the control frame ID can be 0 since this is not retransmitted.
1281 path_response_frames.push_back(
1282 QuicMakeUnique<QuicPathResponseFrame>(0, payload));
1283 }
1284
1285 QuicFrames frames;
1286 for (const std::unique_ptr<QuicPathResponseFrame>& path_response_frame :
1287 path_response_frames) {
1288 frames.push_back(QuicFrame(path_response_frame.get()));
1289 }
1290
1291 if (is_padded) {
1292 // Add padding to the rest of the packet in order to assess Path MTU
1293 // characteristics.
1294 QuicPaddingFrame padding_frame;
1295 frames.push_back(QuicFrame(padding_frame));
1296 }
1297
1298 return BuildDataPacket(header, frames, buffer, packet_length, level);
1299}
1300
1301// static
1302std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildPublicResetPacket(
1303 const QuicPublicResetPacket& packet) {
1304 CryptoHandshakeMessage reset;
1305 reset.set_tag(kPRST);
1306 reset.SetValue(kRNON, packet.nonce_proof);
1307 if (packet.client_address.host().address_family() !=
1308 IpAddressFamily::IP_UNSPEC) {
1309 // packet.client_address is non-empty.
1310 QuicSocketAddressCoder address_coder(packet.client_address);
vasilvvc48c8712019-03-11 13:38:16 -07001311 std::string serialized_address = address_coder.Encode();
QUICHE teama6ef0a62019-03-07 20:34:33 -05001312 if (serialized_address.empty()) {
1313 return nullptr;
1314 }
1315 reset.SetStringPiece(kCADR, serialized_address);
1316 }
1317 if (!packet.endpoint_id.empty()) {
1318 reset.SetStringPiece(kEPID, packet.endpoint_id);
1319 }
1320 const QuicData& reset_serialized = reset.GetSerialized();
1321
1322 size_t len = kPublicFlagsSize + packet.connection_id.length() +
1323 reset_serialized.length();
1324 std::unique_ptr<char[]> buffer(new char[len]);
1325 // Endianness is not a concern here, as writer is not going to write integers
1326 // or floating numbers.
1327 QuicDataWriter writer(len, buffer.get());
1328
1329 uint8_t flags = static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_RST |
1330 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
1331 // This hack makes post-v33 public reset packet look like pre-v33 packets.
1332 flags |= static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD);
1333 if (!writer.WriteUInt8(flags)) {
1334 return nullptr;
1335 }
1336
1337 if (!writer.WriteConnectionId(packet.connection_id)) {
1338 return nullptr;
1339 }
1340
1341 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
1342 return nullptr;
1343 }
1344
1345 return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
1346}
1347
1348// static
1349std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildIetfStatelessResetPacket(
1350 QuicConnectionId connection_id,
1351 QuicUint128 stateless_reset_token) {
1352 QUIC_DVLOG(1) << "Building IETF stateless reset packet.";
1353 size_t len = kPacketHeaderTypeSize + kMinRandomBytesLengthInStatelessReset +
1354 sizeof(stateless_reset_token);
1355 std::unique_ptr<char[]> buffer(new char[len]);
1356 QuicDataWriter writer(len, buffer.get());
1357
1358 uint8_t type = 0;
1359 type |= FLAGS_FIXED_BIT;
1360 type |= FLAGS_SHORT_HEADER_RESERVED_1;
1361 type |= FLAGS_SHORT_HEADER_RESERVED_2;
1362 type |= PacketNumberLengthToOnWireValue(QUIC_VERSION_UNSUPPORTED,
1363 PACKET_1BYTE_PACKET_NUMBER);
1364
1365 // Append type byte.
1366 if (!writer.WriteUInt8(type)) {
1367 return nullptr;
1368 }
1369 // Append random bytes.
1370 if (!writer.WriteRandomBytes(QuicRandom::GetInstance(),
1371 kMinRandomBytesLengthInStatelessReset)) {
1372 return nullptr;
1373 }
1374
1375 // Append stateless reset token.
1376 if (!writer.WriteBytes(&stateless_reset_token,
1377 sizeof(stateless_reset_token))) {
1378 return nullptr;
1379 }
1380 return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
1381}
1382
1383// static
1384std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildVersionNegotiationPacket(
1385 QuicConnectionId connection_id,
1386 bool ietf_quic,
1387 const ParsedQuicVersionVector& versions) {
1388 if (ietf_quic) {
1389 return BuildIetfVersionNegotiationPacket(connection_id, versions);
1390 }
1391 DCHECK(!versions.empty());
1392 size_t len = kPublicFlagsSize + connection_id.length() +
1393 versions.size() * kQuicVersionSize;
1394 std::unique_ptr<char[]> buffer(new char[len]);
1395 // Endianness is not a concern here, version negotiation packet does not have
1396 // integers or floating numbers.
1397 QuicDataWriter writer(len, buffer.get());
1398
1399 uint8_t flags = static_cast<uint8_t>(
1400 PACKET_PUBLIC_FLAGS_VERSION | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID |
1401 // TODO(rch): Remove this QUIC_VERSION_32 is retired.
1402 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD);
1403 if (!writer.WriteUInt8(flags)) {
1404 return nullptr;
1405 }
1406
1407 if (!writer.WriteConnectionId(connection_id)) {
1408 return nullptr;
1409 }
1410
1411 for (const ParsedQuicVersion& version : versions) {
1412 // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed.
1413 if (!writer.WriteTag(
1414 QuicEndian::HostToNet32(CreateQuicVersionLabel(version)))) {
1415 return nullptr;
1416 }
1417 }
1418
1419 return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
1420}
1421
1422// static
1423std::unique_ptr<QuicEncryptedPacket>
1424QuicFramer::BuildIetfVersionNegotiationPacket(
1425 QuicConnectionId connection_id,
1426 const ParsedQuicVersionVector& versions) {
1427 QUIC_DVLOG(1) << "Building IETF version negotiation packet.";
1428 DCHECK(!versions.empty());
1429 size_t len = kPacketHeaderTypeSize + kConnectionIdLengthSize +
1430 connection_id.length() +
1431 (versions.size() + 1) * kQuicVersionSize;
1432 std::unique_ptr<char[]> buffer(new char[len]);
1433 QuicDataWriter writer(len, buffer.get());
1434
1435 // TODO(fayang): Randomly select a value for the type.
dschinazi072da7c2019-05-07 17:57:42 -07001436 uint8_t type = static_cast<uint8_t>(FLAGS_LONG_HEADER);
dschinazi9e92fb32019-05-08 14:47:24 -07001437 if (GetQuicReloadableFlag(quic_send_version_negotiation_fixed_bit)) {
1438 QUIC_RELOADABLE_FLAG_COUNT(quic_send_version_negotiation_fixed_bit);
1439 type |= static_cast<uint8_t>(FLAGS_FIXED_BIT);
1440 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05001441 if (!writer.WriteUInt8(type)) {
1442 return nullptr;
1443 }
1444
1445 if (!writer.WriteUInt32(0)) {
1446 return nullptr;
1447 }
1448
1449 if (!GetQuicReloadableFlag(quic_use_new_append_connection_id)) {
1450 if (!AppendIetfConnectionId(true, EmptyQuicConnectionId(),
1451 PACKET_0BYTE_CONNECTION_ID, connection_id,
1452 PACKET_8BYTE_CONNECTION_ID, &writer)) {
1453 return nullptr;
1454 }
1455 } else {
1456 QUIC_RELOADABLE_FLAG_COUNT_N(quic_use_new_append_connection_id, 1, 2);
1457 if (!AppendIetfConnectionIdsNew(true, EmptyQuicConnectionId(),
1458 connection_id, &writer)) {
1459 return nullptr;
1460 }
1461 }
1462
1463 for (const ParsedQuicVersion& version : versions) {
1464 // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed.
1465 if (!writer.WriteTag(
1466 QuicEndian::HostToNet32(CreateQuicVersionLabel(version)))) {
1467 return nullptr;
1468 }
1469 }
1470
1471 return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
1472}
1473
1474bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
1475 QuicDataReader reader(packet.data(), packet.length());
1476
1477 bool packet_has_ietf_packet_header = false;
1478 if (infer_packet_header_type_from_version_) {
1479 packet_has_ietf_packet_header =
1480 version_.transport_version > QUIC_VERSION_43;
1481 } else if (!reader.IsDoneReading()) {
1482 uint8_t type = reader.PeekByte();
1483 packet_has_ietf_packet_header = QuicUtils::IsIetfPacketHeader(type);
1484 }
1485 if (packet_has_ietf_packet_header) {
1486 QUIC_DVLOG(1) << ENDPOINT << "Processing IETF QUIC packet.";
1487 }
1488
1489 visitor_->OnPacket();
1490
1491 QuicPacketHeader header;
1492 if (!ProcessPublicHeader(&reader, packet_has_ietf_packet_header, &header)) {
1493 DCHECK_NE("", detailed_error_);
1494 QUIC_DVLOG(1) << ENDPOINT << "Unable to process public header. Error: "
1495 << detailed_error_;
1496 DCHECK_NE("", detailed_error_);
1497 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_HEADER);
1498 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1499 }
1500
1501 if (!visitor_->OnUnauthenticatedPublicHeader(header)) {
1502 // The visitor suppresses further processing of the packet.
1503 return true;
1504 }
1505
dschinazie0df3f72019-05-06 16:37:51 -07001506 if (IsVersionNegotiation(header, packet_has_ietf_packet_header)) {
dschinazi072da7c2019-05-07 17:57:42 -07001507 if (!GetQuicRestartFlag(quic_server_drop_version_negotiation)) {
1508 QUIC_DVLOG(1) << ENDPOINT << "Received version negotiation packet";
1509 return ProcessVersionNegotiationPacket(&reader, header);
1510 }
1511 QUIC_RESTART_FLAG_COUNT_N(quic_server_drop_version_negotiation, 1, 2);
1512 if (perspective_ == Perspective::IS_CLIENT) {
1513 QUIC_DVLOG(1) << "Client received version negotiation packet";
1514 return ProcessVersionNegotiationPacket(&reader, header);
1515 } else {
1516 QUIC_DLOG(ERROR) << "Server received version negotiation packet";
1517 set_detailed_error("Server received version negotiation packet.");
1518 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
1519 }
dschinazie0df3f72019-05-06 16:37:51 -07001520 }
1521
1522 if (header.version_flag && header.version != version_) {
1523 if (perspective_ == Perspective::IS_SERVER) {
1524 if (!visitor_->OnProtocolVersionMismatch(header.version, header.form)) {
1525 RecordDroppedPacketReason(DroppedPacketReason::VERSION_MISMATCH);
1526 return true;
1527 }
1528 } else {
1529 // A client received a packet of a different version but that packet is
1530 // not a version negotiation packet. It is therefore invalid and dropped.
1531 QUIC_DLOG(ERROR) << "Client received unexpected version "
1532 << ParsedQuicVersionToString(header.version)
1533 << " instead of " << ParsedQuicVersionToString(version_);
1534 set_detailed_error("Client received unexpected version.");
1535 return RaiseError(QUIC_INVALID_VERSION);
QUICHE teama6ef0a62019-03-07 20:34:33 -05001536 }
1537 }
1538
1539 bool rv;
dschinazie0df3f72019-05-06 16:37:51 -07001540 if (header.long_packet_type == RETRY) {
dschinazi244f6dc2019-05-06 15:45:16 -07001541 rv = ProcessRetryPacket(&reader, header);
QUICHE teama6ef0a62019-03-07 20:34:33 -05001542 } else if (header.reset_flag) {
1543 rv = ProcessPublicResetPacket(&reader, header);
dschinazie8d7fa72019-04-05 14:44:40 -07001544 } else if (packet.length() <= kMaxIncomingPacketSize) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001545 // The optimized decryption algorithm implementations run faster when
1546 // operating on aligned memory.
dschinazie8d7fa72019-04-05 14:44:40 -07001547 QUIC_CACHELINE_ALIGNED char buffer[kMaxIncomingPacketSize];
QUICHE teama6ef0a62019-03-07 20:34:33 -05001548 if (packet_has_ietf_packet_header) {
1549 rv = ProcessIetfDataPacket(&reader, &header, packet, buffer,
dschinazie8d7fa72019-04-05 14:44:40 -07001550 QUIC_ARRAYSIZE(buffer));
QUICHE teama6ef0a62019-03-07 20:34:33 -05001551 } else {
dschinazie8d7fa72019-04-05 14:44:40 -07001552 rv = ProcessDataPacket(&reader, &header, packet, buffer,
1553 QUIC_ARRAYSIZE(buffer));
QUICHE teama6ef0a62019-03-07 20:34:33 -05001554 }
1555 } else {
1556 std::unique_ptr<char[]> large_buffer(new char[packet.length()]);
1557 if (packet_has_ietf_packet_header) {
1558 rv = ProcessIetfDataPacket(&reader, &header, packet, large_buffer.get(),
1559 packet.length());
1560 } else {
1561 rv = ProcessDataPacket(&reader, &header, packet, large_buffer.get(),
1562 packet.length());
1563 }
1564 QUIC_BUG_IF(rv) << "QUIC should never successfully process packets larger"
dschinazie8d7fa72019-04-05 14:44:40 -07001565 << "than kMaxIncomingPacketSize. packet size:"
1566 << packet.length();
QUICHE teama6ef0a62019-03-07 20:34:33 -05001567 }
1568 return rv;
1569}
1570
1571bool QuicFramer::ProcessVersionNegotiationPacket(
1572 QuicDataReader* reader,
1573 const QuicPacketHeader& header) {
1574 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
1575
1576 QuicVersionNegotiationPacket packet(header.destination_connection_id);
1577 // Try reading at least once to raise error if the packet is invalid.
1578 do {
1579 QuicVersionLabel version_label;
fayang40315542019-05-09 09:19:09 -07001580 if (!ProcessVersionLabel(reader, &version_label)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001581 set_detailed_error("Unable to read supported version in negotiation.");
1582 RecordDroppedPacketReason(
1583 DroppedPacketReason::INVALID_VERSION_NEGOTIATION_PACKET);
1584 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
1585 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05001586 packet.versions.push_back(ParseQuicVersionLabel(version_label));
1587 } while (!reader->IsDoneReading());
1588
1589 visitor_->OnVersionNegotiationPacket(packet);
1590 return true;
1591}
1592
dschinazi244f6dc2019-05-06 15:45:16 -07001593bool QuicFramer::ProcessRetryPacket(QuicDataReader* reader,
1594 const QuicPacketHeader& header) {
1595 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
1596
1597 // Parse Original Destination Connection ID Length.
1598 uint8_t odcil = header.type_byte & 0xf;
1599 if (odcil != 0) {
1600 odcil += kConnectionIdLengthAdjustment;
1601 }
1602
1603 // Parse Original Destination Connection ID.
1604 QuicConnectionId original_destination_connection_id;
1605 if (!reader->ReadConnectionId(&original_destination_connection_id, odcil)) {
1606 set_detailed_error("Unable to read Original Destination ConnectionId.");
1607 return false;
1608 }
1609
1610 QuicStringPiece retry_token = reader->ReadRemainingPayload();
1611 visitor_->OnRetryPacket(original_destination_connection_id,
1612 header.source_connection_id, retry_token);
1613 return true;
1614}
1615
QUICHE teama6ef0a62019-03-07 20:34:33 -05001616bool QuicFramer::MaybeProcessIetfInitialRetryToken(
1617 QuicDataReader* encrypted_reader,
1618 QuicPacketHeader* header) {
1619 if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) ||
1620 header->form != IETF_QUIC_LONG_HEADER_PACKET ||
1621 header->long_packet_type != INITIAL) {
1622 return true;
1623 }
1624 uint64_t retry_token_length = 0;
1625 header->retry_token_length_length = encrypted_reader->PeekVarInt62Length();
1626 if (!encrypted_reader->ReadVarInt62(&retry_token_length)) {
1627 set_detailed_error("Unable to read INITIAL retry token length.");
1628 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1629 }
1630 header->retry_token = encrypted_reader->PeekRemainingPayload();
1631 // Safety check to avoid spending ressources if malformed.
1632 // At this point header->retry_token contains the rest of the packet
1633 // so its length() is the amount of data remaining in the packet.
1634 if (retry_token_length > header->retry_token.length()) {
1635 set_detailed_error("INITIAL token length longer than packet.");
1636 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1637 }
1638 // Resize retry_token to make it only contain the retry token.
1639 header->retry_token.remove_suffix(header->retry_token.length() -
1640 retry_token_length);
1641 // Advance encrypted_reader by retry_token_length.
1642 uint8_t wasted_byte;
1643 for (uint64_t i = 0; i < retry_token_length; ++i) {
1644 if (!encrypted_reader->ReadUInt8(&wasted_byte)) {
1645 set_detailed_error("Unable to read INITIAL retry token.");
1646 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1647 }
1648 }
1649 return true;
1650}
1651
1652// Seeks the current packet to check for a coalesced packet at the end.
1653// If the IETF length field only spans part of the outer packet,
1654// then there is a coalesced packet after this one.
1655void QuicFramer::MaybeProcessCoalescedPacket(
1656 const QuicDataReader& encrypted_reader,
1657 uint64_t remaining_bytes_length,
1658 const QuicPacketHeader& header) {
1659 if (header.remaining_packet_length >= remaining_bytes_length) {
1660 // There is no coalesced packet.
1661 return;
1662 }
1663
1664 QuicStringPiece remaining_data = encrypted_reader.PeekRemainingPayload();
1665 DCHECK_EQ(remaining_data.length(), remaining_bytes_length);
1666
1667 const char* coalesced_data =
1668 remaining_data.data() + header.remaining_packet_length;
1669 uint64_t coalesced_data_length =
1670 remaining_bytes_length - header.remaining_packet_length;
1671 QuicDataReader coalesced_reader(coalesced_data, coalesced_data_length);
1672
1673 QuicPacketHeader coalesced_header;
1674 if (!ProcessIetfPacketHeader(&coalesced_reader, &coalesced_header)) {
1675 QUIC_PEER_BUG << ENDPOINT
1676 << "Failed to parse received coalesced header of length "
1677 << coalesced_data_length << ": "
1678 << QuicTextUtils::HexEncode(coalesced_data,
1679 coalesced_data_length)
1680 << " previous header was " << header;
1681 return;
1682 }
1683
1684 if (coalesced_header.destination_connection_id !=
1685 header.destination_connection_id ||
1686 (coalesced_header.form != IETF_QUIC_SHORT_HEADER_PACKET &&
1687 coalesced_header.version != header.version)) {
1688 QUIC_PEER_BUG << ENDPOINT << "Received mismatched coalesced header "
1689 << coalesced_header << " previous header was " << header;
1690 return;
1691 }
1692
1693 QuicEncryptedPacket coalesced_packet(coalesced_data, coalesced_data_length,
1694 /*owns_buffer=*/false);
1695 visitor_->OnCoalescedPacket(coalesced_packet);
1696}
1697
1698bool QuicFramer::MaybeProcessIetfLength(QuicDataReader* encrypted_reader,
1699 QuicPacketHeader* header) {
1700 if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) ||
1701 header->form != IETF_QUIC_LONG_HEADER_PACKET ||
1702 (header->long_packet_type != INITIAL &&
1703 header->long_packet_type != HANDSHAKE &&
1704 header->long_packet_type != ZERO_RTT_PROTECTED)) {
1705 return true;
1706 }
1707 header->length_length = encrypted_reader->PeekVarInt62Length();
1708 if (!encrypted_reader->ReadVarInt62(&header->remaining_packet_length)) {
1709 set_detailed_error("Unable to read long header payload length.");
1710 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1711 }
1712 uint64_t remaining_bytes_length = encrypted_reader->BytesRemaining();
1713 if (header->remaining_packet_length > remaining_bytes_length) {
1714 set_detailed_error("Long header payload length longer than packet.");
1715 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1716 }
1717
1718 MaybeProcessCoalescedPacket(*encrypted_reader, remaining_bytes_length,
1719 *header);
1720
1721 if (!encrypted_reader->TruncateRemaining(header->remaining_packet_length)) {
1722 set_detailed_error("Length TruncateRemaining failed.");
1723 QUIC_BUG << "Length TruncateRemaining failed.";
1724 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1725 }
1726 return true;
1727}
1728
1729bool QuicFramer::ProcessIetfDataPacket(QuicDataReader* encrypted_reader,
1730 QuicPacketHeader* header,
1731 const QuicEncryptedPacket& packet,
1732 char* decrypted_buffer,
1733 size_t buffer_length) {
1734 DCHECK_NE(GOOGLE_QUIC_PACKET, header->form);
1735 DCHECK(!header->has_possible_stateless_reset_token);
1736 header->retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0;
1737 header->retry_token = QuicStringPiece();
1738 header->length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0;
1739 header->remaining_packet_length = 0;
1740 if (header->form == IETF_QUIC_SHORT_HEADER_PACKET &&
1741 perspective_ == Perspective::IS_CLIENT) {
1742 // Peek possible stateless reset token. Will only be used on decryption
1743 // failure.
1744 QuicStringPiece remaining = encrypted_reader->PeekRemainingPayload();
1745 if (remaining.length() >= sizeof(header->possible_stateless_reset_token)) {
1746 header->has_possible_stateless_reset_token = true;
1747 memcpy(&header->possible_stateless_reset_token,
1748 &remaining.data()[remaining.length() -
1749 sizeof(header->possible_stateless_reset_token)],
1750 sizeof(header->possible_stateless_reset_token));
1751 }
1752 }
1753
1754 if (!MaybeProcessIetfInitialRetryToken(encrypted_reader, header)) {
1755 return false;
1756 }
1757
1758 if (!MaybeProcessIetfLength(encrypted_reader, header)) {
1759 return false;
1760 }
1761
nharper55fa6132019-05-07 19:37:21 -07001762 QuicStringPiece associated_data;
1763 std::vector<char> ad_storage;
QUICHE teama6ef0a62019-03-07 20:34:33 -05001764 if (header->form == IETF_QUIC_SHORT_HEADER_PACKET ||
1765 header->long_packet_type != VERSION_NEGOTIATION) {
dschinazi072da7c2019-05-07 17:57:42 -07001766 DCHECK(header->form == IETF_QUIC_SHORT_HEADER_PACKET ||
1767 header->long_packet_type == INITIAL ||
1768 header->long_packet_type == HANDSHAKE ||
1769 header->long_packet_type == ZERO_RTT_PROTECTED);
QUICHE teama6ef0a62019-03-07 20:34:33 -05001770 // Process packet number.
QUICHE team10b22a12019-03-21 15:31:42 -07001771 QuicPacketNumber base_packet_number;
1772 if (supports_multiple_packet_number_spaces_) {
nharper55fa6132019-05-07 19:37:21 -07001773 PacketNumberSpace pn_space = GetPacketNumberSpace(*header);
1774 if (pn_space == NUM_PACKET_NUMBER_SPACES) {
1775 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1776 }
1777 base_packet_number = largest_decrypted_packet_numbers_[pn_space];
QUICHE team10b22a12019-03-21 15:31:42 -07001778 } else {
1779 base_packet_number = largest_packet_number_;
1780 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05001781 uint64_t full_packet_number;
nharper55fa6132019-05-07 19:37:21 -07001782 bool hp_removal_failed = false;
1783 if (version_.HasHeaderProtection()) {
1784 if (!RemoveHeaderProtection(encrypted_reader, packet, header,
1785 &full_packet_number, &ad_storage)) {
1786 hp_removal_failed = true;
1787 }
1788 associated_data = QuicStringPiece(ad_storage.data(), ad_storage.size());
1789 } else if (!ProcessAndCalculatePacketNumber(
1790 encrypted_reader, header->packet_number_length,
1791 base_packet_number, &full_packet_number)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001792 set_detailed_error("Unable to read packet number.");
1793 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
1794 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1795 }
1796
nharper55fa6132019-05-07 19:37:21 -07001797 if (hp_removal_failed ||
1798 !IsValidFullPacketNumber(full_packet_number, transport_version())) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001799 if (IsIetfStatelessResetPacket(*header)) {
1800 // This is a stateless reset packet.
1801 QuicIetfStatelessResetPacket packet(
1802 *header, header->possible_stateless_reset_token);
1803 visitor_->OnAuthenticatedIetfStatelessResetPacket(packet);
1804 return true;
1805 }
nharper55fa6132019-05-07 19:37:21 -07001806 if (hp_removal_failed) {
1807 set_detailed_error("Unable to decrypt header protection.");
1808 return RaiseError(QUIC_DECRYPTION_FAILURE);
1809 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05001810 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
1811 set_detailed_error("packet numbers cannot be 0.");
1812 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1813 }
1814 header->packet_number = QuicPacketNumber(full_packet_number);
1815 }
1816
1817 // A nonce should only present in SHLO from the server to the client when
1818 // using QUIC crypto.
