blob: eb1c8c04911907a1a8c2888f5610ab824659d006 [file] [log] [blame]
QUICHE teama6ef0a62019-03-07 20:34:33 -05001// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "net/third_party/quiche/src/quic/core/quic_framer.h"
6
7#include <cstddef>
8#include <cstdint>
9#include <memory>
vasilvv872e7a32019-03-12 16:42:44 -070010#include <string>
QUICHE teama6ef0a62019-03-07 20:34:33 -050011
12#include "net/third_party/quiche/src/quic/core/crypto/crypto_framer.h"
13#include "net/third_party/quiche/src/quic/core/crypto/crypto_handshake_message.h"
14#include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h"
15#include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h"
16#include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h"
17#include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h"
18#include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h"
19#include "net/third_party/quiche/src/quic/core/crypto/quic_random.h"
20#include "net/third_party/quiche/src/quic/core/quic_connection_id.h"
21#include "net/third_party/quiche/src/quic/core/quic_constants.h"
22#include "net/third_party/quiche/src/quic/core/quic_data_reader.h"
23#include "net/third_party/quiche/src/quic/core/quic_data_writer.h"
ianswett97b690b2019-05-02 15:12:43 -070024#include "net/third_party/quiche/src/quic/core/quic_error_codes.h"
QUICHE teama6ef0a62019-03-07 20:34:33 -050025#include "net/third_party/quiche/src/quic/core/quic_socket_address_coder.h"
26#include "net/third_party/quiche/src/quic/core/quic_stream_frame_data_producer.h"
27#include "net/third_party/quiche/src/quic/core/quic_types.h"
28#include "net/third_party/quiche/src/quic/core/quic_utils.h"
29#include "net/third_party/quiche/src/quic/core/quic_versions.h"
30#include "net/third_party/quiche/src/quic/platform/api/quic_aligned.h"
dschinazie8d7fa72019-04-05 14:44:40 -070031#include "net/third_party/quiche/src/quic/platform/api/quic_arraysize.h"
QUICHE teama6ef0a62019-03-07 20:34:33 -050032#include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h"
33#include "net/third_party/quiche/src/quic/platform/api/quic_client_stats.h"
34#include "net/third_party/quiche/src/quic/platform/api/quic_endian.h"
35#include "net/third_party/quiche/src/quic/platform/api/quic_fallthrough.h"
36#include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h"
37#include "net/third_party/quiche/src/quic/platform/api/quic_flags.h"
38#include "net/third_party/quiche/src/quic/platform/api/quic_logging.h"
39#include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h"
40#include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h"
41#include "net/third_party/quiche/src/quic/platform/api/quic_stack_trace.h"
42#include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h"
QUICHE teama6ef0a62019-03-07 20:34:33 -050043#include "net/third_party/quiche/src/quic/platform/api/quic_text_utils.h"
44
45namespace quic {
46
47namespace {
48
49#define ENDPOINT \
50 (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ")
51
52// How much to shift the timestamp in the IETF Ack frame.
53// TODO(fkastenholz) when we get real IETF QUIC, need to get
54// the currect shift from the transport parameters.
55const int kIetfAckTimestampShift = 3;
56
57// Number of bits the packet number length bits are shifted from the right
58// edge of the header.
59const uint8_t kPublicHeaderSequenceNumberShift = 4;
60
61// There are two interpretations for the Frame Type byte in the QUIC protocol,
62// resulting in two Frame Types: Special Frame Types and Regular Frame Types.
63//
64// Regular Frame Types use the Frame Type byte simply. Currently defined
65// Regular Frame Types are:
66// Padding : 0b 00000000 (0x00)
67// ResetStream : 0b 00000001 (0x01)
68// ConnectionClose : 0b 00000010 (0x02)
69// GoAway : 0b 00000011 (0x03)
70// WindowUpdate : 0b 00000100 (0x04)
71// Blocked : 0b 00000101 (0x05)
72//
73// Special Frame Types encode both a Frame Type and corresponding flags
74// all in the Frame Type byte. Currently defined Special Frame Types
75// are:
76// Stream : 0b 1xxxxxxx
77// Ack : 0b 01xxxxxx
78//
79// Semantics of the flag bits above (the x bits) depends on the frame type.
80
81// Masks to determine if the frame type is a special use
82// and for specific special frame types.
83const uint8_t kQuicFrameTypeBrokenMask = 0xE0; // 0b 11100000
84const uint8_t kQuicFrameTypeSpecialMask = 0xC0; // 0b 11000000
85const uint8_t kQuicFrameTypeStreamMask = 0x80;
86const uint8_t kQuicFrameTypeAckMask = 0x40;
87static_assert(kQuicFrameTypeSpecialMask ==
88 (kQuicFrameTypeStreamMask | kQuicFrameTypeAckMask),
89 "Invalid kQuicFrameTypeSpecialMask");
90
91// The stream type format is 1FDOOOSS, where
92// F is the fin bit.
93// D is the data length bit (0 or 2 bytes).
94// OO/OOO are the size of the offset.
95// SS is the size of the stream ID.
96// Note that the stream encoding can not be determined by inspection. It can
97// be determined only by knowing the QUIC Version.
98// Stream frame relative shifts and masks for interpreting the stream flags.
99// StreamID may be 1, 2, 3, or 4 bytes.
100const uint8_t kQuicStreamIdShift = 2;
101const uint8_t kQuicStreamIDLengthMask = 0x03;
102
103// Offset may be 0, 2, 4, or 8 bytes.
104const uint8_t kQuicStreamShift = 3;
105const uint8_t kQuicStreamOffsetMask = 0x07;
106
107// Data length may be 0 or 2 bytes.
108const uint8_t kQuicStreamDataLengthShift = 1;
109const uint8_t kQuicStreamDataLengthMask = 0x01;
110
111// Fin bit may be set or not.
112const uint8_t kQuicStreamFinShift = 1;
113const uint8_t kQuicStreamFinMask = 0x01;
114
115// The format is 01M0LLOO, where
116// M if set, there are multiple ack blocks in the frame.
117// LL is the size of the largest ack field.
118// OO is the size of the ack blocks offset field.
119// packet number size shift used in AckFrames.
120const uint8_t kQuicSequenceNumberLengthNumBits = 2;
121const uint8_t kActBlockLengthOffset = 0;
122const uint8_t kLargestAckedOffset = 2;
123
124// Acks may have only one ack block.
125const uint8_t kQuicHasMultipleAckBlocksOffset = 5;
126
127// Timestamps are 4 bytes followed by 2 bytes.
128const uint8_t kQuicNumTimestampsLength = 1;
129const uint8_t kQuicFirstTimestampLength = 4;
130const uint8_t kQuicTimestampLength = 2;
131// Gaps between packet numbers are 1 byte.
132const uint8_t kQuicTimestampPacketNumberGapLength = 1;
133
134// Maximum length of encoded error strings.
135const int kMaxErrorStringLength = 256;
136
137const uint8_t kConnectionIdLengthAdjustment = 3;
138const uint8_t kDestinationConnectionIdLengthMask = 0xF0;
139const uint8_t kSourceConnectionIdLengthMask = 0x0F;
140
141// Returns the absolute value of the difference between |a| and |b|.
142uint64_t Delta(uint64_t a, uint64_t b) {
143 // Since these are unsigned numbers, we can't just return abs(a - b)
144 if (a < b) {
145 return b - a;
146 }
147 return a - b;
148}
149
150uint64_t ClosestTo(uint64_t target, uint64_t a, uint64_t b) {
151 return (Delta(target, a) < Delta(target, b)) ? a : b;
152}
153
154uint64_t PacketNumberIntervalLength(
155 const QuicInterval<QuicPacketNumber>& interval) {
156 if (interval.Empty()) {
157 return 0u;
158 }
159 return interval.max() - interval.min();
160}
161
162QuicPacketNumberLength ReadSequenceNumberLength(uint8_t flags) {
163 switch (flags & PACKET_FLAGS_8BYTE_PACKET) {
164 case PACKET_FLAGS_8BYTE_PACKET:
165 return PACKET_6BYTE_PACKET_NUMBER;
166 case PACKET_FLAGS_4BYTE_PACKET:
167 return PACKET_4BYTE_PACKET_NUMBER;
168 case PACKET_FLAGS_2BYTE_PACKET:
169 return PACKET_2BYTE_PACKET_NUMBER;
170 case PACKET_FLAGS_1BYTE_PACKET:
171 return PACKET_1BYTE_PACKET_NUMBER;
172 default:
173 QUIC_BUG << "Unreachable case statement.";
174 return PACKET_6BYTE_PACKET_NUMBER;
175 }
176}
177
178QuicPacketNumberLength ReadAckPacketNumberLength(QuicTransportVersion version,
179 uint8_t flags) {
180 switch (flags & PACKET_FLAGS_8BYTE_PACKET) {
181 case PACKET_FLAGS_8BYTE_PACKET:
182 return PACKET_6BYTE_PACKET_NUMBER;
183 case PACKET_FLAGS_4BYTE_PACKET:
184 return PACKET_4BYTE_PACKET_NUMBER;
185 case PACKET_FLAGS_2BYTE_PACKET:
186 return PACKET_2BYTE_PACKET_NUMBER;
187 case PACKET_FLAGS_1BYTE_PACKET:
188 return PACKET_1BYTE_PACKET_NUMBER;
189 default:
190 QUIC_BUG << "Unreachable case statement.";
191 return PACKET_6BYTE_PACKET_NUMBER;
192 }
193}
194
195uint8_t PacketNumberLengthToOnWireValue(
196 QuicTransportVersion version,
197 QuicPacketNumberLength packet_number_length) {
198 if (version > QUIC_VERSION_44) {
199 return packet_number_length - 1;
200 }
201 switch (packet_number_length) {
202 case PACKET_1BYTE_PACKET_NUMBER:
203 return 0;
204 case PACKET_2BYTE_PACKET_NUMBER:
205 return 1;
206 case PACKET_4BYTE_PACKET_NUMBER:
207 return 2;
208 default:
209 QUIC_BUG << "Invalid packet number length.";
210 return 0;
211 }
212}
213
214bool GetShortHeaderPacketNumberLength(
215 QuicTransportVersion version,
216 uint8_t type,
217 bool infer_packet_header_type_from_version,
218 QuicPacketNumberLength* packet_number_length) {
219 DCHECK(!(type & FLAGS_LONG_HEADER));
220 const bool two_bits_packet_number_length =
221 infer_packet_header_type_from_version ? version > QUIC_VERSION_44
222 : (type & FLAGS_FIXED_BIT);
223 if (two_bits_packet_number_length) {
224 *packet_number_length =
225 static_cast<QuicPacketNumberLength>((type & 0x03) + 1);
226 return true;
227 }
228 switch (type & 0x07) {
229 case 0:
230 *packet_number_length = PACKET_1BYTE_PACKET_NUMBER;
231 break;
232 case 1:
233 *packet_number_length = PACKET_2BYTE_PACKET_NUMBER;
234 break;
235 case 2:
236 *packet_number_length = PACKET_4BYTE_PACKET_NUMBER;
237 break;
238 default:
239 *packet_number_length = PACKET_6BYTE_PACKET_NUMBER;
240 return false;
241 }
242 return true;
243}
244
245uint8_t LongHeaderTypeToOnWireValue(QuicTransportVersion version,
246 QuicLongHeaderType type) {
247 switch (type) {
248 case INITIAL:
249 return version > QUIC_VERSION_44 ? 0 : 0x7F;
250 case ZERO_RTT_PROTECTED:
251 return version > QUIC_VERSION_44 ? 1 << 4 : 0x7C;
252 case HANDSHAKE:
253 return version > QUIC_VERSION_44 ? 2 << 4 : 0x7D;
254 case RETRY:
255 return version > QUIC_VERSION_44 ? 3 << 4 : 0x7E;
256 case VERSION_NEGOTIATION:
257 return 0xF0; // Value does not matter
258 default:
259 QUIC_BUG << "Invalid long header type: " << type;
260 return 0xFF;
261 }
262}
263
264bool GetLongHeaderType(QuicTransportVersion version,
265 uint8_t type,
266 QuicLongHeaderType* long_header_type) {
267 DCHECK((type & FLAGS_LONG_HEADER) && version != QUIC_VERSION_UNSUPPORTED);
268 if (version > QUIC_VERSION_44) {
269 switch ((type & 0x30) >> 4) {
270 case 0:
271 *long_header_type = INITIAL;
272 break;
273 case 1:
274 *long_header_type = ZERO_RTT_PROTECTED;
275 break;
276 case 2:
277 *long_header_type = HANDSHAKE;
278 break;
279 case 3:
280 *long_header_type = RETRY;
281 break;
282 default:
283 QUIC_BUG << "Unreachable statement";
284 *long_header_type = VERSION_NEGOTIATION;
285 return false;
286 }
287 return true;
288 }
289
290 switch (type & 0x7F) {
291 case 0x7F:
292 *long_header_type = INITIAL;
293 break;
294 case 0x7C:
295 *long_header_type = ZERO_RTT_PROTECTED;
296 break;
297 case 0x7D:
298 *long_header_type = HANDSHAKE;
299 break;
300 case 0x7E:
301 *long_header_type = RETRY;
302 break;
303 default:
304 // Invalid packet header type. Whether a packet is version negotiation is
305 // determined by the version field.
306 *long_header_type = INVALID_PACKET_TYPE;
307 return false;
308 }
309 return true;
310}
311
312QuicPacketNumberLength GetLongHeaderPacketNumberLength(
313 QuicTransportVersion version,
314 uint8_t type) {
315 if (version > QUIC_VERSION_44) {
316 return static_cast<QuicPacketNumberLength>((type & 0x03) + 1);
317 }
318 return PACKET_4BYTE_PACKET_NUMBER;
319}
320
QUICHE team10b22a12019-03-21 15:31:42 -0700321// Used to get packet number space before packet gets decrypted.
322PacketNumberSpace GetPacketNumberSpace(const QuicPacketHeader& header) {
323 switch (header.form) {
324 case GOOGLE_QUIC_PACKET:
325 QUIC_BUG << "Try to get packet number space of Google QUIC packet";
326 break;
327 case IETF_QUIC_SHORT_HEADER_PACKET:
328 return APPLICATION_DATA;
329 case IETF_QUIC_LONG_HEADER_PACKET:
330 switch (header.long_packet_type) {
331 case INITIAL:
332 return INITIAL_DATA;
333 case HANDSHAKE:
334 return HANDSHAKE_DATA;
335 case ZERO_RTT_PROTECTED:
336 return APPLICATION_DATA;
337 case VERSION_NEGOTIATION:
338 case RETRY:
339 case INVALID_PACKET_TYPE:
340 QUIC_BUG << "Try to get packet number space of long header type: "
341 << QuicUtils::QuicLongHeaderTypetoString(
342 header.long_packet_type);
343 break;
344 }
345 }
346
347 return NUM_PACKET_NUMBER_SPACES;
348}
349
zhongyi546cc452019-04-12 15:27:49 -0700350EncryptionLevel GetEncryptionLevel(const QuicPacketHeader& header) {
351 switch (header.form) {
352 case GOOGLE_QUIC_PACKET:
353 QUIC_BUG << "Cannot determine EncryptionLevel from Google QUIC header";
354 break;
355 case IETF_QUIC_SHORT_HEADER_PACKET:
356 return ENCRYPTION_FORWARD_SECURE;
357 case IETF_QUIC_LONG_HEADER_PACKET:
358 switch (header.long_packet_type) {
359 case INITIAL:
360 return ENCRYPTION_INITIAL;
361 case HANDSHAKE:
362 return ENCRYPTION_HANDSHAKE;
363 case ZERO_RTT_PROTECTED:
364 return ENCRYPTION_ZERO_RTT;
365 case VERSION_NEGOTIATION:
366 case RETRY:
367 case INVALID_PACKET_TYPE:
368 QUIC_BUG << "No encryption used with type "
369 << QuicUtils::QuicLongHeaderTypetoString(
370 header.long_packet_type);
371 }
372 }
373 return NUM_ENCRYPTION_LEVELS;
374}
375
QUICHE teama6ef0a62019-03-07 20:34:33 -0500376QuicStringPiece TruncateErrorString(QuicStringPiece error) {
377 if (error.length() <= kMaxErrorStringLength) {
378 return error;
379 }
380 return QuicStringPiece(error.data(), kMaxErrorStringLength);
381}
382
383size_t TruncatedErrorStringSize(const QuicStringPiece& error) {
384 if (error.length() < kMaxErrorStringLength) {
385 return error.length();
386 }
387 return kMaxErrorStringLength;
388}
389
390uint8_t GetConnectionIdLengthValue(QuicConnectionIdLength length) {
391 if (length == 0) {
392 return 0;
393 }
394 return static_cast<uint8_t>(length - kConnectionIdLengthAdjustment);
395}
396
397bool IsValidPacketNumberLength(QuicPacketNumberLength packet_number_length) {
398 size_t length = packet_number_length;
399 return length == 1 || length == 2 || length == 4 || length == 6 ||
400 length == 8;
401}
402
403bool IsValidFullPacketNumber(uint64_t full_packet_number,
404 QuicTransportVersion version) {
QUICHE team577718a2019-03-20 09:00:59 -0700405 return full_packet_number > 0 || version == QUIC_VERSION_99;
QUICHE teama6ef0a62019-03-07 20:34:33 -0500406}
407
QUICHE teama6ef0a62019-03-07 20:34:33 -0500408bool AppendIetfConnectionIdsNew(bool version_flag,
409 QuicConnectionId destination_connection_id,
410 QuicConnectionId source_connection_id,
411 QuicDataWriter* writer) {
412 if (!version_flag) {
413 return writer->WriteConnectionId(destination_connection_id);
414 }
415
416 // Compute connection ID length byte.
417 uint8_t dcil = GetConnectionIdLengthValue(
418 static_cast<QuicConnectionIdLength>(destination_connection_id.length()));
419 uint8_t scil = GetConnectionIdLengthValue(
420 static_cast<QuicConnectionIdLength>(source_connection_id.length()));
421 uint8_t connection_id_length = dcil << 4 | scil;
422
423 return writer->WriteUInt8(connection_id_length) &&
424 writer->WriteConnectionId(destination_connection_id) &&
425 writer->WriteConnectionId(source_connection_id);
426}
427
428enum class DroppedPacketReason {
429 // General errors
430 INVALID_PUBLIC_HEADER,
431 VERSION_MISMATCH,
432 // Version negotiation packet errors
433 INVALID_VERSION_NEGOTIATION_PACKET,
434 // Public reset packet errors, pre-v44
435 INVALID_PUBLIC_RESET_PACKET,
436 // Data packet errors
437 INVALID_PACKET_NUMBER,
438 INVALID_DIVERSIFICATION_NONCE,
439 DECRYPTION_FAILURE,
440 NUM_REASONS,
441};
442
443void RecordDroppedPacketReason(DroppedPacketReason reason) {
444 QUIC_CLIENT_HISTOGRAM_ENUM("QuicDroppedPacketReason", reason,
445 DroppedPacketReason::NUM_REASONS,
446 "The reason a packet was not processed. Recorded "
447 "each time such a packet is dropped");
448}
449
450} // namespace
451
452QuicFramer::QuicFramer(const ParsedQuicVersionVector& supported_versions,
453 QuicTime creation_time,
454 Perspective perspective,
455 uint8_t expected_connection_id_length)
456 : visitor_(nullptr),
457 error_(QUIC_NO_ERROR),
458 last_serialized_connection_id_(EmptyQuicConnectionId()),
459 last_version_label_(0),
460 version_(PROTOCOL_UNSUPPORTED, QUIC_VERSION_UNSUPPORTED),
461 supported_versions_(supported_versions),
QUICHE team6987b4a2019-03-15 16:23:04 -0700462 decrypter_level_(ENCRYPTION_INITIAL),
QUICHE team76086e42019-03-25 15:12:29 -0700463 alternative_decrypter_level_(NUM_ENCRYPTION_LEVELS),
QUICHE teama6ef0a62019-03-07 20:34:33 -0500464 alternative_decrypter_latch_(false),
465 perspective_(perspective),
466 validate_flags_(true),
467 process_timestamps_(false),
468 creation_time_(creation_time),
469 last_timestamp_(QuicTime::Delta::Zero()),
470 first_sending_packet_number_(FirstSendingPacketNumber()),
471 data_producer_(nullptr),
472 infer_packet_header_type_from_version_(perspective ==
473 Perspective::IS_CLIENT),
QUICHE team4d9d6292019-03-11 14:25:33 -0700474 expected_connection_id_length_(expected_connection_id_length),
QUICHE team10b22a12019-03-21 15:31:42 -0700475 should_update_expected_connection_id_length_(false),
476 supports_multiple_packet_number_spaces_(false) {
QUICHE teama6ef0a62019-03-07 20:34:33 -0500477 DCHECK(!supported_versions.empty());
478 version_ = supported_versions_[0];
QUICHE team76086e42019-03-25 15:12:29 -0700479 decrypter_[ENCRYPTION_INITIAL] = QuicMakeUnique<NullDecrypter>(perspective);
QUICHE team6987b4a2019-03-15 16:23:04 -0700480 encrypter_[ENCRYPTION_INITIAL] = QuicMakeUnique<NullEncrypter>(perspective);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500481}
482
483QuicFramer::~QuicFramer() {}
484
485// static
486size_t QuicFramer::GetMinStreamFrameSize(QuicTransportVersion version,
487 QuicStreamId stream_id,
488 QuicStreamOffset offset,
489 bool last_frame_in_packet,
490 QuicPacketLength data_length) {
491 if (version == QUIC_VERSION_99) {
492 return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_id) +
493 (last_frame_in_packet
494 ? 0
495 : QuicDataWriter::GetVarInt62Len(data_length)) +
496 (offset != 0 ? QuicDataWriter::GetVarInt62Len(offset) : 0);
497 }
498 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
499 GetStreamOffsetSize(version, offset) +
500 (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize);
501}
502
503// static
504size_t QuicFramer::GetMinCryptoFrameSize(QuicStreamOffset offset,
505 QuicPacketLength data_length) {
506 return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(offset) +
507 QuicDataWriter::GetVarInt62Len(data_length);
508}
509
510// static
511size_t QuicFramer::GetMessageFrameSize(QuicTransportVersion version,
512 bool last_frame_in_packet,
513 QuicByteCount length) {
514 QUIC_BUG_IF(version <= QUIC_VERSION_44)
515 << "Try to serialize MESSAGE frame in " << version;
516 return kQuicFrameTypeSize +
517 (last_frame_in_packet ? 0 : QuicDataWriter::GetVarInt62Len(length)) +
518 length;
519}
520
521// static
522size_t QuicFramer::GetMinAckFrameSize(
523 QuicTransportVersion version,
524 QuicPacketNumberLength largest_observed_length) {
525 if (version == QUIC_VERSION_99) {
526 // The minimal ack frame consists of the following four fields: Largest
527 // Acknowledged, ACK Delay, ACK Block Count, and First ACK Block. Minimum
528 // size of each is 1 byte.
529 return kQuicFrameTypeSize + 4;
530 }
531 size_t min_size = kQuicFrameTypeSize + largest_observed_length +
532 kQuicDeltaTimeLargestObservedSize;
533 return min_size + kQuicNumTimestampsSize;
534}
535
536// static
537size_t QuicFramer::GetStopWaitingFrameSize(
538 QuicTransportVersion version,
539 QuicPacketNumberLength packet_number_length) {
540 size_t min_size = kQuicFrameTypeSize + packet_number_length;
541 return min_size;
542}
543
544// static
545size_t QuicFramer::GetRstStreamFrameSize(QuicTransportVersion version,
546 const QuicRstStreamFrame& frame) {
547 if (version == QUIC_VERSION_99) {
548 return QuicDataWriter::GetVarInt62Len(frame.stream_id) +
549 QuicDataWriter::GetVarInt62Len(frame.byte_offset) +
550 kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize;
551 }
552 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize +
553 kQuicErrorCodeSize;
554}
555
556// static
557size_t QuicFramer::GetMinConnectionCloseFrameSize(
558 QuicTransportVersion version,
559 const QuicConnectionCloseFrame& frame) {
560 if (version == QUIC_VERSION_99) {
fkastenholz72f509b2019-04-10 09:17:49 -0700561 // TODO(fkastenholz): For complete support of IETF QUIC CONNECTION_CLOSE,
562 // check if the frame is a Transport close and if the frame's
563 // extracted_error_code is not QUIC_IETF_GQUIC_ERROR_MISSING. If so,
564 // extend the error string to include " QuicErrorCode: #"
565 if (frame.close_type == IETF_QUIC_APPLICATION_CONNECTION_CLOSE) {
566 // Application close variant does not include the transport close frame
567 // type field.
568 return QuicDataWriter::GetVarInt62Len(
569 TruncatedErrorStringSize(frame.error_details)) +
570 kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize;
571 }
572 QUIC_BUG_IF(frame.close_type != IETF_QUIC_TRANSPORT_CONNECTION_CLOSE)
573 << "IETF QUIC Connection close and QuicConnectionCloseFrame type is "
574 "not IETF ConnectionClose";
QUICHE teama6ef0a62019-03-07 20:34:33 -0500575 return QuicDataWriter::GetVarInt62Len(
576 TruncatedErrorStringSize(frame.error_details)) +
fkastenholze9d71a82019-04-09 05:12:13 -0700577 QuicDataWriter::GetVarInt62Len(frame.transport_close_frame_type) +
QUICHE teama6ef0a62019-03-07 20:34:33 -0500578 kQuicFrameTypeSize + kQuicIetfQuicErrorCodeSize;
579 }
fkastenholz72f509b2019-04-10 09:17:49 -0700580 // Not version 99/IETF QUIC, return Google QUIC CONNECTION CLOSE frame size.
QUICHE teama6ef0a62019-03-07 20:34:33 -0500581 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
582}
583
584// static
QUICHE teama6ef0a62019-03-07 20:34:33 -0500585size_t QuicFramer::GetMinGoAwayFrameSize() {
586 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
587 kQuicMaxStreamIdSize;
588}
589
590// static
591size_t QuicFramer::GetWindowUpdateFrameSize(
592 QuicTransportVersion version,
593 const QuicWindowUpdateFrame& frame) {
594 if (version != QUIC_VERSION_99) {
595 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
596 }
597 if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) {
598 // Frame would be a MAX DATA frame, which has only a Maximum Data field.
599 return kQuicFrameTypeSize +
600 QuicDataWriter::GetVarInt62Len(frame.byte_offset);
601 }
602 // Frame would be MAX STREAM DATA, has Maximum Stream Data and Stream ID
603 // fields.
604 return kQuicFrameTypeSize +
605 QuicDataWriter::GetVarInt62Len(frame.byte_offset) +
606 QuicDataWriter::GetVarInt62Len(frame.stream_id);
607}
608
609// static
610size_t QuicFramer::GetMaxStreamsFrameSize(QuicTransportVersion version,
fkastenholz3c4eabf2019-04-22 07:49:59 -0700611 const QuicMaxStreamsFrame& frame) {
QUICHE teama6ef0a62019-03-07 20:34:33 -0500612 if (version != QUIC_VERSION_99) {
613 QUIC_BUG << "In version " << version
fkastenholz3c4eabf2019-04-22 07:49:59 -0700614 << " - not 99 - and tried to serialize MaxStreams Frame.";
QUICHE teama6ef0a62019-03-07 20:34:33 -0500615 }
fkastenholz3c4eabf2019-04-22 07:49:59 -0700616 return kQuicFrameTypeSize +
617 QuicDataWriter::GetVarInt62Len(frame.stream_count);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500618}
619
620// static
621size_t QuicFramer::GetStreamsBlockedFrameSize(
622 QuicTransportVersion version,
fkastenholz3c4eabf2019-04-22 07:49:59 -0700623 const QuicStreamsBlockedFrame& frame) {
QUICHE teama6ef0a62019-03-07 20:34:33 -0500624 if (version != QUIC_VERSION_99) {
625 QUIC_BUG << "In version " << version
fkastenholz3c4eabf2019-04-22 07:49:59 -0700626 << " - not 99 - and tried to serialize StreamsBlocked Frame.";
QUICHE teama6ef0a62019-03-07 20:34:33 -0500627 }
628
fkastenholz3c4eabf2019-04-22 07:49:59 -0700629 return kQuicFrameTypeSize +
630 QuicDataWriter::GetVarInt62Len(frame.stream_count);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500631}
632
633// static
634size_t QuicFramer::GetBlockedFrameSize(QuicTransportVersion version,
635 const QuicBlockedFrame& frame) {
636 if (version != QUIC_VERSION_99) {
637 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
638 }
639 if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) {
640 // return size of IETF QUIC Blocked frame
641 return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset);
642 }
643 // return size of IETF QUIC Stream Blocked frame.
644 return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset) +
645 QuicDataWriter::GetVarInt62Len(frame.stream_id);
646}
647
648// static
649size_t QuicFramer::GetStopSendingFrameSize(const QuicStopSendingFrame& frame) {
650 return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.stream_id) +
651 sizeof(QuicApplicationErrorCode);
652}
653
654// static
655size_t QuicFramer::GetPathChallengeFrameSize(
656 const QuicPathChallengeFrame& frame) {
657 return kQuicFrameTypeSize + sizeof(frame.data_buffer);
658}
659
660// static
661size_t QuicFramer::GetPathResponseFrameSize(
662 const QuicPathResponseFrame& frame) {
663 return kQuicFrameTypeSize + sizeof(frame.data_buffer);
664}
665
666// static
667size_t QuicFramer::GetRetransmittableControlFrameSize(
668 QuicTransportVersion version,
669 const QuicFrame& frame) {
670 switch (frame.type) {
671 case PING_FRAME:
672 // Ping has no payload.
673 return kQuicFrameTypeSize;
674 case RST_STREAM_FRAME:
675 return GetRstStreamFrameSize(version, *frame.rst_stream_frame);
676 case CONNECTION_CLOSE_FRAME:
677 return GetMinConnectionCloseFrameSize(version,
678 *frame.connection_close_frame) +
679 TruncatedErrorStringSize(
680 frame.connection_close_frame->error_details);
681 case GOAWAY_FRAME:
682 return GetMinGoAwayFrameSize() +
683 TruncatedErrorStringSize(frame.goaway_frame->reason_phrase);
684 case WINDOW_UPDATE_FRAME:
685 // For version 99, this could be either a MAX DATA or MAX STREAM DATA.
