| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/third_party/quiche/src/quic/core/quic_connection.h" |
| |
| #include <errno.h> |
| |
| #include <memory> |
| #include <ostream> |
| #include <string> |
| #include <utility> |
| |
| #include "net/third_party/quiche/src/quic/core/congestion_control/loss_detection_interface.h" |
| #include "net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h" |
| #include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h" |
| #include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h" |
| #include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h" |
| #include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h" |
| #include "net/third_party/quiche/src/quic/core/quic_connection_id.h" |
| #include "net/third_party/quiche/src/quic/core/quic_packets.h" |
| #include "net/third_party/quiche/src/quic/core/quic_simple_buffer_allocator.h" |
| #include "net/third_party/quiche/src/quic/core/quic_types.h" |
| #include "net/third_party/quiche/src/quic/core/quic_utils.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_error_code_wrappers.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_expect_bug.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_logging.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_reference_counted.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_string_piece.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_test.h" |
| #include "net/third_party/quiche/src/quic/test_tools/mock_clock.h" |
| #include "net/third_party/quiche/src/quic/test_tools/mock_random.h" |
| #include "net/third_party/quiche/src/quic/test_tools/quic_config_peer.h" |
| #include "net/third_party/quiche/src/quic/test_tools/quic_connection_peer.h" |
| #include "net/third_party/quiche/src/quic/test_tools/quic_framer_peer.h" |
| #include "net/third_party/quiche/src/quic/test_tools/quic_packet_creator_peer.h" |
| #include "net/third_party/quiche/src/quic/test_tools/quic_packet_generator_peer.h" |
| #include "net/third_party/quiche/src/quic/test_tools/quic_sent_packet_manager_peer.h" |
| #include "net/third_party/quiche/src/quic/test_tools/quic_test_utils.h" |
| #include "net/third_party/quiche/src/quic/test_tools/simple_data_producer.h" |
| #include "net/third_party/quiche/src/quic/test_tools/simple_quic_framer.h" |
| #include "net/third_party/quiche/src/quic/test_tools/simple_session_notifier.h" |
| |
| using testing::_; |
| using testing::AnyNumber; |
| using testing::AtLeast; |
| using testing::DoAll; |
| using testing::Exactly; |
| using testing::Ge; |
| using testing::IgnoreResult; |
| using testing::InSequence; |
| using testing::Invoke; |
| using testing::InvokeWithoutArgs; |
| using testing::Lt; |
| using testing::Ref; |
| using testing::Return; |
| using testing::SaveArg; |
| using testing::SetArgPointee; |
| using testing::StrictMock; |
| |
| namespace quic { |
| namespace test { |
| namespace { |
| |
| const char data1[] = "foo data"; |
| const char data2[] = "bar data"; |
| |
| const bool kHasStopWaiting = true; |
| |
| const int kDefaultRetransmissionTimeMs = 500; |
| |
| DiversificationNonce kTestDiversificationNonce = { |
| 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', |
| 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', |
| 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', |
| }; |
| |
| const QuicSocketAddress kPeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), |
| /*port=*/12345); |
| const QuicSocketAddress kSelfAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), |
| /*port=*/443); |
| |
| QuicStreamId GetNthClientInitiatedStreamId(int n, |
| QuicTransportVersion version) { |
| return QuicUtils::GetFirstBidirectionalStreamId(version, |
| Perspective::IS_CLIENT) + |
| n * 2; |
| } |
| |
| QuicLongHeaderType EncryptionlevelToLongHeaderType(EncryptionLevel level) { |
| switch (level) { |
| case ENCRYPTION_INITIAL: |
| return INITIAL; |
| case ENCRYPTION_HANDSHAKE: |
| return HANDSHAKE; |
| case ENCRYPTION_ZERO_RTT: |
| return ZERO_RTT_PROTECTED; |
| case ENCRYPTION_FORWARD_SECURE: |
| DCHECK(false); |
| return INVALID_PACKET_TYPE; |
| default: |
| DCHECK(false); |
| return INVALID_PACKET_TYPE; |
| } |
| } |
| |
| // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message. |
| class TaggingEncrypter : public QuicEncrypter { |
| public: |
| explicit TaggingEncrypter(uint8_t tag) : tag_(tag) {} |
| TaggingEncrypter(const TaggingEncrypter&) = delete; |
| TaggingEncrypter& operator=(const TaggingEncrypter&) = delete; |
| |
| ~TaggingEncrypter() override {} |
| |
| // QuicEncrypter interface. |
| bool SetKey(QuicStringPiece /*key*/) override { return true; } |
| |
| bool SetNoncePrefix(QuicStringPiece /*nonce_prefix*/) override { |
| return true; |
| } |
| |
| bool SetIV(QuicStringPiece /*iv*/) override { return true; } |
| |
| bool SetHeaderProtectionKey(QuicStringPiece /*key*/) override { return true; } |
| |
| bool EncryptPacket(uint64_t /*packet_number*/, |
| QuicStringPiece /*associated_data*/, |
| QuicStringPiece plaintext, |
| char* output, |
| size_t* output_length, |
| size_t max_output_length) override { |
| const size_t len = plaintext.size() + kTagSize; |
| if (max_output_length < len) { |
| return false; |
| } |
| // Memmove is safe for inplace encryption. |
| memmove(output, plaintext.data(), plaintext.size()); |
| output += plaintext.size(); |
| memset(output, tag_, kTagSize); |
| *output_length = len; |
| return true; |
| } |
| |
| std::string GenerateHeaderProtectionMask( |
| QuicStringPiece /*sample*/) override { |
| return std::string(5, 0); |
| } |
| |
| size_t GetKeySize() const override { return 0; } |
| size_t GetNoncePrefixSize() const override { return 0; } |
| size_t GetIVSize() const override { return 0; } |
| |
| size_t GetMaxPlaintextSize(size_t ciphertext_size) const override { |
| return ciphertext_size - kTagSize; |
| } |
| |
| size_t GetCiphertextSize(size_t plaintext_size) const override { |
| return plaintext_size + kTagSize; |
| } |
| |
| QuicStringPiece GetKey() const override { return QuicStringPiece(); } |
| |
| QuicStringPiece GetNoncePrefix() const override { return QuicStringPiece(); } |
| |
| private: |
| enum { |
| kTagSize = 12, |
| }; |
| |
| const uint8_t tag_; |
| }; |
| |
| // TaggingDecrypter ensures that the final kTagSize bytes of the message all |
| // have the same value and then removes them. |
| class TaggingDecrypter : public QuicDecrypter { |
| public: |
| ~TaggingDecrypter() override {} |
| |
| // QuicDecrypter interface |
| bool SetKey(QuicStringPiece /*key*/) override { return true; } |
| |
| bool SetNoncePrefix(QuicStringPiece /*nonce_prefix*/) override { |
| return true; |
| } |
| |
| bool SetIV(QuicStringPiece /*iv*/) override { return true; } |
| |
| bool SetHeaderProtectionKey(QuicStringPiece /*key*/) override { return true; } |
| |
| bool SetPreliminaryKey(QuicStringPiece /*key*/) override { |
| QUIC_BUG << "should not be called"; |
| return false; |
| } |
| |
| bool SetDiversificationNonce(const DiversificationNonce& /*key*/) override { |
| return true; |
| } |
| |
| bool DecryptPacket(uint64_t /*packet_number*/, |
| QuicStringPiece /*associated_data*/, |
| QuicStringPiece ciphertext, |
| char* output, |
| size_t* output_length, |
| size_t /*max_output_length*/) override { |
| if (ciphertext.size() < kTagSize) { |
| return false; |
| } |
| if (!CheckTag(ciphertext, GetTag(ciphertext))) { |
| return false; |
| } |
| *output_length = ciphertext.size() - kTagSize; |
| memcpy(output, ciphertext.data(), *output_length); |
| return true; |
| } |
| |
| std::string GenerateHeaderProtectionMask( |
| QuicDataReader* /*sample_reader*/) override { |
| return std::string(5, 0); |
| } |
| |
| size_t GetKeySize() const override { return 0; } |
| size_t GetNoncePrefixSize() const override { return 0; } |
| size_t GetIVSize() const override { return 0; } |
| QuicStringPiece GetKey() const override { return QuicStringPiece(); } |
| QuicStringPiece GetNoncePrefix() const override { return QuicStringPiece(); } |
| // Use a distinct value starting with 0xFFFFFF, which is never used by TLS. |
| uint32_t cipher_id() const override { return 0xFFFFFFF0; } |
| |
| protected: |
| virtual uint8_t GetTag(QuicStringPiece ciphertext) { |
| return ciphertext.data()[ciphertext.size() - 1]; |
| } |
| |
| private: |
| enum { |
| kTagSize = 12, |
| }; |
| |
| bool CheckTag(QuicStringPiece ciphertext, uint8_t tag) { |
| for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) { |
| if (ciphertext.data()[i] != tag) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| }; |
| |
| // StringTaggingDecrypter ensures that the final kTagSize bytes of the message |
| // match the expected value. |
| class StrictTaggingDecrypter : public TaggingDecrypter { |
| public: |
| explicit StrictTaggingDecrypter(uint8_t tag) : tag_(tag) {} |
| ~StrictTaggingDecrypter() override {} |
| |
| // TaggingQuicDecrypter |
| uint8_t GetTag(QuicStringPiece /*ciphertext*/) override { return tag_; } |
| |
| // Use a distinct value starting with 0xFFFFFF, which is never used by TLS. |
| uint32_t cipher_id() const override { return 0xFFFFFFF1; } |
| |
| private: |
| const uint8_t tag_; |
| }; |
| |
| class TestConnectionHelper : public QuicConnectionHelperInterface { |
| public: |
| TestConnectionHelper(MockClock* clock, MockRandom* random_generator) |
| : clock_(clock), random_generator_(random_generator) { |
| clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); |
| } |
| TestConnectionHelper(const TestConnectionHelper&) = delete; |
| TestConnectionHelper& operator=(const TestConnectionHelper&) = delete; |
| |
| // QuicConnectionHelperInterface |
| const QuicClock* GetClock() const override { return clock_; } |
| |
| QuicRandom* GetRandomGenerator() override { return random_generator_; } |
| |
| QuicBufferAllocator* GetStreamSendBufferAllocator() override { |
| return &buffer_allocator_; |
| } |
| |
| private: |
| MockClock* clock_; |
| MockRandom* random_generator_; |
| SimpleBufferAllocator buffer_allocator_; |
| }; |
| |
| class TestAlarmFactory : public QuicAlarmFactory { |
| public: |
| class TestAlarm : public QuicAlarm { |
| public: |
| explicit TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate> delegate) |
| : QuicAlarm(std::move(delegate)) {} |
| |
| void SetImpl() override {} |
| void CancelImpl() override {} |
| using QuicAlarm::Fire; |
| }; |
| |
| TestAlarmFactory() {} |
| TestAlarmFactory(const TestAlarmFactory&) = delete; |
| TestAlarmFactory& operator=(const TestAlarmFactory&) = delete; |
| |
| QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) override { |
| return new TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate>(delegate)); |
| } |
| |
| QuicArenaScopedPtr<QuicAlarm> CreateAlarm( |
| QuicArenaScopedPtr<QuicAlarm::Delegate> delegate, |
| QuicConnectionArena* arena) override { |
| return arena->New<TestAlarm>(std::move(delegate)); |
| } |
| }; |
| |
| class TestPacketWriter : public QuicPacketWriter { |
| public: |
| TestPacketWriter(ParsedQuicVersion version, MockClock* clock) |
| : version_(version), |
| framer_(SupportedVersions(version_), Perspective::IS_SERVER), |
| last_packet_size_(0), |
| write_blocked_(false), |
| write_should_fail_(false), |
| block_on_next_flush_(false), |
| block_on_next_write_(false), |
| next_packet_too_large_(false), |
| always_get_packet_too_large_(false), |
| is_write_blocked_data_buffered_(false), |
| is_batch_mode_(false), |
| final_bytes_of_last_packet_(0), |
| final_bytes_of_previous_packet_(0), |
| use_tagging_decrypter_(false), |
| packets_write_attempts_(0), |
| clock_(clock), |
| write_pause_time_delta_(QuicTime::Delta::Zero()), |
| max_packet_size_(kMaxOutgoingPacketSize), |
| supports_release_time_(false) { |
| QuicFramerPeer::SetLastSerializedServerConnectionId(framer_.framer(), |
| TestConnectionId()); |
| framer_.framer()->SetInitialObfuscators(TestConnectionId()); |
| } |
| TestPacketWriter(const TestPacketWriter&) = delete; |
| TestPacketWriter& operator=(const TestPacketWriter&) = delete; |
| |
| // QuicPacketWriter interface |
| WriteResult WritePacket(const char* buffer, |
| size_t buf_len, |
| const QuicIpAddress& /*self_address*/, |
| const QuicSocketAddress& /*peer_address*/, |
| PerPacketOptions* /*options*/) override { |
| QuicEncryptedPacket packet(buffer, buf_len); |
| ++packets_write_attempts_; |
| |
| if (packet.length() >= sizeof(final_bytes_of_last_packet_)) { |
| final_bytes_of_previous_packet_ = final_bytes_of_last_packet_; |
| memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4, |
| sizeof(final_bytes_of_last_packet_)); |
| } |
| |
| if (use_tagging_decrypter_) { |
| if (framer_.framer()->version().KnowsWhichDecrypterToUse()) { |
| framer_.framer()->InstallDecrypter( |
| ENCRYPTION_INITIAL, std::make_unique<TaggingDecrypter>()); |
| framer_.framer()->InstallDecrypter( |
| ENCRYPTION_ZERO_RTT, std::make_unique<TaggingDecrypter>()); |
| framer_.framer()->InstallDecrypter( |
| ENCRYPTION_FORWARD_SECURE, std::make_unique<TaggingDecrypter>()); |
| } else { |
| framer_.framer()->SetDecrypter(ENCRYPTION_INITIAL, |
| std::make_unique<TaggingDecrypter>()); |
| } |
| } else if (framer_.framer()->version().KnowsWhichDecrypterToUse()) { |
| framer_.framer()->InstallDecrypter( |
| ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<NullDecrypter>(Perspective::IS_SERVER)); |
| } |
| EXPECT_TRUE(framer_.ProcessPacket(packet)); |
| if (block_on_next_write_) { |
| write_blocked_ = true; |
| block_on_next_write_ = false; |
| } |
| if (next_packet_too_large_) { |
| next_packet_too_large_ = false; |
| return WriteResult(WRITE_STATUS_ERROR, QUIC_EMSGSIZE); |
| } |
| if (always_get_packet_too_large_) { |
| return WriteResult(WRITE_STATUS_ERROR, QUIC_EMSGSIZE); |
| } |
| if (IsWriteBlocked()) { |
| return WriteResult(is_write_blocked_data_buffered_ |
| ? WRITE_STATUS_BLOCKED_DATA_BUFFERED |
| : WRITE_STATUS_BLOCKED, |
| 0); |
| } |
| |
| if (ShouldWriteFail()) { |
| return WriteResult(WRITE_STATUS_ERROR, 0); |
| } |
| |
| last_packet_size_ = packet.length(); |
| last_packet_header_ = framer_.header(); |
| |
| if (!write_pause_time_delta_.IsZero()) { |
| clock_->AdvanceTime(write_pause_time_delta_); |
| } |
| return WriteResult(WRITE_STATUS_OK, last_packet_size_); |
| } |
| |
| bool ShouldWriteFail() { return write_should_fail_; } |
| |
| bool IsWriteBlocked() const override { return write_blocked_; } |
| |
| void SetWriteBlocked() { write_blocked_ = true; } |
| |
| void SetWritable() override { write_blocked_ = false; } |
| |
| void SetShouldWriteFail() { write_should_fail_ = true; } |
| |
| QuicByteCount GetMaxPacketSize( |
| const QuicSocketAddress& /*peer_address*/) const override { |
| return max_packet_size_; |
| } |
| |
| bool SupportsReleaseTime() const override { return supports_release_time_; } |
| |
| bool IsBatchMode() const override { return is_batch_mode_; } |
| |
| char* GetNextWriteLocation( |
| const QuicIpAddress& /*self_address*/, |
| const QuicSocketAddress& /*peer_address*/) override { |
| return nullptr; |
| } |
| |
| WriteResult Flush() override { |
| if (block_on_next_flush_) { |
| block_on_next_flush_ = false; |
| SetWriteBlocked(); |
| return WriteResult(WRITE_STATUS_BLOCKED, /*errno*/ -1); |
| } |
| return WriteResult(WRITE_STATUS_OK, 0); |
| } |
| |
| void BlockOnNextFlush() { block_on_next_flush_ = true; } |
| |
| void BlockOnNextWrite() { block_on_next_write_ = true; } |
| |
| void SimulateNextPacketTooLarge() { next_packet_too_large_ = true; } |
| |
| void AlwaysGetPacketTooLarge() { always_get_packet_too_large_ = true; } |
| |
| // Sets the amount of time that the writer should before the actual write. |
| void SetWritePauseTimeDelta(QuicTime::Delta delta) { |
| write_pause_time_delta_ = delta; |
| } |
| |
| void SetBatchMode(bool new_value) { is_batch_mode_ = new_value; } |
| |
| const QuicPacketHeader& header() { return framer_.header(); } |
| |
| size_t frame_count() const { return framer_.num_frames(); } |
| |
| const std::vector<QuicAckFrame>& ack_frames() const { |
| return framer_.ack_frames(); |
| } |
| |
| const std::vector<QuicStopWaitingFrame>& stop_waiting_frames() const { |
| return framer_.stop_waiting_frames(); |
| } |
| |
| const std::vector<QuicConnectionCloseFrame>& connection_close_frames() const { |
| return framer_.connection_close_frames(); |
| } |
| |
| const std::vector<QuicRstStreamFrame>& rst_stream_frames() const { |
| return framer_.rst_stream_frames(); |
| } |
| |
| const std::vector<std::unique_ptr<QuicStreamFrame>>& stream_frames() const { |
| return framer_.stream_frames(); |
| } |
| |
| const std::vector<std::unique_ptr<QuicCryptoFrame>>& crypto_frames() const { |
| return framer_.crypto_frames(); |
| } |
| |
| const std::vector<QuicPingFrame>& ping_frames() const { |
| return framer_.ping_frames(); |
| } |
| |
| const std::vector<QuicMessageFrame>& message_frames() const { |
| return framer_.message_frames(); |
| } |
| |
| const std::vector<QuicWindowUpdateFrame>& window_update_frames() const { |
| return framer_.window_update_frames(); |
| } |
| |
| const std::vector<QuicPaddingFrame>& padding_frames() const { |
| return framer_.padding_frames(); |
| } |
| |
| const std::vector<QuicPathChallengeFrame>& path_challenge_frames() const { |
| return framer_.path_challenge_frames(); |
| } |
| |
| const std::vector<QuicPathResponseFrame>& path_response_frames() const { |
| return framer_.path_response_frames(); |
| } |
| |
| size_t last_packet_size() { return last_packet_size_; } |
| |
| const QuicPacketHeader& last_packet_header() const { |
| return last_packet_header_; |
| } |
| |
| const QuicVersionNegotiationPacket* version_negotiation_packet() { |
| return framer_.version_negotiation_packet(); |
| } |
| |
| void set_is_write_blocked_data_buffered(bool buffered) { |
| is_write_blocked_data_buffered_ = buffered; |
| } |
| |
| void set_perspective(Perspective perspective) { |
| // We invert perspective here, because the framer needs to parse packets |
| // we send. |
| QuicFramerPeer::SetPerspective(framer_.framer(), |
| QuicUtils::InvertPerspective(perspective)); |
| } |
| |
| // final_bytes_of_last_packet_ returns the last four bytes of the previous |
| // packet as a little-endian, uint32_t. This is intended to be used with a |
| // TaggingEncrypter so that tests can determine which encrypter was used for |
| // a given packet. |
| uint32_t final_bytes_of_last_packet() { return final_bytes_of_last_packet_; } |
| |
| // Returns the final bytes of the second to last packet. |
| uint32_t final_bytes_of_previous_packet() { |
| return final_bytes_of_previous_packet_; |
| } |
| |
| void use_tagging_decrypter() { use_tagging_decrypter_ = true; } |
| |
| uint32_t packets_write_attempts() { return packets_write_attempts_; } |
| |
| void Reset() { framer_.Reset(); } |
| |
| void SetSupportedVersions(const ParsedQuicVersionVector& versions) { |
| framer_.SetSupportedVersions(versions); |
| } |
| |
| void set_max_packet_size(QuicByteCount max_packet_size) { |
| max_packet_size_ = max_packet_size; |
| } |
| |
| void set_supports_release_time(bool supports_release_time) { |
| supports_release_time_ = supports_release_time; |
| } |
| |
| SimpleQuicFramer* framer() { return &framer_; } |
| |
| private: |
| ParsedQuicVersion version_; |
| SimpleQuicFramer framer_; |
| size_t last_packet_size_; |
| QuicPacketHeader last_packet_header_; |
| bool write_blocked_; |
| bool write_should_fail_; |
| bool block_on_next_flush_; |
| bool block_on_next_write_; |
| bool next_packet_too_large_; |
| bool always_get_packet_too_large_; |
| bool is_write_blocked_data_buffered_; |
| bool is_batch_mode_; |
| uint32_t final_bytes_of_last_packet_; |
| uint32_t final_bytes_of_previous_packet_; |
| bool use_tagging_decrypter_; |
| uint32_t packets_write_attempts_; |
| MockClock* clock_; |
| // If non-zero, the clock will pause during WritePacket for this amount of |
| // time. |
| QuicTime::Delta write_pause_time_delta_; |
| QuicByteCount max_packet_size_; |
| bool supports_release_time_; |
| }; |
| |
| class TestConnection : public QuicConnection { |
| public: |
| TestConnection(QuicConnectionId connection_id, |
| QuicSocketAddress address, |
| TestConnectionHelper* helper, |
| TestAlarmFactory* alarm_factory, |
| TestPacketWriter* writer, |
| Perspective perspective, |
| ParsedQuicVersion version) |
| : QuicConnection(connection_id, |
| address, |
| helper, |
| alarm_factory, |
| writer, |
| /* owns_writer= */ false, |
| perspective, |
| SupportedVersions(version)), |
| notifier_(nullptr) { |
| writer->set_perspective(perspective); |
| SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<NullEncrypter>(perspective)); |
| SetDataProducer(&producer_); |
| } |
| TestConnection(const TestConnection&) = delete; |
| TestConnection& operator=(const TestConnection&) = delete; |
| |
| void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) { |
| QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm); |
| } |
| |
| void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) { |
| QuicConnectionPeer::SetLossAlgorithm(this, loss_algorithm); |
| } |
| |
| void SendPacket(EncryptionLevel /*level*/, |
| uint64_t packet_number, |
| std::unique_ptr<QuicPacket> packet, |
| HasRetransmittableData retransmittable, |
| bool has_ack, |
| bool has_pending_frames) { |
| char buffer[kMaxOutgoingPacketSize]; |
| size_t encrypted_length = |
| QuicConnectionPeer::GetFramer(this)->EncryptPayload( |
| ENCRYPTION_INITIAL, QuicPacketNumber(packet_number), *packet, |
| buffer, kMaxOutgoingPacketSize); |
| SerializedPacket serialized_packet( |
| QuicPacketNumber(packet_number), PACKET_4BYTE_PACKET_NUMBER, buffer, |
| encrypted_length, has_ack, has_pending_frames); |
| if (retransmittable == HAS_RETRANSMITTABLE_DATA) { |
| serialized_packet.retransmittable_frames.push_back( |
| QuicFrame(QuicStreamFrame())); |
| } |
| OnSerializedPacket(&serialized_packet); |
| } |
| |
| QuicConsumedData SaveAndSendStreamData(QuicStreamId id, |
| const struct iovec* iov, |
| int iov_count, |
| size_t total_length, |
| QuicStreamOffset offset, |
| StreamSendingState state) { |
| ScopedPacketFlusher flusher(this); |
| producer_.SaveStreamData(id, iov, iov_count, 0u, total_length); |
| if (notifier_ != nullptr) { |
| return notifier_->WriteOrBufferData(id, total_length, state); |
| } |
| return QuicConnection::SendStreamData(id, total_length, offset, state); |
| } |
| |
| QuicConsumedData SendStreamDataWithString(QuicStreamId id, |
| QuicStringPiece data, |
| QuicStreamOffset offset, |
| StreamSendingState state) { |
| ScopedPacketFlusher flusher(this); |
| if (!QuicUtils::IsCryptoStreamId(transport_version(), id) && |
| this->encryption_level() == ENCRYPTION_INITIAL) { |
| this->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| if (perspective() == Perspective::IS_CLIENT && !IsHandshakeConfirmed()) { |
| OnHandshakeComplete(); |
| } |
| if (version().SupportsAntiAmplificationLimit()) { |
| QuicConnectionPeer::SetAddressValidated(this); |
| } |
| } |
| struct iovec iov; |
| MakeIOVector(data, &iov); |
| return SaveAndSendStreamData(id, &iov, 1, data.length(), offset, state); |
| } |
| |
| QuicConsumedData SendApplicationDataAtLevel(EncryptionLevel encryption_level, |
| QuicStreamId id, |
| QuicStringPiece data, |
| QuicStreamOffset offset, |
| StreamSendingState state) { |
| ScopedPacketFlusher flusher(this); |
| DCHECK(encryption_level >= ENCRYPTION_ZERO_RTT); |
| SetEncrypter(encryption_level, std::make_unique<TaggingEncrypter>(0x01)); |
| SetDefaultEncryptionLevel(encryption_level); |
| struct iovec iov; |
| MakeIOVector(data, &iov); |
| return SaveAndSendStreamData(id, &iov, 1, data.length(), offset, state); |
| } |
| |
| QuicConsumedData SendStreamData3() { |
| return SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, transport_version()), "food", 0, |
| NO_FIN); |
| } |
| |
| QuicConsumedData SendStreamData5() { |
| return SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(2, transport_version()), "food2", 0, |
| NO_FIN); |
| } |
| |
| // Ensures the connection can write stream data before writing. |
| QuicConsumedData EnsureWritableAndSendStreamData5() { |
| EXPECT_TRUE(CanWriteStreamData()); |
| return SendStreamData5(); |
| } |
| |
| // The crypto stream has special semantics so that it is not blocked by a |
| // congestion window limitation, and also so that it gets put into a separate |
| // packet (so that it is easier to reason about a crypto frame not being |
| // split needlessly across packet boundaries). As a result, we have separate |
| // tests for some cases for this stream. |
| QuicConsumedData SendCryptoStreamData() { |
| QuicStreamOffset offset = 0; |
| QuicStringPiece data("chlo"); |
| if (!QuicVersionUsesCryptoFrames(transport_version())) { |
| return SendCryptoDataWithString(data, offset); |
| } |
| producer_.SaveCryptoData(ENCRYPTION_INITIAL, offset, data); |
| size_t bytes_written; |
| if (notifier_) { |
| bytes_written = |
| notifier_->WriteCryptoData(ENCRYPTION_INITIAL, data.length(), offset); |
| } else { |
| bytes_written = QuicConnection::SendCryptoData(ENCRYPTION_INITIAL, |
| data.length(), offset); |
| } |
| return QuicConsumedData(bytes_written, /*fin_consumed*/ false); |
| } |
| |
| QuicConsumedData SendCryptoDataWithString(QuicStringPiece data, |
| QuicStreamOffset offset) { |
| if (!QuicVersionUsesCryptoFrames(transport_version())) { |
| return SendStreamDataWithString( |
| QuicUtils::GetCryptoStreamId(transport_version()), data, offset, |
| NO_FIN); |
| } |
| producer_.SaveCryptoData(ENCRYPTION_INITIAL, offset, data); |
| size_t bytes_written; |
| if (notifier_) { |
| bytes_written = |
| notifier_->WriteCryptoData(ENCRYPTION_INITIAL, data.length(), offset); |
| } else { |
| bytes_written = QuicConnection::SendCryptoData(ENCRYPTION_INITIAL, |
| data.length(), offset); |
| } |
| return QuicConsumedData(bytes_written, /*fin_consumed*/ false); |
| } |
| |
| void set_version(ParsedQuicVersion version) { |
| QuicConnectionPeer::GetFramer(this)->set_version(version); |
| } |
| |
| void SetSupportedVersions(const ParsedQuicVersionVector& versions) { |
| QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions); |
| writer()->SetSupportedVersions(versions); |
| } |
| |
| void set_perspective(Perspective perspective) { |
| writer()->set_perspective(perspective); |
| QuicConnectionPeer::SetPerspective(this, perspective); |
| } |
| |
| // Enable path MTU discovery. Assumes that the test is performed from the |
| // client perspective and the higher value of MTU target is used. |
| void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) { |
| ASSERT_EQ(Perspective::IS_CLIENT, perspective()); |
| |
| QuicConfig config; |
| QuicTagVector connection_options; |
| connection_options.push_back(kMTUH); |
| config.SetConnectionOptionsToSend(connection_options); |
| EXPECT_CALL(*send_algorithm, SetFromConfig(_, _)); |
| SetFromConfig(config); |
| |
| // Normally, the pacing would be disabled in the test, but calling |
| // SetFromConfig enables it. Set nearly-infinite bandwidth to make the |
| // pacing algorithm work. |
| EXPECT_CALL(*send_algorithm, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Infinite())); |
| } |
| |
| TestAlarmFactory::TestAlarm* GetAckAlarm() { |
| return reinterpret_cast<TestAlarmFactory::TestAlarm*>( |
| QuicConnectionPeer::GetAckAlarm(this)); |
| } |
| |
| TestAlarmFactory::TestAlarm* GetPingAlarm() { |
| return reinterpret_cast<TestAlarmFactory::TestAlarm*>( |
| QuicConnectionPeer::GetPingAlarm(this)); |
| } |
| |
| TestAlarmFactory::TestAlarm* GetRetransmissionAlarm() { |
| return reinterpret_cast<TestAlarmFactory::TestAlarm*>( |
| QuicConnectionPeer::GetRetransmissionAlarm(this)); |
| } |
| |
| TestAlarmFactory::TestAlarm* GetSendAlarm() { |
| return reinterpret_cast<TestAlarmFactory::TestAlarm*>( |
| QuicConnectionPeer::GetSendAlarm(this)); |
| } |
| |
| TestAlarmFactory::TestAlarm* GetTimeoutAlarm() { |
| return reinterpret_cast<TestAlarmFactory::TestAlarm*>( |
| QuicConnectionPeer::GetTimeoutAlarm(this)); |
| } |
| |
| TestAlarmFactory::TestAlarm* GetMtuDiscoveryAlarm() { |
| return reinterpret_cast<TestAlarmFactory::TestAlarm*>( |
| QuicConnectionPeer::GetMtuDiscoveryAlarm(this)); |
| } |
| |
| TestAlarmFactory::TestAlarm* GetPathDegradingAlarm() { |
| return reinterpret_cast<TestAlarmFactory::TestAlarm*>( |
| QuicConnectionPeer::GetPathDegradingAlarm(this)); |
| } |
| |
| TestAlarmFactory::TestAlarm* GetProcessUndecryptablePacketsAlarm() { |
| return reinterpret_cast<TestAlarmFactory::TestAlarm*>( |
| QuicConnectionPeer::GetProcessUndecryptablePacketsAlarm(this)); |
| } |
| |
| void SetMaxTailLossProbes(size_t max_tail_loss_probes) { |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes( |
| QuicConnectionPeer::GetSentPacketManager(this), max_tail_loss_probes); |
| } |
| |
| QuicByteCount GetBytesInFlight() { |
| return QuicConnectionPeer::GetSentPacketManager(this)->GetBytesInFlight(); |
| } |
| |
| void set_notifier(SimpleSessionNotifier* notifier) { notifier_ = notifier; } |
| |
| void ReturnEffectivePeerAddressForNextPacket(const QuicSocketAddress& addr) { |
| next_effective_peer_addr_ = std::make_unique<QuicSocketAddress>(addr); |
| } |
| |
| bool PtoEnabled() { |
| if (QuicConnectionPeer::GetSentPacketManager(this)->pto_enabled()) { |
| // PTO mode is default enabled for T099. And TLP/RTO related tests are |
| // stale. |
| DCHECK_EQ(ParsedQuicVersion(PROTOCOL_TLS1_3, QUIC_VERSION_99), version()); |
| return true; |
| } |
| return false; |
| } |
| |
| SimpleDataProducer* producer() { return &producer_; } |
| |
| using QuicConnection::active_effective_peer_migration_type; |
| using QuicConnection::IsCurrentPacketConnectivityProbing; |
| using QuicConnection::SelectMutualVersion; |
| using QuicConnection::SendProbingRetransmissions; |
| using QuicConnection::set_defer_send_in_response_to_packets; |
| |
| protected: |
| QuicSocketAddress GetEffectivePeerAddressFromCurrentPacket() const override { |
| if (next_effective_peer_addr_) { |
| return *std::move(next_effective_peer_addr_); |
| } |
| return QuicConnection::GetEffectivePeerAddressFromCurrentPacket(); |
| } |
| |
| private: |
| TestPacketWriter* writer() { |
| return static_cast<TestPacketWriter*>(QuicConnection::writer()); |
| } |
| |
| SimpleDataProducer producer_; |
| |
| SimpleSessionNotifier* notifier_; |
| |
| std::unique_ptr<QuicSocketAddress> next_effective_peer_addr_; |
| }; |
| |
| enum class AckResponse { kDefer, kImmediate }; |
| |
| // Run tests with combinations of {ParsedQuicVersion, AckResponse}. |
| struct TestParams { |
| TestParams(ParsedQuicVersion version, |
| AckResponse ack_response, |
| bool no_stop_waiting) |
| : version(version), |
| ack_response(ack_response), |
| no_stop_waiting(no_stop_waiting) {} |
| |
| ParsedQuicVersion version; |
| AckResponse ack_response; |
| bool no_stop_waiting; |
| }; |
| |
| // Used by ::testing::PrintToStringParamName(). |
| std::string PrintToString(const TestParams& p) { |
| return QuicStrCat( |
| ParsedQuicVersionToString(p.version), "_", |
| (p.ack_response == AckResponse::kDefer ? "defer" : "immediate"), "_", |
| (p.no_stop_waiting ? "No" : ""), "StopWaiting"); |
| } |
| |
| // Constructs various test permutations. |
| std::vector<TestParams> GetTestParams() { |
| QuicFlagSaver flags; |
| SetQuicReloadableFlag(quic_supports_tls_handshake, true); |
| std::vector<TestParams> params; |
| ParsedQuicVersionVector all_supported_versions = AllSupportedVersions(); |
| for (size_t i = 0; i < all_supported_versions.size(); ++i) { |
| for (AckResponse ack_response : |
| {AckResponse::kDefer, AckResponse::kImmediate}) { |
| params.push_back( |
| TestParams(all_supported_versions[i], ack_response, true)); |
| if (!VersionHasIetfInvariantHeader( |
| all_supported_versions[i].transport_version)) { |
| params.push_back( |
| TestParams(all_supported_versions[i], ack_response, false)); |
| } |
| } |
| } |
| return params; |
| } |
| |
| class QuicConnectionTest : public QuicTestWithParam<TestParams> { |
| public: |
| // For tests that do silent connection closes, no such packet is generated. In |
| // order to verify the contents of the OnConnectionClosed upcall, EXPECTs |
| // should invoke this method, saving the frame, and then the test can verify |
| // the contents. |
| void SaveConnectionCloseFrame(const QuicConnectionCloseFrame& frame, |
| ConnectionCloseSource /*source*/) { |
| saved_connection_close_frame_ = frame; |
| connection_close_frame_count_++; |
| } |
| |
| protected: |
| QuicConnectionTest() |
| : connection_id_(TestConnectionId()), |
| framer_(SupportedVersions(version()), |
| QuicTime::Zero(), |
| Perspective::IS_CLIENT, |
| connection_id_.length()), |
| send_algorithm_(new StrictMock<MockSendAlgorithm>), |
| loss_algorithm_(new MockLossAlgorithm()), |
| helper_(new TestConnectionHelper(&clock_, &random_generator_)), |
| alarm_factory_(new TestAlarmFactory()), |
| peer_framer_(SupportedVersions(version()), |
| QuicTime::Zero(), |
| Perspective::IS_SERVER, |
| connection_id_.length()), |
| peer_creator_(connection_id_, |
| &peer_framer_, |
| /*delegate=*/nullptr), |
| writer_(new TestPacketWriter(version(), &clock_)), |
| connection_(connection_id_, |
| kPeerAddress, |
| helper_.get(), |
| alarm_factory_.get(), |
| writer_.get(), |
| Perspective::IS_CLIENT, |
| version()), |
| creator_(QuicConnectionPeer::GetPacketCreator(&connection_)), |
| generator_(QuicConnectionPeer::GetPacketGenerator(&connection_)), |
| manager_(QuicConnectionPeer::GetSentPacketManager(&connection_)), |
| frame1_(0, false, 0, QuicStringPiece(data1)), |
| frame2_(0, false, 3, QuicStringPiece(data2)), |
| crypto_frame_(ENCRYPTION_INITIAL, 0, QuicStringPiece(data1)), |
| packet_number_length_(PACKET_4BYTE_PACKET_NUMBER), |
| connection_id_included_(CONNECTION_ID_PRESENT), |
| notifier_(&connection_), |
| connection_close_frame_count_(0) { |
| QUIC_DVLOG(2) << "QuicConnectionTest(" << PrintToString(GetParam()) << ")"; |
| SetQuicReloadableFlag(quic_supports_tls_handshake, true); |
| connection_.set_defer_send_in_response_to_packets(GetParam().ack_response == |
| AckResponse::kDefer); |
| framer_.SetInitialObfuscators(TestConnectionId()); |
| connection_.InstallInitialCrypters(TestConnectionId()); |
| CrypterPair crypters; |
| CryptoUtils::CreateInitialObfuscators(Perspective::IS_SERVER, version(), |
| TestConnectionId(), &crypters); |
| peer_creator_.SetEncrypter(ENCRYPTION_INITIAL, |
| std::move(crypters.encrypter)); |
| if (version().KnowsWhichDecrypterToUse()) { |
| peer_framer_.InstallDecrypter(ENCRYPTION_INITIAL, |
| std::move(crypters.decrypter)); |
| } else { |
| peer_framer_.SetDecrypter(ENCRYPTION_INITIAL, |
| std::move(crypters.decrypter)); |
| } |
| for (EncryptionLevel level : |
| {ENCRYPTION_ZERO_RTT, ENCRYPTION_FORWARD_SECURE}) { |
| peer_creator_.SetEncrypter( |
| level, std::make_unique<NullEncrypter>(peer_framer_.perspective())); |
| } |
| QuicFramerPeer::SetLastSerializedServerConnectionId( |
| QuicConnectionPeer::GetFramer(&connection_), connection_id_); |
| QuicFramerPeer::SetLastWrittenPacketNumberLength( |
| QuicConnectionPeer::GetFramer(&connection_), packet_number_length_); |
| if (VersionHasIetfInvariantHeader(version().transport_version)) { |
| EXPECT_TRUE(QuicConnectionPeer::GetNoStopWaitingFrames(&connection_)); |
| } else { |
| QuicConnectionPeer::SetNoStopWaitingFrames(&connection_, |
| GetParam().no_stop_waiting); |
| } |
| QuicStreamId stream_id; |
| if (QuicVersionUsesCryptoFrames(version().transport_version)) { |
| stream_id = QuicUtils::GetFirstBidirectionalStreamId( |
| version().transport_version, Perspective::IS_CLIENT); |
| } else { |
| stream_id = QuicUtils::GetCryptoStreamId(version().transport_version); |
| } |
| frame1_.stream_id = stream_id; |
| frame2_.stream_id = stream_id; |
| connection_.set_visitor(&visitor_); |
| if (connection_.session_decides_what_to_write()) { |
| connection_.SetSessionNotifier(¬ifier_); |
| connection_.set_notifier(¬ifier_); |
| } |
| connection_.SetSendAlgorithm(send_algorithm_); |
| connection_.SetLossAlgorithm(loss_algorithm_.get()); |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(kDefaultTCPMSS)); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate()) |
| .Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) |
| .Times(AnyNumber()) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber()); |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber()); |
| EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber()); |
| if (connection_.session_decides_what_to_write()) { |
| EXPECT_CALL(visitor_, OnCanWrite()) |
| .WillRepeatedly( |
| Invoke(¬ifier_, &SimpleSessionNotifier::OnCanWrite)); |
| } else { |
| EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber()); |
| } |
| EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) |
| .WillRepeatedly(Return(false)); |
| EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber()); |
| EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(AnyNumber()); |
| EXPECT_CALL(visitor_, OnForwardProgressConfirmed()).Times(AnyNumber()); |
| |
| EXPECT_CALL(*loss_algorithm_, GetLossTimeout()) |
| .WillRepeatedly(Return(QuicTime::Zero())); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) |
| .Times(AnyNumber()); |
| |
| if (connection_.version().KnowsWhichDecrypterToUse()) { |
| connection_.InstallDecrypter( |
| ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<NullDecrypter>(Perspective::IS_CLIENT)); |
| } |
| } |
| |
| QuicConnectionTest(const QuicConnectionTest&) = delete; |
| QuicConnectionTest& operator=(const QuicConnectionTest&) = delete; |
| |
| ParsedQuicVersion version() { return GetParam().version; } |
| |
| QuicStopWaitingFrame* stop_waiting() { |
| QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_); |
| return &stop_waiting_; |
| } |
| |
| QuicPacketNumber least_unacked() { |
| if (writer_->stop_waiting_frames().empty()) { |
| return QuicPacketNumber(); |
| } |
| return writer_->stop_waiting_frames()[0].least_unacked; |
| } |
| |
| void use_tagging_decrypter() { writer_->use_tagging_decrypter(); } |
| |
| void SetDecrypter(EncryptionLevel level, |
| std::unique_ptr<QuicDecrypter> decrypter) { |
| if (connection_.version().KnowsWhichDecrypterToUse()) { |
| connection_.InstallDecrypter(level, std::move(decrypter)); |
| connection_.RemoveDecrypter(ENCRYPTION_INITIAL); |
| } else { |
| connection_.SetDecrypter(level, std::move(decrypter)); |
| } |
| } |
| |
| void ProcessPacket(uint64_t number) { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacket(number); |
| if (connection_.GetSendAlarm()->IsSet()) { |
| connection_.GetSendAlarm()->Fire(); |
| } |
| } |
| |
| void ProcessReceivedPacket(const QuicSocketAddress& self_address, |
| const QuicSocketAddress& peer_address, |
| const QuicReceivedPacket& packet) { |
| connection_.ProcessUdpPacket(self_address, peer_address, packet); |
| if (connection_.GetSendAlarm()->IsSet()) { |
| connection_.GetSendAlarm()->Fire(); |
| } |
| } |
| |
| void ProcessFramePacket(QuicFrame frame) { |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| } |
| |
| void ProcessFramePacketWithAddresses(QuicFrame frame, |
| QuicSocketAddress self_address, |
| QuicSocketAddress peer_address) { |
| QuicFrames frames; |
| frames.push_back(QuicFrame(frame)); |
| QuicPacketCreatorPeer::SetSendVersionInPacket( |
| &peer_creator_, connection_.perspective() == Perspective::IS_SERVER); |
| |
| char buffer[kMaxOutgoingPacketSize]; |
| SerializedPacket serialized_packet = |
| QuicPacketCreatorPeer::SerializeAllFrames( |
| &peer_creator_, frames, buffer, kMaxOutgoingPacketSize); |
| connection_.ProcessUdpPacket( |