1819 if (header->form == IETF_QUIC_LONG_HEADER_PACKET &&
1820 header->long_packet_type == ZERO_RTT_PROTECTED &&
1821 perspective_ == Perspective::IS_CLIENT &&
1822 version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) {
1823 if (!encrypted_reader->ReadBytes(
1824 reinterpret_cast<uint8_t*>(last_nonce_.data()),
1825 last_nonce_.size())) {
1826 set_detailed_error("Unable to read nonce.");
1827 RecordDroppedPacketReason(
1828 DroppedPacketReason::INVALID_DIVERSIFICATION_NONCE);
1829 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1830 }
1831
1832 header->nonce = &last_nonce_;
1833 } else {
1834 header->nonce = nullptr;
1835 }
1836
1837 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1838 set_detailed_error(
1839 "Visitor asked to stop processing of unauthenticated header.");
1840 return false;
1841 }
1842
1843 QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload();
nharper55fa6132019-05-07 19:37:21 -07001844 if (!version_.HasHeaderProtection()) {
1845 associated_data = GetAssociatedDataFromEncryptedPacket(
1846 version_.transport_version, packet,
1847 GetIncludedDestinationConnectionIdLength(*header),
1848 GetIncludedSourceConnectionIdLength(*header), header->version_flag,
1849 header->nonce != nullptr, header->packet_number_length,
1850 header->retry_token_length_length, header->retry_token.length(),
1851 header->length_length);
1852 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05001853
1854 size_t decrypted_length = 0;
QUICHE team10b22a12019-03-21 15:31:42 -07001855 EncryptionLevel decrypted_level;
QUICHE teama6ef0a62019-03-07 20:34:33 -05001856 if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer,
QUICHE team10b22a12019-03-21 15:31:42 -07001857 buffer_length, &decrypted_length, &decrypted_level)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001858 if (IsIetfStatelessResetPacket(*header)) {
1859 // This is a stateless reset packet.
1860 QuicIetfStatelessResetPacket packet(
1861 *header, header->possible_stateless_reset_token);
1862 visitor_->OnAuthenticatedIetfStatelessResetPacket(packet);
1863 return true;
1864 }
1865 set_detailed_error("Unable to decrypt payload.");
1866 RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE);
1867 return RaiseError(QUIC_DECRYPTION_FAILURE);
1868 }
1869 QuicDataReader reader(decrypted_buffer, decrypted_length);
1870
1871 // Update the largest packet number after we have decrypted the packet
1872 // so we are confident is not attacker controlled.
QUICHE team10b22a12019-03-21 15:31:42 -07001873 if (supports_multiple_packet_number_spaces_) {
1874 largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace(
1875 decrypted_level)]
1876 .UpdateMax(header->packet_number);
1877 } else {
1878 largest_packet_number_.UpdateMax(header->packet_number);
1879 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05001880
1881 if (!visitor_->OnPacketHeader(*header)) {
1882 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
1883 // The visitor suppresses further processing of the packet.
1884 return true;
1885 }
1886
dschinazie8d7fa72019-04-05 14:44:40 -07001887 if (packet.length() > kMaxIncomingPacketSize) {
1888 set_detailed_error("Packet too large.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05001889 return RaiseError(QUIC_PACKET_TOO_LARGE);
1890 }
1891
1892 // Handle the payload.
1893 if (version_.transport_version == QUIC_VERSION_99) {
1894 if (!ProcessIetfFrameData(&reader, *header)) {
1895 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessIetfFrameData sets the error.
1896 DCHECK_NE("", detailed_error_);
1897 QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: "
1898 << detailed_error_;
1899 return false;
1900 }
1901 } else {
1902 if (!ProcessFrameData(&reader, *header)) {
1903 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
1904 DCHECK_NE("", detailed_error_);
1905 QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: "
1906 << detailed_error_;
1907 return false;
1908 }
1909 }
1910
1911 visitor_->OnPacketComplete();
1912 return true;
1913}
1914
1915bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader,
1916 QuicPacketHeader* header,
1917 const QuicEncryptedPacket& packet,
1918 char* decrypted_buffer,
1919 size_t buffer_length) {
1920 if (!ProcessUnauthenticatedHeader(encrypted_reader, header)) {
1921 DCHECK_NE("", detailed_error_);
1922 QUIC_DVLOG(1)
1923 << ENDPOINT
1924 << "Unable to process packet header. Stopping parsing. Error: "
1925 << detailed_error_;
1926 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
1927 return false;
1928 }
1929
1930 QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload();
1931 QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket(
1932 version_.transport_version, packet,
1933 GetIncludedDestinationConnectionIdLength(*header),
1934 GetIncludedSourceConnectionIdLength(*header), header->version_flag,
1935 header->nonce != nullptr, header->packet_number_length,
1936 header->retry_token_length_length, header->retry_token.length(),
1937 header->length_length);
1938
1939 size_t decrypted_length = 0;
QUICHE team10b22a12019-03-21 15:31:42 -07001940 EncryptionLevel decrypted_level;
QUICHE teama6ef0a62019-03-07 20:34:33 -05001941 if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer,
QUICHE team10b22a12019-03-21 15:31:42 -07001942 buffer_length, &decrypted_length, &decrypted_level)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001943 RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE);
1944 set_detailed_error("Unable to decrypt payload.");
1945 return RaiseError(QUIC_DECRYPTION_FAILURE);
1946 }
1947
1948 QuicDataReader reader(decrypted_buffer, decrypted_length);
1949
1950 // Update the largest packet number after we have decrypted the packet
1951 // so we are confident is not attacker controlled.
QUICHE team10b22a12019-03-21 15:31:42 -07001952 if (supports_multiple_packet_number_spaces_) {
1953 largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace(
1954 decrypted_level)]
1955 .UpdateMax(header->packet_number);
1956 } else {
1957 largest_packet_number_.UpdateMax(header->packet_number);
1958 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05001959
1960 if (!visitor_->OnPacketHeader(*header)) {
1961 // The visitor suppresses further processing of the packet.
1962 return true;
1963 }
1964
dschinazie8d7fa72019-04-05 14:44:40 -07001965 if (packet.length() > kMaxIncomingPacketSize) {
1966 set_detailed_error("Packet too large.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05001967 return RaiseError(QUIC_PACKET_TOO_LARGE);
1968 }
1969
1970 // Handle the payload.
1971 if (!ProcessFrameData(&reader, *header)) {
1972 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
1973 DCHECK_NE("", detailed_error_);
1974 QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: "
1975 << detailed_error_;
1976 return false;
1977 }
1978
1979 visitor_->OnPacketComplete();
1980 return true;
1981}
1982
1983bool QuicFramer::ProcessPublicResetPacket(QuicDataReader* reader,
1984 const QuicPacketHeader& header) {
1985 QuicPublicResetPacket packet(header.destination_connection_id);
1986
1987 std::unique_ptr<CryptoHandshakeMessage> reset(
1988 CryptoFramer::ParseMessage(reader->ReadRemainingPayload()));
1989 if (!reset.get()) {
1990 set_detailed_error("Unable to read reset message.");
1991 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET);
1992 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
1993 }
1994 if (reset->tag() != kPRST) {
1995 set_detailed_error("Incorrect message tag.");
1996 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET);
1997 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
1998 }
1999
2000 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
2001 set_detailed_error("Unable to read nonce proof.");
2002 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET);
2003 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
2004 }
2005 // TODO(satyamshekhar): validate nonce to protect against DoS.
2006
2007 QuicStringPiece address;
2008 if (reset->GetStringPiece(kCADR, &address)) {
2009 QuicSocketAddressCoder address_coder;
2010 if (address_coder.Decode(address.data(), address.length())) {
2011 packet.client_address =
2012 QuicSocketAddress(address_coder.ip(), address_coder.port());
2013 }
2014 }
2015
2016 QuicStringPiece endpoint_id;
2017 if (perspective_ == Perspective::IS_CLIENT &&
2018 reset->GetStringPiece(kEPID, &endpoint_id)) {
vasilvvc48c8712019-03-11 13:38:16 -07002019 packet.endpoint_id = std::string(endpoint_id);
QUICHE teama6ef0a62019-03-07 20:34:33 -05002020 packet.endpoint_id += '\0';
2021 }
2022
2023 visitor_->OnPublicResetPacket(packet);
2024 return true;
2025}
2026
2027bool QuicFramer::IsIetfStatelessResetPacket(
2028 const QuicPacketHeader& header) const {
2029 QUIC_BUG_IF(header.has_possible_stateless_reset_token &&
2030 perspective_ != Perspective::IS_CLIENT)
2031 << "has_possible_stateless_reset_token can only be true at client side.";
2032 return header.form == IETF_QUIC_SHORT_HEADER_PACKET &&
2033 header.has_possible_stateless_reset_token &&
2034 visitor_->IsValidStatelessResetToken(
2035 header.possible_stateless_reset_token);
2036}
2037
2038bool QuicFramer::HasEncrypterOfEncryptionLevel(EncryptionLevel level) const {
2039 return encrypter_[level] != nullptr;
2040}
2041
2042bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
2043 QuicDataWriter* writer,
2044 size_t* length_field_offset) {
2045 if (transport_version() > QUIC_VERSION_43) {
2046 return AppendIetfPacketHeader(header, writer, length_field_offset);
2047 }
2048 QUIC_DVLOG(1) << ENDPOINT << "Appending header: " << header;
2049 uint8_t public_flags = 0;
2050 if (header.reset_flag) {
2051 public_flags |= PACKET_PUBLIC_FLAGS_RST;
2052 }
2053 if (header.version_flag) {
2054 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
2055 }
2056
2057 public_flags |= GetPacketNumberFlags(header.packet_number_length)
2058 << kPublicHeaderSequenceNumberShift;
2059
2060 if (header.nonce != nullptr) {
2061 DCHECK_EQ(Perspective::IS_SERVER, perspective_);
2062 public_flags |= PACKET_PUBLIC_FLAGS_NONCE;
2063 }
2064 DCHECK_EQ(CONNECTION_ID_ABSENT, header.source_connection_id_included);
2065 switch (header.destination_connection_id_included) {
2066 case CONNECTION_ID_ABSENT:
2067 if (!writer->WriteUInt8(public_flags |
2068 PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
2069 return false;
2070 }
2071 break;
2072 case CONNECTION_ID_PRESENT:
2073 QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion(
2074 header.destination_connection_id, transport_version()))
2075 << "AppendPacketHeader: attempted to use connection ID "
2076 << header.destination_connection_id
2077 << " which is invalid with version "
2078 << QuicVersionToString(transport_version());
2079
2080 public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID;
2081 if (perspective_ == Perspective::IS_CLIENT) {
2082 public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD;
2083 }
2084 if (!writer->WriteUInt8(public_flags) ||
2085 !writer->WriteConnectionId(header.destination_connection_id)) {
2086 return false;
2087 }
2088 break;
2089 }
2090 last_serialized_connection_id_ = header.destination_connection_id;
2091
2092 if (header.version_flag) {
2093 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
2094 QuicVersionLabel version_label = CreateQuicVersionLabel(version_);
2095 // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed.
2096 if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) {
2097 return false;
2098 }
2099
2100 QUIC_DVLOG(1) << ENDPOINT << "label = '"
2101 << QuicVersionLabelToString(version_label) << "'";
2102 }
2103
2104 if (header.nonce != nullptr &&
2105 !writer->WriteBytes(header.nonce, kDiversificationNonceSize)) {
2106 return false;
2107 }
2108
2109 if (!AppendPacketNumber(header.packet_number_length, header.packet_number,
2110 writer)) {
2111 return false;
2112 }
2113
2114 return true;
2115}
2116
2117bool QuicFramer::AppendIetfHeaderTypeByte(const QuicPacketHeader& header,
2118 QuicDataWriter* writer) {
2119 uint8_t type = 0;
2120 if (transport_version() > QUIC_VERSION_44) {
2121 if (header.version_flag) {
2122 type = static_cast<uint8_t>(
2123 FLAGS_LONG_HEADER | FLAGS_FIXED_BIT |
2124 LongHeaderTypeToOnWireValue(transport_version(),
2125 header.long_packet_type) |
2126 PacketNumberLengthToOnWireValue(transport_version(),
2127 header.packet_number_length));
2128 } else {
2129 type = static_cast<uint8_t>(
2130 FLAGS_FIXED_BIT |
2131 PacketNumberLengthToOnWireValue(transport_version(),
2132 header.packet_number_length));
2133 }
2134 return writer->WriteUInt8(type);
2135 }
2136
2137 if (header.version_flag) {
2138 type = static_cast<uint8_t>(
2139 FLAGS_LONG_HEADER | LongHeaderTypeToOnWireValue(
2140 transport_version(), header.long_packet_type));
2141 DCHECK_EQ(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length);
2142 } else {
2143 type |= FLAGS_SHORT_HEADER_RESERVED_1;
2144 type |= FLAGS_SHORT_HEADER_RESERVED_2;
2145 DCHECK_GE(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length);
2146 type |= PacketNumberLengthToOnWireValue(transport_version(),
2147 header.packet_number_length);
2148 }
2149 return writer->WriteUInt8(type);
2150}
2151
2152bool QuicFramer::AppendIetfPacketHeader(const QuicPacketHeader& header,
2153 QuicDataWriter* writer,
2154 size_t* length_field_offset) {
2155 QUIC_DVLOG(1) << ENDPOINT << "Appending IETF header: " << header;
2156 QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion(
2157 header.destination_connection_id, transport_version()))
2158 << "AppendIetfPacketHeader: attempted to use connection ID "
2159 << header.destination_connection_id << " which is invalid with version "
2160 << QuicVersionToString(transport_version());
2161 if (!AppendIetfHeaderTypeByte(header, writer)) {
2162 return false;
2163 }
2164
2165 if (header.version_flag) {
2166 // Append version for long header.
2167 QuicVersionLabel version_label = CreateQuicVersionLabel(version_);
2168 // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed.
2169 if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) {
2170 return false;
2171 }
2172 }
2173
2174 // Append connection ID.
2175 if (!QuicUtils::VariableLengthConnectionIdAllowedForVersion(
2176 transport_version()) &&
2177 !GetQuicReloadableFlag(quic_use_new_append_connection_id)) {
2178 if (!AppendIetfConnectionId(
2179 header.version_flag, header.destination_connection_id,
2180 GetIncludedDestinationConnectionIdLength(header),
2181 header.source_connection_id,
2182 GetIncludedSourceConnectionIdLength(header), writer)) {
2183 return false;
2184 }
2185 } else {
2186 QUIC_RELOADABLE_FLAG_COUNT_N(quic_use_new_append_connection_id, 2, 2);
2187 if (!AppendIetfConnectionIdsNew(
2188 header.version_flag,
2189 header.destination_connection_id_included != CONNECTION_ID_ABSENT
2190 ? header.destination_connection_id
2191 : EmptyQuicConnectionId(),
2192 header.source_connection_id_included != CONNECTION_ID_ABSENT
2193 ? header.source_connection_id
2194 : EmptyQuicConnectionId(),
2195 writer)) {
2196 return false;
2197 }
2198 }
2199 last_serialized_connection_id_ = header.destination_connection_id;
2200
2201 if (QuicVersionHasLongHeaderLengths(transport_version()) &&
2202 header.version_flag) {
2203 if (header.long_packet_type == INITIAL) {
2204 // Write retry token length.
2205 if (!writer->WriteVarInt62(header.retry_token.length(),
2206 header.retry_token_length_length)) {
2207 return false;
2208 }
2209 // Write retry token.
2210 if (!header.retry_token.empty() &&
2211 !writer->WriteStringPiece(header.retry_token)) {
2212 return false;
2213 }
2214 }
2215 if (length_field_offset != nullptr) {
2216 *length_field_offset = writer->length();
2217 }
2218 // Add fake length to reserve two bytes to add length in later.
2219 writer->WriteVarInt62(256);
2220 } else if (length_field_offset != nullptr) {
2221 *length_field_offset = 0;
2222 }
2223
2224 // Append packet number.
2225 if (!AppendPacketNumber(header.packet_number_length, header.packet_number,
2226 writer)) {
2227 return false;
2228 }
nharper55fa6132019-05-07 19:37:21 -07002229 last_written_packet_number_length_ = header.packet_number_length;
QUICHE teama6ef0a62019-03-07 20:34:33 -05002230
2231 if (!header.version_flag) {
2232 return true;
2233 }
2234
2235 if (header.nonce != nullptr) {
2236 DCHECK(header.version_flag);
2237 DCHECK_EQ(ZERO_RTT_PROTECTED, header.long_packet_type);
2238 DCHECK_EQ(Perspective::IS_SERVER, perspective_);
2239 if (!writer->WriteBytes(header.nonce, kDiversificationNonceSize)) {
2240 return false;
2241 }
2242 }
2243
2244 return true;
2245}
2246
2247const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
2248 uint32_t time_delta_us) {
2249 // The new time_delta might have wrapped to the next epoch, or it
2250 // might have reverse wrapped to the previous epoch, or it might
2251 // remain in the same epoch. Select the time closest to the previous
2252 // time.
2253 //
2254 // epoch_delta is the delta between epochs. A delta is 4 bytes of
2255 // microseconds.
2256 const uint64_t epoch_delta = UINT64_C(1) << 32;
2257 uint64_t epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
2258 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
2259 uint64_t prev_epoch = epoch - epoch_delta;
2260 uint64_t next_epoch = epoch + epoch_delta;
2261
2262 uint64_t time = ClosestTo(
2263 last_timestamp_.ToMicroseconds(), epoch + time_delta_us,
2264 ClosestTo(last_timestamp_.ToMicroseconds(), prev_epoch + time_delta_us,
2265 next_epoch + time_delta_us));
2266
2267 return QuicTime::Delta::FromMicroseconds(time);
2268}
2269
2270uint64_t QuicFramer::CalculatePacketNumberFromWire(
2271 QuicPacketNumberLength packet_number_length,
2272 QuicPacketNumber base_packet_number,
2273 uint64_t packet_number) const {
2274 // The new packet number might have wrapped to the next epoch, or
2275 // it might have reverse wrapped to the previous epoch, or it might
2276 // remain in the same epoch. Select the packet number closest to the
2277 // next expected packet number, the previous packet number plus 1.
2278
2279 // epoch_delta is the delta between epochs the packet number was serialized
2280 // with, so the correct value is likely the same epoch as the last sequence
2281 // number or an adjacent epoch.
2282 if (!base_packet_number.IsInitialized()) {
2283 return packet_number;
2284 }
2285 const uint64_t epoch_delta = UINT64_C(1) << (8 * packet_number_length);
2286 uint64_t next_packet_number = base_packet_number.ToUint64() + 1;
2287 uint64_t epoch = base_packet_number.ToUint64() & ~(epoch_delta - 1);
2288 uint64_t prev_epoch = epoch - epoch_delta;
2289 uint64_t next_epoch = epoch + epoch_delta;
2290
2291 return ClosestTo(next_packet_number, epoch + packet_number,
2292 ClosestTo(next_packet_number, prev_epoch + packet_number,
2293 next_epoch + packet_number));
2294}
2295
2296bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader,
2297 bool packet_has_ietf_packet_header,
2298 QuicPacketHeader* header) {
2299 if (packet_has_ietf_packet_header) {
2300 return ProcessIetfPacketHeader(reader, header);
2301 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002302 uint8_t public_flags;
2303 if (!reader->ReadBytes(&public_flags, 1)) {
2304 set_detailed_error("Unable to read public flags.");
2305 return false;
2306 }
2307
2308 header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
2309 header->version_flag = (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
2310
2311 if (validate_flags_ && !header->version_flag &&
2312 public_flags > PACKET_PUBLIC_FLAGS_MAX) {
2313 set_detailed_error("Illegal public flags value.");
2314 return false;
2315 }
2316
2317 if (header->reset_flag && header->version_flag) {
2318 set_detailed_error("Got version flag in reset packet");
2319 return false;
2320 }
2321
2322 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
2323 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
2324 if (!reader->ReadConnectionId(&header->destination_connection_id,
2325 kQuicDefaultConnectionIdLength)) {
2326 set_detailed_error("Unable to read ConnectionId.");
2327 return false;
2328 }
2329 header->destination_connection_id_included = CONNECTION_ID_PRESENT;
2330 break;
2331 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
2332 header->destination_connection_id_included = CONNECTION_ID_ABSENT;
2333 header->destination_connection_id = last_serialized_connection_id_;
2334 break;
2335 }
2336
2337 header->packet_number_length = ReadSequenceNumberLength(
2338 public_flags >> kPublicHeaderSequenceNumberShift);
2339
2340 // Read the version only if the packet is from the client.
2341 // version flag from the server means version negotiation packet.
2342 if (header->version_flag && perspective_ == Perspective::IS_SERVER) {
2343 QuicVersionLabel version_label;
fayang40315542019-05-09 09:19:09 -07002344 if (!ProcessVersionLabel(reader, &version_label)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05002345 set_detailed_error("Unable to read protocol version.");
2346 return false;
2347 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002348 // If the version from the new packet is the same as the version of this
2349 // framer, then the public flags should be set to something we understand.
2350 // If not, this raises an error.
2351 last_version_label_ = version_label;
2352 ParsedQuicVersion version = ParseQuicVersionLabel(version_label);
2353 if (version == version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
2354 set_detailed_error("Illegal public flags value.");
2355 return false;
2356 }
2357 header->version = version;
2358 }
2359
2360 // A nonce should only be present in packets from the server to the client,
2361 // which are neither version negotiation nor public reset packets.
2362 if (public_flags & PACKET_PUBLIC_FLAGS_NONCE &&
2363 !(public_flags & PACKET_PUBLIC_FLAGS_VERSION) &&
2364 !(public_flags & PACKET_PUBLIC_FLAGS_RST) &&
2365 // The nonce flag from a client is ignored and is assumed to be an older
2366 // client indicating an eight-byte connection ID.
2367 perspective_ == Perspective::IS_CLIENT) {
2368 if (!reader->ReadBytes(reinterpret_cast<uint8_t*>(last_nonce_.data()),
2369 last_nonce_.size())) {
2370 set_detailed_error("Unable to read nonce.");
2371 return false;
2372 }
2373 header->nonce = &last_nonce_;
2374 } else {
2375 header->nonce = nullptr;
2376 }
2377
2378 return true;
2379}
2380
2381// static
2382QuicPacketNumberLength QuicFramer::GetMinPacketNumberLength(
2383 QuicTransportVersion version,
2384 QuicPacketNumber packet_number) {
2385 DCHECK(packet_number.IsInitialized());
2386 if (packet_number < QuicPacketNumber(1 << (PACKET_1BYTE_PACKET_NUMBER * 8))) {
2387 return PACKET_1BYTE_PACKET_NUMBER;
2388 } else if (packet_number <
2389 QuicPacketNumber(1 << (PACKET_2BYTE_PACKET_NUMBER * 8))) {
2390 return PACKET_2BYTE_PACKET_NUMBER;
2391 } else if (packet_number <
2392 QuicPacketNumber(UINT64_C(1)
2393 << (PACKET_4BYTE_PACKET_NUMBER * 8))) {
2394 return PACKET_4BYTE_PACKET_NUMBER;
2395 } else {
2396 return PACKET_6BYTE_PACKET_NUMBER;
2397 }
2398}
2399
2400// static
2401uint8_t QuicFramer::GetPacketNumberFlags(
2402 QuicPacketNumberLength packet_number_length) {
2403 switch (packet_number_length) {
2404 case PACKET_1BYTE_PACKET_NUMBER:
2405 return PACKET_FLAGS_1BYTE_PACKET;
2406 case PACKET_2BYTE_PACKET_NUMBER:
2407 return PACKET_FLAGS_2BYTE_PACKET;
2408 case PACKET_4BYTE_PACKET_NUMBER:
2409 return PACKET_FLAGS_4BYTE_PACKET;
2410 case PACKET_6BYTE_PACKET_NUMBER:
2411 case PACKET_8BYTE_PACKET_NUMBER:
2412 return PACKET_FLAGS_8BYTE_PACKET;
2413 default:
2414 QUIC_BUG << "Unreachable case statement.";
2415 return PACKET_FLAGS_8BYTE_PACKET;
2416 }
2417}
2418
2419// static
2420QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
2421 const QuicAckFrame& frame) {
2422 AckFrameInfo new_ack_info;
2423 if (frame.packets.Empty()) {
2424 return new_ack_info;
2425 }
2426 // The first block is the last interval. It isn't encoded with the gap-length
2427 // encoding, so skip it.
2428 new_ack_info.first_block_length = frame.packets.LastIntervalLength();
2429 auto itr = frame.packets.rbegin();
2430 QuicPacketNumber previous_start = itr->min();
2431 new_ack_info.max_block_length = PacketNumberIntervalLength(*itr);
2432 ++itr;
2433
2434 // Don't do any more work after getting information for 256 ACK blocks; any
2435 // more can't be encoded anyway.