686 // GetWindowUpdateFrameSize figures this out and returns the correct
687 // length.
688 return GetWindowUpdateFrameSize(version, *frame.window_update_frame);
689 case BLOCKED_FRAME:
690 return GetBlockedFrameSize(version, *frame.blocked_frame);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500691 case NEW_CONNECTION_ID_FRAME:
692 return GetNewConnectionIdFrameSize(*frame.new_connection_id_frame);
693 case RETIRE_CONNECTION_ID_FRAME:
694 return GetRetireConnectionIdFrameSize(*frame.retire_connection_id_frame);
695 case NEW_TOKEN_FRAME:
696 return GetNewTokenFrameSize(*frame.new_token_frame);
fkastenholz3c4eabf2019-04-22 07:49:59 -0700697 case MAX_STREAMS_FRAME:
698 return GetMaxStreamsFrameSize(version, frame.max_streams_frame);
699 case STREAMS_BLOCKED_FRAME:
700 return GetStreamsBlockedFrameSize(version, frame.streams_blocked_frame);
QUICHE teama6ef0a62019-03-07 20:34:33 -0500701 case PATH_RESPONSE_FRAME:
702 return GetPathResponseFrameSize(*frame.path_response_frame);
703 case PATH_CHALLENGE_FRAME:
704 return GetPathChallengeFrameSize(*frame.path_challenge_frame);
705 case STOP_SENDING_FRAME:
706 return GetStopSendingFrameSize(*frame.stop_sending_frame);
707
708 case STREAM_FRAME:
709 case ACK_FRAME:
710 case STOP_WAITING_FRAME:
711 case MTU_DISCOVERY_FRAME:
712 case PADDING_FRAME:
713 case MESSAGE_FRAME:
714 case CRYPTO_FRAME:
715 case NUM_FRAME_TYPES:
716 DCHECK(false);
717 return 0;
718 }
719
720 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
721 DCHECK(false);
722 return 0;
723}
724
725// static
726size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
727 // Sizes are 1 through 4 bytes.
728 for (int i = 1; i <= 4; ++i) {
729 stream_id >>= 8;
730 if (stream_id == 0) {
731 return i;
732 }
733 }
734 QUIC_BUG << "Failed to determine StreamIDSize.";
735 return 4;
736}
737
738// static
739size_t QuicFramer::GetStreamOffsetSize(QuicTransportVersion version,
740 QuicStreamOffset offset) {
741 // 0 is a special case.
742 if (offset == 0) {
743 return 0;
744 }
745 // 2 through 8 are the remaining sizes.
746 offset >>= 8;
747 for (int i = 2; i <= 8; ++i) {
748 offset >>= 8;
749 if (offset == 0) {
750 return i;
751 }
752 }
753 QUIC_BUG << "Failed to determine StreamOffsetSize.";
754 return 8;
755}
756
757// static
758size_t QuicFramer::GetNewConnectionIdFrameSize(
759 const QuicNewConnectionIdFrame& frame) {
760 return kQuicFrameTypeSize +
761 QuicDataWriter::GetVarInt62Len(frame.sequence_number) +
762 kConnectionIdLengthSize + frame.connection_id.length() +
763 sizeof(frame.stateless_reset_token);
764}
765
766// static
767size_t QuicFramer::GetRetireConnectionIdFrameSize(
768 const QuicRetireConnectionIdFrame& frame) {
769 return kQuicFrameTypeSize +
770 QuicDataWriter::GetVarInt62Len(frame.sequence_number);
771}
772
773// static
774size_t QuicFramer::GetNewTokenFrameSize(const QuicNewTokenFrame& frame) {
775 return kQuicFrameTypeSize +
776 QuicDataWriter::GetVarInt62Len(frame.token.length()) +
777 frame.token.length();
778}
779
780// TODO(nharper): Change this method to take a ParsedQuicVersion.
781bool QuicFramer::IsSupportedTransportVersion(
782 const QuicTransportVersion version) const {
783 for (ParsedQuicVersion supported_version : supported_versions_) {
784 if (version == supported_version.transport_version) {
785 return true;
786 }
787 }
788 return false;
789}
790
791bool QuicFramer::IsSupportedVersion(const ParsedQuicVersion version) const {
792 for (const ParsedQuicVersion& supported_version : supported_versions_) {
793 if (version == supported_version) {
794 return true;
795 }
796 }
797 return false;
798}
799
800size_t QuicFramer::GetSerializedFrameLength(
801 const QuicFrame& frame,
802 size_t free_bytes,
803 bool first_frame,
804 bool last_frame,
805 QuicPacketNumberLength packet_number_length) {
806 // Prevent a rare crash reported in b/19458523.
807 if (frame.type == ACK_FRAME && frame.ack_frame == nullptr) {
808 QUIC_BUG << "Cannot compute the length of a null ack frame. free_bytes:"
809 << free_bytes << " first_frame:" << first_frame
810 << " last_frame:" << last_frame
811 << " seq num length:" << packet_number_length;
812 set_error(QUIC_INTERNAL_ERROR);
813 visitor_->OnError(this);
814 return 0;
815 }
816 if (frame.type == PADDING_FRAME) {
817 if (frame.padding_frame.num_padding_bytes == -1) {
818 // Full padding to the end of the packet.
819 return free_bytes;
820 } else {
821 // Lite padding.
822 return free_bytes <
823 static_cast<size_t>(frame.padding_frame.num_padding_bytes)
824 ? free_bytes
825 : frame.padding_frame.num_padding_bytes;
826 }
827 }
828
829 size_t frame_len =
830 ComputeFrameLength(frame, last_frame, packet_number_length);
831 if (frame_len <= free_bytes) {
832 // Frame fits within packet. Note that acks may be truncated.
833 return frame_len;
834 }
835 // Only truncate the first frame in a packet, so if subsequent ones go
836 // over, stop including more frames.
837 if (!first_frame) {
838 return 0;
839 }
840 bool can_truncate =
841 frame.type == ACK_FRAME &&
842 free_bytes >= GetMinAckFrameSize(version_.transport_version,
843 PACKET_6BYTE_PACKET_NUMBER);
844 if (can_truncate) {
dschinazi66dea072019-04-09 11:41:06 -0700845 // Truncate the frame so the packet will not exceed kMaxOutgoingPacketSize.
QUICHE teama6ef0a62019-03-07 20:34:33 -0500846 // Note that we may not use every byte of the writer in this case.
847 QUIC_DLOG(INFO) << ENDPOINT
848 << "Truncating large frame, free bytes: " << free_bytes;
849 return free_bytes;
850 }
851 return 0;
852}
853
854QuicFramer::AckFrameInfo::AckFrameInfo()
855 : max_block_length(0), first_block_length(0), num_ack_blocks(0) {}
856
857QuicFramer::AckFrameInfo::AckFrameInfo(const AckFrameInfo& other) = default;
858
859QuicFramer::AckFrameInfo::~AckFrameInfo() {}
860
861bool QuicFramer::WriteIetfLongHeaderLength(const QuicPacketHeader& header,
862 QuicDataWriter* writer,
863 size_t length_field_offset,
864 EncryptionLevel level) {
865 if (!QuicVersionHasLongHeaderLengths(transport_version()) ||
866 !header.version_flag || length_field_offset == 0) {
867 return true;
868 }
869 if (writer->length() < length_field_offset ||
870 writer->length() - length_field_offset <
871 kQuicDefaultLongHeaderLengthLength) {
872 set_detailed_error("Invalid length_field_offset.");
873 QUIC_BUG << "Invalid length_field_offset.";
874 return false;
875 }
876 size_t length_to_write = writer->length() - length_field_offset -
877 kQuicDefaultLongHeaderLengthLength;
878 // Add length of auth tag.
879 length_to_write = GetCiphertextSize(level, length_to_write);
880
881 QuicDataWriter length_writer(writer->length() - length_field_offset,
882 writer->data() + length_field_offset);
883 if (!length_writer.WriteVarInt62(length_to_write,
884 kQuicDefaultLongHeaderLengthLength)) {
885 set_detailed_error("Failed to overwrite long header length.");
886 QUIC_BUG << "Failed to overwrite long header length.";
887 return false;
888 }
889 return true;
890}
891
892size_t QuicFramer::BuildDataPacket(const QuicPacketHeader& header,
893 const QuicFrames& frames,
894 char* buffer,
895 size_t packet_length,
896 EncryptionLevel level) {
897 QuicDataWriter writer(packet_length, buffer);
898 size_t length_field_offset = 0;
899 if (!AppendPacketHeader(header, &writer, &length_field_offset)) {
900 QUIC_BUG << "AppendPacketHeader failed";
901 return 0;
902 }
903
904 if (transport_version() == QUIC_VERSION_99) {
905 if (AppendIetfFrames(frames, &writer) == 0) {
906 return 0;
907 }
908 if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset,
909 level)) {
910 return 0;
911 }
912 return writer.length();
913 }
914 // TODO(dschinazi) if we enable long header lengths before v99, we need to
915 // add support for fixing up lengths in QuicFramer::BuildDataPacket.
916 DCHECK(!QuicVersionHasLongHeaderLengths(transport_version()));
917
918 size_t i = 0;
919 for (const QuicFrame& frame : frames) {
920 // Determine if we should write stream frame length in header.
921 const bool last_frame_in_packet = i == frames.size() - 1;
922 if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) {
923 QUIC_BUG << "AppendTypeByte failed";
924 return 0;
925 }
926
927 switch (frame.type) {
928 case PADDING_FRAME:
929 if (!AppendPaddingFrame(frame.padding_frame, &writer)) {
930 QUIC_BUG << "AppendPaddingFrame of "
931 << frame.padding_frame.num_padding_bytes << " failed";
932 return 0;
933 }
934 break;
935 case STREAM_FRAME:
936 if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet,
937 &writer)) {
938 QUIC_BUG << "AppendStreamFrame failed";
939 return 0;
940 }
941 break;
942 case ACK_FRAME:
943 if (!AppendAckFrameAndTypeByte(*frame.ack_frame, &writer)) {
944 QUIC_BUG << "AppendAckFrameAndTypeByte failed: " << detailed_error_;
945 return 0;
946 }
947 break;
948 case STOP_WAITING_FRAME:
949 if (!AppendStopWaitingFrame(header, frame.stop_waiting_frame,
950 &writer)) {
951 QUIC_BUG << "AppendStopWaitingFrame failed";
952 return 0;
953 }
954 break;
955 case MTU_DISCOVERY_FRAME:
956 // MTU discovery frames are serialized as ping frames.
957 QUIC_FALLTHROUGH_INTENDED;
958 case PING_FRAME:
959 // Ping has no payload.
960 break;
961 case RST_STREAM_FRAME:
962 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
963 QUIC_BUG << "AppendRstStreamFrame failed";
964 return 0;
965 }
966 break;
967 case CONNECTION_CLOSE_FRAME:
968 if (!AppendConnectionCloseFrame(*frame.connection_close_frame,
969 &writer)) {
970 QUIC_BUG << "AppendConnectionCloseFrame failed";
971 return 0;
972 }
973 break;
974 case GOAWAY_FRAME:
975 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
976 QUIC_BUG << "AppendGoAwayFrame failed";
977 return 0;
978 }
979 break;
980 case WINDOW_UPDATE_FRAME:
981 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
982 QUIC_BUG << "AppendWindowUpdateFrame failed";
983 return 0;
984 }
985 break;
986 case BLOCKED_FRAME:
987 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
988 QUIC_BUG << "AppendBlockedFrame failed";
989 return 0;
990 }
991 break;
QUICHE teama6ef0a62019-03-07 20:34:33 -0500992 case NEW_CONNECTION_ID_FRAME:
993 set_detailed_error(
994 "Attempt to append NEW_CONNECTION_ID frame and not in version 99.");
995 return RaiseError(QUIC_INTERNAL_ERROR);
996 case RETIRE_CONNECTION_ID_FRAME:
997 set_detailed_error(
998 "Attempt to append RETIRE_CONNECTION_ID frame and not in version "
999 "99.");
1000 return RaiseError(QUIC_INTERNAL_ERROR);
1001 case NEW_TOKEN_FRAME:
1002 set_detailed_error(
1003 "Attempt to append NEW_TOKEN_ID frame and not in version 99.");
1004 return RaiseError(QUIC_INTERNAL_ERROR);
fkastenholz3c4eabf2019-04-22 07:49:59 -07001005 case MAX_STREAMS_FRAME:
QUICHE teama6ef0a62019-03-07 20:34:33 -05001006 set_detailed_error(
fkastenholz3c4eabf2019-04-22 07:49:59 -07001007 "Attempt to append MAX_STREAMS frame and not in version 99.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05001008 return RaiseError(QUIC_INTERNAL_ERROR);
fkastenholz3c4eabf2019-04-22 07:49:59 -07001009 case STREAMS_BLOCKED_FRAME:
QUICHE teama6ef0a62019-03-07 20:34:33 -05001010 set_detailed_error(
fkastenholz3c4eabf2019-04-22 07:49:59 -07001011 "Attempt to append STREAMS_BLOCKED frame and not in version 99.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05001012 return RaiseError(QUIC_INTERNAL_ERROR);
1013 case PATH_RESPONSE_FRAME:
1014 set_detailed_error(
1015 "Attempt to append PATH_RESPONSE frame and not in version 99.");
1016 return RaiseError(QUIC_INTERNAL_ERROR);
1017 case PATH_CHALLENGE_FRAME:
1018 set_detailed_error(
1019 "Attempt to append PATH_CHALLENGE frame and not in version 99.");
1020 return RaiseError(QUIC_INTERNAL_ERROR);
1021 case STOP_SENDING_FRAME:
1022 set_detailed_error(
1023 "Attempt to append STOP_SENDING frame and not in version 99.");
1024 return RaiseError(QUIC_INTERNAL_ERROR);
1025 case MESSAGE_FRAME:
1026 if (!AppendMessageFrameAndTypeByte(*frame.message_frame,
1027 last_frame_in_packet, &writer)) {
1028 QUIC_BUG << "AppendMessageFrame failed";
1029 return 0;
1030 }
1031 break;
1032 case CRYPTO_FRAME:
QUICHE teamea740082019-03-11 17:58:43 -07001033 if (!QuicVersionUsesCryptoFrames(version_.transport_version)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001034 set_detailed_error(
1035 "Attempt to append CRYPTO frame in version prior to 47.");
1036 return RaiseError(QUIC_INTERNAL_ERROR);
1037 }
1038 if (!AppendCryptoFrame(*frame.crypto_frame, &writer)) {
1039 QUIC_BUG << "AppendCryptoFrame failed";
1040 return 0;
1041 }
1042 break;
1043 default:
1044 RaiseError(QUIC_INVALID_FRAME_DATA);
1045 QUIC_BUG << "QUIC_INVALID_FRAME_DATA";
1046 return 0;
1047 }
1048 ++i;
1049 }
1050
1051 return writer.length();
1052}
1053
1054size_t QuicFramer::AppendIetfFrames(const QuicFrames& frames,
1055 QuicDataWriter* writer) {
1056 size_t i = 0;
1057 for (const QuicFrame& frame : frames) {
1058 // Determine if we should write stream frame length in header.
1059 const bool last_frame_in_packet = i == frames.size() - 1;
1060 if (!AppendIetfTypeByte(frame, last_frame_in_packet, writer)) {
1061 QUIC_BUG << "AppendIetfTypeByte failed: " << detailed_error();
1062 return 0;
1063 }
1064
1065 switch (frame.type) {
1066 case PADDING_FRAME:
1067 if (!AppendPaddingFrame(frame.padding_frame, writer)) {
1068 QUIC_BUG << "AppendPaddingFrame of "
1069 << frame.padding_frame.num_padding_bytes
1070 << " failed: " << detailed_error();
1071 return 0;
1072 }
1073 break;
1074 case STREAM_FRAME:
1075 if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet,
1076 writer)) {
1077 QUIC_BUG << "AppendStreamFrame failed: " << detailed_error();
1078 return 0;
1079 }
1080 break;
1081 case ACK_FRAME:
1082 if (!AppendIetfAckFrameAndTypeByte(*frame.ack_frame, writer)) {
QUICHE team4fe0b942019-03-08 09:25:06 -05001083 QUIC_BUG << "AppendIetfAckFrameAndTypeByte failed: "
1084 << detailed_error();
QUICHE teama6ef0a62019-03-07 20:34:33 -05001085 return 0;
1086 }
1087 break;
1088 case STOP_WAITING_FRAME:
1089 set_detailed_error(
1090 "Attempt to append STOP WAITING frame in version 99.");
1091 return RaiseError(QUIC_INTERNAL_ERROR);
1092 case MTU_DISCOVERY_FRAME:
1093 // MTU discovery frames are serialized as ping frames.
1094 QUIC_FALLTHROUGH_INTENDED;
1095 case PING_FRAME:
1096 // Ping has no payload.
1097 break;
1098 case RST_STREAM_FRAME:
1099 if (!AppendRstStreamFrame(*frame.rst_stream_frame, writer)) {
1100 QUIC_BUG << "AppendRstStreamFrame failed: " << detailed_error();
1101 return 0;
1102 }
1103 break;
1104 case CONNECTION_CLOSE_FRAME:
fkastenholz72f509b2019-04-10 09:17:49 -07001105 if (!AppendIetfConnectionCloseFrame(*frame.connection_close_frame,
1106 writer)) {
1107 QUIC_BUG << "AppendIetfConnectionCloseFrame failed: "
1108 << detailed_error();
QUICHE teama6ef0a62019-03-07 20:34:33 -05001109 return 0;
1110 }
1111 break;
1112 case GOAWAY_FRAME:
1113 set_detailed_error("Attempt to append GOAWAY frame in version 99.");
1114 return RaiseError(QUIC_INTERNAL_ERROR);
1115 case WINDOW_UPDATE_FRAME:
1116 // Depending on whether there is a stream ID or not, will be either a
1117 // MAX STREAM DATA frame or a MAX DATA frame.
1118 if (frame.window_update_frame->stream_id ==
1119 QuicUtils::GetInvalidStreamId(transport_version())) {
1120 if (!AppendMaxDataFrame(*frame.window_update_frame, writer)) {
1121 QUIC_BUG << "AppendMaxDataFrame failed: " << detailed_error();
1122 return 0;
1123 }
1124 } else {
1125 if (!AppendMaxStreamDataFrame(*frame.window_update_frame, writer)) {
1126 QUIC_BUG << "AppendMaxStreamDataFrame failed: " << detailed_error();
1127 return 0;
1128 }
1129 }
1130 break;
1131 case BLOCKED_FRAME:
1132 if (!AppendBlockedFrame(*frame.blocked_frame, writer)) {
1133 QUIC_BUG << "AppendBlockedFrame failed: " << detailed_error();
1134 return 0;
1135 }
1136 break;
fkastenholz3c4eabf2019-04-22 07:49:59 -07001137 case MAX_STREAMS_FRAME:
1138 if (!AppendMaxStreamsFrame(frame.max_streams_frame, writer)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001139 QUIC_BUG << "AppendMaxStreamsFrame failed" << detailed_error();
1140 return 0;
1141 }
1142 break;
fkastenholz3c4eabf2019-04-22 07:49:59 -07001143 case STREAMS_BLOCKED_FRAME:
1144 if (!AppendStreamsBlockedFrame(frame.streams_blocked_frame, writer)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001145 QUIC_BUG << "AppendStreamsBlockedFrame failed" << detailed_error();
1146 return 0;
1147 }
1148 break;
1149 case NEW_CONNECTION_ID_FRAME:
1150 if (!AppendNewConnectionIdFrame(*frame.new_connection_id_frame,
1151 writer)) {
1152 QUIC_BUG << "AppendNewConnectionIdFrame failed: " << detailed_error();
1153 return 0;
1154 }
1155 break;
1156 case RETIRE_CONNECTION_ID_FRAME:
1157 if (!AppendRetireConnectionIdFrame(*frame.retire_connection_id_frame,
1158 writer)) {
1159 QUIC_BUG << "AppendRetireConnectionIdFrame failed: "
1160 << detailed_error();
1161 return 0;
1162 }
1163 break;
1164 case NEW_TOKEN_FRAME:
1165 if (!AppendNewTokenFrame(*frame.new_token_frame, writer)) {
1166 QUIC_BUG << "AppendNewTokenFrame failed: " << detailed_error();
1167 return 0;
1168 }
1169 break;
1170 case STOP_SENDING_FRAME:
1171 if (!AppendStopSendingFrame(*frame.stop_sending_frame, writer)) {
1172 QUIC_BUG << "AppendStopSendingFrame failed: " << detailed_error();
1173 return 0;
1174 }
1175 break;
1176 case PATH_CHALLENGE_FRAME:
1177 if (!AppendPathChallengeFrame(*frame.path_challenge_frame, writer)) {
1178 QUIC_BUG << "AppendPathChallengeFrame failed: " << detailed_error();
1179 return 0;
1180 }
1181 break;
1182 case PATH_RESPONSE_FRAME:
1183 if (!AppendPathResponseFrame(*frame.path_response_frame, writer)) {
1184 QUIC_BUG << "AppendPathResponseFrame failed: " << detailed_error();
1185 return 0;
1186 }
1187 break;
1188 case MESSAGE_FRAME:
1189 if (!AppendMessageFrameAndTypeByte(*frame.message_frame,
1190 last_frame_in_packet, writer)) {
1191 QUIC_BUG << "AppendMessageFrame failed: " << detailed_error();
1192 return 0;
1193 }
1194 break;
1195 case CRYPTO_FRAME:
1196 if (!AppendCryptoFrame(*frame.crypto_frame, writer)) {
1197 QUIC_BUG << "AppendCryptoFrame failed: " << detailed_error();
1198 return 0;
1199 }
1200 break;
1201 default:
1202 RaiseError(QUIC_INVALID_FRAME_DATA);
1203 set_detailed_error("Tried to append unknown frame type.");
1204 QUIC_BUG << "QUIC_INVALID_FRAME_DATA";
1205 return 0;
1206 }
1207 ++i;
1208 }
1209
1210 return writer->length();
1211}
1212
rch67cb9df2019-03-26 16:52:07 -07001213size_t QuicFramer::BuildConnectivityProbingPacket(
QUICHE teama6ef0a62019-03-07 20:34:33 -05001214 const QuicPacketHeader& header,
1215 char* buffer,
1216 size_t packet_length,
1217 EncryptionLevel level) {
1218 QuicFrames frames;
1219
1220 // Write a PING frame, which has no data payload.
1221 QuicPingFrame ping_frame;
1222 frames.push_back(QuicFrame(ping_frame));
1223
1224 // Add padding to the rest of the packet.
1225 QuicPaddingFrame padding_frame;
1226 frames.push_back(QuicFrame(padding_frame));
1227
1228 return BuildDataPacket(header, frames, buffer, packet_length, level);
1229}
1230
QUICHE teama6ef0a62019-03-07 20:34:33 -05001231size_t QuicFramer::BuildPaddedPathChallengePacket(
1232 const QuicPacketHeader& header,
1233 char* buffer,
1234 size_t packet_length,
1235 QuicPathFrameBuffer* payload,
1236 QuicRandom* randomizer,
1237 EncryptionLevel level) {
1238 if (version_.transport_version != QUIC_VERSION_99) {
1239 QUIC_BUG << "Attempt to build a PATH_CHALLENGE Connectivity Probing "
1240 "packet and not doing IETF QUIC";
1241 return 0;
1242 }
1243 QuicFrames frames;
1244
1245 // Write a PATH_CHALLENGE frame, which has a random 8-byte payload
1246 randomizer->RandBytes(payload->data(), payload->size());
1247
1248 QuicPathChallengeFrame path_challenge_frame(0, *payload);
1249 frames.push_back(QuicFrame(&path_challenge_frame));
1250
1251 // Add padding to the rest of the packet in order to assess Path MTU
1252 // characteristics.
1253 QuicPaddingFrame padding_frame;
1254 frames.push_back(QuicFrame(padding_frame));
1255
1256 return BuildDataPacket(header, frames, buffer, packet_length, level);
1257}
1258
1259size_t QuicFramer::BuildPathResponsePacket(
1260 const QuicPacketHeader& header,
1261 char* buffer,
1262 size_t packet_length,
1263 const QuicDeque<QuicPathFrameBuffer>& payloads,
1264 const bool is_padded,
1265 EncryptionLevel level) {
1266 if (payloads.empty()) {
1267 QUIC_BUG
1268 << "Attempt to generate connectivity response with no request payloads";
1269 return 0;
1270 }
1271 if (version_.transport_version != QUIC_VERSION_99) {
1272 QUIC_BUG << "Attempt to build a PATH_RESPONSE Connectivity Probing "
1273 "packet and not doing IETF QUIC";
1274 return 0;
1275 }
1276
1277 std::vector<std::unique_ptr<QuicPathResponseFrame>> path_response_frames;
1278 for (const QuicPathFrameBuffer& payload : payloads) {
1279 // Note that the control frame ID can be 0 since this is not retransmitted.
1280 path_response_frames.push_back(
1281 QuicMakeUnique<QuicPathResponseFrame>(0, payload));
1282 }
1283
1284 QuicFrames frames;
1285 for (const std::unique_ptr<QuicPathResponseFrame>& path_response_frame :
1286 path_response_frames) {
1287 frames.push_back(QuicFrame(path_response_frame.get()));
1288 }
1289
1290 if (is_padded) {
1291 // Add padding to the rest of the packet in order to assess Path MTU
1292 // characteristics.
1293 QuicPaddingFrame padding_frame;
1294 frames.push_back(QuicFrame(padding_frame));
1295 }
1296
1297 return BuildDataPacket(header, frames, buffer, packet_length, level);
1298}
1299
1300// static
1301std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildPublicResetPacket(
1302 const QuicPublicResetPacket& packet) {
1303 CryptoHandshakeMessage reset;
1304 reset.set_tag(kPRST);
1305 reset.SetValue(kRNON, packet.nonce_proof);
1306 if (packet.client_address.host().address_family() !=
1307 IpAddressFamily::IP_UNSPEC) {
1308 // packet.client_address is non-empty.
1309 QuicSocketAddressCoder address_coder(packet.client_address);
vasilvvc48c8712019-03-11 13:38:16 -07001310 std::string serialized_address = address_coder.Encode();
QUICHE teama6ef0a62019-03-07 20:34:33 -05001311 if (serialized_address.empty()) {
1312 return nullptr;
1313 }
1314 reset.SetStringPiece(kCADR, serialized_address);
1315 }
1316 if (!packet.endpoint_id.empty()) {
1317 reset.SetStringPiece(kEPID, packet.endpoint_id);
1318 }
1319 const QuicData& reset_serialized = reset.GetSerialized();
1320
1321 size_t len = kPublicFlagsSize + packet.connection_id.length() +
1322 reset_serialized.length();
1323 std::unique_ptr<char[]> buffer(new char[len]);
1324 // Endianness is not a concern here, as writer is not going to write integers
1325 // or floating numbers.
1326 QuicDataWriter writer(len, buffer.get());
1327
1328 uint8_t flags = static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_RST |
1329 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
1330 // This hack makes post-v33 public reset packet look like pre-v33 packets.
1331 flags |= static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD);
1332 if (!writer.WriteUInt8(flags)) {
1333 return nullptr;
1334 }
1335
1336 if (!writer.WriteConnectionId(packet.connection_id)) {
1337 return nullptr;
1338 }
1339
1340 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
1341 return nullptr;
1342 }
1343
1344 return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
1345}
1346
1347// static
1348std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildIetfStatelessResetPacket(
1349 QuicConnectionId connection_id,
1350 QuicUint128 stateless_reset_token) {
1351 QUIC_DVLOG(1) << "Building IETF stateless reset packet.";
1352 size_t len = kPacketHeaderTypeSize + kMinRandomBytesLengthInStatelessReset +
1353 sizeof(stateless_reset_token);
1354 std::unique_ptr<char[]> buffer(new char[len]);
1355 QuicDataWriter writer(len, buffer.get());
1356
1357 uint8_t type = 0;
1358 type |= FLAGS_FIXED_BIT;
1359 type |= FLAGS_SHORT_HEADER_RESERVED_1;
1360 type |= FLAGS_SHORT_HEADER_RESERVED_2;
1361 type |= PacketNumberLengthToOnWireValue(QUIC_VERSION_UNSUPPORTED,
1362 PACKET_1BYTE_PACKET_NUMBER);
1363
1364 // Append type byte.
1365 if (!writer.WriteUInt8(type)) {
1366 return nullptr;
1367 }
1368 // Append random bytes.
1369 if (!writer.WriteRandomBytes(QuicRandom::GetInstance(),
1370 kMinRandomBytesLengthInStatelessReset)) {
1371 return nullptr;
1372 }
1373
1374 // Append stateless reset token.
1375 if (!writer.WriteBytes(&stateless_reset_token,
1376 sizeof(stateless_reset_token))) {
1377 return nullptr;
1378 }
1379 return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
1380}
1381
1382// static
1383std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildVersionNegotiationPacket(
1384 QuicConnectionId connection_id,
1385 bool ietf_quic,
1386 const ParsedQuicVersionVector& versions) {
1387 if (ietf_quic) {
1388 return BuildIetfVersionNegotiationPacket(connection_id, versions);
1389 }
1390 DCHECK(!versions.empty());
1391 size_t len = kPublicFlagsSize + connection_id.length() +
1392 versions.size() * kQuicVersionSize;
1393 std::unique_ptr<char[]> buffer(new char[len]);
1394 // Endianness is not a concern here, version negotiation packet does not have
1395 // integers or floating numbers.
1396 QuicDataWriter writer(len, buffer.get());
1397
1398 uint8_t flags = static_cast<uint8_t>(
1399 PACKET_PUBLIC_FLAGS_VERSION | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID |
1400 // TODO(rch): Remove this QUIC_VERSION_32 is retired.
