blob: f9b19b1038d36af118aa2488bb53a8b8a1499609 [file] [log] [blame] [edit]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/third_party/quiche/src/quic/core/quic_stream.h"
#include <string>
#include "net/third_party/quiche/src/quic/core/quic_flow_controller.h"
#include "net/third_party/quiche/src/quic/core/quic_session.h"
#include "net/third_party/quiche/src/quic/core/quic_utils.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_flags.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_logging.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h"
using spdy::SpdyPriority;
namespace quic {
#define ENDPOINT \
(perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ")
namespace {
size_t GetInitialStreamFlowControlWindowToSend(QuicSession* session) {
return session->config()->GetInitialStreamFlowControlWindowToSend();
}
size_t GetReceivedFlowControlWindow(QuicSession* session) {
if (session->config()->HasReceivedInitialStreamFlowControlWindowBytes()) {
return session->config()->ReceivedInitialStreamFlowControlWindowBytes();
}
return kDefaultFlowControlSendWindow;
}
} // namespace
// static
const SpdyPriority QuicStream::kDefaultPriority;
PendingStream::PendingStream(QuicStreamId id, QuicSession* session)
: id_(id),
session_(session),
stream_bytes_read_(0),
fin_received_(false),
connection_flow_controller_(session->flow_controller()),
flow_controller_(session,
id,
/*is_connection_flow_controller*/ false,
GetReceivedFlowControlWindow(session),
GetInitialStreamFlowControlWindowToSend(session),
kStreamReceiveWindowLimit,
session_->flow_controller()->auto_tune_receive_window(),
session_->flow_controller()),
sequencer_(this) {}
void PendingStream::OnDataAvailable() {
QUIC_BUG << "OnDataAvailable should not be called.";
CloseConnectionWithDetails(QUIC_INTERNAL_ERROR, "Unexpected data available");
}
void PendingStream::OnFinRead() {
QUIC_BUG << "OnFinRead should not be called.";
CloseConnectionWithDetails(QUIC_INTERNAL_ERROR, "Unexpected fin read");
}
void PendingStream::AddBytesConsumed(QuicByteCount bytes) {
QUIC_BUG << "AddBytesConsumed should not be called.";
CloseConnectionWithDetails(QUIC_INTERNAL_ERROR, "Unexpected bytes consumed");
}
void PendingStream::Reset(QuicRstStreamErrorCode error) {
session_->SendRstStream(id_, error, 0);
}
void PendingStream::CloseConnectionWithDetails(QuicErrorCode error,
const std::string& details) {
session_->connection()->CloseConnection(
error, details, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
}
QuicStreamId PendingStream::id() const {
return id_;
}
const QuicSocketAddress& PendingStream::PeerAddressOfLatestPacket() const {
return session_->connection()->last_packet_source_address();
}
void PendingStream::OnStreamFrame(const QuicStreamFrame& frame) {
DCHECK_EQ(frame.stream_id, id_);
DCHECK_NE(0u, frame.offset);
bool is_stream_too_long =
(frame.offset > kMaxStreamLength) ||
(kMaxStreamLength - frame.offset < frame.data_length);
if (is_stream_too_long) {
// Close connection if stream becomes too long.
QUIC_PEER_BUG
<< "Receive stream frame reaches max stream length. frame offset "
<< frame.offset << " length " << frame.data_length;
CloseConnectionWithDetails(
QUIC_STREAM_LENGTH_OVERFLOW,
"Peer sends more data than allowed on this stream.");
return;
}
if (frame.fin) {
fin_received_ = true;
}
// This count includes duplicate data received.
size_t frame_payload_size = frame.data_length;
stream_bytes_read_ += frame_payload_size;
// Flow control is interested in tracking highest received offset.
// Only interested in received frames that carry data.
if (frame_payload_size > 0 &&
MaybeIncreaseHighestReceivedOffset(frame.offset + frame_payload_size)) {
// As the highest received offset has changed, check to see if this is a
// violation of flow control.
if (flow_controller_.FlowControlViolation() ||
connection_flow_controller_->FlowControlViolation()) {
CloseConnectionWithDetails(
QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA,
"Flow control violation after increasing offset");
return;
}
}
sequencer_.OnStreamFrame(frame);
}
void PendingStream::OnRstStreamFrame(const QuicRstStreamFrame& frame) {
DCHECK_EQ(frame.stream_id, id_);
if (frame.byte_offset > kMaxStreamLength) {
// Peer are not suppose to write bytes more than maxium allowed.
