blob: 1244a44ff9faa27c92cdff0a191748dad84ddb98 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cstddef>
#include <cstdint>
#include <list>
#include <memory>
#include <ostream>
#include <string>
#include <utility>
#include <vector>
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "quic/core/crypto/null_encrypter.h"
#include "quic/core/crypto/quic_client_session_cache.h"
#include "quic/core/http/http_constants.h"
#include "quic/core/http/quic_spdy_client_stream.h"
#include "quic/core/http/web_transport_http3.h"
#include "quic/core/quic_connection.h"
#include "quic/core/quic_data_writer.h"
#include "quic/core/quic_epoll_connection_helper.h"
#include "quic/core/quic_error_codes.h"
#include "quic/core/quic_framer.h"
#include "quic/core/quic_packet_creator.h"
#include "quic/core/quic_packet_writer_wrapper.h"
#include "quic/core/quic_packets.h"
#include "quic/core/quic_session.h"
#include "quic/core/quic_types.h"
#include "quic/core/quic_utils.h"
#include "quic/platform/api/quic_epoll.h"
#include "quic/platform/api/quic_error_code_wrappers.h"
#include "quic/platform/api/quic_expect_bug.h"
#include "quic/platform/api/quic_flags.h"
#include "quic/platform/api/quic_logging.h"
#include "quic/platform/api/quic_port_utils.h"
#include "quic/platform/api/quic_sleep.h"
#include "quic/platform/api/quic_socket_address.h"
#include "quic/platform/api/quic_test.h"
#include "quic/platform/api/quic_test_loopback.h"
#include "quic/test_tools/bad_packet_writer.h"
#include "quic/test_tools/crypto_test_utils.h"
#include "quic/test_tools/packet_dropping_test_writer.h"
#include "quic/test_tools/packet_reordering_writer.h"
#include "quic/test_tools/qpack/qpack_encoder_peer.h"
#include "quic/test_tools/qpack/qpack_encoder_test_utils.h"
#include "quic/test_tools/qpack/qpack_test_utils.h"
#include "quic/test_tools/quic_client_peer.h"
#include "quic/test_tools/quic_client_session_cache_peer.h"
#include "quic/test_tools/quic_config_peer.h"
#include "quic/test_tools/quic_connection_peer.h"
#include "quic/test_tools/quic_dispatcher_peer.h"
#include "quic/test_tools/quic_flow_controller_peer.h"
#include "quic/test_tools/quic_sent_packet_manager_peer.h"
#include "quic/test_tools/quic_server_peer.h"
#include "quic/test_tools/quic_session_peer.h"
#include "quic/test_tools/quic_spdy_session_peer.h"
#include "quic/test_tools/quic_spdy_stream_peer.h"
#include "quic/test_tools/quic_stream_id_manager_peer.h"
#include "quic/test_tools/quic_stream_peer.h"
#include "quic/test_tools/quic_stream_sequencer_peer.h"
#include "quic/test_tools/quic_test_backend.h"
#include "quic/test_tools/quic_test_client.h"
#include "quic/test_tools/quic_test_server.h"
#include "quic/test_tools/quic_test_utils.h"
#include "quic/test_tools/quic_transport_test_tools.h"
#include "quic/test_tools/server_thread.h"
#include "quic/tools/quic_backend_response.h"
#include "quic/tools/quic_client.h"
#include "quic/tools/quic_memory_cache_backend.h"
#include "quic/tools/quic_server.h"
#include "quic/tools/quic_simple_client_stream.h"
#include "quic/tools/quic_simple_server_stream.h"
using spdy::kV3LowestPriority;
using spdy::SpdyFramer;
using spdy::SpdyHeaderBlock;
using spdy::SpdySerializedFrame;
using spdy::SpdySettingsIR;
using ::testing::_;
using ::testing::Assign;
using ::testing::Invoke;
using ::testing::NiceMock;
using ::testing::UnorderedElementsAreArray;
namespace quic {
namespace test {
namespace {
const char kFooResponseBody[] = "Artichoke hearts make me happy.";
const char kBarResponseBody[] = "Palm hearts are pretty delicious, also.";
const char kTestUserAgentId[] = "quic/core/http/end_to_end_test.cc";
const float kSessionToStreamRatio = 1.5;
// Run all tests with the cross products of all versions.
struct TestParams {
TestParams(const ParsedQuicVersion& version, QuicTag congestion_control_tag)
: version(version), congestion_control_tag(congestion_control_tag) {}
friend std::ostream& operator<<(std::ostream& os, const TestParams& p) {
os << "{ version: " << ParsedQuicVersionToString(p.version);
os << " congestion_control_tag: "
<< QuicTagToString(p.congestion_control_tag) << " }";
return os;
}
ParsedQuicVersion version;
QuicTag congestion_control_tag;
};
// Used by ::testing::PrintToStringParamName().
std::string PrintToString(const TestParams& p) {
std::string rv = absl::StrCat(ParsedQuicVersionToString(p.version), "_",
QuicTagToString(p.congestion_control_tag));
std::replace(rv.begin(), rv.end(), ',', '_');
std::replace(rv.begin(), rv.end(), ' ', '_');
return rv;
}
// Constructs various test permutations.
std::vector<TestParams> GetTestParams() {
std::vector<TestParams> params;
for (const QuicTag congestion_control_tag : {kRENO, kTBBR, kQBIC, kB2ON}) {
if (!GetQuicReloadableFlag(quic_allow_client_enabled_bbr_v2) &&
congestion_control_tag == kB2ON) {
continue;
}
for (const ParsedQuicVersion& version : CurrentSupportedVersions()) {
params.push_back(TestParams(version, congestion_control_tag));
} // End of outer version loop.