2436 for (; itr != frame.packets.rend() &&
2437 new_ack_info.num_ack_blocks < std::numeric_limits<uint8_t>::max();
2438 previous_start = itr->min(), ++itr) {
2439 const auto& interval = *itr;
2440 const QuicPacketCount total_gap = previous_start - interval.max();
2441 new_ack_info.num_ack_blocks +=
2442 (total_gap + std::numeric_limits<uint8_t>::max() - 1) /
2443 std::numeric_limits<uint8_t>::max();
2444 new_ack_info.max_block_length = std::max(
2445 new_ack_info.max_block_length, PacketNumberIntervalLength(interval));
2446 }
2447 return new_ack_info;
2448}
2449
2450bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader,
2451 QuicPacketHeader* header) {
QUICHE team10b22a12019-03-21 15:31:42 -07002452 QuicPacketNumber base_packet_number;
2453 if (supports_multiple_packet_number_spaces_) {
nharper55fa6132019-05-07 19:37:21 -07002454 PacketNumberSpace pn_space = GetPacketNumberSpace(*header);
2455 if (pn_space == NUM_PACKET_NUMBER_SPACES) {
2456 set_detailed_error("Unable to determine packet number space.");
2457 return RaiseError(QUIC_INVALID_PACKET_HEADER);
2458 }
2459 base_packet_number = largest_decrypted_packet_numbers_[pn_space];
QUICHE team10b22a12019-03-21 15:31:42 -07002460 } else {
2461 base_packet_number = largest_packet_number_;
2462 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002463 uint64_t full_packet_number;
2464 if (!ProcessAndCalculatePacketNumber(
2465 encrypted_reader, header->packet_number_length, base_packet_number,
2466 &full_packet_number)) {
2467 set_detailed_error("Unable to read packet number.");
2468 return RaiseError(QUIC_INVALID_PACKET_HEADER);
2469 }
2470
2471 if (!IsValidFullPacketNumber(full_packet_number, transport_version())) {
2472 set_detailed_error("packet numbers cannot be 0.");
2473 return RaiseError(QUIC_INVALID_PACKET_HEADER);
2474 }
2475 header->packet_number = QuicPacketNumber(full_packet_number);
2476
2477 if (!visitor_->OnUnauthenticatedHeader(*header)) {
2478 set_detailed_error(
2479 "Visitor asked to stop processing of unauthenticated header.");
2480 return false;
2481 }
nharper3f283562019-05-02 16:37:12 -07002482 // The function we are in is called because the framer believes that it is
2483 // processing a packet that uses the non-IETF (i.e. Google QUIC) packet header
2484 // type. Usually, the framer makes that decision based on the framer's
2485 // version, but when the framer is used with Perspective::IS_SERVER, then
2486 // before version negotiation is complete (specifically, before
2487 // InferPacketHeaderTypeFromVersion is called), this decision is made based on
2488 // the type byte of the packet.
2489 //
2490 // If the framer's version KnowsWhichDecrypterToUse, then that version expects
2491 // to use the IETF packet header type. If that's the case and we're in this
2492 // function, then the packet received is invalid: the framer was expecting an
2493 // IETF packet header and didn't get one.
2494 if (version().KnowsWhichDecrypterToUse()) {
nharpera745e392019-04-19 12:05:15 -07002495 set_detailed_error("Invalid public header type for expected version.");
2496 return RaiseError(QUIC_INVALID_PACKET_HEADER);
2497 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002498 return true;
2499}
2500
2501bool QuicFramer::ProcessIetfHeaderTypeByte(QuicDataReader* reader,
2502 QuicPacketHeader* header) {
2503 uint8_t type;
2504 if (!reader->ReadBytes(&type, 1)) {
2505 set_detailed_error("Unable to read type.");
2506 return false;
2507 }
dschinazi244f6dc2019-05-06 15:45:16 -07002508 header->type_byte = type;
QUICHE teama6ef0a62019-03-07 20:34:33 -05002509 // Determine whether this is a long or short header.
2510 header->form = type & FLAGS_LONG_HEADER ? IETF_QUIC_LONG_HEADER_PACKET
2511 : IETF_QUIC_SHORT_HEADER_PACKET;
2512 if (header->form == IETF_QUIC_LONG_HEADER_PACKET) {
2513 // Version is always present in long headers.
2514 header->version_flag = true;
2515 // Long header packets received by client must include 8-byte source
2516 // connection ID, and those received by server must include 8-byte
2517 // destination connection ID.
2518 header->destination_connection_id_included =
2519 perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_ABSENT
2520 : CONNECTION_ID_PRESENT;
2521 header->source_connection_id_included =
2522 perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_PRESENT
2523 : CONNECTION_ID_ABSENT;
2524 // Read version tag.
2525 QuicVersionLabel version_label;
fayang40315542019-05-09 09:19:09 -07002526 if (!ProcessVersionLabel(reader, &version_label)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05002527 set_detailed_error("Unable to read protocol version.");
2528 return false;
2529 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002530 if (!version_label) {
2531 // Version label is 0 indicating this is a version negotiation packet.
2532 header->long_packet_type = VERSION_NEGOTIATION;
2533 } else {
2534 header->version = ParseQuicVersionLabel(version_label);
2535 if (header->version.transport_version != QUIC_VERSION_UNSUPPORTED) {
2536 if (header->version.transport_version > QUIC_VERSION_44 &&
2537 !(type & FLAGS_FIXED_BIT)) {
2538 set_detailed_error("Fixed bit is 0 in long header.");
2539 return false;
2540 }
2541 if (!GetLongHeaderType(header->version.transport_version, type,
2542 &header->long_packet_type)) {
2543 set_detailed_error("Illegal long header type value.");
2544 return false;
2545 }
dschinazi244f6dc2019-05-06 15:45:16 -07002546 if (header->long_packet_type == RETRY) {
2547 if (!version().SupportsRetry()) {
2548 set_detailed_error("RETRY not supported in this version.");
2549 return false;
2550 }
2551 if (perspective_ == Perspective::IS_SERVER) {
2552 set_detailed_error("Client-initiated RETRY is invalid.");
2553 return false;
2554 }
nharper55fa6132019-05-07 19:37:21 -07002555 } else if (!header->version.HasHeaderProtection()) {
dschinazi244f6dc2019-05-06 15:45:16 -07002556 header->packet_number_length = GetLongHeaderPacketNumberLength(
2557 header->version.transport_version, type);
nharper2ceb97c2019-04-19 11:38:59 -07002558 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002559 }
2560 }
2561 if (header->long_packet_type != VERSION_NEGOTIATION) {
2562 // Do not save version of version negotiation packet.
2563 last_version_label_ = version_label;
2564 }
2565
2566 QUIC_DVLOG(1) << ENDPOINT << "Received IETF long header: "
2567 << QuicUtils::QuicLongHeaderTypetoString(
2568 header->long_packet_type);
2569 return true;
2570 }
2571
2572 QUIC_DVLOG(1) << ENDPOINT << "Received IETF short header";
2573 // Version is not present in short headers.
2574 header->version_flag = false;
2575 // Connection ID length depends on the perspective. Client does not expect
2576 // destination connection ID, and server expects destination connection ID.
2577 header->destination_connection_id_included =
2578 perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_ABSENT
2579 : CONNECTION_ID_PRESENT;
2580 header->source_connection_id_included = CONNECTION_ID_ABSENT;
2581 if (infer_packet_header_type_from_version_ &&
2582 transport_version() > QUIC_VERSION_44 && !(type & FLAGS_FIXED_BIT)) {
2583 set_detailed_error("Fixed bit is 0 in short header.");
2584 return false;
2585 }
nharper55fa6132019-05-07 19:37:21 -07002586 if (!header->version.HasHeaderProtection() &&
2587 !GetShortHeaderPacketNumberLength(transport_version(), type,
QUICHE teama6ef0a62019-03-07 20:34:33 -05002588 infer_packet_header_type_from_version_,
2589 &header->packet_number_length)) {
2590 set_detailed_error("Illegal short header type value.");
2591 return false;
2592 }
2593 QUIC_DVLOG(1) << "packet_number_length = " << header->packet_number_length;
2594 return true;
2595}
2596
fayang40315542019-05-09 09:19:09 -07002597// static
2598bool QuicFramer::ProcessVersionLabel(QuicDataReader* reader,
2599 QuicVersionLabel* version_label) {
2600 if (!reader->ReadTag(version_label)) {
2601 return false;
2602 }
2603 // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed.
2604 *version_label = QuicEndian::NetToHost32(*version_label);
2605 return true;
2606}
2607
2608// static
2609bool QuicFramer::ValidateIetfConnectionIdLength(
2610 uint8_t connection_id_lengths_byte,
2611 ParsedQuicVersion version,
2612 bool should_update_expected_connection_id_length,
2613 uint8_t* expected_connection_id_length,
2614 uint8_t* destination_connection_id_length,
2615 uint8_t* source_connection_id_length) {
2616 uint8_t dcil =
2617 (connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4;
2618 if (dcil != 0) {
2619 dcil += kConnectionIdLengthAdjustment;
2620 }
2621 if (should_update_expected_connection_id_length &&
2622 *expected_connection_id_length != dcil) {
2623 QUIC_DVLOG(1) << "Updating expected_connection_id_length: "
2624 << static_cast<int>(*expected_connection_id_length) << " -> "
2625 << static_cast<int>(dcil);
2626 *expected_connection_id_length = dcil;
2627 }
2628 uint8_t scil = connection_id_lengths_byte & kSourceConnectionIdLengthMask;
2629 if (scil != 0) {
2630 scil += kConnectionIdLengthAdjustment;
2631 }
2632 if ((dcil != *destination_connection_id_length ||
2633 scil != *source_connection_id_length) &&
2634 !should_update_expected_connection_id_length &&
2635 !QuicUtils::VariableLengthConnectionIdAllowedForVersion(
2636 version.transport_version)) {
2637 // TODO(dschinazi): use the framer's version once the
2638 // OnProtocolVersionMismatch call is moved to before this is run.
2639 QUIC_DVLOG(1) << "dcil: " << static_cast<uint32_t>(dcil)
2640 << ", scil: " << static_cast<uint32_t>(scil);
2641 return false;
2642 }
2643 *destination_connection_id_length = dcil;
2644 *source_connection_id_length = scil;
2645 return true;
2646}
2647
QUICHE teama6ef0a62019-03-07 20:34:33 -05002648bool QuicFramer::ProcessIetfPacketHeader(QuicDataReader* reader,
2649 QuicPacketHeader* header) {
2650 if (!ProcessIetfHeaderTypeByte(reader, header)) {
2651 return false;
2652 }
2653
2654 uint8_t destination_connection_id_length =
2655 header->destination_connection_id_included == CONNECTION_ID_PRESENT
2656 ? expected_connection_id_length_
2657 : 0;
2658 uint8_t source_connection_id_length =
2659 header->source_connection_id_included == CONNECTION_ID_PRESENT
2660 ? expected_connection_id_length_
2661 : 0;
2662 if (header->form == IETF_QUIC_LONG_HEADER_PACKET) {
2663 // Read and validate connection ID length.
2664 uint8_t connection_id_lengths_byte;
2665 if (!reader->ReadBytes(&connection_id_lengths_byte, 1)) {
2666 set_detailed_error("Unable to read ConnectionId length.");
2667 return false;
2668 }
fayang40315542019-05-09 09:19:09 -07002669 if (!ValidateIetfConnectionIdLength(
2670 connection_id_lengths_byte, header->version,
2671 should_update_expected_connection_id_length_,
2672 &expected_connection_id_length_, &destination_connection_id_length,
2673 &source_connection_id_length)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05002674 set_detailed_error("Invalid ConnectionId length.");
2675 return false;
2676 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002677 }
2678
QUICHE team0131a5b2019-03-20 15:23:27 -07002679 DCHECK_LE(destination_connection_id_length, kQuicMaxConnectionIdLength);
2680 DCHECK_LE(source_connection_id_length, kQuicMaxConnectionIdLength);
2681
QUICHE teama6ef0a62019-03-07 20:34:33 -05002682 // Read connection ID.
2683 if (!reader->ReadConnectionId(&header->destination_connection_id,
2684 destination_connection_id_length)) {
2685 set_detailed_error("Unable to read Destination ConnectionId.");
2686 return false;
2687 }
2688
2689 if (!reader->ReadConnectionId(&header->source_connection_id,
2690 source_connection_id_length)) {
2691 set_detailed_error("Unable to read Source ConnectionId.");
2692 return false;
2693 }
2694
2695 if (header->source_connection_id_included == CONNECTION_ID_PRESENT) {
2696 // Set destination connection ID to source connection ID.
2697 DCHECK_EQ(EmptyQuicConnectionId(), header->destination_connection_id);
2698 header->destination_connection_id = header->source_connection_id;
2699 } else if (header->destination_connection_id_included ==
2700 CONNECTION_ID_ABSENT) {
2701 header->destination_connection_id = last_serialized_connection_id_;
2702 }
2703
2704 return true;
2705}
2706
2707bool QuicFramer::ProcessAndCalculatePacketNumber(
2708 QuicDataReader* reader,
2709 QuicPacketNumberLength packet_number_length,
2710 QuicPacketNumber base_packet_number,
2711 uint64_t* packet_number) {
2712 uint64_t wire_packet_number;
2713 if (!reader->ReadBytesToUInt64(packet_number_length, &wire_packet_number)) {
2714 return false;
2715 }
2716
2717 // TODO(ianswett): Explore the usefulness of trying multiple packet numbers
2718 // in case the first guess is incorrect.
2719 *packet_number = CalculatePacketNumberFromWire(
2720 packet_number_length, base_packet_number, wire_packet_number);
2721 return true;
2722}
2723
2724bool QuicFramer::ProcessFrameData(QuicDataReader* reader,
2725 const QuicPacketHeader& header) {
2726 DCHECK_NE(QUIC_VERSION_99, version_.transport_version)
2727 << "Version 99 negotiated, but not processing frames as version 99.";
2728 if (reader->IsDoneReading()) {
2729 set_detailed_error("Packet has no frames.");
2730 return RaiseError(QUIC_MISSING_PAYLOAD);
2731 }
2732 while (!reader->IsDoneReading()) {
2733 uint8_t frame_type;
2734 if (!reader->ReadBytes(&frame_type, 1)) {
2735 set_detailed_error("Unable to read frame type.");
2736 return RaiseError(QUIC_INVALID_FRAME_DATA);
2737 }
2738 const uint8_t special_mask = transport_version() <= QUIC_VERSION_44
2739 ? kQuicFrameTypeBrokenMask
2740 : kQuicFrameTypeSpecialMask;
2741 if (frame_type & special_mask) {
2742 // Stream Frame
2743 if (frame_type & kQuicFrameTypeStreamMask) {
2744 QuicStreamFrame frame;
2745 if (!ProcessStreamFrame(reader, frame_type, &frame)) {
2746 return RaiseError(QUIC_INVALID_STREAM_DATA);
2747 }
2748 if (!visitor_->OnStreamFrame(frame)) {
2749 QUIC_DVLOG(1) << ENDPOINT
2750 << "Visitor asked to stop further processing.";
2751 // Returning true since there was no parsing error.
2752 return true;
2753 }
2754 continue;
2755 }
2756
2757 // Ack Frame
2758 if (frame_type & kQuicFrameTypeAckMask) {
2759 if (!ProcessAckFrame(reader, frame_type)) {
2760 return RaiseError(QUIC_INVALID_ACK_DATA);
2761 }
2762 continue;
2763 }
2764
2765 // This was a special frame type that did not match any
2766 // of the known ones. Error.
2767 set_detailed_error("Illegal frame type.");
2768 QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: "
2769 << static_cast<int>(frame_type);
2770 return RaiseError(QUIC_INVALID_FRAME_DATA);
2771 }
2772
2773 switch (frame_type) {
2774 case PADDING_FRAME: {
2775 QuicPaddingFrame frame;
2776 ProcessPaddingFrame(reader, &frame);
2777 if (!visitor_->OnPaddingFrame(frame)) {
2778 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2779 // Returning true since there was no parsing error.
2780 return true;
2781 }
2782 continue;
2783 }
2784
2785 case RST_STREAM_FRAME: {
2786 QuicRstStreamFrame frame;
2787 if (!ProcessRstStreamFrame(reader, &frame)) {
2788 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
2789 }
2790 if (!visitor_->OnRstStreamFrame(frame)) {
2791 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2792 // Returning true since there was no parsing error.
2793 return true;
2794 }
2795 continue;
2796 }
2797
2798 case CONNECTION_CLOSE_FRAME: {
2799 QuicConnectionCloseFrame frame;
2800 if (!ProcessConnectionCloseFrame(reader, &frame)) {
2801 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
2802 }
2803
2804 if (!visitor_->OnConnectionCloseFrame(frame)) {
2805 QUIC_DVLOG(1) << ENDPOINT
2806 << "Visitor asked to stop further processing.";
2807 // Returning true since there was no parsing error.
2808 return true;
2809 }
2810 continue;
2811 }
2812
2813 case GOAWAY_FRAME: {
2814 QuicGoAwayFrame goaway_frame;
2815 if (!ProcessGoAwayFrame(reader, &goaway_frame)) {
2816 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
2817 }
2818 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
2819 QUIC_DVLOG(1) << ENDPOINT
2820 << "Visitor asked to stop further processing.";
2821 // Returning true since there was no parsing error.
2822 return true;
2823 }
2824 continue;
2825 }
2826
2827 case WINDOW_UPDATE_FRAME: {
2828 QuicWindowUpdateFrame window_update_frame;
2829 if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) {
2830 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
2831 }
2832 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
2833 QUIC_DVLOG(1) << ENDPOINT
2834 << "Visitor asked to stop further processing.";
2835 // Returning true since there was no parsing error.
2836 return true;
2837 }
2838 continue;
2839 }
2840
2841 case BLOCKED_FRAME: {
2842 QuicBlockedFrame blocked_frame;
2843 if (!ProcessBlockedFrame(reader, &blocked_frame)) {
2844 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
2845 }
2846 if (!visitor_->OnBlockedFrame(blocked_frame)) {
2847 QUIC_DVLOG(1) << ENDPOINT
2848 << "Visitor asked to stop further processing.";
2849 // Returning true since there was no parsing error.
2850 return true;
2851 }
2852 continue;
2853 }
2854
2855 case STOP_WAITING_FRAME: {
ianswett97b690b2019-05-02 15:12:43 -07002856 if (GetQuicReloadableFlag(quic_do_not_accept_stop_waiting) &&
2857 version_.transport_version >= QUIC_VERSION_44) {
2858 QUIC_RELOADABLE_FLAG_COUNT(quic_do_not_accept_stop_waiting);
2859 set_detailed_error("STOP WAITING not supported in version 44+.");
2860 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
2861 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002862 QuicStopWaitingFrame stop_waiting_frame;
2863 if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) {
2864 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
2865 }
2866 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
2867 QUIC_DVLOG(1) << ENDPOINT
2868 << "Visitor asked to stop further processing.";
2869 // Returning true since there was no parsing error.
2870 return true;
2871 }
2872 continue;
2873 }
2874 case PING_FRAME: {
2875 // Ping has no payload.
2876 QuicPingFrame ping_frame;
2877 if (!visitor_->OnPingFrame(ping_frame)) {
2878 QUIC_DVLOG(1) << ENDPOINT
2879 << "Visitor asked to stop further processing.";
2880 // Returning true since there was no parsing error.
2881 return true;
2882 }
2883 continue;
2884 }
2885 case IETF_EXTENSION_MESSAGE_NO_LENGTH:
2886 QUIC_FALLTHROUGH_INTENDED;
2887 case IETF_EXTENSION_MESSAGE: {
2888 QuicMessageFrame message_frame;
2889 if (!ProcessMessageFrame(reader,
2890 frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH,
2891 &message_frame)) {
2892 return RaiseError(QUIC_INVALID_MESSAGE_DATA);
2893 }
2894 if (!visitor_->OnMessageFrame(message_frame)) {
2895 QUIC_DVLOG(1) << ENDPOINT
2896 << "Visitor asked to stop further processing.";
2897 // Returning true since there was no parsing error.
2898 return true;
2899 }
2900 break;
2901 }
2902 case CRYPTO_FRAME: {
QUICHE teamea740082019-03-11 17:58:43 -07002903 if (!QuicVersionUsesCryptoFrames(version_.transport_version)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05002904 set_detailed_error("Illegal frame type.");
2905 return RaiseError(QUIC_INVALID_FRAME_DATA);
2906 }
2907 QuicCryptoFrame frame;
2908 if (!ProcessCryptoFrame(reader, &frame)) {
2909 return RaiseError(QUIC_INVALID_FRAME_DATA);
2910 }
2911 if (!visitor_->OnCryptoFrame(frame)) {
2912 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2913 // Returning true since there was no parsing error.
2914 return true;
2915 }
2916 break;
2917 }
2918
2919 default:
2920 set_detailed_error("Illegal frame type.");
2921 QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: "
2922 << static_cast<int>(frame_type);
2923 return RaiseError(QUIC_INVALID_FRAME_DATA);
2924 }
2925 }
2926
2927 return true;
2928}
2929
2930bool QuicFramer::ProcessIetfFrameData(QuicDataReader* reader,
2931 const QuicPacketHeader& header) {
2932 DCHECK_EQ(QUIC_VERSION_99, version_.transport_version)
2933 << "Attempt to process frames as IETF frames but version is "
2934 << version_.transport_version << ", not 99.";
2935 if (reader->IsDoneReading()) {
2936 set_detailed_error("Packet has no frames.");
2937 return RaiseError(QUIC_MISSING_PAYLOAD);
2938 }
2939 while (!reader->IsDoneReading()) {
2940 uint64_t frame_type;
2941 // Will be the number of bytes into which frame_type was encoded.
2942 size_t encoded_bytes = reader->BytesRemaining();
2943 if (!reader->ReadVarInt62(&frame_type)) {
2944 set_detailed_error("Unable to read frame type.");
2945 return RaiseError(QUIC_INVALID_FRAME_DATA);
2946 }
2947
2948 // Is now the number of bytes into which the frame type was encoded.
2949 encoded_bytes -= reader->BytesRemaining();
2950
2951 // Check that the frame type is minimally encoded.
2952 if (encoded_bytes !=
2953 static_cast<size_t>(QuicDataWriter::GetVarInt62Len(frame_type))) {
2954 // The frame type was not minimally encoded.
2955 set_detailed_error("Frame type not minimally encoded.");
2956 return RaiseError(IETF_QUIC_PROTOCOL_VIOLATION);
2957 }
2958
2959 if (IS_IETF_STREAM_FRAME(frame_type)) {
2960 QuicStreamFrame frame;
2961 if (!ProcessIetfStreamFrame(reader, frame_type, &frame)) {
2962 return RaiseError(QUIC_INVALID_STREAM_DATA);
2963 }
2964 if (!visitor_->OnStreamFrame(frame)) {
2965 QUIC_DVLOG(1) << ENDPOINT
2966 << "Visitor asked to stop further processing.";
2967 // Returning true since there was no parsing error.
2968 return true;
2969 }
2970 } else {
2971 switch (frame_type) {
2972 case IETF_PADDING: {
2973 QuicPaddingFrame frame;
2974 ProcessPaddingFrame(reader, &frame);
2975 if (!visitor_->OnPaddingFrame(frame)) {
2976 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2977 // Returning true since there was no parsing error.
2978 return true;
2979 }
2980 break;
2981 }
2982 case IETF_RST_STREAM: {
2983 QuicRstStreamFrame frame;
2984 if (!ProcessIetfResetStreamFrame(reader, &frame)) {
2985 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
2986 }
2987 if (!visitor_->OnRstStreamFrame(frame)) {
2988 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2989 // Returning true since there was no parsing error.
2990 return true;
2991 }
2992 break;
2993 }
fkastenholz04bd4f32019-04-16 12:24:38 -07002994 case IETF_APPLICATION_CLOSE:
QUICHE teama6ef0a62019-03-07 20:34:33 -05002995 case IETF_CONNECTION_CLOSE: {
2996 QuicConnectionCloseFrame frame;
fkastenholze9d71a82019-04-09 05:12:13 -07002997 if (!ProcessIetfConnectionCloseFrame(
fkastenholz04bd4f32019-04-16 12:24:38 -07002998 reader,
2999 (frame_type == IETF_CONNECTION_CLOSE)
3000 ? IETF_QUIC_TRANSPORT_CONNECTION_CLOSE
3001 : IETF_QUIC_APPLICATION_CONNECTION_CLOSE,
3002 &frame)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05003003 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
3004 }
3005 if (!visitor_->OnConnectionCloseFrame(frame)) {
3006 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3007 // Returning true since there was no parsing error.
3008 return true;
3009 }
3010 break;
3011 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05003012 case IETF_MAX_DATA: {
3013 QuicWindowUpdateFrame frame;
3014 if (!ProcessMaxDataFrame(reader, &frame)) {
3015 return RaiseError(QUIC_INVALID_MAX_DATA_FRAME_DATA);
3016 }
3017 // TODO(fkastenholz): Or should we create a new visitor function,
3018 // OnMaxDataFrame()?
3019 if (!visitor_->OnWindowUpdateFrame(frame)) {
3020 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3021 // Returning true since there was no parsing error.
3022 return true;
3023 }
3024 break;
3025 }
3026 case IETF_MAX_STREAM_DATA: {
3027 QuicWindowUpdateFrame frame;
3028 if (!ProcessMaxStreamDataFrame(reader, &frame)) {
3029 return RaiseError(QUIC_INVALID_MAX_STREAM_DATA_FRAME_DATA);
3030 }
3031 // TODO(fkastenholz): Or should we create a new visitor function,
3032 // OnMaxStreamDataFrame()?
3033 if (!visitor_->OnWindowUpdateFrame(frame)) {
3034 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3035 // Returning true since there was no parsing error.
3036 return true;
3037 }
3038 break;
3039 }
3040 case IETF_MAX_STREAMS_BIDIRECTIONAL:
3041 case IETF_MAX_STREAMS_UNIDIRECTIONAL: {
fkastenholz3c4eabf2019-04-22 07:49:59 -07003042 QuicMaxStreamsFrame frame;
QUICHE teama6ef0a62019-03-07 20:34:33 -05003043 if (!ProcessMaxStreamsFrame(reader, &frame, frame_type)) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07003044 return RaiseError(QUIC_MAX_STREAMS_DATA);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003045 }
fkastenholz3c4eabf2019-04-22 07:49:59 -07003046 QUIC_CODE_COUNT_N(quic_max_streams_received, 1, 2);
3047 if (!visitor_->OnMaxStreamsFrame(frame)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05003048 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3049 // Returning true since there was no parsing error.