CloseConnectionWithDetails(QUIC_STREAM_LENGTH_OVERFLOW,
"Reset frame stream offset overflow.");
return;
}
MaybeIncreaseHighestReceivedOffset(frame.byte_offset);
if (flow_controller_.FlowControlViolation() ||
connection_flow_controller_->FlowControlViolation()) {
CloseConnectionWithDetails(
QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA,
"Flow control violation after increasing offset");
return;
}
}
bool PendingStream::MaybeIncreaseHighestReceivedOffset(
QuicStreamOffset new_offset) {
uint64_t increment =
new_offset - flow_controller_.highest_received_byte_offset();
if (!flow_controller_.UpdateHighestReceivedOffset(new_offset)) {
return false;
}
// If |new_offset| increased the stream flow controller's highest received
// offset, increase the connection flow controller's value by the incremental
// difference.
connection_flow_controller_->UpdateHighestReceivedOffset(
connection_flow_controller_->highest_received_byte_offset() + increment);
return true;
}
QuicStream::QuicStream(PendingStream pending, StreamType type)
: QuicStream(pending.id_,
pending.session_,
std::move(pending.sequencer_),
/*is_static=*/false,
type,
pending.stream_bytes_read_,
pending.fin_received_,
std::move(pending.flow_controller_),
pending.connection_flow_controller_) {
sequencer_.set_stream(this);
}
QuicStream::QuicStream(QuicStreamId id,
QuicSession* session,
bool is_static,
StreamType type)
: QuicStream(id,
session,
QuicStreamSequencer(this),
is_static,
type,
0,
false,
QuicFlowController(
session,
id,
/*is_connection_flow_controller*/ false,
GetReceivedFlowControlWindow(session),
GetInitialStreamFlowControlWindowToSend(session),
kStreamReceiveWindowLimit,
session->flow_controller()->auto_tune_receive_window(),
session->flow_controller()),
session->flow_controller()) {}
QuicStream::QuicStream(QuicStreamId id,
QuicSession* session,
QuicStreamSequencer sequencer,
bool is_static,
StreamType type,
uint64_t stream_bytes_read,
bool fin_received,
QuicFlowController flow_controller,
QuicFlowController* connection_flow_controller)
: sequencer_(std::move(sequencer)),
id_(id),
session_(session),
priority_(kDefaultPriority),
stream_bytes_read_(stream_bytes_read),
stream_error_(QUIC_STREAM_NO_ERROR),
connection_error_(QUIC_NO_ERROR),
read_side_closed_(false),
write_side_closed_(false),
fin_buffered_(false),
fin_sent_(false),
fin_outstanding_(false),
fin_lost_(false),
fin_received_(fin_received),
rst_sent_(false),
rst_received_(false),
perspective_(session_->perspective()),
flow_controller_(std::move(flow_controller)),
connection_flow_controller_(connection_flow_controller),
stream_contributes_to_connection_flow_control_(true),
busy_counter_(0),
add_random_padding_after_fin_(false),
send_buffer_(
session->connection()->helper()->GetStreamSendBufferAllocator()),
buffered_data_threshold_(GetQuicFlag(FLAGS_quic_buffered_data_threshold)),
is_static_(is_static),
deadline_(QuicTime::Zero()),
type_(session->connection()->transport_version() == QUIC_VERSION_99
? QuicUtils::GetStreamType(id_,
perspective_,
session->IsIncomingStream(id_))
: type) {
if (type_ == WRITE_UNIDIRECTIONAL) {
set_fin_received(true);
CloseReadSide();
} else if (type_ == READ_UNIDIRECTIONAL) {
set_fin_sent(true);
CloseWriteSide();
}
SetFromConfig();
session_->RegisterStreamPriority(id, is_static_, priority_);
}
QuicStream::~QuicStream() {
if (session_ != nullptr && IsWaitingForAcks()) {
QUIC_DVLOG(1)
<< ENDPOINT << "Stream " << id_
<< " gets destroyed while waiting for acks. stream_bytes_outstanding = "
<< send_buffer_.stream_bytes_outstanding()
<< ", fin_outstanding: " << fin_outstanding_;
}
if (session_ != nullptr) {
session_->UnregisterStreamPriority(id(), is_static_);
}
}
void QuicStream::SetFromConfig() {}
void QuicStream::OnStreamFrame(const QuicStreamFrame& frame) {
DCHECK_EQ(frame.stream_id, id_);
DCHECK(!(read_side_closed_ && write_side_closed_));
if (type_ == WRITE_UNIDIRECTIONAL) {
CloseConnectionWithDetails(
QUIC_DATA_RECEIVED_ON_WRITE_UNIDIRECTIONAL_STREAM,
"Data received on write unidirectional stream");
return;
}
bool is_stream_too_long =
(frame.offset > kMaxStreamLength) ||
(kMaxStreamLength - frame.offset < frame.data_length);
if (is_stream_too_long) {
// Close connection if stream becomes too long.