1401 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD);
1402 if (!writer.WriteUInt8(flags)) {
1403 return nullptr;
1404 }
1405
1406 if (!writer.WriteConnectionId(connection_id)) {
1407 return nullptr;
1408 }
1409
1410 for (const ParsedQuicVersion& version : versions) {
1411 // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed.
1412 if (!writer.WriteTag(
1413 QuicEndian::HostToNet32(CreateQuicVersionLabel(version)))) {
1414 return nullptr;
1415 }
1416 }
1417
1418 return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
1419}
1420
1421// static
1422std::unique_ptr<QuicEncryptedPacket>
1423QuicFramer::BuildIetfVersionNegotiationPacket(
1424 QuicConnectionId connection_id,
1425 const ParsedQuicVersionVector& versions) {
1426 QUIC_DVLOG(1) << "Building IETF version negotiation packet.";
1427 DCHECK(!versions.empty());
1428 size_t len = kPacketHeaderTypeSize + kConnectionIdLengthSize +
1429 connection_id.length() +
1430 (versions.size() + 1) * kQuicVersionSize;
1431 std::unique_ptr<char[]> buffer(new char[len]);
1432 QuicDataWriter writer(len, buffer.get());
1433
1434 // TODO(fayang): Randomly select a value for the type.
1435 uint8_t type = static_cast<uint8_t>(FLAGS_LONG_HEADER | VERSION_NEGOTIATION);
1436 if (!writer.WriteUInt8(type)) {
1437 return nullptr;
1438 }
1439
1440 if (!writer.WriteUInt32(0)) {
1441 return nullptr;
1442 }
1443
1444 if (!GetQuicReloadableFlag(quic_use_new_append_connection_id)) {
1445 if (!AppendIetfConnectionId(true, EmptyQuicConnectionId(),
1446 PACKET_0BYTE_CONNECTION_ID, connection_id,
1447 PACKET_8BYTE_CONNECTION_ID, &writer)) {
1448 return nullptr;
1449 }
1450 } else {
1451 QUIC_RELOADABLE_FLAG_COUNT_N(quic_use_new_append_connection_id, 1, 2);
1452 if (!AppendIetfConnectionIdsNew(true, EmptyQuicConnectionId(),
1453 connection_id, &writer)) {
1454 return nullptr;
1455 }
1456 }
1457
1458 for (const ParsedQuicVersion& version : versions) {
1459 // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed.
1460 if (!writer.WriteTag(
1461 QuicEndian::HostToNet32(CreateQuicVersionLabel(version)))) {
1462 return nullptr;
1463 }
1464 }
1465
1466 return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
1467}
1468
1469bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
1470 QuicDataReader reader(packet.data(), packet.length());
1471
1472 bool packet_has_ietf_packet_header = false;
1473 if (infer_packet_header_type_from_version_) {
1474 packet_has_ietf_packet_header =
1475 version_.transport_version > QUIC_VERSION_43;
1476 } else if (!reader.IsDoneReading()) {
1477 uint8_t type = reader.PeekByte();
1478 packet_has_ietf_packet_header = QuicUtils::IsIetfPacketHeader(type);
1479 }
1480 if (packet_has_ietf_packet_header) {
1481 QUIC_DVLOG(1) << ENDPOINT << "Processing IETF QUIC packet.";
1482 }
1483
1484 visitor_->OnPacket();
1485
1486 QuicPacketHeader header;
1487 if (!ProcessPublicHeader(&reader, packet_has_ietf_packet_header, &header)) {
1488 DCHECK_NE("", detailed_error_);
1489 QUIC_DVLOG(1) << ENDPOINT << "Unable to process public header. Error: "
1490 << detailed_error_;
1491 DCHECK_NE("", detailed_error_);
1492 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_HEADER);
1493 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1494 }
1495
1496 if (!visitor_->OnUnauthenticatedPublicHeader(header)) {
1497 // The visitor suppresses further processing of the packet.
1498 return true;
1499 }
1500
1501 if (perspective_ == Perspective::IS_SERVER && header.version_flag &&
1502 header.version != version_) {
1503 if (!visitor_->OnProtocolVersionMismatch(header.version, header.form)) {
1504 RecordDroppedPacketReason(DroppedPacketReason::VERSION_MISMATCH);
1505 return true;
1506 }
1507 }
1508
1509 bool rv;
1510 if (IsVersionNegotiation(header, packet_has_ietf_packet_header)) {
1511 QUIC_DVLOG(1) << ENDPOINT << "Received version negotiation packet";
1512 rv = ProcessVersionNegotiationPacket(&reader, header);
1513 } else if (header.reset_flag) {
1514 rv = ProcessPublicResetPacket(&reader, header);
dschinazie8d7fa72019-04-05 14:44:40 -07001515 } else if (packet.length() <= kMaxIncomingPacketSize) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001516 // The optimized decryption algorithm implementations run faster when
1517 // operating on aligned memory.
dschinazie8d7fa72019-04-05 14:44:40 -07001518 QUIC_CACHELINE_ALIGNED char buffer[kMaxIncomingPacketSize];
QUICHE teama6ef0a62019-03-07 20:34:33 -05001519 if (packet_has_ietf_packet_header) {
1520 rv = ProcessIetfDataPacket(&reader, &header, packet, buffer,
dschinazie8d7fa72019-04-05 14:44:40 -07001521 QUIC_ARRAYSIZE(buffer));
QUICHE teama6ef0a62019-03-07 20:34:33 -05001522 } else {
dschinazie8d7fa72019-04-05 14:44:40 -07001523 rv = ProcessDataPacket(&reader, &header, packet, buffer,
1524 QUIC_ARRAYSIZE(buffer));
QUICHE teama6ef0a62019-03-07 20:34:33 -05001525 }
1526 } else {
1527 std::unique_ptr<char[]> large_buffer(new char[packet.length()]);
1528 if (packet_has_ietf_packet_header) {
1529 rv = ProcessIetfDataPacket(&reader, &header, packet, large_buffer.get(),
1530 packet.length());
1531 } else {
1532 rv = ProcessDataPacket(&reader, &header, packet, large_buffer.get(),
1533 packet.length());
1534 }
1535 QUIC_BUG_IF(rv) << "QUIC should never successfully process packets larger"
dschinazie8d7fa72019-04-05 14:44:40 -07001536 << "than kMaxIncomingPacketSize. packet size:"
1537 << packet.length();
QUICHE teama6ef0a62019-03-07 20:34:33 -05001538 }
1539 return rv;
1540}
1541
1542bool QuicFramer::ProcessVersionNegotiationPacket(
1543 QuicDataReader* reader,
1544 const QuicPacketHeader& header) {
1545 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
1546
1547 QuicVersionNegotiationPacket packet(header.destination_connection_id);
1548 // Try reading at least once to raise error if the packet is invalid.
1549 do {
1550 QuicVersionLabel version_label;
1551 if (!reader->ReadTag(&version_label)) {
1552 set_detailed_error("Unable to read supported version in negotiation.");
1553 RecordDroppedPacketReason(
1554 DroppedPacketReason::INVALID_VERSION_NEGOTIATION_PACKET);
1555 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
1556 }
1557 // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed.
1558 version_label = QuicEndian::NetToHost32(version_label);
1559 packet.versions.push_back(ParseQuicVersionLabel(version_label));
1560 } while (!reader->IsDoneReading());
1561
1562 visitor_->OnVersionNegotiationPacket(packet);
1563 return true;
1564}
1565
1566bool QuicFramer::MaybeProcessIetfInitialRetryToken(
1567 QuicDataReader* encrypted_reader,
1568 QuicPacketHeader* header) {
1569 if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) ||
1570 header->form != IETF_QUIC_LONG_HEADER_PACKET ||
1571 header->long_packet_type != INITIAL) {
1572 return true;
1573 }
1574 uint64_t retry_token_length = 0;
1575 header->retry_token_length_length = encrypted_reader->PeekVarInt62Length();
1576 if (!encrypted_reader->ReadVarInt62(&retry_token_length)) {
1577 set_detailed_error("Unable to read INITIAL retry token length.");
1578 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1579 }
1580 header->retry_token = encrypted_reader->PeekRemainingPayload();
1581 // Safety check to avoid spending ressources if malformed.
1582 // At this point header->retry_token contains the rest of the packet
1583 // so its length() is the amount of data remaining in the packet.
1584 if (retry_token_length > header->retry_token.length()) {
1585 set_detailed_error("INITIAL token length longer than packet.");
1586 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1587 }
1588 // Resize retry_token to make it only contain the retry token.
1589 header->retry_token.remove_suffix(header->retry_token.length() -
1590 retry_token_length);
1591 // Advance encrypted_reader by retry_token_length.
1592 uint8_t wasted_byte;
1593 for (uint64_t i = 0; i < retry_token_length; ++i) {
1594 if (!encrypted_reader->ReadUInt8(&wasted_byte)) {
1595 set_detailed_error("Unable to read INITIAL retry token.");
1596 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1597 }
1598 }
1599 return true;
1600}
1601
1602// Seeks the current packet to check for a coalesced packet at the end.
1603// If the IETF length field only spans part of the outer packet,
1604// then there is a coalesced packet after this one.
1605void QuicFramer::MaybeProcessCoalescedPacket(
1606 const QuicDataReader& encrypted_reader,
1607 uint64_t remaining_bytes_length,
1608 const QuicPacketHeader& header) {
1609 if (header.remaining_packet_length >= remaining_bytes_length) {
1610 // There is no coalesced packet.
1611 return;
1612 }
1613
1614 QuicStringPiece remaining_data = encrypted_reader.PeekRemainingPayload();
1615 DCHECK_EQ(remaining_data.length(), remaining_bytes_length);
1616
1617 const char* coalesced_data =
1618 remaining_data.data() + header.remaining_packet_length;
1619 uint64_t coalesced_data_length =
1620 remaining_bytes_length - header.remaining_packet_length;
1621 QuicDataReader coalesced_reader(coalesced_data, coalesced_data_length);
1622
1623 QuicPacketHeader coalesced_header;
1624 if (!ProcessIetfPacketHeader(&coalesced_reader, &coalesced_header)) {
1625 QUIC_PEER_BUG << ENDPOINT
1626 << "Failed to parse received coalesced header of length "
1627 << coalesced_data_length << ": "
1628 << QuicTextUtils::HexEncode(coalesced_data,
1629 coalesced_data_length)
1630 << " previous header was " << header;
1631 return;
1632 }
1633
1634 if (coalesced_header.destination_connection_id !=
1635 header.destination_connection_id ||
1636 (coalesced_header.form != IETF_QUIC_SHORT_HEADER_PACKET &&
1637 coalesced_header.version != header.version)) {
1638 QUIC_PEER_BUG << ENDPOINT << "Received mismatched coalesced header "
1639 << coalesced_header << " previous header was " << header;
1640 return;
1641 }
1642
1643 QuicEncryptedPacket coalesced_packet(coalesced_data, coalesced_data_length,
1644 /*owns_buffer=*/false);
1645 visitor_->OnCoalescedPacket(coalesced_packet);
1646}
1647
1648bool QuicFramer::MaybeProcessIetfLength(QuicDataReader* encrypted_reader,
1649 QuicPacketHeader* header) {
1650 if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) ||
1651 header->form != IETF_QUIC_LONG_HEADER_PACKET ||
1652 (header->long_packet_type != INITIAL &&
1653 header->long_packet_type != HANDSHAKE &&
1654 header->long_packet_type != ZERO_RTT_PROTECTED)) {
1655 return true;
1656 }
1657 header->length_length = encrypted_reader->PeekVarInt62Length();
1658 if (!encrypted_reader->ReadVarInt62(&header->remaining_packet_length)) {
1659 set_detailed_error("Unable to read long header payload length.");
1660 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1661 }
1662 uint64_t remaining_bytes_length = encrypted_reader->BytesRemaining();
1663 if (header->remaining_packet_length > remaining_bytes_length) {
1664 set_detailed_error("Long header payload length longer than packet.");
1665 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1666 }
1667
1668 MaybeProcessCoalescedPacket(*encrypted_reader, remaining_bytes_length,
1669 *header);
1670
1671 if (!encrypted_reader->TruncateRemaining(header->remaining_packet_length)) {
1672 set_detailed_error("Length TruncateRemaining failed.");
1673 QUIC_BUG << "Length TruncateRemaining failed.";
1674 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1675 }
1676 return true;
1677}
1678
1679bool QuicFramer::ProcessIetfDataPacket(QuicDataReader* encrypted_reader,
1680 QuicPacketHeader* header,
1681 const QuicEncryptedPacket& packet,
1682 char* decrypted_buffer,
1683 size_t buffer_length) {
1684 DCHECK_NE(GOOGLE_QUIC_PACKET, header->form);
1685 DCHECK(!header->has_possible_stateless_reset_token);
1686 header->retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0;
1687 header->retry_token = QuicStringPiece();
1688 header->length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0;
1689 header->remaining_packet_length = 0;
1690 if (header->form == IETF_QUIC_SHORT_HEADER_PACKET &&
1691 perspective_ == Perspective::IS_CLIENT) {
1692 // Peek possible stateless reset token. Will only be used on decryption
1693 // failure.
1694 QuicStringPiece remaining = encrypted_reader->PeekRemainingPayload();
1695 if (remaining.length() >= sizeof(header->possible_stateless_reset_token)) {
1696 header->has_possible_stateless_reset_token = true;
1697 memcpy(&header->possible_stateless_reset_token,
1698 &remaining.data()[remaining.length() -
1699 sizeof(header->possible_stateless_reset_token)],
1700 sizeof(header->possible_stateless_reset_token));
1701 }
1702 }
1703
1704 if (!MaybeProcessIetfInitialRetryToken(encrypted_reader, header)) {
1705 return false;
1706 }
1707
1708 if (!MaybeProcessIetfLength(encrypted_reader, header)) {
1709 return false;
1710 }
1711
1712 if (header->form == IETF_QUIC_SHORT_HEADER_PACKET ||
1713 header->long_packet_type != VERSION_NEGOTIATION) {
1714 // Process packet number.
QUICHE team10b22a12019-03-21 15:31:42 -07001715 QuicPacketNumber base_packet_number;
1716 if (supports_multiple_packet_number_spaces_) {
1717 base_packet_number =
1718 largest_decrypted_packet_numbers_[GetPacketNumberSpace(*header)];
1719 } else {
1720 base_packet_number = largest_packet_number_;
1721 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05001722 uint64_t full_packet_number;
1723 if (!ProcessAndCalculatePacketNumber(
1724 encrypted_reader, header->packet_number_length, base_packet_number,
1725 &full_packet_number)) {
1726 set_detailed_error("Unable to read packet number.");
1727 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
1728 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1729 }
1730
1731 if (!IsValidFullPacketNumber(full_packet_number, transport_version())) {
1732 if (IsIetfStatelessResetPacket(*header)) {
1733 // This is a stateless reset packet.
1734 QuicIetfStatelessResetPacket packet(
1735 *header, header->possible_stateless_reset_token);
1736 visitor_->OnAuthenticatedIetfStatelessResetPacket(packet);
1737 return true;
1738 }
1739 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
1740 set_detailed_error("packet numbers cannot be 0.");
1741 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1742 }
1743 header->packet_number = QuicPacketNumber(full_packet_number);
1744 }
1745
1746 // A nonce should only present in SHLO from the server to the client when
1747 // using QUIC crypto.
1748 if (header->form == IETF_QUIC_LONG_HEADER_PACKET &&
1749 header->long_packet_type == ZERO_RTT_PROTECTED &&
1750 perspective_ == Perspective::IS_CLIENT &&
1751 version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) {
1752 if (!encrypted_reader->ReadBytes(
1753 reinterpret_cast<uint8_t*>(last_nonce_.data()),
1754 last_nonce_.size())) {
1755 set_detailed_error("Unable to read nonce.");
1756 RecordDroppedPacketReason(
1757 DroppedPacketReason::INVALID_DIVERSIFICATION_NONCE);
1758 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1759 }
1760
1761 header->nonce = &last_nonce_;
1762 } else {
1763 header->nonce = nullptr;
1764 }
1765
1766 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1767 set_detailed_error(
1768 "Visitor asked to stop processing of unauthenticated header.");
1769 return false;
1770 }
1771
1772 QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload();
1773 QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket(
1774 version_.transport_version, packet,
1775 GetIncludedDestinationConnectionIdLength(*header),
1776 GetIncludedSourceConnectionIdLength(*header), header->version_flag,
1777 header->nonce != nullptr, header->packet_number_length,
1778 header->retry_token_length_length, header->retry_token.length(),
1779 header->length_length);
1780
1781 size_t decrypted_length = 0;
QUICHE team10b22a12019-03-21 15:31:42 -07001782 EncryptionLevel decrypted_level;
QUICHE teama6ef0a62019-03-07 20:34:33 -05001783 if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer,
QUICHE team10b22a12019-03-21 15:31:42 -07001784 buffer_length, &decrypted_length, &decrypted_level)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001785 if (IsIetfStatelessResetPacket(*header)) {
1786 // This is a stateless reset packet.
1787 QuicIetfStatelessResetPacket packet(
1788 *header, header->possible_stateless_reset_token);
1789 visitor_->OnAuthenticatedIetfStatelessResetPacket(packet);
1790 return true;
1791 }
1792 set_detailed_error("Unable to decrypt payload.");
1793 RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE);
1794 return RaiseError(QUIC_DECRYPTION_FAILURE);
1795 }
1796 QuicDataReader reader(decrypted_buffer, decrypted_length);
1797
1798 // Update the largest packet number after we have decrypted the packet
1799 // so we are confident is not attacker controlled.
QUICHE team10b22a12019-03-21 15:31:42 -07001800 if (supports_multiple_packet_number_spaces_) {
1801 largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace(
1802 decrypted_level)]
1803 .UpdateMax(header->packet_number);
1804 } else {
1805 largest_packet_number_.UpdateMax(header->packet_number);
1806 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05001807
1808 if (!visitor_->OnPacketHeader(*header)) {
1809 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
1810 // The visitor suppresses further processing of the packet.
1811 return true;
1812 }
1813
dschinazie8d7fa72019-04-05 14:44:40 -07001814 if (packet.length() > kMaxIncomingPacketSize) {
1815 set_detailed_error("Packet too large.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05001816 return RaiseError(QUIC_PACKET_TOO_LARGE);
1817 }
1818
1819 // Handle the payload.
1820 if (version_.transport_version == QUIC_VERSION_99) {
1821 if (!ProcessIetfFrameData(&reader, *header)) {
1822 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessIetfFrameData sets the error.
1823 DCHECK_NE("", detailed_error_);
1824 QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: "
1825 << detailed_error_;
1826 return false;
1827 }
1828 } else {
1829 if (!ProcessFrameData(&reader, *header)) {
1830 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
1831 DCHECK_NE("", detailed_error_);
1832 QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: "
1833 << detailed_error_;
1834 return false;
1835 }
1836 }
1837
1838 visitor_->OnPacketComplete();
1839 return true;
1840}
1841
1842bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader,
1843 QuicPacketHeader* header,
1844 const QuicEncryptedPacket& packet,
1845 char* decrypted_buffer,
1846 size_t buffer_length) {
1847 if (!ProcessUnauthenticatedHeader(encrypted_reader, header)) {
1848 DCHECK_NE("", detailed_error_);
1849 QUIC_DVLOG(1)
1850 << ENDPOINT
1851 << "Unable to process packet header. Stopping parsing. Error: "
1852 << detailed_error_;
1853 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
1854 return false;
1855 }
1856
1857 QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload();
1858 QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket(
1859 version_.transport_version, packet,
1860 GetIncludedDestinationConnectionIdLength(*header),
1861 GetIncludedSourceConnectionIdLength(*header), header->version_flag,
1862 header->nonce != nullptr, header->packet_number_length,
1863 header->retry_token_length_length, header->retry_token.length(),
1864 header->length_length);
1865
1866 size_t decrypted_length = 0;
QUICHE team10b22a12019-03-21 15:31:42 -07001867 EncryptionLevel decrypted_level;
QUICHE teama6ef0a62019-03-07 20:34:33 -05001868 if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer,
QUICHE team10b22a12019-03-21 15:31:42 -07001869 buffer_length, &decrypted_length, &decrypted_level)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05001870 RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE);
1871 set_detailed_error("Unable to decrypt payload.");
1872 return RaiseError(QUIC_DECRYPTION_FAILURE);
1873 }
1874
1875 QuicDataReader reader(decrypted_buffer, decrypted_length);
1876
1877 // Update the largest packet number after we have decrypted the packet
1878 // so we are confident is not attacker controlled.
QUICHE team10b22a12019-03-21 15:31:42 -07001879 if (supports_multiple_packet_number_spaces_) {
1880 largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace(
1881 decrypted_level)]
1882 .UpdateMax(header->packet_number);
1883 } else {
1884 largest_packet_number_.UpdateMax(header->packet_number);
1885 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05001886
1887 if (!visitor_->OnPacketHeader(*header)) {
1888 // The visitor suppresses further processing of the packet.
1889 return true;
1890 }
1891
dschinazie8d7fa72019-04-05 14:44:40 -07001892 if (packet.length() > kMaxIncomingPacketSize) {
1893 set_detailed_error("Packet too large.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05001894 return RaiseError(QUIC_PACKET_TOO_LARGE);
1895 }
1896
1897 // Handle the payload.
1898 if (!ProcessFrameData(&reader, *header)) {
1899 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
1900 DCHECK_NE("", detailed_error_);
1901 QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: "
1902 << detailed_error_;
1903 return false;
1904 }
1905
1906 visitor_->OnPacketComplete();
1907 return true;
1908}
1909
1910bool QuicFramer::ProcessPublicResetPacket(QuicDataReader* reader,
1911 const QuicPacketHeader& header) {
1912 QuicPublicResetPacket packet(header.destination_connection_id);
1913
1914 std::unique_ptr<CryptoHandshakeMessage> reset(
1915 CryptoFramer::ParseMessage(reader->ReadRemainingPayload()));
1916 if (!reset.get()) {
1917 set_detailed_error("Unable to read reset message.");
1918 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET);
1919 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
1920 }
1921 if (reset->tag() != kPRST) {
1922 set_detailed_error("Incorrect message tag.");
1923 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET);
1924 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
1925 }
1926
1927 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
1928 set_detailed_error("Unable to read nonce proof.");
1929 RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET);
1930 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
1931 }
1932 // TODO(satyamshekhar): validate nonce to protect against DoS.
1933
1934 QuicStringPiece address;
1935 if (reset->GetStringPiece(kCADR, &address)) {
1936 QuicSocketAddressCoder address_coder;
1937 if (address_coder.Decode(address.data(), address.length())) {
1938 packet.client_address =
1939 QuicSocketAddress(address_coder.ip(), address_coder.port());
1940 }
1941 }
1942
1943 QuicStringPiece endpoint_id;
1944 if (perspective_ == Perspective::IS_CLIENT &&
1945 reset->GetStringPiece(kEPID, &endpoint_id)) {
vasilvvc48c8712019-03-11 13:38:16 -07001946 packet.endpoint_id = std::string(endpoint_id);
QUICHE teama6ef0a62019-03-07 20:34:33 -05001947 packet.endpoint_id += '\0';
1948 }
1949
1950 visitor_->OnPublicResetPacket(packet);
1951 return true;
1952}
1953
1954bool QuicFramer::IsIetfStatelessResetPacket(
1955 const QuicPacketHeader& header) const {
1956 QUIC_BUG_IF(header.has_possible_stateless_reset_token &&
1957 perspective_ != Perspective::IS_CLIENT)
1958 << "has_possible_stateless_reset_token can only be true at client side.";
1959 return header.form == IETF_QUIC_SHORT_HEADER_PACKET &&
1960 header.has_possible_stateless_reset_token &&
1961 visitor_->IsValidStatelessResetToken(
1962 header.possible_stateless_reset_token);
1963}
1964
1965bool QuicFramer::HasEncrypterOfEncryptionLevel(EncryptionLevel level) const {
1966 return encrypter_[level] != nullptr;
1967}
1968
1969bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
1970 QuicDataWriter* writer,
1971 size_t* length_field_offset) {
1972 if (transport_version() > QUIC_VERSION_43) {
1973 return AppendIetfPacketHeader(header, writer, length_field_offset);
1974 }
1975 QUIC_DVLOG(1) << ENDPOINT << "Appending header: " << header;
1976 uint8_t public_flags = 0;
1977 if (header.reset_flag) {
1978 public_flags |= PACKET_PUBLIC_FLAGS_RST;
1979 }
1980 if (header.version_flag) {
1981 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
1982 }
1983
1984 public_flags |= GetPacketNumberFlags(header.packet_number_length)
1985 << kPublicHeaderSequenceNumberShift;
1986
1987 if (header.nonce != nullptr) {
1988 DCHECK_EQ(Perspective::IS_SERVER, perspective_);
1989 public_flags |= PACKET_PUBLIC_FLAGS_NONCE;
1990 }
1991 DCHECK_EQ(CONNECTION_ID_ABSENT, header.source_connection_id_included);
1992 switch (header.destination_connection_id_included) {
1993 case CONNECTION_ID_ABSENT:
1994 if (!writer->WriteUInt8(public_flags |
1995 PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
1996 return false;
1997 }
1998 break;
1999 case CONNECTION_ID_PRESENT:
2000 QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion(
2001 header.destination_connection_id, transport_version()))
2002 << "AppendPacketHeader: attempted to use connection ID "
2003 << header.destination_connection_id
2004 << " which is invalid with version "
2005 << QuicVersionToString(transport_version());
2006
2007 public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID;
2008 if (perspective_ == Perspective::IS_CLIENT) {
2009 public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD;
2010 }
2011 if (!writer->WriteUInt8(public_flags) ||
2012 !writer->WriteConnectionId(header.destination_connection_id)) {
2013 return false;
2014 }
2015 break;
2016 }
2017 last_serialized_connection_id_ = header.destination_connection_id;
2018
2019 if (header.version_flag) {
2020 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
2021 QuicVersionLabel version_label = CreateQuicVersionLabel(version_);
2022 // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed.
2023 if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) {
2024 return false;
2025 }
2026
2027 QUIC_DVLOG(1) << ENDPOINT << "label = '"
2028 << QuicVersionLabelToString(version_label) << "'";
2029 }
2030
2031 if (header.nonce != nullptr &&
2032 !writer->WriteBytes(header.nonce, kDiversificationNonceSize)) {
2033 return false;
2034 }
2035
2036 if (!AppendPacketNumber(header.packet_number_length, header.packet_number,
2037 writer)) {
2038 return false;
2039 }
2040
2041 return true;
2042}
2043
2044bool QuicFramer::AppendIetfHeaderTypeByte(const QuicPacketHeader& header,
2045 QuicDataWriter* writer) {
2046 uint8_t type = 0;
2047 if (transport_version() > QUIC_VERSION_44) {
2048 if (header.version_flag) {
2049 type = static_cast<uint8_t>(
2050 FLAGS_LONG_HEADER | FLAGS_FIXED_BIT |
2051 LongHeaderTypeToOnWireValue(transport_version(),
2052 header.long_packet_type) |
2053 PacketNumberLengthToOnWireValue(transport_version(),
2054 header.packet_number_length));
2055 } else {
2056 type = static_cast<uint8_t>(
2057 FLAGS_FIXED_BIT |
2058 PacketNumberLengthToOnWireValue(transport_version(),
2059 header.packet_number_length));
2060 }
2061 return writer->WriteUInt8(type);
2062 }
2063
2064 if (header.version_flag) {
2065 type = static_cast<uint8_t>(
2066 FLAGS_LONG_HEADER | LongHeaderTypeToOnWireValue(
2067 transport_version(), header.long_packet_type));
2068 DCHECK_EQ(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length);
2069 } else {
2070 type |= FLAGS_SHORT_HEADER_RESERVED_1;
2071 type |= FLAGS_SHORT_HEADER_RESERVED_2;
2072 DCHECK_GE(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length);
2073 type |= PacketNumberLengthToOnWireValue(transport_version(),
2074 header.packet_number_length);
2075 }
2076 return writer->WriteUInt8(type);
2077}
2078
2079bool QuicFramer::AppendIetfPacketHeader(const QuicPacketHeader& header,
2080 QuicDataWriter* writer,
2081 size_t* length_field_offset) {
2082 QUIC_DVLOG(1) << ENDPOINT << "Appending IETF header: " << header;
2083 QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion(
2084 header.destination_connection_id, transport_version()))
2085 << "AppendIetfPacketHeader: attempted to use connection ID "
2086 << header.destination_connection_id << " which is invalid with version "
2087 << QuicVersionToString(transport_version());
2088 if (!AppendIetfHeaderTypeByte(header, writer)) {
2089 return false;
2090 }
2091
2092 if (header.version_flag) {
2093 // Append version for long header.
2094 QuicVersionLabel version_label = CreateQuicVersionLabel(version_);
2095 // TODO(rch): Use WriteUInt32() once QUIC_VERSION_35 is removed.
2096 if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) {
2097 return false;
2098 }
2099 }
2100
2101 // Append connection ID.
2102 if (!QuicUtils::VariableLengthConnectionIdAllowedForVersion(
2103 transport_version()) &&
2104 !GetQuicReloadableFlag(quic_use_new_append_connection_id)) {
2105 if (!AppendIetfConnectionId(
2106 header.version_flag, header.destination_connection_id,
2107 GetIncludedDestinationConnectionIdLength(header),
2108 header.source_connection_id,
2109 GetIncludedSourceConnectionIdLength(header), writer)) {
2110 return false;
2111 }
2112 } else {
2113 QUIC_RELOADABLE_FLAG_COUNT_N(quic_use_new_append_connection_id, 2, 2);
2114 if (!AppendIetfConnectionIdsNew(
2115 header.version_flag,
2116 header.destination_connection_id_included != CONNECTION_ID_ABSENT
2117 ? header.destination_connection_id
2118 : EmptyQuicConnectionId(),
2119 header.source_connection_id_included != CONNECTION_ID_ABSENT
2120 ? header.source_connection_id
2121 : EmptyQuicConnectionId(),
2122 writer)) {
2123 return false;
2124 }
2125 }
2126 last_serialized_connection_id_ = header.destination_connection_id;
2127
2128 if (QuicVersionHasLongHeaderLengths(transport_version()) &&
2129 header.version_flag) {
2130 if (header.long_packet_type == INITIAL) {
2131 // Write retry token length.