3050 return true;
3051 }
3052 break;
3053 }
3054 case IETF_PING: {
3055 // Ping has no payload.
3056 QuicPingFrame ping_frame;
3057 if (!visitor_->OnPingFrame(ping_frame)) {
3058 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3059 // Returning true since there was no parsing error.
3060 return true;
3061 }
3062 break;
3063 }
3064 case IETF_BLOCKED: {
3065 QuicBlockedFrame frame;
3066 if (!ProcessIetfBlockedFrame(reader, &frame)) {
3067 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
3068 }
3069 if (!visitor_->OnBlockedFrame(frame)) {
3070 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3071 // Returning true since there was no parsing error.
3072 return true;
3073 }
3074 break;
3075 }
3076 case IETF_STREAM_BLOCKED: {
3077 QuicBlockedFrame frame;
3078 if (!ProcessStreamBlockedFrame(reader, &frame)) {
3079 return RaiseError(QUIC_INVALID_STREAM_BLOCKED_DATA);
3080 }
3081 if (!visitor_->OnBlockedFrame(frame)) {
3082 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3083 // Returning true since there was no parsing error.
3084 return true;
3085 }
3086 break;
3087 }
3088 case IETF_STREAMS_BLOCKED_UNIDIRECTIONAL:
3089 case IETF_STREAMS_BLOCKED_BIDIRECTIONAL: {
fkastenholz3c4eabf2019-04-22 07:49:59 -07003090 QuicStreamsBlockedFrame frame;
QUICHE teama6ef0a62019-03-07 20:34:33 -05003091 if (!ProcessStreamsBlockedFrame(reader, &frame, frame_type)) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07003092 return RaiseError(QUIC_STREAMS_BLOCKED_DATA);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003093 }
fkastenholz3c4eabf2019-04-22 07:49:59 -07003094 QUIC_CODE_COUNT_N(quic_streams_blocked_received, 1, 2);
3095 if (!visitor_->OnStreamsBlockedFrame(frame)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05003096 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3097 // Returning true since there was no parsing error.
3098 return true;
3099 }
3100 break;
3101 }
3102 case IETF_NEW_CONNECTION_ID: {
3103 QuicNewConnectionIdFrame frame;
3104 if (!ProcessNewConnectionIdFrame(reader, &frame)) {
3105 return RaiseError(QUIC_INVALID_NEW_CONNECTION_ID_DATA);
3106 }
3107 if (!visitor_->OnNewConnectionIdFrame(frame)) {
3108 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3109 // Returning true since there was no parsing error.
3110 return true;
3111 }
3112 break;
3113 }
3114 case IETF_RETIRE_CONNECTION_ID: {
3115 QuicRetireConnectionIdFrame frame;
3116 if (!ProcessRetireConnectionIdFrame(reader, &frame)) {
3117 return RaiseError(QUIC_INVALID_RETIRE_CONNECTION_ID_DATA);
3118 }
3119 if (!visitor_->OnRetireConnectionIdFrame(frame)) {
3120 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3121 // Returning true since there was no parsing error.
3122 return true;
3123 }
3124 break;
3125 }
3126 case IETF_NEW_TOKEN: {
3127 QuicNewTokenFrame frame;
3128 if (!ProcessNewTokenFrame(reader, &frame)) {
3129 return RaiseError(QUIC_INVALID_NEW_TOKEN);
3130 }
3131 if (!visitor_->OnNewTokenFrame(frame)) {
3132 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3133 // Returning true since there was no parsing error.
3134 return true;
3135 }
3136 break;
3137 }
3138 case IETF_STOP_SENDING: {
3139 QuicStopSendingFrame frame;
3140 if (!ProcessStopSendingFrame(reader, &frame)) {
3141 return RaiseError(QUIC_INVALID_STOP_SENDING_FRAME_DATA);
3142 }
3143 if (!visitor_->OnStopSendingFrame(frame)) {
3144 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3145 // Returning true since there was no parsing error.
3146 return true;
3147 }
3148 break;
3149 }
3150 case IETF_ACK_ECN:
3151 case IETF_ACK: {
3152 QuicAckFrame frame;
3153 if (!ProcessIetfAckFrame(reader, frame_type, &frame)) {
3154 return RaiseError(QUIC_INVALID_ACK_DATA);
3155 }
3156 break;
3157 }
3158 case IETF_PATH_CHALLENGE: {
3159 QuicPathChallengeFrame frame;
3160 if (!ProcessPathChallengeFrame(reader, &frame)) {
3161 return RaiseError(QUIC_INVALID_PATH_CHALLENGE_DATA);
3162 }
3163 if (!visitor_->OnPathChallengeFrame(frame)) {
3164 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3165 // Returning true since there was no parsing error.
3166 return true;
3167 }
3168 break;
3169 }
3170 case IETF_PATH_RESPONSE: {
3171 QuicPathResponseFrame frame;
3172 if (!ProcessPathResponseFrame(reader, &frame)) {
3173 return RaiseError(QUIC_INVALID_PATH_RESPONSE_DATA);
3174 }
3175 if (!visitor_->OnPathResponseFrame(frame)) {
3176 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3177 // Returning true since there was no parsing error.
3178 return true;
3179 }
3180 break;
3181 }
3182 case IETF_EXTENSION_MESSAGE_NO_LENGTH:
3183 QUIC_FALLTHROUGH_INTENDED;
3184 case IETF_EXTENSION_MESSAGE: {
3185 QuicMessageFrame message_frame;
3186 if (!ProcessMessageFrame(
3187 reader, frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH,
3188 &message_frame)) {
3189 return RaiseError(QUIC_INVALID_MESSAGE_DATA);
3190 }
3191 if (!visitor_->OnMessageFrame(message_frame)) {
3192 QUIC_DVLOG(1) << ENDPOINT
3193 << "Visitor asked to stop further processing.";
3194 // Returning true since there was no parsing error.
3195 return true;
3196 }
3197 break;
3198 }
3199 case IETF_CRYPTO: {
3200 QuicCryptoFrame frame;
3201 if (!ProcessCryptoFrame(reader, &frame)) {
3202 return RaiseError(QUIC_INVALID_FRAME_DATA);
3203 }
3204 if (!visitor_->OnCryptoFrame(frame)) {
3205 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3206 // Returning true since there was no parsing error.
3207 return true;
3208 }
3209 break;
3210 }
3211
3212 default:
3213 set_detailed_error("Illegal frame type.");
3214 QUIC_DLOG(WARNING)
3215 << ENDPOINT
3216 << "Illegal frame type: " << static_cast<int>(frame_type);
3217 return RaiseError(QUIC_INVALID_FRAME_DATA);
3218 }
3219 }
3220 }
3221 return true;
3222}
3223
3224namespace {
3225// Create a mask that sets the last |num_bits| to 1 and the rest to 0.
3226inline uint8_t GetMaskFromNumBits(uint8_t num_bits) {
3227 return (1u << num_bits) - 1;
3228}
3229
3230// Extract |num_bits| from |flags| offset by |offset|.
3231uint8_t ExtractBits(uint8_t flags, uint8_t num_bits, uint8_t offset) {
3232 return (flags >> offset) & GetMaskFromNumBits(num_bits);
3233}
3234
3235// Extract the bit at position |offset| from |flags| as a bool.
3236bool ExtractBit(uint8_t flags, uint8_t offset) {
3237 return ((flags >> offset) & GetMaskFromNumBits(1)) != 0;
3238}
3239
3240// Set |num_bits|, offset by |offset| to |val| in |flags|.
3241void SetBits(uint8_t* flags, uint8_t val, uint8_t num_bits, uint8_t offset) {
3242 DCHECK_LE(val, GetMaskFromNumBits(num_bits));
3243 *flags |= val << offset;
3244}
3245
3246// Set the bit at position |offset| to |val| in |flags|.
3247void SetBit(uint8_t* flags, bool val, uint8_t offset) {
3248 SetBits(flags, val ? 1 : 0, 1, offset);
3249}
3250} // namespace
3251
3252bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader,
3253 uint8_t frame_type,
3254 QuicStreamFrame* frame) {
3255 uint8_t stream_flags = frame_type;
3256
3257 uint8_t stream_id_length = 0;
3258 uint8_t offset_length = 4;
3259 bool has_data_length = true;
3260 stream_flags &= ~kQuicFrameTypeStreamMask;
3261
3262 // Read from right to left: StreamID, Offset, Data Length, Fin.
3263 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
3264 stream_flags >>= kQuicStreamIdShift;
3265
3266 offset_length = (stream_flags & kQuicStreamOffsetMask);
3267 // There is no encoding for 1 byte, only 0 and 2 through 8.
3268 if (offset_length > 0) {
3269 offset_length += 1;
3270 }
3271 stream_flags >>= kQuicStreamShift;
3272
3273 has_data_length =
3274 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
3275 stream_flags >>= kQuicStreamDataLengthShift;
3276
3277 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
3278
3279 uint64_t stream_id;
3280 if (!reader->ReadBytesToUInt64(stream_id_length, &stream_id)) {
3281 set_detailed_error("Unable to read stream_id.");
3282 return false;
3283 }
3284 frame->stream_id = static_cast<QuicStreamId>(stream_id);
3285
3286 if (!reader->ReadBytesToUInt64(offset_length, &frame->offset)) {
3287 set_detailed_error("Unable to read offset.");
3288 return false;
3289 }
3290
3291 // TODO(ianswett): Don't use QuicStringPiece as an intermediary.
3292 QuicStringPiece data;
3293 if (has_data_length) {
3294 if (!reader->ReadStringPiece16(&data)) {
3295 set_detailed_error("Unable to read frame data.");
3296 return false;
3297 }
3298 } else {
3299 if (!reader->ReadStringPiece(&data, reader->BytesRemaining())) {
3300 set_detailed_error("Unable to read frame data.");
3301 return false;
3302 }
3303 }
3304 frame->data_buffer = data.data();
3305 frame->data_length = static_cast<uint16_t>(data.length());
3306
3307 return true;
3308}
3309
3310bool QuicFramer::ProcessIetfStreamFrame(QuicDataReader* reader,
3311 uint8_t frame_type,
3312 QuicStreamFrame* frame) {
3313 // Read stream id from the frame. It's always present.
fkastenholz3c4eabf2019-04-22 07:49:59 -07003314 if (!reader->ReadVarIntU32(&frame->stream_id)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05003315 set_detailed_error("Unable to read stream_id.");
3316 return false;
3317 }
3318
3319 // If we have a data offset, read it. If not, set to 0.
3320 if (frame_type & IETF_STREAM_FRAME_OFF_BIT) {
3321 if (!reader->ReadVarInt62(&frame->offset)) {
3322 set_detailed_error("Unable to read stream data offset.");
3323 return false;
3324 }
3325 } else {
3326 // no offset in the frame, ensure it's 0 in the Frame.
3327 frame->offset = 0;
3328 }
3329
3330 // If we have a data length, read it. If not, set to 0.
3331 if (frame_type & IETF_STREAM_FRAME_LEN_BIT) {
3332 QuicIetfStreamDataLength length;
3333 if (!reader->ReadVarInt62(&length)) {
3334 set_detailed_error("Unable to read stream data length.");
3335 return false;
3336 }
3337 if (length > 0xffff) {
3338 set_detailed_error("Stream data length is too large.");
3339 return false;
3340 }
3341 frame->data_length = length;
3342 } else {
3343 // no length in the frame, it is the number of bytes remaining in the
3344 // packet.
3345 frame->data_length = reader->BytesRemaining();
3346 }
3347
3348 if (frame_type & IETF_STREAM_FRAME_FIN_BIT) {
3349 frame->fin = true;
3350 } else {
3351 frame->fin = false;
3352 }
3353
3354 // TODO(ianswett): Don't use QuicStringPiece as an intermediary.
3355 QuicStringPiece data;
3356 if (!reader->ReadStringPiece(&data, frame->data_length)) {
3357 set_detailed_error("Unable to read frame data.");
3358 return false;
3359 }
3360 frame->data_buffer = data.data();
3361 frame->data_length = static_cast<QuicIetfStreamDataLength>(data.length());
3362
3363 return true;
3364}
3365
3366bool QuicFramer::ProcessCryptoFrame(QuicDataReader* reader,
3367 QuicCryptoFrame* frame) {
3368 if (!reader->ReadVarInt62(&frame->offset)) {
3369 set_detailed_error("Unable to read crypto data offset.");
3370 return false;
3371 }
3372 uint64_t len;
3373 if (!reader->ReadVarInt62(&len) ||
3374 len > std::numeric_limits<QuicPacketLength>::max()) {
3375 set_detailed_error("Invalid data length.");
3376 return false;
3377 }
3378 frame->data_length = len;
3379
3380 // TODO(ianswett): Don't use QuicStringPiece as an intermediary.
3381 QuicStringPiece data;
3382 if (!reader->ReadStringPiece(&data, frame->data_length)) {
3383 set_detailed_error("Unable to read frame data.");
3384 return false;
3385 }
3386 frame->data_buffer = data.data();
3387 return true;
3388}
3389
3390bool QuicFramer::ProcessAckFrame(QuicDataReader* reader, uint8_t frame_type) {
3391 const bool has_ack_blocks =
3392 ExtractBit(frame_type, kQuicHasMultipleAckBlocksOffset);
3393 uint8_t num_ack_blocks = 0;
3394 uint8_t num_received_packets = 0;
3395
3396 // Determine the two lengths from the frame type: largest acked length,
3397 // ack block length.
3398 const QuicPacketNumberLength ack_block_length = ReadAckPacketNumberLength(
3399 version_.transport_version,
3400 ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits,
3401 kActBlockLengthOffset));
3402 const QuicPacketNumberLength largest_acked_length = ReadAckPacketNumberLength(
3403 version_.transport_version,
3404 ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits,
3405 kLargestAckedOffset));
3406
3407 uint64_t largest_acked;
3408 if (!reader->ReadBytesToUInt64(largest_acked_length, &largest_acked)) {
3409 set_detailed_error("Unable to read largest acked.");
3410 return false;
3411 }
3412
3413 if (largest_acked < first_sending_packet_number_.ToUint64()) {
3414 // Connection always sends packet starting from kFirstSendingPacketNumber >
3415 // 0, peer has observed an unsent packet.
3416 set_detailed_error("Largest acked is 0.");
3417 return false;
3418 }
3419
3420 uint64_t ack_delay_time_us;
3421 if (!reader->ReadUFloat16(&ack_delay_time_us)) {
3422 set_detailed_error("Unable to read ack delay time.");
3423 return false;
3424 }
3425
3426 if (!visitor_->OnAckFrameStart(
3427 QuicPacketNumber(largest_acked),
3428 ack_delay_time_us == kUFloat16MaxValue
3429 ? QuicTime::Delta::Infinite()
3430 : QuicTime::Delta::FromMicroseconds(ack_delay_time_us))) {
3431 // The visitor suppresses further processing of the packet. Although this is
3432 // not a parsing error, returns false as this is in middle of processing an
3433 // ack frame,
3434 set_detailed_error("Visitor suppresses further processing of ack frame.");
3435 return false;
3436 }
3437
3438 if (has_ack_blocks && !reader->ReadUInt8(&num_ack_blocks)) {
3439 set_detailed_error("Unable to read num of ack blocks.");
3440 return false;
3441 }
3442
3443 uint64_t first_block_length;
3444 if (!reader->ReadBytesToUInt64(ack_block_length, &first_block_length)) {
3445 set_detailed_error("Unable to read first ack block length.");
3446 return false;
3447 }
3448
3449 if (first_block_length == 0) {
3450 set_detailed_error("First block length is zero.");
3451 return false;
3452 }
3453 bool first_ack_block_underflow = first_block_length > largest_acked + 1;
3454 if (first_block_length + first_sending_packet_number_.ToUint64() >
3455 largest_acked + 1) {
3456 first_ack_block_underflow = true;
3457 }
3458 if (first_ack_block_underflow) {
3459 set_detailed_error(QuicStrCat("Underflow with first ack block length ",
3460 first_block_length, " largest acked is ",
3461 largest_acked, ".")
3462 .c_str());
3463 return false;
3464 }
3465
3466 uint64_t first_received = largest_acked + 1 - first_block_length;
3467 if (!visitor_->OnAckRange(QuicPacketNumber(first_received),
3468 QuicPacketNumber(largest_acked + 1))) {
3469 // The visitor suppresses further processing of the packet. Although
3470 // this is not a parsing error, returns false as this is in middle
3471 // of processing an ack frame,
3472 set_detailed_error("Visitor suppresses further processing of ack frame.");
3473 return false;
3474 }
3475
3476 if (num_ack_blocks > 0) {
3477 for (size_t i = 0; i < num_ack_blocks; ++i) {
3478 uint8_t gap = 0;
3479 if (!reader->ReadUInt8(&gap)) {
3480 set_detailed_error("Unable to read gap to next ack block.");
3481 return false;
3482 }
3483 uint64_t current_block_length;
3484 if (!reader->ReadBytesToUInt64(ack_block_length, &current_block_length)) {
3485 set_detailed_error("Unable to ack block length.");
3486 return false;
3487 }
3488 bool ack_block_underflow = first_received < gap + current_block_length;
3489 if (first_received < gap + current_block_length +
3490 first_sending_packet_number_.ToUint64()) {
3491 ack_block_underflow = true;
3492 }
3493 if (ack_block_underflow) {
3494 set_detailed_error(
3495 QuicStrCat("Underflow with ack block length ", current_block_length,
3496 ", end of block is ", first_received - gap, ".")
3497 .c_str());
3498 return false;
3499 }
3500
3501 first_received -= (gap + current_block_length);
3502 if (current_block_length > 0) {
3503 if (!visitor_->OnAckRange(
3504 QuicPacketNumber(first_received),
3505 QuicPacketNumber(first_received) + current_block_length)) {
3506 // The visitor suppresses further processing of the packet. Although
3507 // this is not a parsing error, returns false as this is in middle
3508 // of processing an ack frame,
3509 set_detailed_error(
3510 "Visitor suppresses further processing of ack frame.");
3511 return false;
3512 }
3513 }
3514 }
3515 }
3516
3517 if (!reader->ReadUInt8(&num_received_packets)) {
3518 set_detailed_error("Unable to read num received packets.");
3519 return false;
3520 }
3521
3522 if (!ProcessTimestampsInAckFrame(num_received_packets,
3523 QuicPacketNumber(largest_acked), reader)) {
3524 return false;
3525 }
3526
3527 // Done processing the ACK frame.
3528 return visitor_->OnAckFrameEnd(QuicPacketNumber(first_received));
3529}
3530
3531bool QuicFramer::ProcessTimestampsInAckFrame(uint8_t num_received_packets,
3532 QuicPacketNumber largest_acked,
3533 QuicDataReader* reader) {
3534 if (num_received_packets == 0) {
3535 return true;
3536 }
3537 uint8_t delta_from_largest_observed;
3538 if (!reader->ReadUInt8(&delta_from_largest_observed)) {
3539 set_detailed_error("Unable to read sequence delta in received packets.");
3540 return false;
3541 }
3542
3543 if (largest_acked.ToUint64() <= delta_from_largest_observed) {
3544 set_detailed_error(QuicStrCat("delta_from_largest_observed too high: ",
3545 delta_from_largest_observed,
3546 ", largest_acked: ", largest_acked.ToUint64())
3547 .c_str());
3548 return false;
3549 }
3550
3551 // Time delta from the framer creation.
3552 uint32_t time_delta_us;
3553 if (!reader->ReadUInt32(&time_delta_us)) {
3554 set_detailed_error("Unable to read time delta in received packets.");
3555 return false;
3556 }
3557
3558 QuicPacketNumber seq_num = largest_acked - delta_from_largest_observed;
3559 if (process_timestamps_) {
3560 last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
3561
3562 visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_);
3563 }
3564
3565 for (uint8_t i = 1; i < num_received_packets; ++i) {
3566 if (!reader->ReadUInt8(&delta_from_largest_observed)) {
3567 set_detailed_error("Unable to read sequence delta in received packets.");
3568 return false;
3569 }
3570 if (largest_acked.ToUint64() <= delta_from_largest_observed) {
3571 set_detailed_error(
3572 QuicStrCat("delta_from_largest_observed too high: ",
3573 delta_from_largest_observed,
3574 ", largest_acked: ", largest_acked.ToUint64())
3575 .c_str());
3576 return false;
3577 }
3578 seq_num = largest_acked - delta_from_largest_observed;
3579
3580 // Time delta from the previous timestamp.
3581 uint64_t incremental_time_delta_us;
3582 if (!reader->ReadUFloat16(&incremental_time_delta_us)) {
3583 set_detailed_error(
3584 "Unable to read incremental time delta in received packets.");
3585 return false;
3586 }
3587
3588 if (process_timestamps_) {
3589 last_timestamp_ = last_timestamp_ + QuicTime::Delta::FromMicroseconds(
3590 incremental_time_delta_us);
3591 visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_);
3592 }
3593 }
3594 return true;
3595}
3596
3597bool QuicFramer::ProcessIetfAckFrame(QuicDataReader* reader,
3598 uint64_t frame_type,
3599 QuicAckFrame* ack_frame) {
3600 uint64_t largest_acked;
3601 if (!reader->ReadVarInt62(&largest_acked)) {
3602 set_detailed_error("Unable to read largest acked.");
3603 return false;
3604 }
3605 if (largest_acked < first_sending_packet_number_.ToUint64()) {
3606 // Connection always sends packet starting from kFirstSendingPacketNumber >
3607 // 0, peer has observed an unsent packet.
3608 set_detailed_error("Largest acked is 0.");
3609 return false;
3610 }
3611 ack_frame->largest_acked = static_cast<QuicPacketNumber>(largest_acked);
3612 uint64_t ack_delay_time_in_us;
3613 if (!reader->ReadVarInt62(&ack_delay_time_in_us)) {
3614 set_detailed_error("Unable to read ack delay time.");
3615 return false;
3616 }
3617
3618 // TODO(fkastenholz) when we get real IETF QUIC, need to get
3619 // the currect shift from the transport parameters.
3620 if (ack_delay_time_in_us == kVarInt62MaxValue) {
3621 ack_frame->ack_delay_time = QuicTime::Delta::Infinite();
3622 } else {
3623 ack_delay_time_in_us = (ack_delay_time_in_us << kIetfAckTimestampShift);
3624 ack_frame->ack_delay_time =
3625 QuicTime::Delta::FromMicroseconds(ack_delay_time_in_us);
3626 }
3627 if (frame_type == IETF_ACK_ECN) {
3628 ack_frame->ecn_counters_populated = true;
3629 if (!reader->ReadVarInt62(&ack_frame->ect_0_count)) {
3630 set_detailed_error("Unable to read ack ect_0_count.");
3631 return false;
3632 }
3633 if (!reader->ReadVarInt62(&ack_frame->ect_1_count)) {
3634 set_detailed_error("Unable to read ack ect_1_count.");
3635 return false;
3636 }
3637 if (!reader->ReadVarInt62(&ack_frame->ecn_ce_count)) {
3638 set_detailed_error("Unable to read ack ecn_ce_count.");
3639 return false;
3640 }
3641 } else {
3642 ack_frame->ecn_counters_populated = false;
3643 ack_frame->ect_0_count = 0;
3644 ack_frame->ect_1_count = 0;
3645 ack_frame->ecn_ce_count = 0;
3646 }
3647 if (!visitor_->OnAckFrameStart(QuicPacketNumber(largest_acked),
3648 ack_frame->ack_delay_time)) {
3649 // The visitor suppresses further processing of the packet. Although this is
3650 // not a parsing error, returns false as this is in middle of processing an
3651 // ACK frame.
3652 set_detailed_error("Visitor suppresses further processing of ACK frame.");
3653 return false;
3654 }
3655
3656 // Get number of ACK blocks from the packet.
3657 uint64_t ack_block_count;
3658 if (!reader->ReadVarInt62(&ack_block_count)) {
3659 set_detailed_error("Unable to read ack block count.");
3660 return false;
3661 }
3662 // There always is a first ACK block, which is the (number of packets being
3663 // acked)-1, up to and including the packet at largest_acked. Therefore if the
3664 // value is 0, then only largest is acked. If it is 1, then largest-1,
3665 // largest] are acked, etc
3666 uint64_t ack_block_value;
3667 if (!reader->ReadVarInt62(&ack_block_value)) {
3668 set_detailed_error("Unable to read first ack block length.");
3669 return false;
3670 }
3671 // Calculate the packets being acked in the first block.
3672 // +1 because AddRange implementation requires [low,high)
3673 uint64_t block_high = largest_acked + 1;
3674 uint64_t block_low = largest_acked - ack_block_value;
3675
3676 // ack_block_value is the number of packets preceding the
3677 // largest_acked packet which are in the block being acked. Thus,
3678 // its maximum value is largest_acked-1. Test this, reporting an
3679 // error if the value is wrong.
3680 if (ack_block_value + first_sending_packet_number_.ToUint64() >
3681 largest_acked) {
3682 set_detailed_error(QuicStrCat("Underflow with first ack block length ",
3683 ack_block_value + 1, " largest acked is ",
3684 largest_acked, ".")
