QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1 | // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #include "net/third_party/quiche/src/quic/core/quic_framer.h" |
| 6 | |
| 7 | #include <cstddef> |
| 8 | #include <cstdint> |
| 9 | #include <memory> |
vasilvv | 872e7a3 | 2019-03-12 16:42:44 -0700 | [diff] [blame] | 10 | #include <string> |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 11 | |
| 12 | #include "net/third_party/quiche/src/quic/core/crypto/crypto_framer.h" |
| 13 | #include "net/third_party/quiche/src/quic/core/crypto/crypto_handshake_message.h" |
| 14 | #include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h" |
| 15 | #include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h" |
| 16 | #include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h" |
| 17 | #include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h" |
| 18 | #include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h" |
| 19 | #include "net/third_party/quiche/src/quic/core/crypto/quic_random.h" |
| 20 | #include "net/third_party/quiche/src/quic/core/quic_connection_id.h" |
| 21 | #include "net/third_party/quiche/src/quic/core/quic_constants.h" |
| 22 | #include "net/third_party/quiche/src/quic/core/quic_data_reader.h" |
| 23 | #include "net/third_party/quiche/src/quic/core/quic_data_writer.h" |
ianswett | 97b690b | 2019-05-02 15:12:43 -0700 | [diff] [blame] | 24 | #include "net/third_party/quiche/src/quic/core/quic_error_codes.h" |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 25 | #include "net/third_party/quiche/src/quic/core/quic_socket_address_coder.h" |
| 26 | #include "net/third_party/quiche/src/quic/core/quic_stream_frame_data_producer.h" |
| 27 | #include "net/third_party/quiche/src/quic/core/quic_types.h" |
| 28 | #include "net/third_party/quiche/src/quic/core/quic_utils.h" |
| 29 | #include "net/third_party/quiche/src/quic/core/quic_versions.h" |
| 30 | #include "net/third_party/quiche/src/quic/platform/api/quic_aligned.h" |
dschinazi | e8d7fa7 | 2019-04-05 14:44:40 -0700 | [diff] [blame] | 31 | #include "net/third_party/quiche/src/quic/platform/api/quic_arraysize.h" |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 32 | #include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h" |
| 33 | #include "net/third_party/quiche/src/quic/platform/api/quic_client_stats.h" |
| 34 | #include "net/third_party/quiche/src/quic/platform/api/quic_endian.h" |
| 35 | #include "net/third_party/quiche/src/quic/platform/api/quic_fallthrough.h" |
| 36 | #include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h" |
| 37 | #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" |
| 38 | #include "net/third_party/quiche/src/quic/platform/api/quic_logging.h" |
| 39 | #include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h" |
| 40 | #include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h" |
| 41 | #include "net/third_party/quiche/src/quic/platform/api/quic_stack_trace.h" |
| 42 | #include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h" |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 43 | #include "net/third_party/quiche/src/quic/platform/api/quic_text_utils.h" |
| 44 | |
| 45 | namespace quic { |
| 46 | |
| 47 | namespace { |
| 48 | |
| 49 | #define ENDPOINT \ |
| 50 | (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") |
| 51 | |
| 52 | // How much to shift the timestamp in the IETF Ack frame. |
| 53 | // TODO(fkastenholz) when we get real IETF QUIC, need to get |
| 54 | // the currect shift from the transport parameters. |
| 55 | const int kIetfAckTimestampShift = 3; |
| 56 | |
| 57 | // Number of bits the packet number length bits are shifted from the right |
| 58 | // edge of the header. |
| 59 | const uint8_t kPublicHeaderSequenceNumberShift = 4; |
| 60 | |
| 61 | // There are two interpretations for the Frame Type byte in the QUIC protocol, |
| 62 | // resulting in two Frame Types: Special Frame Types and Regular Frame Types. |
| 63 | // |
| 64 | // Regular Frame Types use the Frame Type byte simply. Currently defined |
| 65 | // Regular Frame Types are: |
| 66 | // Padding : 0b 00000000 (0x00) |
| 67 | // ResetStream : 0b 00000001 (0x01) |
| 68 | // ConnectionClose : 0b 00000010 (0x02) |
| 69 | // GoAway : 0b 00000011 (0x03) |
| 70 | // WindowUpdate : 0b 00000100 (0x04) |
| 71 | // Blocked : 0b 00000101 (0x05) |
| 72 | // |
| 73 | // Special Frame Types encode both a Frame Type and corresponding flags |
| 74 | // all in the Frame Type byte. Currently defined Special Frame Types |
| 75 | // are: |
| 76 | // Stream : 0b 1xxxxxxx |
| 77 | // Ack : 0b 01xxxxxx |
| 78 | // |
| 79 | // Semantics of the flag bits above (the x bits) depends on the frame type. |
| 80 | |
| 81 | // Masks to determine if the frame type is a special use |
| 82 | // and for specific special frame types. |
| 83 | const uint8_t kQuicFrameTypeBrokenMask = 0xE0; // 0b 11100000 |
| 84 | const uint8_t kQuicFrameTypeSpecialMask = 0xC0; // 0b 11000000 |
| 85 | const uint8_t kQuicFrameTypeStreamMask = 0x80; |
| 86 | const uint8_t kQuicFrameTypeAckMask = 0x40; |
| 87 | static_assert(kQuicFrameTypeSpecialMask == |
| 88 | (kQuicFrameTypeStreamMask | kQuicFrameTypeAckMask), |
| 89 | "Invalid kQuicFrameTypeSpecialMask"); |
| 90 | |
| 91 | // The stream type format is 1FDOOOSS, where |
| 92 | // F is the fin bit. |
| 93 | // D is the data length bit (0 or 2 bytes). |
| 94 | // OO/OOO are the size of the offset. |
| 95 | // SS is the size of the stream ID. |
| 96 | // Note that the stream encoding can not be determined by inspection. It can |
| 97 | // be determined only by knowing the QUIC Version. |
| 98 | // Stream frame relative shifts and masks for interpreting the stream flags. |
| 99 | // StreamID may be 1, 2, 3, or 4 bytes. |
| 100 | const uint8_t kQuicStreamIdShift = 2; |
| 101 | const uint8_t kQuicStreamIDLengthMask = 0x03; |
| 102 | |
| 103 | // Offset may be 0, 2, 4, or 8 bytes. |
| 104 | const uint8_t kQuicStreamShift = 3; |
| 105 | const uint8_t kQuicStreamOffsetMask = 0x07; |
| 106 | |
| 107 | // Data length may be 0 or 2 bytes. |
| 108 | const uint8_t kQuicStreamDataLengthShift = 1; |
| 109 | const uint8_t kQuicStreamDataLengthMask = 0x01; |
| 110 | |
| 111 | // Fin bit may be set or not. |
| 112 | const uint8_t kQuicStreamFinShift = 1; |
| 113 | const uint8_t kQuicStreamFinMask = 0x01; |
| 114 | |
| 115 | // The format is 01M0LLOO, where |
| 116 | // M if set, there are multiple ack blocks in the frame. |
| 117 | // LL is the size of the largest ack field. |
| 118 | // OO is the size of the ack blocks offset field. |
| 119 | // packet number size shift used in AckFrames. |
| 120 | const uint8_t kQuicSequenceNumberLengthNumBits = 2; |
| 121 | const uint8_t kActBlockLengthOffset = 0; |
| 122 | const uint8_t kLargestAckedOffset = 2; |
| 123 | |
| 124 | // Acks may have only one ack block. |
| 125 | const uint8_t kQuicHasMultipleAckBlocksOffset = 5; |
| 126 | |
| 127 | // Timestamps are 4 bytes followed by 2 bytes. |
| 128 | const uint8_t kQuicNumTimestampsLength = 1; |
| 129 | const uint8_t kQuicFirstTimestampLength = 4; |
| 130 | const uint8_t kQuicTimestampLength = 2; |
| 131 | // Gaps between packet numbers are 1 byte. |
| 132 | const uint8_t kQuicTimestampPacketNumberGapLength = 1; |
| 133 | |
| 134 | // Maximum length of encoded error strings. |
| 135 | const int kMaxErrorStringLength = 256; |
| 136 | |
| 137 | const uint8_t kConnectionIdLengthAdjustment = 3; |
| 138 | const uint8_t kDestinationConnectionIdLengthMask = 0xF0; |
| 139 | const uint8_t kSourceConnectionIdLengthMask = 0x0F; |
| 140 | |
| 141 | // Returns the absolute value of the difference between |a| and |b|. |
| 142 | uint64_t Delta(uint64_t a, uint64_t b) { |
| 143 | // Since these are unsigned numbers, we can't just return abs(a - b) |
| 144 | if (a < b) { |
| 145 | return b - a; |
| 146 | } |
| 147 | return a - b; |
| 148 | } |
| 149 | |
| 150 | uint64_t ClosestTo(uint64_t target, uint64_t a, uint64_t b) { |
| 151 | return (Delta(target, a) < Delta(target, b)) ? a : b; |
| 152 | } |
| 153 | |
| 154 | uint64_t PacketNumberIntervalLength( |
| 155 | const QuicInterval<QuicPacketNumber>& interval) { |
| 156 | if (interval.Empty()) { |
| 157 | return 0u; |
| 158 | } |
| 159 | return interval.max() - interval.min(); |
| 160 | } |
| 161 | |
| 162 | QuicPacketNumberLength ReadSequenceNumberLength(uint8_t flags) { |
| 163 | switch (flags & PACKET_FLAGS_8BYTE_PACKET) { |
| 164 | case PACKET_FLAGS_8BYTE_PACKET: |
| 165 | return PACKET_6BYTE_PACKET_NUMBER; |
| 166 | case PACKET_FLAGS_4BYTE_PACKET: |
| 167 | return PACKET_4BYTE_PACKET_NUMBER; |
| 168 | case PACKET_FLAGS_2BYTE_PACKET: |
| 169 | return PACKET_2BYTE_PACKET_NUMBER; |
| 170 | case PACKET_FLAGS_1BYTE_PACKET: |
| 171 | return PACKET_1BYTE_PACKET_NUMBER; |
| 172 | default: |
| 173 | QUIC_BUG << "Unreachable case statement."; |
| 174 | return PACKET_6BYTE_PACKET_NUMBER; |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | QuicPacketNumberLength ReadAckPacketNumberLength(QuicTransportVersion version, |
| 179 | uint8_t flags) { |
| 180 | switch (flags & PACKET_FLAGS_8BYTE_PACKET) { |
| 181 | case PACKET_FLAGS_8BYTE_PACKET: |
| 182 | return PACKET_6BYTE_PACKET_NUMBER; |
| 183 | case PACKET_FLAGS_4BYTE_PACKET: |
| 184 | return PACKET_4BYTE_PACKET_NUMBER; |
| 185 | case PACKET_FLAGS_2BYTE_PACKET: |
| 186 | return PACKET_2BYTE_PACKET_NUMBER; |
| 187 | case PACKET_FLAGS_1BYTE_PACKET: |
| 188 | return PACKET_1BYTE_PACKET_NUMBER; |
| 189 | default: |
| 190 | QUIC_BUG << "Unreachable case statement."; |
| 191 | return PACKET_6BYTE_PACKET_NUMBER; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | uint8_t PacketNumberLengthToOnWireValue( |
| 196 | QuicTransportVersion version, |
| 197 | QuicPacketNumberLength packet_number_length) { |
| 198 | if (version > QUIC_VERSION_44) { |
| 199 | return packet_number_length - 1; |
| 200 | } |
| 201 | switch (packet_number_length) { |
| 202 | case PACKET_1BYTE_PACKET_NUMBER: |
| 203 | return 0; |
| 204 | case PACKET_2BYTE_PACKET_NUMBER: |
| 205 | return 1; |
| 206 | case PACKET_4BYTE_PACKET_NUMBER: |
| 207 | return 2; |
| 208 | default: |
| 209 | QUIC_BUG << "Invalid packet number length."; |
| 210 | return 0; |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | bool GetShortHeaderPacketNumberLength( |
| 215 | QuicTransportVersion version, |
| 216 | uint8_t type, |
| 217 | bool infer_packet_header_type_from_version, |
| 218 | QuicPacketNumberLength* packet_number_length) { |
| 219 | DCHECK(!(type & FLAGS_LONG_HEADER)); |
| 220 | const bool two_bits_packet_number_length = |
| 221 | infer_packet_header_type_from_version ? version > QUIC_VERSION_44 |
| 222 | : (type & FLAGS_FIXED_BIT); |
| 223 | if (two_bits_packet_number_length) { |
| 224 | *packet_number_length = |
| 225 | static_cast<QuicPacketNumberLength>((type & 0x03) + 1); |
| 226 | return true; |
| 227 | } |
| 228 | switch (type & 0x07) { |
| 229 | case 0: |
| 230 | *packet_number_length = PACKET_1BYTE_PACKET_NUMBER; |
| 231 | break; |
| 232 | case 1: |
| 233 | *packet_number_length = PACKET_2BYTE_PACKET_NUMBER; |
| 234 | break; |
| 235 | case 2: |
| 236 | *packet_number_length = PACKET_4BYTE_PACKET_NUMBER; |
| 237 | break; |
| 238 | default: |
| 239 | *packet_number_length = PACKET_6BYTE_PACKET_NUMBER; |
| 240 | return false; |
| 241 | } |
| 242 | return true; |
| 243 | } |
| 244 | |
| 245 | uint8_t LongHeaderTypeToOnWireValue(QuicTransportVersion version, |
| 246 | QuicLongHeaderType type) { |
| 247 | switch (type) { |
| 248 | case INITIAL: |
| 249 | return version > QUIC_VERSION_44 ? 0 : 0x7F; |
| 250 | case ZERO_RTT_PROTECTED: |
| 251 | return version > QUIC_VERSION_44 ? 1 << 4 : 0x7C; |
| 252 | case HANDSHAKE: |
| 253 | return version > QUIC_VERSION_44 ? 2 << 4 : 0x7D; |
| 254 | case RETRY: |
| 255 | return version > QUIC_VERSION_44 ? 3 << 4 : 0x7E; |
| 256 | case VERSION_NEGOTIATION: |
| 257 | return 0xF0; // Value does not matter |
| 258 | default: |
| 259 | QUIC_BUG << "Invalid long header type: " << type; |
| 260 | return 0xFF; |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | bool GetLongHeaderType(QuicTransportVersion version, |
| 265 | uint8_t type, |
| 266 | QuicLongHeaderType* long_header_type) { |
| 267 | DCHECK((type & FLAGS_LONG_HEADER) && version != QUIC_VERSION_UNSUPPORTED); |
| 268 | if (version > QUIC_VERSION_44) { |
| 269 | switch ((type & 0x30) >> 4) { |
| 270 | case 0: |
| 271 | *long_header_type = INITIAL; |
| 272 | break; |
| 273 | case 1: |
| 274 | *long_header_type = ZERO_RTT_PROTECTED; |
| 275 | break; |
| 276 | case 2: |
| 277 | *long_header_type = HANDSHAKE; |
| 278 | break; |
| 279 | case 3: |
| 280 | *long_header_type = RETRY; |
| 281 | break; |
| 282 | default: |
| 283 | QUIC_BUG << "Unreachable statement"; |
| 284 | *long_header_type = VERSION_NEGOTIATION; |
| 285 | return false; |
| 286 | } |
| 287 | return true; |
| 288 | } |
| 289 | |
| 290 | switch (type & 0x7F) { |
| 291 | case 0x7F: |
| 292 | *long_header_type = INITIAL; |
| 293 | break; |
| 294 | case 0x7C: |
| 295 | *long_header_type = ZERO_RTT_PROTECTED; |
| 296 | break; |
| 297 | case 0x7D: |
| 298 | *long_header_type = HANDSHAKE; |
| 299 | break; |
| 300 | case 0x7E: |
| 301 | *long_header_type = RETRY; |
| 302 | break; |
| 303 | default: |
| 304 | // Invalid packet header type. Whether a packet is version negotiation is |
| 305 | // determined by the version field. |
| 306 | *long_header_type = INVALID_PACKET_TYPE; |
| 307 | return false; |
| 308 | } |
| 309 | return true; |
| 310 | } |
| 311 | |
| 312 | QuicPacketNumberLength GetLongHeaderPacketNumberLength( |
| 313 | QuicTransportVersion version, |
| 314 | uint8_t type) { |
| 315 | if (version > QUIC_VERSION_44) { |
| 316 | return static_cast<QuicPacketNumberLength>((type & 0x03) + 1); |
| 317 | } |
| 318 | return PACKET_4BYTE_PACKET_NUMBER; |
| 319 | } |
| 320 | |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 321 | // Used to get packet number space before packet gets decrypted. |
| 322 | PacketNumberSpace GetPacketNumberSpace(const QuicPacketHeader& header) { |
| 323 | switch (header.form) { |
| 324 | case GOOGLE_QUIC_PACKET: |
| 325 | QUIC_BUG << "Try to get packet number space of Google QUIC packet"; |
| 326 | break; |
| 327 | case IETF_QUIC_SHORT_HEADER_PACKET: |
| 328 | return APPLICATION_DATA; |
| 329 | case IETF_QUIC_LONG_HEADER_PACKET: |
| 330 | switch (header.long_packet_type) { |
| 331 | case INITIAL: |
| 332 | return INITIAL_DATA; |
| 333 | case HANDSHAKE: |
| 334 | return HANDSHAKE_DATA; |
| 335 | case ZERO_RTT_PROTECTED: |
| 336 | return APPLICATION_DATA; |
| 337 | case VERSION_NEGOTIATION: |
| 338 | case RETRY: |
| 339 | case INVALID_PACKET_TYPE: |
| 340 | QUIC_BUG << "Try to get packet number space of long header type: " |
| 341 | << QuicUtils::QuicLongHeaderTypetoString( |
| 342 | header.long_packet_type); |
| 343 | break; |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | return NUM_PACKET_NUMBER_SPACES; |
| 348 | } |
| 349 | |
zhongyi | 546cc45 | 2019-04-12 15:27:49 -0700 | [diff] [blame] | 350 | EncryptionLevel GetEncryptionLevel(const QuicPacketHeader& header) { |
| 351 | switch (header.form) { |
| 352 | case GOOGLE_QUIC_PACKET: |
| 353 | QUIC_BUG << "Cannot determine EncryptionLevel from Google QUIC header"; |
| 354 | break; |
| 355 | case IETF_QUIC_SHORT_HEADER_PACKET: |
| 356 | return ENCRYPTION_FORWARD_SECURE; |
| 357 | case IETF_QUIC_LONG_HEADER_PACKET: |
| 358 | switch (header.long_packet_type) { |
| 359 | case INITIAL: |
| 360 | return ENCRYPTION_INITIAL; |
| 361 | case HANDSHAKE: |
| 362 | return ENCRYPTION_HANDSHAKE; |
| 363 | case ZERO_RTT_PROTECTED: |
| 364 | return ENCRYPTION_ZERO_RTT; |
| 365 | case VERSION_NEGOTIATION: |
| 366 | case RETRY: |
| 367 | case INVALID_PACKET_TYPE: |
| 368 | QUIC_BUG << "No encryption used with type " |
| 369 | << QuicUtils::QuicLongHeaderTypetoString( |
| 370 | header.long_packet_type); |
| 371 | } |
| 372 | } |
| 373 | return NUM_ENCRYPTION_LEVELS; |
| 374 | } |
| 375 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 376 | QuicStringPiece TruncateErrorString(QuicStringPiece error) { |
| 377 | if (error.length() <= kMaxErrorStringLength) { |
| 378 | return error; |
| 379 | } |
| 380 | return QuicStringPiece(error.data(), kMaxErrorStringLength); |
| 381 | } |
| 382 | |
| 383 | size_t TruncatedErrorStringSize(const QuicStringPiece& error) { |
| 384 | if (error.length() < kMaxErrorStringLength) { |
| 385 | return error.length(); |
| 386 | } |
| 387 | return kMaxErrorStringLength; |
| 388 | } |
| 389 | |
| 390 | uint8_t GetConnectionIdLengthValue(QuicConnectionIdLength length) { |
| 391 | if (length == 0) { |
| 392 | return 0; |
| 393 | } |
| 394 | return static_cast<uint8_t>(length - kConnectionIdLengthAdjustment); |
| 395 | } |
| 396 | |
| 397 | bool IsValidPacketNumberLength(QuicPacketNumberLength packet_number_length) { |
| 398 | size_t length = packet_number_length; |
| 399 | return length == 1 || length == 2 || length == 4 || length == 6 || |
| 400 | length == 8; |
| 401 | } |
| 402 | |
| 403 | bool IsValidFullPacketNumber(uint64_t full_packet_number, |
| 404 | QuicTransportVersion version) { |
QUICHE team | 577718a | 2019-03-20 09:00:59 -0700 | [diff] [blame] | 405 | return full_packet_number > 0 || version == QUIC_VERSION_99; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 406 | } |
| 407 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 408 | bool AppendIetfConnectionIdsNew(bool version_flag, |
| 409 | QuicConnectionId destination_connection_id, |
| 410 | QuicConnectionId source_connection_id, |
| 411 | QuicDataWriter* writer) { |
| 412 | if (!version_flag) { |
| 413 | return writer->WriteConnectionId(destination_connection_id); |
| 414 | } |
| 415 | |
| 416 | // Compute connection ID length byte. |
| 417 | uint8_t dcil = GetConnectionIdLengthValue( |
| 418 | static_cast<QuicConnectionIdLength>(destination_connection_id.length())); |
| 419 | uint8_t scil = GetConnectionIdLengthValue( |
| 420 | static_cast<QuicConnectionIdLength>(source_connection_id.length())); |
| 421 | uint8_t connection_id_length = dcil << 4 | scil; |
| 422 | |
| 423 | return writer->WriteUInt8(connection_id_length) && |
| 424 | writer->WriteConnectionId(destination_connection_id) && |
| 425 | writer->WriteConnectionId(source_connection_id); |
| 426 | } |
| 427 | |
| 428 | enum class DroppedPacketReason { |
| 429 | // General errors |
| 430 | INVALID_PUBLIC_HEADER, |
| 431 | VERSION_MISMATCH, |
| 432 | // Version negotiation packet errors |
| 433 | INVALID_VERSION_NEGOTIATION_PACKET, |
| 434 | // Public reset packet errors, pre-v44 |
| 435 | INVALID_PUBLIC_RESET_PACKET, |
| 436 | // Data packet errors |
| 437 | INVALID_PACKET_NUMBER, |
| 438 | INVALID_DIVERSIFICATION_NONCE, |
| 439 | DECRYPTION_FAILURE, |
| 440 | NUM_REASONS, |
| 441 | }; |
| 442 | |
| 443 | void RecordDroppedPacketReason(DroppedPacketReason reason) { |
| 444 | QUIC_CLIENT_HISTOGRAM_ENUM("QuicDroppedPacketReason", reason, |
| 445 | DroppedPacketReason::NUM_REASONS, |
| 446 | "The reason a packet was not processed. Recorded " |
| 447 | "each time such a packet is dropped"); |
| 448 | } |
| 449 | |
| 450 | } // namespace |
| 451 | |
| 452 | QuicFramer::QuicFramer(const ParsedQuicVersionVector& supported_versions, |
| 453 | QuicTime creation_time, |
| 454 | Perspective perspective, |
| 455 | uint8_t expected_connection_id_length) |
| 456 | : visitor_(nullptr), |
| 457 | error_(QUIC_NO_ERROR), |
| 458 | last_serialized_connection_id_(EmptyQuicConnectionId()), |
| 459 | last_version_label_(0), |
| 460 | version_(PROTOCOL_UNSUPPORTED, QUIC_VERSION_UNSUPPORTED), |
| 461 | supported_versions_(supported_versions), |
QUICHE team | 6987b4a | 2019-03-15 16:23:04 -0700 | [diff] [blame] | 462 | decrypter_level_(ENCRYPTION_INITIAL), |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 463 | alternative_decrypter_level_(NUM_ENCRYPTION_LEVELS), |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 464 | alternative_decrypter_latch_(false), |
| 465 | perspective_(perspective), |
| 466 | validate_flags_(true), |
| 467 | process_timestamps_(false), |
| 468 | creation_time_(creation_time), |
| 469 | last_timestamp_(QuicTime::Delta::Zero()), |
| 470 | first_sending_packet_number_(FirstSendingPacketNumber()), |
| 471 | data_producer_(nullptr), |
| 472 | infer_packet_header_type_from_version_(perspective == |
| 473 | Perspective::IS_CLIENT), |
QUICHE team | 4d9d629 | 2019-03-11 14:25:33 -0700 | [diff] [blame] | 474 | expected_connection_id_length_(expected_connection_id_length), |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 475 | should_update_expected_connection_id_length_(false), |
| 476 | supports_multiple_packet_number_spaces_(false) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 477 | DCHECK(!supported_versions.empty()); |
| 478 | version_ = supported_versions_[0]; |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 479 | decrypter_[ENCRYPTION_INITIAL] = QuicMakeUnique<NullDecrypter>(perspective); |
QUICHE team | 6987b4a | 2019-03-15 16:23:04 -0700 | [diff] [blame] | 480 | encrypter_[ENCRYPTION_INITIAL] = QuicMakeUnique<NullEncrypter>(perspective); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 481 | } |
| 482 | |
| 483 | QuicFramer::~QuicFramer() {} |
| 484 | |
| 485 | // static |
| 486 | size_t QuicFramer::GetMinStreamFrameSize(QuicTransportVersion version, |
| 487 | QuicStreamId stream_id, |
| 488 | QuicStreamOffset offset, |
| 489 | bool last_frame_in_packet, |
| 490 | QuicPacketLength data_length) { |
| 491 | if (version == QUIC_VERSION_99) { |
| 492 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_id) + |
| 493 | (last_frame_in_packet |
| 494 | ? 0 |
| 495 | : QuicDataWriter::GetVarInt62Len(data_length)) + |
| 496 | (offset != 0 ? QuicDataWriter::GetVarInt62Len(offset) : 0); |
| 497 | } |
| 498 | return kQuicFrameTypeSize + GetStreamIdSize(stream_id) + |
| 499 | GetStreamOffsetSize(version, offset) + |
| 500 | (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize); |
| 501 | } |
| 502 | |
| 503 | // static |
| 504 | size_t QuicFramer::GetMinCryptoFrameSize(QuicStreamOffset offset, |
| 505 | QuicPacketLength data_length) { |
| 506 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(offset) + |
| 507 | QuicDataWriter::GetVarInt62Len(data_length); |
| 508 | } |
| 509 | |
| 510 | // static |
| 511 | size_t QuicFramer::GetMessageFrameSize(QuicTransportVersion version, |
| 512 | bool last_frame_in_packet, |
| 513 | QuicByteCount length) { |
| 514 | QUIC_BUG_IF(version <= QUIC_VERSION_44) |
| 515 | << "Try to serialize MESSAGE frame in " << version; |
| 516 | return kQuicFrameTypeSize + |
| 517 | (last_frame_in_packet ? 0 : QuicDataWriter::GetVarInt62Len(length)) + |
| 518 | length; |
| 519 | } |
| 520 | |
| 521 | // static |
| 522 | size_t QuicFramer::GetMinAckFrameSize( |
| 523 | QuicTransportVersion version, |
| 524 | QuicPacketNumberLength largest_observed_length) { |
| 525 | if (version == QUIC_VERSION_99) { |
| 526 | // The minimal ack frame consists of the following four fields: Largest |
| 527 | // Acknowledged, ACK Delay, ACK Block Count, and First ACK Block. Minimum |
| 528 | // size of each is 1 byte. |
| 529 | return kQuicFrameTypeSize + 4; |
| 530 | } |
| 531 | size_t min_size = kQuicFrameTypeSize + largest_observed_length + |
| 532 | kQuicDeltaTimeLargestObservedSize; |
| 533 | return min_size + kQuicNumTimestampsSize; |
| 534 | } |
| 535 | |
| 536 | // static |
| 537 | size_t QuicFramer::GetStopWaitingFrameSize( |
| 538 | QuicTransportVersion version, |
| 539 | QuicPacketNumberLength packet_number_length) { |
| 540 | size_t min_size = kQuicFrameTypeSize + packet_number_length; |
| 541 | return min_size; |
| 542 | } |
| 543 | |
| 544 | // static |
| 545 | size_t QuicFramer::GetRstStreamFrameSize(QuicTransportVersion version, |
| 546 | const QuicRstStreamFrame& frame) { |
| 547 | if (version == QUIC_VERSION_99) { |
| 548 | return QuicDataWriter::GetVarInt62Len(frame.stream_id) + |
| 549 | QuicDataWriter::GetVarInt62Len(frame.byte_offset) + |
| 550 | kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize; |
| 551 | } |
| 552 | return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize + |
| 553 | kQuicErrorCodeSize; |
| 554 | } |
| 555 | |
| 556 | // static |
| 557 | size_t QuicFramer::GetMinConnectionCloseFrameSize( |
| 558 | QuicTransportVersion version, |
| 559 | const QuicConnectionCloseFrame& frame) { |
| 560 | if (version == QUIC_VERSION_99) { |
fkastenholz | 72f509b | 2019-04-10 09:17:49 -0700 | [diff] [blame] | 561 | // TODO(fkastenholz): For complete support of IETF QUIC CONNECTION_CLOSE, |
| 562 | // check if the frame is a Transport close and if the frame's |
| 563 | // extracted_error_code is not QUIC_IETF_GQUIC_ERROR_MISSING. If so, |
| 564 | // extend the error string to include " QuicErrorCode: #" |
| 565 | if (frame.close_type == IETF_QUIC_APPLICATION_CONNECTION_CLOSE) { |
| 566 | // Application close variant does not include the transport close frame |
| 567 | // type field. |
| 568 | return QuicDataWriter::GetVarInt62Len( |
| 569 | TruncatedErrorStringSize(frame.error_details)) + |
| 570 | kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize; |
| 571 | } |
| 572 | QUIC_BUG_IF(frame.close_type != IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) |
| 573 | << "IETF QUIC Connection close and QuicConnectionCloseFrame type is " |
| 574 | "not IETF ConnectionClose"; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 575 | return QuicDataWriter::GetVarInt62Len( |
| 576 | TruncatedErrorStringSize(frame.error_details)) + |
fkastenholz | e9d71a8 | 2019-04-09 05:12:13 -0700 | [diff] [blame] | 577 | QuicDataWriter::GetVarInt62Len(frame.transport_close_frame_type) + |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 578 | kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize; |
| 579 | } |
fkastenholz | 72f509b | 2019-04-10 09:17:49 -0700 | [diff] [blame] | 580 | // Not version 99/IETF QUIC, return Google QUIC CONNECTION CLOSE frame size. |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 581 | return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize; |
| 582 | } |
| 583 | |
| 584 | // static |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 585 | size_t QuicFramer::GetMinGoAwayFrameSize() { |
| 586 | return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize + |
| 587 | kQuicMaxStreamIdSize; |
| 588 | } |
| 589 | |
| 590 | // static |
| 591 | size_t QuicFramer::GetWindowUpdateFrameSize( |
| 592 | QuicTransportVersion version, |
| 593 | const QuicWindowUpdateFrame& frame) { |
| 594 | if (version != QUIC_VERSION_99) { |
| 595 | return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize; |
| 596 | } |
| 597 | if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { |
| 598 | // Frame would be a MAX DATA frame, which has only a Maximum Data field. |
| 599 | return kQuicFrameTypeSize + |
| 600 | QuicDataWriter::GetVarInt62Len(frame.byte_offset); |
| 601 | } |
| 602 | // Frame would be MAX STREAM DATA, has Maximum Stream Data and Stream ID |
| 603 | // fields. |
| 604 | return kQuicFrameTypeSize + |
| 605 | QuicDataWriter::GetVarInt62Len(frame.byte_offset) + |
| 606 | QuicDataWriter::GetVarInt62Len(frame.stream_id); |
| 607 | } |
| 608 | |
| 609 | // static |
| 610 | size_t QuicFramer::GetMaxStreamsFrameSize(QuicTransportVersion version, |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 611 | const QuicMaxStreamsFrame& frame) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 612 | if (version != QUIC_VERSION_99) { |
| 613 | QUIC_BUG << "In version " << version |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 614 | << " - not 99 - and tried to serialize MaxStreams Frame."; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 615 | } |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 616 | return kQuicFrameTypeSize + |
| 617 | QuicDataWriter::GetVarInt62Len(frame.stream_count); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 618 | } |
| 619 | |
| 620 | // static |
| 621 | size_t QuicFramer::GetStreamsBlockedFrameSize( |
| 622 | QuicTransportVersion version, |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 623 | const QuicStreamsBlockedFrame& frame) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 624 | if (version != QUIC_VERSION_99) { |
| 625 | QUIC_BUG << "In version " << version |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 626 | << " - not 99 - and tried to serialize StreamsBlocked Frame."; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 627 | } |
| 628 | |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 629 | return kQuicFrameTypeSize + |
| 630 | QuicDataWriter::GetVarInt62Len(frame.stream_count); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 631 | } |
| 632 | |
| 633 | // static |
| 634 | size_t QuicFramer::GetBlockedFrameSize(QuicTransportVersion version, |
| 635 | const QuicBlockedFrame& frame) { |
| 636 | if (version != QUIC_VERSION_99) { |
| 637 | return kQuicFrameTypeSize + kQuicMaxStreamIdSize; |
| 638 | } |
| 639 | if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { |
| 640 | // return size of IETF QUIC Blocked frame |
| 641 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset); |
| 642 | } |
| 643 | // return size of IETF QUIC Stream Blocked frame. |
| 644 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset) + |
| 645 | QuicDataWriter::GetVarInt62Len(frame.stream_id); |
| 646 | } |
| 647 | |
| 648 | // static |
| 649 | size_t QuicFramer::GetStopSendingFrameSize(const QuicStopSendingFrame& frame) { |
| 650 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.stream_id) + |
| 651 | sizeof(QuicApplicationErrorCode); |
| 652 | } |
| 653 | |
| 654 | // static |
| 655 | size_t QuicFramer::GetPathChallengeFrameSize( |
| 656 | const QuicPathChallengeFrame& frame) { |
| 657 | return kQuicFrameTypeSize + sizeof(frame.data_buffer); |
| 658 | } |
| 659 | |
| 660 | // static |
| 661 | size_t QuicFramer::GetPathResponseFrameSize( |
| 662 | const QuicPathResponseFrame& frame) { |
| 663 | return kQuicFrameTypeSize + sizeof(frame.data_buffer); |
| 664 | } |
| 665 | |
| 666 | // static |
| 667 | size_t QuicFramer::GetRetransmittableControlFrameSize( |
| 668 | QuicTransportVersion version, |
| 669 | const QuicFrame& frame) { |
| 670 | switch (frame.type) { |
| 671 | case PING_FRAME: |
| 672 | // Ping has no payload. |
| 673 | return kQuicFrameTypeSize; |
| 674 | case RST_STREAM_FRAME: |
| 675 | return GetRstStreamFrameSize(version, *frame.rst_stream_frame); |
| 676 | case CONNECTION_CLOSE_FRAME: |
| 677 | return GetMinConnectionCloseFrameSize(version, |
| 678 | *frame.connection_close_frame) + |
| 679 | TruncatedErrorStringSize( |
| 680 | frame.connection_close_frame->error_details); |
| 681 | case GOAWAY_FRAME: |
| 682 | return GetMinGoAwayFrameSize() + |
| 683 | TruncatedErrorStringSize(frame.goaway_frame->reason_phrase); |
| 684 | case WINDOW_UPDATE_FRAME: |
| 685 | // For version 99, this could be either a MAX DATA or MAX STREAM DATA. |
| 686 | // GetWindowUpdateFrameSize figures this out and returns the correct |
| 687 | // length. |
| 688 | return GetWindowUpdateFrameSize(version, *frame.window_update_frame); |
| 689 | case BLOCKED_FRAME: |
| 690 | return GetBlockedFrameSize(version, *frame.blocked_frame); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 691 | case NEW_CONNECTION_ID_FRAME: |
| 692 | return GetNewConnectionIdFrameSize(*frame.new_connection_id_frame); |
| 693 | case RETIRE_CONNECTION_ID_FRAME: |
| 694 | return GetRetireConnectionIdFrameSize(*frame.retire_connection_id_frame); |
| 695 | case NEW_TOKEN_FRAME: |