2132 if (!writer->WriteVarInt62(header.retry_token.length(),
2133 header.retry_token_length_length)) {
2134 return false;
2135 }
2136 // Write retry token.
2137 if (!header.retry_token.empty() &&
2138 !writer->WriteStringPiece(header.retry_token)) {
2139 return false;
2140 }
2141 }
2142 if (length_field_offset != nullptr) {
2143 *length_field_offset = writer->length();
2144 }
2145 // Add fake length to reserve two bytes to add length in later.
2146 writer->WriteVarInt62(256);
2147 } else if (length_field_offset != nullptr) {
2148 *length_field_offset = 0;
2149 }
2150
2151 // Append packet number.
2152 if (!AppendPacketNumber(header.packet_number_length, header.packet_number,
2153 writer)) {
2154 return false;
2155 }
2156
2157 if (!header.version_flag) {
2158 return true;
2159 }
2160
2161 if (header.nonce != nullptr) {
2162 DCHECK(header.version_flag);
2163 DCHECK_EQ(ZERO_RTT_PROTECTED, header.long_packet_type);
2164 DCHECK_EQ(Perspective::IS_SERVER, perspective_);
2165 if (!writer->WriteBytes(header.nonce, kDiversificationNonceSize)) {
2166 return false;
2167 }
2168 }
2169
2170 return true;
2171}
2172
2173const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
2174 uint32_t time_delta_us) {
2175 // The new time_delta might have wrapped to the next epoch, or it
2176 // might have reverse wrapped to the previous epoch, or it might
2177 // remain in the same epoch. Select the time closest to the previous
2178 // time.
2179 //
2180 // epoch_delta is the delta between epochs. A delta is 4 bytes of
2181 // microseconds.
2182 const uint64_t epoch_delta = UINT64_C(1) << 32;
2183 uint64_t epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
2184 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
2185 uint64_t prev_epoch = epoch - epoch_delta;
2186 uint64_t next_epoch = epoch + epoch_delta;
2187
2188 uint64_t time = ClosestTo(
2189 last_timestamp_.ToMicroseconds(), epoch + time_delta_us,
2190 ClosestTo(last_timestamp_.ToMicroseconds(), prev_epoch + time_delta_us,
2191 next_epoch + time_delta_us));
2192
2193 return QuicTime::Delta::FromMicroseconds(time);
2194}
2195
2196uint64_t QuicFramer::CalculatePacketNumberFromWire(
2197 QuicPacketNumberLength packet_number_length,
2198 QuicPacketNumber base_packet_number,
2199 uint64_t packet_number) const {
2200 // The new packet number might have wrapped to the next epoch, or
2201 // it might have reverse wrapped to the previous epoch, or it might
2202 // remain in the same epoch. Select the packet number closest to the
2203 // next expected packet number, the previous packet number plus 1.
2204
2205 // epoch_delta is the delta between epochs the packet number was serialized
2206 // with, so the correct value is likely the same epoch as the last sequence
2207 // number or an adjacent epoch.
2208 if (!base_packet_number.IsInitialized()) {
2209 return packet_number;
2210 }
2211 const uint64_t epoch_delta = UINT64_C(1) << (8 * packet_number_length);
2212 uint64_t next_packet_number = base_packet_number.ToUint64() + 1;
2213 uint64_t epoch = base_packet_number.ToUint64() & ~(epoch_delta - 1);
2214 uint64_t prev_epoch = epoch - epoch_delta;
2215 uint64_t next_epoch = epoch + epoch_delta;
2216
2217 return ClosestTo(next_packet_number, epoch + packet_number,
2218 ClosestTo(next_packet_number, prev_epoch + packet_number,
2219 next_epoch + packet_number));
2220}
2221
2222bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader,
2223 bool packet_has_ietf_packet_header,
2224 QuicPacketHeader* header) {
2225 if (packet_has_ietf_packet_header) {
2226 return ProcessIetfPacketHeader(reader, header);
2227 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002228 uint8_t public_flags;
2229 if (!reader->ReadBytes(&public_flags, 1)) {
2230 set_detailed_error("Unable to read public flags.");
2231 return false;
2232 }
2233
2234 header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
2235 header->version_flag = (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
2236
2237 if (validate_flags_ && !header->version_flag &&
2238 public_flags > PACKET_PUBLIC_FLAGS_MAX) {
2239 set_detailed_error("Illegal public flags value.");
2240 return false;
2241 }
2242
2243 if (header->reset_flag && header->version_flag) {
2244 set_detailed_error("Got version flag in reset packet");
2245 return false;
2246 }
2247
2248 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
2249 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
2250 if (!reader->ReadConnectionId(&header->destination_connection_id,
2251 kQuicDefaultConnectionIdLength)) {
2252 set_detailed_error("Unable to read ConnectionId.");
2253 return false;
2254 }
2255 header->destination_connection_id_included = CONNECTION_ID_PRESENT;
2256 break;
2257 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
2258 header->destination_connection_id_included = CONNECTION_ID_ABSENT;
2259 header->destination_connection_id = last_serialized_connection_id_;
2260 break;
2261 }
2262
2263 header->packet_number_length = ReadSequenceNumberLength(
2264 public_flags >> kPublicHeaderSequenceNumberShift);
2265
2266 // Read the version only if the packet is from the client.
2267 // version flag from the server means version negotiation packet.
2268 if (header->version_flag && perspective_ == Perspective::IS_SERVER) {
2269 QuicVersionLabel version_label;
2270 if (!reader->ReadTag(&version_label)) {
2271 set_detailed_error("Unable to read protocol version.");
2272 return false;
2273 }
2274 // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed.
2275 version_label = QuicEndian::NetToHost32(version_label);
2276
2277 // If the version from the new packet is the same as the version of this
2278 // framer, then the public flags should be set to something we understand.
2279 // If not, this raises an error.
2280 last_version_label_ = version_label;
2281 ParsedQuicVersion version = ParseQuicVersionLabel(version_label);
2282 if (version == version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
2283 set_detailed_error("Illegal public flags value.");
2284 return false;
2285 }
2286 header->version = version;
2287 }
2288
2289 // A nonce should only be present in packets from the server to the client,
2290 // which are neither version negotiation nor public reset packets.
2291 if (public_flags & PACKET_PUBLIC_FLAGS_NONCE &&
2292 !(public_flags & PACKET_PUBLIC_FLAGS_VERSION) &&
2293 !(public_flags & PACKET_PUBLIC_FLAGS_RST) &&
2294 // The nonce flag from a client is ignored and is assumed to be an older
2295 // client indicating an eight-byte connection ID.
2296 perspective_ == Perspective::IS_CLIENT) {
2297 if (!reader->ReadBytes(reinterpret_cast<uint8_t*>(last_nonce_.data()),
2298 last_nonce_.size())) {
2299 set_detailed_error("Unable to read nonce.");
2300 return false;
2301 }
2302 header->nonce = &last_nonce_;
2303 } else {
2304 header->nonce = nullptr;
2305 }
2306
2307 return true;
2308}
2309
2310// static
2311QuicPacketNumberLength QuicFramer::GetMinPacketNumberLength(
2312 QuicTransportVersion version,
2313 QuicPacketNumber packet_number) {
2314 DCHECK(packet_number.IsInitialized());
2315 if (packet_number < QuicPacketNumber(1 << (PACKET_1BYTE_PACKET_NUMBER * 8))) {
2316 return PACKET_1BYTE_PACKET_NUMBER;
2317 } else if (packet_number <
2318 QuicPacketNumber(1 << (PACKET_2BYTE_PACKET_NUMBER * 8))) {
2319 return PACKET_2BYTE_PACKET_NUMBER;
2320 } else if (packet_number <
2321 QuicPacketNumber(UINT64_C(1)
2322 << (PACKET_4BYTE_PACKET_NUMBER * 8))) {
2323 return PACKET_4BYTE_PACKET_NUMBER;
2324 } else {
2325 return PACKET_6BYTE_PACKET_NUMBER;
2326 }
2327}
2328
2329// static
2330uint8_t QuicFramer::GetPacketNumberFlags(
2331 QuicPacketNumberLength packet_number_length) {
2332 switch (packet_number_length) {
2333 case PACKET_1BYTE_PACKET_NUMBER:
2334 return PACKET_FLAGS_1BYTE_PACKET;
2335 case PACKET_2BYTE_PACKET_NUMBER:
2336 return PACKET_FLAGS_2BYTE_PACKET;
2337 case PACKET_4BYTE_PACKET_NUMBER:
2338 return PACKET_FLAGS_4BYTE_PACKET;
2339 case PACKET_6BYTE_PACKET_NUMBER:
2340 case PACKET_8BYTE_PACKET_NUMBER:
2341 return PACKET_FLAGS_8BYTE_PACKET;
2342 default:
2343 QUIC_BUG << "Unreachable case statement.";
2344 return PACKET_FLAGS_8BYTE_PACKET;
2345 }
2346}
2347
2348// static
2349QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
2350 const QuicAckFrame& frame) {
2351 AckFrameInfo new_ack_info;
2352 if (frame.packets.Empty()) {
2353 return new_ack_info;
2354 }
2355 // The first block is the last interval. It isn't encoded with the gap-length
2356 // encoding, so skip it.
2357 new_ack_info.first_block_length = frame.packets.LastIntervalLength();
2358 auto itr = frame.packets.rbegin();
2359 QuicPacketNumber previous_start = itr->min();
2360 new_ack_info.max_block_length = PacketNumberIntervalLength(*itr);
2361 ++itr;
2362
2363 // Don't do any more work after getting information for 256 ACK blocks; any
2364 // more can't be encoded anyway.
2365 for (; itr != frame.packets.rend() &&
2366 new_ack_info.num_ack_blocks < std::numeric_limits<uint8_t>::max();
2367 previous_start = itr->min(), ++itr) {
2368 const auto& interval = *itr;
2369 const QuicPacketCount total_gap = previous_start - interval.max();
2370 new_ack_info.num_ack_blocks +=
2371 (total_gap + std::numeric_limits<uint8_t>::max() - 1) /
2372 std::numeric_limits<uint8_t>::max();
2373 new_ack_info.max_block_length = std::max(
2374 new_ack_info.max_block_length, PacketNumberIntervalLength(interval));
2375 }
2376 return new_ack_info;
2377}
2378
2379bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader,
2380 QuicPacketHeader* header) {
QUICHE team10b22a12019-03-21 15:31:42 -07002381 QuicPacketNumber base_packet_number;
2382 if (supports_multiple_packet_number_spaces_) {
2383 base_packet_number =
2384 largest_decrypted_packet_numbers_[GetPacketNumberSpace(*header)];
2385 } else {
2386 base_packet_number = largest_packet_number_;
2387 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002388 uint64_t full_packet_number;
2389 if (!ProcessAndCalculatePacketNumber(
2390 encrypted_reader, header->packet_number_length, base_packet_number,
2391 &full_packet_number)) {
2392 set_detailed_error("Unable to read packet number.");
2393 return RaiseError(QUIC_INVALID_PACKET_HEADER);
2394 }
2395
2396 if (!IsValidFullPacketNumber(full_packet_number, transport_version())) {
2397 set_detailed_error("packet numbers cannot be 0.");
2398 return RaiseError(QUIC_INVALID_PACKET_HEADER);
2399 }
2400 header->packet_number = QuicPacketNumber(full_packet_number);
2401
2402 if (!visitor_->OnUnauthenticatedHeader(*header)) {
2403 set_detailed_error(
2404 "Visitor asked to stop processing of unauthenticated header.");
2405 return false;
2406 }
nharpera745e392019-04-19 12:05:15 -07002407 if (!header->version_flag && version().KnowsWhichDecrypterToUse()) {
2408 set_detailed_error("Invalid public header type for expected version.");
2409 return RaiseError(QUIC_INVALID_PACKET_HEADER);
2410 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002411 return true;
2412}
2413
2414bool QuicFramer::ProcessIetfHeaderTypeByte(QuicDataReader* reader,
2415 QuicPacketHeader* header) {
2416 uint8_t type;
2417 if (!reader->ReadBytes(&type, 1)) {
2418 set_detailed_error("Unable to read type.");
2419 return false;
2420 }
2421 // Determine whether this is a long or short header.
2422 header->form = type & FLAGS_LONG_HEADER ? IETF_QUIC_LONG_HEADER_PACKET
2423 : IETF_QUIC_SHORT_HEADER_PACKET;
2424 if (header->form == IETF_QUIC_LONG_HEADER_PACKET) {
2425 // Version is always present in long headers.
2426 header->version_flag = true;
2427 // Long header packets received by client must include 8-byte source
2428 // connection ID, and those received by server must include 8-byte
2429 // destination connection ID.
2430 header->destination_connection_id_included =
2431 perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_ABSENT
2432 : CONNECTION_ID_PRESENT;
2433 header->source_connection_id_included =
2434 perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_PRESENT
2435 : CONNECTION_ID_ABSENT;
2436 // Read version tag.
2437 QuicVersionLabel version_label;
2438 if (!reader->ReadTag(&version_label)) {
2439 set_detailed_error("Unable to read protocol version.");
2440 return false;
2441 }
2442 // TODO(rch): Use ReadUInt32() once QUIC_VERSION_35 is removed.
2443 version_label = QuicEndian::NetToHost32(version_label);
2444 if (!version_label) {
2445 // Version label is 0 indicating this is a version negotiation packet.
2446 header->long_packet_type = VERSION_NEGOTIATION;
2447 } else {
2448 header->version = ParseQuicVersionLabel(version_label);
2449 if (header->version.transport_version != QUIC_VERSION_UNSUPPORTED) {
2450 if (header->version.transport_version > QUIC_VERSION_44 &&
2451 !(type & FLAGS_FIXED_BIT)) {
2452 set_detailed_error("Fixed bit is 0 in long header.");
2453 return false;
2454 }
2455 if (!GetLongHeaderType(header->version.transport_version, type,
2456 &header->long_packet_type)) {
2457 set_detailed_error("Illegal long header type value.");
2458 return false;
2459 }
nharper2ceb97c2019-04-19 11:38:59 -07002460 if (header->long_packet_type == RETRY &&
2461 (version().KnowsWhichDecrypterToUse() ||
2462 supports_multiple_packet_number_spaces_)) {
2463 set_detailed_error("Not yet supported IETF RETRY packet received.");
2464 return RaiseError(QUIC_INVALID_PACKET_HEADER);
2465 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002466 header->packet_number_length = GetLongHeaderPacketNumberLength(
2467 header->version.transport_version, type);
2468 }
2469 }
2470 if (header->long_packet_type != VERSION_NEGOTIATION) {
2471 // Do not save version of version negotiation packet.
2472 last_version_label_ = version_label;
2473 }
2474
2475 QUIC_DVLOG(1) << ENDPOINT << "Received IETF long header: "
2476 << QuicUtils::QuicLongHeaderTypetoString(
2477 header->long_packet_type);
2478 return true;
2479 }
2480
2481 QUIC_DVLOG(1) << ENDPOINT << "Received IETF short header";
2482 // Version is not present in short headers.
2483 header->version_flag = false;
2484 // Connection ID length depends on the perspective. Client does not expect
2485 // destination connection ID, and server expects destination connection ID.
2486 header->destination_connection_id_included =
2487 perspective_ == Perspective::IS_CLIENT ? CONNECTION_ID_ABSENT
2488 : CONNECTION_ID_PRESENT;
2489 header->source_connection_id_included = CONNECTION_ID_ABSENT;
2490 if (infer_packet_header_type_from_version_ &&
2491 transport_version() > QUIC_VERSION_44 && !(type & FLAGS_FIXED_BIT)) {
2492 set_detailed_error("Fixed bit is 0 in short header.");
2493 return false;
2494 }
2495 if (!GetShortHeaderPacketNumberLength(transport_version(), type,
2496 infer_packet_header_type_from_version_,
2497 &header->packet_number_length)) {
2498 set_detailed_error("Illegal short header type value.");
2499 return false;
2500 }
2501 QUIC_DVLOG(1) << "packet_number_length = " << header->packet_number_length;
2502 return true;
2503}
2504
2505bool QuicFramer::ProcessIetfPacketHeader(QuicDataReader* reader,
2506 QuicPacketHeader* header) {
2507 if (!ProcessIetfHeaderTypeByte(reader, header)) {
2508 return false;
2509 }
2510
2511 uint8_t destination_connection_id_length =
2512 header->destination_connection_id_included == CONNECTION_ID_PRESENT
2513 ? expected_connection_id_length_
2514 : 0;
2515 uint8_t source_connection_id_length =
2516 header->source_connection_id_included == CONNECTION_ID_PRESENT
2517 ? expected_connection_id_length_
2518 : 0;
2519 if (header->form == IETF_QUIC_LONG_HEADER_PACKET) {
2520 // Read and validate connection ID length.
2521 uint8_t connection_id_lengths_byte;
2522 if (!reader->ReadBytes(&connection_id_lengths_byte, 1)) {
2523 set_detailed_error("Unable to read ConnectionId length.");
2524 return false;
2525 }
2526 uint8_t dcil =
2527 (connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4;
2528 if (dcil != 0) {
2529 dcil += kConnectionIdLengthAdjustment;
2530 }
QUICHE team4d9d6292019-03-11 14:25:33 -07002531 if (should_update_expected_connection_id_length_ &&
2532 expected_connection_id_length_ != dcil) {
2533 QUIC_DVLOG(1) << ENDPOINT << "Updating expected_connection_id_length: "
2534 << static_cast<int>(expected_connection_id_length_)
2535 << " -> " << static_cast<int>(dcil);
2536 expected_connection_id_length_ = dcil;
2537 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002538 uint8_t scil = connection_id_lengths_byte & kSourceConnectionIdLengthMask;
2539 if (scil != 0) {
2540 scil += kConnectionIdLengthAdjustment;
2541 }
QUICHE team4d9d6292019-03-11 14:25:33 -07002542 if ((dcil != destination_connection_id_length ||
2543 scil != source_connection_id_length) &&
QUICHE team8e2e4532019-03-14 14:37:56 -07002544 !should_update_expected_connection_id_length_ &&
2545 !QuicUtils::VariableLengthConnectionIdAllowedForVersion(
2546 header->version.transport_version)) {
2547 // TODO(dschinazi): use the framer's version once the
2548 // OnProtocolVersionMismatch call is moved to before this is run.
QUICHE teama6ef0a62019-03-07 20:34:33 -05002549 QUIC_DVLOG(1) << "dcil: " << static_cast<uint32_t>(dcil)
2550 << ", scil: " << static_cast<uint32_t>(scil);
2551 set_detailed_error("Invalid ConnectionId length.");
2552 return false;
2553 }
2554 destination_connection_id_length = dcil;
2555 source_connection_id_length = scil;
2556 }
2557
QUICHE team0131a5b2019-03-20 15:23:27 -07002558 DCHECK_LE(destination_connection_id_length, kQuicMaxConnectionIdLength);
2559 DCHECK_LE(source_connection_id_length, kQuicMaxConnectionIdLength);
2560
QUICHE teama6ef0a62019-03-07 20:34:33 -05002561 // Read connection ID.
2562 if (!reader->ReadConnectionId(&header->destination_connection_id,
2563 destination_connection_id_length)) {
2564 set_detailed_error("Unable to read Destination ConnectionId.");
2565 return false;
2566 }
2567
2568 if (!reader->ReadConnectionId(&header->source_connection_id,
2569 source_connection_id_length)) {
2570 set_detailed_error("Unable to read Source ConnectionId.");
2571 return false;
2572 }
2573
2574 if (header->source_connection_id_included == CONNECTION_ID_PRESENT) {
2575 // Set destination connection ID to source connection ID.
2576 DCHECK_EQ(EmptyQuicConnectionId(), header->destination_connection_id);
2577 header->destination_connection_id = header->source_connection_id;
2578 } else if (header->destination_connection_id_included ==
2579 CONNECTION_ID_ABSENT) {
2580 header->destination_connection_id = last_serialized_connection_id_;
2581 }
2582
2583 return true;
2584}
2585
2586bool QuicFramer::ProcessAndCalculatePacketNumber(
2587 QuicDataReader* reader,
2588 QuicPacketNumberLength packet_number_length,
2589 QuicPacketNumber base_packet_number,
2590 uint64_t* packet_number) {
2591 uint64_t wire_packet_number;
2592 if (!reader->ReadBytesToUInt64(packet_number_length, &wire_packet_number)) {
2593 return false;
2594 }
2595
2596 // TODO(ianswett): Explore the usefulness of trying multiple packet numbers
2597 // in case the first guess is incorrect.
2598 *packet_number = CalculatePacketNumberFromWire(
2599 packet_number_length, base_packet_number, wire_packet_number);
2600 return true;
2601}
2602
2603bool QuicFramer::ProcessFrameData(QuicDataReader* reader,
2604 const QuicPacketHeader& header) {
2605 DCHECK_NE(QUIC_VERSION_99, version_.transport_version)
2606 << "Version 99 negotiated, but not processing frames as version 99.";
2607 if (reader->IsDoneReading()) {
2608 set_detailed_error("Packet has no frames.");
2609 return RaiseError(QUIC_MISSING_PAYLOAD);
2610 }
2611 while (!reader->IsDoneReading()) {
2612 uint8_t frame_type;
2613 if (!reader->ReadBytes(&frame_type, 1)) {
2614 set_detailed_error("Unable to read frame type.");
2615 return RaiseError(QUIC_INVALID_FRAME_DATA);
2616 }
2617 const uint8_t special_mask = transport_version() <= QUIC_VERSION_44
2618 ? kQuicFrameTypeBrokenMask
2619 : kQuicFrameTypeSpecialMask;
2620 if (frame_type & special_mask) {
2621 // Stream Frame
2622 if (frame_type & kQuicFrameTypeStreamMask) {
2623 QuicStreamFrame frame;
2624 if (!ProcessStreamFrame(reader, frame_type, &frame)) {
2625 return RaiseError(QUIC_INVALID_STREAM_DATA);
2626 }
2627 if (!visitor_->OnStreamFrame(frame)) {
2628 QUIC_DVLOG(1) << ENDPOINT
2629 << "Visitor asked to stop further processing.";
2630 // Returning true since there was no parsing error.
2631 return true;
2632 }
2633 continue;
2634 }
2635
2636 // Ack Frame
2637 if (frame_type & kQuicFrameTypeAckMask) {
2638 if (!ProcessAckFrame(reader, frame_type)) {
2639 return RaiseError(QUIC_INVALID_ACK_DATA);
2640 }
2641 continue;
2642 }
2643
2644 // This was a special frame type that did not match any
2645 // of the known ones. Error.
2646 set_detailed_error("Illegal frame type.");
2647 QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: "
2648 << static_cast<int>(frame_type);
2649 return RaiseError(QUIC_INVALID_FRAME_DATA);
2650 }
2651
2652 switch (frame_type) {
2653 case PADDING_FRAME: {
2654 QuicPaddingFrame frame;
2655 ProcessPaddingFrame(reader, &frame);
2656 if (!visitor_->OnPaddingFrame(frame)) {
2657 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2658 // Returning true since there was no parsing error.
2659 return true;
2660 }
2661 continue;
2662 }
2663
2664 case RST_STREAM_FRAME: {
2665 QuicRstStreamFrame frame;
2666 if (!ProcessRstStreamFrame(reader, &frame)) {
2667 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
2668 }
2669 if (!visitor_->OnRstStreamFrame(frame)) {
2670 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2671 // Returning true since there was no parsing error.
2672 return true;
2673 }
2674 continue;
2675 }
2676
2677 case CONNECTION_CLOSE_FRAME: {
2678 QuicConnectionCloseFrame frame;
2679 if (!ProcessConnectionCloseFrame(reader, &frame)) {
2680 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
2681 }
2682
2683 if (!visitor_->OnConnectionCloseFrame(frame)) {
2684 QUIC_DVLOG(1) << ENDPOINT
2685 << "Visitor asked to stop further processing.";
2686 // Returning true since there was no parsing error.
2687 return true;
2688 }
2689 continue;
2690 }
2691
2692 case GOAWAY_FRAME: {
2693 QuicGoAwayFrame goaway_frame;
2694 if (!ProcessGoAwayFrame(reader, &goaway_frame)) {
2695 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
2696 }
2697 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
2698 QUIC_DVLOG(1) << ENDPOINT
2699 << "Visitor asked to stop further processing.";
2700 // Returning true since there was no parsing error.
2701 return true;
2702 }
2703 continue;
2704 }
2705
2706 case WINDOW_UPDATE_FRAME: {
2707 QuicWindowUpdateFrame window_update_frame;
2708 if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) {
2709 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
2710 }
2711 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
2712 QUIC_DVLOG(1) << ENDPOINT
2713 << "Visitor asked to stop further processing.";
2714 // Returning true since there was no parsing error.
2715 return true;
2716 }
2717 continue;
2718 }
2719
2720 case BLOCKED_FRAME: {
2721 QuicBlockedFrame blocked_frame;
2722 if (!ProcessBlockedFrame(reader, &blocked_frame)) {
2723 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
2724 }
2725 if (!visitor_->OnBlockedFrame(blocked_frame)) {
2726 QUIC_DVLOG(1) << ENDPOINT
2727 << "Visitor asked to stop further processing.";
2728 // Returning true since there was no parsing error.
2729 return true;
2730 }
2731 continue;
2732 }
2733
2734 case STOP_WAITING_FRAME: {
ianswett97b690b2019-05-02 15:12:43 -07002735 if (GetQuicReloadableFlag(quic_do_not_accept_stop_waiting) &&
2736 version_.transport_version >= QUIC_VERSION_44) {
2737 QUIC_RELOADABLE_FLAG_COUNT(quic_do_not_accept_stop_waiting);
2738 set_detailed_error("STOP WAITING not supported in version 44+.");
2739 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
2740 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002741 QuicStopWaitingFrame stop_waiting_frame;
2742 if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) {
2743 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
2744 }
2745 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
2746 QUIC_DVLOG(1) << ENDPOINT
2747 << "Visitor asked to stop further processing.";
2748 // Returning true since there was no parsing error.
2749 return true;
2750 }
2751 continue;
2752 }
2753 case PING_FRAME: {
2754 // Ping has no payload.
2755 QuicPingFrame ping_frame;
2756 if (!visitor_->OnPingFrame(ping_frame)) {
2757 QUIC_DVLOG(1) << ENDPOINT
2758 << "Visitor asked to stop further processing.";
2759 // Returning true since there was no parsing error.
2760 return true;
2761 }
2762 continue;
2763 }
2764 case IETF_EXTENSION_MESSAGE_NO_LENGTH:
2765 QUIC_FALLTHROUGH_INTENDED;
2766 case IETF_EXTENSION_MESSAGE: {
2767 QuicMessageFrame message_frame;
2768 if (!ProcessMessageFrame(reader,
2769 frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH,
2770 &message_frame)) {
2771 return RaiseError(QUIC_INVALID_MESSAGE_DATA);
2772 }
2773 if (!visitor_->OnMessageFrame(message_frame)) {
2774 QUIC_DVLOG(1) << ENDPOINT
2775 << "Visitor asked to stop further processing.";
2776 // Returning true since there was no parsing error.
2777 return true;
2778 }
2779 break;
2780 }
2781 case CRYPTO_FRAME: {
QUICHE teamea740082019-03-11 17:58:43 -07002782 if (!QuicVersionUsesCryptoFrames(version_.transport_version)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05002783 set_detailed_error("Illegal frame type.");
2784 return RaiseError(QUIC_INVALID_FRAME_DATA);
2785 }
2786 QuicCryptoFrame frame;
2787 if (!ProcessCryptoFrame(reader, &frame)) {
2788 return RaiseError(QUIC_INVALID_FRAME_DATA);
2789 }
2790 if (!visitor_->OnCryptoFrame(frame)) {
2791 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2792 // Returning true since there was no parsing error.
2793 return true;
2794 }
2795 break;
2796 }
2797
2798 default:
2799 set_detailed_error("Illegal frame type.");
2800 QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: "
2801 << static_cast<int>(frame_type);
2802 return RaiseError(QUIC_INVALID_FRAME_DATA);
2803 }
2804 }
2805
2806 return true;
2807}
2808
2809bool QuicFramer::ProcessIetfFrameData(QuicDataReader* reader,
2810 const QuicPacketHeader& header) {
2811 DCHECK_EQ(QUIC_VERSION_99, version_.transport_version)
2812 << "Attempt to process frames as IETF frames but version is "
2813 << version_.transport_version << ", not 99.";
2814 if (reader->IsDoneReading()) {
2815 set_detailed_error("Packet has no frames.");
2816 return RaiseError(QUIC_MISSING_PAYLOAD);
2817 }
2818 while (!reader->IsDoneReading()) {
2819 uint64_t frame_type;
2820 // Will be the number of bytes into which frame_type was encoded.
2821 size_t encoded_bytes = reader->BytesRemaining();
2822 if (!reader->ReadVarInt62(&frame_type)) {
2823 set_detailed_error("Unable to read frame type.");
2824 return RaiseError(QUIC_INVALID_FRAME_DATA);
2825 }
2826
2827 // Is now the number of bytes into which the frame type was encoded.
2828 encoded_bytes -= reader->BytesRemaining();
2829
2830 // Check that the frame type is minimally encoded.
2831 if (encoded_bytes !=
2832 static_cast<size_t>(QuicDataWriter::GetVarInt62Len(frame_type))) {
2833 // The frame type was not minimally encoded.
2834 set_detailed_error("Frame type not minimally encoded.");
2835 return RaiseError(IETF_QUIC_PROTOCOL_VIOLATION);
2836 }
2837
2838 if (IS_IETF_STREAM_FRAME(frame_type)) {
2839 QuicStreamFrame frame;
2840 if (!ProcessIetfStreamFrame(reader, frame_type, &frame)) {
2841 return RaiseError(QUIC_INVALID_STREAM_DATA);
2842 }
2843 if (!visitor_->OnStreamFrame(frame)) {
2844 QUIC_DVLOG(1) << ENDPOINT
2845 << "Visitor asked to stop further processing.";
2846 // Returning true since there was no parsing error.