| self_address, peer_address, |
| QuicReceivedPacket(serialized_packet.encrypted_buffer, |
| serialized_packet.encrypted_length, clock_.Now())); |
| if (connection_.GetSendAlarm()->IsSet()) { |
| connection_.GetSendAlarm()->Fire(); |
| } |
| } |
| |
| // Bypassing the packet creator is unrealistic, but allows us to process |
| // packets the QuicPacketCreator won't allow us to create. |
| void ForceProcessFramePacket(QuicFrame frame) { |
| QuicFrames frames; |
| frames.push_back(QuicFrame(frame)); |
| bool send_version = connection_.perspective() == Perspective::IS_SERVER; |
| if (connection_.version().KnowsWhichDecrypterToUse()) { |
| send_version = true; |
| } |
| QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_, send_version); |
| QuicPacketHeader header; |
| QuicPacketCreatorPeer::FillPacketHeader(&peer_creator_, &header); |
| char encrypted_buffer[kMaxOutgoingPacketSize]; |
| size_t length = peer_framer_.BuildDataPacket( |
| header, frames, encrypted_buffer, kMaxOutgoingPacketSize, |
| ENCRYPTION_INITIAL); |
| DCHECK_GT(length, 0u); |
| |
| const size_t encrypted_length = peer_framer_.EncryptInPlace( |
| ENCRYPTION_INITIAL, header.packet_number, |
| GetStartOfEncryptedData(peer_framer_.version().transport_version, |
| header), |
| length, kMaxOutgoingPacketSize, encrypted_buffer); |
| DCHECK_GT(encrypted_length, 0u); |
| |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(encrypted_buffer, encrypted_length, clock_.Now())); |
| } |
| |
| size_t ProcessFramePacketAtLevel(uint64_t number, |
| QuicFrame frame, |
| EncryptionLevel level) { |
| QuicPacketHeader header; |
| header.destination_connection_id = connection_id_; |
| header.packet_number_length = packet_number_length_; |
| header.destination_connection_id_included = connection_id_included_; |
| if (peer_framer_.perspective() == Perspective::IS_SERVER) { |
| header.destination_connection_id_included = CONNECTION_ID_ABSENT; |
| } |
| if (level == ENCRYPTION_INITIAL && |
| peer_framer_.version().KnowsWhichDecrypterToUse()) { |
| header.version_flag = true; |
| if (QuicVersionHasLongHeaderLengths(peer_framer_.transport_version())) { |
| header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1; |
| header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2; |
| } |
| } |
| if (header.version_flag && |
| peer_framer_.perspective() == Perspective::IS_SERVER) { |
| header.source_connection_id = connection_id_; |
| header.source_connection_id_included = CONNECTION_ID_PRESENT; |
| } |
| header.packet_number = QuicPacketNumber(number); |
| QuicFrames frames; |
| frames.push_back(frame); |
| std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); |
| // Set the correct encryption level and encrypter on peer_creator and |
| // peer_framer, respectively. |
| peer_creator_.set_encryption_level(level); |
| if (QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) > |
| ENCRYPTION_INITIAL) { |
| peer_framer_.SetEncrypter( |
| QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), |
| std::make_unique<TaggingEncrypter>(0x01)); |
| // Set the corresponding decrypter. |
| if (connection_.version().KnowsWhichDecrypterToUse()) { |
| connection_.InstallDecrypter( |
| QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), |
| std::make_unique<StrictTaggingDecrypter>(0x01)); |
| connection_.RemoveDecrypter(ENCRYPTION_INITIAL); |
| } else { |
| connection_.SetDecrypter( |
| QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), |
| std::make_unique<StrictTaggingDecrypter>(0x01)); |
| } |
| } |
| |
| char buffer[kMaxOutgoingPacketSize]; |
| size_t encrypted_length = |
| peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet, |
| buffer, kMaxOutgoingPacketSize); |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); |
| if (connection_.GetSendAlarm()->IsSet()) { |
| connection_.GetSendAlarm()->Fire(); |
| } |
| return encrypted_length; |
| } |
| |
| size_t ProcessDataPacket(uint64_t number) { |
| return ProcessDataPacketAtLevel(number, false, ENCRYPTION_FORWARD_SECURE); |
| } |
| |
| size_t ProcessDataPacket(QuicPacketNumber packet_number) { |
| return ProcessDataPacketAtLevel(packet_number, false, |
| ENCRYPTION_FORWARD_SECURE); |
| } |
| |
| size_t ProcessDataPacketAtLevel(QuicPacketNumber packet_number, |
| bool has_stop_waiting, |
| EncryptionLevel level) { |
| return ProcessDataPacketAtLevel(packet_number.ToUint64(), has_stop_waiting, |
| level); |
| } |
| |
| size_t ProcessCryptoPacketAtLevel(uint64_t number, |
| EncryptionLevel /*level*/) { |
| QuicPacketHeader header = ConstructPacketHeader(number, ENCRYPTION_INITIAL); |
| QuicFrames frames; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frames.push_back(QuicFrame(&crypto_frame_)); |
| } else { |
| frames.push_back(QuicFrame(frame1_)); |
| } |
| frames.push_back(QuicFrame(QuicPaddingFrame(-1))); |
| std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames); |
| char buffer[kMaxOutgoingPacketSize]; |
| peer_creator_.set_encryption_level(ENCRYPTION_INITIAL); |
| size_t encrypted_length = peer_framer_.EncryptPayload( |
| ENCRYPTION_INITIAL, QuicPacketNumber(number), *packet, buffer, |
| kMaxOutgoingPacketSize); |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); |
| if (connection_.GetSendAlarm()->IsSet()) { |
| connection_.GetSendAlarm()->Fire(); |
| } |
| return encrypted_length; |
| } |
| |
| size_t ProcessDataPacketAtLevel(uint64_t number, |
| bool has_stop_waiting, |
| EncryptionLevel level) { |
| std::unique_ptr<QuicPacket> packet( |
| ConstructDataPacket(number, has_stop_waiting, level)); |
| char buffer[kMaxOutgoingPacketSize]; |
| peer_creator_.set_encryption_level(level); |
| size_t encrypted_length = |
| peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet, |
| buffer, kMaxOutgoingPacketSize); |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); |
| if (connection_.GetSendAlarm()->IsSet()) { |
| connection_.GetSendAlarm()->Fire(); |
| } |
| return encrypted_length; |
| } |
| |
| void ProcessClosePacket(uint64_t number) { |
| std::unique_ptr<QuicPacket> packet(ConstructClosePacket(number)); |
| char buffer[kMaxOutgoingPacketSize]; |
| size_t encrypted_length = peer_framer_.EncryptPayload( |
| ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(number), *packet, buffer, |
| kMaxOutgoingPacketSize); |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); |
| } |
| |
| QuicByteCount SendStreamDataToPeer(QuicStreamId id, |
| QuicStringPiece data, |
| QuicStreamOffset offset, |
| StreamSendingState state, |
| QuicPacketNumber* last_packet) { |
| QuicByteCount packet_size; |
| // Save the last packet's size. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AnyNumber()) |
| .WillRepeatedly(SaveArg<3>(&packet_size)); |
| connection_.SendStreamDataWithString(id, data, offset, state); |
| if (last_packet != nullptr) { |
| *last_packet = creator_->packet_number(); |
| } |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AnyNumber()); |
| return packet_size; |
| } |
| |
| void SendAckPacketToPeer() { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| { |
| QuicConnection::ScopedPacketFlusher flusher(&connection_); |
| connection_.SendAck(); |
| } |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AnyNumber()); |
| } |
| |
| void SendRstStream(QuicStreamId id, |
| QuicRstStreamErrorCode error, |
| QuicStreamOffset bytes_written) { |
| if (connection_.session_decides_what_to_write()) { |
| notifier_.WriteOrBufferRstStream(id, error, bytes_written); |
| connection_.OnStreamReset(id, error); |
| return; |
| } |
| std::unique_ptr<QuicRstStreamFrame> rst_stream = |
| std::make_unique<QuicRstStreamFrame>(1, id, error, bytes_written); |
| if (connection_.SendControlFrame(QuicFrame(rst_stream.get()))) { |
| rst_stream.release(); |
| } |
| connection_.OnStreamReset(id, error); |
| } |
| |
| void SendPing() { |
| if (connection_.session_decides_what_to_write()) { |
| notifier_.WriteOrBufferPing(); |
| } else { |
| connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); |
| } |
| } |
| |
| void ProcessAckPacket(uint64_t packet_number, QuicAckFrame* frame) { |
| if (packet_number > 1) { |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, packet_number - 1); |
| } else { |
| QuicPacketCreatorPeer::ClearPacketNumber(&peer_creator_); |
| } |
| ProcessFramePacket(QuicFrame(frame)); |
| } |
| |
| void ProcessAckPacket(QuicAckFrame* frame) { |
| ProcessFramePacket(QuicFrame(frame)); |
| } |
| |
| void ProcessStopWaitingPacket(QuicStopWaitingFrame frame) { |
| ProcessFramePacket(QuicFrame(frame)); |
| } |
| |
| size_t ProcessStopWaitingPacketAtLevel(uint64_t number, |
| QuicStopWaitingFrame frame, |
| EncryptionLevel /*level*/) { |
| return ProcessFramePacketAtLevel(number, QuicFrame(frame), |
| ENCRYPTION_ZERO_RTT); |
| } |
| |
| void ProcessGoAwayPacket(QuicGoAwayFrame* frame) { |
| ProcessFramePacket(QuicFrame(frame)); |
| } |
| |
| bool IsMissing(uint64_t number) { |
| return IsAwaitingPacket(connection_.ack_frame(), QuicPacketNumber(number), |
| QuicPacketNumber()); |
| } |
| |
| std::unique_ptr<QuicPacket> ConstructPacket(const QuicPacketHeader& header, |
| const QuicFrames& frames) { |
| auto packet = BuildUnsizedDataPacket(&peer_framer_, header, frames); |
| EXPECT_NE(nullptr, packet.get()); |
| return packet; |
| } |
| |
| QuicPacketHeader ConstructPacketHeader(uint64_t number, |
| EncryptionLevel level) { |
| QuicPacketHeader header; |
| if (VersionHasIetfInvariantHeader(peer_framer_.transport_version()) && |
| level < ENCRYPTION_FORWARD_SECURE) { |
| // Set long header type accordingly. |
| header.version_flag = true; |
| header.form = IETF_QUIC_LONG_HEADER_PACKET; |
| header.long_packet_type = EncryptionlevelToLongHeaderType(level); |
| if (QuicVersionHasLongHeaderLengths( |
| peer_framer_.version().transport_version)) { |
| header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2; |
| if (header.long_packet_type == INITIAL) { |
| header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1; |
| } |
| } |
| } |
| // Set connection_id to peer's in memory representation as this data packet |
| // is created by peer_framer. |
| if (peer_framer_.perspective() == Perspective::IS_SERVER) { |
| header.source_connection_id = connection_id_; |
| header.source_connection_id_included = connection_id_included_; |
| header.destination_connection_id_included = CONNECTION_ID_ABSENT; |
| } else { |
| header.destination_connection_id = connection_id_; |
| header.destination_connection_id_included = connection_id_included_; |
| } |
| if (VersionHasIetfInvariantHeader(peer_framer_.transport_version()) && |
| peer_framer_.perspective() == Perspective::IS_SERVER) { |
| header.destination_connection_id_included = CONNECTION_ID_ABSENT; |
| if (header.version_flag) { |
| header.source_connection_id = connection_id_; |
| header.source_connection_id_included = CONNECTION_ID_PRESENT; |
| if (GetParam().version.handshake_protocol == PROTOCOL_QUIC_CRYPTO && |
| header.long_packet_type == ZERO_RTT_PROTECTED) { |
| header.nonce = &kTestDiversificationNonce; |
| } |
| } |
| } |
| header.packet_number_length = packet_number_length_; |
| header.packet_number = QuicPacketNumber(number); |
| return header; |
| } |
| |
| std::unique_ptr<QuicPacket> ConstructDataPacket(uint64_t number, |
| bool has_stop_waiting, |
| EncryptionLevel level) { |
| QuicPacketHeader header = ConstructPacketHeader(number, level); |
| QuicFrames frames; |
| frames.push_back(QuicFrame(frame1_)); |
| if (has_stop_waiting) { |
| frames.push_back(QuicFrame(stop_waiting_)); |
| } |
| return ConstructPacket(header, frames); |
| } |
| |
| OwningSerializedPacketPointer ConstructProbingPacket() { |
| if (VersionHasIetfQuicFrames(version().transport_version)) { |
| QuicPathFrameBuffer payload = { |
| {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}}; |
| return QuicPacketCreatorPeer:: |
| SerializePathChallengeConnectivityProbingPacket(&peer_creator_, |
| &payload); |
| } |
| return QuicPacketCreatorPeer::SerializeConnectivityProbingPacket( |
| &peer_creator_); |
| } |
| |
| std::unique_ptr<QuicPacket> ConstructClosePacket(uint64_t number) { |
| QuicPacketHeader header; |
| // Set connection_id to peer's in memory representation as this connection |
| // close packet is created by peer_framer. |
| if (peer_framer_.perspective() == Perspective::IS_SERVER) { |
| header.source_connection_id = connection_id_; |
| header.destination_connection_id_included = CONNECTION_ID_ABSENT; |
| if (!VersionHasIetfInvariantHeader(peer_framer_.transport_version())) { |
| header.source_connection_id_included = CONNECTION_ID_PRESENT; |
| } |
| } else { |
| header.destination_connection_id = connection_id_; |
| if (VersionHasIetfInvariantHeader(peer_framer_.transport_version())) { |
| header.destination_connection_id_included = CONNECTION_ID_ABSENT; |
| } |
| } |
| |
| header.packet_number = QuicPacketNumber(number); |
| |
| QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY; |
| QuicConnectionCloseFrame qccf(peer_framer_.transport_version(), |
| kQuicErrorCode, "", |
| /*transport_close_frame_type=*/0); |
| QuicFrames frames; |
| frames.push_back(QuicFrame(&qccf)); |
| return ConstructPacket(header, frames); |
| } |
| |
| QuicTime::Delta DefaultRetransmissionTime() { |
| return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); |
| } |
| |
| QuicTime::Delta DefaultDelayedAckTime() { |
| return QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs); |
| } |
| |
| const QuicStopWaitingFrame InitStopWaitingFrame(uint64_t least_unacked) { |
| QuicStopWaitingFrame frame; |
| frame.least_unacked = QuicPacketNumber(least_unacked); |
| return frame; |
| } |
| |
| // Construct a ack_frame that acks all packet numbers between 1 and |
| // |largest_acked|, except |missing|. |
| // REQUIRES: 1 <= |missing| < |largest_acked| |
| QuicAckFrame ConstructAckFrame(uint64_t largest_acked, uint64_t missing) { |
| return ConstructAckFrame(QuicPacketNumber(largest_acked), |
| QuicPacketNumber(missing)); |
| } |
| |
| QuicAckFrame ConstructAckFrame(QuicPacketNumber largest_acked, |
| QuicPacketNumber missing) { |
| if (missing == QuicPacketNumber(1)) { |
| return InitAckFrame({{missing + 1, largest_acked + 1}}); |
| } |
| return InitAckFrame( |
| {{QuicPacketNumber(1), missing}, {missing + 1, largest_acked + 1}}); |
| } |
| |
| // Undo nacking a packet within the frame. |
| void AckPacket(QuicPacketNumber arrived, QuicAckFrame* frame) { |
| EXPECT_FALSE(frame->packets.Contains(arrived)); |
| frame->packets.Add(arrived); |
| } |
| |
| void TriggerConnectionClose() { |
| // Send an erroneous packet to close the connection. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| // Triggers a connection by receiving ACK of unsent packet. |
| QuicAckFrame frame = InitAckFrame(10000); |
| ProcessAckPacket(1, &frame); |
| EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == |
| nullptr); |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_INVALID_ACK_DATA, |
| saved_connection_close_frame_.quic_error_code); |
| } |
| |
| void BlockOnNextWrite() { |
| writer_->BlockOnNextWrite(); |
| EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); |
| } |
| |
| void SimulateNextPacketTooLarge() { writer_->SimulateNextPacketTooLarge(); } |
| |
| void AlwaysGetPacketTooLarge() { writer_->AlwaysGetPacketTooLarge(); } |
| |
| void SetWritePauseTimeDelta(QuicTime::Delta delta) { |
| writer_->SetWritePauseTimeDelta(delta); |
| } |
| |
| void CongestionBlockWrites() { |
| EXPECT_CALL(*send_algorithm_, CanSend(_)) |
| .WillRepeatedly(testing::Return(false)); |
| } |
| |
| void CongestionUnblockWrites() { |
| EXPECT_CALL(*send_algorithm_, CanSend(_)) |
| .WillRepeatedly(testing::Return(true)); |
| } |
| |
| void set_perspective(Perspective perspective) { |
| connection_.set_perspective(perspective); |
| if (perspective == Perspective::IS_SERVER) { |
| connection_.set_can_truncate_connection_ids(true); |
| } |
| QuicFramerPeer::SetPerspective(&peer_framer_, |
| QuicUtils::InvertPerspective(perspective)); |
| } |
| |
| void set_packets_between_probes_base( |
| const QuicPacketCount packets_between_probes_base) { |
| if (GetQuicReloadableFlag(quic_mtu_discovery_v2)) { |
| QuicConnectionPeer::ReInitializeMtuDiscoverer( |
| &connection_, packets_between_probes_base, |
| QuicPacketNumber(packets_between_probes_base)); |
| } else { |
| QuicConnectionPeer::SetPacketsBetweenMtuProbes( |
| &connection_, packets_between_probes_base); |
| QuicConnectionPeer::SetNextMtuProbeAt( |
| &connection_, QuicPacketNumber(packets_between_probes_base)); |
| } |
| } |
| |
| bool IsDefaultTestConfiguration() { |
| TestParams p = GetParam(); |
| return p.ack_response == AckResponse::kImmediate && |
| p.version == AllSupportedVersions()[0] && p.no_stop_waiting; |
| } |
| |
| void TestConnectionCloseQuicErrorCode(QuicErrorCode expected_code) { |
| // Not strictly needed for this test, but is commonly done. |
| EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == |
| nullptr); |
| const std::vector<QuicConnectionCloseFrame>& connection_close_frames = |
| writer_->connection_close_frames(); |
| ASSERT_EQ(1u, connection_close_frames.size()); |
| if (!VersionHasIetfQuicFrames(version().transport_version)) { |
| EXPECT_EQ(expected_code, connection_close_frames[0].quic_error_code); |
| EXPECT_EQ(GOOGLE_QUIC_CONNECTION_CLOSE, |
| connection_close_frames[0].close_type); |
| return; |
| } |
| |
| QuicErrorCodeToIetfMapping mapping = |
| QuicErrorCodeToTransportErrorCode(expected_code); |
| |
| if (mapping.is_transport_close_) { |
| // This Google QUIC Error Code maps to a transport close, |
| EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE, |
| connection_close_frames[0].close_type); |
| EXPECT_EQ(mapping.transport_error_code_, |
| connection_close_frames[0].transport_error_code); |
| // TODO(fkastenholz): when the extracted error code CL lands, |
| // need to test that extracted==expected. |
| } else { |
| // This maps to an application close. |
| EXPECT_EQ(expected_code, connection_close_frames[0].quic_error_code); |
| EXPECT_EQ(IETF_QUIC_APPLICATION_CONNECTION_CLOSE, |
| connection_close_frames[0].close_type); |
| // TODO(fkastenholz): when the extracted error code CL lands, |
| // need to test that extracted==expected. |
| } |
| } |
| |
| QuicConnectionId connection_id_; |
| QuicFramer framer_; |
| |
| MockSendAlgorithm* send_algorithm_; |
| std::unique_ptr<MockLossAlgorithm> loss_algorithm_; |
| MockClock clock_; |
| MockRandom random_generator_; |
| SimpleBufferAllocator buffer_allocator_; |
| std::unique_ptr<TestConnectionHelper> helper_; |
| std::unique_ptr<TestAlarmFactory> alarm_factory_; |
| QuicFramer peer_framer_; |
| QuicPacketCreator peer_creator_; |
| std::unique_ptr<TestPacketWriter> writer_; |
| TestConnection connection_; |
| QuicPacketCreator* creator_; |
| QuicPacketGenerator* generator_; |
| QuicSentPacketManager* manager_; |
| StrictMock<MockQuicConnectionVisitor> visitor_; |
| |
| QuicStreamFrame frame1_; |
| QuicStreamFrame frame2_; |
| QuicCryptoFrame crypto_frame_; |
| QuicAckFrame ack_; |
| QuicStopWaitingFrame stop_waiting_; |
| QuicPacketNumberLength packet_number_length_; |
| QuicConnectionIdIncluded connection_id_included_; |
| |
| SimpleSessionNotifier notifier_; |
| |
| QuicConnectionCloseFrame saved_connection_close_frame_; |
| int connection_close_frame_count_; |
| }; |
| |
| // Run all end to end tests with all supported versions. |
| INSTANTIATE_TEST_SUITE_P(SupportedVersion, |
| QuicConnectionTest, |
| ::testing::ValuesIn(GetTestParams()), |
| ::testing::PrintToStringParamName()); |
| |
| // These two tests ensure that the QuicErrorCode mapping works correctly. |
| // Both tests expect to see a Google QUIC close if not running IETF QUIC. |
| // If running IETF QUIC, the first will generate a transport connection |
| // close, the second an application connection close. |
| // The connection close codes for the two tests are manually chosen; |
| // they are expected to always map to transport- and application- |
| // closes, respectively. If that changes, mew codes should be chosen. |
| TEST_P(QuicConnectionTest, CloseErrorCodeTestTransport) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); |
| connection_.CloseConnection( |
| IETF_QUIC_PROTOCOL_VIOLATION, "Should be transport close", |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION); |
| } |
| |
| // Test that the IETF QUIC Error code mapping function works |
| // properly for application connection close codes. |
| TEST_P(QuicConnectionTest, CloseErrorCodeTestApplication) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); |
| connection_.CloseConnection( |
| QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE, |
| "Should be application close", |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE); |
| } |
| |
| TEST_P(QuicConnectionTest, SelfAddressChangeAtClient) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); |
| EXPECT_TRUE(connection_.connected()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)); |
| } |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| // Cause change in self_address. |
| QuicIpAddress host; |
| host.FromString("1.1.1.1"); |
| QuicSocketAddress self_address(host, 123); |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)); |
| } else { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)); |
| } |
| ProcessFramePacketWithAddresses(frame, self_address, kPeerAddress); |
| EXPECT_TRUE(connection_.connected()); |
| } |
| |
| TEST_P(QuicConnectionTest, SelfAddressChangeAtServer) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| |
| EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); |
| EXPECT_TRUE(connection_.connected()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)); |
| } |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| // Cause change in self_address. |
| QuicIpAddress host; |
| host.FromString("1.1.1.1"); |
| QuicSocketAddress self_address(host, 123); |
| EXPECT_CALL(visitor_, AllowSelfAddressChange()).WillOnce(Return(false)); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); |
| ProcessFramePacketWithAddresses(frame, self_address, kPeerAddress); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_ERROR_MIGRATING_ADDRESS); |
| } |
| |
| TEST_P(QuicConnectionTest, AllowSelfAddressChangeToMappedIpv4AddressAtServer) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| |
| EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); |
| EXPECT_TRUE(connection_.connected()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3); |
| } |
| QuicIpAddress host; |
| host.FromString("1.1.1.1"); |
| QuicSocketAddress self_address1(host, 443); |
| ProcessFramePacketWithAddresses(frame, self_address1, kPeerAddress); |
| // Cause self_address change to mapped Ipv4 address. |
| QuicIpAddress host2; |
| host2.FromString( |
| QuicStrCat("::ffff:", connection_.self_address().host().ToString())); |
| QuicSocketAddress self_address2(host2, connection_.self_address().port()); |
| ProcessFramePacketWithAddresses(frame, self_address2, kPeerAddress); |
| EXPECT_TRUE(connection_.connected()); |
| // self_address change back to Ipv4 address. |
| ProcessFramePacketWithAddresses(frame, self_address1, kPeerAddress); |
| EXPECT_TRUE(connection_.connected()); |
| } |
| |
| TEST_P(QuicConnectionTest, ClientAddressChangeAndPacketReordered) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| |
| // Clear direct_peer_address. |
| QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); |
| // Clear effective_peer_address, it is the same as direct_peer_address for |
| // this test. |
| QuicConnectionPeer::SetEffectivePeerAddress(&connection_, |
| QuicSocketAddress()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| } |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); |
| const QuicSocketAddress kNewPeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), |
| /*port=*/23456); |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kNewPeerAddress); |
| EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); |
| |
| // Decrease packet number to simulate out-of-order packets. |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4); |
| // This is an old packet, do not migrate. |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, PeerAddressChangeAtServer) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); |
| |
| // Clear direct_peer_address. |
| QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); |
| // Clear effective_peer_address, it is the same as direct_peer_address for |
| // this test. |
| QuicConnectionPeer::SetEffectivePeerAddress(&connection_, |
| QuicSocketAddress()); |
| EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| } |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| |
| // Process another packet with a different peer address on server side will |
| // start connection migration. |
| const QuicSocketAddress kNewPeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kNewPeerAddress); |
| EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, EffectivePeerAddressChangeAtServer) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); |
| |
| // Clear direct_peer_address. |
| QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); |
| // Clear effective_peer_address, it is different from direct_peer_address for |
| // this test. |
| QuicConnectionPeer::SetEffectivePeerAddress(&connection_, |
| QuicSocketAddress()); |
| const QuicSocketAddress kEffectivePeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/43210); |
| connection_.ReturnEffectivePeerAddressForNextPacket(kEffectivePeerAddress); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| } |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kEffectivePeerAddress, connection_.effective_peer_address()); |
| |
| // Process another packet with the same direct peer address and different |
| // effective peer address on server side will start connection migration. |
| const QuicSocketAddress kNewEffectivePeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/54321); |
| connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress); |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address()); |
| |
| // Process another packet with a different direct peer address and the same |
| // effective peer address on server side will not start connection migration. |
| const QuicSocketAddress kNewPeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); |
| connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress); |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); |
| // ack_frame is used to complete the migration started by the last packet, we |
| // need to make sure a new migration does not start after the previous one is |
| // completed. |
| QuicAckFrame ack_frame = InitAckFrame(1); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); |
| ProcessFramePacketWithAddresses(QuicFrame(&ack_frame), kSelfAddress, |
| kNewPeerAddress); |
| EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address()); |
| |
| // Process another packet with different direct peer address and different |
| // effective peer address on server side will start connection migration. |
| const QuicSocketAddress kNewerEffectivePeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/65432); |
| const QuicSocketAddress kFinalPeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/34567); |
| connection_.ReturnEffectivePeerAddressForNextPacket( |
| kNewerEffectivePeerAddress); |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kFinalPeerAddress); |
| EXPECT_EQ(kFinalPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kNewerEffectivePeerAddress, connection_.effective_peer_address()); |
| EXPECT_EQ(PORT_CHANGE, connection_.active_effective_peer_migration_type()); |
| |
| // While the previous migration is ongoing, process another packet with the |
| // same direct peer address and different effective peer address on server |
| // side will start a new connection migration. |
| const QuicSocketAddress kNewestEffectivePeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/65430); |
| connection_.ReturnEffectivePeerAddressForNextPacket( |
| kNewestEffectivePeerAddress); |
| EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1); |
| EXPECT_CALL(*send_algorithm_, OnConnectionMigration()).Times(1); |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kFinalPeerAddress); |
| EXPECT_EQ(kFinalPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kNewestEffectivePeerAddress, connection_.effective_peer_address()); |
| EXPECT_EQ(IPV6_TO_IPV4_CHANGE, |
| connection_.active_effective_peer_migration_type()); |
| } |
| |
| TEST_P(QuicConnectionTest, ReceivePaddedPingAtServer) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); |
| |
| // Clear direct_peer_address. |
| QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); |
| // Clear effective_peer_address, it is the same as direct_peer_address for |
| // this test. |
| QuicConnectionPeer::SetEffectivePeerAddress(&connection_, |
| QuicSocketAddress()); |
| EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| } |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); |
| EXPECT_CALL(visitor_, OnPacketReceived(_, _, false)).Times(0); |
| |
| // Process a padded PING or PATH CHALLENGE packet with no peer address change |
| // on server side will be ignored. |
| OwningSerializedPacketPointer probing_packet; |
| if (VersionHasIetfQuicFrames(version().transport_version)) { |
| QuicPathFrameBuffer payload = { |
| {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}}; |
| probing_packet = |
| QuicPacketCreatorPeer::SerializePathChallengeConnectivityProbingPacket( |
| &peer_creator_, &payload); |
| } else { |
| probing_packet = QuicPacketCreatorPeer::SerializeConnectivityProbingPacket( |
| &peer_creator_); |
| } |
| std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( |
| QuicEncryptedPacket(probing_packet->encrypted_buffer, |
| probing_packet->encrypted_length), |
| clock_.Now())); |
| |
| uint64_t num_probing_received = |
| connection_.GetStats().num_connectivity_probing_received; |
| ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received); |
| |
| EXPECT_EQ(num_probing_received, |
| connection_.GetStats().num_connectivity_probing_received); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, WriteOutOfOrderQueuedPackets) { |
| // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. |
| if (!IsDefaultTestConfiguration()) { |
| return; |
| } |
| |
| set_perspective(Perspective::IS_CLIENT); |
| |
| BlockOnNextWrite(); |
| |
| QuicStreamId stream_id = 2; |
| connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN); |
| |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| writer_->SetWritable(); |
| connection_.SendConnectivityProbingPacket(writer_.get(), |
| connection_.peer_address()); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); |
| connection_.OnCanWrite(); |
| return; |
| } |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_QUIC_BUG(connection_.OnCanWrite(), |
| "Attempt to write packet:1 after:2"); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_INTERNAL_ERROR); |
| const std::vector<QuicConnectionCloseFrame>& connection_close_frames = |
| writer_->connection_close_frames(); |
| EXPECT_EQ("Packet written out of order.", |
| connection_close_frames[0].error_details); |
| } |
| |
| TEST_P(QuicConnectionTest, DiscardQueuedPacketsAfterConnectionClose) { |
| // Regression test for b/74073386. |
| { |
| InSequence seq; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AtLeast(1)); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(AtLeast(1)); |
| } |
| |
| set_perspective(Perspective::IS_CLIENT); |
| |
| writer_->SimulateNextPacketTooLarge(); |
| |
| // This packet write should fail, which should cause the connection to close |
| // after sending a connection close packet, then the failed packet should be |
| // queued. |
| connection_.SendStreamDataWithString(/*id=*/2, "foo", 0, NO_FIN); |
| |
| EXPECT_FALSE(connection_.connected()); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| // No need to buffer packets. |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } else { |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| } |
| |
| EXPECT_EQ(0u, connection_.GetStats().packets_discarded); |
| connection_.OnCanWrite(); |
| EXPECT_EQ(0u, connection_.GetStats().packets_discarded); |
| } |
| |
| TEST_P(QuicConnectionTest, ReceiveConnectivityProbingAtServer) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); |
| |
| // Clear direct_peer_address. |
| QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); |
| // Clear effective_peer_address, it is the same as direct_peer_address for |
| // this test. |
| QuicConnectionPeer::SetEffectivePeerAddress(&connection_, |
| QuicSocketAddress()); |
| EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| } |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); |
| EXPECT_CALL(visitor_, OnPacketReceived(_, _, true)).Times(1); |
| |
| // Process a padded PING packet from a new peer address on server side |
| // is effectively receiving a connectivity probing. |
| const QuicSocketAddress kNewPeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); |
| |
| OwningSerializedPacketPointer probing_packet = ConstructProbingPacket(); |
| std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( |
| QuicEncryptedPacket(probing_packet->encrypted_buffer, |
| probing_packet->encrypted_length), |
| clock_.Now())); |
| |
| uint64_t num_probing_received = |
| connection_.GetStats().num_connectivity_probing_received; |
| ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received); |
| |
| EXPECT_EQ(num_probing_received + 1, |
| connection_.GetStats().num_connectivity_probing_received); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| |
| // Process another packet with the old peer address on server side will not |
| // start peer migration. |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, ReceiveReorderedConnectivityProbingAtServer) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); |
| |
| // Clear direct_peer_address. |
| QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); |
| // Clear effective_peer_address, it is the same as direct_peer_address for |
| // this test. |
| QuicConnectionPeer::SetEffectivePeerAddress(&connection_, |
| QuicSocketAddress()); |
| EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| } |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| |
| // Decrease packet number to simulate out-of-order packets. |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4); |
| |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); |
| EXPECT_CALL(visitor_, OnPacketReceived(_, _, true)).Times(1); |
| |
| // Process a padded PING packet from a new peer address on server side |
| // is effectively receiving a connectivity probing, even if a newer packet has |
| // been received before this one. |
| const QuicSocketAddress kNewPeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); |
| |
| OwningSerializedPacketPointer probing_packet = ConstructProbingPacket(); |
| std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( |
| QuicEncryptedPacket(probing_packet->encrypted_buffer, |
| probing_packet->encrypted_length), |
| clock_.Now())); |
| |
| uint64_t num_probing_received = |
| connection_.GetStats().num_connectivity_probing_received; |
| ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received); |
| |
| EXPECT_EQ(num_probing_received + 1, |
| connection_.GetStats().num_connectivity_probing_received); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, MigrateAfterProbingAtServer) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); |
| |
| // Clear direct_peer_address. |
| QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); |
| // Clear effective_peer_address, it is the same as direct_peer_address for |
| // this test. |
| QuicConnectionPeer::SetEffectivePeerAddress(&connection_, |
| QuicSocketAddress()); |
| EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| } |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); |
| EXPECT_CALL(visitor_, OnPacketReceived(_, _, true)).Times(1); |
| |
| // Process a padded PING packet from a new peer address on server side |
| // is effectively receiving a connectivity probing. |
| const QuicSocketAddress kNewPeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); |
| |
| OwningSerializedPacketPointer probing_packet = ConstructProbingPacket(); |
| std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( |
| QuicEncryptedPacket(probing_packet->encrypted_buffer, |
| probing_packet->encrypted_length), |
| clock_.Now())); |
| ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| |
| // Process another non-probing packet with the new peer address on server |
| // side will start peer migration. |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); |
| |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kNewPeerAddress); |
| EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, ReceivePaddedPingAtClient) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| set_perspective(Perspective::IS_CLIENT); |
| EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); |
| |
| // Clear direct_peer_address. |
| QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); |
| // Clear effective_peer_address, it is the same as direct_peer_address for |
| // this test. |
| QuicConnectionPeer::SetEffectivePeerAddress(&connection_, |
| QuicSocketAddress()); |
| EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| } |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| |
| // Client takes all padded PING packet as speculative connectivity |
| // probing packet, and reports to visitor. |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); |
| EXPECT_CALL(visitor_, OnPacketReceived(_, _, false)).Times(1); |
| |
| OwningSerializedPacketPointer probing_packet = ConstructProbingPacket(); |
| std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( |
| QuicEncryptedPacket(probing_packet->encrypted_buffer, |
| probing_packet->encrypted_length), |
| clock_.Now())); |
| uint64_t num_probing_received = |
| connection_.GetStats().num_connectivity_probing_received; |
| ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received); |
| |
| EXPECT_EQ(num_probing_received, |
| connection_.GetStats().num_connectivity_probing_received); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, ReceiveConnectivityProbingAtClient) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| set_perspective(Perspective::IS_CLIENT); |
| EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); |
| |
| // Clear direct_peer_address. |
| QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); |
| // Clear effective_peer_address, it is the same as direct_peer_address for |
| // this test. |
| QuicConnectionPeer::SetEffectivePeerAddress(&connection_, |
| QuicSocketAddress()); |
| EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| } |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| |
| // Process a padded PING packet with a different self address on client side |
| // is effectively receiving a connectivity probing. |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); |
| EXPECT_CALL(visitor_, OnPacketReceived(_, _, true)).Times(1); |
| |
| const QuicSocketAddress kNewSelfAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); |
| |
| OwningSerializedPacketPointer probing_packet = ConstructProbingPacket(); |
| std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( |
| QuicEncryptedPacket(probing_packet->encrypted_buffer, |
| probing_packet->encrypted_length), |
| clock_.Now())); |
| uint64_t num_probing_received = |
| connection_.GetStats().num_connectivity_probing_received; |
| ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received); |
| |
| EXPECT_EQ(num_probing_received + 1, |
| connection_.GetStats().num_connectivity_probing_received); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, PeerAddressChangeAtClient) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| set_perspective(Perspective::IS_CLIENT); |
| EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); |
| |
| // Clear direct_peer_address. |
| QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); |
| // Clear effective_peer_address, it is the same as direct_peer_address for |
| // this test. |
| QuicConnectionPeer::SetEffectivePeerAddress(&connection_, |
| QuicSocketAddress()); |
| EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); |
| |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| } |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| EXPECT_EQ(kPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); |
| |
| // Process another packet with a different peer address on client side will |
| // only update peer address. |
| const QuicSocketAddress kNewPeerAddress = |
| QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); |
| EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kNewPeerAddress); |
| EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); |
| EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, MaxPacketSize) { |
| EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); |
| EXPECT_EQ(1350u, connection_.max_packet_length()); |
| } |
| |
| TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) { |
| TestConnection connection(TestConnectionId(), kPeerAddress, helper_.get(), |
| alarm_factory_.get(), writer_.get(), |
| Perspective::IS_SERVER, version()); |
| EXPECT_EQ(Perspective::IS_SERVER, connection.perspective()); |
| EXPECT_EQ(1000u, connection.max_packet_length()); |
| } |
| |
| TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| set_perspective(Perspective::IS_SERVER); |
| connection_.SetMaxPacketLength(1000); |
| |
| QuicPacketHeader header; |
| header.destination_connection_id = connection_id_; |
| header.version_flag = true; |
| header.packet_number = QuicPacketNumber(12); |
| |
| if (QuicVersionHasLongHeaderLengths( |
| peer_framer_.version().transport_version)) { |
| header.long_packet_type = INITIAL; |
| header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1; |
| header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2; |
| } |
| |
| QuicFrames frames; |
| QuicPaddingFrame padding; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frames.push_back(QuicFrame(&crypto_frame_)); |
| } else { |
| frames.push_back(QuicFrame(frame1_)); |
| } |
| frames.push_back(QuicFrame(padding)); |
| std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); |
| char buffer[kMaxOutgoingPacketSize]; |
| size_t encrypted_length = |
| peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12), |
| *packet, buffer, kMaxOutgoingPacketSize); |
| EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length); |
| |
| framer_.set_version(version()); |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); |
| } else { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| } |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); |
| |
| EXPECT_EQ(kMaxOutgoingPacketSize, connection_.max_packet_length()); |
| } |
| |
| TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSizeWhileWriterLimited) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| const QuicByteCount lower_max_packet_size = 1240; |
| writer_->set_max_packet_size(lower_max_packet_size); |
| set_perspective(Perspective::IS_SERVER); |
| connection_.SetMaxPacketLength(1000); |
| EXPECT_EQ(1000u, connection_.max_packet_length()); |
| |
| QuicPacketHeader header; |
| header.destination_connection_id = connection_id_; |
| header.version_flag = true; |
| header.packet_number = QuicPacketNumber(12); |
| |
| if (QuicVersionHasLongHeaderLengths( |
| peer_framer_.version().transport_version)) { |
| header.long_packet_type = INITIAL; |
| header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1; |
| header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2; |
| } |
| |
| QuicFrames frames; |
| QuicPaddingFrame padding; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frames.push_back(QuicFrame(&crypto_frame_)); |
| } else { |
| frames.push_back(QuicFrame(frame1_)); |
| } |
| frames.push_back(QuicFrame(padding)); |
| std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); |
| char buffer[kMaxOutgoingPacketSize]; |
| size_t encrypted_length = |
| peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12), |
| *packet, buffer, kMaxOutgoingPacketSize); |
| EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length); |
| |
| framer_.set_version(version()); |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); |
| } else { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| } |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); |
| |
| // Here, the limit imposed by the writer is lower than the size of the packet |
| // received, so the writer max packet size is used. |
| EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length()); |
| } |
| |
| TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriter) { |
| const QuicByteCount lower_max_packet_size = 1240; |
| writer_->set_max_packet_size(lower_max_packet_size); |
| |
| static_assert(lower_max_packet_size < kDefaultMaxPacketSize, |
| "Default maximum packet size is too low"); |
| connection_.SetMaxPacketLength(kDefaultMaxPacketSize); |
| |
| EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length()); |
| } |
| |
| TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriterForNewConnection) { |
| const QuicConnectionId connection_id = TestConnectionId(17); |
| const QuicByteCount lower_max_packet_size = 1240; |
| writer_->set_max_packet_size(lower_max_packet_size); |
| TestConnection connection(connection_id, kPeerAddress, helper_.get(), |
| alarm_factory_.get(), writer_.get(), |
| Perspective::IS_CLIENT, version()); |
| EXPECT_EQ(Perspective::IS_CLIENT, connection.perspective()); |
| EXPECT_EQ(lower_max_packet_size, connection.max_packet_length()); |
| } |
| |
| TEST_P(QuicConnectionTest, PacketsInOrder) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(1); |
| EXPECT_EQ(QuicPacketNumber(1u), LargestAcked(connection_.ack_frame())); |
| EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); |
| |
| ProcessPacket(2); |
| EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(connection_.ack_frame())); |
| EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); |
| EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); |
| } |
| |
| TEST_P(QuicConnectionTest, PacketsOutOfOrder) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(2); |
| EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); |
| EXPECT_FALSE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(1); |
| EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); |
| EXPECT_FALSE(IsMissing(2)); |
| EXPECT_FALSE(IsMissing(1)); |
| } |
| |
| TEST_P(QuicConnectionTest, DuplicatePacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| // Send packet 3 again, but do not set the expectation that |
| // the visitor OnStreamFrame() will be called. |
| ProcessDataPacket(3); |
| EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| } |
| |
| TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(2); |
| EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(5); |
| EXPECT_EQ(QuicPacketNumber(5u), LargestAcked(connection_.ack_frame())); |
| EXPECT_TRUE(IsMissing(1)); |
| EXPECT_TRUE(IsMissing(4)); |
| |
| // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a |
| // packet the peer will not retransmit. It indicates this by sending 'least |
| // awaiting' is 4. The connection should then realize 1 will not be |
| // retransmitted, and will remove it from the missing list. |
| QuicAckFrame frame = InitAckFrame(1); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); |
| ProcessAckPacket(6, &frame); |
| |
| // Force an ack to be sent. |
| SendAckPacketToPeer(); |
| EXPECT_TRUE(IsMissing(4)); |
| } |
| |
| TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) { |
| // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. |
| if (!IsDefaultTestConfiguration()) { |
| return; |
| } |
| |
| // Process an unencrypted packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_QUIC_PEER_BUG(ProcessDataPacketAtLevel(1, false, ENCRYPTION_INITIAL), |
| ""); |
| TestConnectionCloseQuicErrorCode(QUIC_UNENCRYPTED_STREAM_DATA); |
| } |
| |
| TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| // Should not cause an ack. |
| EXPECT_EQ(0u, writer_->packets_write_attempts()); |
| |
| ProcessPacket(2); |
| // Should ack immediately, since this fills the last hole. |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| |
| ProcessPacket(1); |
| // Should ack immediately, since this fills the last hole. |
| EXPECT_EQ(2u, writer_->packets_write_attempts()); |
| |
| ProcessPacket(4); |
| // Should not cause an ack. |
| EXPECT_EQ(2u, writer_->packets_write_attempts()); |
| } |
| |
| TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); |
| SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); |
| EXPECT_EQ(2u, writer_->packets_write_attempts()); |
| |
| QuicAckFrame ack1 = InitAckFrame(1); |
| QuicAckFrame ack2 = InitAckFrame(2); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| ProcessAckPacket(2, &ack2); |
| // Should ack immediately since we have missing packets. |
| EXPECT_EQ(2u, writer_->packets_write_attempts()); |
| |
| ProcessAckPacket(1, &ack1); |
| // Should not ack an ack filling a missing packet. |
| EXPECT_EQ(2u, writer_->packets_write_attempts()); |
| } |
| |
| TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicPacketNumber original, second; |
| |
| QuicByteCount packet_size = |
| SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original); // 1st packet. |
| SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second); // 2nd packet. |
| |
| QuicAckFrame frame = InitAckFrame({{second, second + 1}}); |
| // First nack triggers early retransmit. |
| LostPacketVector lost_packets; |
| lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) |
| .WillOnce(SetArgPointee<5>(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicPacketNumber retransmission; |
| // Packet 1 is short header for IETF QUIC because the encryption level |
| // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, |
| VersionHasIetfInvariantHeader( |
| GetParam().version.transport_version) |
| ? packet_size |
| : packet_size - kQuicVersionSize, |
| _)) |
| .WillOnce(SaveArg<2>(&retransmission)); |
| |
| ProcessAckPacket(&frame); |
| |
| QuicAckFrame frame2 = ConstructAckFrame(retransmission, original); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| ProcessAckPacket(&frame2); |
| |
| // Now if the peer sends an ack which still reports the retransmitted packet |
| // as missing, that will bundle an ack with data after two acks in a row |
| // indicate the high water mark needs to be raised. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); |
| connection_.SendStreamDataWithString(3, "foo", 6, NO_FIN); |
| // No ack sent. |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| |
| // No more packet loss for the rest of the test. |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) |
| .Times(AnyNumber()); |
| ProcessAckPacket(&frame2); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); |
| connection_.SendStreamDataWithString(3, "foofoofoo", 9, NO_FIN); |
| // Ack bundled. |
| if (GetParam().no_stop_waiting) { |
| if (GetQuicReloadableFlag(quic_simplify_stop_waiting)) { |
| // Do not ACK acks. |
| EXPECT_EQ(1u, writer_->frame_count()); |
| } else { |
| EXPECT_EQ(2u, writer_->frame_count()); |
| } |
| } else { |
| EXPECT_EQ(3u, writer_->frame_count()); |
| } |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| if (GetParam().no_stop_waiting && |
| GetQuicReloadableFlag(quic_simplify_stop_waiting)) { |
| EXPECT_TRUE(writer_->ack_frames().empty()); |
| } else { |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| } |
| |
| // But an ack with no missing packets will not send an ack. |
| AckPacket(original, &frame2); |
| ProcessAckPacket(&frame2); |
| ProcessAckPacket(&frame2); |
| } |
| |
| TEST_P(QuicConnectionTest, AckSentEveryNthPacket) { |
| connection_.set_ack_frequency_before_ack_decimation(3); |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(39); |
| |
| // Expect 13 acks, every 3rd packet. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(13); |
| // Receives packets 1 - 39. |
| for (size_t i = 1; i <= 39; ++i) { |
| ProcessDataPacket(i); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, AckDecimationReducesAcks) { |
| const size_t kMinRttMs = 40; |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); |
| |
| QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING); |
| |
| // Start ack decimation from 10th packet. |
| connection_.set_min_received_before_ack_decimation(10); |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(30); |
| |
| // Expect 6 acks: 5 acks between packets 1-10, and ack at 20. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6); |
| // Receives packets 1 - 29. |
| for (size_t i = 1; i <= 29; ++i) { |
| ProcessDataPacket(i); |
| } |
| |
| // We now receive the 30th packet, and so we send an ack. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| ProcessDataPacket(30); |
| } |
| |
| TEST_P(QuicConnectionTest, AckNeedsRetransmittableFrames) { |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(99); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19); |
| // Receives packets 1 - 39. |
| for (size_t i = 1; i <= 39; ++i) { |
| ProcessDataPacket(i); |
| } |
| // Receiving Packet 40 causes 20th ack to send. Session is informed and adds |
| // WINDOW_UPDATE. |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()) |
| .WillOnce(Invoke([this]() { |
| connection_.SendControlFrame( |
| QuicFrame(new QuicWindowUpdateFrame(1, 0, 0))); |
| })); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| EXPECT_EQ(0u, writer_->window_update_frames().size()); |
| ProcessDataPacket(40); |
| EXPECT_EQ(1u, writer_->window_update_frames().size()); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(9); |
| // Receives packets 41 - 59. |
| for (size_t i = 41; i <= 59; ++i) { |
| ProcessDataPacket(i); |
| } |
| // Send a packet containing stream frame. |
| SendStreamDataToPeer( |
| QuicUtils::GetFirstBidirectionalStreamId( |
| connection_.version().transport_version, Perspective::IS_CLIENT), |
| "bar", 0, NO_FIN, nullptr); |
| |
| // Session will not be informed until receiving another 20 packets. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19); |
| for (size_t i = 60; i <= 98; ++i) { |
| ProcessDataPacket(i); |
| EXPECT_EQ(0u, writer_->window_update_frames().size()); |
| } |
| // Session does not add a retransmittable frame. |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()) |
| .WillOnce(Invoke([this]() { |
| connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); |
| })); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| EXPECT_EQ(0u, writer_->ping_frames().size()); |
| ProcessDataPacket(99); |
| EXPECT_EQ(0u, writer_->window_update_frames().size()); |
| // A ping frame will be added. |
| EXPECT_EQ(1u, writer_->ping_frames().size()); |
| } |
| |
| TEST_P(QuicConnectionTest, LeastUnackedLower) { |
| if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); |
| SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); |
| SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr); |
| |
| // Start out saying the least unacked is 2. |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); |
| ProcessStopWaitingPacket(InitStopWaitingFrame(2)); |
| |
| // Change it to 1, but lower the packet number to fake out-of-order packets. |
| // This should be fine. |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1); |
| // The scheduler will not process out of order acks, but all packet processing |
| // causes the connection to try to write. |
| if (!GetParam().no_stop_waiting) { |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| } |
| ProcessStopWaitingPacket(InitStopWaitingFrame(1)); |
| |
| // Now claim it's one, but set the ordering so it was sent "after" the first |
| // one. This should cause a connection error. |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 7); |
| if (!GetParam().no_stop_waiting) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AtLeast(1)); |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .Times(AtLeast(1)); |
| } |
| ProcessStopWaitingPacket(InitStopWaitingFrame(1)); |
| if (!GetParam().no_stop_waiting) { |
| TestConnectionCloseQuicErrorCode(QUIC_INVALID_STOP_WAITING_DATA); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, TooManySentPackets) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| QuicPacketCount max_tracked_packets = 50; |
| QuicConnectionPeer::SetMaxTrackedPackets(&connection_, max_tracked_packets); |
| |
| const int num_packets = max_tracked_packets + 5; |
| |
| for (int i = 0; i < num_packets; ++i) { |
| SendStreamDataToPeer(1, "foo", 3 * i, NO_FIN, nullptr); |
| } |
| |
| // Ack packet 1, which leaves more than the limit outstanding. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| |
| // Nack the first packet and ack the rest, leaving a huge gap. |
| QuicAckFrame frame1 = ConstructAckFrame(num_packets, 1); |
| ProcessAckPacket(&frame1); |
| TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS); |
| } |
| |
| TEST_P(QuicConnectionTest, LargestObservedLower) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); |
| SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); |
| SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| |
| // Start out saying the largest observed is 2. |
| QuicAckFrame frame1 = InitAckFrame(1); |
| QuicAckFrame frame2 = InitAckFrame(2); |
| ProcessAckPacket(&frame2); |
| |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| ProcessAckPacket(&frame1); |
| } |
| |
| TEST_P(QuicConnectionTest, AckUnsentData) { |
| // Ack a packet which has not been sent. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); |
| QuicAckFrame frame = InitAckFrame(1); |
| EXPECT_CALL(visitor_, OnCanWrite()).Times(0); |
| ProcessAckPacket(&frame); |
| TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA); |
| } |
| |
| TEST_P(QuicConnectionTest, BasicSending) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacket(1); |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2); |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1 |
| EXPECT_EQ(QuicPacketNumber(1u), last_packet); |
| SendAckPacketToPeer(); // Packet 2 |
| |
| if (GetParam().no_stop_waiting) { |
| // Expect no stop waiting frame is sent. |
| EXPECT_FALSE(least_unacked().IsInitialized()); |
| } else { |
| EXPECT_EQ(QuicPacketNumber(1u), least_unacked()); |
| } |
| |
| SendAckPacketToPeer(); // Packet 3 |
| if (GetParam().no_stop_waiting) { |
| // Expect no stop waiting frame is sent. |
| EXPECT_FALSE(least_unacked().IsInitialized()); |
| } else { |
| EXPECT_EQ(QuicPacketNumber(1u), least_unacked()); |
| } |
| |
| SendStreamDataToPeer(1, "bar", 3, NO_FIN, &last_packet); // Packet 4 |
| EXPECT_EQ(QuicPacketNumber(4u), last_packet); |
| SendAckPacketToPeer(); // Packet 5 |
| if (GetParam().no_stop_waiting) { |
| // Expect no stop waiting frame is sent. |
| EXPECT_FALSE(least_unacked().IsInitialized()); |
| } else { |
| EXPECT_EQ(QuicPacketNumber(1u), least_unacked()); |
| } |
| |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| |
| // Peer acks up to packet 3. |
| QuicAckFrame frame = InitAckFrame(3); |
| ProcessAckPacket(&frame); |
| SendAckPacketToPeer(); // Packet 6 |
| |
| // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of |
| // ack for 4. |
| if (GetParam().no_stop_waiting) { |
| // Expect no stop waiting frame is sent. |
| EXPECT_FALSE(least_unacked().IsInitialized()); |
| } else { |
| EXPECT_EQ(QuicPacketNumber(4u), least_unacked()); |
| } |
| |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| |
| // Peer acks up to packet 4, the last packet. |
| QuicAckFrame frame2 = InitAckFrame(6); |
| ProcessAckPacket(&frame2); // Acks don't instigate acks. |
| |
| // Verify that we did not send an ack. |
| EXPECT_EQ(QuicPacketNumber(6u), writer_->header().packet_number); |
| |
| // So the last ack has not changed. |
| if (GetParam().no_stop_waiting) { |
| // Expect no stop waiting frame is sent. |
| EXPECT_FALSE(least_unacked().IsInitialized()); |
| } else { |
| EXPECT_EQ(QuicPacketNumber(4u), least_unacked()); |
| } |
| |
| // If we force an ack, we shouldn't change our retransmit state. |
| SendAckPacketToPeer(); // Packet 7 |
| if (GetParam().no_stop_waiting) { |
| // Expect no stop waiting frame is sent. |
| EXPECT_FALSE(least_unacked().IsInitialized()); |
| } else { |
| EXPECT_EQ(QuicPacketNumber(7u), least_unacked()); |
| } |
| |
| // But if we send more data it should. |
| SendStreamDataToPeer(1, "eep", 6, NO_FIN, &last_packet); // Packet 8 |
| EXPECT_EQ(QuicPacketNumber(8u), last_packet); |
| SendAckPacketToPeer(); // Packet 9 |
| if (GetParam().no_stop_waiting) { |
| // Expect no stop waiting frame is sent. |
| EXPECT_FALSE(least_unacked().IsInitialized()); |
| } else { |
| EXPECT_EQ(QuicPacketNumber(7u), least_unacked()); |
| } |
| } |
| |
| // QuicConnection should record the packet sent-time prior to sending the |
| // packet. |
| TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) { |
| // We're using a MockClock for the tests, so we have complete control over the |
| // time. |
| // Our recorded timestamp for the last packet sent time will be passed in to |
| // the send_algorithm. Make sure that it is set to the correct value. |
| QuicTime actual_recorded_send_time = QuicTime::Zero(); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<0>(&actual_recorded_send_time)); |
| |
| // First send without any pause and check the result. |
| QuicTime expected_recorded_send_time = clock_.Now(); |
| connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); |
| EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) |
| << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() |
| << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue(); |
| |
| // Now pause during the write, and check the results. |
| actual_recorded_send_time = QuicTime::Zero(); |
| const QuicTime::Delta write_pause_time_delta = |
| QuicTime::Delta::FromMilliseconds(5000); |
| SetWritePauseTimeDelta(write_pause_time_delta); |
| expected_recorded_send_time = clock_.Now(); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<0>(&actual_recorded_send_time)); |
| connection_.SendStreamDataWithString(2, "baz", 0, NO_FIN); |
| EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) |
| << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() |
| << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue(); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePacking) { |
| // Send two stream frames in 1 packet by queueing them. |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| { |
| QuicConnection::ScopedPacketFlusher flusher(&connection_); |
| connection_.SendStreamData3(); |
| connection_.SendStreamData5(); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's an ack and two stream frames from |
| // two different streams. |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } |
| |
| EXPECT_TRUE(writer_->ack_frames().empty()); |
| |
| ASSERT_EQ(2u, writer_->stream_frames().size()); |
| EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), |
| writer_->stream_frames()[0]->stream_id); |
| EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()), |
| writer_->stream_frames()[1]->stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) { |
| // Send two stream frames (one non-crypto, then one crypto) in 2 packets by |
| // queueing them. |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| QuicConnection::ScopedPacketFlusher flusher(&connection_); |
| connection_.SendStreamData3(); |
| connection_.SendCryptoStreamData(); |
| } |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's the crypto stream frame. |
| EXPECT_EQ(2u, writer_->frame_count()); |
| ASSERT_EQ(1u, writer_->padding_frames().size()); |
| if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| ASSERT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_EQ(QuicUtils::GetCryptoStreamId(connection_.transport_version()), |
| writer_->stream_frames()[0]->stream_id); |
| } else { |
| EXPECT_EQ(1u, writer_->crypto_frames().size()); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) { |
| // Send two stream frames (one crypto, then one non-crypto) in 2 packets by |
| // queueing them. |
| { |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| QuicConnection::ScopedPacketFlusher flusher(&connection_); |
| connection_.SendCryptoStreamData(); |
| connection_.SendStreamData3(); |
| } |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's the stream frame from stream 3. |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| ASSERT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), |
| writer_->stream_frames()[0]->stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePackingAckResponse) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| // Process a data packet to queue up a pending ack. |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); |
| } else { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| } |
| ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); |
| |
| QuicPacketNumber last_packet; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| connection_.SendCryptoDataWithString("foo", 0); |
| } else { |
| SendStreamDataToPeer( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), "foo", 0, |
| NO_FIN, &last_packet); |
| } |
| // Verify ack is bundled with outging packet. |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| |
| EXPECT_CALL(visitor_, OnCanWrite()) |
| .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs( |
| &connection_, &TestConnection::SendStreamData3)), |
| IgnoreResult(InvokeWithoutArgs( |
| &connection_, &TestConnection::SendStreamData5)))); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| |
| // Process a data packet to cause the visitor's OnCanWrite to be invoked. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<TaggingEncrypter>(0x01)); |
| SetDecrypter(ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<StrictTaggingDecrypter>(0x01)); |
| ProcessDataPacket(2); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's an ack and two stream frames from |
| // two different streams. |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(3u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(4u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| ASSERT_EQ(2u, writer_->stream_frames().size()); |
| EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), |
| writer_->stream_frames()[0]->stream_id); |
| EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()), |
| writer_->stream_frames()[1]->stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePackingSendv) { |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| // Send data in 1 packet by writing multiple blocks in a single iovector |
| // using writev. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| |
| char data[] = "ABCDEF"; |
| struct iovec iov[2]; |
| iov[0].iov_base = data; |
| iov[0].iov_len = 4; |
| iov[1].iov_base = data + 4; |
| iov[1].iov_len = 2; |
| QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( |
| connection_.transport_version(), Perspective::IS_CLIENT); |
| connection_.SaveAndSendStreamData(stream_id, iov, 2, 6, 0, NO_FIN); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure multiple iovector blocks have |
| // been packed into a single stream frame from one stream. |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_EQ(0u, writer_->padding_frames().size()); |
| QuicStreamFrame* frame = writer_->stream_frames()[0].get(); |
| EXPECT_EQ(stream_id, frame->stream_id); |
| EXPECT_EQ("ABCDEF", QuicStringPiece(frame->data_buffer, frame->data_length)); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePackingSendvQueued) { |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| // Try to send two stream frames in 1 packet by using writev. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| |
| BlockOnNextWrite(); |
| char data[] = "ABCDEF"; |
| struct iovec iov[2]; |
| iov[0].iov_base = data; |
| iov[0].iov_len = 4; |
| iov[1].iov_base = data + 4; |
| iov[1].iov_len = 2; |
| QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( |
| connection_.transport_version(), Perspective::IS_CLIENT); |
| connection_.SaveAndSendStreamData(stream_id, iov, 2, 6, 0, NO_FIN); |
| |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| EXPECT_TRUE(connection_.HasQueuedData()); |
| |
| // Unblock the writes and actually send. |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| |
| // Parse the last packet and ensure it's one stream frame from one stream. |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_EQ(0u, writer_->padding_frames().size()); |
| EXPECT_EQ(stream_id, writer_->stream_frames()[0]->stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, SendingZeroBytes) { |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| // Send a zero byte write with a fin using writev. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( |
| connection_.transport_version(), Perspective::IS_CLIENT); |
| connection_.SaveAndSendStreamData(stream_id, nullptr, 0, 0, 0, FIN); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Padding frames are added by v99 to ensure a minimum packet size. |
| size_t extra_padding_frames = 0; |
| if (GetParam().version.HasHeaderProtection()) { |
| extra_padding_frames = 1; |
| } |
| |
| // Parse the last packet and ensure it's one stream frame from one stream. |
| EXPECT_EQ(1u + extra_padding_frames, writer_->frame_count()); |
| EXPECT_EQ(extra_padding_frames, writer_->padding_frames().size()); |
| ASSERT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_EQ(stream_id, writer_->stream_frames()[0]->stream_id); |
| EXPECT_TRUE(writer_->stream_frames()[0]->fin); |
| } |
| |
| TEST_P(QuicConnectionTest, LargeSendWithPendingAck) { |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| // Set the ack alarm by processing a ping frame. |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Processs a PING frame. |
| ProcessFramePacket(QuicFrame(QuicPingFrame())); |
| // Ensure that this has caused the ACK alarm to be set. |
| QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); |
| EXPECT_TRUE(ack_alarm->IsSet()); |
| |
| // Send data and ensure the ack is bundled. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(8); |
| size_t len = 10000; |
| std::unique_ptr<char[]> data_array(new char[len]); |
| memset(data_array.get(), '?', len); |
| struct iovec iov; |
| iov.iov_base = data_array.get(); |
| iov.iov_len = len; |
| QuicConsumedData consumed = connection_.SaveAndSendStreamData( |
| GetNthClientInitiatedStreamId(0, connection_.transport_version()), &iov, |
| 1, len, 0, FIN); |
| EXPECT_EQ(len, consumed.bytes_consumed); |
| EXPECT_TRUE(consumed.fin_consumed); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's one stream frame with a fin. |
| EXPECT_EQ(1u, writer_->frame_count()); |
| ASSERT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_EQ(GetNthClientInitiatedStreamId(0, connection_.transport_version()), |
| writer_->stream_frames()[0]->stream_id); |
| EXPECT_TRUE(writer_->stream_frames()[0]->fin); |
| // Ensure the ack alarm was cancelled when the ack was sent. |
| EXPECT_FALSE(ack_alarm->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, OnCanWrite) { |
| // Visitor's OnCanWrite will send data, but will have more pending writes. |
| EXPECT_CALL(visitor_, OnCanWrite()) |
| .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs( |
| &connection_, &TestConnection::SendStreamData3)), |
| IgnoreResult(InvokeWithoutArgs( |
| &connection_, &TestConnection::SendStreamData5)))); |
| { |
| InSequence seq; |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true)); |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()) |
| .WillRepeatedly(Return(false)); |
| } |
| |
| EXPECT_CALL(*send_algorithm_, CanSend(_)) |
| .WillRepeatedly(testing::Return(true)); |
| |
| connection_.OnCanWrite(); |
| |
| // Parse the last packet and ensure it's the two stream frames from |
| // two different streams. |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_EQ(2u, writer_->stream_frames().size()); |
| EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), |
| writer_->stream_frames()[0]->stream_id); |
| EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()), |
| writer_->stream_frames()[1]->stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitOnNack) { |
| QuicPacketNumber last_packet; |
| QuicByteCount second_packet_size; |
| SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet); // Packet 1 |
| second_packet_size = |
| SendStreamDataToPeer(3, "foos", 3, NO_FIN, &last_packet); // Packet 2 |
| SendStreamDataToPeer(3, "fooos", 7, NO_FIN, &last_packet); // Packet 3 |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Don't lose a packet on an ack, and nothing is retransmitted. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame ack_one = InitAckFrame(1); |
| ProcessAckPacket(&ack_one); |
| |
| // Lose a packet and ensure it triggers retransmission. |
| QuicAckFrame nack_two = ConstructAckFrame(3, 2); |
| LostPacketVector lost_packets; |
| lost_packets.push_back( |
| LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) |
| .WillOnce(SetArgPointee<5>(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| EXPECT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_)); |
| ProcessAckPacket(&nack_two); |
| } |
| |
| TEST_P(QuicConnectionTest, DoNotSendQueuedPacketForResetStream) { |
| // Block the connection to queue the packet. |
| BlockOnNextWrite(); |
| |
| QuicStreamId stream_id = 2; |
| connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN); |
| |
| // Now that there is a queued packet, reset the stream. |
| SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); |
| |
| // Unblock the connection and verify that only the RST_STREAM is sent. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| if (!connection_.session_decides_what_to_write()) { |
| // OnCanWrite will cause RST_STREAM be sent again. |
| connection_.SendControlFrame(QuicFrame(new QuicRstStreamFrame( |
| 1, stream_id, QUIC_ERROR_PROCESSING_STREAM, 14))); |
| } |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->rst_stream_frames().size()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendQueuedPacketForQuicRstStreamNoError) { |
| // Block the connection to queue the packet. |
| BlockOnNextWrite(); |
| |
| QuicStreamId stream_id = 2; |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } |
| connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN); |
| |
| // Now that there is a queued packet, reset the stream. |
| SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3); |
| |
| // Unblock the connection and verify that the RST_STREAM is sent and the data |
| // packet is sent. |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AtLeast(1)); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AtLeast(2)); |
| } |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| if (!connection_.session_decides_what_to_write()) { |
| // OnCanWrite will cause RST_STREAM be sent again. |
| connection_.SendControlFrame(QuicFrame( |
| new QuicRstStreamFrame(1, stream_id, QUIC_STREAM_NO_ERROR, 14))); |
| } |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->rst_stream_frames().size()); |
| } |
| |
| TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnNack) { |
| QuicStreamId stream_id = 2; |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); |
| SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); |
| SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12); |
| |
| // Lose a packet and ensure it does not trigger retransmission. |
| QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| ProcessAckPacket(&nack_two); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnNack) { |
| QuicStreamId stream_id = 2; |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); |
| SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); |
| SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12); |
| |
| // Lose a packet, ensure it triggers retransmission. |
| QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| LostPacketVector lost_packets; |
| lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) |
| .WillOnce(SetArgPointee<5>(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); |
| ProcessAckPacket(&nack_two); |
| } |
| |
| TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnRTO) { |
| QuicStreamId stream_id = 2; |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); |
| |
| // Fire the RTO and verify that the RST_STREAM is resent, not stream data. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->rst_stream_frames().size()); |
| EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); |
| } |
| |
| // Ensure that if the only data in flight is non-retransmittable, the |
| // retransmission alarm is not set. |
| TEST_P(QuicConnectionTest, CancelRetransmissionAlarmAfterResetStream) { |
| QuicStreamId stream_id = 2; |
| QuicPacketNumber last_data_packet; |
| SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet); |
| |
| // Cancel the stream. |
| const QuicPacketNumber rst_packet = last_data_packet + 1; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, rst_packet, _, _)).Times(1); |
| SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); |
| |
| // Ack the RST_STREAM frame (since it's retransmittable), but not the data |
| // packet, which is no longer retransmittable since the stream was cancelled. |
| QuicAckFrame nack_stream_data = |
| ConstructAckFrame(rst_packet, last_data_packet); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| ProcessAckPacket(&nack_stream_data); |
| |
| // Ensure that the data is still in flight, but the retransmission alarm is no |
| // longer set. |
| EXPECT_GT(manager_->GetBytesInFlight(), 0u); |
| if (connection_.session_decides_what_to_write()) { |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } else { |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnRTO) { |
| connection_.SetMaxTailLossProbes(0); |
| |
| QuicStreamId stream_id = 2; |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3); |
| |
| // Fire the RTO and verify that the RST_STREAM is resent, the stream data |
| // is sent. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2)); |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| ASSERT_EQ(1u, writer_->rst_stream_frames().size()); |
| EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, DoNotSendPendingRetransmissionForResetStream) { |
| QuicStreamId stream_id = 2; |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); |
| SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN); |
| |
| // Lose a packet which will trigger a pending retransmission. |
| QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| ProcessAckPacket(&ack); |
| |
| SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12); |
| |
| // Unblock the connection and verify that the RST_STREAM is sent but not the |
| // second data packet nor a retransmit. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| if (!connection_.session_decides_what_to_write()) { |
| // OnCanWrite will cause this RST_STREAM_FRAME be sent again. |
| connection_.SendControlFrame(QuicFrame(new QuicRstStreamFrame( |