} // End of congestion_control_tag loop.
return params;
}
void WriteHeadersOnStream(QuicSpdyStream* stream) {
// Since QuicSpdyStream uses QuicHeaderList::empty() to detect too large
// headers, it also fails when receiving empty headers.
SpdyHeaderBlock headers;
headers[":authority"] = "test.example.com:443";
headers[":path"] = "/path";
headers[":method"] = "GET";
headers[":scheme"] = "https";
stream->WriteHeaders(std::move(headers), /* fin = */ false, nullptr);
}
class ServerDelegate : public PacketDroppingTestWriter::Delegate {
public:
explicit ServerDelegate(QuicDispatcher* dispatcher)
: dispatcher_(dispatcher) {}
~ServerDelegate() override = default;
void OnCanWrite() override { dispatcher_->OnCanWrite(); }
private:
QuicDispatcher* dispatcher_;
};
class ClientDelegate : public PacketDroppingTestWriter::Delegate {
public:
explicit ClientDelegate(QuicClient* client) : client_(client) {}
~ClientDelegate() override = default;
void OnCanWrite() override {
QuicEpollEvent event(EPOLLOUT);
client_->epoll_network_helper()->OnEvent(client_->GetLatestFD(), &event);
}
private:
QuicClient* client_;
};
class EndToEndTest : public QuicTestWithParam<TestParams> {
protected:
EndToEndTest()
: initialized_(false),
connect_to_server_on_initialize_(true),
server_address_(QuicSocketAddress(TestLoopback(),
QuicPickServerPortForTestsOrDie())),
server_hostname_("test.example.com"),
client_writer_(nullptr),
server_writer_(nullptr),
version_(GetParam().version),
client_supported_versions_({version_}),
server_supported_versions_(CurrentSupportedVersions()),
chlo_multiplier_(0),
stream_factory_(nullptr),
expected_server_connection_id_length_(kQuicDefaultConnectionIdLength) {
QUIC_LOG(INFO) << "Using Configuration: " << GetParam();
// Use different flow control windows for client/server.
client_config_.SetInitialStreamFlowControlWindowToSend(
2 * kInitialStreamFlowControlWindowForTest);
client_config_.SetInitialSessionFlowControlWindowToSend(
2 * kInitialSessionFlowControlWindowForTest);
server_config_.SetInitialStreamFlowControlWindowToSend(
3 * kInitialStreamFlowControlWindowForTest);
server_config_.SetInitialSessionFlowControlWindowToSend(
3 * kInitialSessionFlowControlWindowForTest);
// The default idle timeouts can be too strict when running on a busy
// machine.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(30);
client_config_.set_max_time_before_crypto_handshake(timeout);
client_config_.set_max_idle_time_before_crypto_handshake(timeout);
server_config_.set_max_time_before_crypto_handshake(timeout);
server_config_.set_max_idle_time_before_crypto_handshake(timeout);
AddToCache("/foo", 200, kFooResponseBody);
AddToCache("/bar", 200, kBarResponseBody);
// Enable fixes for bugs found in tests and prod.
}
~EndToEndTest() override { QuicRecyclePort(server_address_.port()); }
virtual void CreateClientWithWriter() {
client_.reset(CreateQuicClient(client_writer_));
}
QuicTestClient* CreateQuicClient(QuicPacketWriterWrapper* writer) {
QuicTestClient* client =
new QuicTestClient(server_address_, server_hostname_, client_config_,
client_supported_versions_,
crypto_test_utils::ProofVerifierForTesting(),
std::make_unique<QuicClientSessionCache>());
client->SetUserAgentID(kTestUserAgentId);
client->UseWriter(writer);
if (!pre_shared_key_client_.empty()) {
client->client()->SetPreSharedKey(pre_shared_key_client_);
}
client->UseConnectionIdLength(override_server_connection_id_length_);
client->UseClientConnectionIdLength(override_client_connection_id_length_);
client->client()->set_connection_debug_visitor(connection_debug_visitor_);
client->client()->set_enable_web_transport(enable_web_transport_);
client->client()->set_use_datagram_contexts(use_datagram_contexts_);
client->Connect();
return client;
}
void set_smaller_flow_control_receive_window() {
const uint32_t kClientIFCW = 64 * 1024;
const uint32_t kServerIFCW = 1024 * 1024;
set_client_initial_stream_flow_control_receive_window(kClientIFCW);
set_client_initial_session_flow_control_receive_window(
kSessionToStreamRatio * kClientIFCW);
set_server_initial_stream_flow_control_receive_window(kServerIFCW);
set_server_initial_session_flow_control_receive_window(
kSessionToStreamRatio * kServerIFCW);
}
void set_client_initial_stream_flow_control_receive_window(uint32_t window) {
ASSERT_TRUE(client_ == nullptr);
QUIC_DLOG(INFO) << "Setting client initial stream flow control window: "
<< window;
client_config_.SetInitialStreamFlowControlWindowToSend(window);
}
void set_client_initial_session_flow_control_receive_window(uint32_t window) {
ASSERT_TRUE(client_ == nullptr);
QUIC_DLOG(INFO) << "Setting client initial session flow control window: "
<< window;
client_config_.SetInitialSessionFlowControlWindowToSend(window);
}
void set_client_initial_max_stream_data_incoming_bidirectional(