QUIC_PEER_BUG << "Receive stream frame on stream " << id_
<< " reaches max stream length. frame offset " << frame.offset
<< " length " << frame.data_length << ". "
<< sequencer_.DebugString();
CloseConnectionWithDetails(
QUIC_STREAM_LENGTH_OVERFLOW,
QuicStrCat("Peer sends more data than allowed on stream ", id_,
". frame: offset = ", frame.offset, ", length = ",
frame.data_length, ". ", sequencer_.DebugString()));
return;
}
if (frame.fin) {
fin_received_ = true;
if (fin_sent_) {
session_->StreamDraining(id_);
}
}
if (read_side_closed_) {
QUIC_DLOG(INFO)
<< ENDPOINT << "Stream " << frame.stream_id
<< " is closed for reading. Ignoring newly received stream data.";
// The subclass does not want to read data: blackhole the data.
return;
}
// This count includes duplicate data received.
size_t frame_payload_size = frame.data_length;
stream_bytes_read_ += frame_payload_size;
// Flow control is interested in tracking highest received offset.
// Only interested in received frames that carry data.
if (frame_payload_size > 0 &&
MaybeIncreaseHighestReceivedOffset(frame.offset + frame_payload_size)) {
// As the highest received offset has changed, check to see if this is a
// violation of flow control.
if (flow_controller_.FlowControlViolation() ||
connection_flow_controller_->FlowControlViolation()) {
CloseConnectionWithDetails(
QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA,
"Flow control violation after increasing offset");
return;
}
}
sequencer_.OnStreamFrame(frame);
}
int QuicStream::num_frames_received() const {
return sequencer_.num_frames_received();
}
int QuicStream::num_duplicate_frames_received() const {
return sequencer_.num_duplicate_frames_received();
}
void QuicStream::OnStreamReset(const QuicRstStreamFrame& frame) {
rst_received_ = true;
if (frame.byte_offset > kMaxStreamLength) {
// Peer are not suppose to write bytes more than maxium allowed.
CloseConnectionWithDetails(QUIC_STREAM_LENGTH_OVERFLOW,
"Reset frame stream offset overflow.");
return;
}
MaybeIncreaseHighestReceivedOffset(frame.byte_offset);
if (flow_controller_.FlowControlViolation() ||
connection_flow_controller_->FlowControlViolation()) {
CloseConnectionWithDetails(
QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA,
"Flow control violation after increasing offset");
return;
}
stream_error_ = frame.error_code;
// Google QUIC closes both sides of the stream in response to a
// RESET_STREAM, IETF QUIC closes only the read side.
if (transport_version() != QUIC_VERSION_99) {
CloseWriteSide();
}
CloseReadSide();
}
void QuicStream::OnConnectionClosed(QuicErrorCode error,
ConnectionCloseSource /*source*/) {
if (read_side_closed_ && write_side_closed_) {
return;
}
if (error != QUIC_NO_ERROR) {
stream_error_ = QUIC_STREAM_CONNECTION_ERROR;
connection_error_ = error;
}
CloseWriteSide();
CloseReadSide();
}
void QuicStream::OnFinRead() {
DCHECK(sequencer_.IsClosed());
// OnFinRead can be called due to a FIN flag in a headers block, so there may
// have been no OnStreamFrame call with a FIN in the frame.
fin_received_ = true;
// If fin_sent_ is true, then CloseWriteSide has already been called, and the
// stream will be destroyed by CloseReadSide, so don't need to call
// StreamDraining.
CloseReadSide();
}
void QuicStream::Reset(QuicRstStreamErrorCode error) {
stream_error_ = error;
// Sending a RstStream results in calling CloseStream.
session()->SendRstStream(id(), error, stream_bytes_written());
rst_sent_ = true;
}
void QuicStream::CloseConnectionWithDetails(QuicErrorCode error,
const std::string& details) {
session()->connection()->CloseConnection(
error, details, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
}
SpdyPriority QuicStream::priority() const {
return priority_;
}
void QuicStream::SetPriority(SpdyPriority priority) {
priority_ = priority;
session_->UpdateStreamPriority(id(), priority);
}
void QuicStream::WriteOrBufferData(
QuicStringPiece data,
bool fin,
QuicReferenceCountedPointer<QuicAckListenerInterface> ack_listener) {
if (data.empty() && !fin) {
QUIC_BUG << "data.empty() && !fin";
return;
}
if (fin_buffered_) {
QUIC_BUG << "Fin already buffered";
return;
}
if (write_side_closed_) {
QUIC_DLOG(ERROR) << ENDPOINT
<< "Attempt to write when the write side is closed";
if (type_ == READ_UNIDIRECTIONAL) {
CloseConnectionWithDetails(
QUIC_TRY_TO_WRITE_DATA_ON_READ_UNIDIRECTIONAL_STREAM,
"Try to send data on read unidirectional stream");
}
return;
}
fin_buffered_ = fin;
bool had_buffered_data = HasBufferedData();
// Do not respect buffered data upper limit as WriteOrBufferData guarantees
// all data to be consumed.