3685 .c_str());
3686 return false;
3687 }
3688
3689 if (!visitor_->OnAckRange(QuicPacketNumber(block_low),
3690 QuicPacketNumber(block_high))) {
3691 // The visitor suppresses further processing of the packet. Although
3692 // this is not a parsing error, returns false as this is in middle
3693 // of processing an ACK frame.
3694 set_detailed_error("Visitor suppresses further processing of ACK frame.");
3695 return false;
3696 }
3697
3698 while (ack_block_count != 0) {
3699 uint64_t gap_block_value;
3700 // Get the sizes of the gap and ack blocks,
3701 if (!reader->ReadVarInt62(&gap_block_value)) {
3702 set_detailed_error("Unable to read gap block value.");
3703 return false;
3704 }
3705 // It's an error if the gap is larger than the space from packet
3706 // number 0 to the start of the block that's just been acked, PLUS
3707 // there must be space for at least 1 packet to be acked. For
3708 // example, if block_low is 10 and gap_block_value is 9, it means
3709 // the gap block is 10 packets long, leaving no room for a packet
3710 // to be acked. Thus, gap_block_value+2 can not be larger than
3711 // block_low.
3712 // The test is written this way to detect wrap-arounds.
3713 if ((gap_block_value + 2) > block_low) {
3714 set_detailed_error(
3715 QuicStrCat("Underflow with gap block length ", gap_block_value + 1,
3716 " previous ack block start is ", block_low, ".")
3717 .c_str());
3718 return false;
3719 }
3720
3721 // Adjust block_high to be the top of the next ack block.
3722 // There is a gap of |gap_block_value| packets between the bottom
3723 // of ack block N and top of block N+1. Note that gap_block_value
3724 // is he size of the gap minus 1 (per the QUIC protocol), and
3725 // block_high is the packet number of the first packet of the gap
3726 // (per the implementation of OnAckRange/AddAckRange, below).
3727 block_high = block_low - 1 - gap_block_value;
3728
3729 if (!reader->ReadVarInt62(&ack_block_value)) {
3730 set_detailed_error("Unable to read ack block value.");
3731 return false;
3732 }
3733 if (ack_block_value + first_sending_packet_number_.ToUint64() >
3734 (block_high - 1)) {
3735 set_detailed_error(
3736 QuicStrCat("Underflow with ack block length ", ack_block_value + 1,
3737 " latest ack block end is ", block_high - 1, ".")
3738 .c_str());
3739 return false;
3740 }
3741 // Calculate the low end of the new nth ack block. The +1 is
3742 // because the encoded value is the blocksize-1.
3743 block_low = block_high - 1 - ack_block_value;
3744 if (!visitor_->OnAckRange(QuicPacketNumber(block_low),
3745 QuicPacketNumber(block_high))) {
3746 // The visitor suppresses further processing of the packet. Although
3747 // this is not a parsing error, returns false as this is in middle
3748 // of processing an ACK frame.
3749 set_detailed_error("Visitor suppresses further processing of ACK frame.");
3750 return false;
3751 }
3752
3753 // Another one done.
3754 ack_block_count--;
3755 }
3756
3757 return visitor_->OnAckFrameEnd(QuicPacketNumber(block_low));
3758}
3759
3760bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader,
3761 const QuicPacketHeader& header,
3762 QuicStopWaitingFrame* stop_waiting) {
3763 uint64_t least_unacked_delta;
3764 if (!reader->ReadBytesToUInt64(header.packet_number_length,
3765 &least_unacked_delta)) {
3766 set_detailed_error("Unable to read least unacked delta.");
3767 return false;
3768 }
3769 if (header.packet_number.ToUint64() <= least_unacked_delta) {
3770 set_detailed_error("Invalid unacked delta.");
3771 return false;
3772 }
3773 stop_waiting->least_unacked = header.packet_number - least_unacked_delta;
3774
3775 return true;
3776}
3777
3778bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader,
3779 QuicRstStreamFrame* frame) {
3780 if (!reader->ReadUInt32(&frame->stream_id)) {
3781 set_detailed_error("Unable to read stream_id.");
3782 return false;
3783 }
3784
3785 if (!reader->ReadUInt64(&frame->byte_offset)) {
3786 set_detailed_error("Unable to read rst stream sent byte offset.");
3787 return false;
3788 }
3789
3790 uint32_t error_code;
3791 if (!reader->ReadUInt32(&error_code)) {
3792 set_detailed_error("Unable to read rst stream error code.");
3793 return false;
3794 }
3795
3796 if (error_code >= QUIC_STREAM_LAST_ERROR) {
3797 // Ignore invalid stream error code if any.
3798 error_code = QUIC_STREAM_LAST_ERROR;
3799 }
3800
3801 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
3802
3803 return true;
3804}
3805
3806bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader,
3807 QuicConnectionCloseFrame* frame) {
3808 uint32_t error_code;
fkastenholze9d71a82019-04-09 05:12:13 -07003809 frame->close_type = GOOGLE_QUIC_CONNECTION_CLOSE;
3810
QUICHE teama6ef0a62019-03-07 20:34:33 -05003811 if (!reader->ReadUInt32(&error_code)) {
3812 set_detailed_error("Unable to read connection close error code.");
3813 return false;
3814 }
3815
3816 if (error_code >= QUIC_LAST_ERROR) {
3817 // Ignore invalid QUIC error code if any.
3818 error_code = QUIC_LAST_ERROR;
3819 }
3820
fkastenholze9d71a82019-04-09 05:12:13 -07003821 frame->quic_error_code = static_cast<QuicErrorCode>(error_code);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003822
3823 QuicStringPiece error_details;
3824 if (!reader->ReadStringPiece16(&error_details)) {
3825 set_detailed_error("Unable to read connection close error details.");
3826 return false;
3827 }
vasilvvc48c8712019-03-11 13:38:16 -07003828 frame->error_details = std::string(error_details);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003829
3830 return true;
3831}
3832
3833bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader,
3834 QuicGoAwayFrame* frame) {
3835 uint32_t error_code;
3836 if (!reader->ReadUInt32(&error_code)) {
3837 set_detailed_error("Unable to read go away error code.");
3838 return false;
3839 }
3840
3841 if (error_code >= QUIC_LAST_ERROR) {
3842 // Ignore invalid QUIC error code if any.
3843 error_code = QUIC_LAST_ERROR;
3844 }
3845 frame->error_code = static_cast<QuicErrorCode>(error_code);
3846
3847 uint32_t stream_id;
3848 if (!reader->ReadUInt32(&stream_id)) {
3849 set_detailed_error("Unable to read last good stream id.");
3850 return false;
3851 }
3852 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
3853
3854 QuicStringPiece reason_phrase;
3855 if (!reader->ReadStringPiece16(&reason_phrase)) {
3856 set_detailed_error("Unable to read goaway reason.");
3857 return false;
3858 }
vasilvvc48c8712019-03-11 13:38:16 -07003859 frame->reason_phrase = std::string(reason_phrase);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003860
3861 return true;
3862}
3863
3864bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader,
3865 QuicWindowUpdateFrame* frame) {
3866 if (!reader->ReadUInt32(&frame->stream_id)) {
3867 set_detailed_error("Unable to read stream_id.");
3868 return false;
3869 }
3870
3871 if (!reader->ReadUInt64(&frame->byte_offset)) {
3872 set_detailed_error("Unable to read window byte_offset.");
3873 return false;
3874 }
3875
3876 return true;
3877}
3878
3879bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader,
3880 QuicBlockedFrame* frame) {
3881 DCHECK_NE(QUIC_VERSION_99, version_.transport_version)
3882 << "Attempt to process non-IETF frames but version is 99";
3883
3884 if (!reader->ReadUInt32(&frame->stream_id)) {
3885 set_detailed_error("Unable to read stream_id.");
3886 return false;
3887 }
3888
3889 return true;
3890}
3891
3892void QuicFramer::ProcessPaddingFrame(QuicDataReader* reader,
3893 QuicPaddingFrame* frame) {
3894 // Type byte has been read.
3895 frame->num_padding_bytes = 1;
3896 uint8_t next_byte;
3897 while (!reader->IsDoneReading() && reader->PeekByte() == 0x00) {
3898 reader->ReadBytes(&next_byte, 1);
3899 DCHECK_EQ(0x00, next_byte);
3900 ++frame->num_padding_bytes;
3901 }
3902}
3903
3904bool QuicFramer::ProcessMessageFrame(QuicDataReader* reader,
3905 bool no_message_length,
3906 QuicMessageFrame* frame) {
3907 if (no_message_length) {
3908 QuicStringPiece remaining(reader->ReadRemainingPayload());
3909 frame->data = remaining.data();
3910 frame->message_length = remaining.length();
3911 return true;
3912 }
3913
3914 uint64_t message_length;
3915 if (!reader->ReadVarInt62(&message_length)) {
3916 set_detailed_error("Unable to read message length");
3917 return false;
3918 }
3919
3920 QuicStringPiece message_piece;
3921 if (!reader->ReadStringPiece(&message_piece, message_length)) {
3922 set_detailed_error("Unable to read message data");
3923 return false;
3924 }
3925
3926 frame->data = message_piece.data();
3927 frame->message_length = message_length;
3928
3929 return true;
3930}
3931
3932// static
3933QuicStringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
3934 QuicTransportVersion version,
3935 const QuicEncryptedPacket& encrypted,
3936 QuicConnectionIdLength destination_connection_id_length,
3937 QuicConnectionIdLength source_connection_id_length,
3938 bool includes_version,
3939 bool includes_diversification_nonce,
3940 QuicPacketNumberLength packet_number_length,
3941 QuicVariableLengthIntegerLength retry_token_length_length,
3942 uint64_t retry_token_length,
3943 QuicVariableLengthIntegerLength length_length) {
3944 // TODO(ianswett): This is identical to QuicData::AssociatedData.
3945 return QuicStringPiece(
3946 encrypted.data(),
3947 GetStartOfEncryptedData(version, destination_connection_id_length,
3948 source_connection_id_length, includes_version,
3949 includes_diversification_nonce,
3950 packet_number_length, retry_token_length_length,
3951 retry_token_length, length_length));
3952}
3953
3954void QuicFramer::SetDecrypter(EncryptionLevel level,
3955 std::unique_ptr<QuicDecrypter> decrypter) {
QUICHE team76086e42019-03-25 15:12:29 -07003956 DCHECK_EQ(alternative_decrypter_level_, NUM_ENCRYPTION_LEVELS);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003957 DCHECK_GE(level, decrypter_level_);
zhongyi546cc452019-04-12 15:27:49 -07003958 DCHECK(!version_.KnowsWhichDecrypterToUse());
QUICHE team76086e42019-03-25 15:12:29 -07003959 decrypter_[decrypter_level_] = nullptr;
3960 decrypter_[level] = std::move(decrypter);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003961 decrypter_level_ = level;
3962}
3963
3964void QuicFramer::SetAlternativeDecrypter(
3965 EncryptionLevel level,
3966 std::unique_ptr<QuicDecrypter> decrypter,
3967 bool latch_once_used) {
QUICHE team76086e42019-03-25 15:12:29 -07003968 DCHECK_NE(level, decrypter_level_);
zhongyi546cc452019-04-12 15:27:49 -07003969 DCHECK(!version_.KnowsWhichDecrypterToUse());
QUICHE team76086e42019-03-25 15:12:29 -07003970 if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) {
3971 decrypter_[alternative_decrypter_level_] = nullptr;
3972 }
3973 decrypter_[level] = std::move(decrypter);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003974 alternative_decrypter_level_ = level;
3975 alternative_decrypter_latch_ = latch_once_used;
3976}
3977
zhongyi546cc452019-04-12 15:27:49 -07003978void QuicFramer::InstallDecrypter(EncryptionLevel level,
3979 std::unique_ptr<QuicDecrypter> decrypter) {
3980 DCHECK(version_.KnowsWhichDecrypterToUse());
3981 decrypter_[level] = std::move(decrypter);
3982}
3983
3984void QuicFramer::RemoveDecrypter(EncryptionLevel level) {
3985 DCHECK(version_.KnowsWhichDecrypterToUse());
3986 decrypter_[level] = nullptr;
3987}
3988
3989const QuicDecrypter* QuicFramer::GetDecrypter(EncryptionLevel level) const {
3990 DCHECK(version_.KnowsWhichDecrypterToUse());
3991 return decrypter_[level].get();
3992}
3993
QUICHE teama6ef0a62019-03-07 20:34:33 -05003994const QuicDecrypter* QuicFramer::decrypter() const {
QUICHE team76086e42019-03-25 15:12:29 -07003995 return decrypter_[decrypter_level_].get();
QUICHE teama6ef0a62019-03-07 20:34:33 -05003996}
3997
3998const QuicDecrypter* QuicFramer::alternative_decrypter() const {
QUICHE team76086e42019-03-25 15:12:29 -07003999 if (alternative_decrypter_level_ == NUM_ENCRYPTION_LEVELS) {
4000 return nullptr;
4001 }
4002 return decrypter_[alternative_decrypter_level_].get();
QUICHE teama6ef0a62019-03-07 20:34:33 -05004003}
4004
4005void QuicFramer::SetEncrypter(EncryptionLevel level,
4006 std::unique_ptr<QuicEncrypter> encrypter) {
4007 DCHECK_GE(level, 0);
4008 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
4009 encrypter_[level] = std::move(encrypter);
4010}
4011
4012size_t QuicFramer::EncryptInPlace(EncryptionLevel level,
4013 QuicPacketNumber packet_number,
4014 size_t ad_len,
4015 size_t total_len,
4016 size_t buffer_len,
4017 char* buffer) {
4018 DCHECK(packet_number.IsInitialized());
dschinazi2c5386e2019-04-16 16:37:37 -07004019 if (encrypter_[level] == nullptr) {
4020 QUIC_BUG << ENDPOINT
4021 << "Attempted to encrypt in place without encrypter at level "
4022 << QuicUtils::EncryptionLevelToString(level);
4023 RaiseError(QUIC_ENCRYPTION_FAILURE);
4024 return 0;
4025 }
4026
QUICHE teama6ef0a62019-03-07 20:34:33 -05004027 size_t output_length = 0;
4028 if (!encrypter_[level]->EncryptPacket(
4029 packet_number.ToUint64(),
4030 QuicStringPiece(buffer, ad_len), // Associated data
4031 QuicStringPiece(buffer + ad_len, total_len - ad_len), // Plaintext
4032 buffer + ad_len, // Destination buffer
4033 &output_length, buffer_len - ad_len)) {
4034 RaiseError(QUIC_ENCRYPTION_FAILURE);
4035 return 0;
4036 }
nharper55fa6132019-05-07 19:37:21 -07004037 if (version_.HasHeaderProtection() &&
4038 !ApplyHeaderProtection(level, buffer, ad_len + output_length, ad_len)) {
4039 QUIC_DLOG(ERROR) << "Applying header protection failed.";
4040 RaiseError(QUIC_ENCRYPTION_FAILURE);
4041 return 0;
4042 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05004043
4044 return ad_len + output_length;
4045}
4046
nharper55fa6132019-05-07 19:37:21 -07004047namespace {
4048
4049const size_t kHPSampleLen = 16;
4050
4051constexpr bool IsLongHeader(uint8_t type_byte) {
4052 return (type_byte & FLAGS_LONG_HEADER) != 0;
4053}
4054
4055} // namespace
4056
4057bool QuicFramer::ApplyHeaderProtection(EncryptionLevel level,
4058 char* buffer,
4059 size_t buffer_len,
4060 size_t ad_len) {
4061 QuicDataReader buffer_reader(buffer, buffer_len);
4062 QuicDataWriter buffer_writer(buffer_len, buffer);
4063 // The sample starts 4 bytes after the start of the packet number.
4064 if (ad_len < last_written_packet_number_length_) {
4065 return false;
4066 }
4067 size_t pn_offset = ad_len - last_written_packet_number_length_;
4068 // Sample the ciphertext and generate the mask to use for header protection.
4069 size_t sample_offset = pn_offset + 4;
4070 QuicDataReader sample_reader(buffer, buffer_len);
4071 QuicStringPiece sample;
4072 if (!sample_reader.Seek(sample_offset) ||
4073 !sample_reader.ReadStringPiece(&sample, kHPSampleLen)) {
4074 QUIC_BUG << "Not enough bytes to sample: sample_offset " << sample_offset
4075 << ", sample len: " << kHPSampleLen
4076 << ", buffer len: " << buffer_len;
4077 return false;
4078 }
4079
4080 std::string mask = encrypter_[level]->GenerateHeaderProtectionMask(sample);
4081 if (mask.empty()) {
4082 QUIC_BUG << "Unable to generate header protection mask.";
4083 return false;
4084 }
4085 QuicDataReader mask_reader(mask.data(), mask.size());
4086
4087 // Apply the mask to the 4 or 5 least significant bits of the first byte.
4088 uint8_t bitmask = 0x1f;
4089 uint8_t type_byte;
4090 if (!buffer_reader.ReadUInt8(&type_byte)) {
4091 return false;
4092 }
4093 QuicLongHeaderType header_type;
4094 if (IsLongHeader(type_byte)) {
4095 bitmask = 0x0f;
4096 if (!GetLongHeaderType(version_.transport_version, type_byte,
4097 &header_type)) {
4098 return false;
4099 }
4100 }
4101 uint8_t mask_byte;
4102 if (!mask_reader.ReadUInt8(&mask_byte) ||
4103 !buffer_writer.WriteUInt8(type_byte ^ (mask_byte & bitmask))) {
4104 return false;
4105 }
4106
4107 // Adjust |pn_offset| to account for the diversification nonce.
4108 if (IsLongHeader(type_byte) && header_type == ZERO_RTT_PROTECTED &&
4109 perspective_ == Perspective::IS_SERVER &&
4110 version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) {
4111 if (pn_offset <= kDiversificationNonceSize) {
4112 QUIC_BUG << "Expected diversification nonce, but not enough bytes";
4113 return false;
4114 }
4115 pn_offset -= kDiversificationNonceSize;
4116 }
4117 // Advance the reader and writer to the packet number. Both the reader and
4118 // writer have each read/written one byte.
4119 if (!buffer_writer.Seek(pn_offset - 1) ||
4120 !buffer_reader.Seek(pn_offset - 1)) {
4121 return false;
4122 }
4123 // Apply the rest of the mask to the packet number.
4124 for (size_t i = 0; i < last_written_packet_number_length_; ++i) {
4125 uint8_t buffer_byte;
4126 uint8_t mask_byte;
4127 if (!mask_reader.ReadUInt8(&mask_byte) ||
4128 !buffer_reader.ReadUInt8(&buffer_byte) ||
4129 !buffer_writer.WriteUInt8(buffer_byte ^ mask_byte)) {
4130 return false;
4131 }
4132 }
4133 return true;
4134}
4135
4136bool QuicFramer::RemoveHeaderProtection(QuicDataReader* reader,
4137 const QuicEncryptedPacket& packet,
4138 QuicPacketHeader* header,
4139 uint64_t* full_packet_number,
4140 std::vector<char>* associated_data) {
4141 EncryptionLevel expected_decryption_level = GetEncryptionLevel(*header);
4142 QuicDecrypter* decrypter = decrypter_[expected_decryption_level].get();
4143 if (decrypter == nullptr) {
4144 QUIC_DVLOG(1)
4145 << "No decrypter available for removing header protection at level "
4146 << expected_decryption_level;
4147 return false;
4148 }
4149
4150 bool has_diversification_nonce =
4151 header->form == IETF_QUIC_LONG_HEADER_PACKET &&
4152 header->long_packet_type == ZERO_RTT_PROTECTED &&
4153 perspective_ == Perspective::IS_CLIENT &&
4154 version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO;
4155
4156 // Read a sample from the ciphertext and compute the mask to use for header
4157 // protection.
4158 QuicStringPiece remaining_packet = reader->PeekRemainingPayload();
4159 QuicDataReader sample_reader(remaining_packet);
4160
4161 // The sample starts 4 bytes after the start of the packet number.
4162 QuicStringPiece pn;
4163 if (!sample_reader.ReadStringPiece(&pn, 4)) {
4164 QUIC_DVLOG(1) << "Not enough data to sample";
4165 return false;
4166 }
4167 if (has_diversification_nonce) {
4168 // In Google QUIC, the diversification nonce comes between the packet number
4169 // and the sample.
4170 if (!sample_reader.Seek(kDiversificationNonceSize)) {
4171 QUIC_DVLOG(1) << "No diversification nonce to skip over";
4172 return false;
4173 }
4174 }
4175 std::string mask = decrypter->GenerateHeaderProtectionMask(&sample_reader);
4176 QuicDataReader mask_reader(mask.data(), mask.size());
4177 if (mask.empty()) {
4178 QUIC_DVLOG(1) << "Failed to compute mask";
4179 return false;
4180 }
4181
4182 // Unmask the rest of the type byte.
4183 uint8_t bitmask = 0x1f;
4184 if (IsLongHeader(header->type_byte)) {
4185 bitmask = 0x0f;
4186 }
4187 uint8_t mask_byte;
4188 if (!mask_reader.ReadUInt8(&mask_byte)) {
4189 QUIC_DVLOG(1) << "No first byte to read from mask";
4190 return false;
4191 }
4192 header->type_byte ^= (mask_byte & bitmask);
4193
4194 // Compute the packet number length.
4195 header->packet_number_length =
4196 static_cast<QuicPacketNumberLength>((header->type_byte & 0x03) + 1);
4197
4198 char pn_buffer[IETF_MAX_PACKET_NUMBER_LENGTH] = {};
4199 QuicDataWriter pn_writer(QUIC_ARRAYSIZE(pn_buffer), pn_buffer);
4200
4201 // Read the (protected) packet number from the reader and unmask the packet
4202 // number.
4203 for (size_t i = 0; i < header->packet_number_length; ++i) {
4204 uint8_t protected_pn_byte, mask_byte;
4205 if (!mask_reader.ReadUInt8(&mask_byte) ||
4206 !reader->ReadUInt8(&protected_pn_byte) ||
4207 !pn_writer.WriteUInt8(protected_pn_byte ^ mask_byte)) {
4208 QUIC_DVLOG(1) << "Failed to unmask packet number";
4209 return false;
4210 }
4211 }
4212 QuicDataReader packet_number_reader(pn_writer.data(), pn_writer.length());
4213 QuicPacketNumber base_packet_number;
4214 if (supports_multiple_packet_number_spaces_) {
4215 PacketNumberSpace pn_space = GetPacketNumberSpace(*header);
4216 if (pn_space == NUM_PACKET_NUMBER_SPACES) {
4217 return false;
4218 }
4219 base_packet_number = largest_decrypted_packet_numbers_[pn_space];
4220 } else {
4221 base_packet_number = largest_packet_number_;
4222 }
4223 if (!ProcessAndCalculatePacketNumber(
4224 &packet_number_reader, header->packet_number_length,
4225 base_packet_number, full_packet_number)) {
4226 return false;
4227 }
4228
4229 // Get the associated data, and apply the same unmasking operations to it.
4230 QuicStringPiece ad = GetAssociatedDataFromEncryptedPacket(
4231 version_.transport_version, packet,
4232 GetIncludedDestinationConnectionIdLength(*header),
4233 GetIncludedSourceConnectionIdLength(*header), header->version_flag,
4234 has_diversification_nonce, header->packet_number_length,
4235 header->retry_token_length_length, header->retry_token.length(),
4236 header->length_length);
4237 *associated_data = std::vector<char>(ad.begin(), ad.end());
4238 QuicDataWriter ad_writer(associated_data->size(), associated_data->data());
4239
4240 // Apply the unmasked type byte and packet number to |associated_data|.
4241 if (!ad_writer.WriteUInt8(header->type_byte)) {
4242 return false;
4243 }
4244 // Put the packet number at the end of the AD, or if there's a diversification
4245 // nonce, before that (which is at the end of the AD).
4246 size_t seek_len = ad_writer.remaining() - header->packet_number_length;
4247 if (has_diversification_nonce) {
4248 seek_len -= kDiversificationNonceSize;
4249 }
4250 if (!ad_writer.Seek(seek_len) ||
4251 !ad_writer.WriteBytes(pn_writer.data(), pn_writer.length())) {
4252 QUIC_DVLOG(1) << "Failed to apply unmasking operations to AD";
4253 return false;
4254 }
4255
4256 return true;
4257}
4258
QUICHE teama6ef0a62019-03-07 20:34:33 -05004259size_t QuicFramer::EncryptPayload(EncryptionLevel level,
4260 QuicPacketNumber packet_number,
4261 const QuicPacket& packet,
4262 char* buffer,
4263 size_t buffer_len) {
4264 DCHECK(packet_number.IsInitialized());
dschinazi2c5386e2019-04-16 16:37:37 -07004265 if (encrypter_[level] == nullptr) {
4266 QUIC_BUG << ENDPOINT << "Attempted to encrypt without encrypter at level "
4267 << QuicUtils::EncryptionLevelToString(level);
4268 RaiseError(QUIC_ENCRYPTION_FAILURE);
4269 return 0;
4270 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05004271
4272 QuicStringPiece associated_data =
4273 packet.AssociatedData(version_.transport_version);
4274 // Copy in the header, because the encrypter only populates the encrypted
4275 // plaintext content.
4276 const size_t ad_len = associated_data.length();
4277 memmove(buffer, associated_data.data(), ad_len);
4278 // Encrypt the plaintext into the buffer.