uint32_t window) {
ASSERT_TRUE(client_ == nullptr);
QUIC_DLOG(INFO)
<< "Setting client initial max stream data incoming bidirectional: "
<< window;
client_config_.SetInitialMaxStreamDataBytesIncomingBidirectionalToSend(
window);
}
void set_server_initial_max_stream_data_outgoing_bidirectional(
uint32_t window) {
ASSERT_TRUE(client_ == nullptr);
QUIC_DLOG(INFO)
<< "Setting server initial max stream data outgoing bidirectional: "
<< window;
server_config_.SetInitialMaxStreamDataBytesOutgoingBidirectionalToSend(
window);
}
void set_server_initial_stream_flow_control_receive_window(uint32_t window) {
ASSERT_TRUE(server_thread_ == nullptr);
QUIC_DLOG(INFO) << "Setting server initial stream flow control window: "
<< window;
server_config_.SetInitialStreamFlowControlWindowToSend(window);
}
void set_server_initial_session_flow_control_receive_window(uint32_t window) {
ASSERT_TRUE(server_thread_ == nullptr);
QUIC_DLOG(INFO) << "Setting server initial session flow control window: "
<< window;
server_config_.SetInitialSessionFlowControlWindowToSend(window);
}
const QuicSentPacketManager* GetSentPacketManagerFromFirstServerSession() {
QuicConnection* server_connection = GetServerConnection();
if (server_connection == nullptr) {
ADD_FAILURE() << "Missing server connection";
return nullptr;
}
return &server_connection->sent_packet_manager();
}
const QuicSentPacketManager* GetSentPacketManagerFromClientSession() {
QuicConnection* client_connection = GetClientConnection();
if (client_connection == nullptr) {
ADD_FAILURE() << "Missing client connection";
return nullptr;
}
return &client_connection->sent_packet_manager();
}
QuicSpdyClientSession* GetClientSession() {
if (!client_) {
ADD_FAILURE() << "Missing QuicTestClient";
return nullptr;
}
if (client_->client() == nullptr) {
ADD_FAILURE() << "Missing MockableQuicClient";
return nullptr;
}
return client_->client()->client_session();
}
QuicConnection* GetClientConnection() {
QuicSpdyClientSession* client_session = GetClientSession();
if (client_session == nullptr) {
ADD_FAILURE() << "Missing client session";
return nullptr;
}
return client_session->connection();
}
QuicConnection* GetServerConnection() {
QuicSpdySession* server_session = GetServerSession();
if (server_session == nullptr) {
ADD_FAILURE() << "Missing server session";
return nullptr;
}
return server_session->connection();
}
QuicSpdySession* GetServerSession() {
if (!server_thread_) {
ADD_FAILURE() << "Missing server thread";
return nullptr;
}
QuicServer* quic_server = server_thread_->server();
if (quic_server == nullptr) {
ADD_FAILURE() << "Missing server";
return nullptr;
}
QuicDispatcher* dispatcher = QuicServerPeer::GetDispatcher(quic_server);
if (dispatcher == nullptr) {
ADD_FAILURE() << "Missing dispatcher";
return nullptr;
}
if (dispatcher->NumSessions() == 0) {
ADD_FAILURE() << "Empty dispatcher session map";
return nullptr;
}
EXPECT_EQ(1u, dispatcher->NumSessions());
return static_cast<QuicSpdySession*>(
QuicDispatcherPeer::GetFirstSessionIfAny(dispatcher));
}
bool Initialize() {
if (enable_web_transport_) {
memory_cache_backend_.set_enable_webtransport(true);
}
if (use_datagram_contexts_) {
memory_cache_backend_.set_use_datagram_contexts(true);
}
QuicTagVector copt;
server_config_.SetConnectionOptionsToSend(copt);
copt = client_extra_copts_;
// TODO(nimia): Consider setting the congestion control algorithm for the
// client as well according to the test parameter.
copt.push_back(GetParam().congestion_control_tag);
copt.push_back(k2PTO);
if (version_.HasIetfQuicFrames()) {
copt.push_back(kILD0);
}
copt.push_back(kPLE1);
if (!GetQuicReloadableFlag(
quic_remove_connection_migration_connection_option)) {
copt.push_back(kRVCM);
}
client_config_.SetConnectionOptionsToSend(copt);
// Start the server first, because CreateQuicClient() attempts
// to connect to the server.
StartServer();
if (!connect_to_server_on_initialize_) {
initialized_ = true;
return true;
}
CreateClientWithWriter();
if (!client_) {
ADD_FAILURE() << "Missing QuicTestClient";
return false;
}
MockableQuicClient* client = client_->client();
if (client == nullptr) {
ADD_FAILURE() << "Missing MockableQuicClient";
return false;
}
static QuicEpollEvent event(EPOLLOUT);
if (client_writer_ != nullptr) {
QuicConnection* client_connection = GetClientConnection();
if (client_connection == nullptr) {
ADD_FAILURE() << "Missing client connection";
return false;
}
client_writer_->Initialize(
QuicConnectionPeer::GetHelper(client_connection),
QuicConnectionPeer::GetAlarmFactory(client_connection),
std::make_unique<ClientDelegate>(client));
}
initialized_ = true;
return client->connected();
}
void SetUp() override {
// The ownership of these gets transferred to the QuicPacketWriterWrapper
// when Initialize() is executed.