2847 return true;
2848 }
2849 } else {
2850 switch (frame_type) {
2851 case IETF_PADDING: {
2852 QuicPaddingFrame frame;
2853 ProcessPaddingFrame(reader, &frame);
2854 if (!visitor_->OnPaddingFrame(frame)) {
2855 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2856 // Returning true since there was no parsing error.
2857 return true;
2858 }
2859 break;
2860 }
2861 case IETF_RST_STREAM: {
2862 QuicRstStreamFrame frame;
2863 if (!ProcessIetfResetStreamFrame(reader, &frame)) {
2864 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
2865 }
2866 if (!visitor_->OnRstStreamFrame(frame)) {
2867 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2868 // Returning true since there was no parsing error.
2869 return true;
2870 }
2871 break;
2872 }
fkastenholz04bd4f32019-04-16 12:24:38 -07002873 case IETF_APPLICATION_CLOSE:
QUICHE teama6ef0a62019-03-07 20:34:33 -05002874 case IETF_CONNECTION_CLOSE: {
2875 QuicConnectionCloseFrame frame;
fkastenholze9d71a82019-04-09 05:12:13 -07002876 if (!ProcessIetfConnectionCloseFrame(
fkastenholz04bd4f32019-04-16 12:24:38 -07002877 reader,
2878 (frame_type == IETF_CONNECTION_CLOSE)
2879 ? IETF_QUIC_TRANSPORT_CONNECTION_CLOSE
2880 : IETF_QUIC_APPLICATION_CONNECTION_CLOSE,
2881 &frame)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05002882 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
2883 }
2884 if (!visitor_->OnConnectionCloseFrame(frame)) {
2885 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2886 // Returning true since there was no parsing error.
2887 return true;
2888 }
2889 break;
2890 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05002891 case IETF_MAX_DATA: {
2892 QuicWindowUpdateFrame frame;
2893 if (!ProcessMaxDataFrame(reader, &frame)) {
2894 return RaiseError(QUIC_INVALID_MAX_DATA_FRAME_DATA);
2895 }
2896 // TODO(fkastenholz): Or should we create a new visitor function,
2897 // OnMaxDataFrame()?
2898 if (!visitor_->OnWindowUpdateFrame(frame)) {
2899 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2900 // Returning true since there was no parsing error.
2901 return true;
2902 }
2903 break;
2904 }
2905 case IETF_MAX_STREAM_DATA: {
2906 QuicWindowUpdateFrame frame;
2907 if (!ProcessMaxStreamDataFrame(reader, &frame)) {
2908 return RaiseError(QUIC_INVALID_MAX_STREAM_DATA_FRAME_DATA);
2909 }
2910 // TODO(fkastenholz): Or should we create a new visitor function,
2911 // OnMaxStreamDataFrame()?
2912 if (!visitor_->OnWindowUpdateFrame(frame)) {
2913 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2914 // Returning true since there was no parsing error.
2915 return true;
2916 }
2917 break;
2918 }
2919 case IETF_MAX_STREAMS_BIDIRECTIONAL:
2920 case IETF_MAX_STREAMS_UNIDIRECTIONAL: {
fkastenholz3c4eabf2019-04-22 07:49:59 -07002921 QuicMaxStreamsFrame frame;
QUICHE teama6ef0a62019-03-07 20:34:33 -05002922 if (!ProcessMaxStreamsFrame(reader, &frame, frame_type)) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07002923 return RaiseError(QUIC_MAX_STREAMS_DATA);
QUICHE teama6ef0a62019-03-07 20:34:33 -05002924 }
fkastenholz3c4eabf2019-04-22 07:49:59 -07002925 QUIC_CODE_COUNT_N(quic_max_streams_received, 1, 2);
2926 if (!visitor_->OnMaxStreamsFrame(frame)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05002927 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2928 // Returning true since there was no parsing error.
2929 return true;
2930 }
2931 break;
2932 }
2933 case IETF_PING: {
2934 // Ping has no payload.
2935 QuicPingFrame ping_frame;
2936 if (!visitor_->OnPingFrame(ping_frame)) {
2937 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2938 // Returning true since there was no parsing error.
2939 return true;
2940 }
2941 break;
2942 }
2943 case IETF_BLOCKED: {
2944 QuicBlockedFrame frame;
2945 if (!ProcessIetfBlockedFrame(reader, &frame)) {
2946 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
2947 }
2948 if (!visitor_->OnBlockedFrame(frame)) {
2949 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2950 // Returning true since there was no parsing error.
2951 return true;
2952 }
2953 break;
2954 }
2955 case IETF_STREAM_BLOCKED: {
2956 QuicBlockedFrame frame;
2957 if (!ProcessStreamBlockedFrame(reader, &frame)) {
2958 return RaiseError(QUIC_INVALID_STREAM_BLOCKED_DATA);
2959 }
2960 if (!visitor_->OnBlockedFrame(frame)) {
2961 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2962 // Returning true since there was no parsing error.
2963 return true;
2964 }
2965 break;
2966 }
2967 case IETF_STREAMS_BLOCKED_UNIDIRECTIONAL:
2968 case IETF_STREAMS_BLOCKED_BIDIRECTIONAL: {
fkastenholz3c4eabf2019-04-22 07:49:59 -07002969 QuicStreamsBlockedFrame frame;
QUICHE teama6ef0a62019-03-07 20:34:33 -05002970 if (!ProcessStreamsBlockedFrame(reader, &frame, frame_type)) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07002971 return RaiseError(QUIC_STREAMS_BLOCKED_DATA);
QUICHE teama6ef0a62019-03-07 20:34:33 -05002972 }
fkastenholz3c4eabf2019-04-22 07:49:59 -07002973 QUIC_CODE_COUNT_N(quic_streams_blocked_received, 1, 2);
2974 if (!visitor_->OnStreamsBlockedFrame(frame)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05002975 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2976 // Returning true since there was no parsing error.
2977 return true;
2978 }
2979 break;
2980 }
2981 case IETF_NEW_CONNECTION_ID: {
2982 QuicNewConnectionIdFrame frame;
2983 if (!ProcessNewConnectionIdFrame(reader, &frame)) {
2984 return RaiseError(QUIC_INVALID_NEW_CONNECTION_ID_DATA);
2985 }
2986 if (!visitor_->OnNewConnectionIdFrame(frame)) {
2987 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
2988 // Returning true since there was no parsing error.
2989 return true;
2990 }
2991 break;
2992 }
2993 case IETF_RETIRE_CONNECTION_ID: {
2994 QuicRetireConnectionIdFrame frame;
2995 if (!ProcessRetireConnectionIdFrame(reader, &frame)) {
2996 return RaiseError(QUIC_INVALID_RETIRE_CONNECTION_ID_DATA);
2997 }
2998 if (!visitor_->OnRetireConnectionIdFrame(frame)) {
2999 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3000 // Returning true since there was no parsing error.
3001 return true;
3002 }
3003 break;
3004 }
3005 case IETF_NEW_TOKEN: {
3006 QuicNewTokenFrame frame;
3007 if (!ProcessNewTokenFrame(reader, &frame)) {
3008 return RaiseError(QUIC_INVALID_NEW_TOKEN);
3009 }
3010 if (!visitor_->OnNewTokenFrame(frame)) {
3011 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3012 // Returning true since there was no parsing error.
3013 return true;
3014 }
3015 break;
3016 }
3017 case IETF_STOP_SENDING: {
3018 QuicStopSendingFrame frame;
3019 if (!ProcessStopSendingFrame(reader, &frame)) {
3020 return RaiseError(QUIC_INVALID_STOP_SENDING_FRAME_DATA);
3021 }
3022 if (!visitor_->OnStopSendingFrame(frame)) {
3023 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3024 // Returning true since there was no parsing error.
3025 return true;
3026 }
3027 break;
3028 }
3029 case IETF_ACK_ECN:
3030 case IETF_ACK: {
3031 QuicAckFrame frame;
3032 if (!ProcessIetfAckFrame(reader, frame_type, &frame)) {
3033 return RaiseError(QUIC_INVALID_ACK_DATA);
3034 }
3035 break;
3036 }
3037 case IETF_PATH_CHALLENGE: {
3038 QuicPathChallengeFrame frame;
3039 if (!ProcessPathChallengeFrame(reader, &frame)) {
3040 return RaiseError(QUIC_INVALID_PATH_CHALLENGE_DATA);
3041 }
3042 if (!visitor_->OnPathChallengeFrame(frame)) {
3043 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3044 // Returning true since there was no parsing error.
3045 return true;
3046 }
3047 break;
3048 }
3049 case IETF_PATH_RESPONSE: {
3050 QuicPathResponseFrame frame;
3051 if (!ProcessPathResponseFrame(reader, &frame)) {
3052 return RaiseError(QUIC_INVALID_PATH_RESPONSE_DATA);
3053 }
3054 if (!visitor_->OnPathResponseFrame(frame)) {
3055 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3056 // Returning true since there was no parsing error.
3057 return true;
3058 }
3059 break;
3060 }
3061 case IETF_EXTENSION_MESSAGE_NO_LENGTH:
3062 QUIC_FALLTHROUGH_INTENDED;
3063 case IETF_EXTENSION_MESSAGE: {
3064 QuicMessageFrame message_frame;
3065 if (!ProcessMessageFrame(
3066 reader, frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH,
3067 &message_frame)) {
3068 return RaiseError(QUIC_INVALID_MESSAGE_DATA);
3069 }
3070 if (!visitor_->OnMessageFrame(message_frame)) {
3071 QUIC_DVLOG(1) << ENDPOINT
3072 << "Visitor asked to stop further processing.";
3073 // Returning true since there was no parsing error.
3074 return true;
3075 }
3076 break;
3077 }
3078 case IETF_CRYPTO: {
3079 QuicCryptoFrame frame;
3080 if (!ProcessCryptoFrame(reader, &frame)) {
3081 return RaiseError(QUIC_INVALID_FRAME_DATA);
3082 }
3083 if (!visitor_->OnCryptoFrame(frame)) {
3084 QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
3085 // Returning true since there was no parsing error.
3086 return true;
3087 }
3088 break;
3089 }
3090
3091 default:
3092 set_detailed_error("Illegal frame type.");
3093 QUIC_DLOG(WARNING)
3094 << ENDPOINT
3095 << "Illegal frame type: " << static_cast<int>(frame_type);
3096 return RaiseError(QUIC_INVALID_FRAME_DATA);
3097 }
3098 }
3099 }
3100 return true;
3101}
3102
3103namespace {
3104// Create a mask that sets the last |num_bits| to 1 and the rest to 0.
3105inline uint8_t GetMaskFromNumBits(uint8_t num_bits) {
3106 return (1u << num_bits) - 1;
3107}
3108
3109// Extract |num_bits| from |flags| offset by |offset|.
3110uint8_t ExtractBits(uint8_t flags, uint8_t num_bits, uint8_t offset) {
3111 return (flags >> offset) & GetMaskFromNumBits(num_bits);
3112}
3113
3114// Extract the bit at position |offset| from |flags| as a bool.
3115bool ExtractBit(uint8_t flags, uint8_t offset) {
3116 return ((flags >> offset) & GetMaskFromNumBits(1)) != 0;
3117}
3118
3119// Set |num_bits|, offset by |offset| to |val| in |flags|.
3120void SetBits(uint8_t* flags, uint8_t val, uint8_t num_bits, uint8_t offset) {
3121 DCHECK_LE(val, GetMaskFromNumBits(num_bits));
3122 *flags |= val << offset;
3123}
3124
3125// Set the bit at position |offset| to |val| in |flags|.
3126void SetBit(uint8_t* flags, bool val, uint8_t offset) {
3127 SetBits(flags, val ? 1 : 0, 1, offset);
3128}
3129} // namespace
3130
3131bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader,
3132 uint8_t frame_type,
3133 QuicStreamFrame* frame) {
3134 uint8_t stream_flags = frame_type;
3135
3136 uint8_t stream_id_length = 0;
3137 uint8_t offset_length = 4;
3138 bool has_data_length = true;
3139 stream_flags &= ~kQuicFrameTypeStreamMask;
3140
3141 // Read from right to left: StreamID, Offset, Data Length, Fin.
3142 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
3143 stream_flags >>= kQuicStreamIdShift;
3144
3145 offset_length = (stream_flags & kQuicStreamOffsetMask);
3146 // There is no encoding for 1 byte, only 0 and 2 through 8.
3147 if (offset_length > 0) {
3148 offset_length += 1;
3149 }
3150 stream_flags >>= kQuicStreamShift;
3151
3152 has_data_length =
3153 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
3154 stream_flags >>= kQuicStreamDataLengthShift;
3155
3156 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
3157
3158 uint64_t stream_id;
3159 if (!reader->ReadBytesToUInt64(stream_id_length, &stream_id)) {
3160 set_detailed_error("Unable to read stream_id.");
3161 return false;
3162 }
3163 frame->stream_id = static_cast<QuicStreamId>(stream_id);
3164
3165 if (!reader->ReadBytesToUInt64(offset_length, &frame->offset)) {
3166 set_detailed_error("Unable to read offset.");
3167 return false;
3168 }
3169
3170 // TODO(ianswett): Don't use QuicStringPiece as an intermediary.
3171 QuicStringPiece data;
3172 if (has_data_length) {
3173 if (!reader->ReadStringPiece16(&data)) {
3174 set_detailed_error("Unable to read frame data.");
3175 return false;
3176 }
3177 } else {
3178 if (!reader->ReadStringPiece(&data, reader->BytesRemaining())) {
3179 set_detailed_error("Unable to read frame data.");
3180 return false;
3181 }
3182 }
3183 frame->data_buffer = data.data();
3184 frame->data_length = static_cast<uint16_t>(data.length());
3185
3186 return true;
3187}
3188
3189bool QuicFramer::ProcessIetfStreamFrame(QuicDataReader* reader,
3190 uint8_t frame_type,
3191 QuicStreamFrame* frame) {
3192 // Read stream id from the frame. It's always present.
fkastenholz3c4eabf2019-04-22 07:49:59 -07003193 if (!reader->ReadVarIntU32(&frame->stream_id)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05003194 set_detailed_error("Unable to read stream_id.");
3195 return false;
3196 }
3197
3198 // If we have a data offset, read it. If not, set to 0.
3199 if (frame_type & IETF_STREAM_FRAME_OFF_BIT) {
3200 if (!reader->ReadVarInt62(&frame->offset)) {
3201 set_detailed_error("Unable to read stream data offset.");
3202 return false;
3203 }
3204 } else {
3205 // no offset in the frame, ensure it's 0 in the Frame.
3206 frame->offset = 0;
3207 }
3208
3209 // If we have a data length, read it. If not, set to 0.
3210 if (frame_type & IETF_STREAM_FRAME_LEN_BIT) {
3211 QuicIetfStreamDataLength length;
3212 if (!reader->ReadVarInt62(&length)) {
3213 set_detailed_error("Unable to read stream data length.");
3214 return false;
3215 }
3216 if (length > 0xffff) {
3217 set_detailed_error("Stream data length is too large.");
3218 return false;
3219 }
3220 frame->data_length = length;
3221 } else {
3222 // no length in the frame, it is the number of bytes remaining in the
3223 // packet.
3224 frame->data_length = reader->BytesRemaining();
3225 }
3226
3227 if (frame_type & IETF_STREAM_FRAME_FIN_BIT) {
3228 frame->fin = true;
3229 } else {
3230 frame->fin = false;
3231 }
3232
3233 // TODO(ianswett): Don't use QuicStringPiece as an intermediary.
3234 QuicStringPiece data;
3235 if (!reader->ReadStringPiece(&data, frame->data_length)) {
3236 set_detailed_error("Unable to read frame data.");
3237 return false;
3238 }
3239 frame->data_buffer = data.data();
3240 frame->data_length = static_cast<QuicIetfStreamDataLength>(data.length());
3241
3242 return true;
3243}
3244
3245bool QuicFramer::ProcessCryptoFrame(QuicDataReader* reader,
3246 QuicCryptoFrame* frame) {
3247 if (!reader->ReadVarInt62(&frame->offset)) {
3248 set_detailed_error("Unable to read crypto data offset.");
3249 return false;
3250 }
3251 uint64_t len;
3252 if (!reader->ReadVarInt62(&len) ||
3253 len > std::numeric_limits<QuicPacketLength>::max()) {
3254 set_detailed_error("Invalid data length.");
3255 return false;
3256 }
3257 frame->data_length = len;
3258
3259 // TODO(ianswett): Don't use QuicStringPiece as an intermediary.
3260 QuicStringPiece data;
3261 if (!reader->ReadStringPiece(&data, frame->data_length)) {
3262 set_detailed_error("Unable to read frame data.");
3263 return false;
3264 }
3265 frame->data_buffer = data.data();
3266 return true;
3267}
3268
3269bool QuicFramer::ProcessAckFrame(QuicDataReader* reader, uint8_t frame_type) {
3270 const bool has_ack_blocks =
3271 ExtractBit(frame_type, kQuicHasMultipleAckBlocksOffset);
3272 uint8_t num_ack_blocks = 0;
3273 uint8_t num_received_packets = 0;
3274
3275 // Determine the two lengths from the frame type: largest acked length,
3276 // ack block length.
3277 const QuicPacketNumberLength ack_block_length = ReadAckPacketNumberLength(
3278 version_.transport_version,
3279 ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits,
3280 kActBlockLengthOffset));
3281 const QuicPacketNumberLength largest_acked_length = ReadAckPacketNumberLength(
3282 version_.transport_version,
3283 ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits,
3284 kLargestAckedOffset));
3285
3286 uint64_t largest_acked;
3287 if (!reader->ReadBytesToUInt64(largest_acked_length, &largest_acked)) {
3288 set_detailed_error("Unable to read largest acked.");
3289 return false;
3290 }
3291
3292 if (largest_acked < first_sending_packet_number_.ToUint64()) {
3293 // Connection always sends packet starting from kFirstSendingPacketNumber >
3294 // 0, peer has observed an unsent packet.
3295 set_detailed_error("Largest acked is 0.");
3296 return false;
3297 }
3298
3299 uint64_t ack_delay_time_us;
3300 if (!reader->ReadUFloat16(&ack_delay_time_us)) {
3301 set_detailed_error("Unable to read ack delay time.");
3302 return false;
3303 }
3304
3305 if (!visitor_->OnAckFrameStart(
3306 QuicPacketNumber(largest_acked),
3307 ack_delay_time_us == kUFloat16MaxValue
3308 ? QuicTime::Delta::Infinite()
3309 : QuicTime::Delta::FromMicroseconds(ack_delay_time_us))) {
3310 // The visitor suppresses further processing of the packet. Although this is
3311 // not a parsing error, returns false as this is in middle of processing an
3312 // ack frame,
3313 set_detailed_error("Visitor suppresses further processing of ack frame.");
3314 return false;
3315 }
3316
3317 if (has_ack_blocks && !reader->ReadUInt8(&num_ack_blocks)) {
3318 set_detailed_error("Unable to read num of ack blocks.");
3319 return false;
3320 }
3321
3322 uint64_t first_block_length;
3323 if (!reader->ReadBytesToUInt64(ack_block_length, &first_block_length)) {
3324 set_detailed_error("Unable to read first ack block length.");
3325 return false;
3326 }
3327
3328 if (first_block_length == 0) {
3329 set_detailed_error("First block length is zero.");
3330 return false;
3331 }
3332 bool first_ack_block_underflow = first_block_length > largest_acked + 1;
3333 if (first_block_length + first_sending_packet_number_.ToUint64() >
3334 largest_acked + 1) {
3335 first_ack_block_underflow = true;
3336 }
3337 if (first_ack_block_underflow) {
3338 set_detailed_error(QuicStrCat("Underflow with first ack block length ",
3339 first_block_length, " largest acked is ",
3340 largest_acked, ".")
3341 .c_str());
3342 return false;
3343 }
3344
3345 uint64_t first_received = largest_acked + 1 - first_block_length;
3346 if (!visitor_->OnAckRange(QuicPacketNumber(first_received),
3347 QuicPacketNumber(largest_acked + 1))) {
3348 // The visitor suppresses further processing of the packet. Although
3349 // this is not a parsing error, returns false as this is in middle
3350 // of processing an ack frame,
3351 set_detailed_error("Visitor suppresses further processing of ack frame.");
3352 return false;
3353 }
3354
3355 if (num_ack_blocks > 0) {
3356 for (size_t i = 0; i < num_ack_blocks; ++i) {
3357 uint8_t gap = 0;
3358 if (!reader->ReadUInt8(&gap)) {
3359 set_detailed_error("Unable to read gap to next ack block.");
3360 return false;
3361 }
3362 uint64_t current_block_length;
3363 if (!reader->ReadBytesToUInt64(ack_block_length, &current_block_length)) {
3364 set_detailed_error("Unable to ack block length.");
3365 return false;
3366 }
3367 bool ack_block_underflow = first_received < gap + current_block_length;
3368 if (first_received < gap + current_block_length +
3369 first_sending_packet_number_.ToUint64()) {
3370 ack_block_underflow = true;
3371 }
3372 if (ack_block_underflow) {
3373 set_detailed_error(
3374 QuicStrCat("Underflow with ack block length ", current_block_length,
3375 ", end of block is ", first_received - gap, ".")
3376 .c_str());
3377 return false;
3378 }
3379
3380 first_received -= (gap + current_block_length);
3381 if (current_block_length > 0) {
3382 if (!visitor_->OnAckRange(
3383 QuicPacketNumber(first_received),
3384 QuicPacketNumber(first_received) + current_block_length)) {
3385 // The visitor suppresses further processing of the packet. Although
3386 // this is not a parsing error, returns false as this is in middle
3387 // of processing an ack frame,
3388 set_detailed_error(
3389 "Visitor suppresses further processing of ack frame.");
3390 return false;
3391 }
3392 }
3393 }
3394 }
3395
3396 if (!reader->ReadUInt8(&num_received_packets)) {
3397 set_detailed_error("Unable to read num received packets.");
3398 return false;
3399 }
3400
3401 if (!ProcessTimestampsInAckFrame(num_received_packets,
3402 QuicPacketNumber(largest_acked), reader)) {
3403 return false;
3404 }
3405
3406 // Done processing the ACK frame.
3407 return visitor_->OnAckFrameEnd(QuicPacketNumber(first_received));
3408}
3409
3410bool QuicFramer::ProcessTimestampsInAckFrame(uint8_t num_received_packets,
3411 QuicPacketNumber largest_acked,
3412 QuicDataReader* reader) {
3413 if (num_received_packets == 0) {
3414 return true;
3415 }
3416 uint8_t delta_from_largest_observed;
3417 if (!reader->ReadUInt8(&delta_from_largest_observed)) {
3418 set_detailed_error("Unable to read sequence delta in received packets.");
3419 return false;
3420 }
3421
3422 if (largest_acked.ToUint64() <= delta_from_largest_observed) {
3423 set_detailed_error(QuicStrCat("delta_from_largest_observed too high: ",
3424 delta_from_largest_observed,
3425 ", largest_acked: ", largest_acked.ToUint64())
3426 .c_str());
3427 return false;
3428 }
3429
3430 // Time delta from the framer creation.
3431 uint32_t time_delta_us;
3432 if (!reader->ReadUInt32(&time_delta_us)) {
3433 set_detailed_error("Unable to read time delta in received packets.");
3434 return false;
3435 }
3436
3437 QuicPacketNumber seq_num = largest_acked - delta_from_largest_observed;
3438 if (process_timestamps_) {
3439 last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
3440
3441 visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_);
3442 }
3443
3444 for (uint8_t i = 1; i < num_received_packets; ++i) {
3445 if (!reader->ReadUInt8(&delta_from_largest_observed)) {
3446 set_detailed_error("Unable to read sequence delta in received packets.");
3447 return false;
3448 }
3449 if (largest_acked.ToUint64() <= delta_from_largest_observed) {
3450 set_detailed_error(
3451 QuicStrCat("delta_from_largest_observed too high: ",
3452 delta_from_largest_observed,
3453 ", largest_acked: ", largest_acked.ToUint64())
3454 .c_str());
3455 return false;
3456 }
3457 seq_num = largest_acked - delta_from_largest_observed;
3458
3459 // Time delta from the previous timestamp.
3460 uint64_t incremental_time_delta_us;
3461 if (!reader->ReadUFloat16(&incremental_time_delta_us)) {
3462 set_detailed_error(
3463 "Unable to read incremental time delta in received packets.");
3464 return false;
3465 }
3466
3467 if (process_timestamps_) {
3468 last_timestamp_ = last_timestamp_ + QuicTime::Delta::FromMicroseconds(
3469 incremental_time_delta_us);
3470 visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_);
3471 }
3472 }
3473 return true;
3474}
3475
3476bool QuicFramer::ProcessIetfAckFrame(QuicDataReader* reader,
3477 uint64_t frame_type,
3478 QuicAckFrame* ack_frame) {
3479 uint64_t largest_acked;
3480 if (!reader->ReadVarInt62(&largest_acked)) {
3481 set_detailed_error("Unable to read largest acked.");
3482 return false;
3483 }
3484 if (largest_acked < first_sending_packet_number_.ToUint64()) {
3485 // Connection always sends packet starting from kFirstSendingPacketNumber >
3486 // 0, peer has observed an unsent packet.
3487 set_detailed_error("Largest acked is 0.");
3488 return false;
3489 }
3490 ack_frame->largest_acked = static_cast<QuicPacketNumber>(largest_acked);
3491 uint64_t ack_delay_time_in_us;
3492 if (!reader->ReadVarInt62(&ack_delay_time_in_us)) {
3493 set_detailed_error("Unable to read ack delay time.");
3494 return false;
3495 }
3496
3497 // TODO(fkastenholz) when we get real IETF QUIC, need to get
3498 // the currect shift from the transport parameters.
3499 if (ack_delay_time_in_us == kVarInt62MaxValue) {
3500 ack_frame->ack_delay_time = QuicTime::Delta::Infinite();
3501 } else {
3502 ack_delay_time_in_us = (ack_delay_time_in_us << kIetfAckTimestampShift);
3503 ack_frame->ack_delay_time =
3504 QuicTime::Delta::FromMicroseconds(ack_delay_time_in_us);
3505 }
3506 if (frame_type == IETF_ACK_ECN) {
3507 ack_frame->ecn_counters_populated = true;
3508 if (!reader->ReadVarInt62(&ack_frame->ect_0_count)) {
3509 set_detailed_error("Unable to read ack ect_0_count.");
3510 return false;
3511 }
3512 if (!reader->ReadVarInt62(&ack_frame->ect_1_count)) {
3513 set_detailed_error("Unable to read ack ect_1_count.");
3514 return false;
3515 }
3516 if (!reader->ReadVarInt62(&ack_frame->ecn_ce_count)) {
3517 set_detailed_error("Unable to read ack ecn_ce_count.");
3518 return false;
3519 }
3520 } else {
3521 ack_frame->ecn_counters_populated = false;
3522 ack_frame->ect_0_count = 0;
3523 ack_frame->ect_1_count = 0;
3524 ack_frame->ecn_ce_count = 0;
3525 }
3526 if (!visitor_->OnAckFrameStart(QuicPacketNumber(largest_acked),
3527 ack_frame->ack_delay_time)) {
3528 // The visitor suppresses further processing of the packet. Although this is
3529 // not a parsing error, returns false as this is in middle of processing an
3530 // ACK frame.
3531 set_detailed_error("Visitor suppresses further processing of ACK frame.");
3532 return false;
3533 }
3534
3535 // Get number of ACK blocks from the packet.
3536 uint64_t ack_block_count;
3537 if (!reader->ReadVarInt62(&ack_block_count)) {
3538 set_detailed_error("Unable to read ack block count.");
3539 return false;
3540 }
3541 // There always is a first ACK block, which is the (number of packets being
3542 // acked)-1, up to and including the packet at largest_acked. Therefore if the
3543 // value is 0, then only largest is acked. If it is 1, then largest-1,
3544 // largest] are acked, etc
3545 uint64_t ack_block_value;
3546 if (!reader->ReadVarInt62(&ack_block_value)) {
3547 set_detailed_error("Unable to read first ack block length.");
3548 return false;
3549 }
3550 // Calculate the packets being acked in the first block.
3551 // +1 because AddRange implementation requires [low,high)
3552 uint64_t block_high = largest_acked + 1;
3553 uint64_t block_low = largest_acked - ack_block_value;
3554
3555 // ack_block_value is the number of packets preceding the
3556 // largest_acked packet which are in the block being acked. Thus,
3557 // its maximum value is largest_acked-1. Test this, reporting an
3558 // error if the value is wrong.
3559 if (ack_block_value + first_sending_packet_number_.ToUint64() >
3560 largest_acked) {
3561 set_detailed_error(QuicStrCat("Underflow with first ack block length ",
3562 ack_block_value + 1, " largest acked is ",
3563 largest_acked, ".")
3564 .c_str());
3565 return false;
3566 }
3567
3568 if (!visitor_->OnAckRange(QuicPacketNumber(block_low),
3569 QuicPacketNumber(block_high))) {
3570 // The visitor suppresses further processing of the packet. Although
3571 // this is not a parsing error, returns false as this is in middle
3572 // of processing an ACK frame.
3573 set_detailed_error("Visitor suppresses further processing of ACK frame.");
3574 return false;
3575 }
3576
3577 while (ack_block_count != 0) {
3578 uint64_t gap_block_value;
3579 // Get the sizes of the gap and ack blocks,
3580 if (!reader->ReadVarInt62(&gap_block_value)) {
3581 set_detailed_error("Unable to read gap block value.");
3582 return false;
3583 }
3584 // It's an error if the gap is larger than the space from packet
3585 // number 0 to the start of the block that's just been acked, PLUS
3586 // there must be space for at least 1 packet to be acked. For
3587 // example, if block_low is 10 and gap_block_value is 9, it means
3588 // the gap block is 10 packets long, leaving no room for a packet
3589 // to be acked. Thus, gap_block_value+2 can not be larger than
3590 // block_low.
