| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // The entity that handles framing writes for a Quic client or server. |
| // Each QuicSession will have a connection associated with it. |
| // |
| // On the server side, the Dispatcher handles the raw reads, and hands off |
| // packets via ProcessUdpPacket for framing and processing. |
| // |
| // On the client side, the Connection handles the raw reads, as well as the |
| // processing. |
| // |
| // Note: this class is not thread-safe. |
| |
| #ifndef QUICHE_QUIC_CORE_QUIC_CONNECTION_H_ |
| #define QUICHE_QUIC_CORE_QUIC_CONNECTION_H_ |
| |
| #include <cstddef> |
| #include <cstdint> |
| #include <list> |
| #include <map> |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| #include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h" |
| #include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h" |
| #include "net/third_party/quiche/src/quic/core/proto/cached_network_parameters.pb.h" |
| #include "net/third_party/quiche/src/quic/core/quic_alarm.h" |
| #include "net/third_party/quiche/src/quic/core/quic_alarm_factory.h" |
| #include "net/third_party/quiche/src/quic/core/quic_blocked_writer_interface.h" |
| #include "net/third_party/quiche/src/quic/core/quic_connection_id.h" |
| #include "net/third_party/quiche/src/quic/core/quic_connection_stats.h" |
| #include "net/third_party/quiche/src/quic/core/quic_framer.h" |
| #include "net/third_party/quiche/src/quic/core/quic_one_block_arena.h" |
| #include "net/third_party/quiche/src/quic/core/quic_packet_creator.h" |
| #include "net/third_party/quiche/src/quic/core/quic_packet_generator.h" |
| #include "net/third_party/quiche/src/quic/core/quic_packet_writer.h" |
| #include "net/third_party/quiche/src/quic/core/quic_packets.h" |
| #include "net/third_party/quiche/src/quic/core/quic_sent_packet_manager.h" |
| #include "net/third_party/quiche/src/quic/core/quic_time.h" |
| #include "net/third_party/quiche/src/quic/core/quic_types.h" |
| #include "net/third_party/quiche/src/quic/core/uber_received_packet_manager.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_containers.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_export.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_socket_address.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_string_piece.h" |
| |
| namespace quic { |
| |
| class QuicClock; |
| class QuicConfig; |
| class QuicConnection; |
| class QuicRandom; |
| |
| namespace test { |
| class QuicConnectionPeer; |
| } // namespace test |
| |
| // The initial number of packets between MTU probes. After each attempt the |
| // number is doubled. |
| const QuicPacketCount kPacketsBetweenMtuProbesBase = 100; |
| |
| // The number of MTU probes that get sent before giving up. |
| const size_t kMtuDiscoveryAttempts = 3; |
| |
| // Ensure that exponential back-off does not result in an integer overflow. |
| // The number of packets can be potentially capped, but that is not useful at |
| // current kMtuDiscoveryAttempts value, and hence is not implemented at present. |
| static_assert(kMtuDiscoveryAttempts + 8 < 8 * sizeof(QuicPacketNumber), |
| "The number of MTU discovery attempts is too high"); |
| static_assert(kPacketsBetweenMtuProbesBase < (1 << 8), |
| "The initial number of packets between MTU probes is too high"); |
| |
| // The incresed packet size targeted when doing path MTU discovery. |
| const QuicByteCount kMtuDiscoveryTargetPacketSizeHigh = 1450; |
| const QuicByteCount kMtuDiscoveryTargetPacketSizeLow = 1430; |
| |
| static_assert(kMtuDiscoveryTargetPacketSizeLow <= kMaxOutgoingPacketSize, |
| "MTU discovery target is too large"); |
| static_assert(kMtuDiscoveryTargetPacketSizeHigh <= kMaxOutgoingPacketSize, |
| "MTU discovery target is too large"); |
| |
| static_assert(kMtuDiscoveryTargetPacketSizeLow > kDefaultMaxPacketSize, |
| "MTU discovery target does not exceed the default packet size"); |
| static_assert(kMtuDiscoveryTargetPacketSizeHigh > kDefaultMaxPacketSize, |
| "MTU discovery target does not exceed the default packet size"); |
| |
| // Class that receives callbacks from the connection when frames are received |
| // and when other interesting events happen. |
| class QUIC_EXPORT_PRIVATE QuicConnectionVisitorInterface { |
| public: |
| virtual ~QuicConnectionVisitorInterface() {} |
| |
| // A simple visitor interface for dealing with a data frame. |
| virtual void OnStreamFrame(const QuicStreamFrame& frame) = 0; |
| |
| // Called when a CRYPTO frame containing handshake data is received. |
| virtual void OnCryptoFrame(const QuicCryptoFrame& frame) = 0; |
| |
| // The session should process the WINDOW_UPDATE frame, adjusting both stream |
| // and connection level flow control windows. |
| virtual void OnWindowUpdateFrame(const QuicWindowUpdateFrame& frame) = 0; |
| |
| // A BLOCKED frame indicates the peer is flow control blocked |
| // on a specified stream. |
| virtual void OnBlockedFrame(const QuicBlockedFrame& frame) = 0; |
| |
| // Called when the stream is reset by the peer. |
| virtual void OnRstStream(const QuicRstStreamFrame& frame) = 0; |
| |
| // Called when the connection is going away according to the peer. |
| virtual void OnGoAway(const QuicGoAwayFrame& frame) = 0; |
| |
| // Called when |message| has been received. |
| virtual void OnMessageReceived(QuicStringPiece message) = 0; |
| |
| // Called when a MAX_STREAMS frame has been received from the peer. |
| virtual bool OnMaxStreamsFrame(const QuicMaxStreamsFrame& frame) = 0; |
| |
| // Called when a STREAMS_BLOCKED frame has been received from the peer. |
| virtual bool OnStreamsBlockedFrame(const QuicStreamsBlockedFrame& frame) = 0; |
| |
| // Called when the connection is closed either locally by the framer, or |
| // remotely by the peer. |
| virtual void OnConnectionClosed(QuicErrorCode error, |
| const std::string& error_details, |
| ConnectionCloseSource source) = 0; |
| |
| // Called when the connection failed to write because the socket was blocked. |
| virtual void OnWriteBlocked() = 0; |
| |
| // Called once a specific QUIC version is agreed by both endpoints. |
| virtual void OnSuccessfulVersionNegotiation( |
| const ParsedQuicVersion& version) = 0; |
| |
| // Called when a connectivity probe has been received by the connection. |
| virtual void OnConnectivityProbeReceived( |
| const QuicSocketAddress& self_address, |
| const QuicSocketAddress& peer_address) = 0; |
| |
| // Called when a blocked socket becomes writable. |
| virtual void OnCanWrite() = 0; |
| |
| // Called when the connection needs more data to probe for additional |
| // bandwidth. Returns true if data was sent, false otherwise. |
| virtual bool SendProbingData() = 0; |
| |
| // Called when the connection experiences a change in congestion window. |
| virtual void OnCongestionWindowChange(QuicTime now) = 0; |
| |
| // Called when the connection receives a packet from a migrated client. |
| virtual void OnConnectionMigration(AddressChangeType type) = 0; |
| |
| // Called when the peer seems unreachable over the current path. |
| virtual void OnPathDegrading() = 0; |
| |
| // Called when the connection sends ack after |
| // max_consecutive_num_packets_with_no_retransmittable_frames_ consecutive not |
| // retransmittable packets sent. To instigate an ack from peer, a |
| // retransmittable frame needs to be added. |
| virtual void OnAckNeedsRetransmittableFrame() = 0; |
| |
| // Called when a ping needs to be sent. |
| virtual void SendPing() = 0; |
| |
| // Called to ask if the visitor wants to schedule write resumption as it both |
| // has pending data to write, and is able to write (e.g. based on flow control |
| // limits). |
| // Writes may be pending because they were write-blocked, congestion-throttled |
| // or yielded to other connections. |
| virtual bool WillingAndAbleToWrite() const = 0; |
| |
| // Called to ask if any handshake messages are pending in this visitor. |
| virtual bool HasPendingHandshake() const = 0; |
| |
| // Called to ask if the connection should be kept alive and prevented |
| // from timing out, for example if there are outstanding application |
| // transactions expecting a response. |
| virtual bool ShouldKeepConnectionAlive() const = 0; |
| |
| // Called when a self address change is observed. Returns true if self address |
| // change is allowed. |
| virtual bool AllowSelfAddressChange() const = 0; |
| |
| // Called when an ACK is received with a larger |largest_acked| than |
| // previously observed. |