4279 size_t output_length = 0;
4280 if (!encrypter_[level]->EncryptPacket(
4281 packet_number.ToUint64(), associated_data,
4282 packet.Plaintext(version_.transport_version), buffer + ad_len,
4283 &output_length, buffer_len - ad_len)) {
4284 RaiseError(QUIC_ENCRYPTION_FAILURE);
4285 return 0;
4286 }
nharper55fa6132019-05-07 19:37:21 -07004287 if (version_.HasHeaderProtection() &&
4288 !ApplyHeaderProtection(level, buffer, ad_len + output_length, ad_len)) {
4289 QUIC_DLOG(ERROR) << "Applying header protection failed.";
4290 RaiseError(QUIC_ENCRYPTION_FAILURE);
4291 return 0;
4292 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05004293
4294 return ad_len + output_length;
4295}
4296
4297size_t QuicFramer::GetCiphertextSize(EncryptionLevel level,
4298 size_t plaintext_size) const {
4299 return encrypter_[level]->GetCiphertextSize(plaintext_size);
4300}
4301
4302size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
4303 // In order to keep the code simple, we don't have the current encryption
4304 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
4305 size_t min_plaintext_size = ciphertext_size;
4306
QUICHE team6987b4a2019-03-15 16:23:04 -07004307 for (int i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; i++) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05004308 if (encrypter_[i] != nullptr) {
4309 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
4310 if (size < min_plaintext_size) {
4311 min_plaintext_size = size;
4312 }
4313 }
4314 }
4315
4316 return min_plaintext_size;
4317}
4318
4319bool QuicFramer::DecryptPayload(QuicStringPiece encrypted,
4320 QuicStringPiece associated_data,
4321 const QuicPacketHeader& header,
4322 char* decrypted_buffer,
4323 size_t buffer_length,
QUICHE team10b22a12019-03-21 15:31:42 -07004324 size_t* decrypted_length,
4325 EncryptionLevel* decrypted_level) {
nharper855d2172019-05-02 16:17:46 -07004326 if (!EncryptionLevelIsValid(decrypter_level_)) {
4327 QUIC_BUG << "Attempted to decrypt with bad decrypter_level_";
4328 return false;
4329 }
zhongyi546cc452019-04-12 15:27:49 -07004330 EncryptionLevel level = decrypter_level_;
4331 QuicDecrypter* decrypter = decrypter_[level].get();
QUICHE team76086e42019-03-25 15:12:29 -07004332 QuicDecrypter* alternative_decrypter = nullptr;
zhongyi546cc452019-04-12 15:27:49 -07004333 if (version().KnowsWhichDecrypterToUse()) {
nharper9bb83462019-05-01 10:53:22 -07004334 QUIC_RELOADABLE_FLAG_COUNT(quic_v44_disable_trial_decryption);
nharper855d2172019-05-02 16:17:46 -07004335 if (header.form == GOOGLE_QUIC_PACKET) {
4336 QUIC_BUG << "Attempted to decrypt GOOGLE_QUIC_PACKET with a version that "
4337 "knows which decrypter to use";
4338 return false;
4339 }
zhongyi546cc452019-04-12 15:27:49 -07004340 level = GetEncryptionLevel(header);
nharper855d2172019-05-02 16:17:46 -07004341 if (!EncryptionLevelIsValid(level)) {
4342 QUIC_BUG << "Attempted to decrypt with bad level";
4343 return false;
4344 }
zhongyi546cc452019-04-12 15:27:49 -07004345 decrypter = decrypter_[level].get();
4346 if (decrypter == nullptr) {
4347 return false;
4348 }
4349 if (level == ENCRYPTION_ZERO_RTT &&
4350 perspective_ == Perspective::IS_CLIENT && header.nonce != nullptr) {
4351 decrypter->SetDiversificationNonce(*header.nonce);
4352 }
4353 } else if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) {
nharper855d2172019-05-02 16:17:46 -07004354 if (!EncryptionLevelIsValid(alternative_decrypter_level_)) {
4355 QUIC_BUG << "Attempted to decrypt with bad alternative_decrypter_level_";
4356 return false;
4357 }
QUICHE team76086e42019-03-25 15:12:29 -07004358 alternative_decrypter = decrypter_[alternative_decrypter_level_].get();
4359 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05004360
nharper855d2172019-05-02 16:17:46 -07004361 if (decrypter == nullptr) {
4362 QUIC_BUG << "Attempting to decrypt without decrypter";
4363 return false;
4364 }
zhongyi546cc452019-04-12 15:27:49 -07004365
4366 bool success = decrypter->DecryptPacket(
QUICHE teama6ef0a62019-03-07 20:34:33 -05004367 header.packet_number.ToUint64(), associated_data, encrypted,
4368 decrypted_buffer, decrypted_length, buffer_length);
4369 if (success) {
zhongyi546cc452019-04-12 15:27:49 -07004370 visitor_->OnDecryptedPacket(level);
4371 *decrypted_level = level;
QUICHE team76086e42019-03-25 15:12:29 -07004372 } else if (alternative_decrypter != nullptr) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05004373 if (header.nonce != nullptr) {
4374 DCHECK_EQ(perspective_, Perspective::IS_CLIENT);
QUICHE team76086e42019-03-25 15:12:29 -07004375 alternative_decrypter->SetDiversificationNonce(*header.nonce);
QUICHE teama6ef0a62019-03-07 20:34:33 -05004376 }
4377 bool try_alternative_decryption = true;
4378 if (alternative_decrypter_level_ == ENCRYPTION_ZERO_RTT) {
4379 if (perspective_ == Perspective::IS_CLIENT) {
4380 if (header.nonce == nullptr) {
4381 // Can not use INITIAL decryption without a diversification nonce.
4382 try_alternative_decryption = false;
4383 }
4384 } else {
4385 DCHECK(header.nonce == nullptr);
4386 }
4387 }
4388
4389 if (try_alternative_decryption) {
QUICHE team76086e42019-03-25 15:12:29 -07004390 success = alternative_decrypter->DecryptPacket(
QUICHE teama6ef0a62019-03-07 20:34:33 -05004391 header.packet_number.ToUint64(), associated_data, encrypted,
4392 decrypted_buffer, decrypted_length, buffer_length);
4393 }
4394 if (success) {
4395 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
QUICHE team10b22a12019-03-21 15:31:42 -07004396 *decrypted_level = decrypter_level_;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004397 if (alternative_decrypter_latch_) {
nharper855d2172019-05-02 16:17:46 -07004398 if (!EncryptionLevelIsValid(alternative_decrypter_level_)) {
4399 QUIC_BUG << "Attempted to latch alternate decrypter with bad "
4400 "alternative_decrypter_level_";
4401 return false;
4402 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05004403 // Switch to the alternative decrypter and latch so that we cannot
4404 // switch back.
QUICHE teama6ef0a62019-03-07 20:34:33 -05004405 decrypter_level_ = alternative_decrypter_level_;
QUICHE team76086e42019-03-25 15:12:29 -07004406 alternative_decrypter_level_ = NUM_ENCRYPTION_LEVELS;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004407 } else {
4408 // Switch the alternative decrypter so that we use it first next time.
QUICHE teama6ef0a62019-03-07 20:34:33 -05004409 EncryptionLevel level = alternative_decrypter_level_;
4410 alternative_decrypter_level_ = decrypter_level_;
4411 decrypter_level_ = level;
4412 }
4413 }
4414 }
4415
4416 if (!success) {
4417 QUIC_DVLOG(1) << ENDPOINT << "DecryptPacket failed for packet_number:"
4418 << header.packet_number;
4419 return false;
4420 }
4421
4422 return true;
4423}
4424
4425size_t QuicFramer::GetIetfAckFrameSize(const QuicAckFrame& frame) {
4426 // Type byte, largest_acked, and delay_time are straight-forward.
4427 size_t ack_frame_size = kQuicFrameTypeSize;
4428 QuicPacketNumber largest_acked = LargestAcked(frame);
4429 ack_frame_size += QuicDataWriter::GetVarInt62Len(largest_acked.ToUint64());
4430 uint64_t ack_delay_time_us;
4431 ack_delay_time_us = frame.ack_delay_time.ToMicroseconds();
4432 ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift;
4433 ack_frame_size += QuicDataWriter::GetVarInt62Len(ack_delay_time_us);
4434
4435 // If |ecn_counters_populated| is true and any of the ecn counters is non-0
4436 // then the ecn counters are included...
4437 if (frame.ecn_counters_populated &&
4438 (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) {
4439 ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_0_count);
4440 ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_1_count);
4441 ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count);
4442 }
4443
4444 // The rest (ack_block_count, first_ack_block, and additional ack
4445 // blocks, if any) depends:
4446 uint64_t ack_block_count = frame.packets.NumIntervals();
4447 if (ack_block_count == 0) {
4448 // If the QuicAckFrame has no Intervals, then it is interpreted
4449 // as an ack of a single packet at QuicAckFrame.largest_acked.
4450 // The resulting ack will consist of only the frame's
4451 // largest_ack & first_ack_block fields. The first ack block will be 0
4452 // (indicating a single packet) and the ack block_count will be 0.
4453 // Each 0 takes 1 byte when VarInt62 encoded.
4454 ack_frame_size += 2;
4455 return ack_frame_size;
4456 }
4457
4458 auto itr = frame.packets.rbegin();
4459 QuicPacketNumber ack_block_largest = largest_acked;
4460 QuicPacketNumber ack_block_smallest;
4461 if ((itr->max() - 1) == largest_acked) {
4462 // If largest_acked + 1 is equal to the Max() of the first Interval
4463 // in the QuicAckFrame then the first Interval is the first ack block of the
4464 // frame; remaining Intervals are additional ack blocks. The QuicAckFrame's
4465 // first Interval is encoded in the frame's largest_acked/first_ack_block,
4466 // the remaining Intervals are encoded in additional ack blocks in the
4467 // frame, and the packet's ack_block_count is the number of QuicAckFrame
4468 // Intervals - 1.
4469 ack_block_smallest = itr->min();
4470 itr++;
4471 ack_block_count--;
4472 } else {
4473 // If QuicAckFrame.largest_acked is NOT equal to the Max() of
4474 // the first Interval then it is interpreted as acking a single
4475 // packet at QuicAckFrame.largest_acked, with additional
4476 // Intervals indicating additional ack blocks. The encoding is
4477 // a) The packet's largest_acked is the QuicAckFrame's largest
4478 // acked,
4479 // b) the first ack block size is 0,
4480 // c) The packet's ack_block_count is the number of QuicAckFrame
4481 // Intervals, and
4482 // d) The QuicAckFrame Intervals are encoded in additional ack
4483 // blocks in the packet.
4484 ack_block_smallest = largest_acked;
4485 }
4486 size_t ack_block_count_size = QuicDataWriter::GetVarInt62Len(ack_block_count);
4487 ack_frame_size += ack_block_count_size;
4488
4489 uint64_t first_ack_block = ack_block_largest - ack_block_smallest;
4490 size_t first_ack_block_size = QuicDataWriter::GetVarInt62Len(first_ack_block);
4491 ack_frame_size += first_ack_block_size;
4492
4493 // Account for the remaining Intervals, if any.
4494 while (ack_block_count != 0) {
4495 uint64_t gap_size = ack_block_smallest - itr->max();
4496 // Decrement per the protocol specification
4497 size_t size_of_gap_size = QuicDataWriter::GetVarInt62Len(gap_size - 1);
4498 ack_frame_size += size_of_gap_size;
4499
4500 uint64_t block_size = itr->max() - itr->min();
4501 // Decrement per the protocol specification
4502 size_t size_of_block_size = QuicDataWriter::GetVarInt62Len(block_size - 1);
4503 ack_frame_size += size_of_block_size;
4504
4505 ack_block_smallest = itr->min();
4506 itr++;
4507 ack_block_count--;
4508 }
4509
4510 return ack_frame_size;
4511}
4512
4513size_t QuicFramer::GetAckFrameSize(
4514 const QuicAckFrame& ack,
4515 QuicPacketNumberLength packet_number_length) {
4516 DCHECK(!ack.packets.Empty());
4517 size_t ack_size = 0;
4518
4519 if (version_.transport_version == QUIC_VERSION_99) {
4520 return GetIetfAckFrameSize(ack);
4521 }
4522 AckFrameInfo ack_info = GetAckFrameInfo(ack);
4523 QuicPacketNumberLength largest_acked_length =
4524 GetMinPacketNumberLength(version_.transport_version, LargestAcked(ack));
4525 QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength(
4526 version_.transport_version, QuicPacketNumber(ack_info.max_block_length));
4527
4528 ack_size =
4529 GetMinAckFrameSize(version_.transport_version, largest_acked_length);
4530 // First ack block length.
4531 ack_size += ack_block_length;
4532 if (ack_info.num_ack_blocks != 0) {
4533 ack_size += kNumberOfAckBlocksSize;
4534 ack_size += std::min(ack_info.num_ack_blocks, kMaxAckBlocks) *
4535 (ack_block_length + PACKET_1BYTE_PACKET_NUMBER);
4536 }
4537
4538 // Include timestamps.
4539 if (process_timestamps_) {
4540 ack_size += GetAckFrameTimeStampSize(ack);
4541 }
4542
4543 return ack_size;
4544}
4545
4546size_t QuicFramer::GetAckFrameTimeStampSize(const QuicAckFrame& ack) {
4547 if (ack.received_packet_times.empty()) {
4548 return 0;
4549 }
4550
4551 return kQuicNumTimestampsLength + kQuicFirstTimestampLength +
4552 (kQuicTimestampLength + kQuicTimestampPacketNumberGapLength) *
4553 (ack.received_packet_times.size() - 1);
4554}
4555
4556size_t QuicFramer::ComputeFrameLength(
4557 const QuicFrame& frame,
4558 bool last_frame_in_packet,
4559 QuicPacketNumberLength packet_number_length) {
4560 switch (frame.type) {
4561 case STREAM_FRAME:
4562 return GetMinStreamFrameSize(
4563 version_.transport_version, frame.stream_frame.stream_id,
4564 frame.stream_frame.offset, last_frame_in_packet,
4565 frame.stream_frame.data_length) +
4566 frame.stream_frame.data_length;
4567 case CRYPTO_FRAME:
4568 return GetMinCryptoFrameSize(frame.crypto_frame->offset,
4569 frame.crypto_frame->data_length) +
4570 frame.crypto_frame->data_length;
4571 case ACK_FRAME: {
4572 return GetAckFrameSize(*frame.ack_frame, packet_number_length);
4573 }
4574 case STOP_WAITING_FRAME:
4575 return GetStopWaitingFrameSize(version_.transport_version,
4576 packet_number_length);
4577 case MTU_DISCOVERY_FRAME:
4578 // MTU discovery frames are serialized as ping frames.
4579 return kQuicFrameTypeSize;
4580 case MESSAGE_FRAME:
4581 return GetMessageFrameSize(version_.transport_version,
4582 last_frame_in_packet,
4583 frame.message_frame->message_length);
4584 case PADDING_FRAME:
4585 DCHECK(false);
4586 return 0;
4587 default:
4588 return GetRetransmittableControlFrameSize(version_.transport_version,
4589 frame);
4590 }
4591}
4592
4593bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
4594 bool last_frame_in_packet,
4595 QuicDataWriter* writer) {
4596 if (version_.transport_version == QUIC_VERSION_99) {
4597 return AppendIetfTypeByte(frame, last_frame_in_packet, writer);
4598 }
4599 uint8_t type_byte = 0;
4600 switch (frame.type) {
4601 case STREAM_FRAME:
4602 type_byte =
4603 GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet);
4604 break;
4605 case ACK_FRAME:
4606 return true;
4607 case MTU_DISCOVERY_FRAME:
4608 type_byte = static_cast<uint8_t>(PING_FRAME);
4609 break;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004610 case NEW_CONNECTION_ID_FRAME:
4611 set_detailed_error(
4612 "Attempt to append NEW_CONNECTION_ID frame and not in version 99.");
4613 return RaiseError(QUIC_INTERNAL_ERROR);
4614 case RETIRE_CONNECTION_ID_FRAME:
4615 set_detailed_error(
4616 "Attempt to append RETIRE_CONNECTION_ID frame and not in version "
4617 "99.");
4618 return RaiseError(QUIC_INTERNAL_ERROR);
4619 case NEW_TOKEN_FRAME:
4620 set_detailed_error(
4621 "Attempt to append NEW_TOKEN frame and not in version 99.");
4622 return RaiseError(QUIC_INTERNAL_ERROR);
fkastenholz3c4eabf2019-04-22 07:49:59 -07004623 case MAX_STREAMS_FRAME:
QUICHE teama6ef0a62019-03-07 20:34:33 -05004624 set_detailed_error(
fkastenholz3c4eabf2019-04-22 07:49:59 -07004625 "Attempt to append MAX_STREAMS frame and not in version 99.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05004626 return RaiseError(QUIC_INTERNAL_ERROR);
fkastenholz3c4eabf2019-04-22 07:49:59 -07004627 case STREAMS_BLOCKED_FRAME:
QUICHE teama6ef0a62019-03-07 20:34:33 -05004628 set_detailed_error(
fkastenholz3c4eabf2019-04-22 07:49:59 -07004629 "Attempt to append STREAMS_BLOCKED frame and not in version 99.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05004630 return RaiseError(QUIC_INTERNAL_ERROR);
4631 case PATH_RESPONSE_FRAME:
4632 set_detailed_error(
4633 "Attempt to append PATH_RESPONSE frame and not in version 99.");
4634 return RaiseError(QUIC_INTERNAL_ERROR);
4635 case PATH_CHALLENGE_FRAME:
4636 set_detailed_error(
4637 "Attempt to append PATH_CHALLENGE frame and not in version 99.");
4638 return RaiseError(QUIC_INTERNAL_ERROR);
4639 case STOP_SENDING_FRAME:
4640 set_detailed_error(
4641 "Attempt to append STOP_SENDING frame and not in version 99.");
4642 return RaiseError(QUIC_INTERNAL_ERROR);
4643 case MESSAGE_FRAME:
4644 return true;
4645
4646 default:
4647 type_byte = static_cast<uint8_t>(frame.type);
4648 break;
4649 }
4650
4651 return writer->WriteUInt8(type_byte);
4652}
4653
4654bool QuicFramer::AppendIetfTypeByte(const QuicFrame& frame,
4655 bool last_frame_in_packet,
4656 QuicDataWriter* writer) {
4657 uint8_t type_byte = 0;
4658 switch (frame.type) {
4659 case PADDING_FRAME:
4660 type_byte = IETF_PADDING;
4661 break;
4662 case RST_STREAM_FRAME:
4663 type_byte = IETF_RST_STREAM;
4664 break;
4665 case CONNECTION_CLOSE_FRAME:
fkastenholz72f509b2019-04-10 09:17:49 -07004666 switch (frame.connection_close_frame->close_type) {
4667 case IETF_QUIC_APPLICATION_CONNECTION_CLOSE:
4668 type_byte = IETF_APPLICATION_CLOSE;
4669 break;
4670 case IETF_QUIC_TRANSPORT_CONNECTION_CLOSE:
4671 type_byte = IETF_CONNECTION_CLOSE;
4672 break;
4673 default:
4674 set_detailed_error("Invalid QuicConnectionCloseFrame type.");
4675 return RaiseError(QUIC_INTERNAL_ERROR);
4676 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05004677 break;
4678 case GOAWAY_FRAME:
4679 set_detailed_error(
4680 "Attempt to create non-version-99 GOAWAY frame in version 99.");
4681 return RaiseError(QUIC_INTERNAL_ERROR);
4682 case WINDOW_UPDATE_FRAME:
4683 // Depending on whether there is a stream ID or not, will be either a
4684 // MAX_STREAM_DATA frame or a MAX_DATA frame.
4685 if (frame.window_update_frame->stream_id ==
4686 QuicUtils::GetInvalidStreamId(transport_version())) {
4687 type_byte = IETF_MAX_DATA;
4688 } else {
4689 type_byte = IETF_MAX_STREAM_DATA;
4690 }
4691 break;
4692 case BLOCKED_FRAME:
4693 if (frame.blocked_frame->stream_id ==
4694 QuicUtils::GetInvalidStreamId(transport_version())) {
4695 type_byte = IETF_BLOCKED;
4696 } else {
4697 type_byte = IETF_STREAM_BLOCKED;
4698 }
4699 break;
4700 case STOP_WAITING_FRAME:
4701 set_detailed_error(
4702 "Attempt to append type byte of STOP WAITING frame in version 99.");
4703 return RaiseError(QUIC_INTERNAL_ERROR);
4704 case PING_FRAME:
4705 type_byte = IETF_PING;
4706 break;
4707 case STREAM_FRAME:
4708 type_byte =
4709 GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet);
4710 break;
4711 case ACK_FRAME:
4712 // Do nothing here, AppendIetfAckFrameAndTypeByte() will put the type byte
4713 // in the buffer.
4714 return true;
4715 case MTU_DISCOVERY_FRAME:
4716 // The path MTU discovery frame is encoded as a PING frame on the wire.
4717 type_byte = IETF_PING;
4718 break;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004719 case NEW_CONNECTION_ID_FRAME:
4720 type_byte = IETF_NEW_CONNECTION_ID;
4721 break;
4722 case RETIRE_CONNECTION_ID_FRAME:
4723 type_byte = IETF_RETIRE_CONNECTION_ID;
4724 break;
4725 case NEW_TOKEN_FRAME:
4726 type_byte = IETF_NEW_TOKEN;
4727 break;
fkastenholz3c4eabf2019-04-22 07:49:59 -07004728 case MAX_STREAMS_FRAME:
4729 if (frame.max_streams_frame.unidirectional) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05004730 type_byte = IETF_MAX_STREAMS_UNIDIRECTIONAL;
fkastenholz3c4eabf2019-04-22 07:49:59 -07004731 } else {
4732 type_byte = IETF_MAX_STREAMS_BIDIRECTIONAL;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004733 }
4734 break;
fkastenholz3c4eabf2019-04-22 07:49:59 -07004735 case STREAMS_BLOCKED_FRAME:
4736 if (frame.streams_blocked_frame.unidirectional) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05004737 type_byte = IETF_STREAMS_BLOCKED_UNIDIRECTIONAL;
fkastenholz3c4eabf2019-04-22 07:49:59 -07004738 } else {
4739 type_byte = IETF_STREAMS_BLOCKED_BIDIRECTIONAL;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004740 }
4741 break;
4742 case PATH_RESPONSE_FRAME:
4743 type_byte = IETF_PATH_RESPONSE;
4744 break;
4745 case PATH_CHALLENGE_FRAME:
4746 type_byte = IETF_PATH_CHALLENGE;
4747 break;
4748 case STOP_SENDING_FRAME:
4749 type_byte = IETF_STOP_SENDING;
4750 break;
4751 case MESSAGE_FRAME:
4752 return true;
4753 case CRYPTO_FRAME:
4754 type_byte = IETF_CRYPTO;
4755 break;
4756 default:
4757 QUIC_BUG << "Attempt to generate a frame type for an unsupported value: "
4758 << frame.type;
4759 return false;
4760 }
4761 return writer->WriteUInt8(type_byte);
4762}
4763
4764// static
4765bool QuicFramer::AppendPacketNumber(QuicPacketNumberLength packet_number_length,
4766 QuicPacketNumber packet_number,
4767 QuicDataWriter* writer) {
4768 DCHECK(packet_number.IsInitialized());
4769 if (!IsValidPacketNumberLength(packet_number_length)) {
4770 QUIC_BUG << "Invalid packet_number_length: " << packet_number_length;
4771 return false;
4772 }
4773 return writer->WriteBytesToUInt64(packet_number_length,
4774 packet_number.ToUint64());
4775}
4776
4777// static
4778bool QuicFramer::AppendStreamId(size_t stream_id_length,
4779 QuicStreamId stream_id,
4780 QuicDataWriter* writer) {
4781 if (stream_id_length == 0 || stream_id_length > 4) {
4782 QUIC_BUG << "Invalid stream_id_length: " << stream_id_length;
4783 return false;
4784 }
4785 return writer->WriteBytesToUInt64(stream_id_length, stream_id);
4786}
4787
4788// static
4789bool QuicFramer::AppendStreamOffset(size_t offset_length,
4790 QuicStreamOffset offset,
4791 QuicDataWriter* writer) {
4792 if (offset_length == 1 || offset_length > 8) {
4793 QUIC_BUG << "Invalid stream_offset_length: " << offset_length;
4794 return false;
4795 }
4796
4797 return writer->WriteBytesToUInt64(offset_length, offset);
4798}
4799
4800// static
4801bool QuicFramer::AppendAckBlock(uint8_t gap,
4802 QuicPacketNumberLength length_length,
4803 uint64_t length,
4804 QuicDataWriter* writer) {
4805 if (length == 0) {
4806 if (!IsValidPacketNumberLength(length_length)) {
4807 QUIC_BUG << "Invalid packet_number_length: " << length_length;
4808 return false;
4809 }
4810 return writer->WriteUInt8(gap) &&
4811 writer->WriteBytesToUInt64(length_length, length);
4812 }
4813 return writer->WriteUInt8(gap) &&
4814 AppendPacketNumber(length_length, QuicPacketNumber(length), writer);
4815}
4816
4817bool QuicFramer::AppendStreamFrame(const QuicStreamFrame& frame,
4818 bool no_stream_frame_length,
4819 QuicDataWriter* writer) {
4820 if (version_.transport_version == QUIC_VERSION_99) {
4821 return AppendIetfStreamFrame(frame, no_stream_frame_length, writer);
4822 }
4823 if (!AppendStreamId(GetStreamIdSize(frame.stream_id), frame.stream_id,
4824 writer)) {
4825 QUIC_BUG << "Writing stream id size failed.";
4826 return false;
4827 }
4828 if (!AppendStreamOffset(
4829 GetStreamOffsetSize(version_.transport_version, frame.offset),
4830 frame.offset, writer)) {
4831 QUIC_BUG << "Writing offset size failed.";
4832 return false;
4833 }
4834 if (!no_stream_frame_length) {
4835 if ((frame.data_length > std::numeric_limits<uint16_t>::max()) ||
4836 !writer->WriteUInt16(static_cast<uint16_t>(frame.data_length))) {
4837 QUIC_BUG << "Writing stream frame length failed";
4838 return false;
4839 }
4840 }
4841
4842 if (data_producer_ != nullptr) {
4843 DCHECK_EQ(nullptr, frame.data_buffer);
4844 if (frame.data_length == 0) {
4845 return true;
4846 }
4847 if (data_producer_->WriteStreamData(frame.stream_id, frame.offset,
4848 frame.data_length,
4849 writer) != WRITE_SUCCESS) {
4850 QUIC_BUG << "Writing frame data failed.";
4851 return false;
4852 }
4853 return true;
4854 }
4855
4856 if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) {
4857 QUIC_BUG << "Writing frame data failed.";
4858 return false;
4859 }
4860 return true;
4861}
4862
4863// static
4864bool QuicFramer::AppendIetfConnectionId(
4865 bool version_flag,
4866 QuicConnectionId destination_connection_id,
4867 QuicConnectionIdLength destination_connection_id_length,
4868 QuicConnectionId source_connection_id,
4869 QuicConnectionIdLength source_connection_id_length,
4870 QuicDataWriter* writer) {
4871 if (version_flag) {
4872 // Append connection ID length byte.