if (data.length() > 0) {
struct iovec iov(QuicUtils::MakeIovec(data));
QuicStreamOffset offset = send_buffer_.stream_offset();
if (kMaxStreamLength - offset < data.length()) {
QUIC_BUG << "Write too many data via stream " << id_;
CloseConnectionWithDetails(
QUIC_STREAM_LENGTH_OVERFLOW,
QuicStrCat("Write too many data via stream ", id_));
return;
}
send_buffer_.SaveStreamData(&iov, 1, 0, data.length());
OnDataBuffered(offset, data.length(), ack_listener);
}
if (!had_buffered_data && (HasBufferedData() || fin_buffered_)) {
// Write data if there is no buffered data before.
WriteBufferedData();
}
}
void QuicStream::OnCanWrite() {
if (HasDeadlinePassed()) {
OnDeadlinePassed();
return;
}
if (HasPendingRetransmission()) {
WritePendingRetransmission();
// Exit early to allow other streams to write pending retransmissions if
// any.
return;
}
if (write_side_closed_) {
QUIC_DLOG(ERROR)
<< ENDPOINT << "Stream " << id()
<< " attempting to write new data when the write side is closed";
return;
}
if (HasBufferedData() || (fin_buffered_ && !fin_sent_)) {
WriteBufferedData();
}
if (!fin_buffered_ && !fin_sent_ && CanWriteNewData()) {
// Notify upper layer to write new data when buffered data size is below
// low water mark.
OnCanWriteNewData();
}
}
void QuicStream::MaybeSendBlocked() {
if (flow_controller_.ShouldSendBlocked()) {
session_->SendBlocked(id_);
}
if (!stream_contributes_to_connection_flow_control_) {
return;
}
if (connection_flow_controller_->ShouldSendBlocked()) {
session_->SendBlocked(QuicUtils::GetInvalidStreamId(transport_version()));
}
// If the stream is blocked by connection-level flow control but not by
// stream-level flow control, add the stream to the write blocked list so that
// the stream will be given a chance to write when a connection-level
// WINDOW_UPDATE arrives.
if (connection_flow_controller_->IsBlocked() &&
!flow_controller_.IsBlocked()) {
session_->MarkConnectionLevelWriteBlocked(id());
}
}
QuicConsumedData QuicStream::WritevData(const struct iovec* iov,
int iov_count,
bool fin) {
if (write_side_closed_) {
QUIC_DLOG(ERROR) << ENDPOINT << "Stream " << id()
<< "attempting to write when the write side is closed";
if (type_ == READ_UNIDIRECTIONAL) {
CloseConnectionWithDetails(
QUIC_TRY_TO_WRITE_DATA_ON_READ_UNIDIRECTIONAL_STREAM,
"Try to send data on read unidirectional stream");
}
return QuicConsumedData(0, false);
}
// How much data was provided.
size_t write_length = 0;
if (iov != nullptr) {
for (int i = 0; i < iov_count; ++i) {
write_length += iov[i].iov_len;
}
}
QuicConsumedData consumed_data(0, false);
if (fin_buffered_) {
QUIC_BUG << "Fin already buffered";
return consumed_data;
}
if (kMaxStreamLength - send_buffer_.stream_offset() < write_length) {
QUIC_BUG << "Write too many data via stream " << id_;
CloseConnectionWithDetails(
QUIC_STREAM_LENGTH_OVERFLOW,
QuicStrCat("Write too many data via stream ", id_));
return consumed_data;
}
bool had_buffered_data = HasBufferedData();
if (CanWriteNewData()) {
// Save all data if buffered data size is below low water mark.
consumed_data.bytes_consumed = write_length;
if (consumed_data.bytes_consumed > 0) {
QuicStreamOffset offset = send_buffer_.stream_offset();
send_buffer_.SaveStreamData(iov, iov_count, 0, write_length);
OnDataBuffered(offset, write_length, nullptr);
}
}
consumed_data.fin_consumed =
consumed_data.bytes_consumed == write_length && fin;
fin_buffered_ = consumed_data.fin_consumed;
if (!had_buffered_data && (HasBufferedData() || fin_buffered_)) {
// Write data if there is no buffered data before.