| virtual void OnForwardProgressConfirmed() = 0; |
| |
| // Called when a STOP_SENDING frame has been received. |
| virtual bool OnStopSendingFrame(const QuicStopSendingFrame& frame) = 0; |
| }; |
| |
| // Interface which gets callbacks from the QuicConnection at interesting |
| // points. Implementations must not mutate the state of the connection |
| // as a result of these callbacks. |
| class QUIC_EXPORT_PRIVATE QuicConnectionDebugVisitor |
| : public QuicSentPacketManager::DebugDelegate { |
| public: |
| ~QuicConnectionDebugVisitor() override {} |
| |
| // Called when a packet has been sent. |
| virtual void OnPacketSent(const SerializedPacket& serialized_packet, |
| QuicPacketNumber original_packet_number, |
| TransmissionType transmission_type, |
| QuicTime sent_time) {} |
| |
| // Called when a PING frame has been sent. |
| virtual void OnPingSent() {} |
| |
| // Called when a packet has been received, but before it is |
| // validated or parsed. |
| virtual void OnPacketReceived(const QuicSocketAddress& self_address, |
| const QuicSocketAddress& peer_address, |
| const QuicEncryptedPacket& packet) {} |
| |
| // Called when the unauthenticated portion of the header has been parsed. |
| virtual void OnUnauthenticatedHeader(const QuicPacketHeader& header) {} |
| |
| // Called when a packet is received with a connection id that does not |
| // match the ID of this connection. |
| virtual void OnIncorrectConnectionId(QuicConnectionId connection_id) {} |
| |
| // Called when an undecryptable packet has been received. |
| virtual void OnUndecryptablePacket() {} |
| |
| // Called when a duplicate packet has been received. |
| virtual void OnDuplicatePacket(QuicPacketNumber packet_number) {} |
| |
| // Called when the protocol version on the received packet doensn't match |
| // current protocol version of the connection. |
| virtual void OnProtocolVersionMismatch(ParsedQuicVersion version) {} |
| |
| // Called when the complete header of a packet has been parsed. |
| virtual void OnPacketHeader(const QuicPacketHeader& header) {} |
| |
| // Called when a StreamFrame has been parsed. |
| virtual void OnStreamFrame(const QuicStreamFrame& frame) {} |
| |
| // Called when a StopWaitingFrame has been parsed. |
| virtual void OnStopWaitingFrame(const QuicStopWaitingFrame& frame) {} |
| |
| // Called when a QuicPaddingFrame has been parsed. |
| virtual void OnPaddingFrame(const QuicPaddingFrame& frame) {} |
| |
| // Called when a Ping has been parsed. |
| virtual void OnPingFrame(const QuicPingFrame& frame) {} |
| |
| // Called when a GoAway has been parsed. |
| virtual void OnGoAwayFrame(const QuicGoAwayFrame& frame) {} |
| |
| // Called when a RstStreamFrame has been parsed. |
| virtual void OnRstStreamFrame(const QuicRstStreamFrame& frame) {} |
| |
| // Called when a ConnectionCloseFrame has been parsed. All forms |
| // of CONNECTION CLOSE are handled, Google QUIC, IETF QUIC |
| // CONNECTION CLOSE/Transport and IETF QUIC CONNECTION CLOSE/Application |
| virtual void OnConnectionCloseFrame(const QuicConnectionCloseFrame& frame) {} |
| |
| // Called when a WindowUpdate has been parsed. |
| virtual void OnWindowUpdateFrame(const QuicWindowUpdateFrame& frame, |
| const QuicTime& receive_time) {} |
| |
| // Called when a BlockedFrame has been parsed. |
| virtual void OnBlockedFrame(const QuicBlockedFrame& frame) {} |
| |
| // Called when a MessageFrame has been parsed. |
| virtual void OnMessageFrame(const QuicMessageFrame& frame) {} |
| |
| // Called when a public reset packet has been received. |
| virtual void OnPublicResetPacket(const QuicPublicResetPacket& packet) {} |
| |
| // Called when a version negotiation packet has been received. |
| virtual void OnVersionNegotiationPacket( |
| const QuicVersionNegotiationPacket& packet) {} |
| |
| // Called when the connection is closed. |
| virtual void OnConnectionClosed(QuicErrorCode error, |
| const std::string& error_details, |
| ConnectionCloseSource source) {} |
| |
| // Called when the version negotiation is successful. |
| virtual void OnSuccessfulVersionNegotiation( |
| const ParsedQuicVersion& version) {} |
| |
| // Called when a CachedNetworkParameters is sent to the client. |
| virtual void OnSendConnectionState( |
| const CachedNetworkParameters& cached_network_params) {} |
| |
| // Called when a CachedNetworkParameters are received from the client. |
| virtual void OnReceiveConnectionState( |
| const CachedNetworkParameters& cached_network_params) {} |
| |
| // Called when the connection parameters are set from the supplied |
| // |config|. |
| virtual void OnSetFromConfig(const QuicConfig& config) {} |
| |
| // Called when RTT may have changed, including when an RTT is read from |
| // the config. |
| virtual void OnRttChanged(QuicTime::Delta rtt) const {} |
| |
| // Called when a StopSendingFrame has been parsed. |
| virtual void OnStopSendingFrame(const QuicStopSendingFrame& frame) {} |
| }; |
| |
| class QUIC_EXPORT_PRIVATE QuicConnectionHelperInterface { |
| public: |
| virtual ~QuicConnectionHelperInterface() {} |
| |
| // Returns a QuicClock to be used for all time related functions. |
| virtual const QuicClock* GetClock() const = 0; |
| |
| // Returns a QuicRandom to be used for all random number related functions. |
| virtual QuicRandom* GetRandomGenerator() = 0; |
| |
| // Returns a QuicBufferAllocator to be used for stream send buffers. |
| virtual QuicBufferAllocator* GetStreamSendBufferAllocator() = 0; |
| }; |
| |
| class QUIC_EXPORT_PRIVATE QuicConnection |
| : public QuicFramerVisitorInterface, |
| public QuicBlockedWriterInterface, |
| public QuicPacketGenerator::DelegateInterface, |
| public QuicSentPacketManager::NetworkChangeVisitor { |
| public: |
| // TODO(fayang): Remove this enum when deprecating |
| // quic_deprecate_ack_bundling_mode. |
| enum AckBundling { |
| // Send an ack if it's already queued in the connection. |
| SEND_ACK_IF_QUEUED, |
| // Always send an ack. |
| SEND_ACK, |
| // Bundle an ack with outgoing data. |
| SEND_ACK_IF_PENDING, |
| // Do not send ack. |
| NO_ACK, |
| }; |
| |
| // Constructs a new QuicConnection for |connection_id| and |
| // |initial_peer_address| using |writer| to write packets. |owns_writer| |
| // specifies whether the connection takes ownership of |writer|. |helper| must |
| // outlive this connection. |
| QuicConnection(QuicConnectionId server_connection_id, |
| QuicSocketAddress initial_peer_address, |
| QuicConnectionHelperInterface* helper, |
| QuicAlarmFactory* alarm_factory, |
| QuicPacketWriter* writer, |
| bool owns_writer, |
| Perspective perspective, |
| const ParsedQuicVersionVector& supported_versions); |
| QuicConnection(const QuicConnection&) = delete; |
| QuicConnection& operator=(const QuicConnection&) = delete; |
| ~QuicConnection() override; |
| |
| // Sets connection parameters from the supplied |config|. |
| void SetFromConfig(const QuicConfig& config); |
| |
| // Called by the session when sending connection state to the client. |
| virtual void OnSendConnectionState( |
| const CachedNetworkParameters& cached_network_params); |
| |
| // Called by the session when receiving connection state from the client. |
| virtual void OnReceiveConnectionState( |
| const CachedNetworkParameters& cached_network_params); |
| |
| // Called by the Session when the client has provided CachedNetworkParameters. |
| virtual void ResumeConnectionState( |
| const CachedNetworkParameters& cached_network_params, |
| bool max_bandwidth_resumption); |
| |
| // Called by the Session when a max pacing rate for the connection is needed. |
| virtual void SetMaxPacingRate(QuicBandwidth max_pacing_rate); |
| |
| // Allows the client to adjust network parameters based on external |
| // information. |
| void AdjustNetworkParameters(QuicBandwidth bandwidth, |
| QuicTime::Delta rtt, |
| bool allow_cwnd_to_decrease); |
| |
| // Returns the max pacing rate for the connection. |
| virtual QuicBandwidth MaxPacingRate() const; |
| |
| // Sends crypto handshake messages of length |write_length| to the peer in as |
| // few packets as possible. Returns the number of bytes consumed from the |
| // data. |
| virtual size_t SendCryptoData(EncryptionLevel level, |
| size_t write_length, |
| QuicStreamOffset offset); |
| |
| // Send the data of length |write_length| to the peer in as few packets as |
| // possible. Returns the number of bytes consumed from data, and a boolean |
| // indicating if the fin bit was consumed. This does not indicate the data |