4873 uint8_t dcil = GetConnectionIdLengthValue(destination_connection_id_length);
4874 uint8_t scil = GetConnectionIdLengthValue(source_connection_id_length);
4875 uint8_t connection_id_length = dcil << 4 | scil;
4876 if (!writer->WriteBytes(&connection_id_length, 1)) {
4877 return false;
4878 }
4879 }
4880 if (destination_connection_id_length == PACKET_8BYTE_CONNECTION_ID &&
4881 !writer->WriteConnectionId(destination_connection_id)) {
4882 return false;
4883 }
4884 if (source_connection_id_length == PACKET_8BYTE_CONNECTION_ID &&
4885 !writer->WriteConnectionId(source_connection_id)) {
4886 return false;
4887 }
4888 return true;
4889}
4890
4891bool QuicFramer::AppendNewTokenFrame(const QuicNewTokenFrame& frame,
4892 QuicDataWriter* writer) {
4893 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.token.length()))) {
4894 set_detailed_error("Writing token length failed.");
4895 return false;
4896 }
4897 if (!writer->WriteBytes(frame.token.data(), frame.token.length())) {
4898 set_detailed_error("Writing token buffer failed.");
4899 return false;
4900 }
4901 return true;
4902}
4903
4904bool QuicFramer::ProcessNewTokenFrame(QuicDataReader* reader,
4905 QuicNewTokenFrame* frame) {
4906 uint64_t length;
4907 if (!reader->ReadVarInt62(&length)) {
4908 set_detailed_error("Unable to read new token length.");
4909 return false;
4910 }
4911 if (length > kMaxNewTokenTokenLength) {
4912 set_detailed_error("Token length larger than maximum.");
4913 return false;
4914 }
4915
4916 // TODO(ianswett): Don't use QuicStringPiece as an intermediary.
4917 QuicStringPiece data;
4918 if (!reader->ReadStringPiece(&data, length)) {
4919 set_detailed_error("Unable to read new token data.");
4920 return false;
4921 }
vasilvvc48c8712019-03-11 13:38:16 -07004922 frame->token = std::string(data);
QUICHE teama6ef0a62019-03-07 20:34:33 -05004923 return true;
4924}
4925
4926// Add a new ietf-format stream frame.
4927// Bits controlling whether there is a frame-length and frame-offset
4928// are in the QuicStreamFrame.
4929bool QuicFramer::AppendIetfStreamFrame(const QuicStreamFrame& frame,
4930 bool last_frame_in_packet,
4931 QuicDataWriter* writer) {
4932 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) {
4933 set_detailed_error("Writing stream id failed.");
4934 return false;
4935 }
4936
4937 if (frame.offset != 0) {
4938 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) {
4939 set_detailed_error("Writing data offset failed.");
4940 return false;
4941 }
4942 }
4943
4944 if (!last_frame_in_packet) {
4945 if (!writer->WriteVarInt62(frame.data_length)) {
4946 set_detailed_error("Writing data length failed.");
4947 return false;
4948 }
4949 }
4950
4951 if (frame.data_length == 0) {
4952 return true;
4953 }
4954 if (data_producer_ == nullptr) {
4955 if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) {
4956 set_detailed_error("Writing frame data failed.");
4957 return false;
4958 }
4959 } else {
4960 DCHECK_EQ(nullptr, frame.data_buffer);
4961
4962 if (data_producer_->WriteStreamData(frame.stream_id, frame.offset,
4963 frame.data_length,
4964 writer) != WRITE_SUCCESS) {
4965 set_detailed_error("Writing frame data failed.");
4966 return false;
4967 }
4968 }
4969 return true;
4970}
4971
4972bool QuicFramer::AppendCryptoFrame(const QuicCryptoFrame& frame,
4973 QuicDataWriter* writer) {
4974 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) {
4975 set_detailed_error("Writing data offset failed.");
4976 return false;
4977 }
4978 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.data_length))) {
4979 set_detailed_error("Writing data length failed.");
4980 return false;
4981 }
4982 if (data_producer_ == nullptr) {
4983 if (frame.data_buffer == nullptr ||
4984 !writer->WriteBytes(frame.data_buffer, frame.data_length)) {
4985 set_detailed_error("Writing frame data failed.");
4986 return false;
4987 }
4988 } else {
4989 DCHECK_EQ(nullptr, frame.data_buffer);
4990 if (!data_producer_->WriteCryptoData(frame.level, frame.offset,
4991 frame.data_length, writer)) {
4992 return false;
4993 }
4994 }
4995 return true;
4996}
4997
4998void QuicFramer::set_version(const ParsedQuicVersion version) {
4999 DCHECK(IsSupportedVersion(version)) << ParsedQuicVersionToString(version);
5000 version_ = version;
5001}
5002
5003bool QuicFramer::AppendAckFrameAndTypeByte(const QuicAckFrame& frame,
5004 QuicDataWriter* writer) {
5005 if (transport_version() == QUIC_VERSION_99) {
5006 return AppendIetfAckFrameAndTypeByte(frame, writer);
5007 }
5008
5009 const AckFrameInfo new_ack_info = GetAckFrameInfo(frame);
5010 QuicPacketNumber largest_acked = LargestAcked(frame);
5011 QuicPacketNumberLength largest_acked_length =
5012 GetMinPacketNumberLength(version_.transport_version, largest_acked);
5013 QuicPacketNumberLength ack_block_length =
5014 GetMinPacketNumberLength(version_.transport_version,
5015 QuicPacketNumber(new_ack_info.max_block_length));
5016 // Calculate available bytes for timestamps and ack blocks.
5017 int32_t available_timestamp_and_ack_block_bytes =
5018 writer->capacity() - writer->length() - ack_block_length -
5019 GetMinAckFrameSize(version_.transport_version, largest_acked_length) -
5020 (new_ack_info.num_ack_blocks != 0 ? kNumberOfAckBlocksSize : 0);
5021 DCHECK_LE(0, available_timestamp_and_ack_block_bytes);
5022
5023 // Write out the type byte by setting the low order bits and doing shifts
5024 // to make room for the next bit flags to be set.
5025 // Whether there are multiple ack blocks.
5026 uint8_t type_byte = 0;
5027 SetBit(&type_byte, new_ack_info.num_ack_blocks != 0,
5028 kQuicHasMultipleAckBlocksOffset);
5029
5030 SetBits(&type_byte, GetPacketNumberFlags(largest_acked_length),
5031 kQuicSequenceNumberLengthNumBits, kLargestAckedOffset);
5032
5033 SetBits(&type_byte, GetPacketNumberFlags(ack_block_length),
5034 kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset);
5035
5036 type_byte |= kQuicFrameTypeAckMask;
5037
5038 if (!writer->WriteUInt8(type_byte)) {
5039 return false;
5040 }
5041
5042 size_t max_num_ack_blocks = available_timestamp_and_ack_block_bytes /
5043 (ack_block_length + PACKET_1BYTE_PACKET_NUMBER);
5044
5045 // Number of ack blocks.
5046 size_t num_ack_blocks =
5047 std::min(new_ack_info.num_ack_blocks, max_num_ack_blocks);
5048 if (num_ack_blocks > std::numeric_limits<uint8_t>::max()) {
5049 num_ack_blocks = std::numeric_limits<uint8_t>::max();
5050 }
5051
5052 // Largest acked.
5053 if (!AppendPacketNumber(largest_acked_length, largest_acked, writer)) {
5054 return false;
5055 }
5056
5057 // Largest acked delta time.
5058 uint64_t ack_delay_time_us = kUFloat16MaxValue;
5059 if (!frame.ack_delay_time.IsInfinite()) {
5060 DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds());
5061 ack_delay_time_us = frame.ack_delay_time.ToMicroseconds();
5062 }
5063 if (!writer->WriteUFloat16(ack_delay_time_us)) {
5064 return false;
5065 }
5066
5067 if (num_ack_blocks > 0) {
5068 if (!writer->WriteBytes(&num_ack_blocks, 1)) {
5069 return false;
5070 }
5071 }
5072
5073 // First ack block length.
5074 if (!AppendPacketNumber(ack_block_length,
5075 QuicPacketNumber(new_ack_info.first_block_length),
5076 writer)) {
5077 return false;
5078 }
5079
5080 // Ack blocks.
5081 if (num_ack_blocks > 0) {
5082 size_t num_ack_blocks_written = 0;
5083 // Append, in descending order from the largest ACKed packet, a series of
5084 // ACK blocks that represents the successfully acknoweldged packets. Each
5085 // appended gap/block length represents a descending delta from the previous
5086 // block. i.e.:
5087 // |--- length ---|--- gap ---|--- length ---|--- gap ---|--- largest ---|
5088 // For gaps larger than can be represented by a single encoded gap, a 0
5089 // length gap of the maximum is used, i.e.:
5090 // |--- length ---|--- gap ---|- 0 -|--- gap ---|--- largest ---|
5091 auto itr = frame.packets.rbegin();
5092 QuicPacketNumber previous_start = itr->min();
5093 ++itr;
5094
5095 for (;
5096 itr != frame.packets.rend() && num_ack_blocks_written < num_ack_blocks;
5097 previous_start = itr->min(), ++itr) {
5098 const auto& interval = *itr;
5099 const uint64_t total_gap = previous_start - interval.max();
5100 const size_t num_encoded_gaps =
5101 (total_gap + std::numeric_limits<uint8_t>::max() - 1) /
5102 std::numeric_limits<uint8_t>::max();
5103 DCHECK_LE(0u, num_encoded_gaps);
5104
5105 // Append empty ACK blocks because the gap is longer than a single gap.
5106 for (size_t i = 1;
5107 i < num_encoded_gaps && num_ack_blocks_written < num_ack_blocks;
5108 ++i) {
5109 if (!AppendAckBlock(std::numeric_limits<uint8_t>::max(),
5110 ack_block_length, 0, writer)) {
5111 return false;
5112 }
5113 ++num_ack_blocks_written;
5114 }
5115 if (num_ack_blocks_written >= num_ack_blocks) {
5116 if (QUIC_PREDICT_FALSE(num_ack_blocks_written != num_ack_blocks)) {
5117 QUIC_BUG << "Wrote " << num_ack_blocks_written
5118 << ", expected to write " << num_ack_blocks;
5119 }
5120 break;
5121 }
5122
5123 const uint8_t last_gap =
5124 total_gap -
5125 (num_encoded_gaps - 1) * std::numeric_limits<uint8_t>::max();
5126 // Append the final ACK block with a non-empty size.
5127 if (!AppendAckBlock(last_gap, ack_block_length,
5128 PacketNumberIntervalLength(interval), writer)) {
5129 return false;
5130 }
5131 ++num_ack_blocks_written;
5132 }
5133 DCHECK_EQ(num_ack_blocks, num_ack_blocks_written);
5134 }
5135 // Timestamps.
5136 // If we don't process timestamps or if we don't have enough available space
5137 // to append all the timestamps, don't append any of them.
5138 if (process_timestamps_ && writer->capacity() - writer->length() >=
5139 GetAckFrameTimeStampSize(frame)) {
5140 if (!AppendTimestampsToAckFrame(frame, writer)) {
5141 return false;
5142 }
5143 } else {
5144 uint8_t num_received_packets = 0;
5145 if (!writer->WriteBytes(&num_received_packets, 1)) {
5146 return false;
5147 }
5148 }
5149
5150 return true;
5151}
5152
5153bool QuicFramer::AppendTimestampsToAckFrame(const QuicAckFrame& frame,
5154 QuicDataWriter* writer) {
5155 DCHECK_GE(std::numeric_limits<uint8_t>::max(),
5156 frame.received_packet_times.size());
5157 // num_received_packets is only 1 byte.
5158 if (frame.received_packet_times.size() >
5159 std::numeric_limits<uint8_t>::max()) {
5160 return false;
5161 }
5162
5163 uint8_t num_received_packets = frame.received_packet_times.size();
5164 if (!writer->WriteBytes(&num_received_packets, 1)) {
5165 return false;
5166 }
5167 if (num_received_packets == 0) {
5168 return true;
5169 }
5170
5171 auto it = frame.received_packet_times.begin();
5172 QuicPacketNumber packet_number = it->first;
5173 uint64_t delta_from_largest_observed = LargestAcked(frame) - packet_number;
5174
5175 DCHECK_GE(std::numeric_limits<uint8_t>::max(), delta_from_largest_observed);
5176 if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) {
5177 return false;
5178 }
5179
5180 if (!writer->WriteUInt8(delta_from_largest_observed)) {
5181 return false;
5182 }
5183
5184 // Use the lowest 4 bytes of the time delta from the creation_time_.
5185 const uint64_t time_epoch_delta_us = UINT64_C(1) << 32;
5186 uint32_t time_delta_us =
5187 static_cast<uint32_t>((it->second - creation_time_).ToMicroseconds() &
5188 (time_epoch_delta_us - 1));
5189 if (!writer->WriteUInt32(time_delta_us)) {
5190 return false;
5191 }
5192
5193 QuicTime prev_time = it->second;
5194
5195 for (++it; it != frame.received_packet_times.end(); ++it) {
5196 packet_number = it->first;
5197 delta_from_largest_observed = LargestAcked(frame) - packet_number;
5198
5199 if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) {
5200 return false;
5201 }
5202
5203 if (!writer->WriteUInt8(delta_from_largest_observed)) {
5204 return false;
5205 }
5206
5207 uint64_t frame_time_delta_us = (it->second - prev_time).ToMicroseconds();
5208 prev_time = it->second;
5209 if (!writer->WriteUFloat16(frame_time_delta_us)) {
5210 return false;
5211 }
5212 }
5213 return true;
5214}
5215
5216bool QuicFramer::AppendStopWaitingFrame(const QuicPacketHeader& header,
5217 const QuicStopWaitingFrame& frame,
5218 QuicDataWriter* writer) {
5219 DCHECK_GE(QUIC_VERSION_43, version_.transport_version);
5220 DCHECK(frame.least_unacked.IsInitialized() &&
5221 header.packet_number >= frame.least_unacked);
5222 const uint64_t least_unacked_delta =
5223 header.packet_number - frame.least_unacked;
5224 const uint64_t length_shift = header.packet_number_length * 8;
5225
5226 if (least_unacked_delta >> length_shift > 0) {
5227 QUIC_BUG << "packet_number_length " << header.packet_number_length
5228 << " is too small for least_unacked_delta: " << least_unacked_delta
5229 << " packet_number:" << header.packet_number
5230 << " least_unacked:" << frame.least_unacked
5231 << " version:" << version_.transport_version;
5232 return false;
5233 }
5234 if (least_unacked_delta == 0) {
5235 return writer->WriteBytesToUInt64(header.packet_number_length,
5236 least_unacked_delta);
5237 }
5238 if (!AppendPacketNumber(header.packet_number_length,
5239 QuicPacketNumber(least_unacked_delta), writer)) {
5240 QUIC_BUG << " seq failed: " << header.packet_number_length;
5241 return false;
5242 }
5243
5244 return true;
5245}
5246
5247int QuicFramer::CalculateIetfAckBlockCount(const QuicAckFrame& frame,
5248 QuicDataWriter* writer,
5249 size_t available_space) {
5250 // Number of blocks requested in the frame
5251 uint64_t ack_block_count = frame.packets.NumIntervals();
5252
5253 auto itr = frame.packets.rbegin();
5254
5255 int actual_block_count = 1;
5256 uint64_t block_length = itr->max() - itr->min();
5257 size_t encoded_size = QuicDataWriter::GetVarInt62Len(block_length);
5258 if (encoded_size > available_space) {
5259 return 0;
5260 }
5261 available_space -= encoded_size;
5262 QuicPacketNumber previous_ack_end = itr->min();
5263 ack_block_count--;
5264
5265 while (ack_block_count) {
5266 // Each block is a gap followed by another ACK. Calculate each value,
5267 // determine the encoded lengths, and check against the available space.
5268 itr++;
5269 size_t gap = previous_ack_end - itr->max() - 1;
5270 encoded_size = QuicDataWriter::GetVarInt62Len(gap);
5271
5272 // Add the ACK block.
5273 block_length = itr->max() - itr->min();
5274 encoded_size += QuicDataWriter::GetVarInt62Len(block_length);
5275
5276 if (encoded_size > available_space) {
5277 // No room for this block, so what we've
5278 // done up to now is all that can be done.
5279 return actual_block_count;
5280 }
5281 available_space -= encoded_size;
5282 actual_block_count++;
5283 previous_ack_end = itr->min();
5284 ack_block_count--;
5285 }
5286 // Ran through the whole thing! We can do all blocks.
5287 return actual_block_count;
5288}
5289
5290bool QuicFramer::AppendIetfAckFrameAndTypeByte(const QuicAckFrame& frame,
5291 QuicDataWriter* writer) {
5292 // Assume frame is an IETF_ACK frame. If |ecn_counters_populated| is true and
5293 // any of the ECN counters is non-0 then turn it into an IETF_ACK+ECN frame.
5294 uint8_t type = IETF_ACK;
5295 if (frame.ecn_counters_populated &&
5296 (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) {
5297 type = IETF_ACK_ECN;
5298 }
5299
5300 if (!writer->WriteUInt8(type)) {
5301 set_detailed_error("No room for frame-type");
5302 return false;
5303 }
5304
5305 QuicPacketNumber largest_acked = LargestAcked(frame);
5306 if (!writer->WriteVarInt62(largest_acked.ToUint64())) {
5307 set_detailed_error("No room for largest-acked in ack frame");
5308 return false;
5309 }
5310
5311 uint64_t ack_delay_time_us = kVarInt62MaxValue;
5312 if (!frame.ack_delay_time.IsInfinite()) {
5313 DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds());
5314 ack_delay_time_us = frame.ack_delay_time.ToMicroseconds();
5315 // TODO(fkastenholz): Use the shift from TLS transport parameters.
5316 ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift;
5317 }
5318
5319 if (!writer->WriteVarInt62(ack_delay_time_us)) {
5320 set_detailed_error("No room for ack-delay in ack frame");
5321 return false;
5322 }
5323 if (type == IETF_ACK_ECN) {
5324 // Encode the ACK ECN fields
5325 if (!writer->WriteVarInt62(frame.ect_0_count)) {
5326 set_detailed_error("No room for ect_0_count in ack frame");
5327 return false;
5328 }
5329 if (!writer->WriteVarInt62(frame.ect_1_count)) {
5330 set_detailed_error("No room for ect_1_count in ack frame");
5331 return false;
5332 }
5333 if (!writer->WriteVarInt62(frame.ecn_ce_count)) {
5334 set_detailed_error("No room for ecn_ce_count in ack frame");
5335 return false;
5336 }
5337 }
5338
5339 uint64_t ack_block_count = frame.packets.NumIntervals();
5340 if (ack_block_count == 0) {
5341 // If the QuicAckFrame has no Intervals, then it is interpreted
5342 // as an ack of a single packet at QuicAckFrame.largest_acked.
5343 // The resulting ack will consist of only the frame's
5344 // largest_ack & first_ack_block fields. The first ack block will be 0
5345 // (indicating a single packet) and the ack block_count will be 0.
5346 if (!writer->WriteVarInt62(0)) {
5347 set_detailed_error("No room for ack block count in ack frame");
5348 return false;
5349 }
5350 // size of the first block is 1 packet
5351 if (!writer->WriteVarInt62(0)) {
5352 set_detailed_error("No room for first ack block in ack frame");
5353 return false;
5354 }
5355 return true;
5356 }
5357 // Case 2 or 3
5358 auto itr = frame.packets.rbegin();
5359
5360 QuicPacketNumber ack_block_largest(largest_acked);
5361 QuicPacketNumber ack_block_smallest;
5362 if ((itr->max() - 1) == QuicPacketNumber(largest_acked)) {
5363 // If largest_acked + 1 is equal to the Max() of the first Interval
5364 // in the QuicAckFrame then the first Interval is the first ack block of the
5365 // frame; remaining Intervals are additional ack blocks. The QuicAckFrame's
5366 // first Interval is encoded in the frame's largest_acked/first_ack_block,
5367 // the remaining Intervals are encoded in additional ack blocks in the
5368 // frame, and the packet's ack_block_count is the number of QuicAckFrame
5369 // Intervals - 1.
5370 ack_block_smallest = itr->min();
5371 itr++;
5372 ack_block_count--;
5373 } else {
5374 // If QuicAckFrame.largest_acked is NOT equal to the Max() of
5375 // the first Interval then it is interpreted as acking a single
5376 // packet at QuicAckFrame.largest_acked, with additional
5377 // Intervals indicating additional ack blocks. The encoding is
5378 // a) The packet's largest_acked is the QuicAckFrame's largest
5379 // acked,
5380 // b) the first ack block size is 0,
5381 // c) The packet's ack_block_count is the number of QuicAckFrame
5382 // Intervals, and
5383 // d) The QuicAckFrame Intervals are encoded in additional ack
5384 // blocks in the packet.
5385 ack_block_smallest = largest_acked;
5386 }
5387
5388 if (!writer->WriteVarInt62(ack_block_count)) {
5389 set_detailed_error("No room for ack block count in ack frame");
5390 return false;
5391 }
5392
5393 uint64_t first_ack_block = ack_block_largest - ack_block_smallest;
5394 if (!writer->WriteVarInt62(first_ack_block)) {
5395 set_detailed_error("No room for first ack block in ack frame");
5396 return false;
5397 }
5398
5399 // For the remaining QuicAckFrame Intervals, if any
5400 while (ack_block_count != 0) {
5401 uint64_t gap_size = ack_block_smallest - itr->max();
5402 if (!writer->WriteVarInt62(gap_size - 1)) {
5403 set_detailed_error("No room for gap block in ack frame");
5404 return false;
5405 }
5406
5407 uint64_t block_size = itr->max() - itr->min();
5408 if (!writer->WriteVarInt62(block_size - 1)) {
5409 set_detailed_error("No room for nth ack block in ack frame");
5410 return false;
5411 }
5412
5413 ack_block_smallest = itr->min();
5414 itr++;
5415 ack_block_count--;
5416 }
5417 return true;
5418}
5419
5420bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame,
5421 QuicDataWriter* writer) {
5422 if (version_.transport_version == QUIC_VERSION_99) {
5423 return AppendIetfResetStreamFrame(frame, writer);
5424 }
5425 if (!writer->WriteUInt32(frame.stream_id)) {
5426 return false;
5427 }
5428
5429 if (!writer->WriteUInt64(frame.byte_offset)) {
5430 return false;
5431 }
5432
5433 uint32_t error_code = static_cast<uint32_t>(frame.error_code);
5434 if (!writer->WriteUInt32(error_code)) {
5435 return false;
5436 }
5437
5438 return true;
5439}
5440
5441bool QuicFramer::AppendConnectionCloseFrame(
5442 const QuicConnectionCloseFrame& frame,
5443 QuicDataWriter* writer) {
5444 if (version_.transport_version == QUIC_VERSION_99) {
5445 return AppendIetfConnectionCloseFrame(frame, writer);
5446 }
fkastenholze9d71a82019-04-09 05:12:13 -07005447 uint32_t error_code = static_cast<uint32_t>(frame.quic_error_code);
QUICHE teama6ef0a62019-03-07 20:34:33 -05005448 if (!writer->WriteUInt32(error_code)) {
5449 return false;
5450 }
5451 if (!writer->WriteStringPiece16(TruncateErrorString(frame.error_details))) {
5452 return false;
5453 }
5454 return true;
5455}
5456
5457bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
5458 QuicDataWriter* writer) {
5459 uint32_t error_code = static_cast<uint32_t>(frame.error_code);
5460 if (!writer->WriteUInt32(error_code)) {
5461 return false;
5462 }
5463 uint32_t stream_id = static_cast<uint32_t>(frame.last_good_stream_id);
5464 if (!writer->WriteUInt32(stream_id)) {
5465 return false;
5466 }
5467 if (!writer->WriteStringPiece16(TruncateErrorString(frame.reason_phrase))) {
5468 return false;
5469 }
5470 return true;
5471}
5472
5473bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
5474 QuicDataWriter* writer) {
5475 uint32_t stream_id = static_cast<uint32_t>(frame.stream_id);
5476 if (!writer->WriteUInt32(stream_id)) {
5477 return false;
5478 }
5479 if (!writer->WriteUInt64(frame.byte_offset)) {
5480 return false;
5481 }
5482 return true;
5483}
5484
5485bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
5486 QuicDataWriter* writer) {
5487 if (version_.transport_version == QUIC_VERSION_99) {
5488 if (frame.stream_id == QuicUtils::GetInvalidStreamId(transport_version())) {
5489 return AppendIetfBlockedFrame(frame, writer);
5490 }
5491 return AppendStreamBlockedFrame(frame, writer);
5492 }
5493 uint32_t stream_id = static_cast<uint32_t>(frame.stream_id);
5494 if (!writer->WriteUInt32(stream_id)) {
5495 return false;
5496 }
5497 return true;
5498}
5499
5500bool QuicFramer::AppendPaddingFrame(const QuicPaddingFrame& frame,
5501 QuicDataWriter* writer) {
5502 if (frame.num_padding_bytes == 0) {
5503 return false;
5504 }
5505 if (frame.num_padding_bytes < 0) {
5506 QUIC_BUG_IF(frame.num_padding_bytes != -1);
5507 writer->WritePadding();
5508 return true;
5509 }
5510 // Please note, num_padding_bytes includes type byte which has been written.