client_writer_ = new PacketDroppingTestWriter();
server_writer_ = new PacketDroppingTestWriter();
}
void TearDown() override {
EXPECT_TRUE(initialized_) << "You must call Initialize() in every test "
<< "case. Otherwise, your test will leak memory.";
QuicConnection* client_connection = GetClientConnection();
if (client_connection != nullptr) {
client_connection->set_debug_visitor(nullptr);
} else {
ADD_FAILURE() << "Missing client connection";
}
StopServer();
}
void StartServer() {
auto* test_server = new QuicTestServer(
crypto_test_utils::ProofSourceForTesting(), server_config_,
server_supported_versions_, &memory_cache_backend_,
expected_server_connection_id_length_);
server_thread_ =
std::make_unique<ServerThread>(test_server, server_address_);
if (chlo_multiplier_ != 0) {
server_thread_->server()->SetChloMultiplier(chlo_multiplier_);
}
if (!pre_shared_key_server_.empty()) {
server_thread_->server()->SetPreSharedKey(pre_shared_key_server_);
}
server_thread_->Initialize();
server_address_ =
QuicSocketAddress(server_address_.host(), server_thread_->GetPort());
QuicDispatcher* dispatcher =
QuicServerPeer::GetDispatcher(server_thread_->server());
QuicDispatcherPeer::UseWriter(dispatcher, server_writer_);
server_writer_->Initialize(QuicDispatcherPeer::GetHelper(dispatcher),
QuicDispatcherPeer::GetAlarmFactory(dispatcher),
std::make_unique<ServerDelegate>(dispatcher));
if (stream_factory_ != nullptr) {
static_cast<QuicTestServer*>(server_thread_->server())
->SetSpdyStreamFactory(stream_factory_);
}
server_thread_->Start();
}
void StopServer() {
if (server_thread_) {
server_thread_->Quit();
server_thread_->Join();
}
}
void AddToCache(absl::string_view path,
int response_code,
absl::string_view body) {
memory_cache_backend_.AddSimpleResponse(server_hostname_, path,
response_code, body);
}
void SetPacketLossPercentage(int32_t loss) {
client_writer_->set_fake_packet_loss_percentage(loss);
server_writer_->set_fake_packet_loss_percentage(loss);
}
void SetPacketSendDelay(QuicTime::Delta delay) {
client_writer_->set_fake_packet_delay(delay);
server_writer_->set_fake_packet_delay(delay);
}
void SetReorderPercentage(int32_t reorder) {
client_writer_->set_fake_reorder_percentage(reorder);
server_writer_->set_fake_reorder_percentage(reorder);
}
// Verifies that the client and server connections were both free of packets
// being discarded, based on connection stats.
// Calls server_thread_ Pause() and Resume(), which may only be called once
// per test.
void VerifyCleanConnection(bool had_packet_loss) {
QuicConnection* client_connection = GetClientConnection();
if (client_connection == nullptr) {
ADD_FAILURE() << "Missing client connection";
return;
}
QuicConnectionStats client_stats = client_connection->GetStats();
// TODO(ianswett): Determine why this becomes even more flaky with BBR
// enabled. b/62141144
if (!had_packet_loss && !GetQuicReloadableFlag(quic_default_to_bbr)) {
EXPECT_EQ(0u, client_stats.packets_lost);
}
EXPECT_EQ(0u, client_stats.packets_discarded);
// When client starts with an unsupported version, the version negotiation
// packet sent by server for the old connection (respond for the connection
// close packet) will be dropped by the client.
if (!ServerSendsVersionNegotiation()) {
EXPECT_EQ(0u, client_stats.packets_dropped);
}
if (!version_.UsesTls()) {
// Only enforce this for QUIC crypto because accounting of number of
// packets received, processed gets complicated with packets coalescing
// and key dropping. For example, a received undecryptable coalesced
// packet can be processed later and each sub-packet increases
// packets_processed.
EXPECT_EQ(client_stats.packets_received, client_stats.packets_processed);
}
if (!server_thread_) {
ADD_FAILURE() << "Missing server thread";
return;
}
server_thread_->Pause();
QuicSpdySession* server_session = GetServerSession();
if (server_session != nullptr) {
QuicConnection* server_connection = server_session->connection();
if (server_connection != nullptr) {
QuicConnectionStats server_stats = server_connection->GetStats();
if (!had_packet_loss) {
EXPECT_EQ(0u, server_stats.packets_lost);
}
EXPECT_EQ(0u, server_stats.packets_discarded);
if (!GetQuicReloadableFlag(
quic_ignore_user_agent_transport_parameter)) {
EXPECT_EQ(
server_session->user_agent_id().value_or("MissingUserAgent"),
kTestUserAgentId);
}
} else {
ADD_FAILURE() << "Missing server connection";
}
} else {
ADD_FAILURE() << "Missing server session";
}
// TODO(ianswett): Restore the check for packets_dropped equals 0.
// The expect for packets received is equal to packets processed fails
// due to version negotiation packets.
server_thread_->Resume();
}
// Returns true when client starts with an unsupported version, and client
// closes connection when version negotiation is received.
bool ServerSendsVersionNegotiation() {
return client_supported_versions_[0] != version_;
}
bool SupportsIetfQuicWithTls(ParsedQuicVersion version) {
return version.HasIetfInvariantHeader() &&
version.handshake_protocol == PROTOCOL_TLS1_3;
}
static void ExpectFlowControlsSynced(QuicSession* client,
QuicSession* server) {
EXPECT_EQ(
QuicFlowControllerPeer::SendWindowSize(client->flow_controller()),
QuicFlowControllerPeer::ReceiveWindowSize(server->flow_controller()));
EXPECT_EQ(
QuicFlowControllerPeer::ReceiveWindowSize(client->flow_controller()),
QuicFlowControllerPeer::SendWindowSize(server->flow_controller()));
}
static void ExpectFlowControlsSynced(QuicStream* client, QuicStream* server) {
EXPECT_EQ(QuicStreamPeer::SendWindowSize(client),
QuicStreamPeer::ReceiveWindowSize(server));
EXPECT_EQ(QuicStreamPeer::ReceiveWindowSize(client),
QuicStreamPeer::SendWindowSize(server));
}
// Must be called before Initialize to have effect.