| // has been sent on the wire: it may have been turned into a packet and queued |
| // if the socket was unexpectedly blocked. |
| virtual QuicConsumedData SendStreamData(QuicStreamId id, |
| size_t write_length, |
| QuicStreamOffset offset, |
| StreamSendingState state); |
| |
| // Send |frame| to the peer. Returns true if frame is consumed, false |
| // otherwise. |
| virtual bool SendControlFrame(const QuicFrame& frame); |
| |
| // Called when stream |id| is reset because of |error|. |
| virtual void OnStreamReset(QuicStreamId id, QuicRstStreamErrorCode error); |
| |
| // Closes the connection. |
| // |connection_close_behavior| determines whether or not a connection close |
| // packet is sent to the peer. |
| virtual void CloseConnection( |
| QuicErrorCode error, |
| const std::string& details, |
| ConnectionCloseBehavior connection_close_behavior); |
| |
| // Returns statistics tracked for this connection. |
| const QuicConnectionStats& GetStats(); |
| |
| // Processes an incoming UDP packet (consisting of a QuicEncryptedPacket) from |
| // the peer. |
| // In a client, the packet may be "stray" and have a different connection ID |
| // than that of this connection. |
| virtual void ProcessUdpPacket(const QuicSocketAddress& self_address, |
| const QuicSocketAddress& peer_address, |
| const QuicReceivedPacket& packet); |
| |
| // QuicBlockedWriterInterface |
| // Called when the underlying connection becomes writable to allow queued |
| // writes to happen. |
| void OnBlockedWriterCanWrite() override; |
| |
| bool IsWriterBlocked() const override { |
| return writer_ != nullptr && writer_->IsWriteBlocked(); |
| } |
| |
| // Called when the caller thinks it's worth a try to write. |
| virtual void OnCanWrite(); |
| |
| // Called when an error occurs while attempting to write a packet to the |
| // network. |
| void OnWriteError(int error_code); |
| |
| // Whether |result| represents a MSG TOO BIG write error. |
| bool IsMsgTooBig(const WriteResult& result); |
| |
| // If the socket is not blocked, writes queued packets. |
| void WriteIfNotBlocked(); |
| |
| // If the socket is not blocked, writes queued packets and bundles any pending |
| // ACKs. |
| void WriteAndBundleAcksIfNotBlocked(); |
| |
| // Set the packet writer. |
| void SetQuicPacketWriter(QuicPacketWriter* writer, bool owns_writer) { |
| DCHECK(writer != nullptr); |
| if (writer_ != nullptr && owns_writer_) { |
| delete writer_; |
| } |
| writer_ = writer; |
| owns_writer_ = owns_writer; |
| } |
| |
| // Set self address. |
| void SetSelfAddress(QuicSocketAddress address) { self_address_ = address; } |
| |
| // The version of the protocol this connection is using. |
| QuicTransportVersion transport_version() const { |
| return framer_.transport_version(); |
| } |
| |
| ParsedQuicVersion version() const { return framer_.version(); } |
| |
| // The versions of the protocol that this connection supports. |
| const ParsedQuicVersionVector& supported_versions() const { |
| return framer_.supported_versions(); |
| } |
| |
| // From QuicFramerVisitorInterface |
| void OnError(QuicFramer* framer) override; |
| bool OnProtocolVersionMismatch(ParsedQuicVersion received_version, |
| PacketHeaderFormat form) override; |
| void OnPacket() override; |
| void OnPublicResetPacket(const QuicPublicResetPacket& packet) override; |
| void OnVersionNegotiationPacket( |
| const QuicVersionNegotiationPacket& packet) override; |
| void OnRetryPacket(QuicConnectionId original_connection_id, |
| QuicConnectionId new_connection_id, |
| QuicStringPiece retry_token) override; |
| bool OnUnauthenticatedPublicHeader(const QuicPacketHeader& header) override; |
| bool OnUnauthenticatedHeader(const QuicPacketHeader& header) override; |
| void OnDecryptedPacket(EncryptionLevel level) override; |
| bool OnPacketHeader(const QuicPacketHeader& header) override; |
| void OnCoalescedPacket(const QuicEncryptedPacket& packet) override; |
| bool OnStreamFrame(const QuicStreamFrame& frame) override; |
| bool OnCryptoFrame(const QuicCryptoFrame& frame) override; |
| bool OnAckFrameStart(QuicPacketNumber largest_acked, |
| QuicTime::Delta ack_delay_time) override; |
| bool OnAckRange(QuicPacketNumber start, QuicPacketNumber end) override; |
| bool OnAckTimestamp(QuicPacketNumber packet_number, |
| QuicTime timestamp) override; |
| bool OnAckFrameEnd(QuicPacketNumber start) override; |
| bool OnStopWaitingFrame(const QuicStopWaitingFrame& frame) override; |
| bool OnPaddingFrame(const QuicPaddingFrame& frame) override; |
| bool OnPingFrame(const QuicPingFrame& frame) override; |
| bool OnRstStreamFrame(const QuicRstStreamFrame& frame) override; |
| bool OnConnectionCloseFrame(const QuicConnectionCloseFrame& frame) override; |
| bool OnStopSendingFrame(const QuicStopSendingFrame& frame) override; |
| bool OnPathChallengeFrame(const QuicPathChallengeFrame& frame) override; |
| bool OnPathResponseFrame(const QuicPathResponseFrame& frame) override; |
| bool OnGoAwayFrame(const QuicGoAwayFrame& frame) override; |
| bool OnMaxStreamsFrame(const QuicMaxStreamsFrame& frame) override; |
| bool OnStreamsBlockedFrame(const QuicStreamsBlockedFrame& frame) override; |
| bool OnWindowUpdateFrame(const QuicWindowUpdateFrame& frame) override; |
| bool OnBlockedFrame(const QuicBlockedFrame& frame) override; |
| bool OnNewConnectionIdFrame(const QuicNewConnectionIdFrame& frame) override; |
| bool OnRetireConnectionIdFrame( |
| const QuicRetireConnectionIdFrame& frame) override; |
| bool OnNewTokenFrame(const QuicNewTokenFrame& frame) override; |
| bool OnMessageFrame(const QuicMessageFrame& frame) override; |
| void OnPacketComplete() override; |
| bool IsValidStatelessResetToken(QuicUint128 token) const override; |
| void OnAuthenticatedIetfStatelessResetPacket( |
| const QuicIetfStatelessResetPacket& packet) override; |
| |
| // QuicPacketGenerator::DelegateInterface |
| bool ShouldGeneratePacket(HasRetransmittableData retransmittable, |
| IsHandshake handshake) override; |
| const QuicFrames MaybeBundleAckOpportunistically() override; |
| // Please note, this is not a const function. For logging purpose, please use |
| // ack_frame(). |
| const QuicFrame GetUpdatedAckFrame() override; |
| void PopulateStopWaitingFrame(QuicStopWaitingFrame* stop_waiting) override; |
| |
| // QuicPacketCreator::DelegateInterface |
| char* GetPacketBuffer() override; |
| void OnSerializedPacket(SerializedPacket* packet) override; |
| void OnUnrecoverableError(QuicErrorCode error, |
| const std::string& error_details, |
| ConnectionCloseSource source) override; |
| |
| // QuicSentPacketManager::NetworkChangeVisitor |
| void OnCongestionChange() override; |
| void OnPathMtuIncreased(QuicPacketLength packet_size) override; |
| |
| // Called by the crypto stream when the handshake completes. In the server's |
| // case this is when the SHLO has been ACKed. Clients call this on receipt of |
| // the SHLO. |
| void OnHandshakeComplete(); |
| |
| // Accessors |
| void set_visitor(QuicConnectionVisitorInterface* visitor) { |
| visitor_ = visitor; |
| } |
| void set_debug_visitor(QuicConnectionDebugVisitor* debug_visitor) { |
| debug_visitor_ = debug_visitor; |
| sent_packet_manager_.SetDebugDelegate(debug_visitor); |
| } |
| // Used in Chromium, but not internally. |
| // Must only be called before ping_alarm_ is set. |
| void set_ping_timeout(QuicTime::Delta ping_timeout) { |
| DCHECK(!ping_alarm_->IsSet()); |
| ping_timeout_ = ping_timeout; |
| } |
| const QuicTime::Delta ping_timeout() { return ping_timeout_; } |
| // Used in Chromium, but not internally. |
| // Sets a timeout for the ping alarm when there is no retransmittable data |
| // in flight, allowing for a more aggressive ping alarm in that case. |
| void set_retransmittable_on_wire_timeout( |
| QuicTime::Delta retransmittable_on_wire_timeout) { |
| DCHECK(!ping_alarm_->IsSet()); |
| retransmittable_on_wire_timeout_ = retransmittable_on_wire_timeout; |
| } |
| const QuicTime::Delta retransmittable_on_wire_timeout() { |
| return retransmittable_on_wire_timeout_; |
| } |
| // Used in Chromium, but not internally. |
| void set_creator_debug_delegate(QuicPacketCreator::DebugDelegate* visitor) { |
| packet_generator_.set_debug_delegate(visitor); |
| } |
| const QuicSocketAddress& self_address() const { return self_address_; } |
| const QuicSocketAddress& peer_address() const { return direct_peer_address_; } |
| const QuicSocketAddress& effective_peer_address() const { |
| return effective_peer_address_; |