3591 // The test is written this way to detect wrap-arounds.
3592 if ((gap_block_value + 2) > block_low) {
3593 set_detailed_error(
3594 QuicStrCat("Underflow with gap block length ", gap_block_value + 1,
3595 " previous ack block start is ", block_low, ".")
3596 .c_str());
3597 return false;
3598 }
3599
3600 // Adjust block_high to be the top of the next ack block.
3601 // There is a gap of |gap_block_value| packets between the bottom
3602 // of ack block N and top of block N+1. Note that gap_block_value
3603 // is he size of the gap minus 1 (per the QUIC protocol), and
3604 // block_high is the packet number of the first packet of the gap
3605 // (per the implementation of OnAckRange/AddAckRange, below).
3606 block_high = block_low - 1 - gap_block_value;
3607
3608 if (!reader->ReadVarInt62(&ack_block_value)) {
3609 set_detailed_error("Unable to read ack block value.");
3610 return false;
3611 }
3612 if (ack_block_value + first_sending_packet_number_.ToUint64() >
3613 (block_high - 1)) {
3614 set_detailed_error(
3615 QuicStrCat("Underflow with ack block length ", ack_block_value + 1,
3616 " latest ack block end is ", block_high - 1, ".")
3617 .c_str());
3618 return false;
3619 }
3620 // Calculate the low end of the new nth ack block. The +1 is
3621 // because the encoded value is the blocksize-1.
3622 block_low = block_high - 1 - ack_block_value;
3623 if (!visitor_->OnAckRange(QuicPacketNumber(block_low),
3624 QuicPacketNumber(block_high))) {
3625 // The visitor suppresses further processing of the packet. Although
3626 // this is not a parsing error, returns false as this is in middle
3627 // of processing an ACK frame.
3628 set_detailed_error("Visitor suppresses further processing of ACK frame.");
3629 return false;
3630 }
3631
3632 // Another one done.
3633 ack_block_count--;
3634 }
3635
3636 return visitor_->OnAckFrameEnd(QuicPacketNumber(block_low));
3637}
3638
3639bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader,
3640 const QuicPacketHeader& header,
3641 QuicStopWaitingFrame* stop_waiting) {
3642 uint64_t least_unacked_delta;
3643 if (!reader->ReadBytesToUInt64(header.packet_number_length,
3644 &least_unacked_delta)) {
3645 set_detailed_error("Unable to read least unacked delta.");
3646 return false;
3647 }
3648 if (header.packet_number.ToUint64() <= least_unacked_delta) {
3649 set_detailed_error("Invalid unacked delta.");
3650 return false;
3651 }
3652 stop_waiting->least_unacked = header.packet_number - least_unacked_delta;
3653
3654 return true;
3655}
3656
3657bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader,
3658 QuicRstStreamFrame* frame) {
3659 if (!reader->ReadUInt32(&frame->stream_id)) {
3660 set_detailed_error("Unable to read stream_id.");
3661 return false;
3662 }
3663
3664 if (!reader->ReadUInt64(&frame->byte_offset)) {
3665 set_detailed_error("Unable to read rst stream sent byte offset.");
3666 return false;
3667 }
3668
3669 uint32_t error_code;
3670 if (!reader->ReadUInt32(&error_code)) {
3671 set_detailed_error("Unable to read rst stream error code.");
3672 return false;
3673 }
3674
3675 if (error_code >= QUIC_STREAM_LAST_ERROR) {
3676 // Ignore invalid stream error code if any.
3677 error_code = QUIC_STREAM_LAST_ERROR;
3678 }
3679
3680 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
3681
3682 return true;
3683}
3684
3685bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader,
3686 QuicConnectionCloseFrame* frame) {
3687 uint32_t error_code;
fkastenholze9d71a82019-04-09 05:12:13 -07003688 frame->close_type = GOOGLE_QUIC_CONNECTION_CLOSE;
3689
QUICHE teama6ef0a62019-03-07 20:34:33 -05003690 if (!reader->ReadUInt32(&error_code)) {
3691 set_detailed_error("Unable to read connection close error code.");
3692 return false;
3693 }
3694
3695 if (error_code >= QUIC_LAST_ERROR) {
3696 // Ignore invalid QUIC error code if any.
3697 error_code = QUIC_LAST_ERROR;
3698 }
3699
fkastenholze9d71a82019-04-09 05:12:13 -07003700 frame->quic_error_code = static_cast<QuicErrorCode>(error_code);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003701
3702 QuicStringPiece error_details;
3703 if (!reader->ReadStringPiece16(&error_details)) {
3704 set_detailed_error("Unable to read connection close error details.");
3705 return false;
3706 }
vasilvvc48c8712019-03-11 13:38:16 -07003707 frame->error_details = std::string(error_details);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003708
3709 return true;
3710}
3711
3712bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader,
3713 QuicGoAwayFrame* frame) {
3714 uint32_t error_code;
3715 if (!reader->ReadUInt32(&error_code)) {
3716 set_detailed_error("Unable to read go away error code.");
3717 return false;
3718 }
3719
3720 if (error_code >= QUIC_LAST_ERROR) {
3721 // Ignore invalid QUIC error code if any.
3722 error_code = QUIC_LAST_ERROR;
3723 }
3724 frame->error_code = static_cast<QuicErrorCode>(error_code);
3725
3726 uint32_t stream_id;
3727 if (!reader->ReadUInt32(&stream_id)) {
3728 set_detailed_error("Unable to read last good stream id.");
3729 return false;
3730 }
3731 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
3732
3733 QuicStringPiece reason_phrase;
3734 if (!reader->ReadStringPiece16(&reason_phrase)) {
3735 set_detailed_error("Unable to read goaway reason.");
3736 return false;
3737 }
vasilvvc48c8712019-03-11 13:38:16 -07003738 frame->reason_phrase = std::string(reason_phrase);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003739
3740 return true;
3741}
3742
3743bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader,
3744 QuicWindowUpdateFrame* frame) {
3745 if (!reader->ReadUInt32(&frame->stream_id)) {
3746 set_detailed_error("Unable to read stream_id.");
3747 return false;
3748 }
3749
3750 if (!reader->ReadUInt64(&frame->byte_offset)) {
3751 set_detailed_error("Unable to read window byte_offset.");
3752 return false;
3753 }
3754
3755 return true;
3756}
3757
3758bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader,
3759 QuicBlockedFrame* frame) {
3760 DCHECK_NE(QUIC_VERSION_99, version_.transport_version)
3761 << "Attempt to process non-IETF frames but version is 99";
3762
3763 if (!reader->ReadUInt32(&frame->stream_id)) {
3764 set_detailed_error("Unable to read stream_id.");
3765 return false;
3766 }
3767
3768 return true;
3769}
3770
3771void QuicFramer::ProcessPaddingFrame(QuicDataReader* reader,
3772 QuicPaddingFrame* frame) {
3773 // Type byte has been read.
3774 frame->num_padding_bytes = 1;
3775 uint8_t next_byte;
3776 while (!reader->IsDoneReading() && reader->PeekByte() == 0x00) {
3777 reader->ReadBytes(&next_byte, 1);
3778 DCHECK_EQ(0x00, next_byte);
3779 ++frame->num_padding_bytes;
3780 }
3781}
3782
3783bool QuicFramer::ProcessMessageFrame(QuicDataReader* reader,
3784 bool no_message_length,
3785 QuicMessageFrame* frame) {
3786 if (no_message_length) {
3787 QuicStringPiece remaining(reader->ReadRemainingPayload());
3788 frame->data = remaining.data();
3789 frame->message_length = remaining.length();
3790 return true;
3791 }
3792
3793 uint64_t message_length;
3794 if (!reader->ReadVarInt62(&message_length)) {
3795 set_detailed_error("Unable to read message length");
3796 return false;
3797 }
3798
3799 QuicStringPiece message_piece;
3800 if (!reader->ReadStringPiece(&message_piece, message_length)) {
3801 set_detailed_error("Unable to read message data");
3802 return false;
3803 }
3804
3805 frame->data = message_piece.data();
3806 frame->message_length = message_length;
3807
3808 return true;
3809}
3810
3811// static
3812QuicStringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
3813 QuicTransportVersion version,
3814 const QuicEncryptedPacket& encrypted,
3815 QuicConnectionIdLength destination_connection_id_length,
3816 QuicConnectionIdLength source_connection_id_length,
3817 bool includes_version,
3818 bool includes_diversification_nonce,
3819 QuicPacketNumberLength packet_number_length,
3820 QuicVariableLengthIntegerLength retry_token_length_length,
3821 uint64_t retry_token_length,
3822 QuicVariableLengthIntegerLength length_length) {
3823 // TODO(ianswett): This is identical to QuicData::AssociatedData.
3824 return QuicStringPiece(
3825 encrypted.data(),
3826 GetStartOfEncryptedData(version, destination_connection_id_length,
3827 source_connection_id_length, includes_version,
3828 includes_diversification_nonce,
3829 packet_number_length, retry_token_length_length,
3830 retry_token_length, length_length));
3831}
3832
3833void QuicFramer::SetDecrypter(EncryptionLevel level,
3834 std::unique_ptr<QuicDecrypter> decrypter) {
QUICHE team76086e42019-03-25 15:12:29 -07003835 DCHECK_EQ(alternative_decrypter_level_, NUM_ENCRYPTION_LEVELS);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003836 DCHECK_GE(level, decrypter_level_);
zhongyi546cc452019-04-12 15:27:49 -07003837 DCHECK(!version_.KnowsWhichDecrypterToUse());
QUICHE team76086e42019-03-25 15:12:29 -07003838 decrypter_[decrypter_level_] = nullptr;
3839 decrypter_[level] = std::move(decrypter);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003840 decrypter_level_ = level;
3841}
3842
3843void QuicFramer::SetAlternativeDecrypter(
3844 EncryptionLevel level,
3845 std::unique_ptr<QuicDecrypter> decrypter,
3846 bool latch_once_used) {
QUICHE team76086e42019-03-25 15:12:29 -07003847 DCHECK_NE(level, decrypter_level_);
zhongyi546cc452019-04-12 15:27:49 -07003848 DCHECK(!version_.KnowsWhichDecrypterToUse());
QUICHE team76086e42019-03-25 15:12:29 -07003849 if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) {
3850 decrypter_[alternative_decrypter_level_] = nullptr;
3851 }
3852 decrypter_[level] = std::move(decrypter);
QUICHE teama6ef0a62019-03-07 20:34:33 -05003853 alternative_decrypter_level_ = level;
3854 alternative_decrypter_latch_ = latch_once_used;
3855}
3856
zhongyi546cc452019-04-12 15:27:49 -07003857void QuicFramer::InstallDecrypter(EncryptionLevel level,
3858 std::unique_ptr<QuicDecrypter> decrypter) {
3859 DCHECK(version_.KnowsWhichDecrypterToUse());
3860 decrypter_[level] = std::move(decrypter);
3861}
3862
3863void QuicFramer::RemoveDecrypter(EncryptionLevel level) {
3864 DCHECK(version_.KnowsWhichDecrypterToUse());
3865 decrypter_[level] = nullptr;
3866}
3867
3868const QuicDecrypter* QuicFramer::GetDecrypter(EncryptionLevel level) const {
3869 DCHECK(version_.KnowsWhichDecrypterToUse());
3870 return decrypter_[level].get();
3871}
3872
QUICHE teama6ef0a62019-03-07 20:34:33 -05003873const QuicDecrypter* QuicFramer::decrypter() const {
QUICHE team76086e42019-03-25 15:12:29 -07003874 return decrypter_[decrypter_level_].get();
QUICHE teama6ef0a62019-03-07 20:34:33 -05003875}
3876
3877const QuicDecrypter* QuicFramer::alternative_decrypter() const {
QUICHE team76086e42019-03-25 15:12:29 -07003878 if (alternative_decrypter_level_ == NUM_ENCRYPTION_LEVELS) {
3879 return nullptr;
3880 }
3881 return decrypter_[alternative_decrypter_level_].get();
QUICHE teama6ef0a62019-03-07 20:34:33 -05003882}
3883
3884void QuicFramer::SetEncrypter(EncryptionLevel level,
3885 std::unique_ptr<QuicEncrypter> encrypter) {
3886 DCHECK_GE(level, 0);
3887 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
3888 encrypter_[level] = std::move(encrypter);
3889}
3890
3891size_t QuicFramer::EncryptInPlace(EncryptionLevel level,
3892 QuicPacketNumber packet_number,
3893 size_t ad_len,
3894 size_t total_len,
3895 size_t buffer_len,
3896 char* buffer) {
3897 DCHECK(packet_number.IsInitialized());
dschinazi2c5386e2019-04-16 16:37:37 -07003898 if (encrypter_[level] == nullptr) {
3899 QUIC_BUG << ENDPOINT
3900 << "Attempted to encrypt in place without encrypter at level "
3901 << QuicUtils::EncryptionLevelToString(level);
3902 RaiseError(QUIC_ENCRYPTION_FAILURE);
3903 return 0;
3904 }
3905
QUICHE teama6ef0a62019-03-07 20:34:33 -05003906 size_t output_length = 0;
3907 if (!encrypter_[level]->EncryptPacket(
3908 packet_number.ToUint64(),
3909 QuicStringPiece(buffer, ad_len), // Associated data
3910 QuicStringPiece(buffer + ad_len, total_len - ad_len), // Plaintext
3911 buffer + ad_len, // Destination buffer
3912 &output_length, buffer_len - ad_len)) {
3913 RaiseError(QUIC_ENCRYPTION_FAILURE);
3914 return 0;
3915 }
3916
3917 return ad_len + output_length;
3918}
3919
3920size_t QuicFramer::EncryptPayload(EncryptionLevel level,
3921 QuicPacketNumber packet_number,
3922 const QuicPacket& packet,
3923 char* buffer,
3924 size_t buffer_len) {
3925 DCHECK(packet_number.IsInitialized());
dschinazi2c5386e2019-04-16 16:37:37 -07003926 if (encrypter_[level] == nullptr) {
3927 QUIC_BUG << ENDPOINT << "Attempted to encrypt without encrypter at level "
3928 << QuicUtils::EncryptionLevelToString(level);
3929 RaiseError(QUIC_ENCRYPTION_FAILURE);
3930 return 0;
3931 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05003932
3933 QuicStringPiece associated_data =
3934 packet.AssociatedData(version_.transport_version);
3935 // Copy in the header, because the encrypter only populates the encrypted
3936 // plaintext content.
3937 const size_t ad_len = associated_data.length();
3938 memmove(buffer, associated_data.data(), ad_len);
3939 // Encrypt the plaintext into the buffer.
3940 size_t output_length = 0;
3941 if (!encrypter_[level]->EncryptPacket(
3942 packet_number.ToUint64(), associated_data,
3943 packet.Plaintext(version_.transport_version), buffer + ad_len,
3944 &output_length, buffer_len - ad_len)) {
3945 RaiseError(QUIC_ENCRYPTION_FAILURE);
3946 return 0;
3947 }
3948
3949 return ad_len + output_length;
3950}
3951
3952size_t QuicFramer::GetCiphertextSize(EncryptionLevel level,
3953 size_t plaintext_size) const {
3954 return encrypter_[level]->GetCiphertextSize(plaintext_size);
3955}
3956
3957size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
3958 // In order to keep the code simple, we don't have the current encryption
3959 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
3960 size_t min_plaintext_size = ciphertext_size;
3961
QUICHE team6987b4a2019-03-15 16:23:04 -07003962 for (int i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; i++) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05003963 if (encrypter_[i] != nullptr) {
3964 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
3965 if (size < min_plaintext_size) {
3966 min_plaintext_size = size;
3967 }
3968 }
3969 }
3970
3971 return min_plaintext_size;
3972}
3973
3974bool QuicFramer::DecryptPayload(QuicStringPiece encrypted,
3975 QuicStringPiece associated_data,
3976 const QuicPacketHeader& header,
3977 char* decrypted_buffer,
3978 size_t buffer_length,
QUICHE team10b22a12019-03-21 15:31:42 -07003979 size_t* decrypted_length,
3980 EncryptionLevel* decrypted_level) {
nharper855d2172019-05-02 16:17:46 -07003981 if (!EncryptionLevelIsValid(decrypter_level_)) {
3982 QUIC_BUG << "Attempted to decrypt with bad decrypter_level_";
3983 return false;
3984 }
zhongyi546cc452019-04-12 15:27:49 -07003985 EncryptionLevel level = decrypter_level_;
3986 QuicDecrypter* decrypter = decrypter_[level].get();
QUICHE team76086e42019-03-25 15:12:29 -07003987 QuicDecrypter* alternative_decrypter = nullptr;
zhongyi546cc452019-04-12 15:27:49 -07003988 if (version().KnowsWhichDecrypterToUse()) {
nharper9bb83462019-05-01 10:53:22 -07003989 QUIC_RELOADABLE_FLAG_COUNT(quic_v44_disable_trial_decryption);
nharper855d2172019-05-02 16:17:46 -07003990 if (header.form == GOOGLE_QUIC_PACKET) {
3991 QUIC_BUG << "Attempted to decrypt GOOGLE_QUIC_PACKET with a version that "
3992 "knows which decrypter to use";
3993 return false;
3994 }
zhongyi546cc452019-04-12 15:27:49 -07003995 level = GetEncryptionLevel(header);
nharper855d2172019-05-02 16:17:46 -07003996 if (!EncryptionLevelIsValid(level)) {
3997 QUIC_BUG << "Attempted to decrypt with bad level";
3998 return false;
3999 }
zhongyi546cc452019-04-12 15:27:49 -07004000 decrypter = decrypter_[level].get();
4001 if (decrypter == nullptr) {
4002 return false;
4003 }
4004 if (level == ENCRYPTION_ZERO_RTT &&
4005 perspective_ == Perspective::IS_CLIENT && header.nonce != nullptr) {
4006 decrypter->SetDiversificationNonce(*header.nonce);
4007 }
4008 } else if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) {
nharper855d2172019-05-02 16:17:46 -07004009 if (!EncryptionLevelIsValid(alternative_decrypter_level_)) {
4010 QUIC_BUG << "Attempted to decrypt with bad alternative_decrypter_level_";
4011 return false;
4012 }
QUICHE team76086e42019-03-25 15:12:29 -07004013 alternative_decrypter = decrypter_[alternative_decrypter_level_].get();
4014 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05004015
nharper855d2172019-05-02 16:17:46 -07004016 if (decrypter == nullptr) {
4017 QUIC_BUG << "Attempting to decrypt without decrypter";
4018 return false;
4019 }
zhongyi546cc452019-04-12 15:27:49 -07004020
4021 bool success = decrypter->DecryptPacket(
QUICHE teama6ef0a62019-03-07 20:34:33 -05004022 header.packet_number.ToUint64(), associated_data, encrypted,
4023 decrypted_buffer, decrypted_length, buffer_length);
4024 if (success) {
zhongyi546cc452019-04-12 15:27:49 -07004025 visitor_->OnDecryptedPacket(level);
4026 *decrypted_level = level;
QUICHE team76086e42019-03-25 15:12:29 -07004027 } else if (alternative_decrypter != nullptr) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05004028 if (header.nonce != nullptr) {
4029 DCHECK_EQ(perspective_, Perspective::IS_CLIENT);
QUICHE team76086e42019-03-25 15:12:29 -07004030 alternative_decrypter->SetDiversificationNonce(*header.nonce);
QUICHE teama6ef0a62019-03-07 20:34:33 -05004031 }
4032 bool try_alternative_decryption = true;
4033 if (alternative_decrypter_level_ == ENCRYPTION_ZERO_RTT) {
4034 if (perspective_ == Perspective::IS_CLIENT) {
4035 if (header.nonce == nullptr) {
4036 // Can not use INITIAL decryption without a diversification nonce.
4037 try_alternative_decryption = false;
4038 }
4039 } else {
4040 DCHECK(header.nonce == nullptr);
4041 }
4042 }
4043
4044 if (try_alternative_decryption) {
QUICHE team76086e42019-03-25 15:12:29 -07004045 success = alternative_decrypter->DecryptPacket(
QUICHE teama6ef0a62019-03-07 20:34:33 -05004046 header.packet_number.ToUint64(), associated_data, encrypted,
4047 decrypted_buffer, decrypted_length, buffer_length);
4048 }
4049 if (success) {
4050 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
QUICHE team10b22a12019-03-21 15:31:42 -07004051 *decrypted_level = decrypter_level_;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004052 if (alternative_decrypter_latch_) {
nharper855d2172019-05-02 16:17:46 -07004053 if (!EncryptionLevelIsValid(alternative_decrypter_level_)) {
4054 QUIC_BUG << "Attempted to latch alternate decrypter with bad "
4055 "alternative_decrypter_level_";
4056 return false;
4057 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05004058 // Switch to the alternative decrypter and latch so that we cannot
4059 // switch back.
QUICHE teama6ef0a62019-03-07 20:34:33 -05004060 decrypter_level_ = alternative_decrypter_level_;
QUICHE team76086e42019-03-25 15:12:29 -07004061 alternative_decrypter_level_ = NUM_ENCRYPTION_LEVELS;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004062 } else {
4063 // Switch the alternative decrypter so that we use it first next time.
QUICHE teama6ef0a62019-03-07 20:34:33 -05004064 EncryptionLevel level = alternative_decrypter_level_;
4065 alternative_decrypter_level_ = decrypter_level_;
4066 decrypter_level_ = level;
4067 }
4068 }
4069 }
4070
4071 if (!success) {
4072 QUIC_DVLOG(1) << ENDPOINT << "DecryptPacket failed for packet_number:"
4073 << header.packet_number;
4074 return false;
4075 }
4076
4077 return true;
4078}
4079
4080size_t QuicFramer::GetIetfAckFrameSize(const QuicAckFrame& frame) {
4081 // Type byte, largest_acked, and delay_time are straight-forward.
4082 size_t ack_frame_size = kQuicFrameTypeSize;
4083 QuicPacketNumber largest_acked = LargestAcked(frame);
4084 ack_frame_size += QuicDataWriter::GetVarInt62Len(largest_acked.ToUint64());
4085 uint64_t ack_delay_time_us;
4086 ack_delay_time_us = frame.ack_delay_time.ToMicroseconds();
4087 ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift;
4088 ack_frame_size += QuicDataWriter::GetVarInt62Len(ack_delay_time_us);
4089
4090 // If |ecn_counters_populated| is true and any of the ecn counters is non-0
4091 // then the ecn counters are included...
4092 if (frame.ecn_counters_populated &&
4093 (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) {
4094 ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_0_count);
4095 ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_1_count);
4096 ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count);
4097 }
4098
4099 // The rest (ack_block_count, first_ack_block, and additional ack
4100 // blocks, if any) depends:
4101 uint64_t ack_block_count = frame.packets.NumIntervals();
4102 if (ack_block_count == 0) {
4103 // If the QuicAckFrame has no Intervals, then it is interpreted
4104 // as an ack of a single packet at QuicAckFrame.largest_acked.
4105 // The resulting ack will consist of only the frame's
4106 // largest_ack & first_ack_block fields. The first ack block will be 0
4107 // (indicating a single packet) and the ack block_count will be 0.
4108 // Each 0 takes 1 byte when VarInt62 encoded.
4109 ack_frame_size += 2;
4110 return ack_frame_size;
4111 }
4112
4113 auto itr = frame.packets.rbegin();
4114 QuicPacketNumber ack_block_largest = largest_acked;
4115 QuicPacketNumber ack_block_smallest;
4116 if ((itr->max() - 1) == largest_acked) {
4117 // If largest_acked + 1 is equal to the Max() of the first Interval
4118 // in the QuicAckFrame then the first Interval is the first ack block of the
4119 // frame; remaining Intervals are additional ack blocks. The QuicAckFrame's
4120 // first Interval is encoded in the frame's largest_acked/first_ack_block,
4121 // the remaining Intervals are encoded in additional ack blocks in the
4122 // frame, and the packet's ack_block_count is the number of QuicAckFrame
4123 // Intervals - 1.
4124 ack_block_smallest = itr->min();
4125 itr++;
4126 ack_block_count--;
4127 } else {
4128 // If QuicAckFrame.largest_acked is NOT equal to the Max() of
4129 // the first Interval then it is interpreted as acking a single
4130 // packet at QuicAckFrame.largest_acked, with additional
4131 // Intervals indicating additional ack blocks. The encoding is
4132 // a) The packet's largest_acked is the QuicAckFrame's largest
4133 // acked,
4134 // b) the first ack block size is 0,
4135 // c) The packet's ack_block_count is the number of QuicAckFrame
4136 // Intervals, and
4137 // d) The QuicAckFrame Intervals are encoded in additional ack
4138 // blocks in the packet.
4139 ack_block_smallest = largest_acked;
4140 }
4141 size_t ack_block_count_size = QuicDataWriter::GetVarInt62Len(ack_block_count);
4142 ack_frame_size += ack_block_count_size;
4143
4144 uint64_t first_ack_block = ack_block_largest - ack_block_smallest;
4145 size_t first_ack_block_size = QuicDataWriter::GetVarInt62Len(first_ack_block);
4146 ack_frame_size += first_ack_block_size;
4147
4148 // Account for the remaining Intervals, if any.
4149 while (ack_block_count != 0) {
4150 uint64_t gap_size = ack_block_smallest - itr->max();
4151 // Decrement per the protocol specification
4152 size_t size_of_gap_size = QuicDataWriter::GetVarInt62Len(gap_size - 1);
4153 ack_frame_size += size_of_gap_size;
4154
4155 uint64_t block_size = itr->max() - itr->min();
4156 // Decrement per the protocol specification
4157 size_t size_of_block_size = QuicDataWriter::GetVarInt62Len(block_size - 1);
4158 ack_frame_size += size_of_block_size;
4159
4160 ack_block_smallest = itr->min();
4161 itr++;
4162 ack_block_count--;
4163 }
4164
4165 return ack_frame_size;
4166}
4167
4168size_t QuicFramer::GetAckFrameSize(
4169 const QuicAckFrame& ack,
4170 QuicPacketNumberLength packet_number_length) {
4171 DCHECK(!ack.packets.Empty());
4172 size_t ack_size = 0;
4173
4174 if (version_.transport_version == QUIC_VERSION_99) {
4175 return GetIetfAckFrameSize(ack);
4176 }
4177 AckFrameInfo ack_info = GetAckFrameInfo(ack);
4178 QuicPacketNumberLength largest_acked_length =
4179 GetMinPacketNumberLength(version_.transport_version, LargestAcked(ack));
4180 QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength(
4181 version_.transport_version, QuicPacketNumber(ack_info.max_block_length));
4182
4183 ack_size =
4184 GetMinAckFrameSize(version_.transport_version, largest_acked_length);
4185 // First ack block length.
4186 ack_size += ack_block_length;
4187 if (ack_info.num_ack_blocks != 0) {
4188 ack_size += kNumberOfAckBlocksSize;
4189 ack_size += std::min(ack_info.num_ack_blocks, kMaxAckBlocks) *
4190 (ack_block_length + PACKET_1BYTE_PACKET_NUMBER);
4191 }
4192
4193 // Include timestamps.
4194 if (process_timestamps_) {
4195 ack_size += GetAckFrameTimeStampSize(ack);
4196 }
4197
4198 return ack_size;
4199}
4200
4201size_t QuicFramer::GetAckFrameTimeStampSize(const QuicAckFrame& ack) {
4202 if (ack.received_packet_times.empty()) {
4203 return 0;
4204 }
4205
4206 return kQuicNumTimestampsLength + kQuicFirstTimestampLength +
4207 (kQuicTimestampLength + kQuicTimestampPacketNumberGapLength) *
4208 (ack.received_packet_times.size() - 1);
4209}
4210
4211size_t QuicFramer::ComputeFrameLength(
4212 const QuicFrame& frame,
4213 bool last_frame_in_packet,
4214 QuicPacketNumberLength packet_number_length) {
4215 switch (frame.type) {
4216 case STREAM_FRAME:
4217 return GetMinStreamFrameSize(
4218 version_.transport_version, frame.stream_frame.stream_id,
4219 frame.stream_frame.offset, last_frame_in_packet,
4220 frame.stream_frame.data_length) +
4221 frame.stream_frame.data_length;
4222 case CRYPTO_FRAME:
4223 return GetMinCryptoFrameSize(frame.crypto_frame->offset,
4224 frame.crypto_frame->data_length) +
4225 frame.crypto_frame->data_length;
4226 case ACK_FRAME: {
4227 return GetAckFrameSize(*frame.ack_frame, packet_number_length);
4228 }
4229 case STOP_WAITING_FRAME:
4230 return GetStopWaitingFrameSize(version_.transport_version,
4231 packet_number_length);
4232 case MTU_DISCOVERY_FRAME:
4233 // MTU discovery frames are serialized as ping frames.