void SetSpdyStreamFactory(QuicTestServer::StreamFactory* factory) {
stream_factory_ = factory;
}
QuicStreamId GetNthClientInitiatedBidirectionalId(int n) {
return GetNthClientInitiatedBidirectionalStreamId(
version_.transport_version, n);
}
QuicStreamId GetNthServerInitiatedBidirectionalId(int n) {
return GetNthServerInitiatedBidirectionalStreamId(
version_.transport_version, n);
}
bool CheckResponseHeaders(QuicTestClient* client,
const std::string& expected_status) {
const spdy::SpdyHeaderBlock* response_headers = client->response_headers();
auto it = response_headers->find(":status");
if (it == response_headers->end()) {
ADD_FAILURE() << "Did not find :status header in response";
return false;
}
if (it->second != expected_status) {
ADD_FAILURE() << "Got bad :status response: \"" << it->second << "\"";
return false;
}
return true;
}
bool CheckResponseHeaders(QuicTestClient* client) {
return CheckResponseHeaders(client, "200");
}
bool CheckResponseHeaders(const std::string& expected_status) {
return CheckResponseHeaders(client_.get(), expected_status);
}
bool CheckResponseHeaders() { return CheckResponseHeaders(client_.get()); }
bool CheckResponse(QuicTestClient* client,
const std::string& received_response,
const std::string& expected_response) {
EXPECT_THAT(client_->stream_error(), IsQuicStreamNoError());
EXPECT_THAT(client_->connection_error(), IsQuicNoError());
if (received_response.empty() && !expected_response.empty()) {
ADD_FAILURE() << "Failed to get any response for request";
return false;
}
if (received_response != expected_response) {
ADD_FAILURE() << "Got wrong response: \"" << received_response << "\"";
return false;
}
return CheckResponseHeaders(client);
}
bool SendSynchronousRequestAndCheckResponse(
QuicTestClient* client,
const std::string& request,
const std::string& expected_response) {
std::string received_response = client->SendSynchronousRequest(request);
return CheckResponse(client, received_response, expected_response);
}
bool SendSynchronousRequestAndCheckResponse(
const std::string& request,
const std::string& expected_response) {
return SendSynchronousRequestAndCheckResponse(client_.get(), request,
expected_response);
}
bool SendSynchronousFooRequestAndCheckResponse(QuicTestClient* client) {
return SendSynchronousRequestAndCheckResponse(client, "/foo",
kFooResponseBody);
}
bool SendSynchronousFooRequestAndCheckResponse() {
return SendSynchronousFooRequestAndCheckResponse(client_.get());
}
bool SendSynchronousBarRequestAndCheckResponse() {
std::string received_response = client_->SendSynchronousRequest("/bar");
return CheckResponse(client_.get(), received_response, kBarResponseBody);
}
bool WaitForFooResponseAndCheckIt(QuicTestClient* client) {
client->WaitForResponse();
std::string received_response = client->response_body();
return CheckResponse(client_.get(), received_response, kFooResponseBody);
}
bool WaitForFooResponseAndCheckIt() {
return WaitForFooResponseAndCheckIt(client_.get());
}
WebTransportHttp3* CreateWebTransportSession(
const std::string& path, bool wait_for_server_response,
QuicSpdyStream** connect_stream_out = nullptr) {
// Wait until we receive the settings from the server indicating
// WebTransport support.
client_->WaitUntil(
2000, [this]() { return GetClientSession()->SupportsWebTransport(); });
if (!GetClientSession()->SupportsWebTransport()) {
return nullptr;
}
spdy::SpdyHeaderBlock headers;
headers[":scheme"] = "https";
headers[":authority"] = "localhost";
headers[":path"] = path;
headers[":method"] = "CONNECT";
headers[":protocol"] = "webtransport";
client_->SendMessage(headers, "", /*fin=*/false);
QuicSpdyStream* stream = client_->latest_created_stream();
if (stream->web_transport() == nullptr) {
return nullptr;
}
WebTransportSessionId id = client_->latest_created_stream()->id();
QuicSpdySession* client_session = GetClientSession();
if (client_session->GetWebTransportSession(id) == nullptr) {
return nullptr;
}
WebTransportHttp3* session = client_session->GetWebTransportSession(id);
if (wait_for_server_response) {
client_->WaitUntil(-1,
[stream]() { return stream->headers_decompressed(); });
EXPECT_TRUE(session->ready());
}
if (connect_stream_out != nullptr) {
*connect_stream_out = stream;
}
return session;
}
NiceMock<MockClientVisitor>& SetupWebTransportVisitor(
WebTransportHttp3* session) {
auto visitor_owned = std::make_unique<NiceMock<MockClientVisitor>>();
NiceMock<MockClientVisitor>& visitor = *visitor_owned;
session->SetVisitor(std::move(visitor_owned));
return visitor;
}
std::string ReadDataFromWebTransportStreamUntilFin(
WebTransportStream* stream, MockStreamVisitor* visitor = nullptr) {
QuicStreamId id = stream->GetStreamId();
std::string buffer;
// Try reading data if immediately available.
WebTransportStream::ReadResult result = stream->Read(&buffer);
if (result.fin) {
return buffer;
}
while (true) {
bool can_read = false;
if (visitor == nullptr) {
auto visitor_owned = std::make_unique<MockStreamVisitor>();
visitor = visitor_owned.get();
stream->SetVisitor(std::move(visitor_owned));
}
EXPECT_CALL(*visitor, OnCanRead()).WillOnce(Assign(&can_read, true));
client_->WaitUntil(5000 /*ms*/, [&can_read]() { return can_read; });
if (!can_read) {
ADD_FAILURE() << "Waiting for readable data on stream " << id
<< " timed out";
return buffer;
}
if (GetClientSession()->GetOrCreateSpdyDataStream(id) == nullptr) {
ADD_FAILURE() << "Stream " << id
<< " was deleted while waiting for incoming data";
return buffer;
}
result = stream->Read(&buffer);
if (result.fin) {
return buffer;
}
if (result.bytes_read == 0) {
ADD_FAILURE() << "No progress made while reading from stream "
<< stream->GetStreamId();
return buffer;
}
}
}
void ReadAllIncomingWebTransportUnidirectionalStreams(
WebTransportSession* session) {
while (true) {
WebTransportStream* received_stream =
session->AcceptIncomingUnidirectionalStream();
if (received_stream == nullptr) {
break;
}
received_webtransport_unidirectional_streams_.push_back(
ReadDataFromWebTransportStreamUntilFin(received_stream));
}
}
void WaitForNewConnectionIds() {
// Wait until a new server CID is available for another migration.