| } |
| QuicConnectionId connection_id() const { return server_connection_id_; } |
| QuicConnectionId client_connection_id() const { |
| return client_connection_id_; |
| } |
| void set_client_connection_id(QuicConnectionId client_connection_id); |
| const QuicClock* clock() const { return clock_; } |
| QuicRandom* random_generator() const { return random_generator_; } |
| QuicByteCount max_packet_length() const; |
| void SetMaxPacketLength(QuicByteCount length); |
| |
| size_t mtu_probe_count() const { return mtu_probe_count_; } |
| |
| bool connected() const { return connected_; } |
| |
| // Must only be called on client connections. |
| const ParsedQuicVersionVector& server_supported_versions() const { |
| DCHECK_EQ(Perspective::IS_CLIENT, perspective_); |
| return server_supported_versions_; |
| } |
| |
| // Testing only. |
| size_t NumQueuedPackets() const { return queued_packets_.size(); } |
| |
| // Once called, any sent crypto packets to be saved as the |
| // termination packet, for use with stateless rejections. |
| void EnableSavingCryptoPackets(); |
| |
| // Returns true if the underlying UDP socket is writable, there is |
| // no queued data and the connection is not congestion-control |
| // blocked. |
| bool CanWriteStreamData(); |
| |
| // Returns true if the connection has queued packets or frames. |
| bool HasQueuedData() const; |
| |
| // Sets the handshake and idle state connection timeouts. |
| void SetNetworkTimeouts(QuicTime::Delta handshake_timeout, |
| QuicTime::Delta idle_timeout); |
| |
| // If the connection has timed out, this will close the connection. |
| // Otherwise, it will reschedule the timeout alarm. |
| void CheckForTimeout(); |
| |
| // Called when the ping alarm fires. Causes a ping frame to be sent only |
| // if the retransmission alarm is not running. |
| void OnPingTimeout(); |
| |
| // Sets up a packet with an QuicAckFrame and sends it out. |
| void SendAck(); |
| |
| // Called when the path degrading alarm fires. |
| void OnPathDegradingTimeout(); |
| |
| // Called when an RTO fires. Resets the retransmission alarm if there are |
| // remaining unacked packets. |
| void OnRetransmissionTimeout(); |
| |
| // Retransmits all unacked packets with retransmittable frames if |
| // |retransmission_type| is ALL_UNACKED_PACKETS, otherwise retransmits only |
| // initially encrypted packets. Used when the negotiated protocol version is |
| // different from what was initially assumed and when the initial encryption |
| // changes. |
| void RetransmitUnackedPackets(TransmissionType retransmission_type); |
| |
| // Calls |sent_packet_manager_|'s NeuterUnencryptedPackets. Used when the |
| // connection becomes forward secure and hasn't received acks for all packets. |
| void NeuterUnencryptedPackets(); |
| |
| // Changes the encrypter used for level |level| to |encrypter|. |
| void SetEncrypter(EncryptionLevel level, |
| std::unique_ptr<QuicEncrypter> encrypter); |
| |
| // SetNonceForPublicHeader sets the nonce that will be transmitted in the |
| // header of each packet encrypted at the initial encryption level decrypted. |
| // This should only be called on the server side. |
| void SetDiversificationNonce(const DiversificationNonce& nonce); |
| |
| // SetDefaultEncryptionLevel sets the encryption level that will be applied |
| // to new packets. |
| void SetDefaultEncryptionLevel(EncryptionLevel level); |
| |
| // SetDecrypter sets the primary decrypter, replacing any that already exists. |
| // If an alternative decrypter is in place then the function DCHECKs. This is |
| // intended for cases where one knows that future packets will be using the |
| // new decrypter and the previous decrypter is now obsolete. |level| indicates |
| // the encryption level of the new decrypter. |
| void SetDecrypter(EncryptionLevel level, |
| std::unique_ptr<QuicDecrypter> decrypter); |
| |
| // SetAlternativeDecrypter sets a decrypter that may be used to decrypt |
| // future packets. |level| indicates the encryption level of the decrypter. If |
| // |latch_once_used| is true, then the first time that the decrypter is |
| // successful it will replace the primary decrypter. Otherwise both |
| // decrypters will remain active and the primary decrypter will be the one |
| // last used. |
| void SetAlternativeDecrypter(EncryptionLevel level, |
| std::unique_ptr<QuicDecrypter> decrypter, |
| bool latch_once_used); |
| |
| void InstallDecrypter(EncryptionLevel level, |
| std::unique_ptr<QuicDecrypter> decrypter); |
| void RemoveDecrypter(EncryptionLevel level); |
| |
| const QuicDecrypter* decrypter() const; |
| const QuicDecrypter* alternative_decrypter() const; |
| |
| Perspective perspective() const { return perspective_; } |
| |
| // Allow easy overriding of truncated connection IDs. |
| void set_can_truncate_connection_ids(bool can) { |
| can_truncate_connection_ids_ = can; |
| } |
| |
| // Returns the underlying sent packet manager. |
| const QuicSentPacketManager& sent_packet_manager() const { |
| return sent_packet_manager_; |
| } |
| |
| // Returns the underlying sent packet manager. |
| QuicSentPacketManager& sent_packet_manager() { return sent_packet_manager_; } |
| |
| bool CanWrite(HasRetransmittableData retransmittable); |
| |
| // When the flusher is out of scope, only the outermost flusher will cause a |
| // flush of the connection and set the retransmission alarm if there is one |
| // pending. In addition, this flusher can be configured to ensure that an ACK |
| // frame is included in the first packet created, if there's new ack |
| // information to be sent. |
| class QUIC_EXPORT_PRIVATE ScopedPacketFlusher { |
| public: |
| // Setting |include_ack| to true ensures that an ACK frame is |
| // opportunistically bundled with the first outgoing packet. |
| // TODO(fayang): Remove |ack_mode| when deprecating |
| // quic_deprecate_ack_bundling_mode. |
| ScopedPacketFlusher(QuicConnection* connection, AckBundling ack_mode); |
| ~ScopedPacketFlusher(); |
| |
| private: |
| bool ShouldSendAck(AckBundling ack_mode) const; |
| |
| QuicConnection* connection_; |
| // If true, when this flusher goes out of scope, flush connection and set |
| // retransmission alarm if there is one pending. |
| bool flush_and_set_pending_retransmission_alarm_on_delete_; |
| }; |
| |
| QuicPacketWriter* writer() { return writer_; } |
| const QuicPacketWriter* writer() const { return writer_; } |
| |
| // Sends an MTU discovery packet of size |target_mtu|. If the packet is |
| // acknowledged by the peer, the maximum packet size will be increased to |
| // |target_mtu|. |
| void SendMtuDiscoveryPacket(QuicByteCount target_mtu); |
| |
| // Sends a connectivity probing packet to |peer_address| with |
| // |probing_writer|. If |probing_writer| is nullptr, will use default |
| // packet writer to write the packet. Returns true if subsequent packets can |
| // be written to the probing writer. If connection is V99, a padded IETF QUIC |
| // PATH_CHALLENGE packet is transmitted; if not V99, a Google QUIC padded PING |
| // packet is transmitted. |
| virtual bool SendConnectivityProbingPacket( |
| QuicPacketWriter* probing_writer, |
| const QuicSocketAddress& peer_address); |
| |
| // Sends response to a connectivity probe. Sends either a Padded Ping |
| // or an IETF PATH_RESPONSE based on the version of the connection. |
| // Is the counterpart to SendConnectivityProbingPacket(). |
| virtual void SendConnectivityProbingResponsePacket( |
| const QuicSocketAddress& peer_address); |
| |
| // Sends an MTU discovery packet of size |mtu_discovery_target_| and updates |
| // the MTU discovery alarm. |
| void DiscoverMtu(); |
| |
| // Sets the session notifier on the SentPacketManager. |
| void SetSessionNotifier(SessionNotifierInterface* session_notifier); |
| |
| // Set data producer in framer. |
| void SetDataProducer(QuicStreamFrameDataProducer* data_producer); |
| |
| // Set transmission type of next sending packets. |
| void SetTransmissionType(TransmissionType type); |
| |
| // Tries to send |message| and returns the message status. |
| virtual MessageStatus SendMessage(QuicMessageId message_id, |
| QuicMemSliceSpan message); |
| |
| // Returns the largest payload that will fit into a single MESSAGE frame. |
| // Because overhead can vary during a connection, this method should be |
| // checked for every message. |
| QuicPacketLength GetCurrentLargestMessagePayload() const; |
| // Returns the largest payload that will fit into a single MESSAGE frame at |