| 1, stream_id, QUIC_ERROR_PROCESSING_STREAM, 14))); |
| } |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| ASSERT_EQ(1u, writer_->rst_stream_frames().size()); |
| EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, SendPendingRetransmissionForQuicRstStreamNoError) { |
| QuicStreamId stream_id = 2; |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); |
| SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN); |
| |
| // Lose a packet which will trigger a pending retransmission. |
| QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| LostPacketVector lost_packets; |
| lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) |
| .WillOnce(SetArgPointee<5>(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| ProcessAckPacket(&ack); |
| |
| SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12); |
| |
| // Unblock the connection and verify that the RST_STREAM is sent and the |
| // second data packet or a retransmit is sent. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2)); |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| // The RST_STREAM_FRAME is sent after queued packets and pending |
| // retransmission. |
| connection_.SendControlFrame(QuicFrame( |
| new QuicRstStreamFrame(1, stream_id, QUIC_STREAM_NO_ERROR, 14))); |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->rst_stream_frames().size()); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitAckedPacket) { |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1 |
| SendStreamDataToPeer(1, "foos", 3, NO_FIN, &last_packet); // Packet 2 |
| SendStreamDataToPeer(1, "fooos", 7, NO_FIN, &last_packet); // Packet 3 |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Instigate a loss with an ack. |
| QuicAckFrame nack_two = ConstructAckFrame(3, 2); |
| // The first nack should trigger a fast retransmission, but we'll be |
| // write blocked, so the packet will be queued. |
| BlockOnNextWrite(); |
| |
| LostPacketVector lost_packets; |
| lost_packets.push_back( |
| LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) |
| .WillOnce(SetArgPointee<5>(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _)) |
| .Times(1); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } |
| ProcessAckPacket(&nack_two); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Now, ack the previous transmission. |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(false, _, _, _, _)); |
| QuicAckFrame ack_all = InitAckFrame(3); |
| ProcessAckPacket(&ack_all); |
| |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _)) |
| .Times(0); |
| } else { |
| // Unblock the socket and attempt to send the queued packets. We will always |
| // send the retransmission. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _)) |
| .Times(1); |
| } |
| |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| // We do not store retransmittable frames of this retransmission. |
| EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, 4)); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicPacketNumber original, second; |
| |
| QuicByteCount packet_size = |
| SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original); // 1st packet. |
| SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second); // 2nd packet. |
| |
| QuicAckFrame frame = InitAckFrame({{second, second + 1}}); |
| // The first nack should retransmit the largest observed packet. |
| LostPacketVector lost_packets; |
| lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) |
| .WillOnce(SetArgPointee<5>(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| // Packet 1 is short header for IETF QUIC because the encryption level |
| // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, |
| VersionHasIetfInvariantHeader( |
| GetParam().version.transport_version) |
| ? packet_size |
| : packet_size - kQuicVersionSize, |
| _)); |
| ProcessAckPacket(&frame); |
| } |
| |
| TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) { |
| if (connection_.PtoEnabled() || |
| !connection_.session_decides_what_to_write()) { |
| return; |
| } |
| connection_.SetMaxTailLossProbes(0); |
| |
| for (int i = 0; i < 10; ++i) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendStreamDataWithString(3, "foo", i * 3, NO_FIN); |
| } |
| |
| // Block the writer and ensure they're queued. |
| BlockOnNextWrite(); |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_TRUE(connection_.HasQueuedData()); |
| |
| // Unblock the writer. |
| writer_->SetWritable(); |
| clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( |
| 2 * DefaultRetransmissionTime().ToMicroseconds())); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| } else { |
| // 2 RTOs + 1 TLP, which is buggy. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); |
| } |
| connection_.GetRetransmissionAlarm()->Fire(); |
| connection_.OnCanWrite(); |
| } |
| |
| TEST_P(QuicConnectionTest, WriteBlockedBufferedThenSent) { |
| BlockOnNextWrite(); |
| writer_->set_is_write_blocked_data_buffered(true); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, WriteBlockedThenSent) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| BlockOnNextWrite(); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } |
| connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } else { |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // The second packet should also be queued, in order to ensure packets are |
| // never sent out of order. |
| writer_->SetWritable(); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } |
| connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); |
| EXPECT_EQ(2u, connection_.NumQueuedPackets()); |
| |
| // Now both are sent in order when we unblock. |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| } |
| connection_.OnCanWrite(); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| BlockOnNextWrite(); |
| writer_->set_is_write_blocked_data_buffered(true); |
| // Simulate the retransmission alarm firing. |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Ack the sent packet before the callback returns, which happens in |
| // rare circumstances with write blocked sockets. |
| QuicAckFrame ack = InitAckFrame(1); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| ProcessAckPacket(&ack); |
| |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| if (connection_.session_decides_what_to_write()) { |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } else { |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, 2)); |
| } |
| |
| TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) { |
| // Block the connection. |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| |
| // Set the send alarm. Fire the alarm and ensure it doesn't attempt to write. |
| connection_.GetSendAlarm()->Set(clock_.ApproximateNow()); |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| } |
| |
| TEST_P(QuicConnectionTest, NoSendAlarmAfterProcessPacketWhenWriteBlocked) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Block the connection. |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); |
| |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| // Process packet number 1. Can not call ProcessPacket or ProcessDataPacket |
| // here, because they will fire the alarm after QuicConnection::ProcessPacket |
| // is returned. |
| const uint64_t received_packet_num = 1; |
| const bool has_stop_waiting = false; |
| const EncryptionLevel level = ENCRYPTION_FORWARD_SECURE; |
| std::unique_ptr<QuicPacket> packet( |
| ConstructDataPacket(received_packet_num, has_stop_waiting, level)); |
| char buffer[kMaxOutgoingPacketSize]; |
| size_t encrypted_length = |
| peer_framer_.EncryptPayload(level, QuicPacketNumber(received_packet_num), |
| *packet, buffer, kMaxOutgoingPacketSize); |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); |
| |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, AddToWriteBlockedListIfWriterBlockedWhenProcessing) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); |
| |
| // Simulate the case where a shared writer gets blocked by another connection. |
| writer_->SetWriteBlocked(); |
| |
| // Process an ACK, make sure the connection calls visitor_->OnWriteBlocked(). |
| QuicAckFrame ack1 = InitAckFrame(1); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); |
| EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); |
| ProcessAckPacket(1, &ack1); |
| } |
| |
| TEST_P(QuicConnectionTest, DoNotAddToWriteBlockedListAfterDisconnect) { |
| writer_->SetBatchMode(true); |
| EXPECT_TRUE(connection_.connected()); |
| // Have to explicitly grab the OnConnectionClosed frame and check |
| // its parameters because this is a silent connection close and the |
| // frame is not also transmitted to the peer. |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| |
| EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0); |
| |
| { |
| QuicConnection::ScopedPacketFlusher flusher(&connection_); |
| connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| |
| EXPECT_FALSE(connection_.connected()); |
| writer_->SetWriteBlocked(); |
| } |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_PEER_GOING_AWAY, |
| saved_connection_close_frame_.quic_error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, AddToWriteBlockedListIfBlockedOnFlushPackets) { |
| writer_->SetBatchMode(true); |
| writer_->BlockOnNextFlush(); |
| |
| EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); |
| { |
| QuicConnection::ScopedPacketFlusher flusher(&connection_); |
| // flusher's destructor will call connection_.FlushPackets, which should add |
| // the connection to the write blocked list. |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| int offset = 0; |
| // Send packets 1 to 15. |
| for (int i = 0; i < 15; ++i) { |
| SendStreamDataToPeer(1, "foo", offset, NO_FIN, nullptr); |
| offset += 3; |
| } |
| |
| // Ack 15, nack 1-14. |
| |
| QuicAckFrame nack = |
| InitAckFrame({{QuicPacketNumber(15), QuicPacketNumber(16)}}); |
| |
| // 14 packets have been NACK'd and lost. |
| LostPacketVector lost_packets; |
| for (int i = 1; i < 15; ++i) { |
| lost_packets.push_back( |
| LostPacket(QuicPacketNumber(i), kMaxOutgoingPacketSize)); |
| } |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) |
| .WillOnce(SetArgPointee<5>(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| if (connection_.session_decides_what_to_write()) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(14); |
| } |
| ProcessAckPacket(&nack); |
| } |
| |
| // Test sending multiple acks from the connection to the session. |
| TEST_P(QuicConnectionTest, MultipleAcks) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacket(1); |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2); |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1 |
| EXPECT_EQ(QuicPacketNumber(1u), last_packet); |
| SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet); // Packet 2 |
| EXPECT_EQ(QuicPacketNumber(2u), last_packet); |
| SendAckPacketToPeer(); // Packet 3 |
| SendStreamDataToPeer(5, "foo", 0, NO_FIN, &last_packet); // Packet 4 |
| EXPECT_EQ(QuicPacketNumber(4u), last_packet); |
| SendStreamDataToPeer(1, "foo", 3, NO_FIN, &last_packet); // Packet 5 |
| EXPECT_EQ(QuicPacketNumber(5u), last_packet); |
| SendStreamDataToPeer(3, "foo", 3, NO_FIN, &last_packet); // Packet 6 |
| EXPECT_EQ(QuicPacketNumber(6u), last_packet); |
| |
| // Client will ack packets 1, 2, [!3], 4, 5. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame frame1 = ConstructAckFrame(5, 3); |
| ProcessAckPacket(&frame1); |
| |
| // Now the client implicitly acks 3, and explicitly acks 6. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame frame2 = InitAckFrame(6); |
| ProcessAckPacket(&frame2); |
| } |
| |
| TEST_P(QuicConnectionTest, DontLatchUnackedPacket) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacket(1); |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2); |
| SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); // Packet 1; |
| // From now on, we send acks, so the send algorithm won't mark them pending. |
| SendAckPacketToPeer(); // Packet 2 |
| |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame frame = InitAckFrame(1); |
| ProcessAckPacket(&frame); |
| |
| // Verify that our internal state has least-unacked as 2, because we're still |
| // waiting for a potential ack for 2. |
| |
| EXPECT_EQ(QuicPacketNumber(2u), stop_waiting()->least_unacked); |
| |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| frame = InitAckFrame(2); |
| ProcessAckPacket(&frame); |
| EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked); |
| |
| // When we send an ack, we make sure our least-unacked makes sense. In this |
| // case since we're not waiting on an ack for 2 and all packets are acked, we |
| // set it to 3. |
| SendAckPacketToPeer(); // Packet 3 |
| // Least_unacked remains at 3 until another ack is received. |
| EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked); |
| if (GetParam().no_stop_waiting) { |
| // Expect no stop waiting frame is sent. |
| EXPECT_FALSE(least_unacked().IsInitialized()); |
| } else { |
| // Check that the outgoing ack had its packet number as least_unacked. |
| EXPECT_EQ(QuicPacketNumber(3u), least_unacked()); |
| } |
| |
| // Ack the ack, which updates the rtt and raises the least unacked. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| frame = InitAckFrame(3); |
| ProcessAckPacket(&frame); |
| |
| SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); // Packet 4 |
| EXPECT_EQ(QuicPacketNumber(4u), stop_waiting()->least_unacked); |
| SendAckPacketToPeer(); // Packet 5 |
| if (GetParam().no_stop_waiting) { |
| // Expect no stop waiting frame is sent. |
| EXPECT_FALSE(least_unacked().IsInitialized()); |
| } else { |
| EXPECT_EQ(QuicPacketNumber(4u), least_unacked()); |
| } |
| |
| // Send two data packets at the end, and ensure if the last one is acked, |
| // the least unacked is raised above the ack packets. |
| SendStreamDataToPeer(1, "bar", 6, NO_FIN, nullptr); // Packet 6 |
| SendStreamDataToPeer(1, "bar", 9, NO_FIN, nullptr); // Packet 7 |
| |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| frame = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(5)}, |
| {QuicPacketNumber(7), QuicPacketNumber(8)}}); |
| ProcessAckPacket(&frame); |
| |
| EXPECT_EQ(QuicPacketNumber(6u), stop_waiting()->least_unacked); |
| } |
| |
| TEST_P(QuicConnectionTest, TLP) { |
| connection_.SetMaxTailLossProbes(1); |
| |
| SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); |
| EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); |
| QuicTime retransmission_time = |
| connection_.GetRetransmissionAlarm()->deadline(); |
| EXPECT_NE(QuicTime::Zero(), retransmission_time); |
| |
| EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number); |
| // Simulate the retransmission alarm firing and sending a tlp, |
| // so send algorithm's OnRetransmissionTimeout is not called. |
| clock_.AdvanceTime(retransmission_time - clock_.Now()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number); |
| // We do not raise the high water mark yet. |
| EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); |
| } |
| |
| TEST_P(QuicConnectionTest, TailLossProbeDelayForStreamDataInTLPR) { |
| if (!connection_.session_decides_what_to_write() || |
| connection_.PtoEnabled()) { |
| return; |
| } |
| |
| // Set TLPR from QuicConfig. |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kTLPR); |
| config.SetConnectionOptionsToSend(options); |
| connection_.SetFromConfig(config); |
| connection_.SetMaxTailLossProbes(1); |
| |
| SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); |
| EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); |
| |
| QuicTime retransmission_time = |
| connection_.GetRetransmissionAlarm()->deadline(); |
| EXPECT_NE(QuicTime::Zero(), retransmission_time); |
| QuicTime::Delta expected_tlp_delay = |
| 0.5 * manager_->GetRttStats()->SmoothedOrInitialRtt(); |
| EXPECT_EQ(expected_tlp_delay, retransmission_time - clock_.Now()); |
| |
| EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number); |
| // Simulate firing of the retransmission alarm and retransmit the packet. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _)); |
| clock_.AdvanceTime(retransmission_time - clock_.Now()); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number); |
| |
| // We do not raise the high water mark yet. |
| EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); |
| } |
| |
| TEST_P(QuicConnectionTest, TailLossProbeDelayForNonStreamDataInTLPR) { |
| if (!connection_.session_decides_what_to_write() || |
| connection_.PtoEnabled()) { |
| return; |
| } |
| |
| // Set TLPR from QuicConfig. |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kTLPR); |
| config.SetConnectionOptionsToSend(options); |
| connection_.SetFromConfig(config); |
| connection_.SetMaxTailLossProbes(1); |
| |
| // Sets retransmittable on wire. |
| const QuicTime::Delta retransmittable_on_wire_timeout = |
| QuicTime::Delta::FromMilliseconds(50); |
| connection_.set_retransmittable_on_wire_timeout( |
| retransmittable_on_wire_timeout); |
| |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) |
| .WillRepeatedly(Return(true)); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| |
| const char data[] = "data"; |
| size_t data_size = strlen(data); |
| QuicStreamOffset offset = 0; |
| |
| // Send a data packet. |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| |
| // Path degrading alarm should be set when there is a retransmittable packet |
| // on the wire. |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| |
| // Verify the path degrading delay. |
| // First TLP with stream data. |
| QuicTime::Delta srtt = manager_->GetRttStats()->SmoothedOrInitialRtt(); |
| QuicTime::Delta expected_delay = 0.5 * srtt; |
| // Add 1st RTO. |
| QuicTime::Delta retransmission_delay = |
| QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); |
| expected_delay = expected_delay + retransmission_delay; |
| // Add 2nd RTO. |
| expected_delay = expected_delay + retransmission_delay * 2; |
| EXPECT_EQ(expected_delay, |
| QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetPathDegradingDelay()); |
| ASSERT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); |
| |
| // The ping alarm is set for the ping timeout, not the shorter |
| // retransmittable_on_wire_timeout. |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(connection_.ping_timeout(), |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Receive an ACK for the data packet. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame frame = |
| InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); |
| ProcessAckPacket(&frame); |
| |
| // Path degrading alarm should be cancelled as there is no more |
| // reretransmittable packets on the wire. |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| // The ping alarm should be set to the retransmittable_on_wire_timeout. |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(retransmittable_on_wire_timeout, |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Simulate firing of the retransmittable on wire and send a PING. |
| EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); |
| clock_.AdvanceTime(retransmittable_on_wire_timeout); |
| connection_.GetPingAlarm()->Fire(); |
| |
| // The retransmission alarm and the path degrading alarm should be set as |
| // there is a retransmittable packet (PING) on the wire, |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| |
| // Verify the retransmission delay. |
| QuicTime::Delta min_rto_timeout = |
| QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs); |
| srtt = manager_->GetRttStats()->SmoothedOrInitialRtt(); |
| |
| // First TLP without unacked stream data will no longer use TLPR. |
| expected_delay = std::max(2 * srtt, 1.5 * srtt + 0.5 * min_rto_timeout); |
| EXPECT_EQ(expected_delay, |
| connection_.GetRetransmissionAlarm()->deadline() - clock_.Now()); |
| |
| // Verify the path degrading delay = TLP delay + 1st RTO + 2nd RTO. |
| // Add 1st RTO. |
| retransmission_delay = |
| std::max(manager_->GetRttStats()->smoothed_rtt() + |
| 4 * manager_->GetRttStats()->mean_deviation(), |
| min_rto_timeout); |
| expected_delay = expected_delay + retransmission_delay; |
| // Add 2nd RTO. |
| expected_delay = expected_delay + retransmission_delay * 2; |
| EXPECT_EQ(expected_delay, |
| QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetPathDegradingDelay()); |
| |
| // The ping alarm is set for the ping timeout, not the shorter |
| // retransmittable_on_wire_timeout. |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(connection_.ping_timeout(), |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Advance a small period of time: 5ms. And receive a retransmitted ACK. |
| // This will update the retransmission alarm, verify the retransmission delay |
| // is correct. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| QuicAckFrame ack = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); |
| ProcessAckPacket(&ack); |
| |
| // Verify the retransmission delay. |
| // First TLP without unacked stream data will no longer use TLPR. |
| expected_delay = std::max(2 * srtt, 1.5 * srtt + 0.5 * min_rto_timeout); |
| expected_delay = expected_delay - QuicTime::Delta::FromMilliseconds(5); |
| EXPECT_EQ(expected_delay, |
| connection_.GetRetransmissionAlarm()->deadline() - clock_.Now()); |
| } |
| |
| TEST_P(QuicConnectionTest, RTO) { |
| if (connection_.PtoEnabled()) { |
| return; |
| } |
| connection_.SetMaxTailLossProbes(0); |
| |
| QuicTime default_retransmission_time = |
| clock_.ApproximateNow() + DefaultRetransmissionTime(); |
| SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); |
| EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); |
| |
| EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number); |
| EXPECT_EQ(default_retransmission_time, |
| connection_.GetRetransmissionAlarm()->deadline()); |
| // Simulate the retransmission alarm firing. |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number); |
| // We do not raise the high water mark yet. |
| EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); |
| } |
| |
| // Regression test of b/133771183. |
| TEST_P(QuicConnectionTest, RtoWithNoDataToRetransmit) { |
| if (!connection_.session_decides_what_to_write() || |
| connection_.PtoEnabled()) { |
| return; |
| } |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| connection_.SetMaxTailLossProbes(0); |
| |
| SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); |
| // Connection is cwnd limited. |
| CongestionBlockWrites(); |
| // Stream gets reset. |
| SendRstStream(3, QUIC_ERROR_PROCESSING_STREAM, 3); |
| // Simulate the retransmission alarm firing. |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| // RTO fires, but there is no packet to be RTOed. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(1u, writer_->rst_stream_frames().size()); |
| |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(40); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(20); |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(1); |
| // Receives packets 1 - 40. |
| for (size_t i = 1; i <= 40; ++i) { |
| ProcessDataPacket(i); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitWithSameEncryptionLevel) { |
| use_tagging_decrypter(); |
| |
| // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at |
| // the end of the packet. We can test this to check which encrypter was used. |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, |
| std::make_unique<TaggingEncrypter>(0x01)); |
| QuicByteCount packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<3>(&packet_size)); |
| connection_.SendCryptoDataWithString("foo", 0); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); |
| EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); |
| |
| connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); |
| SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); |
| EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); |
| |
| { |
| InSequence s; |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, QuicPacketNumber(3), _, _)); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, QuicPacketNumber(4), _, _)); |
| } |
| |
| // Manually mark both packets for retransmission. |
| connection_.RetransmitUnackedPackets(ALL_UNACKED_RETRANSMISSION); |
| |
| // Packet should have been sent with ENCRYPTION_INITIAL. |
| EXPECT_EQ(0x01010101u, writer_->final_bytes_of_previous_packet()); |
| |
| // Packet should have been sent with ENCRYPTION_ZERO_RTT. |
| EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendHandshakeMessages) { |
| use_tagging_decrypter(); |
| // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at |
| // the end of the packet. We can test this to check which encrypter was used. |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, |
| std::make_unique<TaggingEncrypter>(0x01)); |
| |
| // Attempt to send a handshake message and have the socket block. |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); |
| BlockOnNextWrite(); |
| connection_.SendCryptoDataWithString("foo", 0); |
| // The packet should be serialized, but not queued. |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Switch to the new encrypter. |
| connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); |
| |
| // Now become writeable and flush the packets. |
| writer_->SetWritable(); |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| connection_.OnCanWrite(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| |
| // Verify that the handshake packet went out at the null encryption. |
| EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); |
| } |
| |
| TEST_P(QuicConnectionTest, |
| DropRetransmitsForNullEncryptedPacketAfterForwardSecure) { |
| use_tagging_decrypter(); |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, |
| std::make_unique<TaggingEncrypter>(0x01)); |
| QuicPacketNumber packet_number; |
| connection_.SendCryptoStreamData(); |
| |
| // Simulate the retransmission alarm firing and the socket blocking. |
| BlockOnNextWrite(); |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Go forward secure. |
| connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<TaggingEncrypter>(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| notifier_.NeuterUnencryptedData(); |
| connection_.NeuterUnencryptedPackets(); |
| connection_.OnHandshakeComplete(); |
| |
| EXPECT_EQ(QuicTime::Zero(), connection_.GetRetransmissionAlarm()->deadline()); |
| // Unblock the socket and ensure that no packets are sent. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) { |
| use_tagging_decrypter(); |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, |
| std::make_unique<TaggingEncrypter>(0x01)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); |
| |
| connection_.SendCryptoDataWithString("foo", 0); |
| |
| connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); |
| |
| SendStreamDataToPeer(2, "bar", 0, NO_FIN, nullptr); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| |
| connection_.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION); |
| } |
| |
| TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| // SetFromConfig is always called after construction from InitializeSession. |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| use_tagging_decrypter(); |
| |
| const uint8_t tag = 0x07; |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| |
| // Process an encrypted packet which can not yet be decrypted which should |
| // result in the packet being buffered. |
| ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| |
| // Transition to the new encryption state and process another encrypted packet |
| // which should result in the original packet being processed. |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); |
| connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2); |
| ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| |
| // Finally, process a third packet and note that we do not reprocess the |
| // buffered packet. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| |
| TEST_P(QuicConnectionTest, TestRetransmitOrder) { |
| if (connection_.PtoEnabled()) { |
| return; |
| } |
| connection_.SetMaxTailLossProbes(0); |
| |
| QuicByteCount first_packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<3>(&first_packet_size)); |
| |
| connection_.SendStreamDataWithString(3, "first_packet", 0, NO_FIN); |
| QuicByteCount second_packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<3>(&second_packet_size)); |
| connection_.SendStreamDataWithString(3, "second_packet", 12, NO_FIN); |
| EXPECT_NE(first_packet_size, second_packet_size); |
| // Advance the clock by huge time to make sure packets will be retransmitted. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); |
| { |
| InSequence s; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); |
| } |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Advance again and expect the packets to be sent again in the same order. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20)); |
| { |
| InSequence s; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); |
| } |
| connection_.GetRetransmissionAlarm()->Fire(); |
| } |
| |
| TEST_P(QuicConnectionTest, Buffer100NonDecryptablePacketsThenKeyChange) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| // SetFromConfig is always called after construction from InitializeSession. |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| config.set_max_undecryptable_packets(100); |
| connection_.SetFromConfig(config); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| use_tagging_decrypter(); |
| |
| const uint8_t tag = 0x07; |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| |
| // Process an encrypted packet which can not yet be decrypted which should |
| // result in the packet being buffered. |
| for (uint64_t i = 1; i <= 100; ++i) { |
| ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| |
| // Transition to the new encryption state and process another encrypted packet |
| // which should result in the original packets being processed. |
| EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); |
| connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(100); |
| connection_.GetProcessUndecryptablePacketsAlarm()->Fire(); |
| |
| // Finally, process a third packet and note that we do not reprocess the |
| // buffered packet. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(102, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| |
| TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) { |
| BlockOnNextWrite(); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } |
| connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } else { |
| // Make sure that RTO is not started when the packet is queued. |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| |
| // Test that RTO is started once we write to the socket. |
| writer_->SetWritable(); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } |
| connection_.OnCanWrite(); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) { |
| if (connection_.PtoEnabled()) { |
| return; |
| } |
| connection_.SetMaxTailLossProbes(0); |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN); |
| connection_.SendStreamDataWithString(3, "bar", 0, NO_FIN); |
| QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm(); |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| EXPECT_EQ(DefaultRetransmissionTime(), |
| retransmission_alarm->deadline() - clock_.Now()); |
| |
| // Advance the time right before the RTO, then receive an ack for the first |
| // packet to delay the RTO. |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame ack = InitAckFrame(1); |
| ProcessAckPacket(&ack); |
| // Now we have an RTT sample of DefaultRetransmissionTime(500ms), |
| // so the RTO has increased to 2 * SRTT. |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| EXPECT_EQ(retransmission_alarm->deadline() - clock_.Now(), |
| 2 * DefaultRetransmissionTime()); |
| |
| // Move forward past the original RTO and ensure the RTO is still pending. |
| clock_.AdvanceTime(2 * DefaultRetransmissionTime()); |
| |
| // Ensure the second packet gets retransmitted when it finally fires. |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| EXPECT_EQ(retransmission_alarm->deadline(), clock_.ApproximateNow()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| // Manually cancel the alarm to simulate a real test. |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // The new retransmitted packet number should set the RTO to a larger value |
| // than previously. |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| QuicTime next_rto_time = retransmission_alarm->deadline(); |
| QuicTime expected_rto_time = |
| connection_.sent_packet_manager().GetRetransmissionTime(); |
| EXPECT_EQ(next_rto_time, expected_rto_time); |
| } |
| |
| TEST_P(QuicConnectionTest, TestQueued) { |
| connection_.SetMaxTailLossProbes(0); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Unblock the writes and actually send. |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_P(QuicConnectionTest, InitialTimeout) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| |
| // SetFromConfig sets the initial timeouts before negotiation. |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| // Subtract a second from the idle timeout on the client side. |
| QuicTime default_timeout = |
| clock_.ApproximateNow() + |
| QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| // Simulate the timeout alarm firing. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1)); |
| connection_.GetTimeoutAlarm()->Fire(); |
| |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); |
| TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); |
| } |
| |
| TEST_P(QuicConnectionTest, IdleTimeoutAfterFirstSentPacket) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| QuicTime initial_ddl = |
| clock_.ApproximateNow() + |
| QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); |
| EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline()); |
| EXPECT_TRUE(connection_.connected()); |
| |
| // Advance the time and send the first packet to the peer. |
| clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(20)); |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); |
| EXPECT_EQ(QuicPacketNumber(1u), last_packet); |
| // This will be the updated deadline for the connection to idle time out. |
| QuicTime new_ddl = clock_.ApproximateNow() + |
| QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); |
| |
| // Simulate the timeout alarm firing, the connection should not be closed as |
| // a new packet has been sent. |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); |
| QuicTime::Delta delay = initial_ddl - clock_.ApproximateNow(); |
| clock_.AdvanceTime(delay); |
| connection_.GetTimeoutAlarm()->Fire(); |
| // Verify the timeout alarm deadline is updated. |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_EQ(new_ddl, connection_.GetTimeoutAlarm()->deadline()); |
| |
| // Simulate the timeout alarm firing again, the connection now should be |
| // closed. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| clock_.AdvanceTime(new_ddl - clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); |
| } |
| |
| TEST_P(QuicConnectionTest, IdleTimeoutAfterSendTwoPackets) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| QuicTime initial_ddl = |
| clock_.ApproximateNow() + |
| QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); |
| EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline()); |
| EXPECT_TRUE(connection_.connected()); |
| |
| // Immediately send the first packet, this is a rare case but test code will |
| // hit this issue often as MockClock used for tests doesn't move with code |
| // execution until manually adjusted. |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); |
| EXPECT_EQ(QuicPacketNumber(1u), last_packet); |
| |
| // Advance the time and send the second packet to the peer. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20)); |
| SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); |
| EXPECT_EQ(QuicPacketNumber(2u), last_packet); |
| |
| // Simulate the timeout alarm firing, the connection will be closed. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| clock_.AdvanceTime(initial_ddl - clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); |
| } |
| |
| TEST_P(QuicConnectionTest, HandshakeTimeout) { |
| // Use a shorter handshake timeout than idle timeout for this test. |
| const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5); |
| connection_.SetNetworkTimeouts(timeout, timeout); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); |
| |
| QuicTime handshake_timeout = |
| clock_.ApproximateNow() + timeout - QuicTime::Delta::FromSeconds(1); |
| EXPECT_EQ(handshake_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| EXPECT_TRUE(connection_.connected()); |
| |
| // Send and ack new data 3 seconds later to lengthen the idle timeout. |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(0, connection_.transport_version()), |
| "GET /", 0, FIN, nullptr); |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3)); |
| QuicAckFrame frame = InitAckFrame(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| ProcessAckPacket(&frame); |
| |
| // Fire early to verify it wouldn't timeout yet. |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.connected()); |
| |
| clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(2)); |
| |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| // Simulate the timeout alarm firing. |
| connection_.GetTimeoutAlarm()->Fire(); |
| |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); |
| TestConnectionCloseQuicErrorCode(QUIC_HANDSHAKE_TIMEOUT); |
| } |
| |
| TEST_P(QuicConnectionTest, PingAfterSend) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) |
| .WillRepeatedly(Return(true)); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| |
| // Advance to 5ms, and send a packet to the peer, which will set |
| // the ping alarm. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(0, connection_.transport_version()), |
| "GET /", 0, FIN, nullptr); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(QuicTime::Delta::FromSeconds(15), |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Now recevie an ACK of the previous packet, which will move the |
| // ping alarm forward. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| QuicAckFrame frame = InitAckFrame(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| ProcessAckPacket(&frame); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| // The ping timer is set slightly less than 15 seconds in the future, because |
| // of the 1s ping timer alarm granularity. |
| EXPECT_EQ( |
| QuicTime::Delta::FromSeconds(15) - QuicTime::Delta::FromMilliseconds(5), |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| writer_->Reset(); |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15)); |
| EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); |
| connection_.GetPingAlarm()->Fire(); |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| ASSERT_EQ(1u, writer_->ping_frames().size()); |
| writer_->Reset(); |
| |
| EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) |
| .WillRepeatedly(Return(false)); |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| SendAckPacketToPeer(); |
| |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, ReducedPingTimeout) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) |
| .WillRepeatedly(Return(true)); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| |
| // Use a reduced ping timeout for this connection. |