const auto* client_connection = GetClientConnection();
while (!QuicConnectionPeer::HasUnusedPeerIssuedConnectionId(
client_connection) ||
(!client_connection->client_connection_id().IsEmpty() &&
!QuicConnectionPeer::HasSelfIssuedConnectionIdToConsume(
client_connection))) {
client_->client()->WaitForEvents();
}
}
ScopedEnvironmentForThreads environment_;
bool initialized_;
// If true, the Initialize() function will create |client_| and starts to
// connect to the server.
// Default is true.
bool connect_to_server_on_initialize_;
QuicSocketAddress server_address_;
std::string server_hostname_;
QuicTestBackend memory_cache_backend_;
std::unique_ptr<ServerThread> server_thread_;
std::unique_ptr<QuicTestClient> client_;
QuicConnectionDebugVisitor* connection_debug_visitor_ = nullptr;
PacketDroppingTestWriter* client_writer_;
PacketDroppingTestWriter* server_writer_;
QuicConfig client_config_;
QuicConfig server_config_;
ParsedQuicVersion version_;
ParsedQuicVersionVector client_supported_versions_;
ParsedQuicVersionVector server_supported_versions_;
QuicTagVector client_extra_copts_;
size_t chlo_multiplier_;
QuicTestServer::StreamFactory* stream_factory_;
std::string pre_shared_key_client_;
std::string pre_shared_key_server_;
int override_server_connection_id_length_ = -1;
int override_client_connection_id_length_ = -1;
uint8_t expected_server_connection_id_length_;
bool enable_web_transport_ = false;
bool use_datagram_contexts_ = false;
std::vector<std::string> received_webtransport_unidirectional_streams_;
};
// Run all end to end tests with all supported versions.
INSTANTIATE_TEST_SUITE_P(EndToEndTests,
EndToEndTest,
::testing::ValuesIn(GetTestParams()),
::testing::PrintToStringParamName());
TEST_P(EndToEndTest, HandshakeSuccessful) {
SetQuicReloadableFlag(quic_delay_sequencer_buffer_allocation_until_new_data,
true);
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(server_thread_);
server_thread_->WaitForCryptoHandshakeConfirmed();
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
QuicCryptoStream* client_crypto_stream =
QuicSessionPeer::GetMutableCryptoStream(client_session);
ASSERT_TRUE(client_crypto_stream);
QuicStreamSequencer* client_sequencer =
QuicStreamPeer::sequencer(client_crypto_stream);
ASSERT_TRUE(client_sequencer);
EXPECT_FALSE(
QuicStreamSequencerPeer::IsUnderlyingBufferAllocated(client_sequencer));
// We've had bugs in the past where the connections could end up on the wrong
// version. This was never diagnosed but could have been due to in-connection
// version negotiation back when that existed. At this point in time, our test
// setup ensures that connections here always use |version_|, but we add this
// sanity check out of paranoia to catch a regression of this type.
QuicConnection* client_connection = GetClientConnection();
ASSERT_TRUE(client_connection);
EXPECT_EQ(client_connection->version(), version_);
server_thread_->Pause();
QuicSpdySession* server_session = GetServerSession();
QuicConnection* server_connection = nullptr;
QuicCryptoStream* server_crypto_stream = nullptr;
QuicStreamSequencer* server_sequencer = nullptr;
if (server_session != nullptr) {
server_connection = server_session->connection();
server_crypto_stream =
QuicSessionPeer::GetMutableCryptoStream(server_session);
} else {
ADD_FAILURE() << "Missing server session";
}
if (server_crypto_stream != nullptr) {
server_sequencer = QuicStreamPeer::sequencer(server_crypto_stream);
} else {
ADD_FAILURE() << "Missing server crypto stream";
}
if (server_sequencer != nullptr) {
EXPECT_FALSE(
QuicStreamSequencerPeer::IsUnderlyingBufferAllocated(server_sequencer));
} else {
ADD_FAILURE() << "Missing server sequencer";
}
if (server_connection != nullptr) {
EXPECT_EQ(server_connection->version(), version_);
} else {
ADD_FAILURE() << "Missing server connection";
}
server_thread_->Resume();
}
TEST_P(EndToEndTest, ExportKeyingMaterial) {
ASSERT_TRUE(Initialize());
if (!version_.UsesTls()) {
return;
}
const char* kExportLabel = "label";
const int kExportLen = 30;
std::string client_keying_material_export, server_keying_material_export;
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(server_thread_);
server_thread_->WaitForCryptoHandshakeConfirmed();
server_thread_->Pause();
QuicSpdySession* server_session = GetServerSession();
QuicCryptoStream* server_crypto_stream = nullptr;
if (server_session != nullptr) {
server_crypto_stream =
QuicSessionPeer::GetMutableCryptoStream(server_session);
} else {
ADD_FAILURE() << "Missing server session";
}
if (server_crypto_stream != nullptr) {
ASSERT_TRUE(server_crypto_stream->ExportKeyingMaterial(
kExportLabel, /*context=*/"", kExportLen,
&server_keying_material_export));
} else {
ADD_FAILURE() << "Missing server crypto stream";
}
server_thread_->Resume();
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
QuicCryptoStream* client_crypto_stream =
QuicSessionPeer::GetMutableCryptoStream(client_session);
ASSERT_TRUE(client_crypto_stream);
ASSERT_TRUE(client_crypto_stream->ExportKeyingMaterial(
kExportLabel, /*context=*/"", kExportLen,
&client_keying_material_export));
ASSERT_EQ(client_keying_material_export.size(),
static_cast<size_t>(kExportLen));
EXPECT_EQ(client_keying_material_export, server_keying_material_export);
}
TEST_P(EndToEndTest, SimpleRequestResponse) {
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
if (version_.UsesHttp3()) {
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_TRUE(QuicSpdySessionPeer::GetSendControlStream(client_session));
EXPECT_TRUE(QuicSpdySessionPeer::GetReceiveControlStream(client_session));
server_thread_->Pause();
QuicSpdySession* server_session = GetServerSession();
if (server_session != nullptr) {
EXPECT_TRUE(QuicSpdySessionPeer::GetSendControlStream(server_session));
EXPECT_TRUE(QuicSpdySessionPeer::GetReceiveControlStream(server_session));
} else {
ADD_FAILURE() << "Missing server session";
}
server_thread_->Resume();
}
QuicConnectionStats client_stats = GetClientConnection()->GetStats();
EXPECT_TRUE(client_stats.handshake_completion_time.IsInitialized());
}
TEST_P(EndToEndTest, HandshakeConfirmed) {
ASSERT_TRUE(Initialize());
if (!version_.UsesTls()) {
return;
}
SendSynchronousFooRequestAndCheckResponse();
// Verify handshake state.