| // any point during the connection. This assumes the version and |
| // connection ID lengths do not change. |
| QuicPacketLength GetGuaranteedLargestMessagePayload() const; |
| |
| // Returns the id of the cipher last used for decrypting packets. |
| uint32_t cipher_id() const; |
| |
| std::vector<std::unique_ptr<QuicEncryptedPacket>>* termination_packets() { |
| return termination_packets_.get(); |
| } |
| |
| bool ack_queued() const { return ack_queued_; } |
| |
| bool ack_frame_updated() const; |
| |
| QuicConnectionHelperInterface* helper() { return helper_; } |
| QuicAlarmFactory* alarm_factory() { return alarm_factory_; } |
| |
| QuicStringPiece GetCurrentPacket(); |
| |
| const QuicFramer& framer() const { return framer_; } |
| |
| const QuicPacketGenerator& packet_generator() const { |
| return packet_generator_; |
| } |
| |
| EncryptionLevel encryption_level() const { return encryption_level_; } |
| EncryptionLevel last_decrypted_level() const { |
| return last_decrypted_packet_level_; |
| } |
| |
| const QuicSocketAddress& last_packet_source_address() const { |
| return last_packet_source_address_; |
| } |
| |
| bool fill_up_link_during_probing() const { |
| return fill_up_link_during_probing_; |
| } |
| void set_fill_up_link_during_probing(bool new_value) { |
| fill_up_link_during_probing_ = new_value; |
| } |
| |
| // This setting may be changed during the crypto handshake in order to |
| // enable/disable padding of different packets in the crypto handshake. |
| // |
| // This setting should never be set to false in public facing endpoints. It |
| // can only be set to false if there is some other mechanism of preventing |
| // amplification attacks, such as ICE (plus its a non-standard quic). |
| void set_fully_pad_crypto_hadshake_packets(bool new_value) { |
| packet_generator_.set_fully_pad_crypto_hadshake_packets(new_value); |
| } |
| |
| bool fully_pad_during_crypto_handshake() const { |
| return packet_generator_.fully_pad_crypto_handshake_packets(); |
| } |
| |
| size_t min_received_before_ack_decimation() const; |
| void set_min_received_before_ack_decimation(size_t new_value); |
| |
| size_t ack_frequency_before_ack_decimation() const; |
| void set_ack_frequency_before_ack_decimation(size_t new_value); |
| |
| // If |defer| is true, configures the connection to defer sending packets in |
| // response to an ACK to the SendAlarm. If |defer| is false, packets may be |
| // sent immediately after receiving an ACK. |
| void set_defer_send_in_response_to_packets(bool defer) { |
| defer_send_in_response_to_packets_ = defer; |
| } |
| |
| bool session_decides_what_to_write() const; |
| |
| // Sets the current per-packet options for the connection. The QuicConnection |
| // does not take ownership of |options|; |options| must live for as long as |
| // the QuicConnection is in use. |
| void set_per_packet_options(PerPacketOptions* options) { |
| per_packet_options_ = options; |
| } |
| |
| bool IsPathDegrading() const { return is_path_degrading_; } |
| |
| // Attempts to process any queued undecryptable packets. |
| void MaybeProcessUndecryptablePackets(); |
| |
| // Queue a coalesced packet. |
| void QueueCoalescedPacket(const QuicEncryptedPacket& packet); |
| |
| // Process previously queued coalesced packets. |
| void MaybeProcessCoalescedPackets(); |
| |
| enum PacketContent : uint8_t { |
| NO_FRAMES_RECEIVED, |
| // TODO(fkastenholz): Change name when we get rid of padded ping/ |
| // pre-version-99. |
| // Also PATH CHALLENGE and PATH RESPONSE. |
| FIRST_FRAME_IS_PING, |
| SECOND_FRAME_IS_PADDING, |
| NOT_PADDED_PING, // Set if the packet is not {PING, PADDING}. |
| }; |
| |
| // Whether the handshake is confirmed from this connection's perspective. |
| bool IsHandshakeConfirmed() const { |
| return sent_packet_manager_.handshake_confirmed(); |
| } |
| |
| // Returns the largest received packet number sent by peer. |
| QuicPacketNumber GetLargestReceivedPacket() const; |
| |
| // Adds the connection ID to a set of connection IDs that are accepted as |
| // destination on incoming packets. |
| void AddIncomingConnectionId(QuicConnectionId connection_id); |
| |
| // Called when ACK alarm goes off. Sends ACKs of those packet number spaces |
| // which have expired ACK timeout. Only used when this connection supports |
| // multiple packet number spaces. |
| void SendAllPendingAcks(); |
| |
| // Returns true if this connection supports multiple packet number spaces. |
| bool SupportsMultiplePacketNumberSpaces() const; |
| |
| // For logging purpose. |
| const QuicAckFrame& ack_frame() const; |
| |
| protected: |
| // Calls cancel() on all the alarms owned by this connection. |
| void CancelAllAlarms(); |
| |
| // Send a packet to the peer, and takes ownership of the packet if the packet |
| // cannot be written immediately. |
| virtual void SendOrQueuePacket(SerializedPacket* packet); |
| |
| // Called after a packet is received from a new effective peer address and is |
| // decrypted. Starts validation of effective peer's address change. Calls |
| // OnConnectionMigration as soon as the address changed. |
| void StartEffectivePeerMigration(AddressChangeType type); |
| |
| // Called when a effective peer address migration is validated. |
| virtual void OnEffectivePeerMigrationValidated(); |
| |
| // Get the effective peer address from the packet being processed. For proxied |
| // connections, effective peer address is the address of the endpoint behind |
| // the proxy. For non-proxied connections, effective peer address is the same |
| // as peer address. |
| // |
| // Notes for implementations in subclasses: |
| // - If the connection is not proxied, the overridden method should use the |
| // base implementation: |
| // |
| // return QuicConnection::GetEffectivePeerAddressFromCurrentPacket(); |
| // |
| // - If the connection is proxied, the overridden method may return either of |
| // the following: |
| // a) The address of the endpoint behind the proxy. The address is used to |
| // drive effective peer migration. |
| // b) An uninitialized address, meaning the effective peer address does not |
| // change. |
| virtual QuicSocketAddress GetEffectivePeerAddressFromCurrentPacket() const; |
| |
| // Selects and updates the version of the protocol being used by selecting a |
| // version from |available_versions| which is also supported. Returns true if |
| // such a version exists, false otherwise. |
| bool SelectMutualVersion(const ParsedQuicVersionVector& available_versions); |
| |
| // Returns the current per-packet options for the connection. |
| PerPacketOptions* per_packet_options() { return per_packet_options_; } |
| |
| AddressChangeType active_effective_peer_migration_type() const { |
| return active_effective_peer_migration_type_; |
| } |
| |
| // Sends a connection close packet to the peer and includes an ACK if the ACK |
| // is not empty, the |error| is not PACKET_WRITE_ERROR, and it fits. |
| virtual void SendConnectionClosePacket(QuicErrorCode error, |
| const std::string& details); |
| |
| // Returns true if the packet should be discarded and not sent. |
| virtual bool ShouldDiscardPacket(const SerializedPacket& packet); |
| |
| // Retransmits packets continuously until blocked by the congestion control. |
| // If there are no packets to retransmit, does not do anything. |
| void SendProbingRetransmissions(); |
| |
| // Decides whether to send probing retransmissions, and does so if required. |
| void MaybeSendProbingRetransmissions(); |
| |
| // Notify various components(SendPacketManager, Session etc.) that this |
| // connection has been migrated. |
| virtual void OnConnectionMigration(AddressChangeType addr_change_type); |
| |
| // Return whether the packet being processed is a connectivity probing. |
| // A packet is a connectivity probing if it is a padded ping packet with self |
| // and/or peer address changes. |
| bool IsCurrentPacketConnectivityProbing() const; |
| |
| // Return true iff the writer is blocked, if blocked, call |
| // visitor_->OnWriteBlocked() to add the connection into the write blocked |
| // list. |
| bool HandleWriteBlocked(); |
| |
| private: |
| friend class test::QuicConnectionPeer; |
| |
| typedef std::list<SerializedPacket> QueuedPacketList; |
| |
| // Notifies the visitor of the close and marks the connection as disconnected. |
| // Does not send a connection close frame to the peer. |
| void TearDownLocalConnectionState(QuicErrorCode error, |