4234 return kQuicFrameTypeSize;
4235 case MESSAGE_FRAME:
4236 return GetMessageFrameSize(version_.transport_version,
4237 last_frame_in_packet,
4238 frame.message_frame->message_length);
4239 case PADDING_FRAME:
4240 DCHECK(false);
4241 return 0;
4242 default:
4243 return GetRetransmittableControlFrameSize(version_.transport_version,
4244 frame);
4245 }
4246}
4247
4248bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
4249 bool last_frame_in_packet,
4250 QuicDataWriter* writer) {
4251 if (version_.transport_version == QUIC_VERSION_99) {
4252 return AppendIetfTypeByte(frame, last_frame_in_packet, writer);
4253 }
4254 uint8_t type_byte = 0;
4255 switch (frame.type) {
4256 case STREAM_FRAME:
4257 type_byte =
4258 GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet);
4259 break;
4260 case ACK_FRAME:
4261 return true;
4262 case MTU_DISCOVERY_FRAME:
4263 type_byte = static_cast<uint8_t>(PING_FRAME);
4264 break;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004265 case NEW_CONNECTION_ID_FRAME:
4266 set_detailed_error(
4267 "Attempt to append NEW_CONNECTION_ID frame and not in version 99.");
4268 return RaiseError(QUIC_INTERNAL_ERROR);
4269 case RETIRE_CONNECTION_ID_FRAME:
4270 set_detailed_error(
4271 "Attempt to append RETIRE_CONNECTION_ID frame and not in version "
4272 "99.");
4273 return RaiseError(QUIC_INTERNAL_ERROR);
4274 case NEW_TOKEN_FRAME:
4275 set_detailed_error(
4276 "Attempt to append NEW_TOKEN frame and not in version 99.");
4277 return RaiseError(QUIC_INTERNAL_ERROR);
fkastenholz3c4eabf2019-04-22 07:49:59 -07004278 case MAX_STREAMS_FRAME:
QUICHE teama6ef0a62019-03-07 20:34:33 -05004279 set_detailed_error(
fkastenholz3c4eabf2019-04-22 07:49:59 -07004280 "Attempt to append MAX_STREAMS frame and not in version 99.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05004281 return RaiseError(QUIC_INTERNAL_ERROR);
fkastenholz3c4eabf2019-04-22 07:49:59 -07004282 case STREAMS_BLOCKED_FRAME:
QUICHE teama6ef0a62019-03-07 20:34:33 -05004283 set_detailed_error(
fkastenholz3c4eabf2019-04-22 07:49:59 -07004284 "Attempt to append STREAMS_BLOCKED frame and not in version 99.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05004285 return RaiseError(QUIC_INTERNAL_ERROR);
4286 case PATH_RESPONSE_FRAME:
4287 set_detailed_error(
4288 "Attempt to append PATH_RESPONSE frame and not in version 99.");
4289 return RaiseError(QUIC_INTERNAL_ERROR);
4290 case PATH_CHALLENGE_FRAME:
4291 set_detailed_error(
4292 "Attempt to append PATH_CHALLENGE frame and not in version 99.");
4293 return RaiseError(QUIC_INTERNAL_ERROR);
4294 case STOP_SENDING_FRAME:
4295 set_detailed_error(
4296 "Attempt to append STOP_SENDING frame and not in version 99.");
4297 return RaiseError(QUIC_INTERNAL_ERROR);
4298 case MESSAGE_FRAME:
4299 return true;
4300
4301 default:
4302 type_byte = static_cast<uint8_t>(frame.type);
4303 break;
4304 }
4305
4306 return writer->WriteUInt8(type_byte);
4307}
4308
4309bool QuicFramer::AppendIetfTypeByte(const QuicFrame& frame,
4310 bool last_frame_in_packet,
4311 QuicDataWriter* writer) {
4312 uint8_t type_byte = 0;
4313 switch (frame.type) {
4314 case PADDING_FRAME:
4315 type_byte = IETF_PADDING;
4316 break;
4317 case RST_STREAM_FRAME:
4318 type_byte = IETF_RST_STREAM;
4319 break;
4320 case CONNECTION_CLOSE_FRAME:
fkastenholz72f509b2019-04-10 09:17:49 -07004321 switch (frame.connection_close_frame->close_type) {
4322 case IETF_QUIC_APPLICATION_CONNECTION_CLOSE:
4323 type_byte = IETF_APPLICATION_CLOSE;
4324 break;
4325 case IETF_QUIC_TRANSPORT_CONNECTION_CLOSE:
4326 type_byte = IETF_CONNECTION_CLOSE;
4327 break;
4328 default:
4329 set_detailed_error("Invalid QuicConnectionCloseFrame type.");
4330 return RaiseError(QUIC_INTERNAL_ERROR);
4331 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05004332 break;
4333 case GOAWAY_FRAME:
4334 set_detailed_error(
4335 "Attempt to create non-version-99 GOAWAY frame in version 99.");
4336 return RaiseError(QUIC_INTERNAL_ERROR);
4337 case WINDOW_UPDATE_FRAME:
4338 // Depending on whether there is a stream ID or not, will be either a
4339 // MAX_STREAM_DATA frame or a MAX_DATA frame.
4340 if (frame.window_update_frame->stream_id ==
4341 QuicUtils::GetInvalidStreamId(transport_version())) {
4342 type_byte = IETF_MAX_DATA;
4343 } else {
4344 type_byte = IETF_MAX_STREAM_DATA;
4345 }
4346 break;
4347 case BLOCKED_FRAME:
4348 if (frame.blocked_frame->stream_id ==
4349 QuicUtils::GetInvalidStreamId(transport_version())) {
4350 type_byte = IETF_BLOCKED;
4351 } else {
4352 type_byte = IETF_STREAM_BLOCKED;
4353 }
4354 break;
4355 case STOP_WAITING_FRAME:
4356 set_detailed_error(
4357 "Attempt to append type byte of STOP WAITING frame in version 99.");
4358 return RaiseError(QUIC_INTERNAL_ERROR);
4359 case PING_FRAME:
4360 type_byte = IETF_PING;
4361 break;
4362 case STREAM_FRAME:
4363 type_byte =
4364 GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet);
4365 break;
4366 case ACK_FRAME:
4367 // Do nothing here, AppendIetfAckFrameAndTypeByte() will put the type byte
4368 // in the buffer.
4369 return true;
4370 case MTU_DISCOVERY_FRAME:
4371 // The path MTU discovery frame is encoded as a PING frame on the wire.
4372 type_byte = IETF_PING;
4373 break;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004374 case NEW_CONNECTION_ID_FRAME:
4375 type_byte = IETF_NEW_CONNECTION_ID;
4376 break;
4377 case RETIRE_CONNECTION_ID_FRAME:
4378 type_byte = IETF_RETIRE_CONNECTION_ID;
4379 break;
4380 case NEW_TOKEN_FRAME:
4381 type_byte = IETF_NEW_TOKEN;
4382 break;
fkastenholz3c4eabf2019-04-22 07:49:59 -07004383 case MAX_STREAMS_FRAME:
4384 if (frame.max_streams_frame.unidirectional) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05004385 type_byte = IETF_MAX_STREAMS_UNIDIRECTIONAL;
fkastenholz3c4eabf2019-04-22 07:49:59 -07004386 } else {
4387 type_byte = IETF_MAX_STREAMS_BIDIRECTIONAL;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004388 }
4389 break;
fkastenholz3c4eabf2019-04-22 07:49:59 -07004390 case STREAMS_BLOCKED_FRAME:
4391 if (frame.streams_blocked_frame.unidirectional) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05004392 type_byte = IETF_STREAMS_BLOCKED_UNIDIRECTIONAL;
fkastenholz3c4eabf2019-04-22 07:49:59 -07004393 } else {
4394 type_byte = IETF_STREAMS_BLOCKED_BIDIRECTIONAL;
QUICHE teama6ef0a62019-03-07 20:34:33 -05004395 }
4396 break;
4397 case PATH_RESPONSE_FRAME:
4398 type_byte = IETF_PATH_RESPONSE;
4399 break;
4400 case PATH_CHALLENGE_FRAME:
4401 type_byte = IETF_PATH_CHALLENGE;
4402 break;
4403 case STOP_SENDING_FRAME:
4404 type_byte = IETF_STOP_SENDING;
4405 break;
4406 case MESSAGE_FRAME:
4407 return true;
4408 case CRYPTO_FRAME:
4409 type_byte = IETF_CRYPTO;
4410 break;
4411 default:
4412 QUIC_BUG << "Attempt to generate a frame type for an unsupported value: "
4413 << frame.type;
4414 return false;
4415 }
4416 return writer->WriteUInt8(type_byte);
4417}
4418
4419// static
4420bool QuicFramer::AppendPacketNumber(QuicPacketNumberLength packet_number_length,
4421 QuicPacketNumber packet_number,
4422 QuicDataWriter* writer) {
4423 DCHECK(packet_number.IsInitialized());
4424 if (!IsValidPacketNumberLength(packet_number_length)) {
4425 QUIC_BUG << "Invalid packet_number_length: " << packet_number_length;
4426 return false;
4427 }
4428 return writer->WriteBytesToUInt64(packet_number_length,
4429 packet_number.ToUint64());
4430}
4431
4432// static
4433bool QuicFramer::AppendStreamId(size_t stream_id_length,
4434 QuicStreamId stream_id,
4435 QuicDataWriter* writer) {
4436 if (stream_id_length == 0 || stream_id_length > 4) {
4437 QUIC_BUG << "Invalid stream_id_length: " << stream_id_length;
4438 return false;
4439 }
4440 return writer->WriteBytesToUInt64(stream_id_length, stream_id);
4441}
4442
4443// static
4444bool QuicFramer::AppendStreamOffset(size_t offset_length,
4445 QuicStreamOffset offset,
4446 QuicDataWriter* writer) {
4447 if (offset_length == 1 || offset_length > 8) {
4448 QUIC_BUG << "Invalid stream_offset_length: " << offset_length;
4449 return false;
4450 }
4451
4452 return writer->WriteBytesToUInt64(offset_length, offset);
4453}
4454
4455// static
4456bool QuicFramer::AppendAckBlock(uint8_t gap,
4457 QuicPacketNumberLength length_length,
4458 uint64_t length,
4459 QuicDataWriter* writer) {
4460 if (length == 0) {
4461 if (!IsValidPacketNumberLength(length_length)) {
4462 QUIC_BUG << "Invalid packet_number_length: " << length_length;
4463 return false;
4464 }
4465 return writer->WriteUInt8(gap) &&
4466 writer->WriteBytesToUInt64(length_length, length);
4467 }
4468 return writer->WriteUInt8(gap) &&
4469 AppendPacketNumber(length_length, QuicPacketNumber(length), writer);
4470}
4471
4472bool QuicFramer::AppendStreamFrame(const QuicStreamFrame& frame,
4473 bool no_stream_frame_length,
4474 QuicDataWriter* writer) {
4475 if (version_.transport_version == QUIC_VERSION_99) {
4476 return AppendIetfStreamFrame(frame, no_stream_frame_length, writer);
4477 }
4478 if (!AppendStreamId(GetStreamIdSize(frame.stream_id), frame.stream_id,
4479 writer)) {
4480 QUIC_BUG << "Writing stream id size failed.";
4481 return false;
4482 }
4483 if (!AppendStreamOffset(
4484 GetStreamOffsetSize(version_.transport_version, frame.offset),
4485 frame.offset, writer)) {
4486 QUIC_BUG << "Writing offset size failed.";
4487 return false;
4488 }
4489 if (!no_stream_frame_length) {
4490 if ((frame.data_length > std::numeric_limits<uint16_t>::max()) ||
4491 !writer->WriteUInt16(static_cast<uint16_t>(frame.data_length))) {
4492 QUIC_BUG << "Writing stream frame length failed";
4493 return false;
4494 }
4495 }
4496
4497 if (data_producer_ != nullptr) {
4498 DCHECK_EQ(nullptr, frame.data_buffer);
4499 if (frame.data_length == 0) {
4500 return true;
4501 }
4502 if (data_producer_->WriteStreamData(frame.stream_id, frame.offset,
4503 frame.data_length,
4504 writer) != WRITE_SUCCESS) {
4505 QUIC_BUG << "Writing frame data failed.";
4506 return false;
4507 }
4508 return true;
4509 }
4510
4511 if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) {
4512 QUIC_BUG << "Writing frame data failed.";
4513 return false;
4514 }
4515 return true;
4516}
4517
4518// static
4519bool QuicFramer::AppendIetfConnectionId(
4520 bool version_flag,
4521 QuicConnectionId destination_connection_id,
4522 QuicConnectionIdLength destination_connection_id_length,
4523 QuicConnectionId source_connection_id,
4524 QuicConnectionIdLength source_connection_id_length,
4525 QuicDataWriter* writer) {
4526 if (version_flag) {
4527 // Append connection ID length byte.
4528 uint8_t dcil = GetConnectionIdLengthValue(destination_connection_id_length);
4529 uint8_t scil = GetConnectionIdLengthValue(source_connection_id_length);
4530 uint8_t connection_id_length = dcil << 4 | scil;
4531 if (!writer->WriteBytes(&connection_id_length, 1)) {
4532 return false;
4533 }
4534 }
4535 if (destination_connection_id_length == PACKET_8BYTE_CONNECTION_ID &&
4536 !writer->WriteConnectionId(destination_connection_id)) {
4537 return false;
4538 }
4539 if (source_connection_id_length == PACKET_8BYTE_CONNECTION_ID &&
4540 !writer->WriteConnectionId(source_connection_id)) {
4541 return false;
4542 }
4543 return true;
4544}
4545
4546bool QuicFramer::AppendNewTokenFrame(const QuicNewTokenFrame& frame,
4547 QuicDataWriter* writer) {
4548 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.token.length()))) {
4549 set_detailed_error("Writing token length failed.");
4550 return false;
4551 }
4552 if (!writer->WriteBytes(frame.token.data(), frame.token.length())) {
4553 set_detailed_error("Writing token buffer failed.");
4554 return false;
4555 }
4556 return true;
4557}
4558
4559bool QuicFramer::ProcessNewTokenFrame(QuicDataReader* reader,
4560 QuicNewTokenFrame* frame) {
4561 uint64_t length;
4562 if (!reader->ReadVarInt62(&length)) {
4563 set_detailed_error("Unable to read new token length.");
4564 return false;
4565 }
4566 if (length > kMaxNewTokenTokenLength) {
4567 set_detailed_error("Token length larger than maximum.");
4568 return false;
4569 }
4570
4571 // TODO(ianswett): Don't use QuicStringPiece as an intermediary.
4572 QuicStringPiece data;
4573 if (!reader->ReadStringPiece(&data, length)) {
4574 set_detailed_error("Unable to read new token data.");
4575 return false;
4576 }
vasilvvc48c8712019-03-11 13:38:16 -07004577 frame->token = std::string(data);
QUICHE teama6ef0a62019-03-07 20:34:33 -05004578 return true;
4579}
4580
4581// Add a new ietf-format stream frame.
4582// Bits controlling whether there is a frame-length and frame-offset
4583// are in the QuicStreamFrame.
4584bool QuicFramer::AppendIetfStreamFrame(const QuicStreamFrame& frame,
4585 bool last_frame_in_packet,
4586 QuicDataWriter* writer) {
4587 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) {
4588 set_detailed_error("Writing stream id failed.");
4589 return false;
4590 }
4591
4592 if (frame.offset != 0) {
4593 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) {
4594 set_detailed_error("Writing data offset failed.");
4595 return false;
4596 }
4597 }
4598
4599 if (!last_frame_in_packet) {
4600 if (!writer->WriteVarInt62(frame.data_length)) {
4601 set_detailed_error("Writing data length failed.");
4602 return false;
4603 }
4604 }
4605
4606 if (frame.data_length == 0) {
4607 return true;
4608 }
4609 if (data_producer_ == nullptr) {
4610 if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) {
4611 set_detailed_error("Writing frame data failed.");
4612 return false;
4613 }
4614 } else {
4615 DCHECK_EQ(nullptr, frame.data_buffer);
4616
4617 if (data_producer_->WriteStreamData(frame.stream_id, frame.offset,
4618 frame.data_length,
4619 writer) != WRITE_SUCCESS) {
4620 set_detailed_error("Writing frame data failed.");
4621 return false;
4622 }
4623 }
4624 return true;
4625}
4626
4627bool QuicFramer::AppendCryptoFrame(const QuicCryptoFrame& frame,
4628 QuicDataWriter* writer) {
4629 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) {
4630 set_detailed_error("Writing data offset failed.");
4631 return false;
4632 }
4633 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.data_length))) {
4634 set_detailed_error("Writing data length failed.");
4635 return false;
4636 }
4637 if (data_producer_ == nullptr) {
4638 if (frame.data_buffer == nullptr ||
4639 !writer->WriteBytes(frame.data_buffer, frame.data_length)) {
4640 set_detailed_error("Writing frame data failed.");
4641 return false;
4642 }
4643 } else {
4644 DCHECK_EQ(nullptr, frame.data_buffer);
4645 if (!data_producer_->WriteCryptoData(frame.level, frame.offset,
4646 frame.data_length, writer)) {
4647 return false;
4648 }
4649 }
4650 return true;
4651}
4652
4653void QuicFramer::set_version(const ParsedQuicVersion version) {
4654 DCHECK(IsSupportedVersion(version)) << ParsedQuicVersionToString(version);
4655 version_ = version;
4656}
4657
4658bool QuicFramer::AppendAckFrameAndTypeByte(const QuicAckFrame& frame,
4659 QuicDataWriter* writer) {
4660 if (transport_version() == QUIC_VERSION_99) {
4661 return AppendIetfAckFrameAndTypeByte(frame, writer);
4662 }
4663
4664 const AckFrameInfo new_ack_info = GetAckFrameInfo(frame);
4665 QuicPacketNumber largest_acked = LargestAcked(frame);
4666 QuicPacketNumberLength largest_acked_length =
4667 GetMinPacketNumberLength(version_.transport_version, largest_acked);
4668 QuicPacketNumberLength ack_block_length =
4669 GetMinPacketNumberLength(version_.transport_version,
4670 QuicPacketNumber(new_ack_info.max_block_length));
4671 // Calculate available bytes for timestamps and ack blocks.
4672 int32_t available_timestamp_and_ack_block_bytes =
4673 writer->capacity() - writer->length() - ack_block_length -
4674 GetMinAckFrameSize(version_.transport_version, largest_acked_length) -
4675 (new_ack_info.num_ack_blocks != 0 ? kNumberOfAckBlocksSize : 0);
4676 DCHECK_LE(0, available_timestamp_and_ack_block_bytes);
4677
4678 // Write out the type byte by setting the low order bits and doing shifts
4679 // to make room for the next bit flags to be set.
4680 // Whether there are multiple ack blocks.
4681 uint8_t type_byte = 0;
4682 SetBit(&type_byte, new_ack_info.num_ack_blocks != 0,
4683 kQuicHasMultipleAckBlocksOffset);
4684
4685 SetBits(&type_byte, GetPacketNumberFlags(largest_acked_length),
4686 kQuicSequenceNumberLengthNumBits, kLargestAckedOffset);
4687
4688 SetBits(&type_byte, GetPacketNumberFlags(ack_block_length),
4689 kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset);
4690
4691 type_byte |= kQuicFrameTypeAckMask;
4692
4693 if (!writer->WriteUInt8(type_byte)) {
4694 return false;
4695 }
4696
4697 size_t max_num_ack_blocks = available_timestamp_and_ack_block_bytes /
4698 (ack_block_length + PACKET_1BYTE_PACKET_NUMBER);
4699
4700 // Number of ack blocks.
4701 size_t num_ack_blocks =
4702 std::min(new_ack_info.num_ack_blocks, max_num_ack_blocks);
4703 if (num_ack_blocks > std::numeric_limits<uint8_t>::max()) {
4704 num_ack_blocks = std::numeric_limits<uint8_t>::max();
4705 }
4706
4707 // Largest acked.
4708 if (!AppendPacketNumber(largest_acked_length, largest_acked, writer)) {
4709 return false;
4710 }
4711
4712 // Largest acked delta time.
4713 uint64_t ack_delay_time_us = kUFloat16MaxValue;
4714 if (!frame.ack_delay_time.IsInfinite()) {
4715 DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds());
4716 ack_delay_time_us = frame.ack_delay_time.ToMicroseconds();
4717 }
4718 if (!writer->WriteUFloat16(ack_delay_time_us)) {
4719 return false;
4720 }
4721
4722 if (num_ack_blocks > 0) {
4723 if (!writer->WriteBytes(&num_ack_blocks, 1)) {
4724 return false;
4725 }
4726 }
4727
4728 // First ack block length.
4729 if (!AppendPacketNumber(ack_block_length,
4730 QuicPacketNumber(new_ack_info.first_block_length),
4731 writer)) {
4732 return false;
4733 }
4734
4735 // Ack blocks.
4736 if (num_ack_blocks > 0) {
4737 size_t num_ack_blocks_written = 0;
4738 // Append, in descending order from the largest ACKed packet, a series of
4739 // ACK blocks that represents the successfully acknoweldged packets. Each
4740 // appended gap/block length represents a descending delta from the previous
4741 // block. i.e.:
4742 // |--- length ---|--- gap ---|--- length ---|--- gap ---|--- largest ---|
4743 // For gaps larger than can be represented by a single encoded gap, a 0
4744 // length gap of the maximum is used, i.e.:
4745 // |--- length ---|--- gap ---|- 0 -|--- gap ---|--- largest ---|
4746 auto itr = frame.packets.rbegin();
4747 QuicPacketNumber previous_start = itr->min();
4748 ++itr;
4749
4750 for (;
4751 itr != frame.packets.rend() && num_ack_blocks_written < num_ack_blocks;
4752 previous_start = itr->min(), ++itr) {
4753 const auto& interval = *itr;
4754 const uint64_t total_gap = previous_start - interval.max();
4755 const size_t num_encoded_gaps =
4756 (total_gap + std::numeric_limits<uint8_t>::max() - 1) /
4757 std::numeric_limits<uint8_t>::max();
4758 DCHECK_LE(0u, num_encoded_gaps);
4759
4760 // Append empty ACK blocks because the gap is longer than a single gap.
4761 for (size_t i = 1;
4762 i < num_encoded_gaps && num_ack_blocks_written < num_ack_blocks;
4763 ++i) {
4764 if (!AppendAckBlock(std::numeric_limits<uint8_t>::max(),
4765 ack_block_length, 0, writer)) {
4766 return false;
4767 }
4768 ++num_ack_blocks_written;
4769 }
4770 if (num_ack_blocks_written >= num_ack_blocks) {
4771 if (QUIC_PREDICT_FALSE(num_ack_blocks_written != num_ack_blocks)) {
4772 QUIC_BUG << "Wrote " << num_ack_blocks_written
4773 << ", expected to write " << num_ack_blocks;
4774 }
4775 break;
4776 }
4777
4778 const uint8_t last_gap =
4779 total_gap -
4780 (num_encoded_gaps - 1) * std::numeric_limits<uint8_t>::max();
4781 // Append the final ACK block with a non-empty size.
4782 if (!AppendAckBlock(last_gap, ack_block_length,
4783 PacketNumberIntervalLength(interval), writer)) {
4784 return false;
4785 }
4786 ++num_ack_blocks_written;
4787 }
4788 DCHECK_EQ(num_ack_blocks, num_ack_blocks_written);
4789 }
4790 // Timestamps.
4791 // If we don't process timestamps or if we don't have enough available space
4792 // to append all the timestamps, don't append any of them.
4793 if (process_timestamps_ && writer->capacity() - writer->length() >=
4794 GetAckFrameTimeStampSize(frame)) {
4795 if (!AppendTimestampsToAckFrame(frame, writer)) {
4796 return false;
4797 }
4798 } else {
4799 uint8_t num_received_packets = 0;
4800 if (!writer->WriteBytes(&num_received_packets, 1)) {
4801 return false;
4802 }
4803 }
4804
4805 return true;
4806}
4807
4808bool QuicFramer::AppendTimestampsToAckFrame(const QuicAckFrame& frame,
4809 QuicDataWriter* writer) {
4810 DCHECK_GE(std::numeric_limits<uint8_t>::max(),
4811 frame.received_packet_times.size());
4812 // num_received_packets is only 1 byte.
4813 if (frame.received_packet_times.size() >
4814 std::numeric_limits<uint8_t>::max()) {
4815 return false;
4816 }
4817
4818 uint8_t num_received_packets = frame.received_packet_times.size();
4819 if (!writer->WriteBytes(&num_received_packets, 1)) {
4820 return false;
4821 }
4822 if (num_received_packets == 0) {
4823 return true;
4824 }
4825
4826 auto it = frame.received_packet_times.begin();
4827 QuicPacketNumber packet_number = it->first;
4828 uint64_t delta_from_largest_observed = LargestAcked(frame) - packet_number;
4829
4830 DCHECK_GE(std::numeric_limits<uint8_t>::max(), delta_from_largest_observed);
4831 if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) {
4832 return false;
4833 }
4834
4835 if (!writer->WriteUInt8(delta_from_largest_observed)) {
4836 return false;
4837 }
4838
4839 // Use the lowest 4 bytes of the time delta from the creation_time_.
4840 const uint64_t time_epoch_delta_us = UINT64_C(1) << 32;
4841 uint32_t time_delta_us =
4842 static_cast<uint32_t>((it->second - creation_time_).ToMicroseconds() &
4843 (time_epoch_delta_us - 1));
4844 if (!writer->WriteUInt32(time_delta_us)) {
4845 return false;
4846 }
4847
4848 QuicTime prev_time = it->second;
4849
4850 for (++it; it != frame.received_packet_times.end(); ++it) {
4851 packet_number = it->first;
4852 delta_from_largest_observed = LargestAcked(frame) - packet_number;
4853
4854 if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) {
4855 return false;
4856 }
4857
4858 if (!writer->WriteUInt8(delta_from_largest_observed)) {
4859 return false;
4860 }
4861
4862 uint64_t frame_time_delta_us = (it->second - prev_time).ToMicroseconds();
4863 prev_time = it->second;
4864 if (!writer->WriteUFloat16(frame_time_delta_us)) {
4865 return false;
4866 }
4867 }
4868 return true;
4869}
4870
4871bool QuicFramer::AppendStopWaitingFrame(const QuicPacketHeader& header,
4872 const QuicStopWaitingFrame& frame,
4873 QuicDataWriter* writer) {
4874 DCHECK_GE(QUIC_VERSION_43, version_.transport_version);
4875 DCHECK(frame.least_unacked.IsInitialized() &&
4876 header.packet_number >= frame.least_unacked);
4877 const uint64_t least_unacked_delta =
4878 header.packet_number - frame.least_unacked;
4879 const uint64_t length_shift = header.packet_number_length * 8;
4880
4881 if (least_unacked_delta >> length_shift > 0) {
4882 QUIC_BUG << "packet_number_length " << header.packet_number_length
4883 << " is too small for least_unacked_delta: " << least_unacked_delta
4884 << " packet_number:" << header.packet_number
4885 << " least_unacked:" << frame.least_unacked
4886 << " version:" << version_.transport_version;
4887 return false;
4888 }
4889 if (least_unacked_delta == 0) {
4890 return writer->WriteBytesToUInt64(header.packet_number_length,
4891 least_unacked_delta);
4892 }
4893 if (!AppendPacketNumber(header.packet_number_length,
4894 QuicPacketNumber(least_unacked_delta), writer)) {
4895 QUIC_BUG << " seq failed: " << header.packet_number_length;
4896 return false;
4897 }
4898
4899 return true;
4900}
4901
4902int QuicFramer::CalculateIetfAckBlockCount(const QuicAckFrame& frame,
4903 QuicDataWriter* writer,
4904 size_t available_space) {
4905 // Number of blocks requested in the frame
4906 uint64_t ack_block_count = frame.packets.NumIntervals();
4907
4908 auto itr = frame.packets.rbegin();
4909
4910 int actual_block_count = 1;
4911 uint64_t block_length = itr->max() - itr->min();
4912 size_t encoded_size = QuicDataWriter::GetVarInt62Len(block_length);
4913 if (encoded_size > available_space) {
4914 return 0;
4915 }
4916 available_space -= encoded_size;
4917 QuicPacketNumber previous_ack_end = itr->min();
4918 ack_block_count--;
4919
4920 while (ack_block_count) {
4921 // Each block is a gap followed by another ACK. Calculate each value,
4922 // determine the encoded lengths, and check against the available space.
4923 itr++;
4924 size_t gap = previous_ack_end - itr->max() - 1;
4925 encoded_size = QuicDataWriter::GetVarInt62Len(gap);
4926
4927 // Add the ACK block.
4928 block_length = itr->max() - itr->min();
4929 encoded_size += QuicDataWriter::GetVarInt62Len(block_length);
4930
4931 if (encoded_size > available_space) {
4932 // No room for this block, so what we've
4933 // done up to now is all that can be done.
4934 return actual_block_count;
4935 }
4936 available_space -= encoded_size;
4937 actual_block_count++;
4938 previous_ack_end = itr->min();
4939 ack_block_count--;
4940 }
4941 // Ran through the whole thing! We can do all blocks.
4942 return actual_block_count;
4943}
4944
4945bool QuicFramer::AppendIetfAckFrameAndTypeByte(const QuicAckFrame& frame,
4946 QuicDataWriter* writer) {
4947 // Assume frame is an IETF_ACK frame. If |ecn_counters_populated| is true and
4948 // any of the ECN counters is non-0 then turn it into an IETF_ACK+ECN frame.
4949 uint8_t type = IETF_ACK;
4950 if (frame.ecn_counters_populated &&
4951 (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) {
4952 type = IETF_ACK_ECN;
4953 }
4954
4955 if (!writer->WriteUInt8(type)) {
4956 set_detailed_error("No room for frame-type");
4957 return false;
4958 }
4959
4960 QuicPacketNumber largest_acked = LargestAcked(frame);
4961 if (!writer->WriteVarInt62(largest_acked.ToUint64())) {
4962 set_detailed_error("No room for largest-acked in ack frame");
4963 return false;
4964 }
4965
4966 uint64_t ack_delay_time_us = kVarInt62MaxValue;
4967 if (!frame.ack_delay_time.IsInfinite()) {
4968 DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds());
4969 ack_delay_time_us = frame.ack_delay_time.ToMicroseconds();
4970 // TODO(fkastenholz): Use the shift from TLS transport parameters.
4971 ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift;
4972 }
4973
4974 if (!writer->WriteVarInt62(ack_delay_time_us)) {
4975 set_detailed_error("No room for ack-delay in ack frame");
4976 return false;
4977 }
4978 if (type == IETF_ACK_ECN) {
4979 // Encode the ACK ECN fields
4980 if (!writer->WriteVarInt62(frame.ect_0_count)) {
4981 set_detailed_error("No room for ect_0_count in ack frame");
4982 return false;
4983 }
4984 if (!writer->WriteVarInt62(frame.ect_1_count)) {
4985 set_detailed_error("No room for ect_1_count in ack frame");
4986 return false;
4987 }
4988 if (!writer->WriteVarInt62(frame.ecn_ce_count)) {
4989 set_detailed_error("No room for ecn_ce_count in ack frame");
4990 return false;
4991 }
4992 }
4993
4994 uint64_t ack_block_count = frame.packets.NumIntervals();
4995 if (ack_block_count == 0) {
4996 // If the QuicAckFrame has no Intervals, then it is interpreted
4997 // as an ack of a single packet at QuicAckFrame.largest_acked.