| 696 | return GetNewTokenFrameSize(*frame.new_token_frame); |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 697 | case MAX_STREAMS_FRAME: |
| 698 | return GetMaxStreamsFrameSize(version, frame.max_streams_frame); |
| 699 | case STREAMS_BLOCKED_FRAME: |
| 700 | return GetStreamsBlockedFrameSize(version, frame.streams_blocked_frame); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 701 | case PATH_RESPONSE_FRAME: |
| 702 | return GetPathResponseFrameSize(*frame.path_response_frame); |
| 703 | case PATH_CHALLENGE_FRAME: |
| 704 | return GetPathChallengeFrameSize(*frame.path_challenge_frame); |
| 705 | case STOP_SENDING_FRAME: |
| 706 | return GetStopSendingFrameSize(*frame.stop_sending_frame); |
| 707 | |
| 708 | case STREAM_FRAME: |
| 709 | case ACK_FRAME: |
| 710 | case STOP_WAITING_FRAME: |
| 711 | case MTU_DISCOVERY_FRAME: |
| 712 | case PADDING_FRAME: |
| 713 | case MESSAGE_FRAME: |
| 714 | case CRYPTO_FRAME: |
| 715 | case NUM_FRAME_TYPES: |
| 716 | DCHECK(false); |
| 717 | return 0; |
| 718 | } |
| 719 | |
| 720 | // Not reachable, but some Chrome compilers can't figure that out. *sigh* |
| 721 | DCHECK(false); |
| 722 | return 0; |
| 723 | } |
| 724 | |
| 725 | // static |
| 726 | size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) { |
| 727 | // Sizes are 1 through 4 bytes. |
| 728 | for (int i = 1; i <= 4; ++i) { |
| 729 | stream_id >>= 8; |
| 730 | if (stream_id == 0) { |
| 731 | return i; |
| 732 | } |
| 733 | } |
| 734 | QUIC_BUG << "Failed to determine StreamIDSize."; |
| 735 | return 4; |
| 736 | } |
| 737 | |
| 738 | // static |
| 739 | size_t QuicFramer::GetStreamOffsetSize(QuicTransportVersion version, |
| 740 | QuicStreamOffset offset) { |
| 741 | // 0 is a special case. |
| 742 | if (offset == 0) { |
| 743 | return 0; |
| 744 | } |
| 745 | // 2 through 8 are the remaining sizes. |
| 746 | offset >>= 8; |
| 747 | for (int i = 2; i <= 8; ++i) { |
| 748 | offset >>= 8; |
| 749 | if (offset == 0) { |
| 750 | return i; |
| 751 | } |
| 752 | } |
| 753 | QUIC_BUG << "Failed to determine StreamOffsetSize."; |
| 754 | return 8; |
| 755 | } |
| 756 | |
| 757 | // static |
| 758 | size_t QuicFramer::GetNewConnectionIdFrameSize( |
| 759 | const QuicNewConnectionIdFrame& frame) { |
| 760 | return kQuicFrameTypeSize + |
| 761 | QuicDataWriter::GetVarInt62Len(frame.sequence_number) + |
| 762 | kConnectionIdLengthSize + frame.connection_id.length() + |
| 763 | sizeof(frame.stateless_reset_token); |
| 764 | } |
| 765 | |
| 766 | // static |
| 767 | size_t QuicFramer::GetRetireConnectionIdFrameSize( |
| 768 | const QuicRetireConnectionIdFrame& frame) { |
| 769 | return kQuicFrameTypeSize + |
| 770 | QuicDataWriter::GetVarInt62Len(frame.sequence_number); |
| 771 | } |
| 772 | |
| 773 | // static |
| 774 | size_t QuicFramer::GetNewTokenFrameSize(const QuicNewTokenFrame& frame) { |
| 775 | return kQuicFrameTypeSize + |
| 776 | QuicDataWriter::GetVarInt62Len(frame.token.length()) + |
| 777 | frame.token.length(); |
| 778 | } |
| 779 | |
| 780 | // TODO(nharper): Change this method to take a ParsedQuicVersion. |
| 781 | bool QuicFramer::IsSupportedTransportVersion( |
| 782 | const QuicTransportVersion version) const { |
| 783 | for (ParsedQuicVersion supported_version : supported_versions_) { |
| 784 | if (version == supported_version.transport_version) { |
| 785 | return true; |
| 786 | } |
| 787 | } |
| 788 | return false; |
| 789 | } |
| 790 | |
| 791 | bool QuicFramer::IsSupportedVersion(const ParsedQuicVersion version) const { |
| 792 | for (const ParsedQuicVersion& supported_version : supported_versions_) { |
| 793 | if (version == supported_version) { |
| 794 | return true; |
| 795 | } |
| 796 | } |
| 797 | return false; |
| 798 | } |
| 799 | |
| 800 | size_t QuicFramer::GetSerializedFrameLength( |
| 801 | const QuicFrame& frame, |
| 802 | size_t free_bytes, |
| 803 | bool first_frame, |
| 804 | bool last_frame, |
| 805 | QuicPacketNumberLength packet_number_length) { |
| 806 | // Prevent a rare crash reported in b/19458523. |
| 807 | if (frame.type == ACK_FRAME && frame.ack_frame == nullptr) { |
| 808 | QUIC_BUG << "Cannot compute the length of a null ack frame. free_bytes:" |
| 809 | << free_bytes << " first_frame:" << first_frame |
| 810 | << " last_frame:" << last_frame |
| 811 | << " seq num length:" << packet_number_length; |
| 812 | set_error(QUIC_INTERNAL_ERROR); |
| 813 | visitor_->OnError(this); |
| 814 | return 0; |
| 815 | } |
| 816 | if (frame.type == PADDING_FRAME) { |
| 817 | if (frame.padding_frame.num_padding_bytes == -1) { |
| 818 | // Full padding to the end of the packet. |
| 819 | return free_bytes; |
| 820 | } else { |
| 821 | // Lite padding. |
| 822 | return free_bytes < |
| 823 | static_cast<size_t>(frame.padding_frame.num_padding_bytes) |
| 824 | ? free_bytes |
| 825 | : frame.padding_frame.num_padding_bytes; |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | size_t frame_len = |
| 830 | ComputeFrameLength(frame, last_frame, packet_number_length); |
| 831 | if (frame_len <= free_bytes) { |
| 832 | // Frame fits within packet. Note that acks may be truncated. |
| 833 | return frame_len; |
| 834 | } |
| 835 | // Only truncate the first frame in a packet, so if subsequent ones go |
| 836 | // over, stop including more frames. |
| 837 | if (!first_frame) { |
| 838 | return 0; |
| 839 | } |
| 840 | bool can_truncate = |
| 841 | frame.type == ACK_FRAME && |
| 842 | free_bytes >= GetMinAckFrameSize(version_.transport_version, |
| 843 | PACKET_6BYTE_PACKET_NUMBER); |
| 844 | if (can_truncate) { |
dschinazi | 66dea07 | 2019-04-09 11:41:06 -0700 | [diff] [blame] | 845 | // Truncate the frame so the packet will not exceed kMaxOutgoingPacketSize. |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 846 | // Note that we may not use every byte of the writer in this case. |
| 847 | QUIC_DLOG(INFO) << ENDPOINT |
| 848 | << "Truncating large frame, free bytes: " << free_bytes; |
| 849 | return free_bytes; |
| 850 | } |
| 851 | return 0; |
| 852 | } |
| 853 | |
| 854 | QuicFramer::AckFrameInfo::AckFrameInfo() |
| 855 | : max_block_length(0), first_block_length(0), num_ack_blocks(0) {} |
| 856 | |
| 857 | QuicFramer::AckFrameInfo::AckFrameInfo(const AckFrameInfo& other) = default; |
| 858 | |
| 859 | QuicFramer::AckFrameInfo::~AckFrameInfo() {} |
| 860 | |
| 861 | bool QuicFramer::WriteIetfLongHeaderLength(const QuicPacketHeader& header, |
| 862 | QuicDataWriter* writer, |
| 863 | size_t length_field_offset, |
| 864 | EncryptionLevel level) { |
| 865 | if (!QuicVersionHasLongHeaderLengths(transport_version()) || |
| 866 | !header.version_flag || length_field_offset == 0) { |
| 867 | return true; |
| 868 | } |
| 869 | if (writer->length() < length_field_offset || |
| 870 | writer->length() - length_field_offset < |
| 871 | kQuicDefaultLongHeaderLengthLength) { |
| 872 | set_detailed_error("Invalid length_field_offset."); |
| 873 | QUIC_BUG << "Invalid length_field_offset."; |
| 874 | return false; |
| 875 | } |
| 876 | size_t length_to_write = writer->length() - length_field_offset - |
| 877 | kQuicDefaultLongHeaderLengthLength; |
| 878 | // Add length of auth tag. |
| 879 | length_to_write = GetCiphertextSize(level, length_to_write); |
| 880 | |
| 881 | QuicDataWriter length_writer(writer->length() - length_field_offset, |
| 882 | writer->data() + length_field_offset); |
| 883 | if (!length_writer.WriteVarInt62(length_to_write, |
| 884 | kQuicDefaultLongHeaderLengthLength)) { |
| 885 | set_detailed_error("Failed to overwrite long header length."); |
| 886 | QUIC_BUG << "Failed to overwrite long header length."; |
| 887 | return false; |
| 888 | } |
| 889 | return true; |
| 890 | } |
| 891 | |
| 892 | size_t QuicFramer::BuildDataPacket(const QuicPacketHeader& header, |
| 893 | const QuicFrames& frames, |
| 894 | char* buffer, |
| 895 | size_t packet_length, |
| 896 | EncryptionLevel level) { |
| 897 | QuicDataWriter writer(packet_length, buffer); |
| 898 | size_t length_field_offset = 0; |
| 899 | if (!AppendPacketHeader(header, &writer, &length_field_offset)) { |
| 900 | QUIC_BUG << "AppendPacketHeader failed"; |
| 901 | return 0; |
| 902 | } |
| 903 | |
| 904 | if (transport_version() == QUIC_VERSION_99) { |
| 905 | if (AppendIetfFrames(frames, &writer) == 0) { |
| 906 | return 0; |
| 907 | } |
| 908 | if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset, |
| 909 | level)) { |
| 910 | return 0; |
| 911 | } |
| 912 | return writer.length(); |
| 913 | } |
| 914 | // TODO(dschinazi) if we enable long header lengths before v99, we need to |
| 915 | // add support for fixing up lengths in QuicFramer::BuildDataPacket. |
| 916 | DCHECK(!QuicVersionHasLongHeaderLengths(transport_version())); |
| 917 | |
| 918 | size_t i = 0; |
| 919 | for (const QuicFrame& frame : frames) { |
| 920 | // Determine if we should write stream frame length in header. |
| 921 | const bool last_frame_in_packet = i == frames.size() - 1; |
| 922 | if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) { |
| 923 | QUIC_BUG << "AppendTypeByte failed"; |
| 924 | return 0; |
| 925 | } |
| 926 | |
| 927 | switch (frame.type) { |
| 928 | case PADDING_FRAME: |
| 929 | if (!AppendPaddingFrame(frame.padding_frame, &writer)) { |
| 930 | QUIC_BUG << "AppendPaddingFrame of " |
| 931 | << frame.padding_frame.num_padding_bytes << " failed"; |
| 932 | return 0; |
| 933 | } |
| 934 | break; |
| 935 | case STREAM_FRAME: |
| 936 | if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, |
| 937 | &writer)) { |
| 938 | QUIC_BUG << "AppendStreamFrame failed"; |
| 939 | return 0; |
| 940 | } |
| 941 | break; |
| 942 | case ACK_FRAME: |
| 943 | if (!AppendAckFrameAndTypeByte(*frame.ack_frame, &writer)) { |
| 944 | QUIC_BUG << "AppendAckFrameAndTypeByte failed: " << detailed_error_; |
| 945 | return 0; |
| 946 | } |
| 947 | break; |
| 948 | case STOP_WAITING_FRAME: |
| 949 | if (!AppendStopWaitingFrame(header, frame.stop_waiting_frame, |
| 950 | &writer)) { |
| 951 | QUIC_BUG << "AppendStopWaitingFrame failed"; |
| 952 | return 0; |
| 953 | } |
| 954 | break; |
| 955 | case MTU_DISCOVERY_FRAME: |
| 956 | // MTU discovery frames are serialized as ping frames. |
| 957 | QUIC_FALLTHROUGH_INTENDED; |
| 958 | case PING_FRAME: |
| 959 | // Ping has no payload. |
| 960 | break; |
| 961 | case RST_STREAM_FRAME: |
| 962 | if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) { |
| 963 | QUIC_BUG << "AppendRstStreamFrame failed"; |
| 964 | return 0; |
| 965 | } |
| 966 | break; |
| 967 | case CONNECTION_CLOSE_FRAME: |
| 968 | if (!AppendConnectionCloseFrame(*frame.connection_close_frame, |
| 969 | &writer)) { |
| 970 | QUIC_BUG << "AppendConnectionCloseFrame failed"; |
| 971 | return 0; |
| 972 | } |
| 973 | break; |
| 974 | case GOAWAY_FRAME: |
| 975 | if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) { |
| 976 | QUIC_BUG << "AppendGoAwayFrame failed"; |
| 977 | return 0; |
| 978 | } |
| 979 | break; |
| 980 | case WINDOW_UPDATE_FRAME: |
| 981 | if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) { |
| 982 | QUIC_BUG << "AppendWindowUpdateFrame failed"; |
| 983 | return 0; |
| 984 | } |
| 985 | break; |
| 986 | case BLOCKED_FRAME: |
| 987 | if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) { |
| 988 | QUIC_BUG << "AppendBlockedFrame failed"; |
| 989 | return 0; |
| 990 | } |
| 991 | break; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 992 | case NEW_CONNECTION_ID_FRAME: |
| 993 | set_detailed_error( |
| 994 | "Attempt to append NEW_CONNECTION_ID frame and not in version 99."); |
| 995 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 996 | case RETIRE_CONNECTION_ID_FRAME: |
| 997 | set_detailed_error( |
| 998 | "Attempt to append RETIRE_CONNECTION_ID frame and not in version " |
| 999 | "99."); |
| 1000 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1001 | case NEW_TOKEN_FRAME: |
| 1002 | set_detailed_error( |
| 1003 | "Attempt to append NEW_TOKEN_ID frame and not in version 99."); |
| 1004 | return RaiseError(QUIC_INTERNAL_ERROR); |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 1005 | case MAX_STREAMS_FRAME: |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1006 | set_detailed_error( |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 1007 | "Attempt to append MAX_STREAMS frame and not in version 99."); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1008 | return RaiseError(QUIC_INTERNAL_ERROR); |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 1009 | case STREAMS_BLOCKED_FRAME: |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1010 | set_detailed_error( |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 1011 | "Attempt to append STREAMS_BLOCKED frame and not in version 99."); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1012 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1013 | case PATH_RESPONSE_FRAME: |
| 1014 | set_detailed_error( |
| 1015 | "Attempt to append PATH_RESPONSE frame and not in version 99."); |
| 1016 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1017 | case PATH_CHALLENGE_FRAME: |
| 1018 | set_detailed_error( |
| 1019 | "Attempt to append PATH_CHALLENGE frame and not in version 99."); |
| 1020 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1021 | case STOP_SENDING_FRAME: |
| 1022 | set_detailed_error( |
| 1023 | "Attempt to append STOP_SENDING frame and not in version 99."); |
| 1024 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1025 | case MESSAGE_FRAME: |
| 1026 | if (!AppendMessageFrameAndTypeByte(*frame.message_frame, |
| 1027 | last_frame_in_packet, &writer)) { |
| 1028 | QUIC_BUG << "AppendMessageFrame failed"; |
| 1029 | return 0; |
| 1030 | } |
| 1031 | break; |
| 1032 | case CRYPTO_FRAME: |
QUICHE team | ea74008 | 2019-03-11 17:58:43 -0700 | [diff] [blame] | 1033 | if (!QuicVersionUsesCryptoFrames(version_.transport_version)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1034 | set_detailed_error( |
| 1035 | "Attempt to append CRYPTO frame in version prior to 47."); |
| 1036 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1037 | } |
| 1038 | if (!AppendCryptoFrame(*frame.crypto_frame, &writer)) { |
| 1039 | QUIC_BUG << "AppendCryptoFrame failed"; |
| 1040 | return 0; |
| 1041 | } |
| 1042 | break; |
| 1043 | default: |
| 1044 | RaiseError(QUIC_INVALID_FRAME_DATA); |
| 1045 | QUIC_BUG << "QUIC_INVALID_FRAME_DATA"; |
| 1046 | return 0; |
| 1047 | } |
| 1048 | ++i; |
| 1049 | } |
| 1050 | |
| 1051 | return writer.length(); |
| 1052 | } |
| 1053 | |
| 1054 | size_t QuicFramer::AppendIetfFrames(const QuicFrames& frames, |
| 1055 | QuicDataWriter* writer) { |
| 1056 | size_t i = 0; |
| 1057 | for (const QuicFrame& frame : frames) { |
| 1058 | // Determine if we should write stream frame length in header. |
| 1059 | const bool last_frame_in_packet = i == frames.size() - 1; |
| 1060 | if (!AppendIetfTypeByte(frame, last_frame_in_packet, writer)) { |
| 1061 | QUIC_BUG << "AppendIetfTypeByte failed: " << detailed_error(); |
| 1062 | return 0; |
| 1063 | } |
| 1064 | |
| 1065 | switch (frame.type) { |
| 1066 | case PADDING_FRAME: |
| 1067 | if (!AppendPaddingFrame(frame.padding_frame, writer)) { |
| 1068 | QUIC_BUG << "AppendPaddingFrame of " |
| 1069 | << frame.padding_frame.num_padding_bytes |
| 1070 | << " failed: " << detailed_error(); |
| 1071 | return 0; |
| 1072 | } |
| 1073 | break; |
| 1074 | case STREAM_FRAME: |
| 1075 | if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, |
| 1076 | writer)) { |
| 1077 | QUIC_BUG << "AppendStreamFrame failed: " << detailed_error(); |
| 1078 | return 0; |
| 1079 | } |
| 1080 | break; |
| 1081 | case ACK_FRAME: |
| 1082 | if (!AppendIetfAckFrameAndTypeByte(*frame.ack_frame, writer)) { |
QUICHE team | 4fe0b94 | 2019-03-08 09:25:06 -0500 | [diff] [blame] | 1083 | QUIC_BUG << "AppendIetfAckFrameAndTypeByte failed: " |
| 1084 | << detailed_error(); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1085 | return 0; |
| 1086 | } |
| 1087 | break; |
| 1088 | case STOP_WAITING_FRAME: |
| 1089 | set_detailed_error( |
| 1090 | "Attempt to append STOP WAITING frame in version 99."); |
| 1091 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1092 | case MTU_DISCOVERY_FRAME: |
| 1093 | // MTU discovery frames are serialized as ping frames. |
| 1094 | QUIC_FALLTHROUGH_INTENDED; |
| 1095 | case PING_FRAME: |
| 1096 | // Ping has no payload. |
| 1097 | break; |
| 1098 | case RST_STREAM_FRAME: |
| 1099 | if (!AppendRstStreamFrame(*frame.rst_stream_frame, writer)) { |
| 1100 | QUIC_BUG << "AppendRstStreamFrame failed: " << detailed_error(); |
| 1101 | return 0; |
| 1102 | } |
| 1103 | break; |
| 1104 | case CONNECTION_CLOSE_FRAME: |
fkastenholz | 72f509b | 2019-04-10 09:17:49 -0700 | [diff] [blame] | 1105 | if (!AppendIetfConnectionCloseFrame(*frame.connection_close_frame, |
| 1106 | writer)) { |
| 1107 | QUIC_BUG << "AppendIetfConnectionCloseFrame failed: " |
| 1108 | << detailed_error(); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1109 | return 0; |
| 1110 | } |
| 1111 | break; |
| 1112 | case GOAWAY_FRAME: |
| 1113 | set_detailed_error("Attempt to append GOAWAY frame in version 99."); |
| 1114 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1115 | case WINDOW_UPDATE_FRAME: |
| 1116 | // Depending on whether there is a stream ID or not, will be either a |
| 1117 | // MAX STREAM DATA frame or a MAX DATA frame. |
| 1118 | if (frame.window_update_frame->stream_id == |
| 1119 | QuicUtils::GetInvalidStreamId(transport_version())) { |
| 1120 | if (!AppendMaxDataFrame(*frame.window_update_frame, writer)) { |
| 1121 | QUIC_BUG << "AppendMaxDataFrame failed: " << detailed_error(); |
| 1122 | return 0; |
| 1123 | } |
| 1124 | } else { |
| 1125 | if (!AppendMaxStreamDataFrame(*frame.window_update_frame, writer)) { |
| 1126 | QUIC_BUG << "AppendMaxStreamDataFrame failed: " << detailed_error(); |
| 1127 | return 0; |
| 1128 | } |
| 1129 | } |
| 1130 | break; |
| 1131 | case BLOCKED_FRAME: |
| 1132 | if (!AppendBlockedFrame(*frame.blocked_frame, writer)) { |
| 1133 | QUIC_BUG << "AppendBlockedFrame failed: " << detailed_error(); |
| 1134 | return 0; |
| 1135 | } |
| 1136 | break; |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 1137 | case MAX_STREAMS_FRAME: |
| 1138 | if (!AppendMaxStreamsFrame(frame.max_streams_frame, writer)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1139 | QUIC_BUG << "AppendMaxStreamsFrame failed" << detailed_error(); |
| 1140 | return 0; |
| 1141 | } |
| 1142 | break; |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 1143 | case STREAMS_BLOCKED_FRAME: |
| 1144 | if (!AppendStreamsBlockedFrame(frame.streams_blocked_frame, writer)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1145 | QUIC_BUG << "AppendStreamsBlockedFrame failed" << detailed_error(); |
| 1146 | return 0; |
| 1147 | } |
| 1148 | break; |
| 1149 | case NEW_CONNECTION_ID_FRAME: |
| 1150 | if (!AppendNewConnectionIdFrame(*frame.new_connection_id_frame, |
| 1151 | writer)) { |
| 1152 | QUIC_BUG << "AppendNewConnectionIdFrame failed: " << detailed_error(); |
| 1153 | return 0; |
| 1154 | } |
| 1155 | break; |
| 1156 | case RETIRE_CONNECTION_ID_FRAME: |
| 1157 | if (!AppendRetireConnectionIdFrame(*frame.retire_connection_id_frame, |
| 1158 | writer)) { |
| 1159 | QUIC_BUG << "AppendRetireConnectionIdFrame failed: " |
| 1160 | << detailed_error(); |
| 1161 | return 0; |
| 1162 | } |
| 1163 | break; |
| 1164 | case NEW_TOKEN_FRAME: |
| 1165 | if (!AppendNewTokenFrame(*frame.new_token_frame, writer)) { |
| 1166 | QUIC_BUG << "AppendNewTokenFrame failed: " << detailed_error(); |
| 1167 | return 0; |
| 1168 | } |
| 1169 | break; |
| 1170 | case STOP_SENDING_FRAME: |
| 1171 | if (!AppendStopSendingFrame(*frame.stop_sending_frame, writer)) { |
| 1172 | QUIC_BUG << "AppendStopSendingFrame failed: " << detailed_error(); |
| 1173 | return 0; |
| 1174 | } |
| 1175 | break; |
| 1176 | case PATH_CHALLENGE_FRAME: |
| 1177 | if (!AppendPathChallengeFrame(*frame.path_challenge_frame, writer)) { |
| 1178 | QUIC_BUG << "AppendPathChallengeFrame failed: " << detailed_error(); |
| 1179 | return 0; |
| 1180 | } |
| 1181 | break; |
| 1182 | case PATH_RESPONSE_FRAME: |
| 1183 | if (!AppendPathResponseFrame(*frame.path_response_frame, writer)) { |
| 1184 | QUIC_BUG << "AppendPathResponseFrame failed: " << detailed_error(); |
| 1185 | return 0; |
| 1186 | } |
| 1187 | break; |
| 1188 | case MESSAGE_FRAME: |
| 1189 | if (!AppendMessageFrameAndTypeByte(*frame.message_frame, |
| 1190 | last_frame_in_packet, writer)) { |
| 1191 | QUIC_BUG << "AppendMessageFrame failed: " << detailed_error(); |
| 1192 | return 0; |
| 1193 | } |
| 1194 | break; |
| 1195 | case CRYPTO_FRAME: |
| 1196 | if (!AppendCryptoFrame(*frame.crypto_frame, writer)) { |
| 1197 | QUIC_BUG << "AppendCryptoFrame failed: " << detailed_error(); |
| 1198 | return 0; |
| 1199 | } |
| 1200 | break; |
| 1201 | default: |
| 1202 | RaiseError(QUIC_INVALID_FRAME_DATA); |
| 1203 | set_detailed_error("Tried to append unknown frame type."); |
| 1204 | QUIC_BUG << "QUIC_INVALID_FRAME_DATA"; |
| 1205 | return 0; |
| 1206 | } |
| 1207 | ++i; |
| 1208 | } |
| 1209 | |
| 1210 | return writer->length(); |
| 1211 | } |
| 1212 | |
rch | 67cb9df | 2019-03-26 16:52:07 -0700 | [diff] [blame] | 1213 | size_t QuicFramer::BuildConnectivityProbingPacket( |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1214 | const QuicPacketHeader& header, |
| 1215 | char* buffer, |
| 1216 | size_t packet_length, |
| 1217 | EncryptionLevel level) { |
| 1218 | QuicFrames frames; |
| 1219 | |
| 1220 | // Write a PING frame, which has no data payload. |
| 1221 | QuicPingFrame ping_frame; |
| 1222 | frames.push_back(QuicFrame(ping_frame)); |
| 1223 | |
| 1224 | // Add padding to the rest of the packet. |
| 1225 | QuicPaddingFrame padding_frame; |
| 1226 | frames.push_back(QuicFrame(padding_frame)); |
| 1227 | |
| 1228 | return BuildDataPacket(header, frames, buffer, packet_length, level); |
| 1229 | } |
| 1230 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1231 | size_t QuicFramer::BuildPaddedPathChallengePacket( |
| 1232 | const QuicPacketHeader& header, |
| 1233 | char* buffer, |
| 1234 | size_t packet_length, |
| 1235 | QuicPathFrameBuffer* payload, |
| 1236 | QuicRandom* randomizer, |
| 1237 | EncryptionLevel level) { |
| 1238 | if (version_.transport_version != QUIC_VERSION_99) { |
| 1239 | QUIC_BUG << "Attempt to build a PATH_CHALLENGE Connectivity Probing " |
| 1240 | "packet and not doing IETF QUIC"; |
| 1241 | return 0; |
| 1242 | } |
| 1243 | QuicFrames frames; |
| 1244 | |
| 1245 | // Write a PATH_CHALLENGE frame, which has a random 8-byte payload |
| 1246 | randomizer->RandBytes(payload->data(), payload->size()); |
| 1247 | |
| 1248 | QuicPathChallengeFrame path_challenge_frame(0, *payload); |
| 1249 | frames.push_back(QuicFrame(&path_challenge_frame)); |
| 1250 | |
| 1251 | // Add padding to the rest of the packet in order to assess Path MTU |
| 1252 | // characteristics. |
| 1253 | QuicPaddingFrame padding_frame; |
| 1254 | frames.push_back(QuicFrame(padding_frame)); |
| 1255 | |
| 1256 | return BuildDataPacket(header, frames, buffer, packet_length, level); |
| 1257 | } |
| 1258 | |
| 1259 | size_t QuicFramer::BuildPathResponsePacket( |
| 1260 | const QuicPacketHeader& header, |
| 1261 | char* buffer, |
| 1262 | size_t packet_length, |
| 1263 | const QuicDeque<QuicPathFrameBuffer>& payloads, |
| 1264 | const bool is_padded, |
| 1265 | EncryptionLevel level) { |
| 1266 | if (payloads.empty()) { |
| 1267 | QUIC_BUG |
| 1268 | << "Attempt to generate connectivity response with no request payloads"; |
| 1269 | return 0; |
| 1270 | } |
| 1271 | if (version_.transport_version != QUIC_VERSION_99) { |
| 1272 | QUIC_BUG << "Attempt to build a PATH_RESPONSE Connectivity Probing " |
| 1273 | "packet and not doing IETF QUIC"; |
| 1274 | return 0; |
| 1275 | } |
| 1276 | |
| 1277 | std::vector<std::unique_ptr<QuicPathResponseFrame>> path_response_frames; |
| 1278 | for (const QuicPathFrameBuffer& payload : payloads) { |
| 1279 | // Note that the control frame ID can be 0 since this is not retransmitted. |
| 1280 | path_response_frames.push_back( |
| 1281 | QuicMakeUnique<QuicPathResponseFrame>(0, payload)); |
| 1282 | } |
| 1283 | |
| 1284 | QuicFrames frames; |
| 1285 | for (const std::unique_ptr<QuicPathResponseFrame>& path_response_frame : |
| 1286 | path_response_frames) { |
| 1287 | frames.push_back(QuicFrame(path_response_frame.get())); |
| 1288 | } |
| 1289 | |
| 1290 | if (is_padded) { |
| 1291 | // Add padding to the rest of the packet in order to assess Path MTU |
| 1292 | // characteristics. |
| 1293 | QuicPaddingFrame padding_frame; |
| 1294 | frames.push_back(QuicFrame(padding_frame)); |
| 1295 | } |
| 1296 | |
| 1297 | return BuildDataPacket(header, frames, buffer, packet_length, level); |
| 1298 | } |
| 1299 | |
| 1300 | // static |
| 1301 | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildPublicResetPacket( |
| 1302 | const QuicPublicResetPacket& packet) { |
| 1303 | CryptoHandshakeMessage reset; |
| 1304 | reset.set_tag(kPRST); |
| 1305 | reset.SetValue(kRNON, packet.nonce_proof); |
| 1306 | if (packet.client_address.host().address_family() != |
| 1307 | IpAddressFamily::IP_UNSPEC) { |
| 1308 | // packet.client_address is non-empty. |
| 1309 | QuicSocketAddressCoder address_coder(packet.client_address); |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 1310 | std::string serialized_address = address_coder.Encode(); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1311 | if (serialized_address.empty()) { |
| 1312 | return nullptr; |
| 1313 | } |
| 1314 | reset.SetStringPiece(kCADR, serialized_address); |
| 1315 | } |
| 1316 | if (!packet.endpoint_id.empty()) { |
| 1317 | reset.SetStringPiece(kEPID, packet.endpoint_id); |
| 1318 | } |
| 1319 | const QuicData& reset_serialized = reset.GetSerialized(); |
| 1320 | |
| 1321 | size_t len = kPublicFlagsSize + packet.connection_id.length() + |
| 1322 | reset_serialized.length(); |
| 1323 | std::unique_ptr<char[]> buffer(new char[len]); |
| 1324 | // Endianness is not a concern here, as writer is not going to write integers |
| 1325 | // or floating numbers. |
| 1326 | QuicDataWriter writer(len, buffer.get()); |
| 1327 | |
| 1328 | uint8_t flags = static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_RST | |
| 1329 | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID); |
| 1330 | // This hack makes post-v33 public reset packet look like pre-v33 packets. |
| 1331 | flags |= static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); |
| 1332 | if (!writer.WriteUInt8(flags)) { |
| 1333 | return nullptr; |
| 1334 | } |
| 1335 | |
| 1336 | if (!writer.WriteConnectionId(packet.connection_id)) { |
| 1337 | return nullptr; |
| 1338 | } |
| 1339 | |
| 1340 | if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) { |
| 1341 | return nullptr; |
| 1342 | } |
| 1343 | |
| 1344 | return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true); |
| 1345 | } |
| 1346 | |
| 1347 | // static |
| 1348 | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildIetfStatelessResetPacket( |
| 1349 | QuicConnectionId connection_id, |
| 1350 | QuicUint128 stateless_reset_token) { |
| 1351 | QUIC_DVLOG(1) << "Building IETF stateless reset packet."; |
| 1352 | size_t len = kPacketHeaderTypeSize + kMinRandomBytesLengthInStatelessReset + |
| 1353 | sizeof(stateless_reset_token); |
| 1354 | std::unique_ptr<char[]> buffer(new char[len]); |
| 1355 | QuicDataWriter writer(len, buffer.get()); |
| 1356 | |
| 1357 | uint8_t type = 0; |
| 1358 | type |= FLAGS_FIXED_BIT; |
| 1359 | type |= FLAGS_SHORT_HEADER_RESERVED_1; |
| 1360 | type |= FLAGS_SHORT_HEADER_RESERVED_2; |
| 1361 | type |= PacketNumberLengthToOnWireValue(QUIC_VERSION_UNSUPPORTED, |
| 1362 | PACKET_1BYTE_PACKET_NUMBER); |
| 1363 | |
| 1364 | // Append type byte. |
| 1365 | if (!writer.WriteUInt8(type)) { |
| 1366 | return nullptr; |
| 1367 | } |
| 1368 | // Append random bytes. |
| 1369 | if (!writer.WriteRandomBytes(QuicRandom::GetInstance(), |
| 1370 | kMinRandomBytesLengthInStatelessReset)) { |
| 1371 | return nullptr; |
| 1372 | } |
| 1373 | |
| 1374 | // Append stateless reset token. |
| 1375 | if (!writer.WriteBytes(&stateless_reset_token, |
| 1376 | sizeof(stateless_reset_token))) { |
| 1377 | return nullptr; |
| 1378 | } |
| 1379 | return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true); |
| 1380 | } |
| 1381 | |
| 1382 | // static |
| 1383 | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildVersionNegotiationPacket( |
| 1384 | QuicConnectionId connection_id, |
| 1385 | bool ietf_quic, |
| 1386 | const ParsedQuicVersionVector& versions) { |
| 1387 | if (ietf_quic) { |
| 1388 | return BuildIetfVersionNegotiationPacket(connection_id, versions); |
| 1389 | } |
| 1390 | DCHECK(!versions.empty()); |
| 1391 | size_t len = kPublicFlagsSize + connection_id.length() + |
| 1392 | versions.size() * kQuicVersionSize; |
| 1393 | std::unique_ptr<char[]> buffer(new char[len]); |
| 1394 | // Endianness is not a concern here, version negotiation packet does not have |
| 1395 | // integers or floating numbers. |
| 1396 | QuicDataWriter writer(len, buffer.get()); |
| 1397 | |
| 1398 | uint8_t flags = static_cast<uint8_t>( |
| 1399 | PACKET_PUBLIC_FLAGS_VERSION | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID | |
| 1400 | // TODO(rch): Remove this QUIC_VERSION_32 is retired. |
| 1401 | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); |
| 1402 | if (!writer.WriteUInt8(flags)) { |
| 1403 | return nullptr; |
| 1404 | } |
| 1405 | |
| 1406 | if (!writer.WriteConnectionId(connection_id)) { |
| 1407 | return nullptr; |
| 1408 | } |
| 1409 | |
| 1410 | for (const ParsedQuicVersion& version : versions) { |
| 1411 | // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. |
| 1412 | if (!writer.WriteTag( |
| 1413 | QuicEndian::HostToNet32(CreateQuicVersionLabel(version)))) { |
| 1414 | return nullptr; |
| 1415 | } |
| 1416 | } |
| 1417 | |
| 1418 | return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true); |
| 1419 | } |
| 1420 | |
| 1421 | // static |
| 1422 | std::unique_ptr<QuicEncryptedPacket> |
| 1423 | QuicFramer::BuildIetfVersionNegotiationPacket( |
| 1424 | QuicConnectionId connection_id, |
| 1425 | const ParsedQuicVersionVector& versions) { |
| 1426 | QUIC_DVLOG(1) << "Building IETF version negotiation packet."; |
| 1427 | DCHECK(!versions.empty()); |
| 1428 | size_t len = kPacketHeaderTypeSize + kConnectionIdLengthSize + |
| 1429 | connection_id.length() + |
| 1430 | (versions.size() + 1) * kQuicVersionSize; |
| 1431 | std::unique_ptr<char[]> buffer(new char[len]); |
| 1432 | QuicDataWriter writer(len, buffer.get()); |
| 1433 | |
| 1434 | // TODO(fayang): Randomly select a value for the type. |
| 1435 | uint8_t type = static_cast<uint8_t>(FLAGS_LONG_HEADER | VERSION_NEGOTIATION); |
| 1436 | if (!writer.WriteUInt8(type)) { |
| 1437 | return nullptr; |
| 1438 | } |
| 1439 | |
| 1440 | if (!writer.WriteUInt32(0)) { |
| 1441 | return nullptr; |
| 1442 | } |
| 1443 | |
| 1444 | if (!GetQuicReloadableFlag(quic_use_new_append_connection_id)) { |
| 1445 | if (!AppendIetfConnectionId(true, EmptyQuicConnectionId(), |
| 1446 | PACKET_0BYTE_CONNECTION_ID, connection_id, |
| 1447 | PACKET_8BYTE_CONNECTION_ID, &writer)) { |
| 1448 | return nullptr; |
| 1449 | } |
| 1450 | } else { |
| 1451 | QUIC_RELOADABLE_FLAG_COUNT_N(quic_use_new_append_connection_id, 1, 2); |
| 1452 | if (!AppendIetfConnectionIdsNew(true, EmptyQuicConnectionId(), |
| 1453 | connection_id, &writer)) { |
| 1454 | return nullptr; |
| 1455 | } |
| 1456 | } |
| 1457 | |
| 1458 | for (const ParsedQuicVersion& version : versions) { |