| const std::string& details, |
| ConnectionCloseSource source); |
| |
| // Writes the given packet to socket, encrypted with packet's |
| // encryption_level. Returns true on successful write, and false if the writer |
| // was blocked and the write needs to be tried again. Notifies the |
| // SentPacketManager when the write is successful and sets |
| // retransmittable frames to nullptr. |
| // Saves the connection close packet for later transmission, even if the |
| // writer is write blocked. |
| bool WritePacket(SerializedPacket* packet); |
| |
| // Flush packets buffered in the writer, if any. |
| void FlushPackets(); |
| |
| // Make sure a stop waiting we got from our peer is sane. |
| // Returns nullptr if the frame is valid or an error string if it was invalid. |
| const char* ValidateStopWaitingFrame( |
| const QuicStopWaitingFrame& stop_waiting); |
| |
| // Sends a version negotiation packet to the peer. |
| void SendVersionNegotiationPacket(bool ietf_quic); |
| |
| // Clears any accumulated frames from the last received packet. |
| void ClearLastFrames(); |
| |
| // Deletes and clears any queued packets. |
| void ClearQueuedPackets(); |
| |
| // Closes the connection if the sent packet manager is tracking too many |
| // outstanding packets. |
| void CloseIfTooManyOutstandingSentPackets(); |
| |
| // Writes as many queued packets as possible. The connection must not be |
| // blocked when this is called. |
| void WriteQueuedPackets(); |
| |
| // Writes as many pending retransmissions as possible. |
| void WritePendingRetransmissions(); |
| |
| // Writes new data if congestion control allows. |
| void WriteNewData(); |
| |
| // Queues |packet| in the hopes that it can be decrypted in the |
| // future, when a new key is installed. |
| void QueueUndecryptablePacket(const QuicEncryptedPacket& packet); |
| |
| // Sends any packets which are a response to the last packet, including both |
| // acks and pending writes if an ack opened the congestion window. |
| void MaybeSendInResponseToPacket(); |
| |
| // Queue an ack or set the ack alarm if needed. |was_missing| is true if |
| // the most recently received packet was formerly missing. |
| void MaybeQueueAck(bool was_missing); |
| |
| // Gets the least unacked packet number, which is the next packet number to be |
| // sent if there are no outstanding packets. |
| QuicPacketNumber GetLeastUnacked() const; |
| |
| // Sets the timeout alarm to the appropriate value, if any. |
| void SetTimeoutAlarm(); |
| |
| // Sets the ping alarm to the appropriate value, if any. |
| void SetPingAlarm(); |
| |
| // Sets the retransmission alarm based on SentPacketManager. |
| void SetRetransmissionAlarm(); |
| |
| // Sets the path degrading alarm. |
| void SetPathDegradingAlarm(); |
| |
| // Sets the MTU discovery alarm if necessary. |
| // |sent_packet_number| is the recently sent packet number. |
| void MaybeSetMtuAlarm(QuicPacketNumber sent_packet_number); |
| |
| // Sets ack alarm to |time| if ack alarm is not set or the deadline > time. |
| void MaybeSetAckAlarmTo(QuicTime time); |
| |
| HasRetransmittableData IsRetransmittable(const SerializedPacket& packet); |
| bool IsTerminationPacket(const SerializedPacket& packet); |
| |
| // Set the size of the packet we are targeting while doing path MTU discovery. |
| void SetMtuDiscoveryTarget(QuicByteCount target); |
| |
| // Returns |suggested_max_packet_size| clamped to any limits set by the |
| // underlying writer, connection, or protocol. |
| QuicByteCount GetLimitedMaxPacketSize( |
| QuicByteCount suggested_max_packet_size); |
| |
| // Do any work which logically would be done in OnPacket but can not be |
| // safely done until the packet is validated. Returns true if packet can be |
| // handled, false otherwise. |
| bool ProcessValidatedPacket(const QuicPacketHeader& header); |
| |
| // Returns true if received |packet_number| can be processed. Please note, |
| // this is called after packet got decrypted successfully. |
| bool ValidateReceivedPacketNumber(QuicPacketNumber packet_number); |
| |
| // Consider receiving crypto frame on non crypto stream as memory corruption. |
| bool MaybeConsiderAsMemoryCorruption(const QuicStreamFrame& frame); |
| |
| // Check if the connection has no outstanding data to send and notify |
| // congestion controller if it is the case. |
| void CheckIfApplicationLimited(); |
| |
| // Sets |current_packet_content_| to |type| if applicable. And |
| // starts effective peer migration if current packet is confirmed not a |
| // connectivity probe and |current_effective_peer_migration_type_| indicates |
| // effective peer address change. |
| void UpdatePacketContent(PacketContent type); |
| |
| // Enables session decide what to write based on version and flags. |
| void MaybeEnableSessionDecidesWhatToWrite(); |
| |
| // Called when last received ack frame has been processed. |
| // |send_stop_waiting| indicates whether a stop waiting needs to be sent. |
| // |acked_new_packet| is true if a previously-unacked packet was acked. |
| void PostProcessAfterAckFrame(bool send_stop_waiting, bool acked_new_packet); |
| |
| // Called when an ACK is received to set the path degrading alarm or |
| // retransmittable on wire alarm. |
| void MaybeSetPathDegradingAlarm(bool acked_new_packet); |
| |
| // Updates the release time into the future. |
| void UpdateReleaseTimeIntoFuture(); |
| |
| // Sends generic path probe packet to the peer. If we are not IETF QUIC, will |
| // always send a padded ping, regardless of whether this is a request or |
| // response. If version 99/ietf quic, will send a PATH_RESPONSE if |
| // |is_response| is true, a PATH_CHALLENGE if not. |
| bool SendGenericPathProbePacket(QuicPacketWriter* probing_writer, |
| const QuicSocketAddress& peer_address, |
| bool is_response); |
| |
| // Called when an ACK is about to send. Resets ACK related internal states, |
| // e.g., cancels ack_alarm_, resets |
| // num_retransmittable_packets_received_since_last_ack_sent_ etc. |
| void ResetAckStates(); |
| |
| // Enables multiple packet number spaces support based on handshake protocol |
| // and flags. |
| void MaybeEnableMultiplePacketNumberSpacesSupport(); |
| |
| // Returns true if ack alarm is not set and there is no pending ack in the |
| // generator. |
| bool ShouldSetAckAlarm() const; |
| |
| // Returns the encryption level the connection close packet should be sent at, |
| // which is the highest encryption level that peer can guarantee to process. |
| EncryptionLevel GetConnectionCloseEncryptionLevel() const; |
| |
| // Called after an ACK frame is successfully processed to update largest |
| // received packet number which contains an ACK frame. |
| void SetLargestReceivedPacketWithAck(QuicPacketNumber new_value); |
| |
| // Returns largest received packet number which contains an ACK frame. |
| QuicPacketNumber GetLargestReceivedPacketWithAck() const; |
| |
| // Returns the largest packet number that has been sent. |
| QuicPacketNumber GetLargestSentPacket() const; |
| |
| // Returns the largest sent packet number that has been ACKed by peer. |
| QuicPacketNumber GetLargestAckedPacket() const; |
| |
| // Whether incoming_connection_ids_ contains connection_id. |
| bool HasIncomingConnectionId(QuicConnectionId connection_id); |
| |
| QuicFramer framer_; |
| |
| // Contents received in the current packet, especially used to identify |
| // whether the current packet is a padded PING packet. |
| PacketContent current_packet_content_; |
| // Set to true as soon as the packet currently being processed has been |
| // detected as a connectivity probing. |
| // Always false outside the context of ProcessUdpPacket(). |
| bool is_current_packet_connectivity_probing_; |
| |
| // Caches the current effective peer migration type if a effective peer |
| // migration might be initiated. As soon as the current packet is confirmed |
| // not a connectivity probe, effective peer migration will start. |
| AddressChangeType current_effective_peer_migration_type_; |
| QuicConnectionHelperInterface* helper_; // Not owned. |
| QuicAlarmFactory* alarm_factory_; // Not owned. |
| PerPacketOptions* per_packet_options_; // Not owned. |
| QuicPacketWriter* writer_; // Owned or not depending on |owns_writer_|. |
| bool owns_writer_; |
| // Encryption level for new packets. Should only be changed via |
| // SetDefaultEncryptionLevel(). |
| EncryptionLevel encryption_level_; |
| const QuicClock* clock_; |