| connection_.set_ping_timeout(QuicTime::Delta::FromSeconds(10)); |
| |
| // Advance to 5ms, and send a packet to the peer, which will set |
| // the ping alarm. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(0, connection_.transport_version()), |
| "GET /", 0, FIN, nullptr); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(QuicTime::Delta::FromSeconds(10), |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Now recevie an ACK of the previous packet, which will move the |
| // ping alarm forward. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| QuicAckFrame frame = InitAckFrame(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| ProcessAckPacket(&frame); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| // The ping timer is set slightly less than 10 seconds in the future, because |
| // of the 1s ping timer alarm granularity. |
| EXPECT_EQ( |
| QuicTime::Delta::FromSeconds(10) - QuicTime::Delta::FromMilliseconds(5), |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| writer_->Reset(); |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); |
| EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { |
| connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); |
| })); |
| connection_.GetPingAlarm()->Fire(); |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| ASSERT_EQ(1u, writer_->ping_frames().size()); |
| writer_->Reset(); |
| |
| EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) |
| .WillRepeatedly(Return(false)); |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| SendAckPacketToPeer(); |
| |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| } |
| |
| // Tests whether sending an MTU discovery packet to peer successfully causes the |
| // maximum packet size to increase. |
| TEST_P(QuicConnectionTest, SendMtuDiscoveryPacket) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| EXPECT_TRUE(connection_.connected()); |
| |
| // Send an MTU probe. |
| const size_t new_mtu = kDefaultMaxPacketSize + 100; |
| QuicByteCount mtu_probe_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<3>(&mtu_probe_size)); |
| connection_.SendMtuDiscoveryPacket(new_mtu); |
| EXPECT_EQ(new_mtu, mtu_probe_size); |
| EXPECT_EQ(QuicPacketNumber(1u), creator_->packet_number()); |
| |
| // QuicFramer::GetMaxPlaintextSize uses the smallest max plaintext size across |
| // all encrypters. The initial encrypter used with IETF QUIC has a 16-byte |
| // overhead, while the NullEncrypter used throughout this test has a 12-byte |
| // overhead. This test tests behavior that relies on computing the packet size |
| // correctly, so by unsetting the initial encrypter, we avoid having a |
| // mismatch between the overheads for the encrypters used. In non-test |
| // scenarios all encrypters used for a given connection have the same |
| // overhead, either 12 bytes for ones using Google QUIC crypto, or 16 bytes |
| // for ones using TLS. |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, nullptr); |
| |
| // Send more than MTU worth of data. No acknowledgement was received so far, |
| // so the MTU should be at its old value. |
| const std::string data(kDefaultMaxPacketSize + 1, '.'); |
| QuicByteCount size_before_mtu_change; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(2) |
| .WillOnce(SaveArg<3>(&size_before_mtu_change)) |
| .WillOnce(Return()); |
| connection_.SendStreamDataWithString(3, data, 0, FIN); |
| EXPECT_EQ(QuicPacketNumber(3u), creator_->packet_number()); |
| EXPECT_EQ(kDefaultMaxPacketSize, size_before_mtu_change); |
| |
| // Acknowledge all packets so far. |
| QuicAckFrame probe_ack = InitAckFrame(3); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| ProcessAckPacket(&probe_ack); |
| EXPECT_EQ(new_mtu, connection_.max_packet_length()); |
| |
| // Send the same data again. Check that it fits into a single packet now. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendStreamDataWithString(3, data, 0, FIN); |
| EXPECT_EQ(QuicPacketNumber(4u), creator_->packet_number()); |
| } |
| |
| // Tests whether MTU discovery does not happen when it is not explicitly enabled |
| // by the connection options. |
| TEST_P(QuicConnectionTest, MtuDiscoveryDisabled) { |
| EXPECT_TRUE(connection_.connected()); |
| |
| const QuicPacketCount packets_between_probes_base = 10; |
| set_packets_between_probes_base(packets_between_probes_base); |
| |
| const QuicPacketCount number_of_packets = packets_between_probes_base * 2; |
| for (QuicPacketCount i = 0; i < number_of_packets; i++) { |
| SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); |
| EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| EXPECT_EQ(0u, connection_.mtu_probe_count()); |
| } |
| } |
| |
| // Tests whether MTU discovery works when all probes are acknowledged on the |
| // first try. |
| TEST_P(QuicConnectionTest, MtuDiscoveryEnabled) { |
| EXPECT_TRUE(connection_.connected()); |
| |
| // QuicFramer::GetMaxPlaintextSize uses the smallest max plaintext size across |
| // all encrypters. The initial encrypter used with IETF QUIC has a 16-byte |
| // overhead, while the NullEncrypter used throughout this test has a 12-byte |
| // overhead. This test tests behavior that relies on computing the packet size |
| // correctly, so by unsetting the initial encrypter, we avoid having a |
| // mismatch between the overheads for the encrypters used. In non-test |
| // scenarios all encrypters used for a given connection have the same |
| // overhead, either 12 bytes for ones using Google QUIC crypto, or 16 bytes |
| // for ones using TLS. |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, nullptr); |
| |
| const QuicPacketCount packets_between_probes_base = 5; |
| set_packets_between_probes_base(packets_between_probes_base); |
| |
| connection_.EnablePathMtuDiscovery(send_algorithm_); |
| |
| // Send enough packets so that the next one triggers path MTU discovery. |
| for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { |
| SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| // Trigger the probe. |
| SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, |
| nullptr); |
| ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| QuicByteCount probe_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<3>(&probe_size)); |
| connection_.GetMtuDiscoveryAlarm()->Fire(); |
| if (GetQuicReloadableFlag(quic_mtu_discovery_v2)) { |
| EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), |
| kMtuDiscoveryTargetPacketSizeHigh)); |
| } else { |
| EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh, probe_size); |
| } |
| |
| const QuicPacketNumber probe_packet_number = |
| FirstSendingPacketNumber() + packets_between_probes_base; |
| ASSERT_EQ(probe_packet_number, creator_->packet_number()); |
| |
| // Acknowledge all packets sent so far. |
| QuicAckFrame probe_ack = InitAckFrame(probe_packet_number); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) |
| .Times(AnyNumber()); |
| ProcessAckPacket(&probe_ack); |
| EXPECT_EQ(probe_size, connection_.max_packet_length()); |
| EXPECT_EQ(0u, connection_.GetBytesInFlight()); |
| |
| EXPECT_EQ(1u, connection_.mtu_probe_count()); |
| |
| if (!GetQuicReloadableFlag(quic_mtu_discovery_v2)) { |
| // Send more packets, and ensure that none of them sets the alarm. |
| for (QuicPacketCount i = 0; i < 4 * packets_between_probes_base; i++) { |
| SendStreamDataToPeer(3, ".", packets_between_probes_base + i, NO_FIN, |
| nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| return; |
| } |
| |
| QuicStreamOffset stream_offset = packets_between_probes_base; |
| for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts; |
| ++num_probes) { |
| // Send just enough packets without triggering the next probe. |
| for (QuicPacketCount i = 0; |
| i < (packets_between_probes_base << num_probes) - 1; ++i) { |
| SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| // Trigger the next probe. |
| SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr); |
| ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| QuicByteCount new_probe_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<3>(&new_probe_size)); |
| connection_.GetMtuDiscoveryAlarm()->Fire(); |
| EXPECT_THAT(new_probe_size, |
| InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh)); |
| EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count()); |
| |
| // Acknowledge all packets sent so far. |
| QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number()); |
| ProcessAckPacket(&probe_ack); |
| EXPECT_EQ(new_probe_size, connection_.max_packet_length()); |
| EXPECT_EQ(0u, connection_.GetBytesInFlight()); |
| |
| probe_size = new_probe_size; |
| } |
| |
| // The last probe size should be equal to the target. |
| EXPECT_EQ(probe_size, kMtuDiscoveryTargetPacketSizeHigh); |
| } |
| |
| // Simulate the case where the first attempt to send a probe is write blocked, |
| // and after unblock, the second attempt returns a MSG_TOO_BIG error. |
| TEST_P(QuicConnectionTest, MtuDiscoveryWriteBlocked) { |
| EXPECT_TRUE(connection_.connected()); |
| |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, nullptr); |
| |
| const QuicPacketCount packets_between_probes_base = 5; |
| set_packets_between_probes_base(packets_between_probes_base); |
| |
| connection_.EnablePathMtuDiscovery(send_algorithm_); |
| |
| // Send enough packets so that the next one triggers path MTU discovery. |
| for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { |
| SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| QuicByteCount original_max_packet_length = connection_.max_packet_length(); |
| |
| // Trigger the probe. |
| SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, |
| nullptr); |
| ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| } |
| BlockOnNextWrite(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| connection_.GetMtuDiscoveryAlarm()->Fire(); |
| EXPECT_EQ(1u, connection_.mtu_probe_count()); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| ASSERT_TRUE(connection_.connected()); |
| |
| writer_->SetWritable(); |
| SimulateNextPacketTooLarge(); |
| connection_.OnCanWrite(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_EQ(original_max_packet_length, connection_.max_packet_length()); |
| EXPECT_TRUE(connection_.connected()); |
| } |
| |
| // Tests whether MTU discovery works correctly when the probes never get |
| // acknowledged. |
| TEST_P(QuicConnectionTest, MtuDiscoveryFailed) { |
| EXPECT_TRUE(connection_.connected()); |
| |
| // Lower the number of probes between packets in order to make the test go |
| // much faster. |
| const QuicPacketCount packets_between_probes_base = 5; |
| set_packets_between_probes_base(packets_between_probes_base); |
| |
| connection_.EnablePathMtuDiscovery(send_algorithm_); |
| |
| const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100); |
| |
| EXPECT_EQ(packets_between_probes_base, |
| QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_)); |
| |
| // This tests sends more packets than strictly necessary to make sure that if |
| // the connection was to send more discovery packets than needed, those would |
| // get caught as well. |
| const QuicPacketCount number_of_packets = |
| packets_between_probes_base * (1 << (kMtuDiscoveryAttempts + 1)); |
| std::vector<QuicPacketNumber> mtu_discovery_packets; |
| // Called by the first ack. |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| // Called on many acks. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) |
| .Times(AnyNumber()); |
| for (QuicPacketCount i = 0; i < number_of_packets; i++) { |
| SendStreamDataToPeer(3, "!", i, NO_FIN, nullptr); |
| clock_.AdvanceTime(rtt); |
| |
| // Receive an ACK, which marks all data packets as received, and all MTU |
| // discovery packets as missing. |
| |
| QuicAckFrame ack; |
| |
| if (!mtu_discovery_packets.empty()) { |
| QuicPacketNumber min_packet = *min_element(mtu_discovery_packets.begin(), |
| mtu_discovery_packets.end()); |
| QuicPacketNumber max_packet = *max_element(mtu_discovery_packets.begin(), |
| mtu_discovery_packets.end()); |
| ack.packets.AddRange(QuicPacketNumber(1), min_packet); |
| ack.packets.AddRange(QuicPacketNumber(max_packet + 1), |
| creator_->packet_number() + 1); |
| ack.largest_acked = creator_->packet_number(); |
| |
| } else { |
| ack.packets.AddRange(QuicPacketNumber(1), creator_->packet_number() + 1); |
| ack.largest_acked = creator_->packet_number(); |
| } |
| |
| ProcessAckPacket(&ack); |
| |
| // Trigger MTU probe if it would be scheduled now. |
| if (!connection_.GetMtuDiscoveryAlarm()->IsSet()) { |
| continue; |
| } |
| |
| // Fire the alarm. The alarm should cause a packet to be sent. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.GetMtuDiscoveryAlarm()->Fire(); |
| // Record the packet number of the MTU discovery packet in order to |
| // mark it as NACK'd. |
| mtu_discovery_packets.push_back(creator_->packet_number()); |
| } |
| |
| // Ensure the number of packets between probes grows exponentially by checking |
| // it against the closed-form expression for the packet number. |
| ASSERT_EQ(kMtuDiscoveryAttempts, mtu_discovery_packets.size()); |
| for (uint64_t i = 0; i < kMtuDiscoveryAttempts; i++) { |
| // 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1 |
| const QuicPacketCount packets_between_probes = |
| packets_between_probes_base * ((1 << (i + 1)) - 1); |
| EXPECT_EQ(QuicPacketNumber(packets_between_probes + (i + 1)), |
| mtu_discovery_packets[i]); |
| } |
| |
| EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length()); |
| EXPECT_EQ(kMtuDiscoveryAttempts, connection_.mtu_probe_count()); |
| } |
| |
| // Probe 3 times, the first one succeeds, then fails, then succeeds again. |
| TEST_P(QuicConnectionTest, MtuDiscoverySecondProbeFailed) { |
| if (!GetQuicReloadableFlag(quic_mtu_discovery_v2)) { |
| return; |
| } |
| EXPECT_TRUE(connection_.connected()); |
| |
| // QuicFramer::GetMaxPlaintextSize uses the smallest max plaintext size across |
| // all encrypters. The initial encrypter used with IETF QUIC has a 16-byte |
| // overhead, while the NullEncrypter used throughout this test has a 12-byte |
| // overhead. This test tests behavior that relies on computing the packet size |
| // correctly, so by unsetting the initial encrypter, we avoid having a |
| // mismatch between the overheads for the encrypters used. In non-test |
| // scenarios all encrypters used for a given connection have the same |
| // overhead, either 12 bytes for ones using Google QUIC crypto, or 16 bytes |
| // for ones using TLS. |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, nullptr); |
| |
| const QuicPacketCount packets_between_probes_base = 5; |
| set_packets_between_probes_base(packets_between_probes_base); |
| |
| connection_.EnablePathMtuDiscovery(send_algorithm_); |
| |
| // Send enough packets so that the next one triggers path MTU discovery. |
| QuicStreamOffset stream_offset = 0; |
| for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { |
| SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| // Trigger the probe. |
| SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, |
| nullptr); |
| ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| QuicByteCount probe_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<3>(&probe_size)); |
| connection_.GetMtuDiscoveryAlarm()->Fire(); |
| EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), |
| kMtuDiscoveryTargetPacketSizeHigh)); |
| |
| const QuicPacketNumber probe_packet_number = |
| FirstSendingPacketNumber() + packets_between_probes_base; |
| ASSERT_EQ(probe_packet_number, creator_->packet_number()); |
| |
| // Acknowledge all packets sent so far. |
| QuicAckFrame first_ack = InitAckFrame(probe_packet_number); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) |
| .Times(AnyNumber()); |
| ProcessAckPacket(&first_ack); |
| EXPECT_EQ(probe_size, connection_.max_packet_length()); |
| EXPECT_EQ(0u, connection_.GetBytesInFlight()); |
| |
| EXPECT_EQ(1u, connection_.mtu_probe_count()); |
| |
| // Send just enough packets without triggering the second probe. |
| for (QuicPacketCount i = 0; i < (packets_between_probes_base << 1) - 1; ++i) { |
| SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| // Trigger the second probe. |
| SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr); |
| ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| QuicByteCount second_probe_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<3>(&second_probe_size)); |
| connection_.GetMtuDiscoveryAlarm()->Fire(); |
| EXPECT_THAT(second_probe_size, |
| InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh)); |
| EXPECT_EQ(2u, connection_.mtu_probe_count()); |
| |
| // Acknowledge all packets sent so far, except the second probe. |
| QuicPacketNumber second_probe_packet_number = creator_->packet_number(); |
| QuicAckFrame second_ack = InitAckFrame(second_probe_packet_number - 1); |
| ProcessAckPacket(&first_ack); |
| EXPECT_EQ(probe_size, connection_.max_packet_length()); |
| |
| // Send just enough packets without triggering the third probe. |
| for (QuicPacketCount i = 0; i < (packets_between_probes_base << 2) - 1; ++i) { |
| SendStreamDataToPeer(3, "@", stream_offset++, NO_FIN, nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| // Trigger the third probe. |
| SendStreamDataToPeer(3, "#", stream_offset++, NO_FIN, nullptr); |
| ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| QuicByteCount third_probe_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<3>(&third_probe_size)); |
| connection_.GetMtuDiscoveryAlarm()->Fire(); |
| EXPECT_THAT(third_probe_size, InRange(probe_size, second_probe_size)); |
| EXPECT_EQ(3u, connection_.mtu_probe_count()); |
| |
| // Acknowledge all packets sent so far, except the second probe. |
| QuicAckFrame third_ack = |
| ConstructAckFrame(creator_->packet_number(), second_probe_packet_number); |
| ProcessAckPacket(&third_ack); |
| EXPECT_EQ(third_probe_size, connection_.max_packet_length()); |
| } |
| |
| // Tests whether MTU discovery works when the writer has a limit on how large a |
| // packet can be. |
| TEST_P(QuicConnectionTest, MtuDiscoveryWriterLimited) { |
| EXPECT_TRUE(connection_.connected()); |
| |
| // QuicFramer::GetMaxPlaintextSize uses the smallest max plaintext size across |
| // all encrypters. The initial encrypter used with IETF QUIC has a 16-byte |
| // overhead, while the NullEncrypter used throughout this test has a 12-byte |
| // overhead. This test tests behavior that relies on computing the packet size |
| // correctly, so by unsetting the initial encrypter, we avoid having a |
| // mismatch between the overheads for the encrypters used. In non-test |
| // scenarios all encrypters used for a given connection have the same |
| // overhead, either 12 bytes for ones using Google QUIC crypto, or 16 bytes |
| // for ones using TLS. |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, nullptr); |
| |
| const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1; |
| writer_->set_max_packet_size(mtu_limit); |
| |
| const QuicPacketCount packets_between_probes_base = 5; |
| set_packets_between_probes_base(packets_between_probes_base); |
| |
| connection_.EnablePathMtuDiscovery(send_algorithm_); |
| |
| // Send enough packets so that the next one triggers path MTU discovery. |
| for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { |
| SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| // Trigger the probe. |
| SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, |
| nullptr); |
| ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| QuicByteCount probe_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<3>(&probe_size)); |
| connection_.GetMtuDiscoveryAlarm()->Fire(); |
| if (GetQuicReloadableFlag(quic_mtu_discovery_v2)) { |
| EXPECT_THAT(probe_size, |
| InRange(connection_.max_packet_length(), mtu_limit)); |
| } else { |
| EXPECT_EQ(mtu_limit, probe_size); |
| } |
| |
| const QuicPacketNumber probe_sequence_number = |
| FirstSendingPacketNumber() + packets_between_probes_base; |
| ASSERT_EQ(probe_sequence_number, creator_->packet_number()); |
| |
| // Acknowledge all packets sent so far. |
| QuicAckFrame probe_ack = InitAckFrame(probe_sequence_number); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) |
| .Times(AnyNumber()); |
| ProcessAckPacket(&probe_ack); |
| EXPECT_EQ(probe_size, connection_.max_packet_length()); |
| EXPECT_EQ(0u, connection_.GetBytesInFlight()); |
| |
| EXPECT_EQ(1u, connection_.mtu_probe_count()); |
| |
| if (!GetQuicReloadableFlag(quic_mtu_discovery_v2)) { |
| // Send more packets, and ensure that none of them sets the alarm. |
| for (QuicPacketCount i = 0; i < 4 * packets_between_probes_base; i++) { |
| SendStreamDataToPeer(3, ".", packets_between_probes_base + i, NO_FIN, |
| nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| return; |
| } |
| |
| QuicStreamOffset stream_offset = packets_between_probes_base; |
| for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts; |
| ++num_probes) { |
| // Send just enough packets without triggering the next probe. |
| for (QuicPacketCount i = 0; |
| i < (packets_between_probes_base << num_probes) - 1; ++i) { |
| SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| // Trigger the next probe. |
| SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr); |
| ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| QuicByteCount new_probe_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(SaveArg<3>(&new_probe_size)); |
| connection_.GetMtuDiscoveryAlarm()->Fire(); |
| EXPECT_THAT(new_probe_size, InRange(probe_size, mtu_limit)); |
| EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count()); |
| |
| // Acknowledge all packets sent so far. |
| QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number()); |
| ProcessAckPacket(&probe_ack); |
| EXPECT_EQ(new_probe_size, connection_.max_packet_length()); |
| EXPECT_EQ(0u, connection_.GetBytesInFlight()); |
| |
| probe_size = new_probe_size; |
| } |
| |
| // The last probe size should be equal to the target. |
| EXPECT_EQ(probe_size, mtu_limit); |
| } |
| |
| // Tests whether MTU discovery works when the writer returns an error despite |
| // advertising higher packet length. |
| TEST_P(QuicConnectionTest, MtuDiscoveryWriterFailed) { |
| EXPECT_TRUE(connection_.connected()); |
| |
| const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1; |
| const QuicByteCount initial_mtu = connection_.max_packet_length(); |
| EXPECT_LT(initial_mtu, mtu_limit); |
| writer_->set_max_packet_size(mtu_limit); |
| |
| const QuicPacketCount packets_between_probes_base = 5; |
| set_packets_between_probes_base(packets_between_probes_base); |
| |
| connection_.EnablePathMtuDiscovery(send_algorithm_); |
| |
| // Send enough packets so that the next one triggers path MTU discovery. |
| for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { |
| SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| // Trigger the probe. |
| SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, |
| nullptr); |
| ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| writer_->SimulateNextPacketTooLarge(); |
| connection_.GetMtuDiscoveryAlarm()->Fire(); |
| ASSERT_TRUE(connection_.connected()); |
| |
| // Send more data. |
| QuicPacketNumber probe_number = creator_->packet_number(); |
| QuicPacketCount extra_packets = packets_between_probes_base * 3; |
| for (QuicPacketCount i = 0; i < extra_packets; i++) { |
| connection_.EnsureWritableAndSendStreamData5(); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| // Acknowledge all packets sent so far, except for the lost probe. |
| QuicAckFrame probe_ack = |
| ConstructAckFrame(creator_->packet_number(), probe_number); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| ProcessAckPacket(&probe_ack); |
| EXPECT_EQ(initial_mtu, connection_.max_packet_length()); |
| |
| // Send more packets, and ensure that none of them sets the alarm. |
| for (QuicPacketCount i = 0; i < 4 * packets_between_probes_base; i++) { |
| connection_.EnsureWritableAndSendStreamData5(); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| EXPECT_EQ(initial_mtu, connection_.max_packet_length()); |
| EXPECT_EQ(1u, connection_.mtu_probe_count()); |
| } |
| |
| TEST_P(QuicConnectionTest, NoMtuDiscoveryAfterConnectionClosed) { |
| EXPECT_TRUE(connection_.connected()); |
| |
| const QuicPacketCount packets_between_probes_base = 10; |
| set_packets_between_probes_base(packets_between_probes_base); |
| |
| connection_.EnablePathMtuDiscovery(send_algorithm_); |
| |
| // Send enough packets so that the next one triggers path MTU discovery. |
| for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { |
| SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); |
| ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, |
| nullptr); |
| EXPECT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); |
| connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, TimeoutAfterSend) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); |
| |
| const QuicTime::Delta initial_idle_timeout = |
| QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); |
| const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); |
| QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; |
| |
| // When we send a packet, the timeout will change to 5ms + |
| // kInitialIdleTimeoutSecs. |
| clock_.AdvanceTime(five_ms); |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, FIN, nullptr); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| // Now send more data. This will not move the timeout because |
| // no data has been received since the previous write. |
| clock_.AdvanceTime(five_ms); |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 3, FIN, nullptr); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| // The original alarm will fire. We should not time out because we had a |
| // network event at t=5ms. The alarm will reregister. |
| clock_.AdvanceTime(initial_idle_timeout - five_ms - five_ms); |
| EXPECT_EQ(default_timeout, clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_EQ(default_timeout + five_ms, |
| connection_.GetTimeoutAlarm()->deadline()); |
| |
| // This time, we should time out. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); |
| clock_.AdvanceTime(five_ms); |
| EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); |
| } |
| |
| TEST_P(QuicConnectionTest, TimeoutAfterRetransmission) { |
| if (connection_.PtoEnabled()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); |
| |
| const QuicTime start_time = clock_.Now(); |
| const QuicTime::Delta initial_idle_timeout = |
| QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); |
| QuicTime default_timeout = clock_.Now() + initial_idle_timeout; |
| |
| connection_.SetMaxTailLossProbes(0); |
| const QuicTime default_retransmission_time = |
| start_time + DefaultRetransmissionTime(); |
| |
| ASSERT_LT(default_retransmission_time, default_timeout); |
| |
| // When we send a packet, the timeout will change to 5 ms + |
| // kInitialIdleTimeoutSecs (but it will not reschedule the alarm). |
| const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); |
| const QuicTime send_time = start_time + five_ms; |
| clock_.AdvanceTime(five_ms); |
| ASSERT_EQ(send_time, clock_.Now()); |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, FIN, nullptr); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| // Move forward 5 ms and receive a packet, which will move the timeout |
| // forward 5 ms more (but will not reschedule the alarm). |
| const QuicTime receive_time = send_time + five_ms; |
| clock_.AdvanceTime(receive_time - clock_.Now()); |
| ASSERT_EQ(receive_time, clock_.Now()); |
| ProcessPacket(1); |
| |
| // Now move forward to the retransmission time and retransmit the |
| // packet, which should move the timeout forward again (but will not |
| // reschedule the alarm). |
| EXPECT_EQ(default_retransmission_time + five_ms, |
| connection_.GetRetransmissionAlarm()->deadline()); |
| // Simulate the retransmission alarm firing. |
| const QuicTime rto_time = send_time + DefaultRetransmissionTime(); |
| const QuicTime final_timeout = rto_time + initial_idle_timeout; |
| clock_.AdvanceTime(rto_time - clock_.Now()); |
| ASSERT_EQ(rto_time, clock_.Now()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Advance to the original timeout and fire the alarm. The connection should |
| // timeout, and the alarm should be registered based on the time of the |
| // retransmission. |
| clock_.AdvanceTime(default_timeout - clock_.Now()); |
| ASSERT_EQ(default_timeout.ToDebuggingValue(), |
| clock_.Now().ToDebuggingValue()); |
| EXPECT_EQ(default_timeout, clock_.Now()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.connected()); |
| ASSERT_EQ(final_timeout.ToDebuggingValue(), |
| connection_.GetTimeoutAlarm()->deadline().ToDebuggingValue()); |
| |
| // This time, we should time out. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); |
| clock_.AdvanceTime(final_timeout - clock_.Now()); |
| EXPECT_EQ(connection_.GetTimeoutAlarm()->deadline(), clock_.Now()); |
| EXPECT_EQ(final_timeout, clock_.Now()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); |
| } |
| |
| TEST_P(QuicConnectionTest, NewTimeoutAfterSendSilentClose) { |
| // Same test as above, but complete a handshake which enables silent close, |
| // causing no connection close packet to be sent. |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| |
| // Create a handshake message that also enables silent close. |
| CryptoHandshakeMessage msg; |
| std::string error_details; |
| QuicConfig client_config; |
| client_config.SetInitialStreamFlowControlWindowToSend( |
| kInitialStreamFlowControlWindowForTest); |
| client_config.SetInitialSessionFlowControlWindowToSend( |
| kInitialSessionFlowControlWindowForTest); |
| client_config.SetIdleNetworkTimeout( |
| QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs), |
| QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs)); |
| client_config.ToHandshakeMessage(&msg, connection_.transport_version()); |
| const QuicErrorCode error = |
| config.ProcessPeerHello(msg, CLIENT, &error_details); |
| EXPECT_EQ(QUIC_NO_ERROR, error); |
| |
| connection_.SetFromConfig(config); |
| EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); |
| |
| const QuicTime::Delta default_idle_timeout = |
| QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs - 1); |
| const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); |
| QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout; |
| |
| // When we send a packet, the timeout will change to 5ms + |
| // kInitialIdleTimeoutSecs. |
| clock_.AdvanceTime(five_ms); |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, FIN, nullptr); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| // Now send more data. This will not move the timeout because |
| // no data has been received since the previous write. |
| clock_.AdvanceTime(five_ms); |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 3, FIN, nullptr); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| // The original alarm will fire. We should not time out because we had a |
| // network event at t=5ms. The alarm will reregister. |
| clock_.AdvanceTime(default_idle_timeout - five_ms - five_ms); |
| EXPECT_EQ(default_timeout, clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_EQ(default_timeout + five_ms, |
| connection_.GetTimeoutAlarm()->deadline()); |
| |
| // This time, we should time out. |
| // This results in a SILENT_CLOSE, so the writer will not be invoked |
| // and will not save the frame. Grab the frame from OnConnectionClosed |
| // directly. |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| |
| clock_.AdvanceTime(five_ms); |
| EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_NETWORK_IDLE_TIMEOUT, |
| saved_connection_close_frame_.quic_error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseAndTLP) { |
| if (connection_.PtoEnabled()) { |
| return; |
| } |
| // Same test as above, but complete a handshake which enables silent close, |
| // but sending TLPs causes the connection close to be sent. |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| |
| // Create a handshake message that also enables silent close. |
| CryptoHandshakeMessage msg; |
| std::string error_details; |
| QuicConfig client_config; |
| client_config.SetInitialStreamFlowControlWindowToSend( |
| kInitialStreamFlowControlWindowForTest); |
| client_config.SetInitialSessionFlowControlWindowToSend( |
| kInitialSessionFlowControlWindowForTest); |
| client_config.SetIdleNetworkTimeout( |
| QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs), |
| QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs)); |
| client_config.ToHandshakeMessage(&msg, connection_.transport_version()); |
| const QuicErrorCode error = |
| config.ProcessPeerHello(msg, CLIENT, &error_details); |
| EXPECT_EQ(QUIC_NO_ERROR, error); |
| |
| connection_.SetFromConfig(config); |
| EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); |
| |
| const QuicTime::Delta default_idle_timeout = |
| QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs - 1); |
| const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); |
| QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout; |
| |
| // When we send a packet, the timeout will change to 5ms + |
| // kInitialIdleTimeoutSecs. |
| clock_.AdvanceTime(five_ms); |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, FIN, nullptr); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| // Retransmit the packet via tail loss probe. |
| clock_.AdvanceTime(connection_.GetRetransmissionAlarm()->deadline() - |
| clock_.Now()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // This time, we should time out and send a connection close due to the TLP. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); |
| clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() - |
| clock_.ApproximateNow() + five_ms); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); |
| } |
| |
| TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseWithOpenStreams) { |
| // Same test as above, but complete a handshake which enables silent close, |
| // but having open streams causes the connection close to be sent. |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| |
| // Create a handshake message that also enables silent close. |
| CryptoHandshakeMessage msg; |
| std::string error_details; |
| QuicConfig client_config; |
| client_config.SetInitialStreamFlowControlWindowToSend( |
| kInitialStreamFlowControlWindowForTest); |
| client_config.SetInitialSessionFlowControlWindowToSend( |
| kInitialSessionFlowControlWindowForTest); |
| client_config.SetIdleNetworkTimeout( |
| QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs), |
| QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs)); |
| client_config.ToHandshakeMessage(&msg, connection_.transport_version()); |
| const QuicErrorCode error = |
| config.ProcessPeerHello(msg, CLIENT, &error_details); |
| EXPECT_EQ(QUIC_NO_ERROR, error); |
| |
| connection_.SetFromConfig(config); |
| EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); |
| |
| const QuicTime::Delta default_idle_timeout = |
| QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs - 1); |
| const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); |
| QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout; |
| |
| // When we send a packet, the timeout will change to 5ms + |
| // kInitialIdleTimeoutSecs. |
| clock_.AdvanceTime(five_ms); |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, FIN, nullptr); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| // Indicate streams are still open. |
| EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) |
| .WillRepeatedly(Return(true)); |
| |
| // This time, we should time out and send a connection close due to the TLP. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); |
| clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() - |
| clock_.ApproximateNow() + five_ms); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); |
| } |
| |
| TEST_P(QuicConnectionTest, TimeoutAfterReceive) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); |
| |
| const QuicTime::Delta initial_idle_timeout = |
| QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); |
| const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); |
| QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; |
| |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, NO_FIN); |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 3, NO_FIN); |
| |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| clock_.AdvanceTime(five_ms); |
| |
| // When we receive a packet, the timeout will change to 5ms + |
| // kInitialIdleTimeoutSecs. |
| QuicAckFrame ack = InitAckFrame(2); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| ProcessAckPacket(&ack); |
| |
| // The original alarm will fire. We should not time out because we had a |
| // network event at t=5ms. The alarm will reregister. |
| clock_.AdvanceTime(initial_idle_timeout - five_ms); |
| EXPECT_EQ(default_timeout, clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_EQ(default_timeout + five_ms, |
| connection_.GetTimeoutAlarm()->deadline()); |
| |
| // This time, we should time out. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); |
| clock_.AdvanceTime(five_ms); |
| EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); |
| } |
| |
| TEST_P(QuicConnectionTest, TimeoutAfterReceiveNotSendWhenUnacked) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); |
| |
| const QuicTime::Delta initial_idle_timeout = |
| QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); |
| connection_.SetNetworkTimeouts( |
| QuicTime::Delta::Infinite(), |
| initial_idle_timeout + QuicTime::Delta::FromSeconds(1)); |
| const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); |
| QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, NO_FIN); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 3, NO_FIN); |
| |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| clock_.AdvanceTime(five_ms); |
| |
| // When we receive a packet, the timeout will change to 5ms + |
| // kInitialIdleTimeoutSecs. |
| QuicAckFrame ack = InitAckFrame(2); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| ProcessAckPacket(&ack); |
| |
| // The original alarm will fire. We should not time out because we had a |
| // network event at t=5ms. The alarm will reregister. |
| clock_.AdvanceTime(initial_idle_timeout - five_ms); |
| EXPECT_EQ(default_timeout, clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_EQ(default_timeout + five_ms, |
| connection_.GetTimeoutAlarm()->deadline()); |
| |
| // Now, send packets while advancing the time and verify that the connection |
| // eventually times out. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); |
| for (int i = 0; i < 100 && connection_.connected(); ++i) { |
| QUIC_LOG(INFO) << "sending data packet"; |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), |
| "foo", 0, NO_FIN); |
| connection_.GetTimeoutAlarm()->Fire(); |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); |
| } |
| EXPECT_FALSE(connection_.connected()); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); |
| } |
| |
| TEST_P(QuicConnectionTest, TimeoutAfter5ClientRTOs) { |
| if (connection_.PtoEnabled()) { |
| return; |
| } |
| connection_.SetMaxTailLossProbes(2); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| QuicTagVector connection_options; |
| connection_options.push_back(k5RTO); |
| config.SetConnectionOptionsToSend(connection_options); |
| connection_.SetFromConfig(config); |
| |