| 1459 | // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. |
| 1460 | if (!writer.WriteTag( |
| 1461 | QuicEndian::HostToNet32(CreateQuicVersionLabel(version)))) { |
| 1462 | return nullptr; |
| 1463 | } |
| 1464 | } |
| 1465 | |
| 1466 | return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true); |
| 1467 | } |
| 1468 | |
| 1469 | bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) { |
| 1470 | QuicDataReader reader(packet.data(), packet.length()); |
| 1471 | |
| 1472 | bool packet_has_ietf_packet_header = false; |
| 1473 | if (infer_packet_header_type_from_version_) { |
| 1474 | packet_has_ietf_packet_header = |
| 1475 | version_.transport_version > QUIC_VERSION_43; |
| 1476 | } else if (!reader.IsDoneReading()) { |
| 1477 | uint8_t type = reader.PeekByte(); |
| 1478 | packet_has_ietf_packet_header = QuicUtils::IsIetfPacketHeader(type); |
| 1479 | } |
| 1480 | if (packet_has_ietf_packet_header) { |
| 1481 | QUIC_DVLOG(1) << ENDPOINT << "Processing IETF QUIC packet."; |
| 1482 | } |
| 1483 | |
| 1484 | visitor_->OnPacket(); |
| 1485 | |
| 1486 | QuicPacketHeader header; |
| 1487 | if (!ProcessPublicHeader(&reader, packet_has_ietf_packet_header, &header)) { |
| 1488 | DCHECK_NE("", detailed_error_); |
| 1489 | QUIC_DVLOG(1) << ENDPOINT << "Unable to process public header. Error: " |
| 1490 | << detailed_error_; |
| 1491 | DCHECK_NE("", detailed_error_); |
| 1492 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_HEADER); |
| 1493 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1494 | } |
| 1495 | |
| 1496 | if (!visitor_->OnUnauthenticatedPublicHeader(header)) { |
| 1497 | // The visitor suppresses further processing of the packet. |
| 1498 | return true; |
| 1499 | } |
| 1500 | |
| 1501 | if (perspective_ == Perspective::IS_SERVER && header.version_flag && |
| 1502 | header.version != version_) { |
| 1503 | if (!visitor_->OnProtocolVersionMismatch(header.version, header.form)) { |
| 1504 | RecordDroppedPacketReason(DroppedPacketReason::VERSION_MISMATCH); |
| 1505 | return true; |
| 1506 | } |
| 1507 | } |
| 1508 | |
| 1509 | bool rv; |
| 1510 | if (IsVersionNegotiation(header, packet_has_ietf_packet_header)) { |
| 1511 | QUIC_DVLOG(1) << ENDPOINT << "Received version negotiation packet"; |
| 1512 | rv = ProcessVersionNegotiationPacket(&reader, header); |
| 1513 | } else if (header.reset_flag) { |
| 1514 | rv = ProcessPublicResetPacket(&reader, header); |
dschinazi | e8d7fa7 | 2019-04-05 14:44:40 -0700 | [diff] [blame] | 1515 | } else if (packet.length() <= kMaxIncomingPacketSize) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1516 | // The optimized decryption algorithm implementations run faster when |
| 1517 | // operating on aligned memory. |
dschinazi | e8d7fa7 | 2019-04-05 14:44:40 -0700 | [diff] [blame] | 1518 | QUIC_CACHELINE_ALIGNED char buffer[kMaxIncomingPacketSize]; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1519 | if (packet_has_ietf_packet_header) { |
| 1520 | rv = ProcessIetfDataPacket(&reader, &header, packet, buffer, |
dschinazi | e8d7fa7 | 2019-04-05 14:44:40 -0700 | [diff] [blame] | 1521 | QUIC_ARRAYSIZE(buffer)); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1522 | } else { |
dschinazi | e8d7fa7 | 2019-04-05 14:44:40 -0700 | [diff] [blame] | 1523 | rv = ProcessDataPacket(&reader, &header, packet, buffer, |
| 1524 | QUIC_ARRAYSIZE(buffer)); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1525 | } |
| 1526 | } else { |
| 1527 | std::unique_ptr<char[]> large_buffer(new char[packet.length()]); |
| 1528 | if (packet_has_ietf_packet_header) { |
| 1529 | rv = ProcessIetfDataPacket(&reader, &header, packet, large_buffer.get(), |
| 1530 | packet.length()); |
| 1531 | } else { |
| 1532 | rv = ProcessDataPacket(&reader, &header, packet, large_buffer.get(), |
| 1533 | packet.length()); |
| 1534 | } |
| 1535 | QUIC_BUG_IF(rv) << "QUIC should never successfully process packets larger" |
dschinazi | e8d7fa7 | 2019-04-05 14:44:40 -0700 | [diff] [blame] | 1536 | << "than kMaxIncomingPacketSize. packet size:" |
| 1537 | << packet.length(); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1538 | } |
| 1539 | return rv; |
| 1540 | } |
| 1541 | |
| 1542 | bool QuicFramer::ProcessVersionNegotiationPacket( |
| 1543 | QuicDataReader* reader, |
| 1544 | const QuicPacketHeader& header) { |
| 1545 | DCHECK_EQ(Perspective::IS_CLIENT, perspective_); |
| 1546 | |
| 1547 | QuicVersionNegotiationPacket packet(header.destination_connection_id); |
| 1548 | // Try reading at least once to raise error if the packet is invalid. |
| 1549 | do { |
| 1550 | QuicVersionLabel version_label; |
| 1551 | if (!reader->ReadTag(&version_label)) { |
| 1552 | set_detailed_error("Unable to read supported version in negotiation."); |
| 1553 | RecordDroppedPacketReason( |
| 1554 | DroppedPacketReason::INVALID_VERSION_NEGOTIATION_PACKET); |
| 1555 | return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); |
| 1556 | } |
| 1557 | // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed. |
| 1558 | version_label = QuicEndian::NetToHost32(version_label); |
| 1559 | packet.versions.push_back(ParseQuicVersionLabel(version_label)); |
| 1560 | } while (!reader->IsDoneReading()); |
| 1561 | |
| 1562 | visitor_->OnVersionNegotiationPacket(packet); |
| 1563 | return true; |
| 1564 | } |
| 1565 | |
| 1566 | bool QuicFramer::MaybeProcessIetfInitialRetryToken( |
| 1567 | QuicDataReader* encrypted_reader, |
| 1568 | QuicPacketHeader* header) { |
| 1569 | if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) || |
| 1570 | header->form != IETF_QUIC_LONG_HEADER_PACKET || |
| 1571 | header->long_packet_type != INITIAL) { |
| 1572 | return true; |
| 1573 | } |
| 1574 | uint64_t retry_token_length = 0; |
| 1575 | header->retry_token_length_length = encrypted_reader->PeekVarInt62Length(); |
| 1576 | if (!encrypted_reader->ReadVarInt62(&retry_token_length)) { |
| 1577 | set_detailed_error("Unable to read INITIAL retry token length."); |
| 1578 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1579 | } |
| 1580 | header->retry_token = encrypted_reader->PeekRemainingPayload(); |
| 1581 | // Safety check to avoid spending ressources if malformed. |
| 1582 | // At this point header->retry_token contains the rest of the packet |
| 1583 | // so its length() is the amount of data remaining in the packet. |
| 1584 | if (retry_token_length > header->retry_token.length()) { |
| 1585 | set_detailed_error("INITIAL token length longer than packet."); |
| 1586 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1587 | } |
| 1588 | // Resize retry_token to make it only contain the retry token. |
| 1589 | header->retry_token.remove_suffix(header->retry_token.length() - |
| 1590 | retry_token_length); |
| 1591 | // Advance encrypted_reader by retry_token_length. |
| 1592 | uint8_t wasted_byte; |
| 1593 | for (uint64_t i = 0; i < retry_token_length; ++i) { |
| 1594 | if (!encrypted_reader->ReadUInt8(&wasted_byte)) { |
| 1595 | set_detailed_error("Unable to read INITIAL retry token."); |
| 1596 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1597 | } |
| 1598 | } |
| 1599 | return true; |
| 1600 | } |
| 1601 | |
| 1602 | // Seeks the current packet to check for a coalesced packet at the end. |
| 1603 | // If the IETF length field only spans part of the outer packet, |
| 1604 | // then there is a coalesced packet after this one. |
| 1605 | void QuicFramer::MaybeProcessCoalescedPacket( |
| 1606 | const QuicDataReader& encrypted_reader, |
| 1607 | uint64_t remaining_bytes_length, |
| 1608 | const QuicPacketHeader& header) { |
| 1609 | if (header.remaining_packet_length >= remaining_bytes_length) { |
| 1610 | // There is no coalesced packet. |
| 1611 | return; |
| 1612 | } |
| 1613 | |
| 1614 | QuicStringPiece remaining_data = encrypted_reader.PeekRemainingPayload(); |
| 1615 | DCHECK_EQ(remaining_data.length(), remaining_bytes_length); |
| 1616 | |
| 1617 | const char* coalesced_data = |
| 1618 | remaining_data.data() + header.remaining_packet_length; |
| 1619 | uint64_t coalesced_data_length = |
| 1620 | remaining_bytes_length - header.remaining_packet_length; |
| 1621 | QuicDataReader coalesced_reader(coalesced_data, coalesced_data_length); |
| 1622 | |
| 1623 | QuicPacketHeader coalesced_header; |
| 1624 | if (!ProcessIetfPacketHeader(&coalesced_reader, &coalesced_header)) { |
| 1625 | QUIC_PEER_BUG << ENDPOINT |
| 1626 | << "Failed to parse received coalesced header of length " |
| 1627 | << coalesced_data_length << ": " |
| 1628 | << QuicTextUtils::HexEncode(coalesced_data, |
| 1629 | coalesced_data_length) |
| 1630 | << " previous header was " << header; |
| 1631 | return; |
| 1632 | } |
| 1633 | |
| 1634 | if (coalesced_header.destination_connection_id != |
| 1635 | header.destination_connection_id || |
| 1636 | (coalesced_header.form != IETF_QUIC_SHORT_HEADER_PACKET && |
| 1637 | coalesced_header.version != header.version)) { |
| 1638 | QUIC_PEER_BUG << ENDPOINT << "Received mismatched coalesced header " |
| 1639 | << coalesced_header << " previous header was " << header; |
| 1640 | return; |
| 1641 | } |
| 1642 | |
| 1643 | QuicEncryptedPacket coalesced_packet(coalesced_data, coalesced_data_length, |
| 1644 | /*owns_buffer=*/false); |
| 1645 | visitor_->OnCoalescedPacket(coalesced_packet); |
| 1646 | } |
| 1647 | |
| 1648 | bool QuicFramer::MaybeProcessIetfLength(QuicDataReader* encrypted_reader, |
| 1649 | QuicPacketHeader* header) { |
| 1650 | if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) || |
| 1651 | header->form != IETF_QUIC_LONG_HEADER_PACKET || |
| 1652 | (header->long_packet_type != INITIAL && |
| 1653 | header->long_packet_type != HANDSHAKE && |
| 1654 | header->long_packet_type != ZERO_RTT_PROTECTED)) { |
| 1655 | return true; |
| 1656 | } |
| 1657 | header->length_length = encrypted_reader->PeekVarInt62Length(); |
| 1658 | if (!encrypted_reader->ReadVarInt62(&header->remaining_packet_length)) { |
| 1659 | set_detailed_error("Unable to read long header payload length."); |
| 1660 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1661 | } |
| 1662 | uint64_t remaining_bytes_length = encrypted_reader->BytesRemaining(); |
| 1663 | if (header->remaining_packet_length > remaining_bytes_length) { |
| 1664 | set_detailed_error("Long header payload length longer than packet."); |
| 1665 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1666 | } |
| 1667 | |
| 1668 | MaybeProcessCoalescedPacket(*encrypted_reader, remaining_bytes_length, |
| 1669 | *header); |
| 1670 | |
| 1671 | if (!encrypted_reader->TruncateRemaining(header->remaining_packet_length)) { |
| 1672 | set_detailed_error("Length TruncateRemaining failed."); |
| 1673 | QUIC_BUG << "Length TruncateRemaining failed."; |
| 1674 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1675 | } |
| 1676 | return true; |
| 1677 | } |
| 1678 | |
| 1679 | bool QuicFramer::ProcessIetfDataPacket(QuicDataReader* encrypted_reader, |
| 1680 | QuicPacketHeader* header, |
| 1681 | const QuicEncryptedPacket& packet, |
| 1682 | char* decrypted_buffer, |
| 1683 | size_t buffer_length) { |
| 1684 | DCHECK_NE(GOOGLE_QUIC_PACKET, header->form); |
| 1685 | DCHECK(!header->has_possible_stateless_reset_token); |
| 1686 | header->retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; |
| 1687 | header->retry_token = QuicStringPiece(); |
| 1688 | header->length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; |
| 1689 | header->remaining_packet_length = 0; |
| 1690 | if (header->form == IETF_QUIC_SHORT_HEADER_PACKET && |
| 1691 | perspective_ == Perspective::IS_CLIENT) { |
| 1692 | // Peek possible stateless reset token. Will only be used on decryption |
| 1693 | // failure. |
| 1694 | QuicStringPiece remaining = encrypted_reader->PeekRemainingPayload(); |
| 1695 | if (remaining.length() >= sizeof(header->possible_stateless_reset_token)) { |
| 1696 | header->has_possible_stateless_reset_token = true; |
| 1697 | memcpy(&header->possible_stateless_reset_token, |
| 1698 | &remaining.data()[remaining.length() - |
| 1699 | sizeof(header->possible_stateless_reset_token)], |
| 1700 | sizeof(header->possible_stateless_reset_token)); |
| 1701 | } |
| 1702 | } |
| 1703 | |
| 1704 | if (!MaybeProcessIetfInitialRetryToken(encrypted_reader, header)) { |
| 1705 | return false; |
| 1706 | } |
| 1707 | |
| 1708 | if (!MaybeProcessIetfLength(encrypted_reader, header)) { |
| 1709 | return false; |
| 1710 | } |
| 1711 | |
| 1712 | if (header->form == IETF_QUIC_SHORT_HEADER_PACKET || |
| 1713 | header->long_packet_type != VERSION_NEGOTIATION) { |
| 1714 | // Process packet number. |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 1715 | QuicPacketNumber base_packet_number; |
| 1716 | if (supports_multiple_packet_number_spaces_) { |
| 1717 | base_packet_number = |
| 1718 | largest_decrypted_packet_numbers_[GetPacketNumberSpace(*header)]; |
| 1719 | } else { |
| 1720 | base_packet_number = largest_packet_number_; |
| 1721 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1722 | uint64_t full_packet_number; |
| 1723 | if (!ProcessAndCalculatePacketNumber( |
| 1724 | encrypted_reader, header->packet_number_length, base_packet_number, |
| 1725 | &full_packet_number)) { |
| 1726 | set_detailed_error("Unable to read packet number."); |
| 1727 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); |
| 1728 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1729 | } |
| 1730 | |
| 1731 | if (!IsValidFullPacketNumber(full_packet_number, transport_version())) { |
| 1732 | if (IsIetfStatelessResetPacket(*header)) { |
| 1733 | // This is a stateless reset packet. |
| 1734 | QuicIetfStatelessResetPacket packet( |
| 1735 | *header, header->possible_stateless_reset_token); |
| 1736 | visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); |
| 1737 | return true; |
| 1738 | } |
| 1739 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); |
| 1740 | set_detailed_error("packet numbers cannot be 0."); |
| 1741 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1742 | } |
| 1743 | header->packet_number = QuicPacketNumber(full_packet_number); |
| 1744 | } |
| 1745 | |
| 1746 | // A nonce should only present in SHLO from the server to the client when |
| 1747 | // using QUIC crypto. |
| 1748 | if (header->form == IETF_QUIC_LONG_HEADER_PACKET && |
| 1749 | header->long_packet_type == ZERO_RTT_PROTECTED && |
| 1750 | perspective_ == Perspective::IS_CLIENT && |
| 1751 | version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { |
| 1752 | if (!encrypted_reader->ReadBytes( |
| 1753 | reinterpret_cast<uint8_t*>(last_nonce_.data()), |
| 1754 | last_nonce_.size())) { |
| 1755 | set_detailed_error("Unable to read nonce."); |
| 1756 | RecordDroppedPacketReason( |
| 1757 | DroppedPacketReason::INVALID_DIVERSIFICATION_NONCE); |
| 1758 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1759 | } |
| 1760 | |
| 1761 | header->nonce = &last_nonce_; |
| 1762 | } else { |
| 1763 | header->nonce = nullptr; |
| 1764 | } |
| 1765 | |
| 1766 | if (!visitor_->OnUnauthenticatedHeader(*header)) { |
| 1767 | set_detailed_error( |
| 1768 | "Visitor asked to stop processing of unauthenticated header."); |
| 1769 | return false; |
| 1770 | } |
| 1771 | |
| 1772 | QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload(); |
| 1773 | QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket( |
| 1774 | version_.transport_version, packet, |
| 1775 | GetIncludedDestinationConnectionIdLength(*header), |
| 1776 | GetIncludedSourceConnectionIdLength(*header), header->version_flag, |
| 1777 | header->nonce != nullptr, header->packet_number_length, |
| 1778 | header->retry_token_length_length, header->retry_token.length(), |
| 1779 | header->length_length); |
| 1780 | |
| 1781 | size_t decrypted_length = 0; |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 1782 | EncryptionLevel decrypted_level; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1783 | if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer, |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 1784 | buffer_length, &decrypted_length, &decrypted_level)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1785 | if (IsIetfStatelessResetPacket(*header)) { |
| 1786 | // This is a stateless reset packet. |
| 1787 | QuicIetfStatelessResetPacket packet( |
| 1788 | *header, header->possible_stateless_reset_token); |
| 1789 | visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); |
| 1790 | return true; |
| 1791 | } |
| 1792 | set_detailed_error("Unable to decrypt payload."); |
| 1793 | RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); |
| 1794 | return RaiseError(QUIC_DECRYPTION_FAILURE); |
| 1795 | } |
| 1796 | QuicDataReader reader(decrypted_buffer, decrypted_length); |
| 1797 | |
| 1798 | // Update the largest packet number after we have decrypted the packet |
| 1799 | // so we are confident is not attacker controlled. |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 1800 | if (supports_multiple_packet_number_spaces_) { |
| 1801 | largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace( |
| 1802 | decrypted_level)] |
| 1803 | .UpdateMax(header->packet_number); |
| 1804 | } else { |
| 1805 | largest_packet_number_.UpdateMax(header->packet_number); |
| 1806 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1807 | |
| 1808 | if (!visitor_->OnPacketHeader(*header)) { |
| 1809 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); |
| 1810 | // The visitor suppresses further processing of the packet. |
| 1811 | return true; |
| 1812 | } |
| 1813 | |
dschinazi | e8d7fa7 | 2019-04-05 14:44:40 -0700 | [diff] [blame] | 1814 | if (packet.length() > kMaxIncomingPacketSize) { |
| 1815 | set_detailed_error("Packet too large."); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1816 | return RaiseError(QUIC_PACKET_TOO_LARGE); |
| 1817 | } |
| 1818 | |
| 1819 | // Handle the payload. |
| 1820 | if (version_.transport_version == QUIC_VERSION_99) { |
| 1821 | if (!ProcessIetfFrameData(&reader, *header)) { |
| 1822 | DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessIetfFrameData sets the error. |
| 1823 | DCHECK_NE("", detailed_error_); |
| 1824 | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " |
| 1825 | << detailed_error_; |
| 1826 | return false; |
| 1827 | } |
| 1828 | } else { |
| 1829 | if (!ProcessFrameData(&reader, *header)) { |
| 1830 | DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. |
| 1831 | DCHECK_NE("", detailed_error_); |
| 1832 | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " |
| 1833 | << detailed_error_; |
| 1834 | return false; |
| 1835 | } |
| 1836 | } |
| 1837 | |
| 1838 | visitor_->OnPacketComplete(); |
| 1839 | return true; |
| 1840 | } |
| 1841 | |
| 1842 | bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader, |
| 1843 | QuicPacketHeader* header, |
| 1844 | const QuicEncryptedPacket& packet, |
| 1845 | char* decrypted_buffer, |
| 1846 | size_t buffer_length) { |
| 1847 | if (!ProcessUnauthenticatedHeader(encrypted_reader, header)) { |
| 1848 | DCHECK_NE("", detailed_error_); |
| 1849 | QUIC_DVLOG(1) |
| 1850 | << ENDPOINT |
| 1851 | << "Unable to process packet header. Stopping parsing. Error: " |
| 1852 | << detailed_error_; |
| 1853 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); |
| 1854 | return false; |
| 1855 | } |
| 1856 | |
| 1857 | QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload(); |
| 1858 | QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket( |
| 1859 | version_.transport_version, packet, |
| 1860 | GetIncludedDestinationConnectionIdLength(*header), |
| 1861 | GetIncludedSourceConnectionIdLength(*header), header->version_flag, |
| 1862 | header->nonce != nullptr, header->packet_number_length, |
| 1863 | header->retry_token_length_length, header->retry_token.length(), |
| 1864 | header->length_length); |
| 1865 | |
| 1866 | size_t decrypted_length = 0; |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 1867 | EncryptionLevel decrypted_level; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1868 | if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer, |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 1869 | buffer_length, &decrypted_length, &decrypted_level)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1870 | RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); |
| 1871 | set_detailed_error("Unable to decrypt payload."); |
| 1872 | return RaiseError(QUIC_DECRYPTION_FAILURE); |
| 1873 | } |
| 1874 | |
| 1875 | QuicDataReader reader(decrypted_buffer, decrypted_length); |
| 1876 | |
| 1877 | // Update the largest packet number after we have decrypted the packet |
| 1878 | // so we are confident is not attacker controlled. |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 1879 | if (supports_multiple_packet_number_spaces_) { |
| 1880 | largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace( |
| 1881 | decrypted_level)] |
| 1882 | .UpdateMax(header->packet_number); |
| 1883 | } else { |
| 1884 | largest_packet_number_.UpdateMax(header->packet_number); |
| 1885 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1886 | |
| 1887 | if (!visitor_->OnPacketHeader(*header)) { |
| 1888 | // The visitor suppresses further processing of the packet. |
| 1889 | return true; |
| 1890 | } |
| 1891 | |
dschinazi | e8d7fa7 | 2019-04-05 14:44:40 -0700 | [diff] [blame] | 1892 | if (packet.length() > kMaxIncomingPacketSize) { |
| 1893 | set_detailed_error("Packet too large."); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1894 | return RaiseError(QUIC_PACKET_TOO_LARGE); |
| 1895 | } |
| 1896 | |
| 1897 | // Handle the payload. |
| 1898 | if (!ProcessFrameData(&reader, *header)) { |
| 1899 | DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. |
| 1900 | DCHECK_NE("", detailed_error_); |
| 1901 | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " |
| 1902 | << detailed_error_; |
| 1903 | return false; |
| 1904 | } |
| 1905 | |
| 1906 | visitor_->OnPacketComplete(); |
| 1907 | return true; |
| 1908 | } |
| 1909 | |
| 1910 | bool QuicFramer::ProcessPublicResetPacket(QuicDataReader* reader, |
| 1911 | const QuicPacketHeader& header) { |
| 1912 | QuicPublicResetPacket packet(header.destination_connection_id); |
| 1913 | |
| 1914 | std::unique_ptr<CryptoHandshakeMessage> reset( |
| 1915 | CryptoFramer::ParseMessage(reader->ReadRemainingPayload())); |
| 1916 | if (!reset.get()) { |
| 1917 | set_detailed_error("Unable to read reset message."); |
| 1918 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); |
| 1919 | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); |
| 1920 | } |
| 1921 | if (reset->tag() != kPRST) { |
| 1922 | set_detailed_error("Incorrect message tag."); |
| 1923 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); |
| 1924 | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); |
| 1925 | } |
| 1926 | |
| 1927 | if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) { |
| 1928 | set_detailed_error("Unable to read nonce proof."); |
| 1929 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); |
| 1930 | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); |
| 1931 | } |
| 1932 | // TODO(satyamshekhar): validate nonce to protect against DoS. |
| 1933 | |
| 1934 | QuicStringPiece address; |
| 1935 | if (reset->GetStringPiece(kCADR, &address)) { |
| 1936 | QuicSocketAddressCoder address_coder; |
| 1937 | if (address_coder.Decode(address.data(), address.length())) { |
| 1938 | packet.client_address = |
| 1939 | QuicSocketAddress(address_coder.ip(), address_coder.port()); |
| 1940 | } |
| 1941 | } |
| 1942 | |
| 1943 | QuicStringPiece endpoint_id; |
| 1944 | if (perspective_ == Perspective::IS_CLIENT && |
| 1945 | reset->GetStringPiece(kEPID, &endpoint_id)) { |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 1946 | packet.endpoint_id = std::string(endpoint_id); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1947 | packet.endpoint_id += '\0'; |
| 1948 | } |
| 1949 | |
| 1950 | visitor_->OnPublicResetPacket(packet); |
| 1951 | return true; |
| 1952 | } |
| 1953 | |
| 1954 | bool QuicFramer::IsIetfStatelessResetPacket( |
| 1955 | const QuicPacketHeader& header) const { |
| 1956 | QUIC_BUG_IF(header.has_possible_stateless_reset_token && |
| 1957 | perspective_ != Perspective::IS_CLIENT) |
| 1958 | << "has_possible_stateless_reset_token can only be true at client side."; |
| 1959 | return header.form == IETF_QUIC_SHORT_HEADER_PACKET && |
| 1960 | header.has_possible_stateless_reset_token && |
| 1961 | visitor_->IsValidStatelessResetToken( |
| 1962 | header.possible_stateless_reset_token); |
| 1963 | } |
| 1964 | |
| 1965 | bool QuicFramer::HasEncrypterOfEncryptionLevel(EncryptionLevel level) const { |
| 1966 | return encrypter_[level] != nullptr; |
| 1967 | } |
| 1968 | |
| 1969 | bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header, |
| 1970 | QuicDataWriter* writer, |
| 1971 | size_t* length_field_offset) { |
| 1972 | if (transport_version() > QUIC_VERSION_43) { |
| 1973 | return AppendIetfPacketHeader(header, writer, length_field_offset); |
| 1974 | } |
| 1975 | QUIC_DVLOG(1) << ENDPOINT << "Appending header: " << header; |
| 1976 | uint8_t public_flags = 0; |
| 1977 | if (header.reset_flag) { |
| 1978 | public_flags |= PACKET_PUBLIC_FLAGS_RST; |
| 1979 | } |
| 1980 | if (header.version_flag) { |
| 1981 | public_flags |= PACKET_PUBLIC_FLAGS_VERSION; |
| 1982 | } |
| 1983 | |
| 1984 | public_flags |= GetPacketNumberFlags(header.packet_number_length) |
| 1985 | << kPublicHeaderSequenceNumberShift; |
| 1986 | |
| 1987 | if (header.nonce != nullptr) { |
| 1988 | DCHECK_EQ(Perspective::IS_SERVER, perspective_); |
| 1989 | public_flags |= PACKET_PUBLIC_FLAGS_NONCE; |
| 1990 | } |
| 1991 | DCHECK_EQ(CONNECTION_ID_ABSENT, header.source_connection_id_included); |
| 1992 | switch (header.destination_connection_id_included) { |
| 1993 | case CONNECTION_ID_ABSENT: |
| 1994 | if (!writer->WriteUInt8(public_flags | |
| 1995 | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) { |
| 1996 | return false; |
| 1997 | } |
| 1998 | break; |
| 1999 | case CONNECTION_ID_PRESENT: |
| 2000 | QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion( |
| 2001 | header.destination_connection_id, transport_version())) |
| 2002 | << "AppendPacketHeader: attempted to use connection ID " |
| 2003 | << header.destination_connection_id |
| 2004 | << " which is invalid with version " |
| 2005 | << QuicVersionToString(transport_version()); |
| 2006 | |
| 2007 | public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID; |
| 2008 | if (perspective_ == Perspective::IS_CLIENT) { |
| 2009 | public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD; |
| 2010 | } |
| 2011 | if (!writer->WriteUInt8(public_flags) || |
| 2012 | !writer->WriteConnectionId(header.destination_connection_id)) { |
| 2013 | return false; |
| 2014 | } |
| 2015 | break; |
| 2016 | } |
| 2017 | last_serialized_connection_id_ = header.destination_connection_id; |
| 2018 | |
| 2019 | if (header.version_flag) { |
| 2020 | DCHECK_EQ(Perspective::IS_CLIENT, perspective_); |
| 2021 | QuicVersionLabel version_label = CreateQuicVersionLabel(version_); |
| 2022 | // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. |
| 2023 | if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) { |
| 2024 | return false; |
| 2025 | } |
| 2026 | |
| 2027 | QUIC_DVLOG(1) << ENDPOINT << "label = '" |
| 2028 | << QuicVersionLabelToString(version_label) << "'"; |
| 2029 | } |
| 2030 | |
| 2031 | if (header.nonce != nullptr && |
| 2032 | !writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { |
| 2033 | return false; |
| 2034 | } |
| 2035 | |
| 2036 | if (!AppendPacketNumber(header.packet_number_length, header.packet_number, |
| 2037 | writer)) { |
| 2038 | return false; |
| 2039 | } |
| 2040 | |
| 2041 | return true; |
| 2042 | } |
| 2043 | |
| 2044 | bool QuicFramer::AppendIetfHeaderTypeByte(const QuicPacketHeader& header, |
| 2045 | QuicDataWriter* writer) { |
| 2046 | uint8_t type = 0; |
| 2047 | if (transport_version() > QUIC_VERSION_44) { |
| 2048 | if (header.version_flag) { |
| 2049 | type = static_cast<uint8_t>( |
| 2050 | FLAGS_LONG_HEADER | FLAGS_FIXED_BIT | |
| 2051 | LongHeaderTypeToOnWireValue(transport_version(), |
| 2052 | header.long_packet_type) | |
| 2053 | PacketNumberLengthToOnWireValue(transport_version(), |
| 2054 | header.packet_number_length)); |
| 2055 | } else { |
| 2056 | type = static_cast<uint8_t>( |
| 2057 | FLAGS_FIXED_BIT | |
| 2058 | PacketNumberLengthToOnWireValue(transport_version(), |
| 2059 | header.packet_number_length)); |
| 2060 | } |
| 2061 | return writer->WriteUInt8(type); |
| 2062 | } |
| 2063 | |
| 2064 | if (header.version_flag) { |
| 2065 | type = static_cast<uint8_t>( |
| 2066 | FLAGS_LONG_HEADER | LongHeaderTypeToOnWireValue( |
| 2067 | transport_version(), header.long_packet_type)); |
| 2068 | DCHECK_EQ(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length); |
| 2069 | } else { |
| 2070 | type |= FLAGS_SHORT_HEADER_RESERVED_1; |
| 2071 | type |= FLAGS_SHORT_HEADER_RESERVED_2; |
| 2072 | DCHECK_GE(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length); |
| 2073 | type |= PacketNumberLengthToOnWireValue(transport_version(), |
| 2074 | header.packet_number_length); |
| 2075 | } |
| 2076 | return writer->WriteUInt8(type); |
| 2077 | } |
| 2078 | |
| 2079 | bool QuicFramer::AppendIetfPacketHeader(const QuicPacketHeader& header, |
| 2080 | QuicDataWriter* writer, |
| 2081 | size_t* length_field_offset) { |
| 2082 | QUIC_DVLOG(1) << ENDPOINT << "Appending IETF header: " << header; |
| 2083 | QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion( |
| 2084 | header.destination_connection_id, transport_version())) |
| 2085 | << "AppendIetfPacketHeader: attempted to use connection ID " |
| 2086 | << header.destination_connection_id << " which is invalid with version " |
| 2087 | << QuicVersionToString(transport_version()); |
| 2088 | if (!AppendIetfHeaderTypeByte(header, writer)) { |
| 2089 | return false; |
| 2090 | } |
| 2091 | |
| 2092 | if (header.version_flag) { |
| 2093 | // Append version for long header. |
| 2094 | QuicVersionLabel version_label = CreateQuicVersionLabel(version_); |
| 2095 | // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed. |
| 2096 | if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) { |
| 2097 | return false; |
| 2098 | } |
| 2099 | } |
| 2100 | |
| 2101 | // Append connection ID. |
| 2102 | if (!QuicUtils::VariableLengthConnectionIdAllowedForVersion( |
| 2103 | transport_version()) && |
| 2104 | !GetQuicReloadableFlag(quic_use_new_append_connection_id)) { |
| 2105 | if (!AppendIetfConnectionId( |
| 2106 | header.version_flag, header.destination_connection_id, |
| 2107 | GetIncludedDestinationConnectionIdLength(header), |
| 2108 | header.source_connection_id, |
| 2109 | GetIncludedSourceConnectionIdLength(header), writer)) { |
| 2110 | return false; |
| 2111 | } |
| 2112 | } else { |
| 2113 | QUIC_RELOADABLE_FLAG_COUNT_N(quic_use_new_append_connection_id, 2, 2); |
| 2114 | if (!AppendIetfConnectionIdsNew( |
| 2115 | header.version_flag, |
| 2116 | header.destination_connection_id_included != CONNECTION_ID_ABSENT |
| 2117 | ? header.destination_connection_id |
| 2118 | : EmptyQuicConnectionId(), |
| 2119 | header.source_connection_id_included != CONNECTION_ID_ABSENT |
| 2120 | ? header.source_connection_id |
| 2121 | : EmptyQuicConnectionId(), |
| 2122 | writer)) { |
| 2123 | return false; |
| 2124 | } |
| 2125 | } |
| 2126 | last_serialized_connection_id_ = header.destination_connection_id; |
| 2127 | |
| 2128 | if (QuicVersionHasLongHeaderLengths(transport_version()) && |