WriteBufferedData();
}
return consumed_data;
}
QuicConsumedData QuicStream::WriteMemSlices(QuicMemSliceSpan span, bool fin) {
QuicConsumedData consumed_data(0, false);
if (span.empty() && !fin) {
QUIC_BUG << "span.empty() && !fin";
return consumed_data;
}
if (fin_buffered_) {
QUIC_BUG << "Fin already buffered";
return consumed_data;
}
if (write_side_closed_) {
QUIC_DLOG(ERROR) << ENDPOINT << "Stream " << id()
<< "attempting to write when the write side is closed";
if (type_ == READ_UNIDIRECTIONAL) {
CloseConnectionWithDetails(
QUIC_TRY_TO_WRITE_DATA_ON_READ_UNIDIRECTIONAL_STREAM,
"Try to send data on read unidirectional stream");
}
return consumed_data;
}
bool had_buffered_data = HasBufferedData();
if (CanWriteNewData() || span.empty()) {
consumed_data.fin_consumed = fin;
if (!span.empty()) {
// Buffer all data if buffered data size is below limit.
QuicStreamOffset offset = send_buffer_.stream_offset();
consumed_data.bytes_consumed = send_buffer_.SaveMemSliceSpan(span);
if (offset > send_buffer_.stream_offset() ||
kMaxStreamLength < send_buffer_.stream_offset()) {
QUIC_BUG << "Write too many data via stream " << id_;
CloseConnectionWithDetails(
QUIC_STREAM_LENGTH_OVERFLOW,
QuicStrCat("Write too many data via stream ", id_));
return consumed_data;
}
OnDataBuffered(offset, consumed_data.bytes_consumed, nullptr);
}
}
fin_buffered_ = consumed_data.fin_consumed;
if (!had_buffered_data && (HasBufferedData() || fin_buffered_)) {
// Write data if there is no buffered data before.
WriteBufferedData();
}
return consumed_data;
}
bool QuicStream::HasPendingRetransmission() const {
return send_buffer_.HasPendingRetransmission() || fin_lost_;
}
bool QuicStream::IsStreamFrameOutstanding(QuicStreamOffset offset,
QuicByteCount data_length,
bool fin) const {
return send_buffer_.IsStreamDataOutstanding(offset, data_length) ||
(fin && fin_outstanding_);
}
QuicConsumedData QuicStream::WritevDataInner(size_t write_length,
QuicStreamOffset offset,
bool fin) {
StreamSendingState state = fin ? FIN : NO_FIN;
if (fin && add_random_padding_after_fin_) {
state = FIN_AND_PADDING;
}
return session()->WritevData(this, id(), write_length, offset, state);
}
void QuicStream::CloseReadSide() {
if (read_side_closed_) {
return;
}
QUIC_DVLOG(1) << ENDPOINT << "Done reading from stream " << id();
read_side_closed_ = true;
sequencer_.ReleaseBuffer();
if (write_side_closed_) {
QUIC_DVLOG(1) << ENDPOINT << "Closing stream " << id();
session_->CloseStream(id());
}
}
void QuicStream::CloseWriteSide() {
if (write_side_closed_) {
return;
}
QUIC_DVLOG(1) << ENDPOINT << "Done writing to stream " << id();
write_side_closed_ = true;
if (read_side_closed_) {
QUIC_DVLOG(1) << ENDPOINT << "Closing stream " << id();
session_->CloseStream(id());
}
}
bool QuicStream::HasBufferedData() const {
DCHECK_GE(send_buffer_.stream_offset(), stream_bytes_written());
return send_buffer_.stream_offset() > stream_bytes_written();
}
QuicTransportVersion QuicStream::transport_version() const {
return session_->connection()->transport_version();
}
HandshakeProtocol QuicStream::handshake_protocol() const {
return session_->connection()->version().handshake_protocol;
}
void QuicStream::StopReading() {
QUIC_DVLOG(1) << ENDPOINT << "Stop reading from stream " << id();
sequencer_.StopReading();
}
const QuicSocketAddress& QuicStream::PeerAddressOfLatestPacket() const {
return session_->connection()->last_packet_source_address();
}
void QuicStream::OnClose() {
CloseReadSide();
CloseWriteSide();
if (!fin_sent_ && !rst_sent_) {
// For flow control accounting, tell the peer how many bytes have been
// written on this stream before termination. Done here if needed, using a
// RST_STREAM frame.