| // Send stream data. |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, FIN, nullptr); |
| |
| // Fire the retransmission alarm 6 times, twice for TLP and 4 times for RTO. |
| for (int i = 0; i < 6; ++i) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.connected()); |
| } |
| |
| EXPECT_EQ(2u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); |
| EXPECT_EQ(4u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); |
| // This time, we should time out. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); |
| } |
| |
| TEST_P(QuicConnectionTest, SendScheduler) { |
| // Test that if we send a packet without delay, it is not queued. |
| QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT); |
| std::unique_ptr<QuicPacket> packet = |
| ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL); |
| QuicPacketCreatorPeer::SetPacketNumber(creator_, 1); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet), |
| HAS_RETRANSMITTABLE_DATA, false, false); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_P(QuicConnectionTest, FailToSendFirstPacket) { |
| // Test that the connection does not crash when it fails to send the first |
| // packet at which point self_address_ might be uninitialized. |
| QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1); |
| std::unique_ptr<QuicPacket> packet = |
| ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL); |
| QuicPacketCreatorPeer::SetPacketNumber(creator_, 1); |
| writer_->SetShouldWriteFail(); |
| connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet), |
| HAS_RETRANSMITTABLE_DATA, false, false); |
| } |
| |
| TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) { |
| QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT); |
| std::unique_ptr<QuicPacket> packet = |
| ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL); |
| QuicPacketCreatorPeer::SetPacketNumber(creator_, 1); |
| BlockOnNextWrite(); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _)) |
| .Times(0); |
| connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet), |
| HAS_RETRANSMITTABLE_DATA, false, false); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) { |
| // Queue the first packet. |
| size_t payload_length = connection_.max_packet_length(); |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(testing::Return(false)); |
| const std::string payload(payload_length, 'a'); |
| QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId( |
| connection_.version().transport_version, Perspective::IS_CLIENT)); |
| EXPECT_EQ(0u, connection_ |
| .SendStreamDataWithString(first_bidi_stream_id, payload, 0, |
| NO_FIN) |
| .bytes_consumed); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendingThreePackets) { |
| // Make the payload twice the size of the packet, so 3 packets are written. |
| size_t total_payload_length = 2 * connection_.max_packet_length(); |
| const std::string payload(total_payload_length, 'a'); |
| QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId( |
| connection_.version().transport_version, Perspective::IS_CLIENT)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); |
| EXPECT_EQ(payload.size(), connection_ |
| .SendStreamDataWithString(first_bidi_stream_id, |
| payload, 0, NO_FIN) |
| .bytes_consumed); |
| } |
| |
| TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) { |
| set_perspective(Perspective::IS_SERVER); |
| if (!VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { |
| // For IETF QUIC, encryption level will be switched to FORWARD_SECURE in |
| // SendStreamDataWithString. |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| } |
| // Set up a larger payload than will fit in one packet. |
| const std::string payload(connection_.max_packet_length(), 'a'); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber()); |
| |
| // Now send some packets with no truncation. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| EXPECT_EQ(payload.size(), |
| connection_.SendStreamDataWithString(3, payload, 0, NO_FIN) |
| .bytes_consumed); |
| // Track the size of the second packet here. The overhead will be the largest |
| // we see in this test, due to the non-truncated connection id. |
| size_t non_truncated_packet_size = writer_->last_packet_size(); |
| |
| // Change to a 0 byte connection id. |
| QuicConfig config; |
| QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0); |
| connection_.SetFromConfig(config); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| EXPECT_EQ(payload.size(), |
| connection_.SendStreamDataWithString(3, payload, 1350, NO_FIN) |
| .bytes_consumed); |
| if (VersionHasIetfInvariantHeader(connection_.transport_version())) { |
| // Short header packets sent from server omit connection ID already, and |
| // stream offset size increases from 0 to 2. |
| EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() - 2); |
| } else { |
| // Just like above, we save 8 bytes on payload, and 8 on truncation. -2 |
| // because stream offset size is 2 instead of 0. |
| EXPECT_EQ(non_truncated_packet_size, |
| writer_->last_packet_size() + 8 * 2 - 2); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAck) { |
| QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| const uint8_t tag = 0x07; |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| // Process a packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| |
| // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used |
| // instead of ENCRYPTION_INITIAL. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| // Simulate delayed ack alarm firing. |
| clock_.AdvanceTime(DefaultDelayedAckTime()); |
| connection_.GetAckAlarm()->Fire(); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAfterQuiescence) { |
| QuicConnectionPeer::SetFastAckAfterQuiescence(&connection_, true); |
| |
| // The beginning of the connection counts as quiescence. |
| QuicTime ack_time = |
| clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| const uint8_t tag = 0x07; |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| // Process a packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| |
| // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used |
| // instead of ENCRYPTION_INITIAL. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| // Simulate delayed ack alarm firing. |
| clock_.AdvanceTime(DefaultDelayedAckTime()); |
| connection_.GetAckAlarm()->Fire(); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| |
| // Process another packet immedately after sending the ack and expect the |
| // ack alarm to be set delayed ack time in the future. |
| ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| // Simulate delayed ack alarm firing. |
| clock_.AdvanceTime(DefaultDelayedAckTime()); |
| connection_.GetAckAlarm()->Fire(); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| |
| // Wait 1 second and enesure the ack alarm is set to 1ms in the future. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); |
| ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckDecimation) { |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); |
| QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION); |
| |
| const size_t kMinRttMs = 40; |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| // The ack time should be based on min_rtt/4, since it's less than the |
| // default delayed ack time. |
| QuicTime ack_time = clock_.ApproximateNow() + |
| QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| const uint8_t tag = 0x07; |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| // Process a packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| |
| // Process all the initial packets in order so there aren't missing packets. |
| uint64_t kFirstDecimatedPacket = 101; |
| for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used |
| // instead of ENCRYPTION_INITIAL. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // The 10th received packet causes an ack to be sent. |
| for (int i = 0; i < 9; ++i) { |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| } |
| // Check that ack is sent and that delayed ack alarm is reset. |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckAckDecimationAfterQuiescence) { |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); |
| QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION); |
| QuicConnectionPeer::SetFastAckAfterQuiescence(&connection_, true); |
| |
| const size_t kMinRttMs = 40; |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| |
| // The beginning of the connection counts as quiescence. |
| QuicTime ack_time = |
| clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| const uint8_t tag = 0x07; |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| // Process a packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| |
| // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used |
| // instead of ENCRYPTION_INITIAL. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| // Simulate delayed ack alarm firing. |
| clock_.AdvanceTime(DefaultDelayedAckTime()); |
| connection_.GetAckAlarm()->Fire(); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| |
| // Process another packet immedately after sending the ack and expect the |
| // ack alarm to be set delayed ack time in the future. |
| ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| // Simulate delayed ack alarm firing. |
| clock_.AdvanceTime(DefaultDelayedAckTime()); |
| connection_.GetAckAlarm()->Fire(); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| |
| // Wait 1 second and enesure the ack alarm is set to 1ms in the future. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); |
| ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // Process enough packets to get into ack decimation behavior. |
| // The ack time should be based on min_rtt/4, since it's less than the |
| // default delayed ack time. |
| ack_time = clock_.ApproximateNow() + |
| QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); |
| uint64_t kFirstDecimatedPacket = 101; |
| for (unsigned int i = 0; i < kFirstDecimatedPacket - 4; ++i) { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(4 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used |
| // instead of ENCRYPTION_INITIAL. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // The 10th received packet causes an ack to be sent. |
| for (int i = 0; i < 9; ++i) { |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| } |
| // Check that ack is sent and that delayed ack alarm is reset. |
| padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| |
| // Wait 1 second and enesure the ack alarm is set to 1ms in the future. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); |
| ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckDecimationUnlimitedAggregation) { |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| QuicTagVector connection_options; |
| connection_options.push_back(kACKD); |
| // No limit on the number of packets received before sending an ack. |
| connection_options.push_back(kAKDU); |
| config.SetConnectionOptionsToSend(connection_options); |
| connection_.SetFromConfig(config); |
| |
| const size_t kMinRttMs = 40; |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| // The ack time should be based on min_rtt/4, since it's less than the |
| // default delayed ack time. |
| QuicTime ack_time = clock_.ApproximateNow() + |
| QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| const uint8_t tag = 0x07; |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| // Process a packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| |
| // Process all the initial packets in order so there aren't missing packets. |
| uint64_t kFirstDecimatedPacket = 101; |
| for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used |
| // instead of ENCRYPTION_INITIAL. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // 18 packets will not cause an ack to be sent. 19 will because when |
| // stop waiting frames are in use, we ack every 20 packets no matter what. |
| for (int i = 0; i < 18; ++i) { |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| } |
| // The delayed ack timer should still be set to the expected deadline. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckDecimationEighthRtt) { |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); |
| QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION); |
| QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125); |
| |
| const size_t kMinRttMs = 40; |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| // The ack time should be based on min_rtt/8, since it's less than the |
| // default delayed ack time. |
| QuicTime ack_time = clock_.ApproximateNow() + |
| QuicTime::Delta::FromMilliseconds(kMinRttMs / 8); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| const uint8_t tag = 0x07; |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| // Process a packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| |
| // Process all the initial packets in order so there aren't missing packets. |
| uint64_t kFirstDecimatedPacket = 101; |
| for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used |
| // instead of ENCRYPTION_INITIAL. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // The 10th received packet causes an ack to be sent. |
| for (int i = 0; i < 9; ++i) { |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| } |
| // Check that ack is sent and that delayed ack alarm is reset. |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReordering) { |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); |
| QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING); |
| |
| const size_t kMinRttMs = 40; |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| // The ack time should be based on min_rtt/4, since it's less than the |
| // default delayed ack time. |
| QuicTime ack_time = clock_.ApproximateNow() + |
| QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| const uint8_t tag = 0x07; |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| // Process a packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| |
| // Process all the initial packets in order so there aren't missing packets. |
| uint64_t kFirstDecimatedPacket = 101; |
| for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| |
| // Receive one packet out of order and then the rest in order. |
| // The loop leaves a one packet gap between acks sent to simulate some loss. |
| for (int j = 0; j < 3; ++j) { |
| // Process packet 10 first and ensure the alarm is one eighth min_rtt. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 9 + (j * 11), |
| !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // The 10th received packet causes an ack to be sent. |
| writer_->Reset(); |
| for (int i = 0; i < 9; ++i) { |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| // The ACK shouldn't be sent until the 10th packet is processed. |
| EXPECT_TRUE(writer_->ack_frames().empty()); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + i + (j * 11), |
| !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| // Check that ack is sent and that delayed ack alarm is reset. |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithLargeReordering) { |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); |
| QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING); |
| |
| const size_t kMinRttMs = 40; |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| // The ack time should be based on min_rtt/4, since it's less than the |
| // default delayed ack time. |
| QuicTime ack_time = clock_.ApproximateNow() + |
| QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| const uint8_t tag = 0x07; |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| // Process a packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| |
| // Process all the initial packets in order so there aren't missing packets. |
| uint64_t kFirstDecimatedPacket = 101; |
| for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used |
| // instead of ENCRYPTION_INITIAL. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // Process packet 10 first and ensure the alarm is one eighth min_rtt. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 19, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // The 10th received packet causes an ack to be sent. |
| for (int i = 0; i < 8; ++i) { |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| } |
| // Check that ack is sent and that delayed ack alarm is reset. |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| |
| // The next packet received in order will cause an immediate ack, |
| // because it fills a hole. |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReorderingEighthRtt) { |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); |
| QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING); |
| QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125); |
| |
| const size_t kMinRttMs = 40; |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| // The ack time should be based on min_rtt/8, since it's less than the |
| // default delayed ack time. |
| QuicTime ack_time = clock_.ApproximateNow() + |
| QuicTime::Delta::FromMilliseconds(kMinRttMs / 8); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| const uint8_t tag = 0x07; |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| // Process a packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| |
| // Process all the initial packets in order so there aren't missing packets. |
| uint64_t kFirstDecimatedPacket = 101; |
| for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used |
| // instead of ENCRYPTION_INITIAL. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // Process packet 10 first and ensure the alarm is one eighth min_rtt. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 9, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // The 10th received packet causes an ack to be sent. |
| for (int i = 0; i < 8; ++i) { |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| } |
| // Check that ack is sent and that delayed ack alarm is reset. |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, |
| SendDelayedAckDecimationWithLargeReorderingEighthRtt) { |
| EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); |
| QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING); |
| QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125); |
| |
| const size_t kMinRttMs = 40; |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| // The ack time should be based on min_rtt/8, since it's less than the |
| // default delayed ack time. |
| QuicTime ack_time = clock_.ApproximateNow() + |
| QuicTime::Delta::FromMilliseconds(kMinRttMs / 8); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| const uint8_t tag = 0x07; |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(tag)); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(tag)); |
| // Process a packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| |
| // Process all the initial packets in order so there aren't missing packets. |
| uint64_t kFirstDecimatedPacket = 101; |
| for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); |
| } |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used |
| // instead of ENCRYPTION_INITIAL. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // Process packet 10 first and ensure the alarm is one eighth min_rtt. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 19, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // The 10th received packet causes an ack to be sent. |
| for (int i = 0; i < 8; ++i) { |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| } |
| // Check that ack is sent and that delayed ack alarm is reset. |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| |
| // The next packet received in order will cause an immediate ack, |
| // because it fills a hole. |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting, |
| ENCRYPTION_ZERO_RTT); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| // Check that ack is sent and that delayed ack alarm is set. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // Completing the handshake as the server does nothing. |
| QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER); |
| connection_.OnHandshakeComplete(); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // Complete the handshake as the client decreases the delayed ack time to 0ms. |
| QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_CLIENT); |
| connection_.OnHandshakeComplete(); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| ProcessPacket(2); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, NoAckOnOldNacks) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| ProcessPacket(2); |
| size_t frames_per_ack = GetParam().no_stop_waiting ? 1 : 2; |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| ProcessPacket(3); |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| writer_->Reset(); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| ProcessPacket(4); |
| EXPECT_EQ(0u, writer_->frame_count()); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| ProcessPacket(5); |
| padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| writer_->Reset(); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| // Now only set the timer on the 6th packet, instead of sending another ack. |
| ProcessPacket(6); |
| padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count, writer_->frame_count()); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)); |
| peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<TaggingEncrypter>(0x01)); |
| SetDecrypter(ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<StrictTaggingDecrypter>(0x01)); |
| ProcessDataPacket(1); |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, NO_FIN); |
| // Check that ack is bundled with outgoing data and that delayed ack |
| // alarm is reset. |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(3u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); |
| } else { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| } |
| ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); |
| connection_.SendCryptoDataWithString("foo", 0); |
| // Check that ack is bundled with outgoing crypto data. |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(3u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(4u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| BlockOnNextWrite(); |
| writer_->set_is_write_blocked_data_buffered(true); |
| connection_.SendCryptoDataWithString("foo", 0); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| connection_.SendCryptoDataWithString("bar", 3); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| EXPECT_TRUE(connection_.HasQueuedData()); |
| } |
| |
| TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnCanWrite()) |
| .WillOnce(IgnoreResult(InvokeWithoutArgs( |
| &connection_, &TestConnection::SendCryptoStreamData))); |
| // Process a packet from the crypto stream, which is frame1_'s default. |
| // Receiving the CHLO as packet 2 first will cause the connection to |
| // immediately send an ack, due to the packet gap. |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); |
| } else { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| } |
| ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(3u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(4u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| } else { |
| EXPECT_EQ(1u, writer_->crypto_frames().size()); |
| } |
| EXPECT_EQ(1u, writer_->padding_frames().size()); |
| ASSERT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front())); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, BundleAckForSecondCHLOTwoPacketReject) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| |
| // Process two packets from the crypto stream, which is frame1_'s default, |
| // simulating a 2 packet reject. |
| { |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); |
| } else { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| } |
| ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); |
| // Send the new CHLO when the REJ is processed. |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)) |
| .WillOnce(IgnoreResult(InvokeWithoutArgs( |
| &connection_, &TestConnection::SendCryptoStreamData))); |
| } else { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)) |
| .WillOnce(IgnoreResult(InvokeWithoutArgs( |
| &connection_, &TestConnection::SendCryptoStreamData))); |
| } |
| ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); |
| } |
| // Check that ack is sent and that delayed ack alarm is reset. |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(3u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } else { |
| EXPECT_EQ(4u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| } else { |
| EXPECT_EQ(1u, writer_->crypto_frames().size()); |
| } |
| EXPECT_EQ(1u, writer_->padding_frames().size()); |
| ASSERT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front())); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, NO_FIN); |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 3, NO_FIN); |
| // Ack the second packet, which will retransmit the first packet. |
| QuicAckFrame ack = ConstructAckFrame(2, 1); |
| LostPacketVector lost_packets; |
| lost_packets.push_back( |
| LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) |
| .WillOnce(SetArgPointee<5>(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| ProcessAckPacket(&ack); |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| writer_->Reset(); |
| |
| // Now ack the retransmission, which will both raise the high water mark |
| // and see if there is more data to send. |
| ack = ConstructAckFrame(3, 1); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| ProcessAckPacket(&ack); |
| |
| // Check that no packet is sent and the ack alarm isn't set. |
| EXPECT_EQ(0u, writer_->frame_count()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| writer_->Reset(); |
| |
| // Send the same ack, but send both data and an ack together. |
| ack = ConstructAckFrame(3, 1); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(visitor_, OnCanWrite()) |
| .WillOnce(IgnoreResult(InvokeWithoutArgs( |
| &connection_, &TestConnection::EnsureWritableAndSendStreamData5))); |
| ProcessAckPacket(&ack); |
| |
| // Check that ack is bundled with outgoing data and the delayed ack |
| // alarm is reset. |
| if (GetParam().no_stop_waiting) { |
| if (GetQuicReloadableFlag(quic_simplify_stop_waiting)) { |
| // Do not ACK acks. |
| EXPECT_EQ(1u, writer_->frame_count()); |
| } else { |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_TRUE(writer_->stop_waiting_frames().empty()); |
| } |
| } else { |
| EXPECT_EQ(3u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| } |
| if (GetParam().no_stop_waiting && |
| GetQuicReloadableFlag(quic_simplify_stop_waiting)) { |
| EXPECT_TRUE(writer_->ack_frames().empty()); |
| } else { |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_EQ(QuicPacketNumber(3u), |
| LargestAcked(writer_->ack_frames().front())); |
| } |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, NoAckSentForClose) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| ProcessClosePacket(2); |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_PEER_GOING_AWAY, |
| saved_connection_close_frame_.quic_error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, SendWhenDisconnected) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| EXPECT_FALSE(connection_.connected()); |
| EXPECT_FALSE(connection_.CanWriteStreamData()); |
| std::unique_ptr<QuicPacket> packet = |
| ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) |
| .Times(0); |
| connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet), |
| HAS_RETRANSMITTABLE_DATA, false, false); |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_PEER_GOING_AWAY, |
| saved_connection_close_frame_.quic_error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, SendConnectivityProbingWhenDisconnected) { |
| // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. |
| if (!IsDefaultTestConfiguration()) { |
| return; |
| } |
| |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| EXPECT_FALSE(connection_.connected()); |
| EXPECT_FALSE(connection_.CanWriteStreamData()); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) |
| .Times(0); |
| |
| EXPECT_QUIC_BUG(connection_.SendConnectivityProbingPacket( |
| writer_.get(), connection_.peer_address()), |
| "Not sending connectivity probing packet as connection is " |
| "disconnected."); |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_PEER_GOING_AWAY, |
| saved_connection_close_frame_.quic_error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, WriteBlockedAfterClientSendsConnectivityProbe) { |
| EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); |
| TestPacketWriter probing_writer(version(), &clock_); |
| // Block next write so that sending connectivity probe will encounter a |
| // blocked write when send a connectivity probe to the peer. |
| probing_writer.BlockOnNextWrite(); |
| // Connection will not be marked as write blocked as connectivity probe only |
| // affects the probing_writer which is not the default. |
| EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) |
| .Times(1); |
| connection_.SendConnectivityProbingPacket(&probing_writer, |
| connection_.peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, WriterBlockedAfterServerSendsConnectivityProbe) { |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| |
| // Block next write so that sending connectivity probe will encounter a |
| // blocked write when send a connectivity probe to the peer. |
| writer_->BlockOnNextWrite(); |
| // Connection will be marked as write blocked as server uses the default |
| // writer to send connectivity probes. |
| EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) |
| .Times(1); |
| connection_.SendConnectivityProbingPacket(writer_.get(), |
| connection_.peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, WriterErrorWhenClientSendsConnectivityProbe) { |
| EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); |
| TestPacketWriter probing_writer(version(), &clock_); |
| probing_writer.SetShouldWriteFail(); |
| |
| // Connection should not be closed if a connectivity probe is failed to be |
| // sent. |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) |
| .Times(0); |
| connection_.SendConnectivityProbingPacket(&probing_writer, |
| connection_.peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, WriterErrorWhenServerSendsConnectivityProbe) { |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| |
| writer_->SetShouldWriteFail(); |
| // Connection should not be closed if a connectivity probe is failed to be |
| // sent. |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) |
| .Times(0); |
| connection_.SendConnectivityProbingPacket(writer_.get(), |
| connection_.peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, PublicReset) { |
| if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { |
| return; |
| } |
| QuicPublicResetPacket header; |
| // Public reset packet in only built by server. |
| header.connection_id = connection_id_; |
| std::unique_ptr<QuicEncryptedPacket> packet( |
| framer_.BuildPublicResetPacket(header)); |
| std::unique_ptr<QuicReceivedPacket> received( |
| ConstructReceivedPacket(*packet, QuicTime::Zero())); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_PUBLIC_RESET, saved_connection_close_frame_.quic_error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, IetfStatelessReset) { |
| if (!VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { |
| return; |
| } |
| const QuicUint128 kTestStatelessResetToken = 1010101; |
| QuicConfig config; |
| QuicConfigPeer::SetReceivedStatelessResetToken(&config, |
| kTestStatelessResetToken); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| connection_.SetFromConfig(config); |
| std::unique_ptr<QuicEncryptedPacket> packet( |
| QuicFramer::BuildIetfStatelessResetPacket(connection_id_, |
| kTestStatelessResetToken)); |
| std::unique_ptr<QuicReceivedPacket> received( |
| ConstructReceivedPacket(*packet, QuicTime::Zero())); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_PUBLIC_RESET, saved_connection_close_frame_.quic_error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, GoAway) { |
| if (VersionHasIetfQuicFrames(GetParam().version.transport_version)) { |
| // GoAway is not available in version 99. |
| return; |
| } |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| QuicGoAwayFrame goaway; |
| goaway.last_good_stream_id = 1; |
| goaway.error_code = QUIC_PEER_GOING_AWAY; |
| goaway.reason_phrase = "Going away."; |
| EXPECT_CALL(visitor_, OnGoAway(_)); |
| ProcessGoAwayPacket(&goaway); |
| } |
| |
| TEST_P(QuicConnectionTest, WindowUpdate) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| QuicWindowUpdateFrame window_update; |
| window_update.stream_id = 3; |
| window_update.byte_offset = 1234; |
| EXPECT_CALL(visitor_, OnWindowUpdateFrame(_)); |
| ProcessFramePacket(QuicFrame(&window_update)); |
| } |
| |
| TEST_P(QuicConnectionTest, Blocked) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| QuicBlockedFrame blocked; |
| blocked.stream_id = 3; |
| EXPECT_CALL(visitor_, OnBlockedFrame(_)); |
| ProcessFramePacket(QuicFrame(&blocked)); |
| EXPECT_EQ(1u, connection_.GetStats().blocked_frames_received); |
| EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); |
| } |
| |
| TEST_P(QuicConnectionTest, ZeroBytePacket) { |
| // Don't close the connection for zero byte packets. |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); |
| QuicReceivedPacket encrypted(nullptr, 0, QuicTime::Zero()); |
| connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, encrypted); |
| } |
| |
| TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) { |
| if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { |
| return; |
| } |
| // Set the packet number of the ack packet to be least unacked (4). |
| QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 3); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessStopWaitingPacket(InitStopWaitingFrame(4)); |
| EXPECT_FALSE(connection_.ack_frame().packets.Empty()); |
| } |
| |
| TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) { |
| // All supported versions except the one the connection supports. |
| ParsedQuicVersionVector versions; |
| for (auto version : AllSupportedVersions()) { |
| if (version != connection_.version()) { |
| versions.push_back(version); |
| } |
| } |
| |
| // Send a version negotiation packet. |
| std::unique_ptr<QuicEncryptedPacket> encrypted( |
| QuicFramer::BuildVersionNegotiationPacket( |
| connection_id_, EmptyQuicConnectionId(), |
| VersionHasIetfInvariantHeader(connection_.transport_version()), |
| connection_.version().HasLengthPrefixedConnectionIds(), versions)); |
| std::unique_ptr<QuicReceivedPacket> received( |
| ConstructReceivedPacket(*encrypted, QuicTime::Zero())); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| // Verify no connection close packet gets sent. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); |
| EXPECT_FALSE(connection_.connected()); |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_INVALID_VERSION, |
| saved_connection_close_frame_.quic_error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, BadVersionNegotiation) { |
| // Send a version negotiation packet with the version the client started with. |
| // It should be rejected. |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| std::unique_ptr<QuicEncryptedPacket> encrypted( |
| QuicFramer::BuildVersionNegotiationPacket( |
| connection_id_, EmptyQuicConnectionId(), |
| VersionHasIetfInvariantHeader(connection_.transport_version()), |
| connection_.version().HasLengthPrefixedConnectionIds(), |
| AllSupportedVersions())); |
| std::unique_ptr<QuicReceivedPacket> received( |
| ConstructReceivedPacket(*encrypted, QuicTime::Zero())); |
| connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, |
| saved_connection_close_frame_.quic_error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, CheckSendStats) { |
| if (connection_.PtoEnabled()) { |
| return; |
| } |
| connection_.SetMaxTailLossProbes(0); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.SendStreamDataWithString(3, "first", 0, NO_FIN); |
| size_t first_packet_size = writer_->last_packet_size(); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.SendStreamDataWithString(5, "second", 0, NO_FIN); |
| size_t second_packet_size = writer_->last_packet_size(); |
| |
| // 2 retransmissions due to rto, 1 due to explicit nack. |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); |
| |
| // Retransmit due to RTO. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Retransmit due to explicit nacks. |
| QuicAckFrame nack_three = |
| InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}, |
| {QuicPacketNumber(4), QuicPacketNumber(5)}}); |
| |
| LostPacketVector lost_packets; |
| lost_packets.push_back( |
| LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize)); |
| lost_packets.push_back( |
| LostPacket(QuicPacketNumber(3), kMaxOutgoingPacketSize)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) |
| .WillOnce(SetArgPointee<5>(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| if (!connection_.session_decides_what_to_write()) { |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessAckPacket(&nack_three); |
| |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) |
| .WillOnce(Return(QuicBandwidth::Zero())); |
| |
| const QuicConnectionStats& stats = connection_.GetStats(); |
| // For IETF QUIC, version is not included as the encryption level switches to |
| // FORWARD_SECURE in SendStreamDataWithString. |
| size_t save_on_version = |
| VersionHasIetfInvariantHeader(GetParam().version.transport_version) |
| ? 0 |
| : kQuicVersionSize; |
| EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - save_on_version, |
| stats.bytes_sent); |
| EXPECT_EQ(5u, stats.packets_sent); |
| EXPECT_EQ(2 * first_packet_size + second_packet_size - save_on_version, |
| stats.bytes_retransmitted); |
| EXPECT_EQ(3u, stats.packets_retransmitted); |
| EXPECT_EQ(1u, stats.rto_count); |
| EXPECT_EQ(kDefaultMaxPacketSize, stats.max_packet_size); |
| } |
| |
| TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) { |
| // Construct a packet with stream frame and connection close frame. |
| QuicPacketHeader header; |
| if (peer_framer_.perspective() == Perspective::IS_SERVER) { |
| header.source_connection_id = connection_id_; |
| header.destination_connection_id_included = CONNECTION_ID_ABSENT; |
| if (!VersionHasIetfInvariantHeader(peer_framer_.transport_version())) { |
| header.source_connection_id_included = CONNECTION_ID_PRESENT; |
| } |
| } else { |
| header.destination_connection_id = connection_id_; |
| if (VersionHasIetfInvariantHeader(peer_framer_.transport_version())) { |
| header.destination_connection_id_included = CONNECTION_ID_ABSENT; |
| } |
| } |
| header.packet_number = QuicPacketNumber(1); |
| header.version_flag = false; |
| |
| QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY; |
| // This QuicConnectionCloseFrame will default to being for a Google QUIC |
| // close. If doing IETF QUIC then set fields appropriately for CC/T or CC/A, |
| // depending on the mapping. |
| QuicConnectionCloseFrame qccf(peer_framer_.transport_version(), |
| kQuicErrorCode, "", |
| /*transport_close_frame_type=*/0); |
| QuicFrames frames; |
| frames.push_back(QuicFrame(frame1_)); |
| frames.push_back(QuicFrame(&qccf)); |
| std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); |
| EXPECT_TRUE(nullptr != packet); |
| char buffer[kMaxOutgoingPacketSize]; |
| size_t encrypted_length = peer_framer_.EncryptPayload( |
| ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer, |
| kMaxOutgoingPacketSize); |
| |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_PEER_GOING_AWAY, |
| saved_connection_close_frame_.extracted_error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, SelectMutualVersion) { |
| connection_.SetSupportedVersions(AllSupportedVersions()); |
| // Set the connection to speak the lowest quic version. |
| connection_.set_version(QuicVersionMin()); |
| EXPECT_EQ(QuicVersionMin(), connection_.version()); |
| |
| // Pass in available versions which includes a higher mutually supported |
| // version. The higher mutually supported version should be selected. |
| ParsedQuicVersionVector supported_versions = AllSupportedVersions(); |
| EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions)); |
| EXPECT_EQ(QuicVersionMax(), connection_.version()); |
| |
| // Expect that the lowest version is selected. |
| // Ensure the lowest supported version is less than the max, unless they're |
| // the same. |
| ParsedQuicVersionVector lowest_version_vector; |
| lowest_version_vector.push_back(QuicVersionMin()); |
| EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector)); |
| EXPECT_EQ(QuicVersionMin(), connection_.version()); |
| |
| // Shouldn't be able to find a mutually supported version. |
| ParsedQuicVersionVector unsupported_version; |
| unsupported_version.push_back(UnsupportedQuicVersion()); |
| EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version)); |
| } |
| |
| TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) { |
| EXPECT_FALSE(writer_->IsWriteBlocked()); |
| |
| // Send a packet. |
| connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| |
| TriggerConnectionClose(); |
| EXPECT_LE(2u, writer_->packets_write_attempts()); |
| } |
| |
| TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) { |
| BlockOnNextWrite(); |
| TriggerConnectionClose(); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| } |
| |
| TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) { |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| TriggerConnectionClose(); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| } |
| |
| TEST_P(QuicConnectionTest, OnPacketSentDebugVisitor) { |
| MockQuicConnectionDebugVisitor debug_visitor; |
| connection_.set_debug_visitor(&debug_visitor); |
| |
| EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)).Times(1); |
| connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); |
| |
| EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)).Times(1); |
| connection_.SendConnectivityProbingPacket(writer_.get(), |
| connection_.peer_address()); |
| } |
| |
| TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) { |
| QuicPacketHeader header; |
| header.packet_number = QuicPacketNumber(1); |
| if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { |
| header.form = IETF_QUIC_LONG_HEADER_PACKET; |
| } |
| |
| MockQuicConnectionDebugVisitor debug_visitor; |
| connection_.set_debug_visitor(&debug_visitor); |
| EXPECT_CALL(debug_visitor, OnPacketHeader(Ref(header))).Times(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(1); |
| EXPECT_CALL(debug_visitor, OnSuccessfulVersionNegotiation(_)).Times(1); |
| connection_.OnPacketHeader(header); |
| } |
| |
| TEST_P(QuicConnectionTest, Pacing) { |
| TestConnection server(connection_id_, kSelfAddress, helper_.get(), |
| alarm_factory_.get(), writer_.get(), |
| Perspective::IS_SERVER, version()); |
| TestConnection client(connection_id_, kPeerAddress, helper_.get(), |
| alarm_factory_.get(), writer_.get(), |
| Perspective::IS_CLIENT, version()); |
| EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing( |
| static_cast<const QuicSentPacketManager*>( |
| &client.sent_packet_manager()))); |
| EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing( |
| static_cast<const QuicSentPacketManager*>( |
| &server.sent_packet_manager()))); |
| } |
| |
| TEST_P(QuicConnectionTest, WindowUpdateInstigateAcks) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Send a WINDOW_UPDATE frame. |
| QuicWindowUpdateFrame window_update; |
| window_update.stream_id = 3; |
| window_update.byte_offset = 1234; |
| EXPECT_CALL(visitor_, OnWindowUpdateFrame(_)); |
| ProcessFramePacket(QuicFrame(&window_update)); |
| |
| // Ensure that this has caused the ACK alarm to be set. |
| QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); |
| EXPECT_TRUE(ack_alarm->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, BlockedFrameInstigateAcks) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Send a BLOCKED frame. |
| QuicBlockedFrame blocked; |
| blocked.stream_id = 3; |
| EXPECT_CALL(visitor_, OnBlockedFrame(_)); |
| ProcessFramePacket(QuicFrame(&blocked)); |
| |
| // Ensure that this has caused the ACK alarm to be set. |
| QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); |
| EXPECT_TRUE(ack_alarm->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, ReevaluateTimeUntilSendOnAck) { |
| // Enable pacing. |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| |
| // Send two packets. One packet is not sufficient because if it gets acked, |
| // there will be no packets in flight after that and the pacer will always |
| // allow the next packet in that situation. |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, NO_FIN); |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "bar", |
| 3, NO_FIN); |
| connection_.OnCanWrite(); |
| |
| // Schedule the next packet for a few milliseconds in future. |
| QuicSentPacketManagerPeer::DisablePacerBursts(manager_); |
| QuicTime scheduled_pacing_time = |
| clock_.Now() + QuicTime::Delta::FromMilliseconds(5); |
| QuicSentPacketManagerPeer::SetNextPacedPacketTime(manager_, |
| scheduled_pacing_time); |
| |
| // Send a packet and have it be blocked by congestion control. |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(false)); |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "baz", |
| 6, NO_FIN); |
| EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); |
| |
| // Process an ack and the send alarm will be set to the new 5ms delay. |
| QuicAckFrame ack = InitAckFrame(1); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); |
| ProcessAckPacket(&ack); |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_TRUE(connection_.GetSendAlarm()->IsSet()); |
| EXPECT_EQ(scheduled_pacing_time, connection_.GetSendAlarm()->deadline()); |
| writer_->Reset(); |
| } |
| |
| TEST_P(QuicConnectionTest, SendAcksImmediately) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacket(1); |
| CongestionBlockWrites(); |
| SendAckPacketToPeer(); |
| } |
| |
| TEST_P(QuicConnectionTest, SendPingImmediately) { |
| MockQuicConnectionDebugVisitor debug_visitor; |
| connection_.set_debug_visitor(&debug_visitor); |
| |
| CongestionBlockWrites(); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)).Times(1); |
| EXPECT_CALL(debug_visitor, OnPingSent()).Times(1); |
| connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendBlockedImmediately) { |
| MockQuicConnectionDebugVisitor debug_visitor; |
| connection_.set_debug_visitor(&debug_visitor); |
| |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)).Times(1); |
| EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); |
| connection_.SendControlFrame(QuicFrame(new QuicBlockedFrame(1, 3))); |
| EXPECT_EQ(1u, connection_.GetStats().blocked_frames_sent); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| } |
| |
| TEST_P(QuicConnectionTest, FailedToSendBlockedFrames) { |
| if (!connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| MockQuicConnectionDebugVisitor debug_visitor; |
| connection_.set_debug_visitor(&debug_visitor); |
| QuicBlockedFrame blocked(1, 3); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)).Times(0); |
| EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); |
| connection_.SendControlFrame(QuicFrame(&blocked)); |
| EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendingUnencryptedStreamDataFails) { |
| // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. |
| if (!IsDefaultTestConfiguration()) { |
| return; |
| } |
| |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| struct iovec iov; |
| MakeIOVector("", &iov); |
| EXPECT_QUIC_BUG(connection_.SaveAndSendStreamData(3, &iov, 1, 0, 0, FIN), |
| "Cannot send stream data with level: ENCRYPTION_INITIAL"); |
| EXPECT_FALSE(connection_.connected()); |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA, |
| saved_connection_close_frame_.quic_error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, SetRetransmissionAlarmForCryptoPacket) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendCryptoStreamData(); |
| |
| // Verify retransmission timer is correctly set after crypto packet has been |
| // sent. |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| QuicTime retransmission_time = |
| QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetRetransmissionTime(); |
| EXPECT_NE(retransmission_time, clock_.ApproximateNow()); |
| EXPECT_EQ(retransmission_time, |
| connection_.GetRetransmissionAlarm()->deadline()); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| } |
| |
| TEST_P(QuicConnectionTest, PathDegradingAlarmForCryptoPacket) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendCryptoStreamData(); |
| |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetPathDegradingDelay(); |
| EXPECT_EQ(delay, connection_.GetPathDegradingAlarm()->deadline() - |
| clock_.ApproximateNow()); |
| |
| // Fire the path degrading alarm, path degrading signal should be sent to |
| // the visitor. |
| EXPECT_CALL(visitor_, OnPathDegrading()); |
| clock_.AdvanceTime(delay); |
| connection_.GetPathDegradingAlarm()->Fire(); |
| EXPECT_TRUE(connection_.IsPathDegrading()); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| } |
| |
| // Includes regression test for b/69979024. |
| TEST_P(QuicConnectionTest, PathDegradingAlarmForNonCryptoPackets) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| |
| const char data[] = "data"; |
| size_t data_size = strlen(data); |
| QuicStreamOffset offset = 0; |
| |
| for (int i = 0; i < 2; ++i) { |
| // Send a packet. Now there's a retransmittable packet on the wire, so the |
| // path degrading alarm should be set. |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), data, |
| offset, NO_FIN); |
| offset += data_size; |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| // Check the deadline of the path degrading alarm. |
| QuicTime::Delta delay = |
| QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetPathDegradingDelay(); |
| EXPECT_EQ(delay, connection_.GetPathDegradingAlarm()->deadline() - |
| clock_.ApproximateNow()); |
| |
| // Send a second packet. The path degrading alarm's deadline should remain |
| // the same. |
| // Regression test for b/69979024. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| QuicTime prev_deadline = connection_.GetPathDegradingAlarm()->deadline(); |
| connection_.SendStreamDataWithString( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), data, |
| offset, NO_FIN); |
| offset += data_size; |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_EQ(prev_deadline, connection_.GetPathDegradingAlarm()->deadline()); |
| |
| // Now receive an ACK of the first packet. This should advance the path |
| // degrading alarm's deadline since forward progress has been made. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| if (i == 0) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| } |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame frame = InitAckFrame( |
| {{QuicPacketNumber(1u + 2u * i), QuicPacketNumber(2u + 2u * i)}}); |
| ProcessAckPacket(&frame); |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| // Check the deadline of the path degrading alarm. |
| delay = QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetPathDegradingDelay(); |
| EXPECT_EQ(delay, connection_.GetPathDegradingAlarm()->deadline() - |
| clock_.ApproximateNow()); |
| |
| if (i == 0) { |
| // Now receive an ACK of the second packet. Since there are no more |
| // retransmittable packets on the wire, this should cancel the path |
| // degrading alarm. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); |
| ProcessAckPacket(&frame); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| } else { |
| // Advance time to the path degrading alarm's deadline and simulate |
| // firing the alarm. |
| clock_.AdvanceTime(delay); |
| EXPECT_CALL(visitor_, OnPathDegrading()); |
| connection_.GetPathDegradingAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| } |
| } |
| EXPECT_TRUE(connection_.IsPathDegrading()); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmittableOnWireSetsPingAlarm) { |
| const QuicTime::Delta retransmittable_on_wire_timeout = |
| QuicTime::Delta::FromMilliseconds(50); |
| connection_.set_retransmittable_on_wire_timeout( |
| retransmittable_on_wire_timeout); |
| |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) |
| .WillRepeatedly(Return(true)); |
| |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| |
| const char data[] = "data"; |
| size_t data_size = strlen(data); |
| QuicStreamOffset offset = 0; |
| |
| // Send a packet. |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| // Now there's a retransmittable packet on the wire, so the path degrading |
| // alarm should be set. |
| // The retransmittable-on-wire alarm should not be set. |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetPathDegradingDelay(); |
| EXPECT_EQ(delay, connection_.GetPathDegradingAlarm()->deadline() - |
| clock_.ApproximateNow()); |
| ASSERT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); |
| // The ping alarm is set for the ping timeout, not the shorter |
| // retransmittable_on_wire_timeout. |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs); |
| EXPECT_EQ(ping_delay, |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Now receive an ACK of the packet. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame frame = |
| InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); |
| ProcessAckPacket(&frame); |
| // No more retransmittable packets on the wire, so the path degrading alarm |
| // should be cancelled, and the ping alarm should be set to the |
| // retransmittable_on_wire_timeout. |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(retransmittable_on_wire_timeout, |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Simulate firing the ping alarm and sending a PING. |
| clock_.AdvanceTime(retransmittable_on_wire_timeout); |
| EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { |
| connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); |
| })); |
| connection_.GetPingAlarm()->Fire(); |
| |
| // Now there's a retransmittable packet (PING) on the wire, so the path |
| // degrading alarm should be set. |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| delay = QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetPathDegradingDelay(); |
| EXPECT_EQ(delay, connection_.GetPathDegradingAlarm()->deadline() - |
| clock_.ApproximateNow()); |
| } |
| |
| // This test verifies that the connection marks path as degrading and does not |
| // spin timer to detect path degrading when a new packet is sent on the |
| // degraded path. |
| TEST_P(QuicConnectionTest, NoPathDegradingAlarmIfPathIsDegrading) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| |
| const char data[] = "data"; |
| size_t data_size = strlen(data); |
| QuicStreamOffset offset = 0; |
| |
| // Send the first packet. Now there's a retransmittable packet on the wire, so |
| // the path degrading alarm should be set. |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| // Check the deadline of the path degrading alarm. |
| QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetPathDegradingDelay(); |
| EXPECT_EQ(delay, connection_.GetPathDegradingAlarm()->deadline() - |
| clock_.ApproximateNow()); |
| |
| // Send a second packet. The path degrading alarm's deadline should remain |
| // the same. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| QuicTime prev_deadline = connection_.GetPathDegradingAlarm()->deadline(); |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_EQ(prev_deadline, connection_.GetPathDegradingAlarm()->deadline()); |
| |
| // Now receive an ACK of the first packet. This should advance the path |
| // degrading alarm's deadline since forward progress has been made. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame frame = |
| InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}}); |
| ProcessAckPacket(&frame); |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| // Check the deadline of the path degrading alarm. |
| delay = QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetPathDegradingDelay(); |
| EXPECT_EQ(delay, connection_.GetPathDegradingAlarm()->deadline() - |
| clock_.ApproximateNow()); |
| |
| // Advance time to the path degrading alarm's deadline and simulate |
| // firing the path degrading alarm. This path will be considered as |
| // degrading. |
| clock_.AdvanceTime(delay); |
| EXPECT_CALL(visitor_, OnPathDegrading()).Times(1); |
| connection_.GetPathDegradingAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.IsPathDegrading()); |
| |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| // Send a third packet. The path degrading alarm is no longer set but path |
| // should still be marked as degrading. |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.IsPathDegrading()); |
| } |
| |
| // This test verifies that the connection unmarks path as degrarding and spins |
| // the timer to detect future path degrading when forward progress is made |
| // after path has been marked degrading. |
| TEST_P(QuicConnectionTest, UnmarkPathDegradingOnForwardProgress) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| |
| const char data[] = "data"; |
| size_t data_size = strlen(data); |
| QuicStreamOffset offset = 0; |
| |
| // Send the first packet. Now there's a retransmittable packet on the wire, so |
| // the path degrading alarm should be set. |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| // Check the deadline of the path degrading alarm. |
| QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetPathDegradingDelay(); |
| EXPECT_EQ(delay, connection_.GetPathDegradingAlarm()->deadline() - |
| clock_.ApproximateNow()); |
| |
| // Send a second packet. The path degrading alarm's deadline should remain |
| // the same. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| QuicTime prev_deadline = connection_.GetPathDegradingAlarm()->deadline(); |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_EQ(prev_deadline, connection_.GetPathDegradingAlarm()->deadline()); |
| |
| // Now receive an ACK of the first packet. This should advance the path |
| // degrading alarm's deadline since forward progress has been made. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame frame = |
| InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}}); |
| ProcessAckPacket(&frame); |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| // Check the deadline of the path degrading alarm. |
| delay = QuicConnectionPeer::GetSentPacketManager(&connection_) |
| ->GetPathDegradingDelay(); |
| EXPECT_EQ(delay, connection_.GetPathDegradingAlarm()->deadline() - |
| clock_.ApproximateNow()); |
| |
| // Advance time to the path degrading alarm's deadline and simulate |
| // firing the alarm. |
| clock_.AdvanceTime(delay); |
| EXPECT_CALL(visitor_, OnPathDegrading()).Times(1); |
| connection_.GetPathDegradingAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.IsPathDegrading()); |
| |
| // Send a third packet. The path degrading alarm is no longer set but path |
| // should still be marked as degrading. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.IsPathDegrading()); |
| |
| // Now receive an ACK of the second packet. This should unmark the path as |
| // degrading. And will set a timer to detect new path degrading. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); |
| ProcessAckPacket(&frame); |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, NoPathDegradingOnServer) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| |
| // Send data. |
| const char data[] = "data"; |
| connection_.SendStreamDataWithString(1, data, 0, NO_FIN); |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| |
| // Ack data. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame frame = |
| InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}}); |
| ProcessAckPacket(&frame); |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, NoPathDegradingAfterSendingAck) { |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| ProcessDataPacket(1); |
| SendAckPacketToPeer(); |
| EXPECT_FALSE(connection_.sent_packet_manager().unacked_packets().empty()); |
| EXPECT_FALSE(connection_.sent_packet_manager().HasInFlightPackets()); |
| EXPECT_FALSE(connection_.IsPathDegrading()); |
| EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, MultipleCallsToCloseConnection) { |
| // Verifies that multiple calls to CloseConnection do not |
| // result in multiple attempts to close the connection - it will be marked as |
| // disconnected after the first call. |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1); |
| connection_.CloseConnection(QUIC_NO_ERROR, "no reason", |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| connection_.CloseConnection(QUIC_NO_ERROR, "no reason", |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| } |
| |
| TEST_P(QuicConnectionTest, ServerReceivesChloOnNonCryptoStream) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| |
| CryptoHandshakeMessage message; |
| CryptoFramer framer; |
| message.set_tag(kCHLO); |
| std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message); |
| frame1_.stream_id = 10; |
| frame1_.data_buffer = data->data(); |
| frame1_.data_length = data->length(); |
| |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| ForceProcessFramePacket(QuicFrame(frame1_)); |
| TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY); |
| } |
| |
| TEST_P(QuicConnectionTest, ClientReceivesRejOnNonCryptoStream) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| CryptoHandshakeMessage message; |
| CryptoFramer framer; |
| message.set_tag(kREJ); |
| std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message); |
| frame1_.stream_id = 10; |
| frame1_.data_buffer = data->data(); |
| frame1_.data_length = data->length(); |
| |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| ForceProcessFramePacket(QuicFrame(frame1_)); |
| TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY); |
| } |
| |
| TEST_P(QuicConnectionTest, CloseConnectionOnPacketTooLarge) { |
| SimulateNextPacketTooLarge(); |
| // A connection close packet is sent |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .Times(1); |
| connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); |
| TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); |
| } |
| |
| TEST_P(QuicConnectionTest, AlwaysGetPacketTooLarge) { |
| // Test even we always get packet too large, we do not infinitely try to send |
| // close packet. |
| AlwaysGetPacketTooLarge(); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .Times(1); |
| connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); |
| TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); |
| } |
| |
| TEST_P(QuicConnectionTest, CloseConnectionOnQueuedWriteError) { |
| // Regression test for crbug.com/979507. |
| // |
| // If we get a write error when writing queued packets, we should attempt to |
| // send a connection close packet, but if sending that fails, it shouldn't get |
| // queued. |
| |
| // Queue a packet to write. |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Configure writer to always fail. |
| AlwaysGetPacketTooLarge(); |
| |
| // Expect that we attempt to close the connection exactly once. |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .Times(1); |
| |
| // Unblock the writes and actually send. |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| |
| TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); |
| } |
| |
| // Verify that if connection has no outstanding data, it notifies the send |
| // algorithm after the write. |
| TEST_P(QuicConnectionTest, SendDataAndBecomeApplicationLimited) { |
| EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1); |
| { |
| InSequence seq; |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()) |
| .WillRepeatedly(Return(false)); |
| } |
| |
| connection_.SendStreamData3(); |
| } |
| |
| // Verify that the connection does not become app-limited if there is |
| // outstanding data to send after the write. |
| TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedIfMoreDataAvailable) { |
| EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0); |
| { |
| InSequence seq; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); |
| } |
| |
| connection_.SendStreamData3(); |
| } |
| |
| // Verify that the connection does not become app-limited after blocked write |
| // even if there is outstanding data to send after the write. |
| TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedDueToWriteBlock) { |
| EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0); |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); |
| BlockOnNextWrite(); |
| |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } |
| connection_.SendStreamData3(); |
| |
| // Now unblock the writer, become congestion control blocked, |
| // and ensure we become app-limited after writing. |
| writer_->SetWritable(); |
| CongestionBlockWrites(); |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false)); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } |
| EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1); |
| connection_.OnCanWrite(); |
| } |
| |
| // Test the mode in which the link is filled up with probing retransmissions if |
| // the connection becomes application-limited. |
| TEST_P(QuicConnectionTest, SendDataWhenApplicationLimited) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket()) |
| .WillRepeatedly(Return(true)); |
| { |
| InSequence seq; |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()) |
| .WillRepeatedly(Return(false)); |
| } |
| EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] { |
| return connection_.sent_packet_manager().MaybeRetransmitOldestPacket( |
| PROBING_RETRANSMISSION); |
| }); |
| // Fix congestion window to be 20,000 bytes. |
| EXPECT_CALL(*send_algorithm_, CanSend(Ge(20000u))) |
| .WillRepeatedly(Return(false)); |
| EXPECT_CALL(*send_algorithm_, CanSend(Lt(20000u))) |
| .WillRepeatedly(Return(true)); |
| |
| EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0); |
| ASSERT_EQ(0u, connection_.GetStats().packets_sent); |
| connection_.set_fill_up_link_during_probing(true); |
| connection_.OnHandshakeComplete(); |
| connection_.SendStreamData3(); |
| |
| // We expect a lot of packets from a 20 kbyte window. |
| EXPECT_GT(connection_.GetStats().packets_sent, 10u); |
| // Ensure that the packets are padded. |
| QuicByteCount average_packet_size = |
| connection_.GetStats().bytes_sent / connection_.GetStats().packets_sent; |
| EXPECT_GT(average_packet_size, 1000u); |
| |
| // Acknowledge all packets sent, except for the last one. |
| QuicAckFrame ack = InitAckFrame( |
| connection_.sent_packet_manager().GetLargestSentPacket() - 1); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| |
| // Ensure that since we no longer have retransmittable bytes in flight, this |
| // will not cause any responses to be sent. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1); |
| ProcessAckPacket(&ack); |
| } |
| |
| TEST_P(QuicConnectionTest, DonotForceSendingAckOnPacketTooLarge) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| // Send an ack by simulating delayed ack alarm firing. |
| ProcessPacket(1); |
| QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); |
| EXPECT_TRUE(ack_alarm->IsSet()); |
| connection_.GetAckAlarm()->Fire(); |
| // Simulate data packet causes write error. |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); |
| SimulateNextPacketTooLarge(); |
| connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->connection_close_frames().empty()); |
| // Ack frame is not bundled in connection close packet. |
| EXPECT_TRUE(writer_->ack_frames().empty()); |
| TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); |
| } |
| |
| // Regression test for b/63620844. |
| TEST_P(QuicConnectionTest, FailedToWriteHandshakePacket) { |
| SimulateNextPacketTooLarge(); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) |
| .Times(1); |
| |
| connection_.SendCryptoStreamData(); |
| TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); |
| } |
| |
| TEST_P(QuicConnectionTest, MaxPacingRate) { |
| EXPECT_EQ(0, connection_.MaxPacingRate().ToBytesPerSecond()); |
| connection_.SetMaxPacingRate(QuicBandwidth::FromBytesPerSecond(100)); |
| EXPECT_EQ(100, connection_.MaxPacingRate().ToBytesPerSecond()); |
| } |
| |
| TEST_P(QuicConnectionTest, ClientAlwaysSendConnectionId) { |
| EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); |
| EXPECT_EQ(CONNECTION_ID_PRESENT, |
| writer_->last_packet_header().destination_connection_id_included); |
| |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| QuicConfig config; |
| QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0); |
| connection_.SetFromConfig(config); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendStreamDataWithString(3, "bar", 3, NO_FIN); |
| // Verify connection id is still sent in the packet. |
| EXPECT_EQ(CONNECTION_ID_PRESENT, |
| writer_->last_packet_header().destination_connection_id_included); |
| } |
| |
| TEST_P(QuicConnectionTest, SendProbingRetransmissions) { |
| MockQuicConnectionDebugVisitor debug_visitor; |
| connection_.set_debug_visitor(&debug_visitor); |
| |
| const QuicStreamId stream_id = 2; |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); |
| SendStreamDataToPeer(stream_id, "bar", 3, NO_FIN, &last_packet); |
| SendStreamDataToPeer(stream_id, "test", 6, NO_FIN, &last_packet); |
| |
| const QuicByteCount old_bytes_in_flight = |
| connection_.sent_packet_manager().GetBytesInFlight(); |
| |
| // Allow 9 probing retransmissions to be sent. |
| { |
| InSequence seq; |
| EXPECT_CALL(*send_algorithm_, CanSend(_)) |
| .Times(9 * 2) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); |
| } |
| // Expect them retransmitted in cyclic order (foo, bar, test, foo, bar...). |
| QuicPacketCount sent_count = 0; |
| EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)) |
| .WillRepeatedly(Invoke([this, &sent_count](const SerializedPacket&, |
| QuicPacketNumber, |
| TransmissionType, QuicTime) { |
| ASSERT_EQ(1u, writer_->stream_frames().size()); |
| // Identify the frames by stream offset (0, 3, 6, 0, 3...). |
| EXPECT_EQ(3 * (sent_count % 3), writer_->stream_frames()[0]->offset); |
| sent_count++; |
| })); |
| EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket()) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] { |
| return connection_.sent_packet_manager().MaybeRetransmitOldestPacket( |
| PROBING_RETRANSMISSION); |
| }); |
| |
| connection_.SendProbingRetransmissions(); |
| |
| // Ensure that the in-flight has increased. |
| const QuicByteCount new_bytes_in_flight = |
| connection_.sent_packet_manager().GetBytesInFlight(); |
| EXPECT_GT(new_bytes_in_flight, old_bytes_in_flight); |
| } |
| |
| // Ensure that SendProbingRetransmissions() does not retransmit anything when |
| // there are no outstanding packets. |
| TEST_P(QuicConnectionTest, |
| SendProbingRetransmissionsFailsWhenNothingToRetransmit) { |
| ASSERT_TRUE(connection_.sent_packet_manager().unacked_packets().empty()); |
| |
| MockQuicConnectionDebugVisitor debug_visitor; |
| connection_.set_debug_visitor(&debug_visitor); |
| EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)).Times(0); |
| EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket()) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] { |
| return connection_.sent_packet_manager().MaybeRetransmitOldestPacket( |
| PROBING_RETRANSMISSION); |
| }); |
| |
| connection_.SendProbingRetransmissions(); |
| } |
| |
| TEST_P(QuicConnectionTest, PingAfterLastRetransmittablePacketAcked) { |
| const QuicTime::Delta retransmittable_on_wire_timeout = |
| QuicTime::Delta::FromMilliseconds(50); |
| connection_.set_retransmittable_on_wire_timeout( |
| retransmittable_on_wire_timeout); |
| |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) |
| .WillRepeatedly(Return(true)); |
| |
| const char data[] = "data"; |
| size_t data_size = strlen(data); |
| QuicStreamOffset offset = 0; |
| |
| // Advance 5ms, send a retransmittable packet to the peer. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); |
| // The ping alarm is set for the ping timeout, not the shorter |
| // retransmittable_on_wire_timeout. |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs); |
| EXPECT_EQ(ping_delay, |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Advance 5ms, send a second retransmittable packet to the peer. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| |
| // Now receive an ACK of the first packet. This should not set the |
| // retransmittable-on-wire alarm since packet 2 is still on the wire. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame frame = |
| InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); |
| ProcessAckPacket(&frame); |
| EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); |
| // The ping alarm is set for the ping timeout, not the shorter |
| // retransmittable_on_wire_timeout. |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| // The ping alarm has a 1 second granularity, and the clock has been advanced |
| // 10ms since it was originally set. |
| EXPECT_EQ(ping_delay - QuicTime::Delta::FromMilliseconds(10), |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Now receive an ACK of the second packet. This should set the |
| // retransmittable-on-wire alarm now that no retransmittable packets are on |
| // the wire. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); |
| ProcessAckPacket(&frame); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(retransmittable_on_wire_timeout, |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Now receive a duplicate ACK of the second packet. This should not update |
| // the ping alarm. |
| QuicTime prev_deadline = connection_.GetPingAlarm()->deadline(); |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); |
| ProcessAckPacket(&frame); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline()); |
| |
| // Now receive a non-ACK packet. This should not update the ping alarm. |
| prev_deadline = connection_.GetPingAlarm()->deadline(); |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| ProcessPacket(4); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline()); |
| |
| // Simulate the alarm firing and check that a PING is sent. |
| EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { |
| connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); |
| })); |
| connection_.GetPingAlarm()->Fire(); |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count()); |
| } |
| ASSERT_EQ(1u, writer_->ping_frames().size()); |
| } |
| |
| TEST_P(QuicConnectionTest, NoPingIfRetransmittablePacketSent) { |
| const QuicTime::Delta retransmittable_on_wire_timeout = |
| QuicTime::Delta::FromMilliseconds(50); |
| connection_.set_retransmittable_on_wire_timeout( |
| retransmittable_on_wire_timeout); |
| |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) |
| .WillRepeatedly(Return(true)); |
| |
| const char data[] = "data"; |
| size_t data_size = strlen(data); |
| QuicStreamOffset offset = 0; |
| |
| // Advance 5ms, send a retransmittable packet to the peer. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); |
| // The ping alarm is set for the ping timeout, not the shorter |
| // retransmittable_on_wire_timeout. |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs); |
| EXPECT_EQ(ping_delay, |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Now receive an ACK of the first packet. This should set the |
| // retransmittable-on-wire alarm now that no retransmittable packets are on |
| // the wire. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| QuicAckFrame frame = |
| InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); |
| ProcessAckPacket(&frame); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(retransmittable_on_wire_timeout, |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Before the alarm fires, send another retransmittable packet. This should |
| // cancel the retransmittable-on-wire alarm since now there's a |
| // retransmittable packet on the wire. |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| |
| // Now receive an ACK of the second packet. This should set the |
| // retransmittable-on-wire alarm now that no retransmittable packets are on |
| // the wire. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); |
| ProcessAckPacket(&frame); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(retransmittable_on_wire_timeout, |
| connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); |
| |
| // Simulate the alarm firing and check that a PING is sent. |
| writer_->Reset(); |
| EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { |
| connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); |
| })); |
| connection_.GetPingAlarm()->Fire(); |
| size_t padding_frame_count = writer_->padding_frames().size(); |
| if (GetParam().no_stop_waiting) { |
| if (GetQuicReloadableFlag(quic_simplify_stop_waiting)) { |
| // Do not ACK acks. |
| EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); |
| } else { |
| EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); |
| } |
| } else { |
| EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count()); |
| } |
| ASSERT_EQ(1u, writer_->ping_frames().size()); |
| } |
| |
| TEST_P(QuicConnectionTest, OnForwardProgressConfirmed) { |
| EXPECT_CALL(visitor_, OnForwardProgressConfirmed()).Times(Exactly(0)); |
| EXPECT_TRUE(connection_.connected()); |
| |
| const char data[] = "data"; |
| size_t data_size = strlen(data); |
| QuicStreamOffset offset = 0; |
| |
| // Send two packets. |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| connection_.SendStreamDataWithString(1, data, offset, NO_FIN); |
| offset += data_size; |
| |
| // Ack packet 1. This increases the largest_acked to 1, so |
| // OnForwardProgressConfirmed() should be called |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(visitor_, OnForwardProgressConfirmed()); |
| QuicAckFrame frame = |
| InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); |
| ProcessAckPacket(&frame); |
| |
| // Ack packet 1 again. largest_acked remains at 1, so |
| // OnForwardProgressConfirmed() should not be called. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| frame = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); |
| ProcessAckPacket(&frame); |
| |
| // Ack packet 2. This increases the largest_acked to 2, so |
| // OnForwardProgressConfirmed() should be called. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(visitor_, OnForwardProgressConfirmed()); |
| frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); |
| ProcessAckPacket(&frame); |
| } |
| |
| TEST_P(QuicConnectionTest, ValidStatelessResetToken) { |
| const QuicUint128 kTestToken = 1010101; |
| const QuicUint128 kWrongTestToken = 1010100; |
| QuicConfig config; |
| // No token has been received. |
| EXPECT_FALSE(connection_.IsValidStatelessResetToken(kTestToken)); |
| |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(2); |