| 2129 | header.version_flag) { |
| 2130 | if (header.long_packet_type == INITIAL) { |
| 2131 | // Write retry token length. |
| 2132 | if (!writer->WriteVarInt62(header.retry_token.length(), |
| 2133 | header.retry_token_length_length)) { |
| 2134 | return false; |
| 2135 | } |
| 2136 | // Write retry token. |
| 2137 | if (!header.retry_token.empty() && |
| 2138 | !writer->WriteStringPiece(header.retry_token)) { |
| 2139 | return false; |
| 2140 | } |
| 2141 | } |
| 2142 | if (length_field_offset != nullptr) { |
| 2143 | *length_field_offset = writer->length(); |
| 2144 | } |
| 2145 | // Add fake length to reserve two bytes to add length in later. |
| 2146 | writer->WriteVarInt62(256); |
| 2147 | } else if (length_field_offset != nullptr) { |
| 2148 | *length_field_offset = 0; |
| 2149 | } |
| 2150 | |
| 2151 | // Append packet number. |
| 2152 | if (!AppendPacketNumber(header.packet_number_length, header.packet_number, |
| 2153 | writer)) { |
| 2154 | return false; |
| 2155 | } |
| 2156 | |
| 2157 | if (!header.version_flag) { |
| 2158 | return true; |
| 2159 | } |
| 2160 | |
| 2161 | if (header.nonce != nullptr) { |
| 2162 | DCHECK(header.version_flag); |
| 2163 | DCHECK_EQ(ZERO_RTT_PROTECTED, header.long_packet_type); |
| 2164 | DCHECK_EQ(Perspective::IS_SERVER, perspective_); |
| 2165 | if (!writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { |
| 2166 | return false; |
| 2167 | } |
| 2168 | } |
| 2169 | |
| 2170 | return true; |
| 2171 | } |
| 2172 | |
| 2173 | const QuicTime::Delta QuicFramer::CalculateTimestampFromWire( |
| 2174 | uint32_t time_delta_us) { |
| 2175 | // The new time_delta might have wrapped to the next epoch, or it |
| 2176 | // might have reverse wrapped to the previous epoch, or it might |
| 2177 | // remain in the same epoch. Select the time closest to the previous |
| 2178 | // time. |
| 2179 | // |
| 2180 | // epoch_delta is the delta between epochs. A delta is 4 bytes of |
| 2181 | // microseconds. |
| 2182 | const uint64_t epoch_delta = UINT64_C(1) << 32; |
| 2183 | uint64_t epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1); |
| 2184 | // Wrapping is safe here because a wrapped value will not be ClosestTo below. |
| 2185 | uint64_t prev_epoch = epoch - epoch_delta; |
| 2186 | uint64_t next_epoch = epoch + epoch_delta; |
| 2187 | |
| 2188 | uint64_t time = ClosestTo( |
| 2189 | last_timestamp_.ToMicroseconds(), epoch + time_delta_us, |
| 2190 | ClosestTo(last_timestamp_.ToMicroseconds(), prev_epoch + time_delta_us, |
| 2191 | next_epoch + time_delta_us)); |
| 2192 | |
| 2193 | return QuicTime::Delta::FromMicroseconds(time); |
| 2194 | } |
| 2195 | |
| 2196 | uint64_t QuicFramer::CalculatePacketNumberFromWire( |
| 2197 | QuicPacketNumberLength packet_number_length, |
| 2198 | QuicPacketNumber base_packet_number, |
| 2199 | uint64_t packet_number) const { |
| 2200 | // The new packet number might have wrapped to the next epoch, or |
| 2201 | // it might have reverse wrapped to the previous epoch, or it might |
| 2202 | // remain in the same epoch. Select the packet number closest to the |
| 2203 | // next expected packet number, the previous packet number plus 1. |
| 2204 | |
| 2205 | // epoch_delta is the delta between epochs the packet number was serialized |
| 2206 | // with, so the correct value is likely the same epoch as the last sequence |
| 2207 | // number or an adjacent epoch. |
| 2208 | if (!base_packet_number.IsInitialized()) { |
| 2209 | return packet_number; |
| 2210 | } |
| 2211 | const uint64_t epoch_delta = UINT64_C(1) << (8 * packet_number_length); |
| 2212 | uint64_t next_packet_number = base_packet_number.ToUint64() + 1; |
| 2213 | uint64_t epoch = base_packet_number.ToUint64() & ~(epoch_delta - 1); |
| 2214 | uint64_t prev_epoch = epoch - epoch_delta; |
| 2215 | uint64_t next_epoch = epoch + epoch_delta; |
| 2216 | |
| 2217 | return ClosestTo(next_packet_number, epoch + packet_number, |
| 2218 | ClosestTo(next_packet_number, prev_epoch + packet_number, |
| 2219 | next_epoch + packet_number)); |
| 2220 | } |
| 2221 | |
| 2222 | bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader, |
| 2223 | bool packet_has_ietf_packet_header, |
| 2224 | QuicPacketHeader* header) { |
| 2225 | if (packet_has_ietf_packet_header) { |
| 2226 | return ProcessIetfPacketHeader(reader, header); |
| 2227 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2228 | uint8_t public_flags; |
| 2229 | if (!reader->ReadBytes(&public_flags, 1)) { |
| 2230 | set_detailed_error("Unable to read public flags."); |
| 2231 | return false; |
| 2232 | } |
| 2233 | |
| 2234 | header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0; |
| 2235 | header->version_flag = (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0; |
| 2236 | |
| 2237 | if (validate_flags_ && !header->version_flag && |
| 2238 | public_flags > PACKET_PUBLIC_FLAGS_MAX) { |
| 2239 | set_detailed_error("Illegal public flags value."); |
| 2240 | return false; |
| 2241 | } |
| 2242 | |
| 2243 | if (header->reset_flag && header->version_flag) { |
| 2244 | set_detailed_error("Got version flag in reset packet"); |
| 2245 | return false; |
| 2246 | } |
| 2247 | |
| 2248 | switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) { |
| 2249 | case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID: |
| 2250 | if (!reader->ReadConnectionId(&header->destination_connection_id, |
| 2251 | kQuicDefaultConnectionIdLength)) { |
| 2252 | set_detailed_error("Unable to read ConnectionId."); |
| 2253 | return false; |
| 2254 | } |
| 2255 | header->destination_connection_id_included = CONNECTION_ID_PRESENT; |
| 2256 | break; |
| 2257 | case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID: |
| 2258 | header->destination_connection_id_included = CONNECTION_ID_ABSENT; |
| 2259 | header->destination_connection_id = last_serialized_connection_id_; |
| 2260 | break; |
| 2261 | } |
| 2262 | |
| 2263 | header->packet_number_length = ReadSequenceNumberLength( |
| 2264 | public_flags >> kPublicHeaderSequenceNumberShift); |
| 2265 | |
| 2266 | // Read the version only if the packet is from the client. |
| 2267 | // version flag from the server means version negotiation packet. |
| 2268 | if (header->version_flag && perspective_ == Perspective::IS_SERVER) { |
| 2269 | QuicVersionLabel version_label; |
| 2270 | if (!reader->ReadTag(&version_label)) { |
| 2271 | set_detailed_error("Unable to read protocol version."); |
| 2272 | return false; |
| 2273 | } |
| 2274 | // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed. |
| 2275 | version_label = QuicEndian::NetToHost32(version_label); |
| 2276 | |
| 2277 | // If the version from the new packet is the same as the version of this |
| 2278 | // framer, then the public flags should be set to something we understand. |
| 2279 | // If not, this raises an error. |
| 2280 | last_version_label_ = version_label; |
| 2281 | ParsedQuicVersion version = ParseQuicVersionLabel(version_label); |
| 2282 | if (version == version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) { |
| 2283 | set_detailed_error("Illegal public flags value."); |
| 2284 | return false; |
| 2285 | } |
| 2286 | header->version = version; |
| 2287 | } |
| 2288 | |
| 2289 | // A nonce should only be present in packets from the server to the client, |
| 2290 | // which are neither version negotiation nor public reset packets. |
| 2291 | if (public_flags & PACKET_PUBLIC_FLAGS_NONCE && |
| 2292 | !(public_flags & PACKET_PUBLIC_FLAGS_VERSION) && |
| 2293 | !(public_flags & PACKET_PUBLIC_FLAGS_RST) && |
| 2294 | // The nonce flag from a client is ignored and is assumed to be an older |
| 2295 | // client indicating an eight-byte connection ID. |
| 2296 | perspective_ == Perspective::IS_CLIENT) { |
| 2297 | if (!reader->ReadBytes(reinterpret_cast<uint8_t*>(last_nonce_.data()), |
| 2298 | last_nonce_.size())) { |
| 2299 | set_detailed_error("Unable to read nonce."); |
| 2300 | return false; |
| 2301 | } |
| 2302 | header->nonce = &last_nonce_; |
| 2303 | } else { |
| 2304 | header->nonce = nullptr; |
| 2305 | } |
| 2306 | |
| 2307 | return true; |
| 2308 | } |
| 2309 | |
| 2310 | // static |
| 2311 | QuicPacketNumberLength QuicFramer::GetMinPacketNumberLength( |
| 2312 | QuicTransportVersion version, |
| 2313 | QuicPacketNumber packet_number) { |
| 2314 | DCHECK(packet_number.IsInitialized()); |
| 2315 | if (packet_number < QuicPacketNumber(1 << (PACKET_1BYTE_PACKET_NUMBER * 8))) { |
| 2316 | return PACKET_1BYTE_PACKET_NUMBER; |
| 2317 | } else if (packet_number < |
| 2318 | QuicPacketNumber(1 << (PACKET_2BYTE_PACKET_NUMBER * 8))) { |
| 2319 | return PACKET_2BYTE_PACKET_NUMBER; |
| 2320 | } else if (packet_number < |
| 2321 | QuicPacketNumber(UINT64_C(1) |
| 2322 | << (PACKET_4BYTE_PACKET_NUMBER * 8))) { |
| 2323 | return PACKET_4BYTE_PACKET_NUMBER; |
| 2324 | } else { |
| 2325 | return PACKET_6BYTE_PACKET_NUMBER; |
| 2326 | } |
| 2327 | } |
| 2328 | |
| 2329 | // static |
| 2330 | uint8_t QuicFramer::GetPacketNumberFlags( |
| 2331 | QuicPacketNumberLength packet_number_length) { |
| 2332 | switch (packet_number_length) { |
| 2333 | case PACKET_1BYTE_PACKET_NUMBER: |
| 2334 | return PACKET_FLAGS_1BYTE_PACKET; |
| 2335 | case PACKET_2BYTE_PACKET_NUMBER: |
| 2336 | return PACKET_FLAGS_2BYTE_PACKET; |
| 2337 | case PACKET_4BYTE_PACKET_NUMBER: |
| 2338 | return PACKET_FLAGS_4BYTE_PACKET; |
| 2339 | case PACKET_6BYTE_PACKET_NUMBER: |
| 2340 | case PACKET_8BYTE_PACKET_NUMBER: |
| 2341 | return PACKET_FLAGS_8BYTE_PACKET; |
| 2342 | default: |
| 2343 | QUIC_BUG << "Unreachable case statement."; |
| 2344 | return PACKET_FLAGS_8BYTE_PACKET; |
| 2345 | } |
| 2346 | } |
| 2347 | |
| 2348 | // static |
| 2349 | QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo( |
| 2350 | const QuicAckFrame& frame) { |
| 2351 | AckFrameInfo new_ack_info; |
| 2352 | if (frame.packets.Empty()) { |
| 2353 | return new_ack_info; |
| 2354 | } |
| 2355 | // The first block is the last interval. It isn't encoded with the gap-length |
| 2356 | // encoding, so skip it. |
| 2357 | new_ack_info.first_block_length = frame.packets.LastIntervalLength(); |
| 2358 | auto itr = frame.packets.rbegin(); |
| 2359 | QuicPacketNumber previous_start = itr->min(); |
| 2360 | new_ack_info.max_block_length = PacketNumberIntervalLength(*itr); |
| 2361 | ++itr; |
| 2362 | |
| 2363 | // Don't do any more work after getting information for 256 ACK blocks; any |
| 2364 | // more can't be encoded anyway. |
| 2365 | for (; itr != frame.packets.rend() && |
| 2366 | new_ack_info.num_ack_blocks < std::numeric_limits<uint8_t>::max(); |
| 2367 | previous_start = itr->min(), ++itr) { |
| 2368 | const auto& interval = *itr; |
| 2369 | const QuicPacketCount total_gap = previous_start - interval.max(); |
| 2370 | new_ack_info.num_ack_blocks += |
| 2371 | (total_gap + std::numeric_limits<uint8_t>::max() - 1) / |
| 2372 | std::numeric_limits<uint8_t>::max(); |
| 2373 | new_ack_info.max_block_length = std::max( |
| 2374 | new_ack_info.max_block_length, PacketNumberIntervalLength(interval)); |
| 2375 | } |
| 2376 | return new_ack_info; |
| 2377 | } |
| 2378 | |
| 2379 | bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader, |
| 2380 | QuicPacketHeader* header) { |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 2381 | QuicPacketNumber base_packet_number; |
| 2382 | if (supports_multiple_packet_number_spaces_) { |
| 2383 | base_packet_number = |
| 2384 | largest_decrypted_packet_numbers_[GetPacketNumberSpace(*header)]; |
| 2385 | } else { |
| 2386 | base_packet_number = largest_packet_number_; |
| 2387 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2388 | uint64_t full_packet_number; |
| 2389 | if (!ProcessAndCalculatePacketNumber( |
| 2390 | encrypted_reader, header->packet_number_length, base_packet_number, |
| 2391 | &full_packet_number)) { |
| 2392 | set_detailed_error("Unable to read packet number."); |
| 2393 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 2394 | } |
| 2395 | |
| 2396 | if (!IsValidFullPacketNumber(full_packet_number, transport_version())) { |
| 2397 | set_detailed_error("packet numbers cannot be 0."); |
| 2398 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 2399 | } |
| 2400 | header->packet_number = QuicPacketNumber(full_packet_number); |
| 2401 | |
| 2402 | if (!visitor_->OnUnauthenticatedHeader(*header)) { |
| 2403 | set_detailed_error( |
| 2404 | "Visitor asked to stop processing of unauthenticated header."); |
| 2405 | return false; |
| 2406 | } |
nharper | a745e39 | 2019-04-19 12:05:15 -0700 | [diff] [blame] | 2407 | if (!header->version_flag && version().KnowsWhichDecrypterToUse()) { |
| 2408 | set_detailed_error("Invalid public header type for expected version."); |
| 2409 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 2410 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2411 | return true; |
| 2412 | } |
| 2413 | |
| 2414 | bool QuicFramer::ProcessIetfHeaderTypeByte(QuicDataReader* reader, |
| 2415 | QuicPacketHeader* header) { |
| 2416 | uint8_t type; |
| 2417 | if (!reader->ReadBytes(&type, 1)) { |
| 2418 | set_detailed_error("Unable to read type."); |
| 2419 | return false; |
| 2420 | } |
| 2421 | // Determine whether this is a long or short header. |
| 2422 | header->form = type & FLAGS_LONG_HEADER ? IETF_QUIC_LONG_HEADER_PACKET |
| 2423 | : IETF_QUIC_SHORT_HEADER_PACKET; |
| 2424 | if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { |
| 2425 | // Version is always present in long headers. |
| 2426 | header->version_flag = true; |
| 2427 | // Long header packets received by client must include 8-byte source |
| 2428 | // connection ID, and those received by server must include 8-byte |
| 2429 | // destination connection ID. |
| 2430 | header->destination_connection_id_included = |
| 2431 | perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_ABSENT |
| 2432 | : CONNECTION_ID_PRESENT; |
| 2433 | header->source_connection_id_included = |
| 2434 | perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_PRESENT |
| 2435 | : CONNECTION_ID_ABSENT; |
| 2436 | // Read version tag. |
| 2437 | QuicVersionLabel version_label; |
| 2438 | if (!reader->ReadTag(&version_label)) { |
| 2439 | set_detailed_error("Unable to read protocol version."); |
| 2440 | return false; |
| 2441 | } |
| 2442 | // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed. |
| 2443 | version_label = QuicEndian::NetToHost32(version_label); |
| 2444 | if (!version_label) { |
| 2445 | // Version label is 0 indicating this is a version negotiation packet. |
| 2446 | header->long_packet_type = VERSION_NEGOTIATION; |
| 2447 | } else { |
| 2448 | header->version = ParseQuicVersionLabel(version_label); |
| 2449 | if (header->version.transport_version != QUIC_VERSION_UNSUPPORTED) { |
| 2450 | if (header->version.transport_version > QUIC_VERSION_44 && |
| 2451 | !(type & FLAGS_FIXED_BIT)) { |
| 2452 | set_detailed_error("Fixed bit is 0 in long header."); |
| 2453 | return false; |
| 2454 | } |
| 2455 | if (!GetLongHeaderType(header->version.transport_version, type, |
| 2456 | &header->long_packet_type)) { |
| 2457 | set_detailed_error("Illegal long header type value."); |
| 2458 | return false; |
| 2459 | } |
nharper | 2ceb97c | 2019-04-19 11:38:59 -0700 | [diff] [blame] | 2460 | if (header->long_packet_type == RETRY && |
| 2461 | (version().KnowsWhichDecrypterToUse() || |
| 2462 | supports_multiple_packet_number_spaces_)) { |
| 2463 | set_detailed_error("Not yet supported IETF RETRY packet received."); |
| 2464 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 2465 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2466 | header->packet_number_length = GetLongHeaderPacketNumberLength( |
| 2467 | header->version.transport_version, type); |
| 2468 | } |
| 2469 | } |
| 2470 | if (header->long_packet_type != VERSION_NEGOTIATION) { |
| 2471 | // Do not save version of version negotiation packet. |
| 2472 | last_version_label_ = version_label; |
| 2473 | } |
| 2474 | |
| 2475 | QUIC_DVLOG(1) << ENDPOINT << "Received IETF long header: " |
| 2476 | << QuicUtils::QuicLongHeaderTypetoString( |
| 2477 | header->long_packet_type); |
| 2478 | return true; |
| 2479 | } |
| 2480 | |
| 2481 | QUIC_DVLOG(1) << ENDPOINT << "Received IETF short header"; |
| 2482 | // Version is not present in short headers. |
| 2483 | header->version_flag = false; |
| 2484 | // Connection ID length depends on the perspective. Client does not expect |
| 2485 | // destination connection ID, and server expects destination connection ID. |
| 2486 | header->destination_connection_id_included = |
| 2487 | perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_ABSENT |
| 2488 | : CONNECTION_ID_PRESENT; |
| 2489 | header->source_connection_id_included = CONNECTION_ID_ABSENT; |
| 2490 | if (infer_packet_header_type_from_version_ && |
| 2491 | transport_version() > QUIC_VERSION_44 && !(type & FLAGS_FIXED_BIT)) { |
| 2492 | set_detailed_error("Fixed bit is 0 in short header."); |
| 2493 | return false; |
| 2494 | } |
| 2495 | if (!GetShortHeaderPacketNumberLength(transport_version(), type, |
| 2496 | infer_packet_header_type_from_version_, |
| 2497 | &header->packet_number_length)) { |
| 2498 | set_detailed_error("Illegal short header type value."); |
| 2499 | return false; |
| 2500 | } |
| 2501 | QUIC_DVLOG(1) << "packet_number_length = " << header->packet_number_length; |
| 2502 | return true; |
| 2503 | } |
| 2504 | |
| 2505 | bool QuicFramer::ProcessIetfPacketHeader(QuicDataReader* reader, |
| 2506 | QuicPacketHeader* header) { |
| 2507 | if (!ProcessIetfHeaderTypeByte(reader, header)) { |
| 2508 | return false; |
| 2509 | } |
| 2510 | |
| 2511 | uint8_t destination_connection_id_length = |
| 2512 | header->destination_connection_id_included == CONNECTION_ID_PRESENT |
| 2513 | ? expected_connection_id_length_ |
| 2514 | : 0; |
| 2515 | uint8_t source_connection_id_length = |
| 2516 | header->source_connection_id_included == CONNECTION_ID_PRESENT |
| 2517 | ? expected_connection_id_length_ |
| 2518 | : 0; |
| 2519 | if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { |
| 2520 | // Read and validate connection ID length. |
| 2521 | uint8_t connection_id_lengths_byte; |
| 2522 | if (!reader->ReadBytes(&connection_id_lengths_byte, 1)) { |
| 2523 | set_detailed_error("Unable to read ConnectionId length."); |
| 2524 | return false; |
| 2525 | } |
| 2526 | uint8_t dcil = |
| 2527 | (connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4; |
| 2528 | if (dcil != 0) { |
| 2529 | dcil += kConnectionIdLengthAdjustment; |
| 2530 | } |
QUICHE team | 4d9d629 | 2019-03-11 14:25:33 -0700 | [diff] [blame] | 2531 | if (should_update_expected_connection_id_length_ && |
| 2532 | expected_connection_id_length_ != dcil) { |
| 2533 | QUIC_DVLOG(1) << ENDPOINT << "Updating expected_connection_id_length: " |
| 2534 | << static_cast<int>(expected_connection_id_length_) |
| 2535 | << " -> " << static_cast<int>(dcil); |
| 2536 | expected_connection_id_length_ = dcil; |
| 2537 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2538 | uint8_t scil = connection_id_lengths_byte & kSourceConnectionIdLengthMask; |
| 2539 | if (scil != 0) { |
| 2540 | scil += kConnectionIdLengthAdjustment; |
| 2541 | } |
QUICHE team | 4d9d629 | 2019-03-11 14:25:33 -0700 | [diff] [blame] | 2542 | if ((dcil != destination_connection_id_length || |
| 2543 | scil != source_connection_id_length) && |
QUICHE team | 8e2e453 | 2019-03-14 14:37:56 -0700 | [diff] [blame] | 2544 | !should_update_expected_connection_id_length_ && |
| 2545 | !QuicUtils::VariableLengthConnectionIdAllowedForVersion( |
| 2546 | header->version.transport_version)) { |
| 2547 | // TODO(dschinazi): use the framer's version once the |
| 2548 | // OnProtocolVersionMismatch call is moved to before this is run. |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2549 | QUIC_DVLOG(1) << "dcil: " << static_cast<uint32_t>(dcil) |
| 2550 | << ", scil: " << static_cast<uint32_t>(scil); |
| 2551 | set_detailed_error("Invalid ConnectionId length."); |
| 2552 | return false; |
| 2553 | } |
| 2554 | destination_connection_id_length = dcil; |
| 2555 | source_connection_id_length = scil; |
| 2556 | } |
| 2557 | |
QUICHE team | 0131a5b | 2019-03-20 15:23:27 -0700 | [diff] [blame] | 2558 | DCHECK_LE(destination_connection_id_length, kQuicMaxConnectionIdLength); |
| 2559 | DCHECK_LE(source_connection_id_length, kQuicMaxConnectionIdLength); |
| 2560 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2561 | // Read connection ID. |
| 2562 | if (!reader->ReadConnectionId(&header->destination_connection_id, |
| 2563 | destination_connection_id_length)) { |
| 2564 | set_detailed_error("Unable to read Destination ConnectionId."); |
| 2565 | return false; |
| 2566 | } |
| 2567 | |
| 2568 | if (!reader->ReadConnectionId(&header->source_connection_id, |
| 2569 | source_connection_id_length)) { |
| 2570 | set_detailed_error("Unable to read Source ConnectionId."); |
| 2571 | return false; |
| 2572 | } |
| 2573 | |
| 2574 | if (header->source_connection_id_included == CONNECTION_ID_PRESENT) { |
| 2575 | // Set destination connection ID to source connection ID. |
| 2576 | DCHECK_EQ(EmptyQuicConnectionId(), header->destination_connection_id); |
| 2577 | header->destination_connection_id = header->source_connection_id; |
| 2578 | } else if (header->destination_connection_id_included == |
| 2579 | CONNECTION_ID_ABSENT) { |
| 2580 | header->destination_connection_id = last_serialized_connection_id_; |
| 2581 | } |
| 2582 | |
| 2583 | return true; |
| 2584 | } |
| 2585 | |
| 2586 | bool QuicFramer::ProcessAndCalculatePacketNumber( |
| 2587 | QuicDataReader* reader, |
| 2588 | QuicPacketNumberLength packet_number_length, |
| 2589 | QuicPacketNumber base_packet_number, |
| 2590 | uint64_t* packet_number) { |
| 2591 | uint64_t wire_packet_number; |
| 2592 | if (!reader->ReadBytesToUInt64(packet_number_length, &wire_packet_number)) { |
| 2593 | return false; |
| 2594 | } |
| 2595 | |
| 2596 | // TODO(ianswett): Explore the usefulness of trying multiple packet numbers |
| 2597 | // in case the first guess is incorrect. |
| 2598 | *packet_number = CalculatePacketNumberFromWire( |
| 2599 | packet_number_length, base_packet_number, wire_packet_number); |
| 2600 | return true; |
| 2601 | } |
| 2602 | |
| 2603 | bool QuicFramer::ProcessFrameData(QuicDataReader* reader, |
| 2604 | const QuicPacketHeader& header) { |
| 2605 | DCHECK_NE(QUIC_VERSION_99, version_.transport_version) |
| 2606 | << "Version 99 negotiated, but not processing frames as version 99."; |
| 2607 | if (reader->IsDoneReading()) { |
| 2608 | set_detailed_error("Packet has no frames."); |
| 2609 | return RaiseError(QUIC_MISSING_PAYLOAD); |
| 2610 | } |
| 2611 | while (!reader->IsDoneReading()) { |
| 2612 | uint8_t frame_type; |
| 2613 | if (!reader->ReadBytes(&frame_type, 1)) { |
| 2614 | set_detailed_error("Unable to read frame type."); |
| 2615 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 2616 | } |
| 2617 | const uint8_t special_mask = transport_version() <= QUIC_VERSION_44 |
| 2618 | ? kQuicFrameTypeBrokenMask |
| 2619 | : kQuicFrameTypeSpecialMask; |
| 2620 | if (frame_type & special_mask) { |
| 2621 | // Stream Frame |
| 2622 | if (frame_type & kQuicFrameTypeStreamMask) { |
| 2623 | QuicStreamFrame frame; |
| 2624 | if (!ProcessStreamFrame(reader, frame_type, &frame)) { |
| 2625 | return RaiseError(QUIC_INVALID_STREAM_DATA); |
| 2626 | } |
| 2627 | if (!visitor_->OnStreamFrame(frame)) { |
| 2628 | QUIC_DVLOG(1) << ENDPOINT |
| 2629 | << "Visitor asked to stop further processing."; |
| 2630 | // Returning true since there was no parsing error. |
| 2631 | return true; |
| 2632 | } |
| 2633 | continue; |
| 2634 | } |
| 2635 | |
| 2636 | // Ack Frame |
| 2637 | if (frame_type & kQuicFrameTypeAckMask) { |
| 2638 | if (!ProcessAckFrame(reader, frame_type)) { |
| 2639 | return RaiseError(QUIC_INVALID_ACK_DATA); |
| 2640 | } |
| 2641 | continue; |
| 2642 | } |
| 2643 | |
| 2644 | // This was a special frame type that did not match any |
| 2645 | // of the known ones. Error. |
| 2646 | set_detailed_error("Illegal frame type."); |
| 2647 | QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " |
| 2648 | << static_cast<int>(frame_type); |
| 2649 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 2650 | } |
| 2651 | |
| 2652 | switch (frame_type) { |
| 2653 | case PADDING_FRAME: { |
| 2654 | QuicPaddingFrame frame; |
| 2655 | ProcessPaddingFrame(reader, &frame); |
| 2656 | if (!visitor_->OnPaddingFrame(frame)) { |
| 2657 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2658 | // Returning true since there was no parsing error. |
| 2659 | return true; |
| 2660 | } |
| 2661 | continue; |
| 2662 | } |
| 2663 | |
| 2664 | case RST_STREAM_FRAME: { |
| 2665 | QuicRstStreamFrame frame; |
| 2666 | if (!ProcessRstStreamFrame(reader, &frame)) { |
| 2667 | return RaiseError(QUIC_INVALID_RST_STREAM_DATA); |
| 2668 | } |
| 2669 | if (!visitor_->OnRstStreamFrame(frame)) { |
| 2670 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2671 | // Returning true since there was no parsing error. |
| 2672 | return true; |
| 2673 | } |
| 2674 | continue; |
| 2675 | } |
| 2676 | |
| 2677 | case CONNECTION_CLOSE_FRAME: { |
| 2678 | QuicConnectionCloseFrame frame; |
| 2679 | if (!ProcessConnectionCloseFrame(reader, &frame)) { |
| 2680 | return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); |
| 2681 | } |
| 2682 | |
| 2683 | if (!visitor_->OnConnectionCloseFrame(frame)) { |
| 2684 | QUIC_DVLOG(1) << ENDPOINT |
| 2685 | << "Visitor asked to stop further processing."; |
| 2686 | // Returning true since there was no parsing error. |
| 2687 | return true; |
| 2688 | } |
| 2689 | continue; |
| 2690 | } |
| 2691 | |
| 2692 | case GOAWAY_FRAME: { |
| 2693 | QuicGoAwayFrame goaway_frame; |
| 2694 | if (!ProcessGoAwayFrame(reader, &goaway_frame)) { |
| 2695 | return RaiseError(QUIC_INVALID_GOAWAY_DATA); |
| 2696 | } |
| 2697 | if (!visitor_->OnGoAwayFrame(goaway_frame)) { |
| 2698 | QUIC_DVLOG(1) << ENDPOINT |
| 2699 | << "Visitor asked to stop further processing."; |
| 2700 | // Returning true since there was no parsing error. |
| 2701 | return true; |
| 2702 | } |
| 2703 | continue; |
| 2704 | } |
| 2705 | |
| 2706 | case WINDOW_UPDATE_FRAME: { |
| 2707 | QuicWindowUpdateFrame window_update_frame; |
| 2708 | if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) { |
| 2709 | return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA); |
| 2710 | } |
| 2711 | if (!visitor_->OnWindowUpdateFrame(window_update_frame)) { |
| 2712 | QUIC_DVLOG(1) << ENDPOINT |
| 2713 | << "Visitor asked to stop further processing."; |
| 2714 | // Returning true since there was no parsing error. |
| 2715 | return true; |
| 2716 | } |
| 2717 | continue; |
| 2718 | } |
| 2719 | |
| 2720 | case BLOCKED_FRAME: { |
| 2721 | QuicBlockedFrame blocked_frame; |
| 2722 | if (!ProcessBlockedFrame(reader, &blocked_frame)) { |
| 2723 | return RaiseError(QUIC_INVALID_BLOCKED_DATA); |
| 2724 | } |
| 2725 | if (!visitor_->OnBlockedFrame(blocked_frame)) { |
| 2726 | QUIC_DVLOG(1) << ENDPOINT |
| 2727 | << "Visitor asked to stop further processing."; |
| 2728 | // Returning true since there was no parsing error. |
| 2729 | return true; |
| 2730 | } |
| 2731 | continue; |
| 2732 | } |
| 2733 | |
| 2734 | case STOP_WAITING_FRAME: { |
ianswett | 97b690b | 2019-05-02 15:12:43 -0700 | [diff] [blame] | 2735 | if (GetQuicReloadableFlag(quic_do_not_accept_stop_waiting) && |
| 2736 | version_.transport_version >= QUIC_VERSION_44) { |
| 2737 | QUIC_RELOADABLE_FLAG_COUNT(quic_do_not_accept_stop_waiting); |
| 2738 | set_detailed_error("STOP WAITING not supported in version 44+."); |
| 2739 | return RaiseError(QUIC_INVALID_STOP_WAITING_DATA); |
| 2740 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2741 | QuicStopWaitingFrame stop_waiting_frame; |
| 2742 | if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) { |
| 2743 | return RaiseError(QUIC_INVALID_STOP_WAITING_DATA); |
| 2744 | } |
| 2745 | if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) { |
| 2746 | QUIC_DVLOG(1) << ENDPOINT |
| 2747 | << "Visitor asked to stop further processing."; |
| 2748 | // Returning true since there was no parsing error. |
| 2749 | return true; |
| 2750 | } |
| 2751 | continue; |
| 2752 | } |
| 2753 | case PING_FRAME: { |
| 2754 | // Ping has no payload. |
| 2755 | QuicPingFrame ping_frame; |
| 2756 | if (!visitor_->OnPingFrame(ping_frame)) { |
| 2757 | QUIC_DVLOG(1) << ENDPOINT |
| 2758 | << "Visitor asked to stop further processing."; |
| 2759 | // Returning true since there was no parsing error. |
| 2760 | return true; |
| 2761 | } |
| 2762 | continue; |
| 2763 | } |
| 2764 | case IETF_EXTENSION_MESSAGE_NO_LENGTH: |
| 2765 | QUIC_FALLTHROUGH_INTENDED; |
| 2766 | case IETF_EXTENSION_MESSAGE: { |
| 2767 | QuicMessageFrame message_frame; |
| 2768 | if (!ProcessMessageFrame(reader, |
| 2769 | frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH, |
| 2770 | &message_frame)) { |
| 2771 | return RaiseError(QUIC_INVALID_MESSAGE_DATA); |
| 2772 | } |
| 2773 | if (!visitor_->OnMessageFrame(message_frame)) { |
| 2774 | QUIC_DVLOG(1) << ENDPOINT |
| 2775 | << "Visitor asked to stop further processing."; |
| 2776 | // Returning true since there was no parsing error. |
| 2777 | return true; |
| 2778 | } |
| 2779 | break; |
| 2780 | } |
| 2781 | case CRYPTO_FRAME: { |
QUICHE team | ea74008 | 2019-03-11 17:58:43 -0700 | [diff] [blame] | 2782 | if (!QuicVersionUsesCryptoFrames(version_.transport_version)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2783 | set_detailed_error("Illegal frame type."); |
| 2784 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 2785 | } |
| 2786 | QuicCryptoFrame frame; |
| 2787 | if (!ProcessCryptoFrame(reader, &frame)) { |
| 2788 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 2789 | } |
| 2790 | if (!visitor_->OnCryptoFrame(frame)) { |
| 2791 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2792 | // Returning true since there was no parsing error. |
| 2793 | return true; |
| 2794 | } |
| 2795 | break; |
| 2796 | } |
| 2797 | |
| 2798 | default: |
| 2799 | set_detailed_error("Illegal frame type."); |
| 2800 | QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " |
| 2801 | << static_cast<int>(frame_type); |
| 2802 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 2803 | } |
| 2804 | } |
| 2805 | |
| 2806 | return true; |
| 2807 | } |
| 2808 | |
| 2809 | bool QuicFramer::ProcessIetfFrameData(QuicDataReader* reader, |
| 2810 | const QuicPacketHeader& header) { |
| 2811 | DCHECK_EQ(QUIC_VERSION_99, version_.transport_version) |
| 2812 | << "Attempt to process frames as IETF frames but version is " |
| 2813 | << version_.transport_version << ", not 99."; |
| 2814 | if (reader->IsDoneReading()) { |
| 2815 | set_detailed_error("Packet has no frames."); |
| 2816 | return RaiseError(QUIC_MISSING_PAYLOAD); |
| 2817 | } |
| 2818 | while (!reader->IsDoneReading()) { |
| 2819 | uint64_t frame_type; |
| 2820 | // Will be the number of bytes into which frame_type was encoded. |
| 2821 | size_t encoded_bytes = reader->BytesRemaining(); |
| 2822 | if (!reader->ReadVarInt62(&frame_type)) { |
| 2823 | set_detailed_error("Unable to read frame type."); |
| 2824 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 2825 | } |
| 2826 | |
| 2827 | // Is now the number of bytes into which the frame type was encoded. |
| 2828 | encoded_bytes -= reader->BytesRemaining(); |
| 2829 | |
| 2830 | // Check that the frame type is minimally encoded. |
| 2831 | if (encoded_bytes != |
| 2832 | static_cast<size_t>(QuicDataWriter::GetVarInt62Len(frame_type))) { |