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_EQ(HANDSHAKE_CONFIRMED, client_session->GetHandshakeState());
server_thread_->Pause();
QuicSpdySession* server_session = GetServerSession();
if (server_session != nullptr) {
EXPECT_EQ(HANDSHAKE_CONFIRMED, server_session->GetHandshakeState());
} else {
ADD_FAILURE() << "Missing server session";
}
server_thread_->Resume();
client_->Disconnect();
}
TEST_P(EndToEndTest, SendAndReceiveCoalescedPackets) {
ASSERT_TRUE(Initialize());
if (!version_.CanSendCoalescedPackets()) {
return;
}
SendSynchronousFooRequestAndCheckResponse();
// Verify client successfully processes coalesced packets.
QuicConnection* client_connection = GetClientConnection();
ASSERT_TRUE(client_connection);
QuicConnectionStats client_stats = client_connection->GetStats();
EXPECT_LT(0u, client_stats.num_coalesced_packets_received);
EXPECT_EQ(client_stats.num_coalesced_packets_processed,
client_stats.num_coalesced_packets_received);
// TODO(fayang): verify server successfully processes coalesced packets.
}
// Simple transaction, but set a non-default ack delay at the client
// and ensure it gets to the server.
TEST_P(EndToEndTest, SimpleRequestResponseWithAckDelayChange) {
// Force the ACK delay to be something other than the default.
constexpr uint32_t kClientMaxAckDelay = kDefaultDelayedAckTimeMs + 100u;
client_config_.SetMaxAckDelayToSendMs(kClientMaxAckDelay);
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
server_thread_->Pause();
const QuicSentPacketManager* server_sent_packet_manager =
GetSentPacketManagerFromFirstServerSession();
if (server_sent_packet_manager != nullptr) {
EXPECT_EQ(
kClientMaxAckDelay,
server_sent_packet_manager->peer_max_ack_delay().ToMilliseconds());
} else {
ADD_FAILURE() << "Missing server sent packet manager";
}
server_thread_->Resume();
}
// Simple transaction, but set a non-default ack exponent at the client
// and ensure it gets to the server.
TEST_P(EndToEndTest, SimpleRequestResponseWithAckExponentChange) {
const uint32_t kClientAckDelayExponent = 19;
EXPECT_NE(kClientAckDelayExponent, kDefaultAckDelayExponent);
// Force the ACK exponent to be something other than the default.
// Note that it is sent only with QUIC+TLS.
client_config_.SetAckDelayExponentToSend(kClientAckDelayExponent);
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
server_thread_->Pause();
QuicConnection* server_connection = GetServerConnection();
if (server_connection != nullptr) {
if (version_.UsesTls()) {
// Should be only sent with QUIC+TLS.
EXPECT_EQ(kClientAckDelayExponent,
server_connection->framer().peer_ack_delay_exponent());
} else {
// No change for QUIC_CRYPTO.
EXPECT_EQ(kDefaultAckDelayExponent,
server_connection->framer().peer_ack_delay_exponent());
}
// No change, regardless of version.