| QuicRandom* random_generator_; |
| |
| QuicConnectionId server_connection_id_; |
| QuicConnectionId client_connection_id_; |
| // Address on the last successfully processed packet received from the |
| // direct peer. |
| QuicSocketAddress self_address_; |
| QuicSocketAddress peer_address_; |
| |
| QuicSocketAddress direct_peer_address_; |
| // Address of the endpoint behind the proxy if the connection is proxied. |
| // Otherwise it is the same as |peer_address_|. |
| // NOTE: Currently |effective_peer_address_| and |peer_address_| are always |
| // the same(the address of the direct peer), but soon we'll change |
| // |effective_peer_address_| to be the address of the endpoint behind the |
| // proxy if the connection is proxied. |
| QuicSocketAddress effective_peer_address_; |
| |
| // Records change type when the effective peer initiates migration to a new |
| // address. Reset to NO_CHANGE after effective peer migration is validated. |
| AddressChangeType active_effective_peer_migration_type_; |
| |
| // Records highest sent packet number when effective peer migration is |
| // started. |
| QuicPacketNumber highest_packet_sent_before_effective_peer_migration_; |
| |
| // True if the last packet has gotten far enough in the framer to be |
| // decrypted. |
| bool last_packet_decrypted_; |
| QuicByteCount last_size_; // Size of the last received packet. |
| // TODO(rch): remove this when b/27221014 is fixed. |
| const char* current_packet_data_; // UDP payload of packet currently being |
| // parsed or nullptr. |
| EncryptionLevel last_decrypted_packet_level_; |
| QuicPacketHeader last_header_; |
| bool should_last_packet_instigate_acks_; |
| // Whether the most recent packet was missing before it was received. |
| // TODO(fayang): Remove was_last_packet_missing_ when deprecating |
| // quic_rpm_decides_when_to_send_acks. |
| bool was_last_packet_missing_; |
| |
| // Track some peer state so we can do less bookkeeping |
| // Largest sequence sent by the peer which had an ack frame (latest ack info). |
| // Do not read or write directly, use GetLargestReceivedPacketWithAck() and |
| // SetLargestReceivedPacketWithAck() instead. |
| QuicPacketNumber largest_seen_packet_with_ack_; |
| // Largest packet number sent by the peer which had an ACK frame per packet |
| // number space. Only used when this connection supports multiple packet |
| // number spaces. |
| QuicPacketNumber largest_seen_packets_with_ack_[NUM_PACKET_NUMBER_SPACES]; |
| |
| // Largest packet number sent by the peer which had a stop waiting frame. |
| QuicPacketNumber largest_seen_packet_with_stop_waiting_; |
| |
| // Collection of packets which were received before encryption was |
| // established, but which could not be decrypted. We buffer these on |
| // the assumption that they could not be processed because they were |
| // sent with the INITIAL encryption and the CHLO message was lost. |
| QuicDeque<std::unique_ptr<QuicEncryptedPacket>> undecryptable_packets_; |
| |
| // Collection of coalesced packets which were received while processing |
| // the current packet. |
| QuicDeque<std::unique_ptr<QuicEncryptedPacket>> coalesced_packets_; |
| |
| // Maximum number of undecryptable packets the connection will store. |
| size_t max_undecryptable_packets_; |
| |
| // Maximum number of tracked packets. |
| QuicPacketCount max_tracked_packets_; |
| |
| // When the version negotiation packet could not be sent because the socket |
| // was not writable, this is set to true. |
| bool pending_version_negotiation_packet_; |
| // Used when pending_version_negotiation_packet_ is true. |
| bool send_ietf_version_negotiation_packet_; |
| |
| // When packets could not be sent because the socket was not writable, |
| // they are added to this list. All corresponding frames are in |
| // unacked_packets_ if they are to be retransmitted. Packets encrypted_buffer |
| // fields are owned by the QueuedPacketList, in order to ensure they outlast |
| // the original scope of the SerializedPacket. |
| QueuedPacketList queued_packets_; |
| |
| // If true, then crypto packets will be saved as termination packets. |
| bool save_crypto_packets_as_termination_packets_; |
| |
| // Contains the connection close packets if the connection has been closed. |
| std::unique_ptr<std::vector<std::unique_ptr<QuicEncryptedPacket>>> |
| termination_packets_; |
| |
| // Determines whether or not a connection close packet is sent to the peer |
| // after idle timeout due to lack of network activity. |
| // This is particularly important on mobile, where waking up the radio is |
| // undesirable. |
| ConnectionCloseBehavior idle_timeout_connection_close_behavior_; |
| |
| // When true, close the QUIC connection after 5 RTOs. Due to the min rto of |
| // 200ms, this is over 5 seconds. |
| bool close_connection_after_five_rtos_; |
| |
| // TODO(fayang): remove received_packet_manager_ when deprecating |
| // quic_use_uber_received_packet_manager. |
| QuicReceivedPacketManager received_packet_manager_; |
| // Used when use_uber_received_packet_manager_ is true. |
| UberReceivedPacketManager uber_received_packet_manager_; |
| |
| // Indicates whether an ack should be sent the next time we try to write. |
| // TODO(fayang): Remove ack_queued_ when deprecating |
| // quic_deprecate_ack_bundling_mode. |
| bool ack_queued_; |
| // How many retransmittable packets have arrived without sending an ack. |
| // TODO(fayang): Remove |
| // num_retransmittable_packets_received_since_last_ack_sent_ when deprecating |
| // quic_rpm_decides_when_to_send_acks. |
| QuicPacketCount num_retransmittable_packets_received_since_last_ack_sent_; |
| // How many consecutive packets have arrived without sending an ack. |
| QuicPacketCount num_packets_received_since_last_ack_sent_; |
| // Indicates how many consecutive times an ack has arrived which indicates |
| // the peer needs to stop waiting for some packets. |
| int stop_waiting_count_; |
| // TODO(fayang): Remove ack_mode_, ack_decimation_delay_, |
| // unlimited_ack_decimation_, fast_ack_after_quiescence_ when deprecating |
| // quic_rpm_decides_when_to_send_acks. |
| // Indicates the current ack mode, defaults to acking every 2 packets. |
| AckMode ack_mode_; |
| // The max delay in fraction of min_rtt to use when sending decimated acks. |
| float ack_decimation_delay_; |
| // When true, removes ack decimation's max number of packets(10) before |
| // sending an ack. |
| bool unlimited_ack_decimation_; |
| // When true, use a 1ms delayed ack timer if it's been an SRTT since a packet |
| // was received. |
| bool fast_ack_after_quiescence_; |
| |
| // Indicates the retransmission alarm needs to be set. |
| bool pending_retransmission_alarm_; |
| |
| // If true, defer sending data in response to received packets to the |
| // SendAlarm. |
| bool defer_send_in_response_to_packets_; |
| |
| // The timeout for PING. |
| QuicTime::Delta ping_timeout_; |
| |
| // Timeout for how long the wire can have no retransmittable packets. |
| QuicTime::Delta retransmittable_on_wire_timeout_; |
| |
| // Arena to store class implementations within the QuicConnection. |
| QuicConnectionArena arena_; |
| |
| // An alarm that fires when an ACK should be sent to the peer. |
| QuicArenaScopedPtr<QuicAlarm> ack_alarm_; |
| // An alarm that fires when a packet needs to be retransmitted. |
| QuicArenaScopedPtr<QuicAlarm> retransmission_alarm_; |
| // An alarm that is scheduled when the SentPacketManager requires a delay |
| // before sending packets and fires when the packet may be sent. |
| QuicArenaScopedPtr<QuicAlarm> send_alarm_; |
| // An alarm that is scheduled when the connection can still write and there |
| // may be more data to send. |
| // An alarm that fires when the connection may have timed out. |
| QuicArenaScopedPtr<QuicAlarm> timeout_alarm_; |
| // An alarm that fires when a ping should be sent. |
| QuicArenaScopedPtr<QuicAlarm> ping_alarm_; |
| // An alarm that fires when an MTU probe should be sent. |
| QuicArenaScopedPtr<QuicAlarm> mtu_discovery_alarm_; |
| // An alarm that fires when this connection is considered degrading. |
| QuicArenaScopedPtr<QuicAlarm> path_degrading_alarm_; |
| // An alarm that fires to process undecryptable packets when new decyrption |
| // keys are available. |
| QuicArenaScopedPtr<QuicAlarm> process_undecryptable_packets_alarm_; |
| // Neither visitor is owned by this class. |
| QuicConnectionVisitorInterface* visitor_; |
| QuicConnectionDebugVisitor* debug_visitor_; |
| |