| // Token is different from received token. |
| QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken); |
| connection_.SetFromConfig(config); |
| EXPECT_FALSE(connection_.IsValidStatelessResetToken(kWrongTestToken)); |
| |
| QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken); |
| connection_.SetFromConfig(config); |
| EXPECT_TRUE(connection_.IsValidStatelessResetToken(kTestToken)); |
| } |
| |
| TEST_P(QuicConnectionTest, WriteBlockedWithInvalidAck) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); |
| } else { |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)) |
| .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); |
| } |
| BlockOnNextWrite(); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } |
| connection_.SendStreamDataWithString(5, "foo", 0, FIN); |
| // This causes connection to be closed because packet 1 has not been sent yet. |
| QuicAckFrame frame = InitAckFrame(1); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); |
| } |
| ProcessAckPacket(1, &frame); |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_EQ(0, connection_close_frame_count_); |
| } else { |
| EXPECT_EQ(1, connection_close_frame_count_); |
| EXPECT_EQ(QUIC_INVALID_ACK_DATA, |
| saved_connection_close_frame_.quic_error_code); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, SendMessage) { |
| if (!VersionSupportsMessageFrames(connection_.transport_version())) { |
| return; |
| } |
| std::string message(connection_.GetCurrentLargestMessagePayload() * 2, 'a'); |
| QuicStringPiece message_data(message); |
| QuicMemSliceStorage storage(nullptr, 0, nullptr, 0); |
| { |
| QuicConnection::ScopedPacketFlusher flusher(&connection_); |
| connection_.SendStreamData3(); |
| // Send a message which cannot fit into current open packet, and 2 packets |
| // get sent, one contains stream frame, and the other only contains the |
| // message frame. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| EXPECT_EQ( |
| MESSAGE_STATUS_SUCCESS, |
| connection_.SendMessage( |
| 1, MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(), |
| QuicStringPiece( |
| message_data.data(), |
| connection_.GetCurrentLargestMessagePayload()), |
| &storage))); |
| } |
| // Fail to send a message if connection is congestion control blocked. |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); |
| EXPECT_EQ( |
| MESSAGE_STATUS_BLOCKED, |
| connection_.SendMessage( |
| 2, MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(), |
| "message", &storage))); |
| |
| // Always fail to send a message which cannot fit into one packet. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| EXPECT_EQ( |
| MESSAGE_STATUS_TOO_LARGE, |
| connection_.SendMessage( |
| 3, MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(), |
| QuicStringPiece( |
| message_data.data(), |
| connection_.GetCurrentLargestMessagePayload() + 1), |
| &storage))); |
| } |
| |
| // Test to check that the path challenge/path response logic works |
| // correctly. This test is only for version-99 |
| TEST_P(QuicConnectionTest, PathChallengeResponse) { |
| if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) { |
| return; |
| } |
| // First check if we can probe from server to client and back |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); |
| |
| // Create and send the probe request (PATH_CHALLENGE frame). |
| // SendConnectivityProbingPacket ends up calling |
| // TestPacketWriter::WritePacket() which in turns receives and parses the |
| // packet by calling framer_.ProcessPacket() -- which in turn calls |
| // SimpleQuicFramer::OnPathChallengeFrame(). SimpleQuicFramer saves |
| // the packet in writer_->path_challenge_frames() |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendConnectivityProbingPacket(writer_.get(), |
| connection_.peer_address()); |
| // Save the random contents of the challenge for later comparison to the |
| // response. |
| ASSERT_GE(writer_->path_challenge_frames().size(), 1u); |
| QuicPathFrameBuffer challenge_data = |
| writer_->path_challenge_frames().front().data_buffer; |
| |
| // Normally, QuicConnection::OnPathChallengeFrame and OnPaddingFrame would be |
| // called and it will perform actions to ensure that the rest of the protocol |
| // is performed (specifically, call UpdatePacketContent to say that this is a |
| // path challenge so that when QuicConnection::OnPacketComplete is called |
| // (again, out of the framer), the response is generated). Simulate those |
| // calls so that the right internal state is set up for generating |
| // the response. |
| EXPECT_TRUE(connection_.OnPathChallengeFrame( |
| writer_->path_challenge_frames().front())); |
| EXPECT_TRUE(connection_.OnPaddingFrame(writer_->padding_frames().front())); |
| // Cause the response to be created and sent. Result is that the response |
| // should be stashed in writer's path_response_frames. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendConnectivityProbingResponsePacket(connection_.peer_address()); |
| |
| // The final check is to ensure that the random data in the response matches |
| // the random data from the challenge. |
| EXPECT_EQ(0, memcmp(&challenge_data, |
| &(writer_->path_response_frames().front().data_buffer), |
| sizeof(challenge_data))); |
| } |
| |
| // Regression test for b/110259444 |
| TEST_P(QuicConnectionTest, DoNotScheduleSpuriousAckAlarm) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); |
| writer_->SetWriteBlocked(); |
| |
| ProcessPacket(1); |
| QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); |
| // Verify ack alarm is set. |
| EXPECT_TRUE(ack_alarm->IsSet()); |
| // Fire the ack alarm, verify no packet is sent because the writer is blocked. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| connection_.GetAckAlarm()->Fire(); |
| |
| writer_->SetWritable(); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| ProcessPacket(2); |
| // Verify ack alarm is not set. |
| EXPECT_FALSE(ack_alarm->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, DisablePacingOffloadConnectionOptions) { |
| EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_)); |
| writer_->set_supports_release_time(true); |
| QuicConfig config; |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| connection_.SetFromConfig(config); |
| EXPECT_TRUE(QuicConnectionPeer::SupportsReleaseTime(&connection_)); |
| |
| QuicTagVector connection_options; |
| connection_options.push_back(kNPCO); |
| config.SetConnectionOptionsToSend(connection_options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| connection_.SetFromConfig(config); |
| // Verify pacing offload is disabled. |
| EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_)); |
| } |
| |
| // Regression test for b/110259444 |
| // Get a path response without having issued a path challenge... |
| TEST_P(QuicConnectionTest, OrphanPathResponse) { |
| QuicPathFrameBuffer data = {{0, 1, 2, 3, 4, 5, 6, 7}}; |
| |
| QuicPathResponseFrame frame(99, data); |
| EXPECT_TRUE(connection_.OnPathResponseFrame(frame)); |
| // If PATH_RESPONSE was accepted (payload matches the payload saved |
| // in QuicConnection::transmitted_connectivity_probe_payload_) then |
| // current_packet_content_ would be set to FIRST_FRAME_IS_PING. |
| // Since this PATH_RESPONSE does not match, current_packet_content_ |
| // must not be FIRST_FRAME_IS_PING. |
| EXPECT_NE(QuicConnection::FIRST_FRAME_IS_PING, |
| QuicConnectionPeer::GetCurrentPacketContent(&connection_)); |
| } |
| |
| // Regression test for b/120791670 |
| TEST_P(QuicConnectionTest, StopProcessingGQuicPacketInIetfQuicConnection) { |
| // This test mimics a problematic scenario where an IETF QUIC connection |
| // receives a Google QUIC packet and continue processing it using Google QUIC |
| // wire format. |
| if (!VersionHasIetfInvariantHeader(version().transport_version)) { |
| return; |
| } |
| set_perspective(Perspective::IS_SERVER); |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| |
| // Let connection process a Google QUIC packet. |
| peer_framer_.set_version_for_tests( |
| ParsedQuicVersion(PROTOCOL_QUIC_CRYPTO, QUIC_VERSION_43)); |
| std::unique_ptr<QuicPacket> packet( |
| ConstructDataPacket(2, !kHasStopWaiting, ENCRYPTION_INITIAL)); |
| char buffer[kMaxOutgoingPacketSize]; |
| size_t encrypted_length = |
| peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(2), |
| *packet, buffer, kMaxOutgoingPacketSize); |
| // Make sure no stream frame is processed. |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(0); |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); |
| |
| EXPECT_EQ(2u, connection_.GetStats().packets_received); |
| EXPECT_EQ(1u, connection_.GetStats().packets_processed); |
| } |
| |
| TEST_P(QuicConnectionTest, AcceptPacketNumberZero) { |
| if (!VersionHasIetfQuicFrames(version().transport_version)) { |
| return; |
| } |
| // Set first_sending_packet_number to be 0 to allow successfully processing |
| // acks which ack packet number 0. |
| QuicFramerPeer::SetFirstSendingPacketNumber(writer_->framer()->framer(), 0); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(0); |
| EXPECT_EQ(QuicPacketNumber(0), LargestAcked(connection_.ack_frame())); |
| EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); |
| |
| ProcessPacket(1); |
| EXPECT_EQ(QuicPacketNumber(1), LargestAcked(connection_.ack_frame())); |
| EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); |
| |
| ProcessPacket(2); |
| EXPECT_EQ(QuicPacketNumber(2), LargestAcked(connection_.ack_frame())); |
| EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); |
| } |
| |
| TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicSending) { |
| if (!connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| use_tagging_decrypter(); |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, |
| std::make_unique<TaggingEncrypter>(0x01)); |
| |
| connection_.SendCryptoStreamData(); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| QuicAckFrame frame1 = InitAckFrame(1); |
| // Received ACK for packet 1. |
| ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(4); |
| connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0, |
| NO_FIN); |
| connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4, |
| NO_FIN); |
| connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data", |
| 8, NO_FIN); |
| connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data", |
| 12, FIN); |
| // Received ACK for packets 2, 4, 5. |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| QuicAckFrame frame2 = |
| InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}, |
| {QuicPacketNumber(4), QuicPacketNumber(6)}}); |
| // Make sure although the same packet number is used, but they are in |
| // different packet number spaces. |
| ProcessFramePacketAtLevel(30, QuicFrame(&frame2), ENCRYPTION_FORWARD_SECURE); |
| } |
| |
| TEST_P(QuicConnectionTest, PeerAcksPacketsInWrongPacketNumberSpace) { |
| if (!connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| use_tagging_decrypter(); |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, |
| std::make_unique<TaggingEncrypter>(0x01)); |
| connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<TaggingEncrypter>(0x01)); |
| |
| connection_.SendCryptoStreamData(); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| QuicAckFrame frame1 = InitAckFrame(1); |
| // Received ACK for packet 1. |
| ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0, |
| NO_FIN); |
| connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4, |
| NO_FIN); |
| |
| // Received ACK for packets 2 and 3 in wrong packet number space. |
| QuicAckFrame invalid_ack = |
| InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(4)}}); |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); |
| ProcessFramePacketAtLevel(300, QuicFrame(&invalid_ack), ENCRYPTION_INITIAL); |
| TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA); |
| } |
| |
| TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicReceiving) { |
| if (!connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| use_tagging_decrypter(); |
| // Receives packet 1000 in initial data. |
| ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(0x02)); |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(0x02)); |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, |
| std::make_unique<TaggingEncrypter>(0x02)); |
| // Receives packet 1000 in application data. |
| ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0, |
| NO_FIN); |
| // Verify application data ACK gets bundled with outgoing data. |
| EXPECT_EQ(2u, writer_->frame_count()); |
| // Make sure ACK alarm is still set because initial data is not ACKed. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| // Receive packet 1001 in application data. |
| ProcessDataPacketAtLevel(1001, false, ENCRYPTION_ZERO_RTT); |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| // Simulates ACK alarm fires and verify two ACKs are flushed. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<TaggingEncrypter>(0x02)); |
| connection_.GetAckAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| // Receives more packets in application data. |
| ProcessDataPacketAtLevel(1002, false, ENCRYPTION_ZERO_RTT); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| |
| peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<TaggingEncrypter>(0x02)); |
| SetDecrypter(ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<StrictTaggingDecrypter>(0x02)); |
| // Verify zero rtt and forward secure packets get acked in the same packet. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| ProcessDataPacket(1003); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, CancelAckAlarmOnWriteBlocked) { |
| if (!connection_.SupportsMultiplePacketNumberSpaces()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| use_tagging_decrypter(); |
| // Receives packet 1000 in initial data. |
| ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<TaggingEncrypter>(0x02)); |
| SetDecrypter(ENCRYPTION_ZERO_RTT, |
| std::make_unique<StrictTaggingDecrypter>(0x02)); |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, |
| std::make_unique<TaggingEncrypter>(0x02)); |
| // Receives packet 1000 in application data. |
| ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| |
| writer_->SetWriteBlocked(); |
| EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AnyNumber()); |
| // Simulates ACK alarm fires and verify no ACK is flushed because of write |
| // blocked. |
| clock_.AdvanceTime(DefaultDelayedAckTime()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| std::make_unique<TaggingEncrypter>(0x02)); |
| connection_.GetAckAlarm()->Fire(); |
| // Verify ACK alarm is not set. |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| |
| writer_->SetWritable(); |
| // Verify 2 ACKs are sent when connection gets unblocked. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| connection_.OnCanWrite(); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| // Make sure a packet received with the right client connection ID is processed. |
| TEST_P(QuicConnectionTest, ValidClientConnectionId) { |
| if (!framer_.version().SupportsClientConnectionIds()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| connection_.set_client_connection_id(TestConnectionId(0x33)); |
| QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE); |
| header.destination_connection_id = TestConnectionId(0x33); |
| header.destination_connection_id_included = CONNECTION_ID_PRESENT; |
| header.source_connection_id_included = CONNECTION_ID_ABSENT; |
| QuicFrames frames; |
| QuicPingFrame ping_frame; |
| QuicPaddingFrame padding_frame; |
| frames.push_back(QuicFrame(ping_frame)); |
| frames.push_back(QuicFrame(padding_frame)); |
| std::unique_ptr<QuicPacket> packet = |
| BuildUnsizedDataPacket(&framer_, header, frames); |
| char buffer[kMaxOutgoingPacketSize]; |
| size_t encrypted_length = peer_framer_.EncryptPayload( |
| ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer, |
| kMaxOutgoingPacketSize); |
| QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(), |
| false); |
| EXPECT_EQ(0u, connection_.GetStats().packets_dropped); |
| ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet); |
| EXPECT_EQ(0u, connection_.GetStats().packets_dropped); |
| } |
| |
| // Make sure a packet received with a different client connection ID is dropped. |
| TEST_P(QuicConnectionTest, InvalidClientConnectionId) { |
| if (!framer_.version().SupportsClientConnectionIds()) { |
| return; |
| } |
| connection_.set_client_connection_id(TestConnectionId(0x33)); |
| QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE); |
| header.destination_connection_id = TestConnectionId(0xbad); |
| header.destination_connection_id_included = CONNECTION_ID_PRESENT; |
| header.source_connection_id_included = CONNECTION_ID_ABSENT; |
| QuicFrames frames; |
| QuicPingFrame ping_frame; |
| QuicPaddingFrame padding_frame; |
| frames.push_back(QuicFrame(ping_frame)); |
| frames.push_back(QuicFrame(padding_frame)); |
| std::unique_ptr<QuicPacket> packet = |
| BuildUnsizedDataPacket(&framer_, header, frames); |
| char buffer[kMaxOutgoingPacketSize]; |
| size_t encrypted_length = peer_framer_.EncryptPayload( |
| ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer, |
| kMaxOutgoingPacketSize); |
| QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(), |
| false); |
| EXPECT_EQ(0u, connection_.GetStats().packets_dropped); |
| ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet); |
| EXPECT_EQ(1u, connection_.GetStats().packets_dropped); |
| } |
| |
| // Make sure the first packet received with a different client connection ID on |
| // the server is processed and it changes the client connection ID. |
| TEST_P(QuicConnectionTest, UpdateClientConnectionIdFromFirstPacket) { |
| if (!framer_.version().SupportsClientConnectionIds()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| set_perspective(Perspective::IS_SERVER); |
| QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_INITIAL); |
| header.source_connection_id = TestConnectionId(0x33); |
| header.source_connection_id_included = CONNECTION_ID_PRESENT; |
| QuicFrames frames; |
| QuicPingFrame ping_frame; |
| QuicPaddingFrame padding_frame; |
| frames.push_back(QuicFrame(ping_frame)); |
| frames.push_back(QuicFrame(padding_frame)); |
| std::unique_ptr<QuicPacket> packet = |
| BuildUnsizedDataPacket(&framer_, header, frames); |
| char buffer[kMaxOutgoingPacketSize]; |
| size_t encrypted_length = |
| peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(1), |
| *packet, buffer, kMaxOutgoingPacketSize); |
| QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(), |
| false); |
| EXPECT_EQ(0u, connection_.GetStats().packets_dropped); |
| ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet); |
| EXPECT_EQ(0u, connection_.GetStats().packets_dropped); |
| EXPECT_EQ(TestConnectionId(0x33), connection_.client_connection_id()); |
| } |
| |
| // Regression test for b/134416344. |
| TEST_P(QuicConnectionTest, CheckConnectedBeforeFlush) { |
| // This test mimics a scenario where a connection processes 2 packets and the |
| // 2nd packet contains connection close frame. When the 2nd flusher goes out |
| // of scope, a delayed ACK is pending, and ACK alarm should not be scheduled |
| // because connection is disconnected. |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); |
| EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); |
| const QuicErrorCode kErrorCode = QUIC_INTERNAL_ERROR; |
| std::unique_ptr<QuicConnectionCloseFrame> connection_close_frame( |
| new QuicConnectionCloseFrame(connection_.transport_version(), kErrorCode, |
| "", |
| /*transport_close_frame_type=*/0)); |
| |
| // Received 2 packets. |
| QuicFrame frame; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frame = QuicFrame(&crypto_frame_); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| } else { |
| frame = QuicFrame(QuicStreamFrame( |
| QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, |
| 0u, QuicStringPiece())); |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); |
| } |
| ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); |
| QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); |
| EXPECT_TRUE(ack_alarm->IsSet()); |
| ProcessFramePacketWithAddresses(QuicFrame(connection_close_frame.get()), |
| kSelfAddress, kPeerAddress); |
| // Verify ack alarm is not set. |
| EXPECT_FALSE(ack_alarm->IsSet()); |
| } |
| |
| // Verify that a packet containing three coalesced packets is parsed correctly. |
| TEST_P(QuicConnectionTest, CoalescedPacket) { |
| if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) { |
| // Coalesced packets can only be encoded using long header lengths. |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_TRUE(connection_.connected()); |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3); |
| } else { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3); |
| } |
| |
| uint64_t packet_numbers[3] = {1, 2, 3}; |
| EncryptionLevel encryption_levels[3] = { |
| ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE}; |
| char buffer[kMaxOutgoingPacketSize] = {}; |
| size_t total_encrypted_length = 0; |
| for (int i = 0; i < 3; i++) { |
| QuicPacketHeader header = |
| ConstructPacketHeader(packet_numbers[i], encryption_levels[i]); |
| QuicFrames frames; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frames.push_back(QuicFrame(&crypto_frame_)); |
| } else { |
| frames.push_back(QuicFrame(frame1_)); |
| } |
| std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames); |
| peer_creator_.set_encryption_level(encryption_levels[i]); |
| size_t encrypted_length = peer_framer_.EncryptPayload( |
| encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet, |
| buffer + total_encrypted_length, |
| sizeof(buffer) - total_encrypted_length); |
| EXPECT_GT(encrypted_length, 0u); |
| total_encrypted_length += encrypted_length; |
| } |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false)); |
| if (connection_.GetSendAlarm()->IsSet()) { |
| connection_.GetSendAlarm()->Fire(); |
| } |
| |
| EXPECT_TRUE(connection_.connected()); |
| } |
| |
| // Regression test for crbug.com/992831. |
| TEST_P(QuicConnectionTest, CoalescedPacketThatSavesFrames) { |
| if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) { |
| // Coalesced packets can only be encoded using long header lengths. |
| return; |
| } |
| if (connection_.SupportsMultiplePacketNumberSpaces()) { |
| // TODO(b/129151114) Enable this test with multiple packet number spaces. |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_TRUE(connection_.connected()); |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)) |
| .Times(3) |
| .WillRepeatedly([this](const QuicCryptoFrame& /*frame*/) { |
| // QuicFrame takes ownership of the QuicBlockedFrame. |
| connection_.SendControlFrame(QuicFrame(new QuicBlockedFrame(1, 3))); |
| }); |
| } else { |
| EXPECT_CALL(visitor_, OnStreamFrame(_)) |
| .Times(3) |
| .WillRepeatedly([this](const QuicStreamFrame& /*frame*/) { |
| // QuicFrame takes ownership of the QuicBlockedFrame. |
| connection_.SendControlFrame(QuicFrame(new QuicBlockedFrame(1, 3))); |
| }); |
| } |
| |
| uint64_t packet_numbers[3] = {1, 2, 3}; |
| EncryptionLevel encryption_levels[3] = { |
| ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE}; |
| char buffer[kMaxOutgoingPacketSize] = {}; |
| size_t total_encrypted_length = 0; |
| for (int i = 0; i < 3; i++) { |
| QuicPacketHeader header = |
| ConstructPacketHeader(packet_numbers[i], encryption_levels[i]); |
| QuicFrames frames; |
| if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { |
| frames.push_back(QuicFrame(&crypto_frame_)); |
| } else { |
| frames.push_back(QuicFrame(frame1_)); |
| } |
| std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames); |
| peer_creator_.set_encryption_level(encryption_levels[i]); |
| size_t encrypted_length = peer_framer_.EncryptPayload( |
| encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet, |
| buffer + total_encrypted_length, |
| sizeof(buffer) - total_encrypted_length); |
| EXPECT_GT(encrypted_length, 0u); |
| total_encrypted_length += encrypted_length; |
| } |
| connection_.ProcessUdpPacket( |
| kSelfAddress, kPeerAddress, |
| QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false)); |
| if (connection_.GetSendAlarm()->IsSet()) { |
| connection_.GetSendAlarm()->Fire(); |
| } |
| |
| EXPECT_TRUE(connection_.connected()); |
| |
| SendAckPacketToPeer(); |
| } |
| |
| // Regresstion test for b/138962304. |
| TEST_P(QuicConnectionTest, RtoAndWriteBlocked) { |
| if (!connection_.session_decides_what_to_write()) { |
| return; |
| } |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| QuicStreamId stream_id = 2; |
| QuicPacketNumber last_data_packet; |
| SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Writer gets blocked. |
| writer_->SetWriteBlocked(); |
| |
| // Cancel the stream. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()) |
| .WillRepeatedly( |
| Invoke(¬ifier_, &SimpleSessionNotifier::WillingToWrite)); |
| SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); |
| |
| // Retransmission timer fires in RTO mode. |
| connection_.GetRetransmissionAlarm()->Fire(); |
| // Verify no packets get flushed when writer is blocked. |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| // Regresstion test for b/138962304. |
| TEST_P(QuicConnectionTest, TlpAndWriteBlocked) { |
| if (!connection_.session_decides_what_to_write()) { |
| return; |
| } |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| connection_.SetMaxTailLossProbes(1); |
| |
| QuicStreamId stream_id = 2; |
| QuicPacketNumber last_data_packet; |
| SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet); |
| SendStreamDataToPeer(4, "foo", 0, NO_FIN, &last_data_packet); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Writer gets blocked. |
| writer_->SetWriteBlocked(); |
| |
| // Cancel stream 2. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); |
| SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); |
| |
| if (GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| } else { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| } |
| // Retransmission timer fires in TLP mode. |
| connection_.GetRetransmissionAlarm()->Fire(); |
| // Verify one packets is forced flushed when writer is blocked. |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| } |
| |
| // Regresstion test for b/139375344. |
| TEST_P(QuicConnectionTest, RtoForcesSendingPing) { |
| if (!connection_.session_decides_what_to_write() || |
| connection_.PtoEnabled()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| connection_.SetMaxTailLossProbes(2); |
| EXPECT_EQ(0u, connection_.GetStats().tlp_count); |
| EXPECT_EQ(0u, connection_.GetStats().rto_count); |
| |
| SendStreamDataToPeer(2, "foo", 0, NO_FIN, nullptr); |
| QuicTime retransmission_time = |
| connection_.GetRetransmissionAlarm()->deadline(); |
| EXPECT_NE(QuicTime::Zero(), retransmission_time); |
| // TLP fires. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _)); |
| clock_.AdvanceTime(retransmission_time - clock_.Now()); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(1u, connection_.GetStats().tlp_count); |
| EXPECT_EQ(0u, connection_.GetStats().rto_count); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Packet 1 gets acked. |
| QuicAckFrame frame = InitAckFrame(1); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); |
| ProcessAckPacket(1, &frame); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| retransmission_time = connection_.GetRetransmissionAlarm()->deadline(); |
| |
| // RTO fires, verify a PING packet gets sent because there is no data to send. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _)); |
| EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); |
| clock_.AdvanceTime(retransmission_time - clock_.Now()); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(1u, connection_.GetStats().tlp_count); |
| EXPECT_EQ(1u, connection_.GetStats().rto_count); |
| EXPECT_EQ(1u, writer_->ping_frames().size()); |
| } |
| |
| TEST_P(QuicConnectionTest, ProbeTimeout) { |
| if (!connection_.session_decides_what_to_write()) { |
| return; |
| } |
| SetQuicReloadableFlag(quic_enable_pto, true); |
| QuicConfig config; |
| QuicTagVector connection_options; |
| connection_options.push_back(k2PTO); |
| config.SetConnectionOptionsToSend(connection_options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| connection_.SetFromConfig(config); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| QuicStreamId stream_id = 2; |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet); |
| SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Reset stream. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); |
| |
| // Fire the PTO and verify only the RST_STREAM is resent, not stream data. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(0u, writer_->stream_frames().size()); |
| EXPECT_EQ(1u, writer_->rst_stream_frames().size()); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, CloseConnectionAfter6ClientPTOs) { |
| if (!connection_.session_decides_what_to_write()) { |
| return; |
| } |
| SetQuicReloadableFlag(quic_enable_pto, true); |
| QuicConfig config; |
| QuicTagVector connection_options; |
| connection_options.push_back(k1PTO); |
| connection_options.push_back(k6PTO); |
| config.SetConnectionOptionsToSend(connection_options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| connection_.SetFromConfig(config); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Send stream data. |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, FIN, nullptr); |
| |
| // 5PTO + 1 connection close. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(6)); |
| |
| // Fire the retransmission alarm 5 times. |
| for (int i = 0; i < 5; ++i) { |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.connected()); |
| } |
| |
| EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); |
| EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); |
| EXPECT_EQ(5u, connection_.sent_packet_manager().GetConsecutivePtoCount()); |
| // Closes connection on 6th PTO. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); |
| } |
| |
| TEST_P(QuicConnectionTest, CloseConnectionAfter7ClientPTOs) { |
| if (!connection_.session_decides_what_to_write()) { |
| return; |
| } |
| SetQuicReloadableFlag(quic_enable_pto, true); |
| QuicConfig config; |
| QuicTagVector connection_options; |
| connection_options.push_back(k2PTO); |
| connection_options.push_back(k7PTO); |
| config.SetConnectionOptionsToSend(connection_options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| connection_.SetFromConfig(config); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Send stream data. |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, FIN, nullptr); |
| |
| // Fire the retransmission alarm 6 times. |
| for (int i = 0; i < 6; ++i) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.connected()); |
| } |
| |
| EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); |
| EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); |
| EXPECT_EQ(6u, connection_.sent_packet_manager().GetConsecutivePtoCount()); |
| // Closes connection on 7th PTO. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); |
| } |
| |
| TEST_P(QuicConnectionTest, CloseConnectionAfter8ClientPTOs) { |
| if (!connection_.session_decides_what_to_write()) { |
| return; |
| } |
| SetQuicReloadableFlag(quic_enable_pto, true); |
| QuicConfig config; |
| QuicTagVector connection_options; |
| connection_options.push_back(k2PTO); |
| connection_options.push_back(k8PTO); |
| config.SetConnectionOptionsToSend(connection_options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| connection_.SetFromConfig(config); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Send stream data. |
| SendStreamDataToPeer( |
| GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", |
| 0, FIN, nullptr); |
| |
| // Fire the retransmission alarm 7 times. |
| for (int i = 0; i < 7; ++i) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.connected()); |
| } |
| |
| EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); |
| EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); |
| EXPECT_EQ(7u, connection_.sent_packet_manager().GetConsecutivePtoCount()); |
| // Closes connection on 8th PTO. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); |
| } |
| |
| TEST_P(QuicConnectionTest, DeprecateHandshakeMode) { |
| if (!connection_.version().SupportsAntiAmplificationLimit()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Send CHLO. |
| connection_.SendCryptoStreamData(); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| QuicAckFrame frame1 = InitAckFrame(1); |
| // Received ACK for packet 1. |
| ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL); |
| |
| // Verify retransmission alarm is still set because handshake is not |
| // confirmed although there is nothing in flight. |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| EXPECT_EQ(0u, connection_.GetStats().pto_count); |
| EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count); |
| |
| // PTO fires, verify a PING packet gets sent because there is no data to send. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _)); |
| EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(1u, connection_.GetStats().pto_count); |
| EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count); |
| EXPECT_EQ(1u, writer_->ping_frames().size()); |
| } |
| |
| TEST_P(QuicConnectionTest, AntiAmplificationLimit) { |
| if (!connection_.version().SupportsAntiAmplificationLimit()) { |
| return; |
| } |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); |
| |
| set_perspective(Perspective::IS_SERVER); |
| // Verify no data can be sent at the beginning because bytes received is 0. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| connection_.SendCryptoDataWithString("foo", 0); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Receives packet 1. |
| ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); |
| |
| const size_t anti_amplification_factor = |
| GetQuicFlag(FLAGS_quic_anti_amplification_factor); |
| // Verify now packets can be sent. |
| for (size_t i = 0; i < anti_amplification_factor; ++i) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendCryptoDataWithString("foo", i * 3); |
| // Verify retransmission alarm is not set if throttled by anti-amplification |
| // limit. |
| EXPECT_EQ(i != anti_amplification_factor - 1, |
| connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| // Verify server is throttled by anti-amplification limit. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3); |
| |
| // Receives packet 2. |
| ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); |
| // Verify more packets can be sent. |
| for (size_t i = anti_amplification_factor; i < anti_amplification_factor * 2; |
| ++i) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendCryptoDataWithString("foo", i * 3); |
| } |
| // Verify server is throttled by anti-amplification limit. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| connection_.SendCryptoDataWithString("foo", |
| 2 * anti_amplification_factor * 3); |
| |
| ProcessPacket(3); |
| // Verify anti-amplification limit is gone after address validation. |
| for (size_t i = 0; i < 100; ++i) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, ConnectionCloseFrameType) { |
| if (!VersionHasIetfQuicFrames(version().transport_version)) { |
| // Test relevent only for IETF QUIC. |
| return; |
| } |
| const QuicErrorCode kQuicErrorCode = IETF_QUIC_PROTOCOL_VIOLATION; |
| // Use the (unknown) frame type of 9999 to avoid triggering any logic |
| // which might be associated with the processing of a known frame type. |
| const uint64_t kTransportCloseFrameType = 9999u; |
| QuicFramerPeer::set_current_received_frame_type( |
| QuicConnectionPeer::GetFramer(&connection_), kTransportCloseFrameType); |
| // Do a transport connection close |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); |
| connection_.CloseConnection( |
| kQuicErrorCode, "Some random error message", |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| const std::vector<QuicConnectionCloseFrame>& connection_close_frames = |
| writer_->connection_close_frames(); |
| ASSERT_EQ(1u, connection_close_frames.size()); |
| EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE, |
| connection_close_frames[0].close_type); |
| EXPECT_EQ(kQuicErrorCode, connection_close_frames[0].extracted_error_code); |
| EXPECT_EQ(kTransportCloseFrameType, |
| connection_close_frames[0].transport_close_frame_type); |
| } |
| |
| // Regression test for b/137401387 and b/138962304. |
| TEST_P(QuicConnectionTest, RtoPacketAsTwo) { |
| if (!connection_.session_decides_what_to_write() || |
| connection_.PtoEnabled()) { |
| return; |
| } |
| connection_.SetMaxTailLossProbes(1); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| std::string stream_data(3000, 's'); |
| // Send packets 1 - 66 and exhaust cwnd. |
| for (size_t i = 0; i < 22; ++i) { |
| // 3 packets for each stream, the first 2 are guaranteed to be full packets. |
| SendStreamDataToPeer(i + 2, stream_data, 0, FIN, nullptr); |
| } |
| CongestionBlockWrites(); |
| |
| // Fires TLP. Please note, this tail loss probe has 1 byte less stream data |
| // compared to packet 1 because packet number length increases. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(67), _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| // Fires RTO. Please note, although packets 2 and 3 *should* be RTOed, but |
| // packet 2 gets RTOed to two packets because packet number length increases. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(68), _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(69), _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| // Resets all streams except 2 and ack packets 1 and 2. Now, packet 3 is the |
| // only one containing retransmittable frames. |
| for (size_t i = 1; i < 22; ++i) { |
| notifier_.OnStreamReset(i + 2, QUIC_STREAM_CANCELLED); |
| } |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); |
| QuicAckFrame frame = |
| InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(3)}}); |
| ProcessAckPacket(1, &frame); |
| CongestionUnblockWrites(); |
| |
| // Fires TLP, verify a PING gets sent because packet 3 is marked |
| // RTO_RETRANSMITTED. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(70), _, _)); |
| EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| } |
| |
| TEST_P(QuicConnectionTest, PtoSkipsPacketNumber) { |
| if (!connection_.session_decides_what_to_write()) { |
| return; |
| } |
| SetQuicReloadableFlag(quic_enable_pto, true); |
| SetQuicReloadableFlag(quic_skip_packet_number_for_pto, true); |
| QuicConfig config; |
| QuicTagVector connection_options; |
| connection_options.push_back(k1PTO); |
| connection_options.push_back(kPTOS); |
| config.SetConnectionOptionsToSend(connection_options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| connection_.SetFromConfig(config); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| QuicStreamId stream_id = 2; |
| QuicPacketNumber last_packet; |
| SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet); |
| SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet); |
| EXPECT_EQ(QuicPacketNumber(2), last_packet); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Fire PTO and verify the PTO retransmission skips one packet number. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_EQ(QuicPacketNumber(4), writer_->last_packet_header().packet_number); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| |
| } // namespace |
| } // namespace test |
| } // namespace quic |