| 2833 | // The frame type was not minimally encoded. |
| 2834 | set_detailed_error("Frame type not minimally encoded."); |
| 2835 | return RaiseError(IETF_QUIC_PROTOCOL_VIOLATION); |
| 2836 | } |
| 2837 | |
| 2838 | if (IS_IETF_STREAM_FRAME(frame_type)) { |
| 2839 | QuicStreamFrame frame; |
| 2840 | if (!ProcessIetfStreamFrame(reader, frame_type, &frame)) { |
| 2841 | return RaiseError(QUIC_INVALID_STREAM_DATA); |
| 2842 | } |
| 2843 | if (!visitor_->OnStreamFrame(frame)) { |
| 2844 | QUIC_DVLOG(1) << ENDPOINT |
| 2845 | << "Visitor asked to stop further processing."; |
| 2846 | // Returning true since there was no parsing error. |
| 2847 | return true; |
| 2848 | } |
| 2849 | } else { |
| 2850 | switch (frame_type) { |
| 2851 | case IETF_PADDING: { |
| 2852 | QuicPaddingFrame frame; |
| 2853 | ProcessPaddingFrame(reader, &frame); |
| 2854 | if (!visitor_->OnPaddingFrame(frame)) { |
| 2855 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2856 | // Returning true since there was no parsing error. |
| 2857 | return true; |
| 2858 | } |
| 2859 | break; |
| 2860 | } |
| 2861 | case IETF_RST_STREAM: { |
| 2862 | QuicRstStreamFrame frame; |
| 2863 | if (!ProcessIetfResetStreamFrame(reader, &frame)) { |
| 2864 | return RaiseError(QUIC_INVALID_RST_STREAM_DATA); |
| 2865 | } |
| 2866 | if (!visitor_->OnRstStreamFrame(frame)) { |
| 2867 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2868 | // Returning true since there was no parsing error. |
| 2869 | return true; |
| 2870 | } |
| 2871 | break; |
| 2872 | } |
fkastenholz | 04bd4f3 | 2019-04-16 12:24:38 -0700 | [diff] [blame] | 2873 | case IETF_APPLICATION_CLOSE: |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2874 | case IETF_CONNECTION_CLOSE: { |
| 2875 | QuicConnectionCloseFrame frame; |
fkastenholz | e9d71a8 | 2019-04-09 05:12:13 -0700 | [diff] [blame] | 2876 | if (!ProcessIetfConnectionCloseFrame( |
fkastenholz | 04bd4f3 | 2019-04-16 12:24:38 -0700 | [diff] [blame] | 2877 | reader, |
| 2878 | (frame_type == IETF_CONNECTION_CLOSE) |
| 2879 | ? IETF_QUIC_TRANSPORT_CONNECTION_CLOSE |
| 2880 | : IETF_QUIC_APPLICATION_CONNECTION_CLOSE, |
| 2881 | &frame)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2882 | return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); |
| 2883 | } |
| 2884 | if (!visitor_->OnConnectionCloseFrame(frame)) { |
| 2885 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2886 | // Returning true since there was no parsing error. |
| 2887 | return true; |
| 2888 | } |
| 2889 | break; |
| 2890 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2891 | case IETF_MAX_DATA: { |
| 2892 | QuicWindowUpdateFrame frame; |
| 2893 | if (!ProcessMaxDataFrame(reader, &frame)) { |
| 2894 | return RaiseError(QUIC_INVALID_MAX_DATA_FRAME_DATA); |
| 2895 | } |
| 2896 | // TODO(fkastenholz): Or should we create a new visitor function, |
| 2897 | // OnMaxDataFrame()? |
| 2898 | if (!visitor_->OnWindowUpdateFrame(frame)) { |
| 2899 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2900 | // Returning true since there was no parsing error. |
| 2901 | return true; |
| 2902 | } |
| 2903 | break; |
| 2904 | } |
| 2905 | case IETF_MAX_STREAM_DATA: { |
| 2906 | QuicWindowUpdateFrame frame; |
| 2907 | if (!ProcessMaxStreamDataFrame(reader, &frame)) { |
| 2908 | return RaiseError(QUIC_INVALID_MAX_STREAM_DATA_FRAME_DATA); |
| 2909 | } |
| 2910 | // TODO(fkastenholz): Or should we create a new visitor function, |
| 2911 | // OnMaxStreamDataFrame()? |
| 2912 | if (!visitor_->OnWindowUpdateFrame(frame)) { |
| 2913 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2914 | // Returning true since there was no parsing error. |
| 2915 | return true; |
| 2916 | } |
| 2917 | break; |
| 2918 | } |
| 2919 | case IETF_MAX_STREAMS_BIDIRECTIONAL: |
| 2920 | case IETF_MAX_STREAMS_UNIDIRECTIONAL: { |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 2921 | QuicMaxStreamsFrame frame; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2922 | if (!ProcessMaxStreamsFrame(reader, &frame, frame_type)) { |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 2923 | return RaiseError(QUIC_MAX_STREAMS_DATA); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2924 | } |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 2925 | QUIC_CODE_COUNT_N(quic_max_streams_received, 1, 2); |
| 2926 | if (!visitor_->OnMaxStreamsFrame(frame)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2927 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2928 | // Returning true since there was no parsing error. |
| 2929 | return true; |
| 2930 | } |
| 2931 | break; |
| 2932 | } |
| 2933 | case IETF_PING: { |
| 2934 | // Ping has no payload. |
| 2935 | QuicPingFrame ping_frame; |
| 2936 | if (!visitor_->OnPingFrame(ping_frame)) { |
| 2937 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2938 | // Returning true since there was no parsing error. |
| 2939 | return true; |
| 2940 | } |
| 2941 | break; |
| 2942 | } |
| 2943 | case IETF_BLOCKED: { |
| 2944 | QuicBlockedFrame frame; |
| 2945 | if (!ProcessIetfBlockedFrame(reader, &frame)) { |
| 2946 | return RaiseError(QUIC_INVALID_BLOCKED_DATA); |
| 2947 | } |
| 2948 | if (!visitor_->OnBlockedFrame(frame)) { |
| 2949 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2950 | // Returning true since there was no parsing error. |
| 2951 | return true; |
| 2952 | } |
| 2953 | break; |
| 2954 | } |
| 2955 | case IETF_STREAM_BLOCKED: { |
| 2956 | QuicBlockedFrame frame; |
| 2957 | if (!ProcessStreamBlockedFrame(reader, &frame)) { |
| 2958 | return RaiseError(QUIC_INVALID_STREAM_BLOCKED_DATA); |
| 2959 | } |
| 2960 | if (!visitor_->OnBlockedFrame(frame)) { |
| 2961 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2962 | // Returning true since there was no parsing error. |
| 2963 | return true; |
| 2964 | } |
| 2965 | break; |
| 2966 | } |
| 2967 | case IETF_STREAMS_BLOCKED_UNIDIRECTIONAL: |
| 2968 | case IETF_STREAMS_BLOCKED_BIDIRECTIONAL: { |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 2969 | QuicStreamsBlockedFrame frame; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2970 | if (!ProcessStreamsBlockedFrame(reader, &frame, frame_type)) { |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 2971 | return RaiseError(QUIC_STREAMS_BLOCKED_DATA); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2972 | } |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 2973 | QUIC_CODE_COUNT_N(quic_streams_blocked_received, 1, 2); |
| 2974 | if (!visitor_->OnStreamsBlockedFrame(frame)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 2975 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2976 | // Returning true since there was no parsing error. |
| 2977 | return true; |
| 2978 | } |
| 2979 | break; |
| 2980 | } |
| 2981 | case IETF_NEW_CONNECTION_ID: { |
| 2982 | QuicNewConnectionIdFrame frame; |
| 2983 | if (!ProcessNewConnectionIdFrame(reader, &frame)) { |
| 2984 | return RaiseError(QUIC_INVALID_NEW_CONNECTION_ID_DATA); |
| 2985 | } |
| 2986 | if (!visitor_->OnNewConnectionIdFrame(frame)) { |
| 2987 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2988 | // Returning true since there was no parsing error. |
| 2989 | return true; |
| 2990 | } |
| 2991 | break; |
| 2992 | } |
| 2993 | case IETF_RETIRE_CONNECTION_ID: { |
| 2994 | QuicRetireConnectionIdFrame frame; |
| 2995 | if (!ProcessRetireConnectionIdFrame(reader, &frame)) { |
| 2996 | return RaiseError(QUIC_INVALID_RETIRE_CONNECTION_ID_DATA); |
| 2997 | } |
| 2998 | if (!visitor_->OnRetireConnectionIdFrame(frame)) { |
| 2999 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3000 | // Returning true since there was no parsing error. |
| 3001 | return true; |
| 3002 | } |
| 3003 | break; |
| 3004 | } |
| 3005 | case IETF_NEW_TOKEN: { |
| 3006 | QuicNewTokenFrame frame; |
| 3007 | if (!ProcessNewTokenFrame(reader, &frame)) { |
| 3008 | return RaiseError(QUIC_INVALID_NEW_TOKEN); |
| 3009 | } |
| 3010 | if (!visitor_->OnNewTokenFrame(frame)) { |
| 3011 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3012 | // Returning true since there was no parsing error. |
| 3013 | return true; |
| 3014 | } |
| 3015 | break; |
| 3016 | } |
| 3017 | case IETF_STOP_SENDING: { |
| 3018 | QuicStopSendingFrame frame; |
| 3019 | if (!ProcessStopSendingFrame(reader, &frame)) { |
| 3020 | return RaiseError(QUIC_INVALID_STOP_SENDING_FRAME_DATA); |
| 3021 | } |
| 3022 | if (!visitor_->OnStopSendingFrame(frame)) { |
| 3023 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3024 | // Returning true since there was no parsing error. |
| 3025 | return true; |
| 3026 | } |
| 3027 | break; |
| 3028 | } |
| 3029 | case IETF_ACK_ECN: |
| 3030 | case IETF_ACK: { |
| 3031 | QuicAckFrame frame; |
| 3032 | if (!ProcessIetfAckFrame(reader, frame_type, &frame)) { |
| 3033 | return RaiseError(QUIC_INVALID_ACK_DATA); |
| 3034 | } |
| 3035 | break; |
| 3036 | } |
| 3037 | case IETF_PATH_CHALLENGE: { |
| 3038 | QuicPathChallengeFrame frame; |
| 3039 | if (!ProcessPathChallengeFrame(reader, &frame)) { |
| 3040 | return RaiseError(QUIC_INVALID_PATH_CHALLENGE_DATA); |
| 3041 | } |
| 3042 | if (!visitor_->OnPathChallengeFrame(frame)) { |
| 3043 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3044 | // Returning true since there was no parsing error. |
| 3045 | return true; |
| 3046 | } |
| 3047 | break; |
| 3048 | } |
| 3049 | case IETF_PATH_RESPONSE: { |
| 3050 | QuicPathResponseFrame frame; |
| 3051 | if (!ProcessPathResponseFrame(reader, &frame)) { |
| 3052 | return RaiseError(QUIC_INVALID_PATH_RESPONSE_DATA); |
| 3053 | } |
| 3054 | if (!visitor_->OnPathResponseFrame(frame)) { |
| 3055 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3056 | // Returning true since there was no parsing error. |
| 3057 | return true; |
| 3058 | } |
| 3059 | break; |
| 3060 | } |
| 3061 | case IETF_EXTENSION_MESSAGE_NO_LENGTH: |
| 3062 | QUIC_FALLTHROUGH_INTENDED; |
| 3063 | case IETF_EXTENSION_MESSAGE: { |
| 3064 | QuicMessageFrame message_frame; |
| 3065 | if (!ProcessMessageFrame( |
| 3066 | reader, frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH, |
| 3067 | &message_frame)) { |
| 3068 | return RaiseError(QUIC_INVALID_MESSAGE_DATA); |
| 3069 | } |
| 3070 | if (!visitor_->OnMessageFrame(message_frame)) { |
| 3071 | QUIC_DVLOG(1) << ENDPOINT |
| 3072 | << "Visitor asked to stop further processing."; |
| 3073 | // Returning true since there was no parsing error. |
| 3074 | return true; |
| 3075 | } |
| 3076 | break; |
| 3077 | } |
| 3078 | case IETF_CRYPTO: { |
| 3079 | QuicCryptoFrame frame; |
| 3080 | if (!ProcessCryptoFrame(reader, &frame)) { |
| 3081 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 3082 | } |
| 3083 | if (!visitor_->OnCryptoFrame(frame)) { |
| 3084 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3085 | // Returning true since there was no parsing error. |
| 3086 | return true; |
| 3087 | } |
| 3088 | break; |
| 3089 | } |
| 3090 | |
| 3091 | default: |
| 3092 | set_detailed_error("Illegal frame type."); |
| 3093 | QUIC_DLOG(WARNING) |
| 3094 | << ENDPOINT |
| 3095 | << "Illegal frame type: " << static_cast<int>(frame_type); |
| 3096 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 3097 | } |
| 3098 | } |
| 3099 | } |
| 3100 | return true; |
| 3101 | } |
| 3102 | |
| 3103 | namespace { |
| 3104 | // Create a mask that sets the last |num_bits| to 1 and the rest to 0. |
| 3105 | inline uint8_t GetMaskFromNumBits(uint8_t num_bits) { |
| 3106 | return (1u << num_bits) - 1; |
| 3107 | } |
| 3108 | |
| 3109 | // Extract |num_bits| from |flags| offset by |offset|. |
| 3110 | uint8_t ExtractBits(uint8_t flags, uint8_t num_bits, uint8_t offset) { |
| 3111 | return (flags >> offset) & GetMaskFromNumBits(num_bits); |
| 3112 | } |
| 3113 | |
| 3114 | // Extract the bit at position |offset| from |flags| as a bool. |
| 3115 | bool ExtractBit(uint8_t flags, uint8_t offset) { |
| 3116 | return ((flags >> offset) & GetMaskFromNumBits(1)) != 0; |
| 3117 | } |
| 3118 | |
| 3119 | // Set |num_bits|, offset by |offset| to |val| in |flags|. |
| 3120 | void SetBits(uint8_t* flags, uint8_t val, uint8_t num_bits, uint8_t offset) { |
| 3121 | DCHECK_LE(val, GetMaskFromNumBits(num_bits)); |
| 3122 | *flags |= val << offset; |
| 3123 | } |
| 3124 | |
| 3125 | // Set the bit at position |offset| to |val| in |flags|. |
| 3126 | void SetBit(uint8_t* flags, bool val, uint8_t offset) { |
| 3127 | SetBits(flags, val ? 1 : 0, 1, offset); |
| 3128 | } |
| 3129 | } // namespace |
| 3130 | |
| 3131 | bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader, |
| 3132 | uint8_t frame_type, |
| 3133 | QuicStreamFrame* frame) { |
| 3134 | uint8_t stream_flags = frame_type; |
| 3135 | |
| 3136 | uint8_t stream_id_length = 0; |
| 3137 | uint8_t offset_length = 4; |
| 3138 | bool has_data_length = true; |
| 3139 | stream_flags &= ~kQuicFrameTypeStreamMask; |
| 3140 | |
| 3141 | // Read from right to left: StreamID, Offset, Data Length, Fin. |
| 3142 | stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1; |
| 3143 | stream_flags >>= kQuicStreamIdShift; |
| 3144 | |
| 3145 | offset_length = (stream_flags & kQuicStreamOffsetMask); |
| 3146 | // There is no encoding for 1 byte, only 0 and 2 through 8. |
| 3147 | if (offset_length > 0) { |
| 3148 | offset_length += 1; |
| 3149 | } |
| 3150 | stream_flags >>= kQuicStreamShift; |
| 3151 | |
| 3152 | has_data_length = |
| 3153 | (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask; |
| 3154 | stream_flags >>= kQuicStreamDataLengthShift; |
| 3155 | |
| 3156 | frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift; |
| 3157 | |
| 3158 | uint64_t stream_id; |
| 3159 | if (!reader->ReadBytesToUInt64(stream_id_length, &stream_id)) { |
| 3160 | set_detailed_error("Unable to read stream_id."); |
| 3161 | return false; |
| 3162 | } |
| 3163 | frame->stream_id = static_cast<QuicStreamId>(stream_id); |
| 3164 | |
| 3165 | if (!reader->ReadBytesToUInt64(offset_length, &frame->offset)) { |
| 3166 | set_detailed_error("Unable to read offset."); |
| 3167 | return false; |
| 3168 | } |
| 3169 | |
| 3170 | // TODO(ianswett): Don't use QuicStringPiece as an intermediary. |
| 3171 | QuicStringPiece data; |
| 3172 | if (has_data_length) { |
| 3173 | if (!reader->ReadStringPiece16(&data)) { |
| 3174 | set_detailed_error("Unable to read frame data."); |
| 3175 | return false; |
| 3176 | } |
| 3177 | } else { |
| 3178 | if (!reader->ReadStringPiece(&data, reader->BytesRemaining())) { |
| 3179 | set_detailed_error("Unable to read frame data."); |
| 3180 | return false; |
| 3181 | } |
| 3182 | } |
| 3183 | frame->data_buffer = data.data(); |
| 3184 | frame->data_length = static_cast<uint16_t>(data.length()); |
| 3185 | |
| 3186 | return true; |
| 3187 | } |
| 3188 | |
| 3189 | bool QuicFramer::ProcessIetfStreamFrame(QuicDataReader* reader, |
| 3190 | uint8_t frame_type, |
| 3191 | QuicStreamFrame* frame) { |
| 3192 | // Read stream id from the frame. It's always present. |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 3193 | if (!reader->ReadVarIntU32(&frame->stream_id)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3194 | set_detailed_error("Unable to read stream_id."); |
| 3195 | return false; |
| 3196 | } |
| 3197 | |
| 3198 | // If we have a data offset, read it. If not, set to 0. |
| 3199 | if (frame_type & IETF_STREAM_FRAME_OFF_BIT) { |
| 3200 | if (!reader->ReadVarInt62(&frame->offset)) { |
| 3201 | set_detailed_error("Unable to read stream data offset."); |
| 3202 | return false; |
| 3203 | } |
| 3204 | } else { |
| 3205 | // no offset in the frame, ensure it's 0 in the Frame. |
| 3206 | frame->offset = 0; |
| 3207 | } |
| 3208 | |
| 3209 | // If we have a data length, read it. If not, set to 0. |
| 3210 | if (frame_type & IETF_STREAM_FRAME_LEN_BIT) { |
| 3211 | QuicIetfStreamDataLength length; |
| 3212 | if (!reader->ReadVarInt62(&length)) { |
| 3213 | set_detailed_error("Unable to read stream data length."); |
| 3214 | return false; |
| 3215 | } |
| 3216 | if (length > 0xffff) { |
| 3217 | set_detailed_error("Stream data length is too large."); |
| 3218 | return false; |
| 3219 | } |
| 3220 | frame->data_length = length; |
| 3221 | } else { |
| 3222 | // no length in the frame, it is the number of bytes remaining in the |
| 3223 | // packet. |
| 3224 | frame->data_length = reader->BytesRemaining(); |
| 3225 | } |
| 3226 | |
| 3227 | if (frame_type & IETF_STREAM_FRAME_FIN_BIT) { |
| 3228 | frame->fin = true; |
| 3229 | } else { |
| 3230 | frame->fin = false; |
| 3231 | } |
| 3232 | |
| 3233 | // TODO(ianswett): Don't use QuicStringPiece as an intermediary. |
| 3234 | QuicStringPiece data; |
| 3235 | if (!reader->ReadStringPiece(&data, frame->data_length)) { |
| 3236 | set_detailed_error("Unable to read frame data."); |
| 3237 | return false; |
| 3238 | } |
| 3239 | frame->data_buffer = data.data(); |
| 3240 | frame->data_length = static_cast<QuicIetfStreamDataLength>(data.length()); |
| 3241 | |
| 3242 | return true; |
| 3243 | } |
| 3244 | |
| 3245 | bool QuicFramer::ProcessCryptoFrame(QuicDataReader* reader, |
| 3246 | QuicCryptoFrame* frame) { |
| 3247 | if (!reader->ReadVarInt62(&frame->offset)) { |
| 3248 | set_detailed_error("Unable to read crypto data offset."); |
| 3249 | return false; |
| 3250 | } |
| 3251 | uint64_t len; |
| 3252 | if (!reader->ReadVarInt62(&len) || |
| 3253 | len > std::numeric_limits<QuicPacketLength>::max()) { |
| 3254 | set_detailed_error("Invalid data length."); |
| 3255 | return false; |
| 3256 | } |
| 3257 | frame->data_length = len; |
| 3258 | |
| 3259 | // TODO(ianswett): Don't use QuicStringPiece as an intermediary. |
| 3260 | QuicStringPiece data; |
| 3261 | if (!reader->ReadStringPiece(&data, frame->data_length)) { |
| 3262 | set_detailed_error("Unable to read frame data."); |
| 3263 | return false; |
| 3264 | } |
| 3265 | frame->data_buffer = data.data(); |
| 3266 | return true; |
| 3267 | } |
| 3268 | |
| 3269 | bool QuicFramer::ProcessAckFrame(QuicDataReader* reader, uint8_t frame_type) { |
| 3270 | const bool has_ack_blocks = |
| 3271 | ExtractBit(frame_type, kQuicHasMultipleAckBlocksOffset); |
| 3272 | uint8_t num_ack_blocks = 0; |
| 3273 | uint8_t num_received_packets = 0; |
| 3274 | |
| 3275 | // Determine the two lengths from the frame type: largest acked length, |
| 3276 | // ack block length. |
| 3277 | const QuicPacketNumberLength ack_block_length = ReadAckPacketNumberLength( |
| 3278 | version_.transport_version, |
| 3279 | ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, |
| 3280 | kActBlockLengthOffset)); |
| 3281 | const QuicPacketNumberLength largest_acked_length = ReadAckPacketNumberLength( |
| 3282 | version_.transport_version, |
| 3283 | ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, |
| 3284 | kLargestAckedOffset)); |
| 3285 | |
| 3286 | uint64_t largest_acked; |
| 3287 | if (!reader->ReadBytesToUInt64(largest_acked_length, &largest_acked)) { |
| 3288 | set_detailed_error("Unable to read largest acked."); |
| 3289 | return false; |
| 3290 | } |
| 3291 | |
| 3292 | if (largest_acked < first_sending_packet_number_.ToUint64()) { |
| 3293 | // Connection always sends packet starting from kFirstSendingPacketNumber > |
| 3294 | // 0, peer has observed an unsent packet. |
| 3295 | set_detailed_error("Largest acked is 0."); |
| 3296 | return false; |
| 3297 | } |
| 3298 | |
| 3299 | uint64_t ack_delay_time_us; |
| 3300 | if (!reader->ReadUFloat16(&ack_delay_time_us)) { |
| 3301 | set_detailed_error("Unable to read ack delay time."); |
| 3302 | return false; |
| 3303 | } |
| 3304 | |
| 3305 | if (!visitor_->OnAckFrameStart( |
| 3306 | QuicPacketNumber(largest_acked), |
| 3307 | ack_delay_time_us == kUFloat16MaxValue |
| 3308 | ? QuicTime::Delta::Infinite() |
| 3309 | : QuicTime::Delta::FromMicroseconds(ack_delay_time_us))) { |
| 3310 | // The visitor suppresses further processing of the packet. Although this is |
| 3311 | // not a parsing error, returns false as this is in middle of processing an |
| 3312 | // ack frame, |
| 3313 | set_detailed_error("Visitor suppresses further processing of ack frame."); |
| 3314 | return false; |
| 3315 | } |
| 3316 | |
| 3317 | if (has_ack_blocks && !reader->ReadUInt8(&num_ack_blocks)) { |
| 3318 | set_detailed_error("Unable to read num of ack blocks."); |
| 3319 | return false; |
| 3320 | } |
| 3321 | |
| 3322 | uint64_t first_block_length; |
| 3323 | if (!reader->ReadBytesToUInt64(ack_block_length, &first_block_length)) { |
| 3324 | set_detailed_error("Unable to read first ack block length."); |
| 3325 | return false; |
| 3326 | } |
| 3327 | |
| 3328 | if (first_block_length == 0) { |
| 3329 | set_detailed_error("First block length is zero."); |
| 3330 | return false; |
| 3331 | } |
| 3332 | bool first_ack_block_underflow = first_block_length > largest_acked + 1; |
| 3333 | if (first_block_length + first_sending_packet_number_.ToUint64() > |
| 3334 | largest_acked + 1) { |
| 3335 | first_ack_block_underflow = true; |
| 3336 | } |
| 3337 | if (first_ack_block_underflow) { |
| 3338 | set_detailed_error(QuicStrCat("Underflow with first ack block length ", |
| 3339 | first_block_length, " largest acked is ", |
| 3340 | largest_acked, ".") |
| 3341 | .c_str()); |
| 3342 | return false; |
| 3343 | } |
| 3344 | |
| 3345 | uint64_t first_received = largest_acked + 1 - first_block_length; |
| 3346 | if (!visitor_->OnAckRange(QuicPacketNumber(first_received), |
| 3347 | QuicPacketNumber(largest_acked + 1))) { |
| 3348 | // The visitor suppresses further processing of the packet. Although |
| 3349 | // this is not a parsing error, returns false as this is in middle |
| 3350 | // of processing an ack frame, |
| 3351 | set_detailed_error("Visitor suppresses further processing of ack frame."); |
| 3352 | return false; |
| 3353 | } |
| 3354 | |
| 3355 | if (num_ack_blocks > 0) { |
| 3356 | for (size_t i = 0; i < num_ack_blocks; ++i) { |
| 3357 | uint8_t gap = 0; |
| 3358 | if (!reader->ReadUInt8(&gap)) { |
| 3359 | set_detailed_error("Unable to read gap to next ack block."); |
| 3360 | return false; |
| 3361 | } |
| 3362 | uint64_t current_block_length; |
| 3363 | if (!reader->ReadBytesToUInt64(ack_block_length, ¤t_block_length)) { |
| 3364 | set_detailed_error("Unable to ack block length."); |
| 3365 | return false; |
| 3366 | } |
| 3367 | bool ack_block_underflow = first_received < gap + current_block_length; |
| 3368 | if (first_received < gap + current_block_length + |
| 3369 | first_sending_packet_number_.ToUint64()) { |
| 3370 | ack_block_underflow = true; |
| 3371 | } |
| 3372 | if (ack_block_underflow) { |
| 3373 | set_detailed_error( |
| 3374 | QuicStrCat("Underflow with ack block length ", current_block_length, |
| 3375 | ", end of block is ", first_received - gap, ".") |
| 3376 | .c_str()); |
| 3377 | return false; |
| 3378 | } |
| 3379 | |
| 3380 | first_received -= (gap + current_block_length); |
| 3381 | if (current_block_length > 0) { |
| 3382 | if (!visitor_->OnAckRange( |
| 3383 | QuicPacketNumber(first_received), |
| 3384 | QuicPacketNumber(first_received) + current_block_length)) { |
| 3385 | // The visitor suppresses further processing of the packet. Although |
| 3386 | // this is not a parsing error, returns false as this is in middle |
| 3387 | // of processing an ack frame, |
| 3388 | set_detailed_error( |
| 3389 | "Visitor suppresses further processing of ack frame."); |
| 3390 | return false; |
| 3391 | } |
| 3392 | } |
| 3393 | } |
| 3394 | } |
| 3395 | |
| 3396 | if (!reader->ReadUInt8(&num_received_packets)) { |
| 3397 | set_detailed_error("Unable to read num received packets."); |
| 3398 | return false; |
| 3399 | } |
| 3400 | |
| 3401 | if (!ProcessTimestampsInAckFrame(num_received_packets, |
| 3402 | QuicPacketNumber(largest_acked), reader)) { |
| 3403 | return false; |
| 3404 | } |
| 3405 | |
| 3406 | // Done processing the ACK frame. |
| 3407 | return visitor_->OnAckFrameEnd(QuicPacketNumber(first_received)); |
| 3408 | } |
| 3409 | |
| 3410 | bool QuicFramer::ProcessTimestampsInAckFrame(uint8_t num_received_packets, |
| 3411 | QuicPacketNumber largest_acked, |
| 3412 | QuicDataReader* reader) { |
| 3413 | if (num_received_packets == 0) { |
| 3414 | return true; |
| 3415 | } |
| 3416 | uint8_t delta_from_largest_observed; |
| 3417 | if (!reader->ReadUInt8(&delta_from_largest_observed)) { |
| 3418 | set_detailed_error("Unable to read sequence delta in received packets."); |
| 3419 | return false; |
| 3420 | } |
| 3421 | |
| 3422 | if (largest_acked.ToUint64() <= delta_from_largest_observed) { |
| 3423 | set_detailed_error(QuicStrCat("delta_from_largest_observed too high: ", |
| 3424 | delta_from_largest_observed, |
| 3425 | ", largest_acked: ", largest_acked.ToUint64()) |
| 3426 | .c_str()); |
| 3427 | return false; |
| 3428 | } |
| 3429 | |
| 3430 | // Time delta from the framer creation. |
| 3431 | uint32_t time_delta_us; |
| 3432 | if (!reader->ReadUInt32(&time_delta_us)) { |
| 3433 | set_detailed_error("Unable to read time delta in received packets."); |
| 3434 | return false; |
| 3435 | } |
| 3436 | |
| 3437 | QuicPacketNumber seq_num = largest_acked - delta_from_largest_observed; |
| 3438 | if (process_timestamps_) { |
| 3439 | last_timestamp_ = CalculateTimestampFromWire(time_delta_us); |
| 3440 | |
| 3441 | visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); |
| 3442 | } |
| 3443 | |
| 3444 | for (uint8_t i = 1; i < num_received_packets; ++i) { |
| 3445 | if (!reader->ReadUInt8(&delta_from_largest_observed)) { |
| 3446 | set_detailed_error("Unable to read sequence delta in received packets."); |
| 3447 | return false; |
| 3448 | } |
| 3449 | if (largest_acked.ToUint64() <= delta_from_largest_observed) { |
| 3450 | set_detailed_error( |
| 3451 | QuicStrCat("delta_from_largest_observed too high: ", |
| 3452 | delta_from_largest_observed, |
| 3453 | ", largest_acked: ", largest_acked.ToUint64()) |
| 3454 | .c_str()); |
| 3455 | return false; |
| 3456 | } |
| 3457 | seq_num = largest_acked - delta_from_largest_observed; |
| 3458 | |
| 3459 | // Time delta from the previous timestamp. |
| 3460 | uint64_t incremental_time_delta_us; |
| 3461 | if (!reader->ReadUFloat16(&incremental_time_delta_us)) { |
| 3462 | set_detailed_error( |
| 3463 | "Unable to read incremental time delta in received packets."); |
| 3464 | return false; |
| 3465 | } |
| 3466 | |
| 3467 | if (process_timestamps_) { |
| 3468 | last_timestamp_ = last_timestamp_ + QuicTime::Delta::FromMicroseconds( |
| 3469 | incremental_time_delta_us); |
| 3470 | visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); |
| 3471 | } |
| 3472 | } |
| 3473 | return true; |
| 3474 | } |
| 3475 | |
| 3476 | bool QuicFramer::ProcessIetfAckFrame(QuicDataReader* reader, |
| 3477 | uint64_t frame_type, |
| 3478 | QuicAckFrame* ack_frame) { |
| 3479 | uint64_t largest_acked; |
| 3480 | if (!reader->ReadVarInt62(&largest_acked)) { |
| 3481 | set_detailed_error("Unable to read largest acked."); |
| 3482 | return false; |
| 3483 | } |
| 3484 | if (largest_acked < first_sending_packet_number_.ToUint64()) { |
| 3485 | // Connection always sends packet starting from kFirstSendingPacketNumber > |
| 3486 | // 0, peer has observed an unsent packet. |
| 3487 | set_detailed_error("Largest acked is 0."); |
| 3488 | return false; |
| 3489 | } |
| 3490 | ack_frame->largest_acked = static_cast<QuicPacketNumber>(largest_acked); |
| 3491 | uint64_t ack_delay_time_in_us; |
| 3492 | if (!reader->ReadVarInt62(&ack_delay_time_in_us)) { |
| 3493 | set_detailed_error("Unable to read ack delay time."); |
| 3494 | return false; |
| 3495 | } |
| 3496 | |
| 3497 | // TODO(fkastenholz) when we get real IETF QUIC, need to get |
| 3498 | // the currect shift from the transport parameters. |
| 3499 | if (ack_delay_time_in_us == kVarInt62MaxValue) { |
| 3500 | ack_frame->ack_delay_time = QuicTime::Delta::Infinite(); |
| 3501 | } else { |
| 3502 | ack_delay_time_in_us = (ack_delay_time_in_us << kIetfAckTimestampShift); |
| 3503 | ack_frame->ack_delay_time = |
| 3504 | QuicTime::Delta::FromMicroseconds(ack_delay_time_in_us); |
| 3505 | } |
| 3506 | if (frame_type == IETF_ACK_ECN) { |
| 3507 | ack_frame->ecn_counters_populated = true; |
| 3508 | if (!reader->ReadVarInt62(&ack_frame->ect_0_count)) { |
| 3509 | set_detailed_error("Unable to read ack ect_0_count."); |
| 3510 | return false; |
| 3511 | } |
| 3512 | if (!reader->ReadVarInt62(&ack_frame->ect_1_count)) { |
| 3513 | set_detailed_error("Unable to read ack ect_1_count."); |
| 3514 | return false; |
| 3515 | } |
| 3516 | if (!reader->ReadVarInt62(&ack_frame->ecn_ce_count)) { |
| 3517 | set_detailed_error("Unable to read ack ecn_ce_count."); |
| 3518 | return false; |
| 3519 | } |
| 3520 | } else { |
| 3521 | ack_frame->ecn_counters_populated = false; |
| 3522 | ack_frame->ect_0_count = 0; |
| 3523 | ack_frame->ect_1_count = 0; |
| 3524 | ack_frame->ecn_ce_count = 0; |
| 3525 | } |
| 3526 | if (!visitor_->OnAckFrameStart(QuicPacketNumber(largest_acked), |
| 3527 | ack_frame->ack_delay_time)) { |
| 3528 | // The visitor suppresses further processing of the packet. Although this is |
| 3529 | // not a parsing error, returns false as this is in middle of processing an |
| 3530 | // ACK frame. |
| 3531 | set_detailed_error("Visitor suppresses further processing of ACK frame."); |
| 3532 | return false; |
| 3533 | } |
| 3534 | |
| 3535 | // Get number of ACK blocks from the packet. |
| 3536 | uint64_t ack_block_count; |
| 3537 | if (!reader->ReadVarInt62(&ack_block_count)) { |
| 3538 | set_detailed_error("Unable to read ack block count."); |
| 3539 | return false; |
| 3540 | } |
| 3541 | // There always is a first ACK block, which is the (number of packets being |
| 3542 | // acked)-1, up to and including the packet at largest_acked. Therefore if the |
| 3543 | // value is 0, then only largest is acked. If it is 1, then largest-1, |
| 3544 | // largest] are acked, etc |
| 3545 | uint64_t ack_block_value; |
| 3546 | if (!reader->ReadVarInt62(&ack_block_value)) { |
| 3547 | set_detailed_error("Unable to read first ack block length."); |
| 3548 | return false; |
| 3549 | } |
| 3550 | // Calculate the packets being acked in the first block. |
| 3551 | // +1 because AddRange implementation requires [low,high) |
| 3552 | uint64_t block_high = largest_acked + 1; |
| 3553 | uint64_t block_low = largest_acked - ack_block_value; |
| 3554 | |
| 3555 | // ack_block_value is the number of packets preceding the |
| 3556 | // largest_acked packet which are in the block being acked. Thus, |
| 3557 | // its maximum value is largest_acked-1. Test this, reporting an |
| 3558 | // error if the value is wrong. |
| 3559 | if (ack_block_value + first_sending_packet_number_.ToUint64() > |
| 3560 | largest_acked) { |
| 3561 | set_detailed_error(QuicStrCat("Underflow with first ack block length ", |
| 3562 | ack_block_value + 1, " largest acked is ", |
| 3563 | largest_acked, ".") |
| 3564 | .c_str()); |
| 3565 | return false; |
| 3566 | } |
| 3567 | |
| 3568 | if (!visitor_->OnAckRange(QuicPacketNumber(block_low), |
| 3569 | QuicPacketNumber(block_high))) { |
| 3570 | // The visitor suppresses further processing of the packet. Although |
| 3571 | // this is not a parsing error, returns false as this is in middle |
| 3572 | // of processing an ACK frame. |
| 3573 | set_detailed_error("Visitor suppresses further processing of ACK frame."); |
| 3574 | return false; |
| 3575 | } |
| 3576 | |
| 3577 | while (ack_block_count != 0) { |
| 3578 | uint64_t gap_block_value; |
| 3579 | // Get the sizes of the gap and ack blocks, |
| 3580 | if (!reader->ReadVarInt62(&gap_block_value)) { |