QUIC_DLOG(INFO) << ENDPOINT << "Sending RST_STREAM in OnClose: " << id();
session_->SendRstStream(id(), QUIC_RST_ACKNOWLEDGEMENT,
stream_bytes_written());
session_->OnStreamDoneWaitingForAcks(id_);
rst_sent_ = true;
}
if (flow_controller_.FlowControlViolation() ||
connection_flow_controller_->FlowControlViolation()) {
return;
}
// The stream is being closed and will not process any further incoming bytes.
// As there may be more bytes in flight, to ensure that both endpoints have
// the same connection level flow control state, mark all unreceived or
// buffered bytes as consumed.
QuicByteCount bytes_to_consume =
flow_controller_.highest_received_byte_offset() -
flow_controller_.bytes_consumed();
AddBytesConsumed(bytes_to_consume);
}
void QuicStream::OnWindowUpdateFrame(const QuicWindowUpdateFrame& frame) {
if (flow_controller_.UpdateSendWindowOffset(frame.byte_offset)) {
// Let session unblock this stream.
session_->MarkConnectionLevelWriteBlocked(id_);
}
}
bool QuicStream::MaybeIncreaseHighestReceivedOffset(
QuicStreamOffset new_offset) {
uint64_t increment =
new_offset - flow_controller_.highest_received_byte_offset();
if (!flow_controller_.UpdateHighestReceivedOffset(new_offset)) {
return false;
}
// If |new_offset| increased the stream flow controller's highest received
// offset, increase the connection flow controller's value by the incremental
// difference.
if (stream_contributes_to_connection_flow_control_) {
connection_flow_controller_->UpdateHighestReceivedOffset(
connection_flow_controller_->highest_received_byte_offset() +
increment);
}
return true;
}
void QuicStream::AddBytesSent(QuicByteCount bytes) {
flow_controller_.AddBytesSent(bytes);
if (stream_contributes_to_connection_flow_control_) {
connection_flow_controller_->AddBytesSent(bytes);
}
}
void QuicStream::AddBytesConsumed(QuicByteCount bytes) {
// Only adjust stream level flow controller if still reading.
if (!read_side_closed_) {
flow_controller_.AddBytesConsumed(bytes);
}
if (stream_contributes_to_connection_flow_control_) {
connection_flow_controller_->AddBytesConsumed(bytes);
}
}
void QuicStream::UpdateSendWindowOffset(QuicStreamOffset new_window) {
if (flow_controller_.UpdateSendWindowOffset(new_window)) {
// Let session unblock this stream.
session_->MarkConnectionLevelWriteBlocked(id_);
}
}
void QuicStream::AddRandomPaddingAfterFin() {
add_random_padding_after_fin_ = true;
}
bool QuicStream::OnStreamFrameAcked(QuicStreamOffset offset,
QuicByteCount data_length,
bool fin_acked,
QuicTime::Delta ack_delay_time,
QuicByteCount* newly_acked_length) {
QUIC_DVLOG(1) << ENDPOINT << "stream " << id_ << " Acking "
<< "[" << offset << ", " << offset + data_length << "]"
<< " fin = " << fin_acked;
*newly_acked_length = 0;
if (!send_buffer_.OnStreamDataAcked(offset, data_length,
newly_acked_length)) {
CloseConnectionWithDetails(QUIC_INTERNAL_ERROR,
"Trying to ack unsent data.");
return false;
}
if (!fin_sent_ && fin_acked) {
CloseConnectionWithDetails(QUIC_INTERNAL_ERROR,
"Trying to ack unsent fin.");
return false;
}
// Indicates whether ack listener's OnPacketAcked should be called.