4998 // The resulting ack will consist of only the frame's
4999 // largest_ack & first_ack_block fields. The first ack block will be 0
5000 // (indicating a single packet) and the ack block_count will be 0.
5001 if (!writer->WriteVarInt62(0)) {
5002 set_detailed_error("No room for ack block count in ack frame");
5003 return false;
5004 }
5005 // size of the first block is 1 packet
5006 if (!writer->WriteVarInt62(0)) {
5007 set_detailed_error("No room for first ack block in ack frame");
5008 return false;
5009 }
5010 return true;
5011 }
5012 // Case 2 or 3
5013 auto itr = frame.packets.rbegin();
5014
5015 QuicPacketNumber ack_block_largest(largest_acked);
5016 QuicPacketNumber ack_block_smallest;
5017 if ((itr->max() - 1) == QuicPacketNumber(largest_acked)) {
5018 // If largest_acked + 1 is equal to the Max() of the first Interval
5019 // in the QuicAckFrame then the first Interval is the first ack block of the
5020 // frame; remaining Intervals are additional ack blocks. The QuicAckFrame's
5021 // first Interval is encoded in the frame's largest_acked/first_ack_block,
5022 // the remaining Intervals are encoded in additional ack blocks in the
5023 // frame, and the packet's ack_block_count is the number of QuicAckFrame
5024 // Intervals - 1.
5025 ack_block_smallest = itr->min();
5026 itr++;
5027 ack_block_count--;
5028 } else {
5029 // If QuicAckFrame.largest_acked is NOT equal to the Max() of
5030 // the first Interval then it is interpreted as acking a single
5031 // packet at QuicAckFrame.largest_acked, with additional
5032 // Intervals indicating additional ack blocks. The encoding is
5033 // a) The packet's largest_acked is the QuicAckFrame's largest
5034 // acked,
5035 // b) the first ack block size is 0,
5036 // c) The packet's ack_block_count is the number of QuicAckFrame
5037 // Intervals, and
5038 // d) The QuicAckFrame Intervals are encoded in additional ack
5039 // blocks in the packet.
5040 ack_block_smallest = largest_acked;
5041 }
5042
5043 if (!writer->WriteVarInt62(ack_block_count)) {
5044 set_detailed_error("No room for ack block count in ack frame");
5045 return false;
5046 }
5047
5048 uint64_t first_ack_block = ack_block_largest - ack_block_smallest;
5049 if (!writer->WriteVarInt62(first_ack_block)) {
5050 set_detailed_error("No room for first ack block in ack frame");
5051 return false;
5052 }
5053
5054 // For the remaining QuicAckFrame Intervals, if any
5055 while (ack_block_count != 0) {
5056 uint64_t gap_size = ack_block_smallest - itr->max();
5057 if (!writer->WriteVarInt62(gap_size - 1)) {
5058 set_detailed_error("No room for gap block in ack frame");
5059 return false;
5060 }
5061
5062 uint64_t block_size = itr->max() - itr->min();
5063 if (!writer->WriteVarInt62(block_size - 1)) {
5064 set_detailed_error("No room for nth ack block in ack frame");
5065 return false;
5066 }
5067
5068 ack_block_smallest = itr->min();
5069 itr++;
5070 ack_block_count--;
5071 }
5072 return true;
5073}
5074
5075bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame,
5076 QuicDataWriter* writer) {
5077 if (version_.transport_version == QUIC_VERSION_99) {
5078 return AppendIetfResetStreamFrame(frame, writer);
5079 }
5080 if (!writer->WriteUInt32(frame.stream_id)) {
5081 return false;
5082 }
5083
5084 if (!writer->WriteUInt64(frame.byte_offset)) {
5085 return false;
5086 }
5087
5088 uint32_t error_code = static_cast<uint32_t>(frame.error_code);
5089 if (!writer->WriteUInt32(error_code)) {
5090 return false;
5091 }
5092
5093 return true;
5094}
5095
5096bool QuicFramer::AppendConnectionCloseFrame(
5097 const QuicConnectionCloseFrame& frame,
5098 QuicDataWriter* writer) {
5099 if (version_.transport_version == QUIC_VERSION_99) {
5100 return AppendIetfConnectionCloseFrame(frame, writer);
5101 }
fkastenholze9d71a82019-04-09 05:12:13 -07005102 uint32_t error_code = static_cast<uint32_t>(frame.quic_error_code);
QUICHE teama6ef0a62019-03-07 20:34:33 -05005103 if (!writer->WriteUInt32(error_code)) {
5104 return false;
5105 }
5106 if (!writer->WriteStringPiece16(TruncateErrorString(frame.error_details))) {
5107 return false;
5108 }
5109 return true;
5110}
5111
5112bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
5113 QuicDataWriter* writer) {
5114 uint32_t error_code = static_cast<uint32_t>(frame.error_code);
5115 if (!writer->WriteUInt32(error_code)) {
5116 return false;
5117 }
5118 uint32_t stream_id = static_cast<uint32_t>(frame.last_good_stream_id);
5119 if (!writer->WriteUInt32(stream_id)) {
5120 return false;
5121 }
5122 if (!writer->WriteStringPiece16(TruncateErrorString(frame.reason_phrase))) {
5123 return false;
5124 }
5125 return true;
5126}
5127
5128bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
5129 QuicDataWriter* writer) {
5130 uint32_t stream_id = static_cast<uint32_t>(frame.stream_id);
5131 if (!writer->WriteUInt32(stream_id)) {
5132 return false;
5133 }
5134 if (!writer->WriteUInt64(frame.byte_offset)) {
5135 return false;
5136 }
5137 return true;
5138}
5139
5140bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
5141 QuicDataWriter* writer) {
5142 if (version_.transport_version == QUIC_VERSION_99) {
5143 if (frame.stream_id == QuicUtils::GetInvalidStreamId(transport_version())) {
5144 return AppendIetfBlockedFrame(frame, writer);
5145 }
5146 return AppendStreamBlockedFrame(frame, writer);
5147 }
5148 uint32_t stream_id = static_cast<uint32_t>(frame.stream_id);
5149 if (!writer->WriteUInt32(stream_id)) {
5150 return false;
5151 }
5152 return true;
5153}
5154
5155bool QuicFramer::AppendPaddingFrame(const QuicPaddingFrame& frame,
5156 QuicDataWriter* writer) {
5157 if (frame.num_padding_bytes == 0) {
5158 return false;
5159 }
5160 if (frame.num_padding_bytes < 0) {
5161 QUIC_BUG_IF(frame.num_padding_bytes != -1);
5162 writer->WritePadding();
5163 return true;
5164 }
5165 // Please note, num_padding_bytes includes type byte which has been written.
5166 return writer->WritePaddingBytes(frame.num_padding_bytes - 1);
5167}
5168
5169bool QuicFramer::AppendMessageFrameAndTypeByte(const QuicMessageFrame& frame,
5170 bool last_frame_in_packet,
5171 QuicDataWriter* writer) {
5172 uint8_t type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH
5173 : IETF_EXTENSION_MESSAGE;
5174 if (!writer->WriteUInt8(type_byte)) {
5175 return false;
5176 }
5177 if (!last_frame_in_packet && !writer->WriteVarInt62(frame.message_length)) {
5178 return false;
5179 }
5180 for (const auto& slice : frame.message_data) {
5181 if (!writer->WriteBytes(slice.data(), slice.length())) {
5182 return false;
5183 }
5184 }
5185 return true;
5186}
5187
5188bool QuicFramer::RaiseError(QuicErrorCode error) {
5189 QUIC_DLOG(INFO) << ENDPOINT << "Error: " << QuicErrorCodeToString(error)
5190 << " detail: " << detailed_error_;
5191 set_error(error);
5192 visitor_->OnError(this);
5193 return false;
5194}
5195
5196bool QuicFramer::IsVersionNegotiation(
5197 const QuicPacketHeader& header,
5198 bool packet_has_ietf_packet_header) const {
5199 if (perspective_ == Perspective::IS_SERVER) {
5200 return false;
5201 }
5202 if (!packet_has_ietf_packet_header) {
5203 return header.version_flag;
5204 }
5205 if (header.form == IETF_QUIC_SHORT_HEADER_PACKET) {
5206 return false;
5207 }
5208 return header.long_packet_type == VERSION_NEGOTIATION;
5209}
5210
QUICHE teama6ef0a62019-03-07 20:34:33 -05005211bool QuicFramer::AppendIetfConnectionCloseFrame(
5212 const QuicConnectionCloseFrame& frame,
5213 QuicDataWriter* writer) {
fkastenholz72f509b2019-04-10 09:17:49 -07005214 if (frame.close_type != IETF_QUIC_TRANSPORT_CONNECTION_CLOSE &&
5215 frame.close_type != IETF_QUIC_APPLICATION_CONNECTION_CLOSE) {
5216 QUIC_BUG << "Invalid close_type for writing IETF CONNECTION CLOSE.";
5217 set_detailed_error("Invalid close_type for writing IETF CONNECTION CLOSE.");
5218 return false;
5219 }
5220
fkastenholze9d71a82019-04-09 05:12:13 -07005221 if (!writer->WriteUInt16(frame.application_error_code)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005222 set_detailed_error("Can not write connection close frame error code");
5223 return false;
5224 }
fkastenholze9d71a82019-04-09 05:12:13 -07005225
fkastenholz72f509b2019-04-10 09:17:49 -07005226 if (frame.close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) {
5227 // Write the frame-type of the frame causing the error only
5228 // if it's a CONNECTION_CLOSE/Transport.
5229 if (!writer->WriteVarInt62(frame.transport_close_frame_type)) {
5230 set_detailed_error("Writing frame type failed.");
5231 return false;
5232 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05005233 }
5234
fkastenholz72f509b2019-04-10 09:17:49 -07005235 // TODO(fkastenholz): For full IETF CONNECTION CLOSE support,
5236 // if this is a Transport CONNECTION_CLOSE and the extended
5237 // error is not QUIC_IETF_GQUIC_ERROR_MISSING then append the extended
5238 // "QuicErrorCode: #" string to the phrase.
QUICHE teama6ef0a62019-03-07 20:34:33 -05005239 if (!writer->WriteStringPieceVarInt62(
5240 TruncateErrorString(frame.error_details))) {
5241 set_detailed_error("Can not write connection close phrase");
5242 return false;
5243 }
5244 return true;
5245}
5246
QUICHE teama6ef0a62019-03-07 20:34:33 -05005247bool QuicFramer::ProcessIetfConnectionCloseFrame(
5248 QuicDataReader* reader,
fkastenholze9d71a82019-04-09 05:12:13 -07005249 QuicConnectionCloseType type,
QUICHE teama6ef0a62019-03-07 20:34:33 -05005250 QuicConnectionCloseFrame* frame) {
fkastenholze9d71a82019-04-09 05:12:13 -07005251 frame->close_type = type;
QUICHE teama6ef0a62019-03-07 20:34:33 -05005252 uint16_t code;
5253 if (!reader->ReadUInt16(&code)) {
5254 set_detailed_error("Unable to read connection close error code.");
5255 return false;
5256 }
fkastenholze9d71a82019-04-09 05:12:13 -07005257 frame->transport_error_code = static_cast<QuicIetfTransportErrorCodes>(code);
QUICHE teama6ef0a62019-03-07 20:34:33 -05005258
fkastenholz72f509b2019-04-10 09:17:49 -07005259 if (type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) {
5260 // The frame-type of the frame causing the error is present only
5261 // if it's a CONNECTION_CLOSE/Transport.
5262 if (!reader->ReadVarInt62(&frame->transport_close_frame_type)) {
5263 set_detailed_error("Unable to read connection close frame type.");
5264 return false;
5265 }
QUICHE teama6ef0a62019-03-07 20:34:33 -05005266 }
5267
5268 uint64_t phrase_length;
5269 if (!reader->ReadVarInt62(&phrase_length)) {
5270 set_detailed_error("Unable to read connection close error details.");
5271 return false;
5272 }
5273 QuicStringPiece phrase;
5274 if (!reader->ReadStringPiece(&phrase, static_cast<size_t>(phrase_length))) {
5275 set_detailed_error("Unable to read connection close error details.");
5276 return false;
5277 }
fkastenholz72f509b2019-04-10 09:17:49 -07005278 // TODO(fkastenholz): when full support is done, add code here
5279 // to extract the extended error code from the reason phrase
5280 // and set it into frame->extracted_error_code.
vasilvvc48c8712019-03-11 13:38:16 -07005281 frame->error_details = std::string(phrase);
QUICHE teama6ef0a62019-03-07 20:34:33 -05005282
5283 return true;
5284}
5285
5286// IETF Quic Path Challenge/Response frames.
5287bool QuicFramer::ProcessPathChallengeFrame(QuicDataReader* reader,
5288 QuicPathChallengeFrame* frame) {
5289 if (!reader->ReadBytes(frame->data_buffer.data(),
5290 frame->data_buffer.size())) {
5291 set_detailed_error("Can not read path challenge data.");
5292 return false;
5293 }
5294 return true;
5295}
5296
5297bool QuicFramer::ProcessPathResponseFrame(QuicDataReader* reader,
5298 QuicPathResponseFrame* frame) {
5299 if (!reader->ReadBytes(frame->data_buffer.data(),
5300 frame->data_buffer.size())) {
5301 set_detailed_error("Can not read path response data.");
5302 return false;
5303 }
5304 return true;
5305}
5306
5307bool QuicFramer::AppendPathChallengeFrame(const QuicPathChallengeFrame& frame,
5308 QuicDataWriter* writer) {
5309 if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) {
5310 set_detailed_error("Writing Path Challenge data failed.");
5311 return false;
5312 }
5313 return true;
5314}
5315
5316bool QuicFramer::AppendPathResponseFrame(const QuicPathResponseFrame& frame,
5317 QuicDataWriter* writer) {
5318 if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) {
5319 set_detailed_error("Writing Path Response data failed.");
5320 return false;
5321 }
5322 return true;
5323}
5324
5325// Add a new ietf-format stream reset frame.
5326// General format is
5327// stream id
5328// application error code
5329// final offset
5330bool QuicFramer::AppendIetfResetStreamFrame(const QuicRstStreamFrame& frame,
5331 QuicDataWriter* writer) {
5332 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) {
5333 set_detailed_error("Writing reset-stream stream id failed.");
5334 return false;
5335 }
5336 if (!writer->WriteUInt16(frame.ietf_error_code)) {
5337 set_detailed_error("Writing reset-stream error code failed.");
5338 return false;
5339 }
5340 if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.byte_offset))) {
5341 set_detailed_error("Writing reset-stream final-offset failed.");
5342 return false;
5343 }
5344 return true;
5345}
5346
5347bool QuicFramer::ProcessIetfResetStreamFrame(QuicDataReader* reader,
5348 QuicRstStreamFrame* frame) {
5349 // Get Stream ID from frame. ReadVarIntStreamID returns false
5350 // if either A) there is a read error or B) the resulting value of
5351 // the Stream ID is larger than the maximum allowed value.
fkastenholz3c4eabf2019-04-22 07:49:59 -07005352 if (!reader->ReadVarIntU32(&frame->stream_id)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005353 set_detailed_error("Unable to read rst stream stream id.");
5354 return false;
5355 }
5356
5357 if (!reader->ReadUInt16(&frame->ietf_error_code)) {
5358 set_detailed_error("Unable to read rst stream error code.");
5359 return false;
5360 }
5361
5362 if (!reader->ReadVarInt62(&frame->byte_offset)) {
5363 set_detailed_error("Unable to read rst stream sent byte offset.");
5364 return false;
5365 }
5366 return true;
5367}
5368
5369bool QuicFramer::ProcessStopSendingFrame(
5370 QuicDataReader* reader,
5371 QuicStopSendingFrame* stop_sending_frame) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005372 if (!reader->ReadVarIntU32(&stop_sending_frame->stream_id)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005373 set_detailed_error("Unable to read stop sending stream id.");
5374 return false;
5375 }
5376
5377 if (!reader->ReadUInt16(&stop_sending_frame->application_error_code)) {
5378 set_detailed_error("Unable to read stop sending application error code.");
5379 return false;
5380 }
5381 return true;
5382}
5383
5384bool QuicFramer::AppendStopSendingFrame(
5385 const QuicStopSendingFrame& stop_sending_frame,
5386 QuicDataWriter* writer) {
5387 if (!writer->WriteVarInt62(stop_sending_frame.stream_id)) {
5388 set_detailed_error("Can not write stop sending stream id");
5389 return false;
5390 }
5391 if (!writer->WriteUInt16(stop_sending_frame.application_error_code)) {
5392 set_detailed_error("Can not write application error code");
5393 return false;
5394 }
5395 return true;
5396}
5397
5398// Append/process IETF-Format MAX_DATA Frame
5399bool QuicFramer::AppendMaxDataFrame(const QuicWindowUpdateFrame& frame,
5400 QuicDataWriter* writer) {
5401 if (!writer->WriteVarInt62(frame.byte_offset)) {
5402 set_detailed_error("Can not write MAX_DATA byte-offset");
5403 return false;
5404 }
5405 return true;
5406}
5407
5408bool QuicFramer::ProcessMaxDataFrame(QuicDataReader* reader,
5409 QuicWindowUpdateFrame* frame) {
5410 frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version());
5411 if (!reader->ReadVarInt62(&frame->byte_offset)) {
5412 set_detailed_error("Can not read MAX_DATA byte-offset");
5413 return false;
5414 }
5415 return true;
5416}
5417
5418// Append/process IETF-Format MAX_STREAM_DATA Frame
5419bool QuicFramer::AppendMaxStreamDataFrame(const QuicWindowUpdateFrame& frame,
5420 QuicDataWriter* writer) {
5421 if (!writer->WriteVarInt62(frame.stream_id)) {
5422 set_detailed_error("Can not write MAX_STREAM_DATA stream id");
5423 return false;
5424 }
5425 if (!writer->WriteVarInt62(frame.byte_offset)) {
5426 set_detailed_error("Can not write MAX_STREAM_DATA byte-offset");
5427 return false;
5428 }
5429 return true;
5430}
5431
5432bool QuicFramer::ProcessMaxStreamDataFrame(QuicDataReader* reader,
5433 QuicWindowUpdateFrame* frame) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005434 if (!reader->ReadVarIntU32(&frame->stream_id)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005435 set_detailed_error("Can not read MAX_STREAM_DATA stream id");
5436 return false;
5437 }
5438 if (!reader->ReadVarInt62(&frame->byte_offset)) {
5439 set_detailed_error("Can not read MAX_STREAM_DATA byte-count");
5440 return false;
5441 }
5442 return true;
5443}
5444
fkastenholz3c4eabf2019-04-22 07:49:59 -07005445bool QuicFramer::AppendMaxStreamsFrame(const QuicMaxStreamsFrame& frame,
QUICHE teama6ef0a62019-03-07 20:34:33 -05005446 QuicDataWriter* writer) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005447 if (!writer->WriteVarInt62(frame.stream_count)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005448 set_detailed_error("Can not write MAX_STREAMS stream count");
5449 return false;
5450 }
5451 return true;
5452}
5453
5454bool QuicFramer::ProcessMaxStreamsFrame(QuicDataReader* reader,
fkastenholz3c4eabf2019-04-22 07:49:59 -07005455 QuicMaxStreamsFrame* frame,
QUICHE teama6ef0a62019-03-07 20:34:33 -05005456 uint64_t frame_type) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005457 if (!reader->ReadVarIntU32(&frame->stream_count)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005458 set_detailed_error("Can not read MAX_STREAMS stream count.");
5459 return false;
5460 }
fkastenholz3c4eabf2019-04-22 07:49:59 -07005461 frame->unidirectional = (frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL);
5462 return true;
QUICHE teama6ef0a62019-03-07 20:34:33 -05005463}
5464
5465bool QuicFramer::AppendIetfBlockedFrame(const QuicBlockedFrame& frame,
5466 QuicDataWriter* writer) {
5467 if (!writer->WriteVarInt62(frame.offset)) {
5468 set_detailed_error("Can not write blocked offset.");
5469 return false;
5470 }
5471 return true;
5472}
5473
5474bool QuicFramer::ProcessIetfBlockedFrame(QuicDataReader* reader,
5475 QuicBlockedFrame* frame) {
5476 // Indicates that it is a BLOCKED frame (as opposed to STREAM_BLOCKED).
5477 frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version());
5478 if (!reader->ReadVarInt62(&frame->offset)) {
5479 set_detailed_error("Can not read blocked offset.");
5480 return false;
5481 }
5482 return true;
5483}
5484
5485bool QuicFramer::AppendStreamBlockedFrame(const QuicBlockedFrame& frame,
5486 QuicDataWriter* writer) {
5487 if (!writer->WriteVarInt62(frame.stream_id)) {
5488 set_detailed_error("Can not write stream blocked stream id.");
5489 return false;
5490 }
5491 if (!writer->WriteVarInt62(frame.offset)) {
5492 set_detailed_error("Can not write stream blocked offset.");
5493 return false;
5494 }
5495 return true;
5496}
5497
5498bool QuicFramer::ProcessStreamBlockedFrame(QuicDataReader* reader,
5499 QuicBlockedFrame* frame) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005500 if (!reader->ReadVarIntU32(&frame->stream_id)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005501 set_detailed_error("Can not read stream blocked stream id.");
5502 return false;
5503 }
5504 if (!reader->ReadVarInt62(&frame->offset)) {
5505 set_detailed_error("Can not read stream blocked offset.");
5506 return false;
5507 }
5508 return true;
5509}
5510
fkastenholz3c4eabf2019-04-22 07:49:59 -07005511bool QuicFramer::AppendStreamsBlockedFrame(const QuicStreamsBlockedFrame& frame,
5512 QuicDataWriter* writer) {
5513 if (!writer->WriteVarInt62(frame.stream_count)) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005514 set_detailed_error("Can not write STREAMS_BLOCKED stream count");
5515 return false;
5516 }
5517 return true;
5518}
5519
5520bool QuicFramer::ProcessStreamsBlockedFrame(QuicDataReader* reader,
fkastenholz3c4eabf2019-04-22 07:49:59 -07005521 QuicStreamsBlockedFrame* frame,
QUICHE teama6ef0a62019-03-07 20:34:33 -05005522 uint64_t frame_type) {
fkastenholz3c4eabf2019-04-22 07:49:59 -07005523 if (!reader->ReadVarIntU32(&frame->stream_count)) {
5524 set_detailed_error("Can not read STREAMS_BLOCKED stream count.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05005525 return false;
5526 }
fkastenholz3c4eabf2019-04-22 07:49:59 -07005527 frame->unidirectional = (frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL);
5528
QUICHE teama6ef0a62019-03-07 20:34:33 -05005529 // TODO(fkastenholz): handle properly when the STREAMS_BLOCKED
5530 // frame is implemented and passed up to the stream ID manager.
fkastenholz3c4eabf2019-04-22 07:49:59 -07005531 if (frame->stream_count >
5532 QuicUtils::GetMaxStreamCount(
5533 (frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL),
5534 ((perspective_ == Perspective::IS_CLIENT)
5535 ? Perspective::IS_SERVER
5536 : Perspective::IS_CLIENT))) {
QUICHE teama6ef0a62019-03-07 20:34:33 -05005537 // If stream count is such that the resulting stream ID would exceed our
5538 // implementation limit, generate an error.
5539 set_detailed_error(
5540 "STREAMS_BLOCKED stream count exceeds implementation limit.");
5541 return false;
5542 }
fkastenholz3c4eabf2019-04-22 07:49:59 -07005543 return true;
QUICHE teama6ef0a62019-03-07 20:34:33 -05005544}
5545
5546bool QuicFramer::AppendNewConnectionIdFrame(
5547 const QuicNewConnectionIdFrame& frame,
5548 QuicDataWriter* writer) {
5549 if (!writer->WriteVarInt62(frame.sequence_number)) {
5550 set_detailed_error("Can not write New Connection ID sequence number");
5551 return false;
5552 }
5553 if (!writer->WriteUInt8(frame.connection_id.length())) {
5554 set_detailed_error(
5555 "Can not write New Connection ID frame connection ID Length");
5556 return false;
5557 }
5558 if (!writer->WriteConnectionId(frame.connection_id)) {
5559 set_detailed_error("Can not write New Connection ID frame connection ID");
5560 return false;
5561 }
5562
5563 if (!writer->WriteBytes(
5564 static_cast<const void*>(&frame.stateless_reset_token),
5565 sizeof(frame.stateless_reset_token))) {
5566 set_detailed_error("Can not write New Connection ID Reset Token");
5567 return false;
5568 }
5569 return true;
5570}
5571
5572bool QuicFramer::ProcessNewConnectionIdFrame(QuicDataReader* reader,
5573 QuicNewConnectionIdFrame* frame) {
5574 if (!reader->ReadVarInt62(&frame->sequence_number)) {
5575 set_detailed_error(
5576 "Unable to read new connection ID frame sequence number.");
5577 return false;
5578 }
5579
5580 uint8_t connection_id_length;
5581 if (!reader->ReadUInt8(&connection_id_length)) {
5582 set_detailed_error(
5583 "Unable to read new connection ID frame connection id length.");
5584 return false;
5585 }
5586
QUICHE team0131a5b2019-03-20 15:23:27 -07005587 if (connection_id_length > kQuicMaxConnectionIdLength) {
5588 set_detailed_error("New connection ID length too high.");
5589 return false;
5590 }
5591
QUICHE team8e2e4532019-03-14 14:37:56 -07005592 if (connection_id_length != kQuicDefaultConnectionIdLength &&
5593 !QuicUtils::VariableLengthConnectionIdAllowedForVersion(
5594 transport_version())) {
QUICHE team0131a5b2019-03-20 15:23:27 -07005595 set_detailed_error("Invalid new connection ID length for version.");
QUICHE teama6ef0a62019-03-07 20:34:33 -05005596 return false;
5597 }
5598
5599 if (!reader->ReadConnectionId(&frame->connection_id, connection_id_length)) {
5600 set_detailed_error("Unable to read new connection ID frame connection id.");
5601 return false;
5602 }
5603
5604 if (!reader->ReadBytes(&frame->stateless_reset_token,
5605 sizeof(frame->stateless_reset_token))) {
5606 set_detailed_error("Can not read new connection ID frame reset token.");
5607 return false;
5608 }
5609 return true;
5610}
5611
5612bool QuicFramer::AppendRetireConnectionIdFrame(
5613 const QuicRetireConnectionIdFrame& frame,
5614 QuicDataWriter* writer) {
5615 if (!writer->WriteVarInt62(frame.sequence_number)) {
5616 set_detailed_error("Can not write Retire Connection ID sequence number");
5617 return false;
5618 }
5619 return true;
5620}
5621
5622bool QuicFramer::ProcessRetireConnectionIdFrame(
5623 QuicDataReader* reader,
5624 QuicRetireConnectionIdFrame* frame) {
5625 if (!reader->ReadVarInt62(&frame->sequence_number)) {
5626 set_detailed_error(
5627 "Unable to read retire connection ID frame sequence number.");
5628 return false;
5629 }
5630 return true;
5631}
5632
5633uint8_t QuicFramer::GetStreamFrameTypeByte(const QuicStreamFrame& frame,
5634 bool last_frame_in_packet) const {
5635 if (version_.transport_version == QUIC_VERSION_99) {
5636 return GetIetfStreamFrameTypeByte(frame, last_frame_in_packet);
5637 }
5638 uint8_t type_byte = 0;
5639 // Fin bit.
5640 type_byte |= frame.fin ? kQuicStreamFinMask : 0;
5641
5642 // Data Length bit.
5643 type_byte <<= kQuicStreamDataLengthShift;
5644 type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask;
5645
5646 // Offset 3 bits.
5647 type_byte <<= kQuicStreamShift;
5648 const size_t offset_len =
5649 GetStreamOffsetSize(version_.transport_version, frame.offset);
5650 if (offset_len > 0) {
5651 type_byte |= offset_len - 1;
5652 }
5653
5654 // stream id 2 bits.
5655 type_byte <<= kQuicStreamIdShift;
5656 type_byte |= GetStreamIdSize(frame.stream_id) - 1;
5657 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
5658
5659 return type_byte;
5660}
5661
5662uint8_t QuicFramer::GetIetfStreamFrameTypeByte(
5663 const QuicStreamFrame& frame,
5664 bool last_frame_in_packet) const {
5665 DCHECK_EQ(QUIC_VERSION_99, version_.transport_version);
5666 uint8_t type_byte = IETF_STREAM;
5667 if (!last_frame_in_packet) {
5668 type_byte |= IETF_STREAM_FRAME_LEN_BIT;
5669 }
5670 if (frame.offset != 0) {
5671 type_byte |= IETF_STREAM_FRAME_OFF_BIT;
5672 }
5673 if (frame.fin) {
5674 type_byte |= IETF_STREAM_FRAME_FIN_BIT;
5675 }
5676 return type_byte;
5677}
5678
5679void QuicFramer::InferPacketHeaderTypeFromVersion() {
5680 // This function should only be called when server connection negotiates the
5681 // version.
5682 DCHECK(perspective_ == Perspective::IS_SERVER &&
5683 !infer_packet_header_type_from_version_);
5684 infer_packet_header_type_from_version_ = true;
5685}
5686
QUICHE team10b22a12019-03-21 15:31:42 -07005687void QuicFramer::EnableMultiplePacketNumberSpacesSupport() {
5688 if (supports_multiple_packet_number_spaces_) {
5689 QUIC_BUG << "Multiple packet number spaces has already been enabled";
5690 return;
5691 }
5692 if (largest_packet_number_.IsInitialized()) {
5693 QUIC_BUG << "Try to enable multiple packet number spaces support after any "
5694 "packet has been received.";
5695 return;
5696 }
5697
5698 supports_multiple_packet_number_spaces_ = true;
5699}
5700
QUICHE teama6ef0a62019-03-07 20:34:33 -05005701#undef ENDPOINT // undef for jumbo builds
5702} // namespace quic