| 3581 | set_detailed_error("Unable to read gap block value."); |
| 3582 | return false; |
| 3583 | } |
| 3584 | // It's an error if the gap is larger than the space from packet |
| 3585 | // number 0 to the start of the block that's just been acked, PLUS |
| 3586 | // there must be space for at least 1 packet to be acked. For |
| 3587 | // example, if block_low is 10 and gap_block_value is 9, it means |
| 3588 | // the gap block is 10 packets long, leaving no room for a packet |
| 3589 | // to be acked. Thus, gap_block_value+2 can not be larger than |
| 3590 | // block_low. |
| 3591 | // The test is written this way to detect wrap-arounds. |
| 3592 | if ((gap_block_value + 2) > block_low) { |
| 3593 | set_detailed_error( |
| 3594 | QuicStrCat("Underflow with gap block length ", gap_block_value + 1, |
| 3595 | " previous ack block start is ", block_low, ".") |
| 3596 | .c_str()); |
| 3597 | return false; |
| 3598 | } |
| 3599 | |
| 3600 | // Adjust block_high to be the top of the next ack block. |
| 3601 | // There is a gap of |gap_block_value| packets between the bottom |
| 3602 | // of ack block N and top of block N+1. Note that gap_block_value |
| 3603 | // is he size of the gap minus 1 (per the QUIC protocol), and |
| 3604 | // block_high is the packet number of the first packet of the gap |
| 3605 | // (per the implementation of OnAckRange/AddAckRange, below). |
| 3606 | block_high = block_low - 1 - gap_block_value; |
| 3607 | |
| 3608 | if (!reader->ReadVarInt62(&ack_block_value)) { |
| 3609 | set_detailed_error("Unable to read ack block value."); |
| 3610 | return false; |
| 3611 | } |
| 3612 | if (ack_block_value + first_sending_packet_number_.ToUint64() > |
| 3613 | (block_high - 1)) { |
| 3614 | set_detailed_error( |
| 3615 | QuicStrCat("Underflow with ack block length ", ack_block_value + 1, |
| 3616 | " latest ack block end is ", block_high - 1, ".") |
| 3617 | .c_str()); |
| 3618 | return false; |
| 3619 | } |
| 3620 | // Calculate the low end of the new nth ack block. The +1 is |
| 3621 | // because the encoded value is the blocksize-1. |
| 3622 | block_low = block_high - 1 - ack_block_value; |
| 3623 | if (!visitor_->OnAckRange(QuicPacketNumber(block_low), |
| 3624 | QuicPacketNumber(block_high))) { |
| 3625 | // The visitor suppresses further processing of the packet. Although |
| 3626 | // this is not a parsing error, returns false as this is in middle |
| 3627 | // of processing an ACK frame. |
| 3628 | set_detailed_error("Visitor suppresses further processing of ACK frame."); |
| 3629 | return false; |
| 3630 | } |
| 3631 | |
| 3632 | // Another one done. |
| 3633 | ack_block_count--; |
| 3634 | } |
| 3635 | |
| 3636 | return visitor_->OnAckFrameEnd(QuicPacketNumber(block_low)); |
| 3637 | } |
| 3638 | |
| 3639 | bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader, |
| 3640 | const QuicPacketHeader& header, |
| 3641 | QuicStopWaitingFrame* stop_waiting) { |
| 3642 | uint64_t least_unacked_delta; |
| 3643 | if (!reader->ReadBytesToUInt64(header.packet_number_length, |
| 3644 | &least_unacked_delta)) { |
| 3645 | set_detailed_error("Unable to read least unacked delta."); |
| 3646 | return false; |
| 3647 | } |
| 3648 | if (header.packet_number.ToUint64() <= least_unacked_delta) { |
| 3649 | set_detailed_error("Invalid unacked delta."); |
| 3650 | return false; |
| 3651 | } |
| 3652 | stop_waiting->least_unacked = header.packet_number - least_unacked_delta; |
| 3653 | |
| 3654 | return true; |
| 3655 | } |
| 3656 | |
| 3657 | bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader, |
| 3658 | QuicRstStreamFrame* frame) { |
| 3659 | if (!reader->ReadUInt32(&frame->stream_id)) { |
| 3660 | set_detailed_error("Unable to read stream_id."); |
| 3661 | return false; |
| 3662 | } |
| 3663 | |
| 3664 | if (!reader->ReadUInt64(&frame->byte_offset)) { |
| 3665 | set_detailed_error("Unable to read rst stream sent byte offset."); |
| 3666 | return false; |
| 3667 | } |
| 3668 | |
| 3669 | uint32_t error_code; |
| 3670 | if (!reader->ReadUInt32(&error_code)) { |
| 3671 | set_detailed_error("Unable to read rst stream error code."); |
| 3672 | return false; |
| 3673 | } |
| 3674 | |
| 3675 | if (error_code >= QUIC_STREAM_LAST_ERROR) { |
| 3676 | // Ignore invalid stream error code if any. |
| 3677 | error_code = QUIC_STREAM_LAST_ERROR; |
| 3678 | } |
| 3679 | |
| 3680 | frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code); |
| 3681 | |
| 3682 | return true; |
| 3683 | } |
| 3684 | |
| 3685 | bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader, |
| 3686 | QuicConnectionCloseFrame* frame) { |
| 3687 | uint32_t error_code; |
fkastenholz | e9d71a8 | 2019-04-09 05:12:13 -0700 | [diff] [blame] | 3688 | frame->close_type = GOOGLE_QUIC_CONNECTION_CLOSE; |
| 3689 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3690 | if (!reader->ReadUInt32(&error_code)) { |
| 3691 | set_detailed_error("Unable to read connection close error code."); |
| 3692 | return false; |
| 3693 | } |
| 3694 | |
| 3695 | if (error_code >= QUIC_LAST_ERROR) { |
| 3696 | // Ignore invalid QUIC error code if any. |
| 3697 | error_code = QUIC_LAST_ERROR; |
| 3698 | } |
| 3699 | |
fkastenholz | e9d71a8 | 2019-04-09 05:12:13 -0700 | [diff] [blame] | 3700 | frame->quic_error_code = static_cast<QuicErrorCode>(error_code); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3701 | |
| 3702 | QuicStringPiece error_details; |
| 3703 | if (!reader->ReadStringPiece16(&error_details)) { |
| 3704 | set_detailed_error("Unable to read connection close error details."); |
| 3705 | return false; |
| 3706 | } |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 3707 | frame->error_details = std::string(error_details); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3708 | |
| 3709 | return true; |
| 3710 | } |
| 3711 | |
| 3712 | bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader, |
| 3713 | QuicGoAwayFrame* frame) { |
| 3714 | uint32_t error_code; |
| 3715 | if (!reader->ReadUInt32(&error_code)) { |
| 3716 | set_detailed_error("Unable to read go away error code."); |
| 3717 | return false; |
| 3718 | } |
| 3719 | |
| 3720 | if (error_code >= QUIC_LAST_ERROR) { |
| 3721 | // Ignore invalid QUIC error code if any. |
| 3722 | error_code = QUIC_LAST_ERROR; |
| 3723 | } |
| 3724 | frame->error_code = static_cast<QuicErrorCode>(error_code); |
| 3725 | |
| 3726 | uint32_t stream_id; |
| 3727 | if (!reader->ReadUInt32(&stream_id)) { |
| 3728 | set_detailed_error("Unable to read last good stream id."); |
| 3729 | return false; |
| 3730 | } |
| 3731 | frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id); |
| 3732 | |
| 3733 | QuicStringPiece reason_phrase; |
| 3734 | if (!reader->ReadStringPiece16(&reason_phrase)) { |
| 3735 | set_detailed_error("Unable to read goaway reason."); |
| 3736 | return false; |
| 3737 | } |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 3738 | frame->reason_phrase = std::string(reason_phrase); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3739 | |
| 3740 | return true; |
| 3741 | } |
| 3742 | |
| 3743 | bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader, |
| 3744 | QuicWindowUpdateFrame* frame) { |
| 3745 | if (!reader->ReadUInt32(&frame->stream_id)) { |
| 3746 | set_detailed_error("Unable to read stream_id."); |
| 3747 | return false; |
| 3748 | } |
| 3749 | |
| 3750 | if (!reader->ReadUInt64(&frame->byte_offset)) { |
| 3751 | set_detailed_error("Unable to read window byte_offset."); |
| 3752 | return false; |
| 3753 | } |
| 3754 | |
| 3755 | return true; |
| 3756 | } |
| 3757 | |
| 3758 | bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader, |
| 3759 | QuicBlockedFrame* frame) { |
| 3760 | DCHECK_NE(QUIC_VERSION_99, version_.transport_version) |
| 3761 | << "Attempt to process non-IETF frames but version is 99"; |
| 3762 | |
| 3763 | if (!reader->ReadUInt32(&frame->stream_id)) { |
| 3764 | set_detailed_error("Unable to read stream_id."); |
| 3765 | return false; |
| 3766 | } |
| 3767 | |
| 3768 | return true; |
| 3769 | } |
| 3770 | |
| 3771 | void QuicFramer::ProcessPaddingFrame(QuicDataReader* reader, |
| 3772 | QuicPaddingFrame* frame) { |
| 3773 | // Type byte has been read. |
| 3774 | frame->num_padding_bytes = 1; |
| 3775 | uint8_t next_byte; |
| 3776 | while (!reader->IsDoneReading() && reader->PeekByte() == 0x00) { |
| 3777 | reader->ReadBytes(&next_byte, 1); |
| 3778 | DCHECK_EQ(0x00, next_byte); |
| 3779 | ++frame->num_padding_bytes; |
| 3780 | } |
| 3781 | } |
| 3782 | |
| 3783 | bool QuicFramer::ProcessMessageFrame(QuicDataReader* reader, |
| 3784 | bool no_message_length, |
| 3785 | QuicMessageFrame* frame) { |
| 3786 | if (no_message_length) { |
| 3787 | QuicStringPiece remaining(reader->ReadRemainingPayload()); |
| 3788 | frame->data = remaining.data(); |
| 3789 | frame->message_length = remaining.length(); |
| 3790 | return true; |
| 3791 | } |
| 3792 | |
| 3793 | uint64_t message_length; |
| 3794 | if (!reader->ReadVarInt62(&message_length)) { |
| 3795 | set_detailed_error("Unable to read message length"); |
| 3796 | return false; |
| 3797 | } |
| 3798 | |
| 3799 | QuicStringPiece message_piece; |
| 3800 | if (!reader->ReadStringPiece(&message_piece, message_length)) { |
| 3801 | set_detailed_error("Unable to read message data"); |
| 3802 | return false; |
| 3803 | } |
| 3804 | |
| 3805 | frame->data = message_piece.data(); |
| 3806 | frame->message_length = message_length; |
| 3807 | |
| 3808 | return true; |
| 3809 | } |
| 3810 | |
| 3811 | // static |
| 3812 | QuicStringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket( |
| 3813 | QuicTransportVersion version, |
| 3814 | const QuicEncryptedPacket& encrypted, |
| 3815 | QuicConnectionIdLength destination_connection_id_length, |
| 3816 | QuicConnectionIdLength source_connection_id_length, |
| 3817 | bool includes_version, |
| 3818 | bool includes_diversification_nonce, |
| 3819 | QuicPacketNumberLength packet_number_length, |
| 3820 | QuicVariableLengthIntegerLength retry_token_length_length, |
| 3821 | uint64_t retry_token_length, |
| 3822 | QuicVariableLengthIntegerLength length_length) { |
| 3823 | // TODO(ianswett): This is identical to QuicData::AssociatedData. |
| 3824 | return QuicStringPiece( |
| 3825 | encrypted.data(), |
| 3826 | GetStartOfEncryptedData(version, destination_connection_id_length, |
| 3827 | source_connection_id_length, includes_version, |
| 3828 | includes_diversification_nonce, |
| 3829 | packet_number_length, retry_token_length_length, |
| 3830 | retry_token_length, length_length)); |
| 3831 | } |
| 3832 | |
| 3833 | void QuicFramer::SetDecrypter(EncryptionLevel level, |
| 3834 | std::unique_ptr<QuicDecrypter> decrypter) { |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 3835 | DCHECK_EQ(alternative_decrypter_level_, NUM_ENCRYPTION_LEVELS); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3836 | DCHECK_GE(level, decrypter_level_); |
zhongyi | 546cc45 | 2019-04-12 15:27:49 -0700 | [diff] [blame] | 3837 | DCHECK(!version_.KnowsWhichDecrypterToUse()); |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 3838 | decrypter_[decrypter_level_] = nullptr; |
| 3839 | decrypter_[level] = std::move(decrypter); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3840 | decrypter_level_ = level; |
| 3841 | } |
| 3842 | |
| 3843 | void QuicFramer::SetAlternativeDecrypter( |
| 3844 | EncryptionLevel level, |
| 3845 | std::unique_ptr<QuicDecrypter> decrypter, |
| 3846 | bool latch_once_used) { |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 3847 | DCHECK_NE(level, decrypter_level_); |
zhongyi | 546cc45 | 2019-04-12 15:27:49 -0700 | [diff] [blame] | 3848 | DCHECK(!version_.KnowsWhichDecrypterToUse()); |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 3849 | if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) { |
| 3850 | decrypter_[alternative_decrypter_level_] = nullptr; |
| 3851 | } |
| 3852 | decrypter_[level] = std::move(decrypter); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3853 | alternative_decrypter_level_ = level; |
| 3854 | alternative_decrypter_latch_ = latch_once_used; |
| 3855 | } |
| 3856 | |
zhongyi | 546cc45 | 2019-04-12 15:27:49 -0700 | [diff] [blame] | 3857 | void QuicFramer::InstallDecrypter(EncryptionLevel level, |
| 3858 | std::unique_ptr<QuicDecrypter> decrypter) { |
| 3859 | DCHECK(version_.KnowsWhichDecrypterToUse()); |
| 3860 | decrypter_[level] = std::move(decrypter); |
| 3861 | } |
| 3862 | |
| 3863 | void QuicFramer::RemoveDecrypter(EncryptionLevel level) { |
| 3864 | DCHECK(version_.KnowsWhichDecrypterToUse()); |
| 3865 | decrypter_[level] = nullptr; |
| 3866 | } |
| 3867 | |
| 3868 | const QuicDecrypter* QuicFramer::GetDecrypter(EncryptionLevel level) const { |
| 3869 | DCHECK(version_.KnowsWhichDecrypterToUse()); |
| 3870 | return decrypter_[level].get(); |
| 3871 | } |
| 3872 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3873 | const QuicDecrypter* QuicFramer::decrypter() const { |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 3874 | return decrypter_[decrypter_level_].get(); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3875 | } |
| 3876 | |
| 3877 | const QuicDecrypter* QuicFramer::alternative_decrypter() const { |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 3878 | if (alternative_decrypter_level_ == NUM_ENCRYPTION_LEVELS) { |
| 3879 | return nullptr; |
| 3880 | } |
| 3881 | return decrypter_[alternative_decrypter_level_].get(); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3882 | } |
| 3883 | |
| 3884 | void QuicFramer::SetEncrypter(EncryptionLevel level, |
| 3885 | std::unique_ptr<QuicEncrypter> encrypter) { |
| 3886 | DCHECK_GE(level, 0); |
| 3887 | DCHECK_LT(level, NUM_ENCRYPTION_LEVELS); |
| 3888 | encrypter_[level] = std::move(encrypter); |
| 3889 | } |
| 3890 | |
| 3891 | size_t QuicFramer::EncryptInPlace(EncryptionLevel level, |
| 3892 | QuicPacketNumber packet_number, |
| 3893 | size_t ad_len, |
| 3894 | size_t total_len, |
| 3895 | size_t buffer_len, |
| 3896 | char* buffer) { |
| 3897 | DCHECK(packet_number.IsInitialized()); |
dschinazi | 2c5386e | 2019-04-16 16:37:37 -0700 | [diff] [blame] | 3898 | if (encrypter_[level] == nullptr) { |
| 3899 | QUIC_BUG << ENDPOINT |
| 3900 | << "Attempted to encrypt in place without encrypter at level " |
| 3901 | << QuicUtils::EncryptionLevelToString(level); |
| 3902 | RaiseError(QUIC_ENCRYPTION_FAILURE); |
| 3903 | return 0; |
| 3904 | } |
| 3905 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3906 | size_t output_length = 0; |
| 3907 | if (!encrypter_[level]->EncryptPacket( |
| 3908 | packet_number.ToUint64(), |
| 3909 | QuicStringPiece(buffer, ad_len), // Associated data |
| 3910 | QuicStringPiece(buffer + ad_len, total_len - ad_len), // Plaintext |
| 3911 | buffer + ad_len, // Destination buffer |
| 3912 | &output_length, buffer_len - ad_len)) { |
| 3913 | RaiseError(QUIC_ENCRYPTION_FAILURE); |
| 3914 | return 0; |
| 3915 | } |
| 3916 | |
| 3917 | return ad_len + output_length; |
| 3918 | } |
| 3919 | |
| 3920 | size_t QuicFramer::EncryptPayload(EncryptionLevel level, |
| 3921 | QuicPacketNumber packet_number, |
| 3922 | const QuicPacket& packet, |
| 3923 | char* buffer, |
| 3924 | size_t buffer_len) { |
| 3925 | DCHECK(packet_number.IsInitialized()); |
dschinazi | 2c5386e | 2019-04-16 16:37:37 -0700 | [diff] [blame] | 3926 | if (encrypter_[level] == nullptr) { |
| 3927 | QUIC_BUG << ENDPOINT << "Attempted to encrypt without encrypter at level " |
| 3928 | << QuicUtils::EncryptionLevelToString(level); |
| 3929 | RaiseError(QUIC_ENCRYPTION_FAILURE); |
| 3930 | return 0; |
| 3931 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3932 | |
| 3933 | QuicStringPiece associated_data = |
| 3934 | packet.AssociatedData(version_.transport_version); |
| 3935 | // Copy in the header, because the encrypter only populates the encrypted |
| 3936 | // plaintext content. |
| 3937 | const size_t ad_len = associated_data.length(); |
| 3938 | memmove(buffer, associated_data.data(), ad_len); |
| 3939 | // Encrypt the plaintext into the buffer. |
| 3940 | size_t output_length = 0; |
| 3941 | if (!encrypter_[level]->EncryptPacket( |
| 3942 | packet_number.ToUint64(), associated_data, |
| 3943 | packet.Plaintext(version_.transport_version), buffer + ad_len, |
| 3944 | &output_length, buffer_len - ad_len)) { |
| 3945 | RaiseError(QUIC_ENCRYPTION_FAILURE); |
| 3946 | return 0; |
| 3947 | } |
| 3948 | |
| 3949 | return ad_len + output_length; |
| 3950 | } |
| 3951 | |
| 3952 | size_t QuicFramer::GetCiphertextSize(EncryptionLevel level, |
| 3953 | size_t plaintext_size) const { |
| 3954 | return encrypter_[level]->GetCiphertextSize(plaintext_size); |
| 3955 | } |
| 3956 | |
| 3957 | size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) { |
| 3958 | // In order to keep the code simple, we don't have the current encryption |
| 3959 | // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12. |
| 3960 | size_t min_plaintext_size = ciphertext_size; |
| 3961 | |
QUICHE team | 6987b4a | 2019-03-15 16:23:04 -0700 | [diff] [blame] | 3962 | for (int i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; i++) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 3963 | if (encrypter_[i] != nullptr) { |
| 3964 | size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size); |
| 3965 | if (size < min_plaintext_size) { |
| 3966 | min_plaintext_size = size; |
| 3967 | } |
| 3968 | } |
| 3969 | } |
| 3970 | |
| 3971 | return min_plaintext_size; |
| 3972 | } |
| 3973 | |
| 3974 | bool QuicFramer::DecryptPayload(QuicStringPiece encrypted, |
| 3975 | QuicStringPiece associated_data, |
| 3976 | const QuicPacketHeader& header, |
| 3977 | char* decrypted_buffer, |
| 3978 | size_t buffer_length, |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 3979 | size_t* decrypted_length, |
| 3980 | EncryptionLevel* decrypted_level) { |
nharper | 855d217 | 2019-05-02 16:17:46 -0700 | [diff] [blame^] | 3981 | if (!EncryptionLevelIsValid(decrypter_level_)) { |
| 3982 | QUIC_BUG << "Attempted to decrypt with bad decrypter_level_"; |
| 3983 | return false; |
| 3984 | } |
zhongyi | 546cc45 | 2019-04-12 15:27:49 -0700 | [diff] [blame] | 3985 | EncryptionLevel level = decrypter_level_; |
| 3986 | QuicDecrypter* decrypter = decrypter_[level].get(); |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 3987 | QuicDecrypter* alternative_decrypter = nullptr; |
zhongyi | 546cc45 | 2019-04-12 15:27:49 -0700 | [diff] [blame] | 3988 | if (version().KnowsWhichDecrypterToUse()) { |
nharper | 9bb8346 | 2019-05-01 10:53:22 -0700 | [diff] [blame] | 3989 | QUIC_RELOADABLE_FLAG_COUNT(quic_v44_disable_trial_decryption); |
nharper | 855d217 | 2019-05-02 16:17:46 -0700 | [diff] [blame^] | 3990 | if (header.form == GOOGLE_QUIC_PACKET) { |
| 3991 | QUIC_BUG << "Attempted to decrypt GOOGLE_QUIC_PACKET with a version that " |
| 3992 | "knows which decrypter to use"; |
| 3993 | return false; |
| 3994 | } |
zhongyi | 546cc45 | 2019-04-12 15:27:49 -0700 | [diff] [blame] | 3995 | level = GetEncryptionLevel(header); |
nharper | 855d217 | 2019-05-02 16:17:46 -0700 | [diff] [blame^] | 3996 | if (!EncryptionLevelIsValid(level)) { |
| 3997 | QUIC_BUG << "Attempted to decrypt with bad level"; |
| 3998 | return false; |
| 3999 | } |
zhongyi | 546cc45 | 2019-04-12 15:27:49 -0700 | [diff] [blame] | 4000 | decrypter = decrypter_[level].get(); |
| 4001 | if (decrypter == nullptr) { |
| 4002 | return false; |
| 4003 | } |
| 4004 | if (level == ENCRYPTION_ZERO_RTT && |
| 4005 | perspective_ == Perspective::IS_CLIENT && header.nonce != nullptr) { |
| 4006 | decrypter->SetDiversificationNonce(*header.nonce); |
| 4007 | } |
| 4008 | } else if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) { |
nharper | 855d217 | 2019-05-02 16:17:46 -0700 | [diff] [blame^] | 4009 | if (!EncryptionLevelIsValid(alternative_decrypter_level_)) { |
| 4010 | QUIC_BUG << "Attempted to decrypt with bad alternative_decrypter_level_"; |
| 4011 | return false; |
| 4012 | } |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 4013 | alternative_decrypter = decrypter_[alternative_decrypter_level_].get(); |
| 4014 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4015 | |
nharper | 855d217 | 2019-05-02 16:17:46 -0700 | [diff] [blame^] | 4016 | if (decrypter == nullptr) { |
| 4017 | QUIC_BUG << "Attempting to decrypt without decrypter"; |
| 4018 | return false; |
| 4019 | } |
zhongyi | 546cc45 | 2019-04-12 15:27:49 -0700 | [diff] [blame] | 4020 | |
| 4021 | bool success = decrypter->DecryptPacket( |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4022 | header.packet_number.ToUint64(), associated_data, encrypted, |
| 4023 | decrypted_buffer, decrypted_length, buffer_length); |
| 4024 | if (success) { |
zhongyi | 546cc45 | 2019-04-12 15:27:49 -0700 | [diff] [blame] | 4025 | visitor_->OnDecryptedPacket(level); |
| 4026 | *decrypted_level = level; |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 4027 | } else if (alternative_decrypter != nullptr) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4028 | if (header.nonce != nullptr) { |
| 4029 | DCHECK_EQ(perspective_, Perspective::IS_CLIENT); |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 4030 | alternative_decrypter->SetDiversificationNonce(*header.nonce); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4031 | } |
| 4032 | bool try_alternative_decryption = true; |
| 4033 | if (alternative_decrypter_level_ == ENCRYPTION_ZERO_RTT) { |
| 4034 | if (perspective_ == Perspective::IS_CLIENT) { |
| 4035 | if (header.nonce == nullptr) { |
| 4036 | // Can not use INITIAL decryption without a diversification nonce. |
| 4037 | try_alternative_decryption = false; |
| 4038 | } |
| 4039 | } else { |
| 4040 | DCHECK(header.nonce == nullptr); |
| 4041 | } |
| 4042 | } |
| 4043 | |
| 4044 | if (try_alternative_decryption) { |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 4045 | success = alternative_decrypter->DecryptPacket( |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4046 | header.packet_number.ToUint64(), associated_data, encrypted, |
| 4047 | decrypted_buffer, decrypted_length, buffer_length); |
| 4048 | } |
| 4049 | if (success) { |
| 4050 | visitor_->OnDecryptedPacket(alternative_decrypter_level_); |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 4051 | *decrypted_level = decrypter_level_; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4052 | if (alternative_decrypter_latch_) { |
nharper | 855d217 | 2019-05-02 16:17:46 -0700 | [diff] [blame^] | 4053 | if (!EncryptionLevelIsValid(alternative_decrypter_level_)) { |
| 4054 | QUIC_BUG << "Attempted to latch alternate decrypter with bad " |
| 4055 | "alternative_decrypter_level_"; |
| 4056 | return false; |
| 4057 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4058 | // Switch to the alternative decrypter and latch so that we cannot |
| 4059 | // switch back. |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4060 | decrypter_level_ = alternative_decrypter_level_; |
QUICHE team | 76086e4 | 2019-03-25 15:12:29 -0700 | [diff] [blame] | 4061 | alternative_decrypter_level_ = NUM_ENCRYPTION_LEVELS; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4062 | } else { |
| 4063 | // Switch the alternative decrypter so that we use it first next time. |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4064 | EncryptionLevel level = alternative_decrypter_level_; |
| 4065 | alternative_decrypter_level_ = decrypter_level_; |
| 4066 | decrypter_level_ = level; |
| 4067 | } |
| 4068 | } |
| 4069 | } |
| 4070 | |
| 4071 | if (!success) { |
| 4072 | QUIC_DVLOG(1) << ENDPOINT << "DecryptPacket failed for packet_number:" |
| 4073 | << header.packet_number; |
| 4074 | return false; |
| 4075 | } |
| 4076 | |
| 4077 | return true; |
| 4078 | } |
| 4079 | |
| 4080 | size_t QuicFramer::GetIetfAckFrameSize(const QuicAckFrame& frame) { |
| 4081 | // Type byte, largest_acked, and delay_time are straight-forward. |
| 4082 | size_t ack_frame_size = kQuicFrameTypeSize; |
| 4083 | QuicPacketNumber largest_acked = LargestAcked(frame); |
| 4084 | ack_frame_size += QuicDataWriter::GetVarInt62Len(largest_acked.ToUint64()); |
| 4085 | uint64_t ack_delay_time_us; |
| 4086 | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); |
| 4087 | ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift; |
| 4088 | ack_frame_size += QuicDataWriter::GetVarInt62Len(ack_delay_time_us); |
| 4089 | |
| 4090 | // If |ecn_counters_populated| is true and any of the ecn counters is non-0 |
| 4091 | // then the ecn counters are included... |
| 4092 | if (frame.ecn_counters_populated && |
| 4093 | (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { |
| 4094 | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_0_count); |
| 4095 | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_1_count); |
| 4096 | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count); |
| 4097 | } |
| 4098 | |
| 4099 | // The rest (ack_block_count, first_ack_block, and additional ack |
| 4100 | // blocks, if any) depends: |
| 4101 | uint64_t ack_block_count = frame.packets.NumIntervals(); |
| 4102 | if (ack_block_count == 0) { |
| 4103 | // If the QuicAckFrame has no Intervals, then it is interpreted |
| 4104 | // as an ack of a single packet at QuicAckFrame.largest_acked. |
| 4105 | // The resulting ack will consist of only the frame's |
| 4106 | // largest_ack & first_ack_block fields. The first ack block will be 0 |
| 4107 | // (indicating a single packet) and the ack block_count will be 0. |
| 4108 | // Each 0 takes 1 byte when VarInt62 encoded. |
| 4109 | ack_frame_size += 2; |
| 4110 | return ack_frame_size; |
| 4111 | } |
| 4112 | |
| 4113 | auto itr = frame.packets.rbegin(); |
| 4114 | QuicPacketNumber ack_block_largest = largest_acked; |
| 4115 | QuicPacketNumber ack_block_smallest; |
| 4116 | if ((itr->max() - 1) == largest_acked) { |
| 4117 | // If largest_acked + 1 is equal to the Max() of the first Interval |
| 4118 | // in the QuicAckFrame then the first Interval is the first ack block of the |
| 4119 | // frame; remaining Intervals are additional ack blocks. The QuicAckFrame's |
| 4120 | // first Interval is encoded in the frame's largest_acked/first_ack_block, |
| 4121 | // the remaining Intervals are encoded in additional ack blocks in the |
| 4122 | // frame, and the packet's ack_block_count is the number of QuicAckFrame |
| 4123 | // Intervals - 1. |
| 4124 | ack_block_smallest = itr->min(); |
| 4125 | itr++; |
| 4126 | ack_block_count--; |
| 4127 | } else { |
| 4128 | // If QuicAckFrame.largest_acked is NOT equal to the Max() of |
| 4129 | // the first Interval then it is interpreted as acking a single |
| 4130 | // packet at QuicAckFrame.largest_acked, with additional |
| 4131 | // Intervals indicating additional ack blocks. The encoding is |
| 4132 | // a) The packet's largest_acked is the QuicAckFrame's largest |
| 4133 | // acked, |
| 4134 | // b) the first ack block size is 0, |
| 4135 | // c) The packet's ack_block_count is the number of QuicAckFrame |
| 4136 | // Intervals, and |
| 4137 | // d) The QuicAckFrame Intervals are encoded in additional ack |
| 4138 | // blocks in the packet. |
| 4139 | ack_block_smallest = largest_acked; |
| 4140 | } |
| 4141 | size_t ack_block_count_size = QuicDataWriter::GetVarInt62Len(ack_block_count); |
| 4142 | ack_frame_size += ack_block_count_size; |
| 4143 | |
| 4144 | uint64_t first_ack_block = ack_block_largest - ack_block_smallest; |
| 4145 | size_t first_ack_block_size = QuicDataWriter::GetVarInt62Len(first_ack_block); |
| 4146 | ack_frame_size += first_ack_block_size; |
| 4147 | |
| 4148 | // Account for the remaining Intervals, if any. |
| 4149 | while (ack_block_count != 0) { |
| 4150 | uint64_t gap_size = ack_block_smallest - itr->max(); |
| 4151 | // Decrement per the protocol specification |
| 4152 | size_t size_of_gap_size = QuicDataWriter::GetVarInt62Len(gap_size - 1); |
| 4153 | ack_frame_size += size_of_gap_size; |
| 4154 | |
| 4155 | uint64_t block_size = itr->max() - itr->min(); |
| 4156 | // Decrement per the protocol specification |
| 4157 | size_t size_of_block_size = QuicDataWriter::GetVarInt62Len(block_size - 1); |
| 4158 | ack_frame_size += size_of_block_size; |
| 4159 | |
| 4160 | ack_block_smallest = itr->min(); |
| 4161 | itr++; |
| 4162 | ack_block_count--; |
| 4163 | } |
| 4164 | |
| 4165 | return ack_frame_size; |
| 4166 | } |
| 4167 | |
| 4168 | size_t QuicFramer::GetAckFrameSize( |
| 4169 | const QuicAckFrame& ack, |
| 4170 | QuicPacketNumberLength packet_number_length) { |
| 4171 | DCHECK(!ack.packets.Empty()); |
| 4172 | size_t ack_size = 0; |
| 4173 | |
| 4174 | if (version_.transport_version == QUIC_VERSION_99) { |
| 4175 | return GetIetfAckFrameSize(ack); |
| 4176 | } |
| 4177 | AckFrameInfo ack_info = GetAckFrameInfo(ack); |
| 4178 | QuicPacketNumberLength largest_acked_length = |
| 4179 | GetMinPacketNumberLength(version_.transport_version, LargestAcked(ack)); |
| 4180 | QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength( |
| 4181 | version_.transport_version, QuicPacketNumber(ack_info.max_block_length)); |
| 4182 | |
| 4183 | ack_size = |
| 4184 | GetMinAckFrameSize(version_.transport_version, largest_acked_length); |
| 4185 | // First ack block length. |
| 4186 | ack_size += ack_block_length; |
| 4187 | if (ack_info.num_ack_blocks != 0) { |
| 4188 | ack_size += kNumberOfAckBlocksSize; |
| 4189 | ack_size += std::min(ack_info.num_ack_blocks, kMaxAckBlocks) * |
| 4190 | (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); |
| 4191 | } |
| 4192 | |
| 4193 | // Include timestamps. |
| 4194 | if (process_timestamps_) { |
| 4195 | ack_size += GetAckFrameTimeStampSize(ack); |
| 4196 | } |
| 4197 | |
| 4198 | return ack_size; |
| 4199 | } |
| 4200 | |
| 4201 | size_t QuicFramer::GetAckFrameTimeStampSize(const QuicAckFrame& ack) { |
| 4202 | if (ack.received_packet_times.empty()) { |
| 4203 | return 0; |
| 4204 | } |
| 4205 | |
| 4206 | return kQuicNumTimestampsLength + kQuicFirstTimestampLength + |
| 4207 | (kQuicTimestampLength + kQuicTimestampPacketNumberGapLength) * |
| 4208 | (ack.received_packet_times.size() - 1); |
| 4209 | } |
| 4210 | |
| 4211 | size_t QuicFramer::ComputeFrameLength( |
| 4212 | const QuicFrame& frame, |
| 4213 | bool last_frame_in_packet, |
| 4214 | QuicPacketNumberLength packet_number_length) { |
| 4215 | switch (frame.type) { |
| 4216 | case STREAM_FRAME: |
| 4217 | return GetMinStreamFrameSize( |
| 4218 | version_.transport_version, frame.stream_frame.stream_id, |
| 4219 | frame.stream_frame.offset, last_frame_in_packet, |
| 4220 | frame.stream_frame.data_length) + |
| 4221 | frame.stream_frame.data_length; |
| 4222 | case CRYPTO_FRAME: |
| 4223 | return GetMinCryptoFrameSize(frame.crypto_frame->offset, |
| 4224 | frame.crypto_frame->data_length) + |
| 4225 | frame.crypto_frame->data_length; |
| 4226 | case ACK_FRAME: { |
| 4227 | return GetAckFrameSize(*frame.ack_frame, packet_number_length); |
| 4228 | } |
| 4229 | case STOP_WAITING_FRAME: |
| 4230 | return GetStopWaitingFrameSize(version_.transport_version, |
| 4231 | packet_number_length); |
| 4232 | case MTU_DISCOVERY_FRAME: |
| 4233 | // MTU discovery frames are serialized as ping frames. |
| 4234 | return kQuicFrameTypeSize; |
| 4235 | case MESSAGE_FRAME: |
| 4236 | return GetMessageFrameSize(version_.transport_version, |
| 4237 | last_frame_in_packet, |
| 4238 | frame.message_frame->message_length); |
| 4239 | case PADDING_FRAME: |
| 4240 | DCHECK(false); |
| 4241 | return 0; |
| 4242 | default: |
| 4243 | return GetRetransmittableControlFrameSize(version_.transport_version, |
| 4244 | frame); |
| 4245 | } |
| 4246 | } |
| 4247 | |