const bool new_data_acked =
*newly_acked_length > 0 || (fin_acked && fin_outstanding_);
if (fin_acked) {
fin_outstanding_ = false;
fin_lost_ = false;
}
if (!IsWaitingForAcks()) {
session_->OnStreamDoneWaitingForAcks(id_);
}
return new_data_acked;
}
void QuicStream::OnStreamFrameRetransmitted(QuicStreamOffset offset,
QuicByteCount data_length,
bool fin_retransmitted) {
send_buffer_.OnStreamDataRetransmitted(offset, data_length);
if (fin_retransmitted) {
fin_lost_ = false;
}
}
void QuicStream::OnStreamFrameLost(QuicStreamOffset offset,
QuicByteCount data_length,
bool fin_lost) {
QUIC_DVLOG(1) << ENDPOINT << "stream " << id_ << " Losting "
<< "[" << offset << ", " << offset + data_length << "]"
<< " fin = " << fin_lost;
if (data_length > 0) {
send_buffer_.OnStreamDataLost(offset, data_length);
}
if (fin_lost && fin_outstanding_) {
fin_lost_ = true;
}
}
bool QuicStream::RetransmitStreamData(QuicStreamOffset offset,
QuicByteCount data_length,
bool fin) {
if (HasDeadlinePassed()) {
OnDeadlinePassed();
return true;
}
QuicIntervalSet<QuicStreamOffset> retransmission(offset,
offset + data_length);
retransmission.Difference(bytes_acked());
bool retransmit_fin = fin && fin_outstanding_;
if (retransmission.Empty() && !retransmit_fin) {
return true;
}
QuicConsumedData consumed(0, false);
for (const auto& interval : retransmission) {
QuicStreamOffset retransmission_offset = interval.min();
QuicByteCount retransmission_length = interval.max() - interval.min();
const bool can_bundle_fin =
retransmit_fin && (retransmission_offset + retransmission_length ==
stream_bytes_written());
consumed = session()->WritevData(this, id_, retransmission_length,
retransmission_offset,
can_bundle_fin ? FIN : NO_FIN);
QUIC_DVLOG(1) << ENDPOINT << "stream " << id_
<< " is forced to retransmit stream data ["
<< retransmission_offset << ", "
<< retransmission_offset + retransmission_length
<< ") and fin: " << can_bundle_fin
<< ", consumed: " << consumed;
OnStreamFrameRetransmitted(retransmission_offset, consumed.bytes_consumed,
consumed.fin_consumed);
if (can_bundle_fin) {
retransmit_fin = !consumed.fin_consumed;
}
if (consumed.bytes_consumed < retransmission_length ||
(can_bundle_fin && !consumed.fin_consumed)) {
// Connection is write blocked.
return false;
}
}
if (retransmit_fin) {
QUIC_DVLOG(1) << ENDPOINT << "stream " << id_
<< " retransmits fin only frame.";
consumed = session()->WritevData(this, id_, 0, stream_bytes_written(), FIN);
if (!consumed.fin_consumed) {
return false;
}
}
return true;
}
bool QuicStream::IsWaitingForAcks() const {
return (!rst_sent_ || stream_error_ == QUIC_STREAM_NO_ERROR) &&
(send_buffer_.stream_bytes_outstanding() || fin_outstanding_);
}
size_t QuicStream::ReadableBytes() const {
return sequencer_.ReadableBytes();
}
bool QuicStream::WriteStreamData(QuicStreamOffset offset,
QuicByteCount data_length,
QuicDataWriter* writer) {
DCHECK_LT(0u, data_length);
QUIC_DVLOG(2) << ENDPOINT << "Write stream " << id_ << " data from offset "
<< offset << " length " << data_length;
return send_buffer_.WriteStreamData(offset, data_length, writer);
}
void QuicStream::WriteBufferedData() {
DCHECK(!write_side_closed_ && (HasBufferedData() || fin_buffered_));
if (session_->ShouldYield(id())) {
session_->MarkConnectionLevelWriteBlocked(id());
return;
}
// Size of buffered data.
size_t write_length = BufferedDataBytes();
// A FIN with zero data payload should not be flow control blocked.
bool fin_with_zero_data = (fin_buffered_ && write_length == 0);
bool fin = fin_buffered_;
// How much data flow control permits to be written.
QuicByteCount send_window = flow_controller_.SendWindowSize();
if (stream_contributes_to_connection_flow_control_) {
send_window =
std::min(send_window, connection_flow_controller_->SendWindowSize());
}
if (send_window == 0 && !fin_with_zero_data) {
// Quick return if nothing can be sent.
MaybeSendBlocked();
return;
}
if (write_length > send_window) {
// Don't send the FIN unless all the data will be sent.
fin = false;
// Writing more data would be a violation of flow control.
write_length = static_cast<size_t>(send_window);
QUIC_DVLOG(1) << "stream " << id() << " shortens write length to "
<< write_length << " due to flow control";
}
if (session_->session_decides_what_to_write()) {
session_->SetTransmissionType(NOT_RETRANSMISSION);
}
QuicConsumedData consumed_data =
WritevDataInner(write_length, stream_bytes_written(), fin);
OnStreamDataConsumed(consumed_data.bytes_consumed);
AddBytesSent(consumed_data.bytes_consumed);
QUIC_DVLOG(1) << ENDPOINT << "stream " << id_ << " sends "
<< stream_bytes_written() << " bytes "
<< " and has buffered data " << BufferedDataBytes() << " bytes."