| QuicPacketGenerator packet_generator_; |
| |
| // Network idle time before this connection is closed. |
| QuicTime::Delta idle_network_timeout_; |
| // The connection will wait this long for the handshake to complete. |
| QuicTime::Delta handshake_timeout_; |
| |
| // Statistics for this session. |
| QuicConnectionStats stats_; |
| |
| // Timestamps used for timeouts. |
| // The time of the first retransmittable packet that was sent after the most |
| // recently received packet. |
| QuicTime time_of_first_packet_sent_after_receiving_; |
| // The time that a packet is received for this connection. Initialized to |
| // connection creation time. |
| // This is used for timeouts, and does not indicate the packet was processed. |
| QuicTime time_of_last_received_packet_; |
| |
| // The time the previous ack-instigating packet was received and processed. |
| // TODO(fayang): Remove time_of_previous_received_packet_ when deprecating |
| // quic_rpm_decides_when_to_send_acks. |
| QuicTime time_of_previous_received_packet_; |
| |
| // Sent packet manager which tracks the status of packets sent by this |
| // connection and contains the send and receive algorithms to determine when |
| // to send packets. |
| QuicSentPacketManager sent_packet_manager_; |
| |
| // The state of connection in version negotiation finite state machine. |
| enum QuicVersionNegotiationState { |
| START_NEGOTIATION = 0, |
| // Server-side this implies we've sent a version negotiation packet and are |
| // waiting on the client to select a compatible version. Client-side this |
| // implies we've gotten a version negotiation packet, are retransmitting the |
| // initial packets with a supported version and are waiting for our first |
| // packet from the server. |
| NEGOTIATION_IN_PROGRESS, |
| // This indicates this endpoint has received a packet from the peer with a |
| // version this endpoint supports. Version negotiation is complete, and the |
| // version number will no longer be sent with future packets. |
| NEGOTIATED_VERSION |
| }; |
| QuicVersionNegotiationState version_negotiation_state_; |
| |
| // Tracks if the connection was created by the server or the client. |
| Perspective perspective_; |
| |
| // True by default. False if we've received or sent an explicit connection |
| // close. |
| bool connected_; |
| |
| // Destination address of the last received packet. |
| QuicSocketAddress last_packet_destination_address_; |
| |
| // Source address of the last received packet. |
| QuicSocketAddress last_packet_source_address_; |
| |
| // Set to false if the connection should not send truncated connection IDs to |
| // the peer, even if the peer supports it. |
| bool can_truncate_connection_ids_; |
| |
| // If non-empty this contains the set of versions received in a |
| // version negotiation packet. |
| ParsedQuicVersionVector server_supported_versions_; |
| |
| // The size of the packet we are targeting while doing path MTU discovery. |
| QuicByteCount mtu_discovery_target_; |
| |
| // The number of MTU probes already sent. |
| size_t mtu_probe_count_; |
| |
| // The number of packets between MTU probes. |
| QuicPacketCount packets_between_mtu_probes_; |
| |
| // The packet number of the packet after which the next MTU probe will be |
| // sent. |
| QuicPacketNumber next_mtu_probe_at_; |
| |
| // The value of the MTU regularly used by the connection. This is different |
| // from the value returned by max_packet_size(), as max_packet_size() returns |
| // the value of the MTU as currently used by the serializer, so if |
| // serialization of an MTU probe is in progress, those two values will be |
| // different. |
| QuicByteCount long_term_mtu_; |
| |
| // The size of the largest packet received from peer. |
| QuicByteCount largest_received_packet_size_; |
| |
| // Indicates whether a write error is encountered currently. This is used to |
| // avoid infinite write errors. |
| bool write_error_occurred_; |
| |
| // Indicates not to send or process stop waiting frames. |
| bool no_stop_waiting_frames_; |
| |
| // Consecutive number of sent packets which have no retransmittable frames. |
| size_t consecutive_num_packets_with_no_retransmittable_frames_; |
| |
| // After this many packets sent without retransmittable frames, an artificial |
| // retransmittable frame(a WINDOW_UPDATE) will be created to solicit an ack |
| // from the peer. Default to kMaxConsecutiveNonRetransmittablePackets. |
| size_t max_consecutive_num_packets_with_no_retransmittable_frames_; |
| |
| // Ack decimation will start happening after this many packets are received. |
| // TODO(fayang): Remove min_received_before_ack_decimation_ when deprecating |
| // quic_rpm_decides_when_to_send_acks. |
| size_t min_received_before_ack_decimation_; |
| |
| // Before ack decimation starts (if enabled), we ack every n-th packet. |
| // TODO(fayang): Remove ack_frequency_before_ack_decimation_ when deprecating |
| // quic_rpm_decides_when_to_send_acks. |
| size_t ack_frequency_before_ack_decimation_; |
| |
| // If true, the connection will fill up the pipe with extra data whenever the |
| // congestion controller needs it in order to make a bandwidth estimate. This |
| // is useful if the application pesistently underutilizes the link, but still |
| // relies on having a reasonable bandwidth estimate from the connection, e.g. |
| // for real time applications. |
| bool fill_up_link_during_probing_; |
| |
| // If true, the probing retransmission will not be started again. This is |
| // used to safeguard against an accidental tail recursion in probing |
| // retransmission code. |
| bool probing_retransmission_pending_; |
| |
| // Indicates whether a stateless reset token has been received from peer. |
| bool stateless_reset_token_received_; |
| // Stores received stateless reset token from peer. Used to verify whether a |
| // packet is a stateless reset packet. |
| QuicUint128 received_stateless_reset_token_; |
| |
| // Id of latest sent control frame. 0 if no control frame has been sent. |
| QuicControlFrameId last_control_frame_id_; |
| |
| // True if the peer is unreachable on the current path. |
| bool is_path_degrading_; |
| |
| // True if an ack frame is being processed. |
| bool processing_ack_frame_; |
| |
| // True if the writer supports release timestamp. |
| bool supports_release_time_; |
| |
| // Time this connection can release packets into the future. |
| QuicTime::Delta release_time_into_future_; |
| |
| // Indicates whether server connection does version negotiation. Server |
| // connection does not support version negotiation if a single version is |
| // provided in constructor. |
| const bool no_version_negotiation_; |
| |
| // Payload of most recently transmitted QUIC_VERSION_99 connectivity |
| // probe packet (the PATH_CHALLENGE payload). This implementation transmits |
| // only one PATH_CHALLENGE per connectivity probe, so only one |
| // QuicPathFrameBuffer is needed. |
| std::unique_ptr<QuicPathFrameBuffer> transmitted_connectivity_probe_payload_; |
| |
| // Payloads that were received in the most recent probe. This needs to be a |
| // Deque because the peer might no be using this implementation, and others |
| // might send a packet with more than one PATH_CHALLENGE, so all need to be |
| // saved and responded to. |
| QuicDeque<QuicPathFrameBuffer> received_path_challenge_payloads_; |
| |
| // Set of connection IDs that should be accepted as destination on |
| // received packets. This is conceptually a set but is implemented as a |
| // vector to improve performance since it is expected to be very small. |
| std::vector<QuicConnectionId> incoming_connection_ids_; |
| |
| // Indicates whether an ACK needs to be sent in OnCanWrite(). Only used when |
| // deprecate_ack_bundling_mode is true. |
| // TODO(fayang): Remove this when ACK sending logic is moved to received |
| // packet manager, and an ACK timeout would be used to record when an ACK |
| // needs to be sent. |
| bool send_ack_when_on_can_write_; |
| |
| // Indicates whether a RETRY packet has been parsed. |
| bool retry_has_been_parsed_; |
| |
| // Latched value of quic_validate_packet_number_post_decryption. |
| const bool validate_packet_number_post_decryption_; |
| |
| // Latched value of quic_rpm_decides_when_to_send_acks and |
| // quic_use_uber_received_packet_manager. |
| const bool use_uber_received_packet_manager_; |
| }; |
| |
| } // namespace quic |
| |
| #endif // QUICHE_QUIC_CORE_QUIC_CONNECTION_H_ |