| 4248 | bool QuicFramer::AppendTypeByte(const QuicFrame& frame, |
| 4249 | bool last_frame_in_packet, |
| 4250 | QuicDataWriter* writer) { |
| 4251 | if (version_.transport_version == QUIC_VERSION_99) { |
| 4252 | return AppendIetfTypeByte(frame, last_frame_in_packet, writer); |
| 4253 | } |
| 4254 | uint8_t type_byte = 0; |
| 4255 | switch (frame.type) { |
| 4256 | case STREAM_FRAME: |
| 4257 | type_byte = |
| 4258 | GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); |
| 4259 | break; |
| 4260 | case ACK_FRAME: |
| 4261 | return true; |
| 4262 | case MTU_DISCOVERY_FRAME: |
| 4263 | type_byte = static_cast<uint8_t>(PING_FRAME); |
| 4264 | break; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4265 | case NEW_CONNECTION_ID_FRAME: |
| 4266 | set_detailed_error( |
| 4267 | "Attempt to append NEW_CONNECTION_ID frame and not in version 99."); |
| 4268 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 4269 | case RETIRE_CONNECTION_ID_FRAME: |
| 4270 | set_detailed_error( |
| 4271 | "Attempt to append RETIRE_CONNECTION_ID frame and not in version " |
| 4272 | "99."); |
| 4273 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 4274 | case NEW_TOKEN_FRAME: |
| 4275 | set_detailed_error( |
| 4276 | "Attempt to append NEW_TOKEN frame and not in version 99."); |
| 4277 | return RaiseError(QUIC_INTERNAL_ERROR); |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 4278 | case MAX_STREAMS_FRAME: |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4279 | set_detailed_error( |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 4280 | "Attempt to append MAX_STREAMS frame and not in version 99."); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4281 | return RaiseError(QUIC_INTERNAL_ERROR); |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 4282 | case STREAMS_BLOCKED_FRAME: |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4283 | set_detailed_error( |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 4284 | "Attempt to append STREAMS_BLOCKED frame and not in version 99."); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4285 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 4286 | case PATH_RESPONSE_FRAME: |
| 4287 | set_detailed_error( |
| 4288 | "Attempt to append PATH_RESPONSE frame and not in version 99."); |
| 4289 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 4290 | case PATH_CHALLENGE_FRAME: |
| 4291 | set_detailed_error( |
| 4292 | "Attempt to append PATH_CHALLENGE frame and not in version 99."); |
| 4293 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 4294 | case STOP_SENDING_FRAME: |
| 4295 | set_detailed_error( |
| 4296 | "Attempt to append STOP_SENDING frame and not in version 99."); |
| 4297 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 4298 | case MESSAGE_FRAME: |
| 4299 | return true; |
| 4300 | |
| 4301 | default: |
| 4302 | type_byte = static_cast<uint8_t>(frame.type); |
| 4303 | break; |
| 4304 | } |
| 4305 | |
| 4306 | return writer->WriteUInt8(type_byte); |
| 4307 | } |
| 4308 | |
| 4309 | bool QuicFramer::AppendIetfTypeByte(const QuicFrame& frame, |
| 4310 | bool last_frame_in_packet, |
| 4311 | QuicDataWriter* writer) { |
| 4312 | uint8_t type_byte = 0; |
| 4313 | switch (frame.type) { |
| 4314 | case PADDING_FRAME: |
| 4315 | type_byte = IETF_PADDING; |
| 4316 | break; |
| 4317 | case RST_STREAM_FRAME: |
| 4318 | type_byte = IETF_RST_STREAM; |
| 4319 | break; |
| 4320 | case CONNECTION_CLOSE_FRAME: |
fkastenholz | 72f509b | 2019-04-10 09:17:49 -0700 | [diff] [blame] | 4321 | switch (frame.connection_close_frame->close_type) { |
| 4322 | case IETF_QUIC_APPLICATION_CONNECTION_CLOSE: |
| 4323 | type_byte = IETF_APPLICATION_CLOSE; |
| 4324 | break; |
| 4325 | case IETF_QUIC_TRANSPORT_CONNECTION_CLOSE: |
| 4326 | type_byte = IETF_CONNECTION_CLOSE; |
| 4327 | break; |
| 4328 | default: |
| 4329 | set_detailed_error("Invalid QuicConnectionCloseFrame type."); |
| 4330 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 4331 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4332 | break; |
| 4333 | case GOAWAY_FRAME: |
| 4334 | set_detailed_error( |
| 4335 | "Attempt to create non-version-99 GOAWAY frame in version 99."); |
| 4336 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 4337 | case WINDOW_UPDATE_FRAME: |
| 4338 | // Depending on whether there is a stream ID or not, will be either a |
| 4339 | // MAX_STREAM_DATA frame or a MAX_DATA frame. |
| 4340 | if (frame.window_update_frame->stream_id == |
| 4341 | QuicUtils::GetInvalidStreamId(transport_version())) { |
| 4342 | type_byte = IETF_MAX_DATA; |
| 4343 | } else { |
| 4344 | type_byte = IETF_MAX_STREAM_DATA; |
| 4345 | } |
| 4346 | break; |
| 4347 | case BLOCKED_FRAME: |
| 4348 | if (frame.blocked_frame->stream_id == |
| 4349 | QuicUtils::GetInvalidStreamId(transport_version())) { |
| 4350 | type_byte = IETF_BLOCKED; |
| 4351 | } else { |
| 4352 | type_byte = IETF_STREAM_BLOCKED; |
| 4353 | } |
| 4354 | break; |
| 4355 | case STOP_WAITING_FRAME: |
| 4356 | set_detailed_error( |
| 4357 | "Attempt to append type byte of STOP WAITING frame in version 99."); |
| 4358 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 4359 | case PING_FRAME: |
| 4360 | type_byte = IETF_PING; |
| 4361 | break; |
| 4362 | case STREAM_FRAME: |
| 4363 | type_byte = |
| 4364 | GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); |
| 4365 | break; |
| 4366 | case ACK_FRAME: |
| 4367 | // Do nothing here, AppendIetfAckFrameAndTypeByte() will put the type byte |
| 4368 | // in the buffer. |
| 4369 | return true; |
| 4370 | case MTU_DISCOVERY_FRAME: |
| 4371 | // The path MTU discovery frame is encoded as a PING frame on the wire. |
| 4372 | type_byte = IETF_PING; |
| 4373 | break; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4374 | case NEW_CONNECTION_ID_FRAME: |
| 4375 | type_byte = IETF_NEW_CONNECTION_ID; |
| 4376 | break; |
| 4377 | case RETIRE_CONNECTION_ID_FRAME: |
| 4378 | type_byte = IETF_RETIRE_CONNECTION_ID; |
| 4379 | break; |
| 4380 | case NEW_TOKEN_FRAME: |
| 4381 | type_byte = IETF_NEW_TOKEN; |
| 4382 | break; |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 4383 | case MAX_STREAMS_FRAME: |
| 4384 | if (frame.max_streams_frame.unidirectional) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4385 | type_byte = IETF_MAX_STREAMS_UNIDIRECTIONAL; |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 4386 | } else { |
| 4387 | type_byte = IETF_MAX_STREAMS_BIDIRECTIONAL; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4388 | } |
| 4389 | break; |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 4390 | case STREAMS_BLOCKED_FRAME: |
| 4391 | if (frame.streams_blocked_frame.unidirectional) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4392 | type_byte = IETF_STREAMS_BLOCKED_UNIDIRECTIONAL; |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 4393 | } else { |
| 4394 | type_byte = IETF_STREAMS_BLOCKED_BIDIRECTIONAL; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4395 | } |
| 4396 | break; |
| 4397 | case PATH_RESPONSE_FRAME: |
| 4398 | type_byte = IETF_PATH_RESPONSE; |
| 4399 | break; |
| 4400 | case PATH_CHALLENGE_FRAME: |
| 4401 | type_byte = IETF_PATH_CHALLENGE; |
| 4402 | break; |
| 4403 | case STOP_SENDING_FRAME: |
| 4404 | type_byte = IETF_STOP_SENDING; |
| 4405 | break; |
| 4406 | case MESSAGE_FRAME: |
| 4407 | return true; |
| 4408 | case CRYPTO_FRAME: |
| 4409 | type_byte = IETF_CRYPTO; |
| 4410 | break; |
| 4411 | default: |
| 4412 | QUIC_BUG << "Attempt to generate a frame type for an unsupported value: " |
| 4413 | << frame.type; |
| 4414 | return false; |
| 4415 | } |
| 4416 | return writer->WriteUInt8(type_byte); |
| 4417 | } |
| 4418 | |
| 4419 | // static |
| 4420 | bool QuicFramer::AppendPacketNumber(QuicPacketNumberLength packet_number_length, |
| 4421 | QuicPacketNumber packet_number, |
| 4422 | QuicDataWriter* writer) { |
| 4423 | DCHECK(packet_number.IsInitialized()); |
| 4424 | if (!IsValidPacketNumberLength(packet_number_length)) { |
| 4425 | QUIC_BUG << "Invalid packet_number_length: " << packet_number_length; |
| 4426 | return false; |
| 4427 | } |
| 4428 | return writer->WriteBytesToUInt64(packet_number_length, |
| 4429 | packet_number.ToUint64()); |
| 4430 | } |
| 4431 | |
| 4432 | // static |
| 4433 | bool QuicFramer::AppendStreamId(size_t stream_id_length, |
| 4434 | QuicStreamId stream_id, |
| 4435 | QuicDataWriter* writer) { |
| 4436 | if (stream_id_length == 0 || stream_id_length > 4) { |
| 4437 | QUIC_BUG << "Invalid stream_id_length: " << stream_id_length; |
| 4438 | return false; |
| 4439 | } |
| 4440 | return writer->WriteBytesToUInt64(stream_id_length, stream_id); |
| 4441 | } |
| 4442 | |
| 4443 | // static |
| 4444 | bool QuicFramer::AppendStreamOffset(size_t offset_length, |
| 4445 | QuicStreamOffset offset, |
| 4446 | QuicDataWriter* writer) { |
| 4447 | if (offset_length == 1 || offset_length > 8) { |
| 4448 | QUIC_BUG << "Invalid stream_offset_length: " << offset_length; |
| 4449 | return false; |
| 4450 | } |
| 4451 | |
| 4452 | return writer->WriteBytesToUInt64(offset_length, offset); |
| 4453 | } |
| 4454 | |
| 4455 | // static |
| 4456 | bool QuicFramer::AppendAckBlock(uint8_t gap, |
| 4457 | QuicPacketNumberLength length_length, |
| 4458 | uint64_t length, |
| 4459 | QuicDataWriter* writer) { |
| 4460 | if (length == 0) { |
| 4461 | if (!IsValidPacketNumberLength(length_length)) { |
| 4462 | QUIC_BUG << "Invalid packet_number_length: " << length_length; |
| 4463 | return false; |
| 4464 | } |
| 4465 | return writer->WriteUInt8(gap) && |
| 4466 | writer->WriteBytesToUInt64(length_length, length); |
| 4467 | } |
| 4468 | return writer->WriteUInt8(gap) && |
| 4469 | AppendPacketNumber(length_length, QuicPacketNumber(length), writer); |
| 4470 | } |
| 4471 | |
| 4472 | bool QuicFramer::AppendStreamFrame(const QuicStreamFrame& frame, |
| 4473 | bool no_stream_frame_length, |
| 4474 | QuicDataWriter* writer) { |
| 4475 | if (version_.transport_version == QUIC_VERSION_99) { |
| 4476 | return AppendIetfStreamFrame(frame, no_stream_frame_length, writer); |
| 4477 | } |
| 4478 | if (!AppendStreamId(GetStreamIdSize(frame.stream_id), frame.stream_id, |
| 4479 | writer)) { |
| 4480 | QUIC_BUG << "Writing stream id size failed."; |
| 4481 | return false; |
| 4482 | } |
| 4483 | if (!AppendStreamOffset( |
| 4484 | GetStreamOffsetSize(version_.transport_version, frame.offset), |
| 4485 | frame.offset, writer)) { |
| 4486 | QUIC_BUG << "Writing offset size failed."; |
| 4487 | return false; |
| 4488 | } |
| 4489 | if (!no_stream_frame_length) { |
| 4490 | if ((frame.data_length > std::numeric_limits<uint16_t>::max()) || |
| 4491 | !writer->WriteUInt16(static_cast<uint16_t>(frame.data_length))) { |
| 4492 | QUIC_BUG << "Writing stream frame length failed"; |
| 4493 | return false; |
| 4494 | } |
| 4495 | } |
| 4496 | |
| 4497 | if (data_producer_ != nullptr) { |
| 4498 | DCHECK_EQ(nullptr, frame.data_buffer); |
| 4499 | if (frame.data_length == 0) { |
| 4500 | return true; |
| 4501 | } |
| 4502 | if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, |
| 4503 | frame.data_length, |
| 4504 | writer) != WRITE_SUCCESS) { |
| 4505 | QUIC_BUG << "Writing frame data failed."; |
| 4506 | return false; |
| 4507 | } |
| 4508 | return true; |
| 4509 | } |
| 4510 | |
| 4511 | if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { |
| 4512 | QUIC_BUG << "Writing frame data failed."; |
| 4513 | return false; |
| 4514 | } |
| 4515 | return true; |
| 4516 | } |
| 4517 | |
| 4518 | // static |
| 4519 | bool QuicFramer::AppendIetfConnectionId( |
| 4520 | bool version_flag, |
| 4521 | QuicConnectionId destination_connection_id, |
| 4522 | QuicConnectionIdLength destination_connection_id_length, |
| 4523 | QuicConnectionId source_connection_id, |
| 4524 | QuicConnectionIdLength source_connection_id_length, |
| 4525 | QuicDataWriter* writer) { |
| 4526 | if (version_flag) { |
| 4527 | // Append connection ID length byte. |
| 4528 | uint8_t dcil = GetConnectionIdLengthValue(destination_connection_id_length); |
| 4529 | uint8_t scil = GetConnectionIdLengthValue(source_connection_id_length); |
| 4530 | uint8_t connection_id_length = dcil << 4 | scil; |
| 4531 | if (!writer->WriteBytes(&connection_id_length, 1)) { |
| 4532 | return false; |
| 4533 | } |
| 4534 | } |
| 4535 | if (destination_connection_id_length == PACKET_8BYTE_CONNECTION_ID && |
| 4536 | !writer->WriteConnectionId(destination_connection_id)) { |
| 4537 | return false; |
| 4538 | } |
| 4539 | if (source_connection_id_length == PACKET_8BYTE_CONNECTION_ID && |
| 4540 | !writer->WriteConnectionId(source_connection_id)) { |
| 4541 | return false; |
| 4542 | } |
| 4543 | return true; |
| 4544 | } |
| 4545 | |
| 4546 | bool QuicFramer::AppendNewTokenFrame(const QuicNewTokenFrame& frame, |
| 4547 | QuicDataWriter* writer) { |
| 4548 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.token.length()))) { |
| 4549 | set_detailed_error("Writing token length failed."); |
| 4550 | return false; |
| 4551 | } |
| 4552 | if (!writer->WriteBytes(frame.token.data(), frame.token.length())) { |
| 4553 | set_detailed_error("Writing token buffer failed."); |
| 4554 | return false; |
| 4555 | } |
| 4556 | return true; |
| 4557 | } |
| 4558 | |
| 4559 | bool QuicFramer::ProcessNewTokenFrame(QuicDataReader* reader, |
| 4560 | QuicNewTokenFrame* frame) { |
| 4561 | uint64_t length; |
| 4562 | if (!reader->ReadVarInt62(&length)) { |
| 4563 | set_detailed_error("Unable to read new token length."); |
| 4564 | return false; |
| 4565 | } |
| 4566 | if (length > kMaxNewTokenTokenLength) { |
| 4567 | set_detailed_error("Token length larger than maximum."); |
| 4568 | return false; |
| 4569 | } |
| 4570 | |
| 4571 | // TODO(ianswett): Don't use QuicStringPiece as an intermediary. |
| 4572 | QuicStringPiece data; |
| 4573 | if (!reader->ReadStringPiece(&data, length)) { |
| 4574 | set_detailed_error("Unable to read new token data."); |
| 4575 | return false; |
| 4576 | } |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 4577 | frame->token = std::string(data); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 4578 | return true; |
| 4579 | } |
| 4580 | |
| 4581 | // Add a new ietf-format stream frame. |
| 4582 | // Bits controlling whether there is a frame-length and frame-offset |
| 4583 | // are in the QuicStreamFrame. |
| 4584 | bool QuicFramer::AppendIetfStreamFrame(const QuicStreamFrame& frame, |
| 4585 | bool last_frame_in_packet, |
| 4586 | QuicDataWriter* writer) { |
| 4587 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) { |
| 4588 | set_detailed_error("Writing stream id failed."); |
| 4589 | return false; |
| 4590 | } |
| 4591 | |
| 4592 | if (frame.offset != 0) { |
| 4593 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) { |
| 4594 | set_detailed_error("Writing data offset failed."); |
| 4595 | return false; |
| 4596 | } |
| 4597 | } |
| 4598 | |
| 4599 | if (!last_frame_in_packet) { |
| 4600 | if (!writer->WriteVarInt62(frame.data_length)) { |
| 4601 | set_detailed_error("Writing data length failed."); |
| 4602 | return false; |
| 4603 | } |
| 4604 | } |
| 4605 | |
| 4606 | if (frame.data_length == 0) { |
| 4607 | return true; |
| 4608 | } |
| 4609 | if (data_producer_ == nullptr) { |
| 4610 | if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { |
| 4611 | set_detailed_error("Writing frame data failed."); |
| 4612 | return false; |
| 4613 | } |
| 4614 | } else { |
| 4615 | DCHECK_EQ(nullptr, frame.data_buffer); |
| 4616 | |
| 4617 | if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, |
| 4618 | frame.data_length, |
| 4619 | writer) != WRITE_SUCCESS) { |
| 4620 | set_detailed_error("Writing frame data failed."); |
| 4621 | return false; |
| 4622 | } |
| 4623 | } |
| 4624 | return true; |
| 4625 | } |
| 4626 | |
| 4627 | bool QuicFramer::AppendCryptoFrame(const QuicCryptoFrame& frame, |
| 4628 | QuicDataWriter* writer) { |
| 4629 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) { |
| 4630 | set_detailed_error("Writing data offset failed."); |
| 4631 | return false; |
| 4632 | } |
| 4633 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.data_length))) { |
| 4634 | set_detailed_error("Writing data length failed."); |
| 4635 | return false; |
| 4636 | } |
| 4637 | if (data_producer_ == nullptr) { |
| 4638 | if (frame.data_buffer == nullptr || |
| 4639 | !writer->WriteBytes(frame.data_buffer, frame.data_length)) { |
| 4640 | set_detailed_error("Writing frame data failed."); |
| 4641 | return false; |
| 4642 | } |
| 4643 | } else { |
| 4644 | DCHECK_EQ(nullptr, frame.data_buffer); |
| 4645 | if (!data_producer_->WriteCryptoData(frame.level, frame.offset, |
| 4646 | frame.data_length, writer)) { |
| 4647 | return false; |
| 4648 | } |
| 4649 | } |
| 4650 | return true; |
| 4651 | } |
| 4652 | |
| 4653 | void QuicFramer::set_version(const ParsedQuicVersion version) { |
| 4654 | DCHECK(IsSupportedVersion(version)) << ParsedQuicVersionToString(version); |
| 4655 | version_ = version; |
| 4656 | } |
| 4657 | |
| 4658 | bool QuicFramer::AppendAckFrameAndTypeByte(const QuicAckFrame& frame, |
| 4659 | QuicDataWriter* writer) { |
| 4660 | if (transport_version() == QUIC_VERSION_99) { |
| 4661 | return AppendIetfAckFrameAndTypeByte(frame, writer); |
| 4662 | } |
| 4663 | |
| 4664 | const AckFrameInfo new_ack_info = GetAckFrameInfo(frame); |
| 4665 | QuicPacketNumber largest_acked = LargestAcked(frame); |
| 4666 | QuicPacketNumberLength largest_acked_length = |
| 4667 | GetMinPacketNumberLength(version_.transport_version, largest_acked); |
| 4668 | QuicPacketNumberLength ack_block_length = |
| 4669 | GetMinPacketNumberLength(version_.transport_version, |
| 4670 | QuicPacketNumber(new_ack_info.max_block_length)); |
| 4671 | // Calculate available bytes for timestamps and ack blocks. |
| 4672 | int32_t available_timestamp_and_ack_block_bytes = |
| 4673 | writer->capacity() - writer->length() - ack_block_length - |
| 4674 | GetMinAckFrameSize(version_.transport_version, largest_acked_length) - |
| 4675 | (new_ack_info.num_ack_blocks != 0 ? kNumberOfAckBlocksSize : 0); |
| 4676 | DCHECK_LE(0, available_timestamp_and_ack_block_bytes); |
| 4677 | |
| 4678 | // Write out the type byte by setting the low order bits and doing shifts |
| 4679 | // to make room for the next bit flags to be set. |
| 4680 | // Whether there are multiple ack blocks. |
| 4681 | uint8_t type_byte = 0; |
| 4682 | SetBit(&type_byte, new_ack_info.num_ack_blocks != 0, |
| 4683 | kQuicHasMultipleAckBlocksOffset); |
| 4684 | |
| 4685 | SetBits(&type_byte, GetPacketNumberFlags(largest_acked_length), |
| 4686 | kQuicSequenceNumberLengthNumBits, kLargestAckedOffset); |
| 4687 | |
| 4688 | SetBits(&type_byte, GetPacketNumberFlags(ack_block_length), |
| 4689 | kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset); |
| 4690 | |
| 4691 | type_byte |= kQuicFrameTypeAckMask; |
| 4692 | |
| 4693 | if (!writer->WriteUInt8(type_byte)) { |
| 4694 | return false; |
| 4695 | } |
| 4696 | |
| 4697 | size_t max_num_ack_blocks = available_timestamp_and_ack_block_bytes / |
| 4698 | (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); |
| 4699 | |
| 4700 | // Number of ack blocks. |
| 4701 | size_t num_ack_blocks = |
| 4702 | std::min(new_ack_info.num_ack_blocks, max_num_ack_blocks); |
| 4703 | if (num_ack_blocks > std::numeric_limits<uint8_t>::max()) { |
| 4704 | num_ack_blocks = std::numeric_limits<uint8_t>::max(); |
| 4705 | } |
| 4706 | |
| 4707 | // Largest acked. |
| 4708 | if (!AppendPacketNumber(largest_acked_length, largest_acked, writer)) { |
| 4709 | return false; |
| 4710 | } |
| 4711 | |
| 4712 | // Largest acked delta time. |
| 4713 | uint64_t ack_delay_time_us = kUFloat16MaxValue; |
| 4714 | if (!frame.ack_delay_time.IsInfinite()) { |
| 4715 | DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); |
| 4716 | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); |
| 4717 | } |
| 4718 | if (!writer->WriteUFloat16(ack_delay_time_us)) { |
| 4719 | return false; |
| 4720 | } |
| 4721 | |
| 4722 | if (num_ack_blocks > 0) { |
| 4723 | if (!writer->WriteBytes(&num_ack_blocks, 1)) { |
| 4724 | return false; |
| 4725 | } |
| 4726 | } |
| 4727 | |
| 4728 | // First ack block length. |
| 4729 | if (!AppendPacketNumber(ack_block_length, |
| 4730 | QuicPacketNumber(new_ack_info.first_block_length), |
| 4731 | writer)) { |
| 4732 | return false; |
| 4733 | } |
| 4734 | |
| 4735 | // Ack blocks. |
| 4736 | if (num_ack_blocks > 0) { |
| 4737 | size_t num_ack_blocks_written = 0; |
| 4738 | // Append, in descending order from the largest ACKed packet, a series of |
| 4739 | // ACK blocks that represents the successfully acknoweldged packets. Each |
| 4740 | // appended gap/block length represents a descending delta from the previous |
| 4741 | // block. i.e.: |
| 4742 | // |--- length ---|--- gap ---|--- length ---|--- gap ---|--- largest ---| |
| 4743 | // For gaps larger than can be represented by a single encoded gap, a 0 |
| 4744 | // length gap of the maximum is used, i.e.: |
| 4745 | // |--- length ---|--- gap ---|- 0 -|--- gap ---|--- largest ---| |
| 4746 | auto itr = frame.packets.rbegin(); |
| 4747 | QuicPacketNumber previous_start = itr->min(); |
| 4748 | ++itr; |
| 4749 | |
| 4750 | for (; |
| 4751 | itr != frame.packets.rend() && num_ack_blocks_written < num_ack_blocks; |
| 4752 | previous_start = itr->min(), ++itr) { |
| 4753 | const auto& interval = *itr; |
| 4754 | const uint64_t total_gap = previous_start - interval.max(); |
| 4755 | const size_t num_encoded_gaps = |
| 4756 | (total_gap + std::numeric_limits<uint8_t>::max() - 1) / |
| 4757 | std::numeric_limits<uint8_t>::max(); |
| 4758 | DCHECK_LE(0u, num_encoded_gaps); |
| 4759 | |
| 4760 | // Append empty ACK blocks because the gap is longer than a single gap. |
| 4761 | for (size_t i = 1; |
| 4762 | i < num_encoded_gaps && num_ack_blocks_written < num_ack_blocks; |
| 4763 | ++i) { |
| 4764 | if (!AppendAckBlock(std::numeric_limits<uint8_t>::max(), |
| 4765 | ack_block_length, 0, writer)) { |
| 4766 | return false; |
| 4767 | } |
| 4768 | ++num_ack_blocks_written; |
| 4769 | } |
| 4770 | if (num_ack_blocks_written >= num_ack_blocks) { |
| 4771 | if (QUIC_PREDICT_FALSE(num_ack_blocks_written != num_ack_blocks)) { |
| 4772 | QUIC_BUG << "Wrote " << num_ack_blocks_written |
| 4773 | << ", expected to write " << num_ack_blocks; |
| 4774 | } |
| 4775 | break; |
| 4776 | } |
| 4777 | |
| 4778 | const uint8_t last_gap = |
| 4779 | total_gap - |
| 4780 | (num_encoded_gaps - 1) * std::numeric_limits<uint8_t>::max(); |
| 4781 | // Append the final ACK block with a non-empty size. |
| 4782 | if (!AppendAckBlock(last_gap, ack_block_length, |
| 4783 | PacketNumberIntervalLength(interval), writer)) { |
| 4784 | return false; |
| 4785 | } |
| 4786 | ++num_ack_blocks_written; |
| 4787 | } |
| 4788 | DCHECK_EQ(num_ack_blocks, num_ack_blocks_written); |
| 4789 | } |
| 4790 | // Timestamps. |
| 4791 | // If we don't process timestamps or if we don't have enough available space |
| 4792 | // to append all the timestamps, don't append any of them. |
| 4793 | if (process_timestamps_ && writer->capacity() - writer->length() >= |
| 4794 | GetAckFrameTimeStampSize(frame)) { |
| 4795 | if (!AppendTimestampsToAckFrame(frame, writer)) { |
| 4796 | return false; |
| 4797 | } |
| 4798 | } else { |
| 4799 | uint8_t num_received_packets = 0; |
| 4800 | if (!writer->WriteBytes(&num_received_packets, 1)) { |
| 4801 | return false; |
| 4802 | } |
| 4803 | } |
| 4804 | |
| 4805 | return true; |
| 4806 | } |
| 4807 | |
| 4808 | bool QuicFramer::AppendTimestampsToAckFrame(const QuicAckFrame& frame, |
| 4809 | QuicDataWriter* writer) { |
| 4810 | DCHECK_GE(std::numeric_limits<uint8_t>::max(), |
| 4811 | frame.received_packet_times.size()); |
| 4812 | // num_received_packets is only 1 byte. |
| 4813 | if (frame.received_packet_times.size() > |
| 4814 | std::numeric_limits<uint8_t>::max()) { |
| 4815 | return false; |
| 4816 | } |
| 4817 | |
| 4818 | uint8_t num_received_packets = frame.received_packet_times.size(); |
| 4819 | if (!writer->WriteBytes(&num_received_packets, 1)) { |
| 4820 | return false; |
| 4821 | } |
| 4822 | if (num_received_packets == 0) { |
| 4823 | return true; |
| 4824 | } |
| 4825 | |
| 4826 | auto it = frame.received_packet_times.begin(); |
| 4827 | QuicPacketNumber packet_number = it->first; |
| 4828 | uint64_t delta_from_largest_observed = LargestAcked(frame) - packet_number; |
| 4829 | |
| 4830 | DCHECK_GE(std::numeric_limits<uint8_t>::max(), delta_from_largest_observed); |
| 4831 | if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) { |
| 4832 | return false; |
| 4833 | } |
| 4834 | |
| 4835 | if (!writer->WriteUInt8(delta_from_largest_observed)) { |
| 4836 | return false; |
| 4837 | } |
| 4838 | |
| 4839 | // Use the lowest 4 bytes of the time delta from the creation_time_. |
| 4840 | const uint64_t time_epoch_delta_us = UINT64_C(1) << 32; |
| 4841 | uint32_t time_delta_us = |
| 4842 | static_cast<uint32_t>((it->second - creation_time_).ToMicroseconds() & |
| 4843 | (time_epoch_delta_us - 1)); |
| 4844 | if (!writer->WriteUInt32(time_delta_us)) { |
| 4845 | return false; |
| 4846 | } |
| 4847 | |
| 4848 | QuicTime prev_time = it->second; |
| 4849 | |
| 4850 | for (++it; it != frame.received_packet_times.end(); ++it) { |
| 4851 | packet_number = it->first; |
| 4852 | delta_from_largest_observed = LargestAcked(frame) - packet_number; |
| 4853 | |
| 4854 | if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) { |
| 4855 | return false; |
| 4856 | } |
| 4857 | |
| 4858 | if (!writer->WriteUInt8(delta_from_largest_observed)) { |
| 4859 | return false; |
| 4860 | } |
| 4861 | |
| 4862 | uint64_t frame_time_delta_us = (it->second - prev_time).ToMicroseconds(); |
| 4863 | prev_time = it->second; |
| 4864 | if (!writer->WriteUFloat16(frame_time_delta_us)) { |
| 4865 | return false; |
| 4866 | } |
| 4867 | } |
| 4868 | return true; |
| 4869 | } |
| 4870 | |
| 4871 | bool QuicFramer::AppendStopWaitingFrame(const QuicPacketHeader& header, |
| 4872 | const QuicStopWaitingFrame& frame, |
| 4873 | QuicDataWriter* writer) { |
| 4874 | DCHECK_GE(QUIC_VERSION_43, version_.transport_version); |
| 4875 | DCHECK(frame.least_unacked.IsInitialized() && |
| 4876 | header.packet_number >= frame.least_unacked); |
| 4877 | const uint64_t least_unacked_delta = |
| 4878 | header.packet_number - frame.least_unacked; |
| 4879 | const uint64_t length_shift = header.packet_number_length * 8; |
| 4880 | |
| 4881 | if (least_unacked_delta >> length_shift > 0) { |
| 4882 | QUIC_BUG << "packet_number_length " << header.packet_number_length |
| 4883 | << " is too small for least_unacked_delta: " << least_unacked_delta |
| 4884 | << " packet_number:" << header.packet_number |
| 4885 | << " least_unacked:" << frame.least_unacked |
| 4886 | << " version:" << version_.transport_version; |
| 4887 | return false; |
| 4888 | } |
| 4889 | if (least_unacked_delta == 0) { |
| 4890 | return writer->WriteBytesToUInt64(header.packet_number_length, |
| 4891 | least_unacked_delta); |
| 4892 | } |
| 4893 | if (!AppendPacketNumber(header.packet_number_length, |
| 4894 | QuicPacketNumber(least_unacked_delta), writer)) { |
| 4895 | QUIC_BUG << " seq failed: " << header.packet_number_length; |
| 4896 | return false; |
| 4897 | } |
| 4898 | |
| 4899 | return true; |
| 4900 | } |
| 4901 | |
| 4902 | int QuicFramer::CalculateIetfAckBlockCount(const QuicAckFrame& frame, |
| 4903 | QuicDataWriter* writer, |
| 4904 | size_t available_space) { |
| 4905 | // Number of blocks requested in the frame |
| 4906 | uint64_t ack_block_count = frame.packets.NumIntervals(); |
| 4907 | |
| 4908 | auto itr = frame.packets.rbegin(); |
| 4909 | |
| 4910 | int actual_block_count = 1; |
| 4911 | uint64_t block_length = itr->max() - itr->min(); |
| 4912 | size_t encoded_size = QuicDataWriter::GetVarInt62Len(block_length); |
| 4913 | if (encoded_size > available_space) { |
| 4914 | return 0; |
| 4915 | } |
| 4916 | available_space -= encoded_size; |
| 4917 | QuicPacketNumber previous_ack_end = itr->min(); |
| 4918 | ack_block_count--; |
| 4919 | |
| 4920 | while (ack_block_count) { |
| 4921 | // Each block is a gap followed by another ACK. Calculate each value, |
| 4922 | // determine the encoded lengths, and check against the available space. |
| 4923 | itr++; |
| 4924 | size_t gap = previous_ack_end - itr->max() - 1; |
| 4925 | encoded_size = QuicDataWriter::GetVarInt62Len(gap); |
| 4926 | |
| 4927 | // Add the ACK block. |
| 4928 | block_length = itr->max() - itr->min(); |
| 4929 | encoded_size += QuicDataWriter::GetVarInt62Len(block_length); |
| 4930 | |
| 4931 | if (encoded_size > available_space) { |
| 4932 | // No room for this block, so what we've |
| 4933 | // done up to now is all that can be done. |
| 4934 | return actual_block_count; |
| 4935 | } |
| 4936 | available_space -= encoded_size; |
| 4937 | actual_block_count++; |
| 4938 | previous_ack_end = itr->min(); |
| 4939 | ack_block_count--; |
| 4940 | } |
| 4941 | // Ran through the whole thing! We can do all blocks. |
| 4942 | return actual_block_count; |
| 4943 | } |
| 4944 | |
| 4945 | bool QuicFramer::AppendIetfAckFrameAndTypeByte(const QuicAckFrame& frame, |
| 4946 | QuicDataWriter* writer) { |
| 4947 | // Assume frame is an IETF_ACK frame. If |ecn_counters_populated| is true and |
| 4948 | // any of the ECN counters is non-0 then turn it into an IETF_ACK+ECN frame. |
| 4949 | uint8_t type = IETF_ACK; |
| 4950 | if (frame.ecn_counters_populated && |
| 4951 | (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { |
| 4952 | type = IETF_ACK_ECN; |
| 4953 | } |
| 4954 | |
| 4955 | if (!writer->WriteUInt8(type)) { |
| 4956 | set_detailed_error("No room for frame-type"); |
| 4957 | return false; |
| 4958 | } |
| 4959 | |
| 4960 | QuicPacketNumber largest_acked = LargestAcked(frame); |
| 4961 | if (!writer->WriteVarInt62(largest_acked.ToUint64())) { |
| 4962 | set_detailed_error("No room for largest-acked in ack frame"); |
| 4963 | return false; |
| 4964 | } |
| 4965 | |
| 4966 | uint64_t ack_delay_time_us = kVarInt62MaxValue; |
| 4967 | if (!frame.ack_delay_time.IsInfinite()) { |
| 4968 | DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); |
| 4969 | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); |
| 4970 | // TODO(fkastenholz): Use the shift from TLS transport parameters. |
| 4971 | ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift; |
| 4972 | } |
| 4973 | |
| 4974 | if (!writer->WriteVarInt62(ack_delay_time_us)) { |
| 4975 | set_detailed_error("No room for ack-delay in ack frame"); |
| 4976 | return false; |
| 4977 | } |
| 4978 | if (type == IETF_ACK_ECN) { |
| 4979 | // Encode the ACK ECN fields |
| 4980 | if (!writer->WriteVarInt62(frame.ect_0_count)) { |
| 4981 | set_detailed_error("No room for ect_0_count in ack frame"); |
| 4982 | return false; |
| 4983 | } |
| 4984 | if (!writer->WriteVarInt62(frame.ect_1_count)) { |
| 4985 | set_detailed_error("No room for ect_1_count in ack frame"); |
| 4986 | return false; |
| 4987 | } |
| 4988 | if (!writer->WriteVarInt62(frame.ecn_ce_count)) { |
| 4989 | set_detailed_error("No room for ecn_ce_count in ack frame"); |
| 4990 | return false; |
| 4991 | } |
| 4992 | } |
| 4993 | |
| 4994 | uint64_t ack_block_count = frame.packets.NumIntervals(); |
| 4995 | if (ack_block_count == 0) { |
| 4996 | // If the QuicAckFrame has no Intervals, then it is interpreted |
| 4997 | // as an ack of a single packet at QuicAckFrame.largest_acked. |
| 4998 | // The resulting ack will consist of only the frame's |
| 4999 | // largest_ack & first_ack_block fields. The first ack block will be 0 |