5511 return writer->WritePaddingBytes(frame.num_padding_bytes - 1);
5512}
5513
5514bool QuicFramer::AppendMessageFrameAndTypeByte(const QuicMessageFrame& frame,
5515 bool last_frame_in_packet,
5516 QuicDataWriter* writer) {
5517 uint8_t type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH
5518 : IETF_EXTENSION_MESSAGE;
5519 if (!writer->WriteUInt8(type_byte)) {
5520 return false;
5521 }
5522 if (!last_frame_in_packet && !writer->WriteVarInt62(frame.message_length)) {
5523 return false;
5524 }
5525 for (const auto& slice : frame.message_data) {
5526 if (!writer->WriteBytes(slice.data(), slice.length())) {
5527 return false;
5528 }
5529 }
5530 return true;
5531}
5532
5533bool QuicFramer::RaiseError(QuicErrorCode error) {
5534 QUIC_DLOG(INFO) << ENDPOINT << "Error: " << QuicErrorCodeToString(error)
5535 << " detail: " << detailed_error_;
5536 set_error(error);
nharper55fa6132019-05-07 19:37:21 -07005537 if (visitor_) {
5538 visitor_->OnError(this);
5539 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05005540 return false;
5541}
5542
5543bool QuicFramer::IsVersionNegotiation(
5544 const QuicPacketHeader& header,
5545 bool packet_has_ietf_packet_header) const {
5546 if (perspective_ == Perspective::IS_SERVER) {
dschinazi072da7c2019-05-07 17:57:42 -07005547 if (!GetQuicRestartFlag(quic_server_drop_version_negotiation)) {
5548 return false;
5549 }
5550 QUIC_RESTART_FLAG_COUNT_N(quic_server_drop_version_negotiation, 2, 2);
QUICHE teama6ef0a62019-03-07 20:34:33 -05005551 }
dschinazi072da7c2019-05-07 17:57:42 -07005552 if (!packet_has_ietf_packet_header &&
5553 perspective_ == Perspective::IS_CLIENT) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005554 return header.version_flag;
5555 }
5556 if (header.form == IETF_QUIC_SHORT_HEADER_PACKET) {
5557 return false;
5558 }
5559 return header.long_packet_type == VERSION_NEGOTIATION;
5560}
5561
QUICHE teama6ef0a62019-03-07 20:34:33 -05005562bool QuicFramer::AppendIetfConnectionCloseFrame(
5563 const QuicConnectionCloseFrame& frame,
5564 QuicDataWriter* writer) {
fkastenholz72f509b2019-04-10 09:17:49 -07005565 if (frame.close_type != IETF_QUIC_TRANSPORT_CONNECTION_CLOSE &&
5566 frame.close_type != IETF_QUIC_APPLICATION_CONNECTION_CLOSE) {
5567 QUIC_BUG << "Invalid close_type for writing IETF CONNECTION CLOSE.";
5568 set_detailed_error("Invalid close_type for writing IETF CONNECTION CLOSE.");
5569 return false;
5570 }
5571
fkastenholze9d71a82019-04-09 05:12:13 -07005572 if (!writer->WriteUInt16(frame.application_error_code)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005573 set_detailed_error("Can not write connection close frame error code");
5574 return false;
5575 }
fkastenholze9d71a82019-04-09 05:12:13 -07005576
fkastenholz72f509b2019-04-10 09:17:49 -07005577 if (frame.close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) {
5578 // Write the frame-type of the frame causing the error only
5579 // if it's a CONNECTION_CLOSE/Transport.
5580 if (!writer->WriteVarInt62(frame.transport_close_frame_type)) {
5581 set_detailed_error("Writing frame type failed.");
5582 return false;
5583 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05005584 }
5585
fkastenholz72f509b2019-04-10 09:17:49 -07005586 // TODO(fkastenholz): For full IETF CONNECTION CLOSE support,
5587 // if this is a Transport CONNECTION_CLOSE and the extended
5588 // error is not QUIC_IETF_GQUIC_ERROR_MISSING then append the extended
5589 // "QuicErrorCode: #" string to the phrase.
QUICHE teama6ef0a62019-03-07 20:34:33 -05005590 if (!writer->WriteStringPieceVarInt62(
5591 TruncateErrorString(frame.error_details))) {
5592 set_detailed_error("Can not write connection close phrase");
5593 return false;
5594 }
5595 return true;
5596}
5597
QUICHE teama6ef0a62019-03-07 20:34:33 -05005598bool QuicFramer::ProcessIetfConnectionCloseFrame(
5599 QuicDataReader* reader,
fkastenholze9d71a82019-04-09 05:12:13 -07005600 QuicConnectionCloseType type,
QUICHE teama6ef0a62019-03-07 20:34:33 -05005601 QuicConnectionCloseFrame* frame) {
fkastenholze9d71a82019-04-09 05:12:13 -07005602 frame->close_type = type;
QUICHE teama6ef0a62019-03-07 20:34:33 -05005603 uint16_t code;
5604 if (!reader->ReadUInt16(&code)) {
5605 set_detailed_error("Unable to read connection close error code.");
5606 return false;
5607 }
fkastenholze9d71a82019-04-09 05:12:13 -07005608 frame->transport_error_code = static_cast<QuicIetfTransportErrorCodes>(code);
QUICHE teama6ef0a62019-03-07 20:34:33 -05005609
fkastenholz72f509b2019-04-10 09:17:49 -07005610 if (type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) {
5611 // The frame-type of the frame causing the error is present only
5612 // if it's a CONNECTION_CLOSE/Transport.
5613 if (!reader->ReadVarInt62(&frame->transport_close_frame_type)) {
5614 set_detailed_error("Unable to read connection close frame type.");
5615 return false;
5616 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05005617 }
5618
5619 uint64_t phrase_length;
5620 if (!reader->ReadVarInt62(&phrase_length)) {
5621 set_detailed_error("Unable to read connection close error details.");
5622 return false;
5623 }
5624 QuicStringPiece phrase;
5625 if (!reader->ReadStringPiece(&phrase, static_cast<size_t>(phrase_length))) {
5626 set_detailed_error("Unable to read connection close error details.");
5627 return false;
5628 }
fkastenholz72f509b2019-04-10 09:17:49 -07005629 // TODO(fkastenholz): when full support is done, add code here
5630 // to extract the extended error code from the reason phrase
5631 // and set it into frame->extracted_error_code.
vasilvvc48c8712019-03-11 13:38:16 -07005632 frame->error_details = std::string(phrase);
QUICHE teama6ef0a62019-03-07 20:34:33 -05005633
5634 return true;
5635}
5636
5637// IETF Quic Path Challenge/Response frames.
5638bool QuicFramer::ProcessPathChallengeFrame(QuicDataReader* reader,
5639 QuicPathChallengeFrame* frame) {
5640 if (!reader->ReadBytes(frame->data_buffer.data(),
5641 frame->data_buffer.size())) {
5642 set_detailed_error("Can not read path challenge data.");
5643 return false;
5644 }
5645 return true;
5646}
5647
5648bool QuicFramer::ProcessPathResponseFrame(QuicDataReader* reader,
5649 QuicPathResponseFrame* frame) {
5650 if (!reader->ReadBytes(frame->data_buffer.data(),
5651 frame->data_buffer.size())) {
5652 set_detailed_error("Can not read path response data.");
5653 return false;
5654 }
5655 return true;
5656}
5657
5658bool QuicFramer::AppendPathChallengeFrame(const QuicPathChallengeFrame& frame,
5659 QuicDataWriter* writer) {
5660 if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) {
5661 set_detailed_error("Writing Path Challenge data failed.");
5662 return false;
5663 }
5664 return true;
5665}
5666
5667bool QuicFramer::AppendPathResponseFrame(const QuicPathResponseFrame& frame,
5668 QuicDataWriter* writer) {
5669 if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) {
5670 set_detailed_error("Writing Path Response data failed.");
5671 return false;
5672 }
5673 return true;
5674}
5675
5676// Add a new ietf-format stream reset frame.
5677// General format is
5678// stream id
5679// application error code
5680// final offset
5681bool QuicFramer::AppendIetfResetStreamFrame(const QuicRstStreamFrame& frame,
5682 QuicDataWriter* writer) {
5683 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) {
5684 set_detailed_error("Writing reset-stream stream id failed.");
5685 return false;
5686 }
5687 if (!writer->WriteUInt16(frame.ietf_error_code)) {
5688 set_detailed_error("Writing reset-stream error code failed.");
5689 return false;
5690 }
5691 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.byte_offset))) {
5692 set_detailed_error("Writing reset-stream final-offset failed.");
5693 return false;
5694 }
5695 return true;
5696}
5697
5698bool QuicFramer::ProcessIetfResetStreamFrame(QuicDataReader* reader,
5699 QuicRstStreamFrame* frame) {
5700 // Get Stream ID from frame. ReadVarIntStreamID returns false
5701 // if either A) there is a read error or B) the resulting value of
5702 // the Stream ID is larger than the maximum allowed value.
fkastenholz3c4eabf2019-04-22 07:49:59 -07005703 if (!reader->ReadVarIntU32(&frame->stream_id)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005704 set_detailed_error("Unable to read rst stream stream id.");
5705 return false;
5706 }
5707
5708 if (!reader->ReadUInt16(&frame->ietf_error_code)) {
5709 set_detailed_error("Unable to read rst stream error code.");
5710 return false;
5711 }
5712
5713 if (!reader->ReadVarInt62(&frame->byte_offset)) {
5714 set_detailed_error("Unable to read rst stream sent byte offset.");
5715 return false;
5716 }
5717 return true;
5718}
5719
5720bool QuicFramer::ProcessStopSendingFrame(
5721 QuicDataReader* reader,
5722 QuicStopSendingFrame* stop_sending_frame) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005723 if (!reader->ReadVarIntU32(&stop_sending_frame->stream_id)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005724 set_detailed_error("Unable to read stop sending stream id.");
5725 return false;
5726 }
5727
5728 if (!reader->ReadUInt16(&stop_sending_frame->application_error_code)) {
5729 set_detailed_error("Unable to read stop sending application error code.");
5730 return false;
5731 }
5732 return true;
5733}
5734
5735bool QuicFramer::AppendStopSendingFrame(
5736 const QuicStopSendingFrame& stop_sending_frame,
5737 QuicDataWriter* writer) {
5738 if (!writer->WriteVarInt62(stop_sending_frame.stream_id)) {
5739 set_detailed_error("Can not write stop sending stream id");
5740 return false;
5741 }
5742 if (!writer->WriteUInt16(stop_sending_frame.application_error_code)) {
5743 set_detailed_error("Can not write application error code");
5744 return false;
5745 }
5746 return true;
5747}
5748
5749// Append/process IETF-Format MAX_DATA Frame
5750bool QuicFramer::AppendMaxDataFrame(const QuicWindowUpdateFrame& frame,
5751 QuicDataWriter* writer) {
5752 if (!writer->WriteVarInt62(frame.byte_offset)) {
5753 set_detailed_error("Can not write MAX_DATA byte-offset");
5754 return false;
5755 }
5756 return true;
5757}
5758
5759bool QuicFramer::ProcessMaxDataFrame(QuicDataReader* reader,
5760 QuicWindowUpdateFrame* frame) {
5761 frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version());
5762 if (!reader->ReadVarInt62(&frame->byte_offset)) {
5763 set_detailed_error("Can not read MAX_DATA byte-offset");
5764 return false;
5765 }
5766 return true;
5767}
5768
5769// Append/process IETF-Format MAX_STREAM_DATA Frame
5770bool QuicFramer::AppendMaxStreamDataFrame(const QuicWindowUpdateFrame& frame,
5771 QuicDataWriter* writer) {
5772 if (!writer->WriteVarInt62(frame.stream_id)) {
5773 set_detailed_error("Can not write MAX_STREAM_DATA stream id");
5774 return false;
5775 }
5776 if (!writer->WriteVarInt62(frame.byte_offset)) {
5777 set_detailed_error("Can not write MAX_STREAM_DATA byte-offset");
5778 return false;
5779 }
5780 return true;
5781}
5782
5783bool QuicFramer::ProcessMaxStreamDataFrame(QuicDataReader* reader,
5784 QuicWindowUpdateFrame* frame) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005785 if (!reader->ReadVarIntU32(&frame->stream_id)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005786 set_detailed_error("Can not read MAX_STREAM_DATA stream id");
5787 return false;
5788 }
5789 if (!reader->ReadVarInt62(&frame->byte_offset)) {
5790 set_detailed_error("Can not read MAX_STREAM_DATA byte-count");
5791 return false;
5792 }
5793 return true;
5794}
5795
fkastenholz3c4eabf2019-04-22 07:49:59 -07005796bool QuicFramer::AppendMaxStreamsFrame(const QuicMaxStreamsFrame& frame,
QUICHE teama6ef0a62019-03-07 20:34:33 -05005797 QuicDataWriter* writer) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005798 if (!writer->WriteVarInt62(frame.stream_count)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005799 set_detailed_error("Can not write MAX_STREAMS stream count");
5800 return false;
5801 }
5802 return true;
5803}
5804
5805bool QuicFramer::ProcessMaxStreamsFrame(QuicDataReader* reader,
fkastenholz3c4eabf2019-04-22 07:49:59 -07005806 QuicMaxStreamsFrame* frame,
QUICHE teama6ef0a62019-03-07 20:34:33 -05005807 uint64_t frame_type) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005808 if (!reader->ReadVarIntU32(&frame->stream_count)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005809 set_detailed_error("Can not read MAX_STREAMS stream count.");
5810 return false;
5811 }
fkastenholz3c4eabf2019-04-22 07:49:59 -07005812 frame->unidirectional = (frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL);
5813 return true;
QUICHE teama6ef0a62019-03-07 20:34:33 -05005814}
5815
5816bool QuicFramer::AppendIetfBlockedFrame(const QuicBlockedFrame& frame,
5817 QuicDataWriter* writer) {
5818 if (!writer->WriteVarInt62(frame.offset)) {
5819 set_detailed_error("Can not write blocked offset.");
5820 return false;
5821 }
5822 return true;
5823}
5824
5825bool QuicFramer::ProcessIetfBlockedFrame(QuicDataReader* reader,
5826 QuicBlockedFrame* frame) {
5827 // Indicates that it is a BLOCKED frame (as opposed to STREAM_BLOCKED).
5828 frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version());
5829 if (!reader->ReadVarInt62(&frame->offset)) {
5830 set_detailed_error("Can not read blocked offset.");
5831 return false;
5832 }
5833 return true;
5834}
5835
5836bool QuicFramer::AppendStreamBlockedFrame(const QuicBlockedFrame& frame,
5837 QuicDataWriter* writer) {
5838 if (!writer->WriteVarInt62(frame.stream_id)) {
5839 set_detailed_error("Can not write stream blocked stream id.");
5840 return false;
5841 }
5842 if (!writer->WriteVarInt62(frame.offset)) {
5843 set_detailed_error("Can not write stream blocked offset.");
5844 return false;
5845 }
5846 return true;
5847}
5848
5849bool QuicFramer::ProcessStreamBlockedFrame(QuicDataReader* reader,
5850 QuicBlockedFrame* frame) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005851 if (!reader->ReadVarIntU32(&frame->stream_id)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005852 set_detailed_error("Can not read stream blocked stream id.");
5853 return false;
5854 }
5855 if (!reader->ReadVarInt62(&frame->offset)) {
5856 set_detailed_error("Can not read stream blocked offset.");
5857 return false;
5858 }
5859 return true;
5860}
5861
fkastenholz3c4eabf2019-04-22 07:49:59 -07005862bool QuicFramer::AppendStreamsBlockedFrame(const QuicStreamsBlockedFrame& frame,
5863 QuicDataWriter* writer) {
5864 if (!writer->WriteVarInt62(frame.stream_count)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005865 set_detailed_error("Can not write STREAMS_BLOCKED stream count");
5866 return false;
5867 }
5868 return true;
5869}
5870
5871bool QuicFramer::ProcessStreamsBlockedFrame(QuicDataReader* reader,
fkastenholz3c4eabf2019-04-22 07:49:59 -07005872 QuicStreamsBlockedFrame* frame,
QUICHE teama6ef0a62019-03-07 20:34:33 -05005873 uint64_t frame_type) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005874 if (!reader->ReadVarIntU32(&frame->stream_count)) {
5875 set_detailed_error("Can not read STREAMS_BLOCKED stream count.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05005876 return false;
5877 }
fkastenholz3c4eabf2019-04-22 07:49:59 -07005878 frame->unidirectional = (frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL);
5879
QUICHE teama6ef0a62019-03-07 20:34:33 -05005880 // TODO(fkastenholz): handle properly when the STREAMS_BLOCKED
5881 // frame is implemented and passed up to the stream ID manager.
fkastenholz3c4eabf2019-04-22 07:49:59 -07005882 if (frame->stream_count >
5883 QuicUtils::GetMaxStreamCount(
5884 (frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL),
5885 ((perspective_ == Perspective::IS_CLIENT)
5886 ? Perspective::IS_SERVER
5887 : Perspective::IS_CLIENT))) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005888 // If stream count is such that the resulting stream ID would exceed our
5889 // implementation limit, generate an error.
5890 set_detailed_error(
5891 "STREAMS_BLOCKED stream count exceeds implementation limit.");
5892 return false;
5893 }
fkastenholz3c4eabf2019-04-22 07:49:59 -07005894 return true;
QUICHE teama6ef0a62019-03-07 20:34:33 -05005895}
5896
5897bool QuicFramer::AppendNewConnectionIdFrame(
5898 const QuicNewConnectionIdFrame& frame,
5899 QuicDataWriter* writer) {
5900 if (!writer->WriteVarInt62(frame.sequence_number)) {
5901 set_detailed_error("Can not write New Connection ID sequence number");
5902 return false;
5903 }
5904 if (!writer->WriteUInt8(frame.connection_id.length())) {
5905 set_detailed_error(
5906 "Can not write New Connection ID frame connection ID Length");
5907 return false;
5908 }
5909 if (!writer->WriteConnectionId(frame.connection_id)) {
5910 set_detailed_error("Can not write New Connection ID frame connection ID");
5911 return false;
5912 }
5913
5914 if (!writer->WriteBytes(
5915 static_cast<const void*>(&frame.stateless_reset_token),
5916 sizeof(frame.stateless_reset_token))) {
5917 set_detailed_error("Can not write New Connection ID Reset Token");
5918 return false;
5919 }
5920 return true;
5921}
5922
5923bool QuicFramer::ProcessNewConnectionIdFrame(QuicDataReader* reader,
5924 QuicNewConnectionIdFrame* frame) {
5925 if (!reader->ReadVarInt62(&frame->sequence_number)) {
5926 set_detailed_error(
5927 "Unable to read new connection ID frame sequence number.");
5928 return false;
5929 }
5930
5931 uint8_t connection_id_length;
5932 if (!reader->ReadUInt8(&connection_id_length)) {
5933 set_detailed_error(
5934 "Unable to read new connection ID frame connection id length.");
5935 return false;
5936 }
5937
QUICHE team0131a5b2019-03-20 15:23:27 -07005938 if (connection_id_length > kQuicMaxConnectionIdLength) {
5939 set_detailed_error("New connection ID length too high.");
5940 return false;
5941 }
5942
QUICHE team8e2e4532019-03-14 14:37:56 -07005943 if (connection_id_length != kQuicDefaultConnectionIdLength &&
5944 !QuicUtils::VariableLengthConnectionIdAllowedForVersion(
5945 transport_version())) {
QUICHE team0131a5b2019-03-20 15:23:27 -07005946 set_detailed_error("Invalid new connection ID length for version.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05005947 return false;
5948 }
5949
5950 if (!reader->ReadConnectionId(&frame->connection_id, connection_id_length)) {
5951 set_detailed_error("Unable to read new connection ID frame connection id.");
5952 return false;
5953 }
5954
5955 if (!reader->ReadBytes(&frame->stateless_reset_token,
5956 sizeof(frame->stateless_reset_token))) {
5957 set_detailed_error("Can not read new connection ID frame reset token.");
5958 return false;
5959 }
5960 return true;
5961}
5962
5963bool QuicFramer::AppendRetireConnectionIdFrame(
5964 const QuicRetireConnectionIdFrame& frame,
5965 QuicDataWriter* writer) {
5966 if (!writer->WriteVarInt62(frame.sequence_number)) {
5967 set_detailed_error("Can not write Retire Connection ID sequence number");
5968 return false;
5969 }
5970 return true;
5971}
5972
5973bool QuicFramer::ProcessRetireConnectionIdFrame(
5974 QuicDataReader* reader,
5975 QuicRetireConnectionIdFrame* frame) {
5976 if (!reader->ReadVarInt62(&frame->sequence_number)) {
5977 set_detailed_error(
5978 "Unable to read retire connection ID frame sequence number.");
5979 return false;
5980 }
5981 return true;
5982}
5983
5984uint8_t QuicFramer::GetStreamFrameTypeByte(const QuicStreamFrame& frame,
5985 bool last_frame_in_packet) const {
5986 if (version_.transport_version == QUIC_VERSION_99) {
5987 return GetIetfStreamFrameTypeByte(frame, last_frame_in_packet);
5988 }
5989 uint8_t type_byte = 0;
5990 // Fin bit.
5991 type_byte |= frame.fin ? kQuicStreamFinMask : 0;
5992
5993 // Data Length bit.
5994 type_byte <<= kQuicStreamDataLengthShift;
5995 type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask;
5996
5997 // Offset 3 bits.
5998 type_byte <<= kQuicStreamShift;
5999 const size_t offset_len =
6000 GetStreamOffsetSize(version_.transport_version, frame.offset);
6001 if (offset_len > 0) {
6002 type_byte |= offset_len - 1;
6003 }
6004
6005 // stream id 2 bits.
6006 type_byte <<= kQuicStreamIdShift;
6007 type_byte |= GetStreamIdSize(frame.stream_id) - 1;
6008 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
6009
6010 return type_byte;
6011}
6012
6013uint8_t QuicFramer::GetIetfStreamFrameTypeByte(
6014 const QuicStreamFrame& frame,
6015 bool last_frame_in_packet) const {
6016 DCHECK_EQ(QUIC_VERSION_99, version_.transport_version);
6017 uint8_t type_byte = IETF_STREAM;
6018 if (!last_frame_in_packet) {
6019 type_byte |= IETF_STREAM_FRAME_LEN_BIT;
6020 }
6021 if (frame.offset != 0) {
6022 type_byte |= IETF_STREAM_FRAME_OFF_BIT;
6023 }
6024 if (frame.fin) {
6025 type_byte |= IETF_STREAM_FRAME_FIN_BIT;
6026 }
6027 return type_byte;
6028}
6029
6030void QuicFramer::InferPacketHeaderTypeFromVersion() {
6031 // This function should only be called when server connection negotiates the
6032 // version.
6033 DCHECK(perspective_ == Perspective::IS_SERVER &&
6034 !infer_packet_header_type_from_version_);
6035 infer_packet_header_type_from_version_ = true;
6036}
6037
QUICHE team10b22a12019-03-21 15:31:42 -07006038void QuicFramer::EnableMultiplePacketNumberSpacesSupport() {
6039 if (supports_multiple_packet_number_spaces_) {
6040 QUIC_BUG << "Multiple packet number spaces has already been enabled";
6041 return;
6042 }
6043 if (largest_packet_number_.IsInitialized()) {
6044 QUIC_BUG << "Try to enable multiple packet number spaces support after any "
6045 "packet has been received.";
6046 return;
6047 }
6048
6049 supports_multiple_packet_number_spaces_ = true;
6050}
6051
QUICHE teama6ef0a62019-03-07 20:34:33 -05006052#undef ENDPOINT // undef for jumbo builds
6053} // namespace quic