<< " fin is sent: " << consumed_data.fin_consumed
<< " fin is buffered: " << fin_buffered_;
// The write may have generated a write error causing this stream to be
// closed. If so, simply return without marking the stream write blocked.
if (write_side_closed_) {
return;
}
if (consumed_data.bytes_consumed == write_length) {
if (!fin_with_zero_data) {
MaybeSendBlocked();
}
if (fin && consumed_data.fin_consumed) {
fin_sent_ = true;
fin_outstanding_ = true;
if (fin_received_) {
session_->StreamDraining(id_);
}
CloseWriteSide();
} else if (fin && !consumed_data.fin_consumed) {
session_->MarkConnectionLevelWriteBlocked(id());
}
} else {
session_->MarkConnectionLevelWriteBlocked(id());
}
if (consumed_data.bytes_consumed > 0 || consumed_data.fin_consumed) {
busy_counter_ = 0;
}
}
uint64_t QuicStream::BufferedDataBytes() const {
DCHECK_GE(send_buffer_.stream_offset(), stream_bytes_written());
return send_buffer_.stream_offset() - stream_bytes_written();
}
bool QuicStream::CanWriteNewData() const {
return BufferedDataBytes() < buffered_data_threshold_;
}
bool QuicStream::CanWriteNewDataAfterData(QuicByteCount length) const {
return (BufferedDataBytes() + length) < buffered_data_threshold_;
}
uint64_t QuicStream::stream_bytes_written() const {
return send_buffer_.stream_bytes_written();
}
const QuicIntervalSet<QuicStreamOffset>& QuicStream::bytes_acked() const {
return send_buffer_.bytes_acked();
}
void QuicStream::OnStreamDataConsumed(size_t bytes_consumed) {
send_buffer_.OnStreamDataConsumed(bytes_consumed);
}
void QuicStream::WritePendingRetransmission() {
while (HasPendingRetransmission()) {
QuicConsumedData consumed(0, false);
if (!send_buffer_.HasPendingRetransmission()) {
QUIC_DVLOG(1) << ENDPOINT << "stream " << id_
<< " retransmits fin only frame.";
consumed =
session()->WritevData(this, id_, 0, stream_bytes_written(), FIN);
fin_lost_ = !consumed.fin_consumed;
if (fin_lost_) {
// Connection is write blocked.
return;
}
} else {
StreamPendingRetransmission pending =
send_buffer_.NextPendingRetransmission();
// Determine whether the lost fin can be bundled with the data.
const bool can_bundle_fin =
fin_lost_ &&
(pending.offset + pending.length == stream_bytes_written());
consumed =
session()->WritevData(this, id_, pending.length, pending.offset,
can_bundle_fin ? FIN : NO_FIN);
QUIC_DVLOG(1) << ENDPOINT << "stream " << id_
<< " tries to retransmit stream data [" << pending.offset
<< ", " << pending.offset + pending.length
<< ") and fin: " << can_bundle_fin
<< ", consumed: " << consumed;
OnStreamFrameRetransmitted(pending.offset, consumed.bytes_consumed,
consumed.fin_consumed);
if (consumed.bytes_consumed < pending.length ||
(can_bundle_fin && !consumed.fin_consumed)) {
// Connection is write blocked.
return;
}
}
}
}
bool QuicStream::MaybeSetTtl(QuicTime::Delta ttl) {
if (is_static_) {
QUIC_BUG << "Cannot set TTL of a static stream.";
return false;
}
if (deadline_.IsInitialized()) {
QUIC_DLOG(WARNING) << "Deadline has already been set.";
return false;
}
if (!session()->session_decides_what_to_write()) {
QUIC_DLOG(WARNING) << "This session does not support stream TTL yet.";
return false;
}
QuicTime now = session()->connection()->clock()->ApproximateNow();
deadline_ = now + ttl;
return true;
}
bool QuicStream::HasDeadlinePassed() const {
if (!deadline_.IsInitialized()) {
// No deadline has been set.
return false;
}
DCHECK(session()->session_decides_what_to_write());
QuicTime now = session()->connection()->clock()->ApproximateNow();
if (now < deadline_) {
return false;
}
// TTL expired.
QUIC_DVLOG(1) << "stream " << id() << " deadline has passed";
return true;
}
void QuicStream::OnDeadlinePassed() {
Reset(QUIC_STREAM_TTL_EXPIRED);
}
void QuicStream::SendStopSending(uint16_t code) {
if (transport_version() != QUIC_VERSION_99) {
// If the connection is not version 99, do nothing.
// Do not QUIC_BUG or anything; the application really does not need to know
// what version the connection is in.
return;
}
session_->SendStopSending(code, id_);
}
void QuicStream::OnStopSending(uint16_t code) {}
} // namespace quic