| 5000 | // (indicating a single packet) and the ack block_count will be 0. |
| 5001 | if (!writer->WriteVarInt62(0)) { |
| 5002 | set_detailed_error("No room for ack block count in ack frame"); |
| 5003 | return false; |
| 5004 | } |
| 5005 | // size of the first block is 1 packet |
| 5006 | if (!writer->WriteVarInt62(0)) { |
| 5007 | set_detailed_error("No room for first ack block in ack frame"); |
| 5008 | return false; |
| 5009 | } |
| 5010 | return true; |
| 5011 | } |
| 5012 | // Case 2 or 3 |
| 5013 | auto itr = frame.packets.rbegin(); |
| 5014 | |
| 5015 | QuicPacketNumber ack_block_largest(largest_acked); |
| 5016 | QuicPacketNumber ack_block_smallest; |
| 5017 | if ((itr->max() - 1) == QuicPacketNumber(largest_acked)) { |
| 5018 | // If largest_acked + 1 is equal to the Max() of the first Interval |
| 5019 | // in the QuicAckFrame then the first Interval is the first ack block of the |
| 5020 | // frame; remaining Intervals are additional ack blocks. The QuicAckFrame's |
| 5021 | // first Interval is encoded in the frame's largest_acked/first_ack_block, |
| 5022 | // the remaining Intervals are encoded in additional ack blocks in the |
| 5023 | // frame, and the packet's ack_block_count is the number of QuicAckFrame |
| 5024 | // Intervals - 1. |
| 5025 | ack_block_smallest = itr->min(); |
| 5026 | itr++; |
| 5027 | ack_block_count--; |
| 5028 | } else { |
| 5029 | // If QuicAckFrame.largest_acked is NOT equal to the Max() of |
| 5030 | // the first Interval then it is interpreted as acking a single |
| 5031 | // packet at QuicAckFrame.largest_acked, with additional |
| 5032 | // Intervals indicating additional ack blocks. The encoding is |
| 5033 | // a) The packet's largest_acked is the QuicAckFrame's largest |
| 5034 | // acked, |
| 5035 | // b) the first ack block size is 0, |
| 5036 | // c) The packet's ack_block_count is the number of QuicAckFrame |
| 5037 | // Intervals, and |
| 5038 | // d) The QuicAckFrame Intervals are encoded in additional ack |
| 5039 | // blocks in the packet. |
| 5040 | ack_block_smallest = largest_acked; |
| 5041 | } |
| 5042 | |
| 5043 | if (!writer->WriteVarInt62(ack_block_count)) { |
| 5044 | set_detailed_error("No room for ack block count in ack frame"); |
| 5045 | return false; |
| 5046 | } |
| 5047 | |
| 5048 | uint64_t first_ack_block = ack_block_largest - ack_block_smallest; |
| 5049 | if (!writer->WriteVarInt62(first_ack_block)) { |
| 5050 | set_detailed_error("No room for first ack block in ack frame"); |
| 5051 | return false; |
| 5052 | } |
| 5053 | |
| 5054 | // For the remaining QuicAckFrame Intervals, if any |
| 5055 | while (ack_block_count != 0) { |
| 5056 | uint64_t gap_size = ack_block_smallest - itr->max(); |
| 5057 | if (!writer->WriteVarInt62(gap_size - 1)) { |
| 5058 | set_detailed_error("No room for gap block in ack frame"); |
| 5059 | return false; |
| 5060 | } |
| 5061 | |
| 5062 | uint64_t block_size = itr->max() - itr->min(); |
| 5063 | if (!writer->WriteVarInt62(block_size - 1)) { |
| 5064 | set_detailed_error("No room for nth ack block in ack frame"); |
| 5065 | return false; |
| 5066 | } |
| 5067 | |
| 5068 | ack_block_smallest = itr->min(); |
| 5069 | itr++; |
| 5070 | ack_block_count--; |
| 5071 | } |
| 5072 | return true; |
| 5073 | } |
| 5074 | |
| 5075 | bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame, |
| 5076 | QuicDataWriter* writer) { |
| 5077 | if (version_.transport_version == QUIC_VERSION_99) { |
| 5078 | return AppendIetfResetStreamFrame(frame, writer); |
| 5079 | } |
| 5080 | if (!writer->WriteUInt32(frame.stream_id)) { |
| 5081 | return false; |
| 5082 | } |
| 5083 | |
| 5084 | if (!writer->WriteUInt64(frame.byte_offset)) { |
| 5085 | return false; |
| 5086 | } |
| 5087 | |
| 5088 | uint32_t error_code = static_cast<uint32_t>(frame.error_code); |
| 5089 | if (!writer->WriteUInt32(error_code)) { |
| 5090 | return false; |
| 5091 | } |
| 5092 | |
| 5093 | return true; |
| 5094 | } |
| 5095 | |
| 5096 | bool QuicFramer::AppendConnectionCloseFrame( |
| 5097 | const QuicConnectionCloseFrame& frame, |
| 5098 | QuicDataWriter* writer) { |
| 5099 | if (version_.transport_version == QUIC_VERSION_99) { |
| 5100 | return AppendIetfConnectionCloseFrame(frame, writer); |
| 5101 | } |
fkastenholz | e9d71a8 | 2019-04-09 05:12:13 -0700 | [diff] [blame] | 5102 | uint32_t error_code = static_cast<uint32_t>(frame.quic_error_code); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5103 | if (!writer->WriteUInt32(error_code)) { |
| 5104 | return false; |
| 5105 | } |
| 5106 | if (!writer->WriteStringPiece16(TruncateErrorString(frame.error_details))) { |
| 5107 | return false; |
| 5108 | } |
| 5109 | return true; |
| 5110 | } |
| 5111 | |
| 5112 | bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame, |
| 5113 | QuicDataWriter* writer) { |
| 5114 | uint32_t error_code = static_cast<uint32_t>(frame.error_code); |
| 5115 | if (!writer->WriteUInt32(error_code)) { |
| 5116 | return false; |
| 5117 | } |
| 5118 | uint32_t stream_id = static_cast<uint32_t>(frame.last_good_stream_id); |
| 5119 | if (!writer->WriteUInt32(stream_id)) { |
| 5120 | return false; |
| 5121 | } |
| 5122 | if (!writer->WriteStringPiece16(TruncateErrorString(frame.reason_phrase))) { |
| 5123 | return false; |
| 5124 | } |
| 5125 | return true; |
| 5126 | } |
| 5127 | |
| 5128 | bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame, |
| 5129 | QuicDataWriter* writer) { |
| 5130 | uint32_t stream_id = static_cast<uint32_t>(frame.stream_id); |
| 5131 | if (!writer->WriteUInt32(stream_id)) { |
| 5132 | return false; |
| 5133 | } |
| 5134 | if (!writer->WriteUInt64(frame.byte_offset)) { |
| 5135 | return false; |
| 5136 | } |
| 5137 | return true; |
| 5138 | } |
| 5139 | |
| 5140 | bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame, |
| 5141 | QuicDataWriter* writer) { |
| 5142 | if (version_.transport_version == QUIC_VERSION_99) { |
| 5143 | if (frame.stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { |
| 5144 | return AppendIetfBlockedFrame(frame, writer); |
| 5145 | } |
| 5146 | return AppendStreamBlockedFrame(frame, writer); |
| 5147 | } |
| 5148 | uint32_t stream_id = static_cast<uint32_t>(frame.stream_id); |
| 5149 | if (!writer->WriteUInt32(stream_id)) { |
| 5150 | return false; |
| 5151 | } |
| 5152 | return true; |
| 5153 | } |
| 5154 | |
| 5155 | bool QuicFramer::AppendPaddingFrame(const QuicPaddingFrame& frame, |
| 5156 | QuicDataWriter* writer) { |
| 5157 | if (frame.num_padding_bytes == 0) { |
| 5158 | return false; |
| 5159 | } |
| 5160 | if (frame.num_padding_bytes < 0) { |
| 5161 | QUIC_BUG_IF(frame.num_padding_bytes != -1); |
| 5162 | writer->WritePadding(); |
| 5163 | return true; |
| 5164 | } |
| 5165 | // Please note, num_padding_bytes includes type byte which has been written. |
| 5166 | return writer->WritePaddingBytes(frame.num_padding_bytes - 1); |
| 5167 | } |
| 5168 | |
| 5169 | bool QuicFramer::AppendMessageFrameAndTypeByte(const QuicMessageFrame& frame, |
| 5170 | bool last_frame_in_packet, |
| 5171 | QuicDataWriter* writer) { |
| 5172 | uint8_t type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH |
| 5173 | : IETF_EXTENSION_MESSAGE; |
| 5174 | if (!writer->WriteUInt8(type_byte)) { |
| 5175 | return false; |
| 5176 | } |
| 5177 | if (!last_frame_in_packet && !writer->WriteVarInt62(frame.message_length)) { |
| 5178 | return false; |
| 5179 | } |
| 5180 | for (const auto& slice : frame.message_data) { |
| 5181 | if (!writer->WriteBytes(slice.data(), slice.length())) { |
| 5182 | return false; |
| 5183 | } |
| 5184 | } |
| 5185 | return true; |
| 5186 | } |
| 5187 | |
| 5188 | bool QuicFramer::RaiseError(QuicErrorCode error) { |
| 5189 | QUIC_DLOG(INFO) << ENDPOINT << "Error: " << QuicErrorCodeToString(error) |
| 5190 | << " detail: " << detailed_error_; |
| 5191 | set_error(error); |
| 5192 | visitor_->OnError(this); |
| 5193 | return false; |
| 5194 | } |
| 5195 | |
| 5196 | bool QuicFramer::IsVersionNegotiation( |
| 5197 | const QuicPacketHeader& header, |
| 5198 | bool packet_has_ietf_packet_header) const { |
| 5199 | if (perspective_ == Perspective::IS_SERVER) { |
| 5200 | return false; |
| 5201 | } |
| 5202 | if (!packet_has_ietf_packet_header) { |
| 5203 | return header.version_flag; |
| 5204 | } |
| 5205 | if (header.form == IETF_QUIC_SHORT_HEADER_PACKET) { |
| 5206 | return false; |
| 5207 | } |
| 5208 | return header.long_packet_type == VERSION_NEGOTIATION; |
| 5209 | } |
| 5210 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5211 | bool QuicFramer::AppendIetfConnectionCloseFrame( |
| 5212 | const QuicConnectionCloseFrame& frame, |
| 5213 | QuicDataWriter* writer) { |
fkastenholz | 72f509b | 2019-04-10 09:17:49 -0700 | [diff] [blame] | 5214 | if (frame.close_type != IETF_QUIC_TRANSPORT_CONNECTION_CLOSE && |
| 5215 | frame.close_type != IETF_QUIC_APPLICATION_CONNECTION_CLOSE) { |
| 5216 | QUIC_BUG << "Invalid close_type for writing IETF CONNECTION CLOSE."; |
| 5217 | set_detailed_error("Invalid close_type for writing IETF CONNECTION CLOSE."); |
| 5218 | return false; |
| 5219 | } |
| 5220 | |
fkastenholz | e9d71a8 | 2019-04-09 05:12:13 -0700 | [diff] [blame] | 5221 | if (!writer->WriteUInt16(frame.application_error_code)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5222 | set_detailed_error("Can not write connection close frame error code"); |
| 5223 | return false; |
| 5224 | } |
fkastenholz | e9d71a8 | 2019-04-09 05:12:13 -0700 | [diff] [blame] | 5225 | |
fkastenholz | 72f509b | 2019-04-10 09:17:49 -0700 | [diff] [blame] | 5226 | if (frame.close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) { |
| 5227 | // Write the frame-type of the frame causing the error only |
| 5228 | // if it's a CONNECTION_CLOSE/Transport. |
| 5229 | if (!writer->WriteVarInt62(frame.transport_close_frame_type)) { |
| 5230 | set_detailed_error("Writing frame type failed."); |
| 5231 | return false; |
| 5232 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5233 | } |
| 5234 | |
fkastenholz | 72f509b | 2019-04-10 09:17:49 -0700 | [diff] [blame] | 5235 | // TODO(fkastenholz): For full IETF CONNECTION CLOSE support, |
| 5236 | // if this is a Transport CONNECTION_CLOSE and the extended |
| 5237 | // error is not QUIC_IETF_GQUIC_ERROR_MISSING then append the extended |
| 5238 | // "QuicErrorCode: #" string to the phrase. |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5239 | if (!writer->WriteStringPieceVarInt62( |
| 5240 | TruncateErrorString(frame.error_details))) { |
| 5241 | set_detailed_error("Can not write connection close phrase"); |
| 5242 | return false; |
| 5243 | } |
| 5244 | return true; |
| 5245 | } |
| 5246 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5247 | bool QuicFramer::ProcessIetfConnectionCloseFrame( |
| 5248 | QuicDataReader* reader, |
fkastenholz | e9d71a8 | 2019-04-09 05:12:13 -0700 | [diff] [blame] | 5249 | QuicConnectionCloseType type, |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5250 | QuicConnectionCloseFrame* frame) { |
fkastenholz | e9d71a8 | 2019-04-09 05:12:13 -0700 | [diff] [blame] | 5251 | frame->close_type = type; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5252 | uint16_t code; |
| 5253 | if (!reader->ReadUInt16(&code)) { |
| 5254 | set_detailed_error("Unable to read connection close error code."); |
| 5255 | return false; |
| 5256 | } |
fkastenholz | e9d71a8 | 2019-04-09 05:12:13 -0700 | [diff] [blame] | 5257 | frame->transport_error_code = static_cast<QuicIetfTransportErrorCodes>(code); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5258 | |
fkastenholz | 72f509b | 2019-04-10 09:17:49 -0700 | [diff] [blame] | 5259 | if (type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) { |
| 5260 | // The frame-type of the frame causing the error is present only |
| 5261 | // if it's a CONNECTION_CLOSE/Transport. |
| 5262 | if (!reader->ReadVarInt62(&frame->transport_close_frame_type)) { |
| 5263 | set_detailed_error("Unable to read connection close frame type."); |
| 5264 | return false; |
| 5265 | } |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5266 | } |
| 5267 | |
| 5268 | uint64_t phrase_length; |
| 5269 | if (!reader->ReadVarInt62(&phrase_length)) { |
| 5270 | set_detailed_error("Unable to read connection close error details."); |
| 5271 | return false; |
| 5272 | } |
| 5273 | QuicStringPiece phrase; |
| 5274 | if (!reader->ReadStringPiece(&phrase, static_cast<size_t>(phrase_length))) { |
| 5275 | set_detailed_error("Unable to read connection close error details."); |
| 5276 | return false; |
| 5277 | } |
fkastenholz | 72f509b | 2019-04-10 09:17:49 -0700 | [diff] [blame] | 5278 | // TODO(fkastenholz): when full support is done, add code here |
| 5279 | // to extract the extended error code from the reason phrase |
| 5280 | // and set it into frame->extracted_error_code. |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 5281 | frame->error_details = std::string(phrase); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5282 | |
| 5283 | return true; |
| 5284 | } |
| 5285 | |
| 5286 | // IETF Quic Path Challenge/Response frames. |
| 5287 | bool QuicFramer::ProcessPathChallengeFrame(QuicDataReader* reader, |
| 5288 | QuicPathChallengeFrame* frame) { |
| 5289 | if (!reader->ReadBytes(frame->data_buffer.data(), |
| 5290 | frame->data_buffer.size())) { |
| 5291 | set_detailed_error("Can not read path challenge data."); |
| 5292 | return false; |
| 5293 | } |
| 5294 | return true; |
| 5295 | } |
| 5296 | |
| 5297 | bool QuicFramer::ProcessPathResponseFrame(QuicDataReader* reader, |
| 5298 | QuicPathResponseFrame* frame) { |
| 5299 | if (!reader->ReadBytes(frame->data_buffer.data(), |
| 5300 | frame->data_buffer.size())) { |
| 5301 | set_detailed_error("Can not read path response data."); |
| 5302 | return false; |
| 5303 | } |
| 5304 | return true; |
| 5305 | } |
| 5306 | |
| 5307 | bool QuicFramer::AppendPathChallengeFrame(const QuicPathChallengeFrame& frame, |
| 5308 | QuicDataWriter* writer) { |
| 5309 | if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { |
| 5310 | set_detailed_error("Writing Path Challenge data failed."); |
| 5311 | return false; |
| 5312 | } |
| 5313 | return true; |
| 5314 | } |
| 5315 | |
| 5316 | bool QuicFramer::AppendPathResponseFrame(const QuicPathResponseFrame& frame, |
| 5317 | QuicDataWriter* writer) { |
| 5318 | if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { |
| 5319 | set_detailed_error("Writing Path Response data failed."); |
| 5320 | return false; |
| 5321 | } |
| 5322 | return true; |
| 5323 | } |
| 5324 | |
| 5325 | // Add a new ietf-format stream reset frame. |
| 5326 | // General format is |
| 5327 | // stream id |
| 5328 | // application error code |
| 5329 | // final offset |
| 5330 | bool QuicFramer::AppendIetfResetStreamFrame(const QuicRstStreamFrame& frame, |
| 5331 | QuicDataWriter* writer) { |
| 5332 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) { |
| 5333 | set_detailed_error("Writing reset-stream stream id failed."); |
| 5334 | return false; |
| 5335 | } |
| 5336 | if (!writer->WriteUInt16(frame.ietf_error_code)) { |
| 5337 | set_detailed_error("Writing reset-stream error code failed."); |
| 5338 | return false; |
| 5339 | } |
| 5340 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.byte_offset))) { |
| 5341 | set_detailed_error("Writing reset-stream final-offset failed."); |
| 5342 | return false; |
| 5343 | } |
| 5344 | return true; |
| 5345 | } |
| 5346 | |
| 5347 | bool QuicFramer::ProcessIetfResetStreamFrame(QuicDataReader* reader, |
| 5348 | QuicRstStreamFrame* frame) { |
| 5349 | // Get Stream ID from frame. ReadVarIntStreamID returns false |
| 5350 | // if either A) there is a read error or B) the resulting value of |
| 5351 | // the Stream ID is larger than the maximum allowed value. |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5352 | if (!reader->ReadVarIntU32(&frame->stream_id)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5353 | set_detailed_error("Unable to read rst stream stream id."); |
| 5354 | return false; |
| 5355 | } |
| 5356 | |
| 5357 | if (!reader->ReadUInt16(&frame->ietf_error_code)) { |
| 5358 | set_detailed_error("Unable to read rst stream error code."); |
| 5359 | return false; |
| 5360 | } |
| 5361 | |
| 5362 | if (!reader->ReadVarInt62(&frame->byte_offset)) { |
| 5363 | set_detailed_error("Unable to read rst stream sent byte offset."); |
| 5364 | return false; |
| 5365 | } |
| 5366 | return true; |
| 5367 | } |
| 5368 | |
| 5369 | bool QuicFramer::ProcessStopSendingFrame( |
| 5370 | QuicDataReader* reader, |
| 5371 | QuicStopSendingFrame* stop_sending_frame) { |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5372 | if (!reader->ReadVarIntU32(&stop_sending_frame->stream_id)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5373 | set_detailed_error("Unable to read stop sending stream id."); |
| 5374 | return false; |
| 5375 | } |
| 5376 | |
| 5377 | if (!reader->ReadUInt16(&stop_sending_frame->application_error_code)) { |
| 5378 | set_detailed_error("Unable to read stop sending application error code."); |
| 5379 | return false; |
| 5380 | } |
| 5381 | return true; |
| 5382 | } |
| 5383 | |
| 5384 | bool QuicFramer::AppendStopSendingFrame( |
| 5385 | const QuicStopSendingFrame& stop_sending_frame, |
| 5386 | QuicDataWriter* writer) { |
| 5387 | if (!writer->WriteVarInt62(stop_sending_frame.stream_id)) { |
| 5388 | set_detailed_error("Can not write stop sending stream id"); |
| 5389 | return false; |
| 5390 | } |
| 5391 | if (!writer->WriteUInt16(stop_sending_frame.application_error_code)) { |
| 5392 | set_detailed_error("Can not write application error code"); |
| 5393 | return false; |
| 5394 | } |
| 5395 | return true; |
| 5396 | } |
| 5397 | |
| 5398 | // Append/process IETF-Format MAX_DATA Frame |
| 5399 | bool QuicFramer::AppendMaxDataFrame(const QuicWindowUpdateFrame& frame, |
| 5400 | QuicDataWriter* writer) { |
| 5401 | if (!writer->WriteVarInt62(frame.byte_offset)) { |
| 5402 | set_detailed_error("Can not write MAX_DATA byte-offset"); |
| 5403 | return false; |
| 5404 | } |
| 5405 | return true; |
| 5406 | } |
| 5407 | |
| 5408 | bool QuicFramer::ProcessMaxDataFrame(QuicDataReader* reader, |
| 5409 | QuicWindowUpdateFrame* frame) { |
| 5410 | frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); |
| 5411 | if (!reader->ReadVarInt62(&frame->byte_offset)) { |
| 5412 | set_detailed_error("Can not read MAX_DATA byte-offset"); |
| 5413 | return false; |
| 5414 | } |
| 5415 | return true; |
| 5416 | } |
| 5417 | |
| 5418 | // Append/process IETF-Format MAX_STREAM_DATA Frame |
| 5419 | bool QuicFramer::AppendMaxStreamDataFrame(const QuicWindowUpdateFrame& frame, |
| 5420 | QuicDataWriter* writer) { |
| 5421 | if (!writer->WriteVarInt62(frame.stream_id)) { |
| 5422 | set_detailed_error("Can not write MAX_STREAM_DATA stream id"); |
| 5423 | return false; |
| 5424 | } |
| 5425 | if (!writer->WriteVarInt62(frame.byte_offset)) { |
| 5426 | set_detailed_error("Can not write MAX_STREAM_DATA byte-offset"); |
| 5427 | return false; |
| 5428 | } |
| 5429 | return true; |
| 5430 | } |
| 5431 | |
| 5432 | bool QuicFramer::ProcessMaxStreamDataFrame(QuicDataReader* reader, |
| 5433 | QuicWindowUpdateFrame* frame) { |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5434 | if (!reader->ReadVarIntU32(&frame->stream_id)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5435 | set_detailed_error("Can not read MAX_STREAM_DATA stream id"); |
| 5436 | return false; |
| 5437 | } |
| 5438 | if (!reader->ReadVarInt62(&frame->byte_offset)) { |
| 5439 | set_detailed_error("Can not read MAX_STREAM_DATA byte-count"); |
| 5440 | return false; |
| 5441 | } |
| 5442 | return true; |
| 5443 | } |
| 5444 | |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5445 | bool QuicFramer::AppendMaxStreamsFrame(const QuicMaxStreamsFrame& frame, |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5446 | QuicDataWriter* writer) { |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5447 | if (!writer->WriteVarInt62(frame.stream_count)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5448 | set_detailed_error("Can not write MAX_STREAMS stream count"); |
| 5449 | return false; |
| 5450 | } |
| 5451 | return true; |
| 5452 | } |
| 5453 | |
| 5454 | bool QuicFramer::ProcessMaxStreamsFrame(QuicDataReader* reader, |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5455 | QuicMaxStreamsFrame* frame, |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5456 | uint64_t frame_type) { |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5457 | if (!reader->ReadVarIntU32(&frame->stream_count)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5458 | set_detailed_error("Can not read MAX_STREAMS stream count."); |
| 5459 | return false; |
| 5460 | } |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5461 | frame->unidirectional = (frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL); |
| 5462 | return true; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5463 | } |
| 5464 | |
| 5465 | bool QuicFramer::AppendIetfBlockedFrame(const QuicBlockedFrame& frame, |
| 5466 | QuicDataWriter* writer) { |
| 5467 | if (!writer->WriteVarInt62(frame.offset)) { |
| 5468 | set_detailed_error("Can not write blocked offset."); |
| 5469 | return false; |
| 5470 | } |
| 5471 | return true; |
| 5472 | } |
| 5473 | |
| 5474 | bool QuicFramer::ProcessIetfBlockedFrame(QuicDataReader* reader, |
| 5475 | QuicBlockedFrame* frame) { |
| 5476 | // Indicates that it is a BLOCKED frame (as opposed to STREAM_BLOCKED). |
| 5477 | frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); |
| 5478 | if (!reader->ReadVarInt62(&frame->offset)) { |
| 5479 | set_detailed_error("Can not read blocked offset."); |
| 5480 | return false; |
| 5481 | } |
| 5482 | return true; |
| 5483 | } |
| 5484 | |
| 5485 | bool QuicFramer::AppendStreamBlockedFrame(const QuicBlockedFrame& frame, |
| 5486 | QuicDataWriter* writer) { |
| 5487 | if (!writer->WriteVarInt62(frame.stream_id)) { |
| 5488 | set_detailed_error("Can not write stream blocked stream id."); |
| 5489 | return false; |
| 5490 | } |
| 5491 | if (!writer->WriteVarInt62(frame.offset)) { |
| 5492 | set_detailed_error("Can not write stream blocked offset."); |
| 5493 | return false; |
| 5494 | } |
| 5495 | return true; |
| 5496 | } |
| 5497 | |
| 5498 | bool QuicFramer::ProcessStreamBlockedFrame(QuicDataReader* reader, |
| 5499 | QuicBlockedFrame* frame) { |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5500 | if (!reader->ReadVarIntU32(&frame->stream_id)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5501 | set_detailed_error("Can not read stream blocked stream id."); |
| 5502 | return false; |
| 5503 | } |
| 5504 | if (!reader->ReadVarInt62(&frame->offset)) { |
| 5505 | set_detailed_error("Can not read stream blocked offset."); |
| 5506 | return false; |
| 5507 | } |
| 5508 | return true; |
| 5509 | } |
| 5510 | |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5511 | bool QuicFramer::AppendStreamsBlockedFrame(const QuicStreamsBlockedFrame& frame, |
| 5512 | QuicDataWriter* writer) { |
| 5513 | if (!writer->WriteVarInt62(frame.stream_count)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5514 | set_detailed_error("Can not write STREAMS_BLOCKED stream count"); |
| 5515 | return false; |
| 5516 | } |
| 5517 | return true; |
| 5518 | } |
| 5519 | |
| 5520 | bool QuicFramer::ProcessStreamsBlockedFrame(QuicDataReader* reader, |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5521 | QuicStreamsBlockedFrame* frame, |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5522 | uint64_t frame_type) { |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5523 | if (!reader->ReadVarIntU32(&frame->stream_count)) { |
| 5524 | set_detailed_error("Can not read STREAMS_BLOCKED stream count."); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5525 | return false; |
| 5526 | } |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5527 | frame->unidirectional = (frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL); |
| 5528 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5529 | // TODO(fkastenholz): handle properly when the STREAMS_BLOCKED |
| 5530 | // frame is implemented and passed up to the stream ID manager. |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5531 | if (frame->stream_count > |
| 5532 | QuicUtils::GetMaxStreamCount( |
| 5533 | (frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL), |
| 5534 | ((perspective_ == Perspective::IS_CLIENT) |
| 5535 | ? Perspective::IS_SERVER |
| 5536 | : Perspective::IS_CLIENT))) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5537 | // If stream count is such that the resulting stream ID would exceed our |
| 5538 | // implementation limit, generate an error. |
| 5539 | set_detailed_error( |
| 5540 | "STREAMS_BLOCKED stream count exceeds implementation limit."); |
| 5541 | return false; |
| 5542 | } |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 5543 | return true; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5544 | } |
| 5545 | |
| 5546 | bool QuicFramer::AppendNewConnectionIdFrame( |
| 5547 | const QuicNewConnectionIdFrame& frame, |
| 5548 | QuicDataWriter* writer) { |
| 5549 | if (!writer->WriteVarInt62(frame.sequence_number)) { |
| 5550 | set_detailed_error("Can not write New Connection ID sequence number"); |
| 5551 | return false; |
| 5552 | } |
| 5553 | if (!writer->WriteUInt8(frame.connection_id.length())) { |
| 5554 | set_detailed_error( |
| 5555 | "Can not write New Connection ID frame connection ID Length"); |
| 5556 | return false; |
| 5557 | } |
| 5558 | if (!writer->WriteConnectionId(frame.connection_id)) { |
| 5559 | set_detailed_error("Can not write New Connection ID frame connection ID"); |
| 5560 | return false; |
| 5561 | } |
| 5562 | |
| 5563 | if (!writer->WriteBytes( |
| 5564 | static_cast<const void*>(&frame.stateless_reset_token), |
| 5565 | sizeof(frame.stateless_reset_token))) { |
| 5566 | set_detailed_error("Can not write New Connection ID Reset Token"); |
| 5567 | return false; |
| 5568 | } |
| 5569 | return true; |
| 5570 | } |
| 5571 | |
| 5572 | bool QuicFramer::ProcessNewConnectionIdFrame(QuicDataReader* reader, |
| 5573 | QuicNewConnectionIdFrame* frame) { |
| 5574 | if (!reader->ReadVarInt62(&frame->sequence_number)) { |
| 5575 | set_detailed_error( |
| 5576 | "Unable to read new connection ID frame sequence number."); |
| 5577 | return false; |
| 5578 | } |
| 5579 | |
| 5580 | uint8_t connection_id_length; |
| 5581 | if (!reader->ReadUInt8(&connection_id_length)) { |
| 5582 | set_detailed_error( |
| 5583 | "Unable to read new connection ID frame connection id length."); |
| 5584 | return false; |
| 5585 | } |
| 5586 | |
QUICHE team | 0131a5b | 2019-03-20 15:23:27 -0700 | [diff] [blame] | 5587 | if (connection_id_length > kQuicMaxConnectionIdLength) { |
| 5588 | set_detailed_error("New connection ID length too high."); |
| 5589 | return false; |
| 5590 | } |
| 5591 | |
QUICHE team | 8e2e453 | 2019-03-14 14:37:56 -0700 | [diff] [blame] | 5592 | if (connection_id_length != kQuicDefaultConnectionIdLength && |
| 5593 | !QuicUtils::VariableLengthConnectionIdAllowedForVersion( |
| 5594 | transport_version())) { |
QUICHE team | 0131a5b | 2019-03-20 15:23:27 -0700 | [diff] [blame] | 5595 | set_detailed_error("Invalid new connection ID length for version."); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5596 | return false; |
| 5597 | } |
| 5598 | |
| 5599 | if (!reader->ReadConnectionId(&frame->connection_id, connection_id_length)) { |
| 5600 | set_detailed_error("Unable to read new connection ID frame connection id."); |
| 5601 | return false; |
| 5602 | } |
| 5603 | |
| 5604 | if (!reader->ReadBytes(&frame->stateless_reset_token, |
| 5605 | sizeof(frame->stateless_reset_token))) { |
| 5606 | set_detailed_error("Can not read new connection ID frame reset token."); |
| 5607 | return false; |
| 5608 | } |
| 5609 | return true; |
| 5610 | } |
| 5611 | |
| 5612 | bool QuicFramer::AppendRetireConnectionIdFrame( |
| 5613 | const QuicRetireConnectionIdFrame& frame, |
| 5614 | QuicDataWriter* writer) { |
| 5615 | if (!writer->WriteVarInt62(frame.sequence_number)) { |
| 5616 | set_detailed_error("Can not write Retire Connection ID sequence number"); |
| 5617 | return false; |
| 5618 | } |
| 5619 | return true; |
| 5620 | } |
| 5621 | |
| 5622 | bool QuicFramer::ProcessRetireConnectionIdFrame( |
| 5623 | QuicDataReader* reader, |
| 5624 | QuicRetireConnectionIdFrame* frame) { |
| 5625 | if (!reader->ReadVarInt62(&frame->sequence_number)) { |
| 5626 | set_detailed_error( |
| 5627 | "Unable to read retire connection ID frame sequence number."); |
| 5628 | return false; |
| 5629 | } |
| 5630 | return true; |
| 5631 | } |
| 5632 | |
| 5633 | uint8_t QuicFramer::GetStreamFrameTypeByte(const QuicStreamFrame& frame, |
| 5634 | bool last_frame_in_packet) const { |
| 5635 | if (version_.transport_version == QUIC_VERSION_99) { |
| 5636 | return GetIetfStreamFrameTypeByte(frame, last_frame_in_packet); |
| 5637 | } |
| 5638 | uint8_t type_byte = 0; |
| 5639 | // Fin bit. |
| 5640 | type_byte |= frame.fin ? kQuicStreamFinMask : 0; |
| 5641 | |
| 5642 | // Data Length bit. |
| 5643 | type_byte <<= kQuicStreamDataLengthShift; |
| 5644 | type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask; |
| 5645 | |
| 5646 | // Offset 3 bits. |
| 5647 | type_byte <<= kQuicStreamShift; |
| 5648 | const size_t offset_len = |
| 5649 | GetStreamOffsetSize(version_.transport_version, frame.offset); |
| 5650 | if (offset_len > 0) { |
| 5651 | type_byte |= offset_len - 1; |
| 5652 | } |
| 5653 | |
| 5654 | // stream id 2 bits. |
| 5655 | type_byte <<= kQuicStreamIdShift; |
| 5656 | type_byte |= GetStreamIdSize(frame.stream_id) - 1; |
| 5657 | type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1. |
| 5658 | |
| 5659 | return type_byte; |
| 5660 | } |
| 5661 | |
| 5662 | uint8_t QuicFramer::GetIetfStreamFrameTypeByte( |
| 5663 | const QuicStreamFrame& frame, |
| 5664 | bool last_frame_in_packet) const { |
| 5665 | DCHECK_EQ(QUIC_VERSION_99, version_.transport_version); |
| 5666 | uint8_t type_byte = IETF_STREAM; |
| 5667 | if (!last_frame_in_packet) { |
| 5668 | type_byte |= IETF_STREAM_FRAME_LEN_BIT; |
| 5669 | } |
| 5670 | if (frame.offset != 0) { |
| 5671 | type_byte |= IETF_STREAM_FRAME_OFF_BIT; |
| 5672 | } |
| 5673 | if (frame.fin) { |
| 5674 | type_byte |= IETF_STREAM_FRAME_FIN_BIT; |
| 5675 | } |
| 5676 | return type_byte; |
| 5677 | } |
| 5678 | |
| 5679 | void QuicFramer::InferPacketHeaderTypeFromVersion() { |
| 5680 | // This function should only be called when server connection negotiates the |
| 5681 | // version. |
| 5682 | DCHECK(perspective_ == Perspective::IS_SERVER && |
| 5683 | !infer_packet_header_type_from_version_); |
| 5684 | infer_packet_header_type_from_version_ = true; |
| 5685 | } |
| 5686 | |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 5687 | void QuicFramer::EnableMultiplePacketNumberSpacesSupport() { |
| 5688 | if (supports_multiple_packet_number_spaces_) { |
| 5689 | QUIC_BUG << "Multiple packet number spaces has already been enabled"; |
| 5690 | return; |
| 5691 | } |
| 5692 | if (largest_packet_number_.IsInitialized()) { |
| 5693 | QUIC_BUG << "Try to enable multiple packet number spaces support after any " |
| 5694 | "packet has been received."; |
| 5695 | return; |
| 5696 | } |
| 5697 | |
| 5698 | supports_multiple_packet_number_spaces_ = true; |
| 5699 | } |
| 5700 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 5701 | #undef ENDPOINT // undef for jumbo builds |
| 5702 | } // namespace quic |