EXPECT_EQ(kDefaultAckDelayExponent,
server_connection->framer().local_ack_delay_exponent());
} else {
ADD_FAILURE() << "Missing server connection";
}
server_thread_->Resume();
}
TEST_P(EndToEndTest, SimpleRequestResponseForcedVersionNegotiation) {
client_supported_versions_.insert(client_supported_versions_.begin(),
QuicVersionReservedForNegotiation());
NiceMock<MockQuicConnectionDebugVisitor> visitor;
connection_debug_visitor_ = &visitor;
EXPECT_CALL(visitor, OnVersionNegotiationPacket(_)).Times(1);
ASSERT_TRUE(Initialize());
ASSERT_TRUE(ServerSendsVersionNegotiation());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
}
TEST_P(EndToEndTest, ForcedVersionNegotiation) {
client_supported_versions_.insert(client_supported_versions_.begin(),
QuicVersionReservedForNegotiation());
ASSERT_TRUE(Initialize());
ASSERT_TRUE(ServerSendsVersionNegotiation());
SendSynchronousFooRequestAndCheckResponse();
}
TEST_P(EndToEndTest, SimpleRequestResponseZeroConnectionID) {
if (!version_.AllowsVariableLengthConnectionIds()) {
ASSERT_TRUE(Initialize());
return;
}
override_server_connection_id_length_ = 0;
expected_server_connection_id_length_ = 0;
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
QuicConnection* client_connection = GetClientConnection();
ASSERT_TRUE(client_connection);
EXPECT_EQ(client_connection->connection_id(),
QuicUtils::CreateZeroConnectionId(version_.transport_version));
}
TEST_P(EndToEndTest, ZeroConnectionID) {
if (!version_.AllowsVariableLengthConnectionIds()) {
ASSERT_TRUE(Initialize());
return;
}
override_server_connection_id_length_ = 0;
expected_server_connection_id_length_ = 0;
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
QuicConnection* client_connection = GetClientConnection();
ASSERT_TRUE(client_connection);
EXPECT_EQ(client_connection->connection_id(),
QuicUtils::CreateZeroConnectionId(version_.transport_version));
}
TEST_P(EndToEndTest, BadConnectionIdLength) {
if (!version_.AllowsVariableLengthConnectionIds()) {
ASSERT_TRUE(Initialize());
return;
}
override_server_connection_id_length_ = 9;
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_EQ(kQuicDefaultConnectionIdLength, client_->client()
->client_session()
->connection()
->connection_id()
.length());
}
// Tests a very long (16-byte) initial destination connection ID to make
// sure the dispatcher properly replaces it with an 8-byte one.
TEST_P(EndToEndTest, LongBadConnectionIdLength) {
if (!version_.AllowsVariableLengthConnectionIds()) {
ASSERT_TRUE(Initialize());
return;
}
override_server_connection_id_length_ = 16;
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_EQ(kQuicDefaultConnectionIdLength, client_->client()
->client_session()
->connection()
->connection_id()
.length());
}
TEST_P(EndToEndTest, ClientConnectionId) {
if (!version_.SupportsClientConnectionIds()) {
ASSERT_TRUE(Initialize());
return;
}
override_client_connection_id_length_ = kQuicDefaultConnectionIdLength;
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_EQ(override_client_connection_id_length_, client_->client()
->client_session()
->connection()
->client_connection_id()
.length());
}
TEST_P(EndToEndTest, ForcedVersionNegotiationAndClientConnectionId) {
if (!version_.SupportsClientConnectionIds()) {
ASSERT_TRUE(Initialize());
return;
}
client_supported_versions_.insert(client_supported_versions_.begin(),
QuicVersionReservedForNegotiation());
override_client_connection_id_length_ = kQuicDefaultConnectionIdLength;
ASSERT_TRUE(Initialize());
ASSERT_TRUE(ServerSendsVersionNegotiation());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_EQ(override_client_connection_id_length_, client_->client()
->client_session()
->connection()
->client_connection_id()
.length());
}
TEST_P(EndToEndTest, ForcedVersionNegotiationAndBadConnectionIdLength) {
if (!version_.AllowsVariableLengthConnectionIds()) {
ASSERT_TRUE(Initialize());
return;
}
client_supported_versions_.insert(client_supported_versions_.begin(),
QuicVersionReservedForNegotiation());
override_server_connection_id_length_ = 9;
ASSERT_TRUE(Initialize());
ASSERT_TRUE(ServerSendsVersionNegotiation());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_EQ(kQuicDefaultConnectionIdLength, client_->client()
->client_session()
->connection()
->connection_id()
.length());
}
// Forced Version Negotiation with a client connection ID and a long
// connection ID.
TEST_P(EndToEndTest, ForcedVersNegoAndClientCIDAndLongCID) {
if (!version_.SupportsClientConnectionIds() ||
!version_.AllowsVariableLengthConnectionIds()) {
ASSERT_TRUE(Initialize());
return;
}
client_supported_versions_.insert(client_supported_versions_.begin(),
QuicVersionReservedForNegotiation());
override_server_connection_id_length_ = 16;
override_client_connection_id_length_ = 18;
ASSERT_TRUE(Initialize());
ASSERT_TRUE(ServerSendsVersionNegotiation());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_EQ(kQuicDefaultConnectionIdLength, client_->client()
->client_session()
->connection()
->connection_id()
.length());
EXPECT_EQ(override_client_connection_id_length_, client_->client()
->client_session()
->connection()
->client_connection_id()
.length());
}
TEST_P(EndToEndTest, MixGoodAndBadConnectionIdLengths) {
if (!version_.AllowsVariableLengthConnectionIds()) {
ASSERT_TRUE(Initialize());
return;
}
// Start client_ which will use a bad connection ID length.
override_server_connection_id_length_ = 9;
ASSERT_TRUE(Initialize());
override_server_connection_id_length_ = -1;
// Start client2 which will use a good connection ID length.
std::unique_ptr<QuicTestClient> client2(CreateQuicClient(nullptr));
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
headers["content-length"] = "3";
client2->SendMessage(headers, "", /*fin=*/false);
client2->SendData("eep", true);
SendSynchronousFooRequestAndCheckResponse();
EXPECT_EQ(kQuicDefaultConnectionIdLength, client_->client()
->client_session()
->connection()
->connection_id()
.length());
WaitForFooResponseAndCheckIt(client2.get());
EXPECT_EQ(kQuicDefaultConnectionIdLength, client2->client()
->client_session()
->connection()
->connection_id()
.length());
}
TEST_P(EndToEndTest, SimpleRequestResponseWithIetfDraftSupport) {
if (!version_.HasIetfQuicFrames()) {
ASSERT_TRUE(Initialize());
return;
}
QuicVersionInitializeSupportForIetfDraft();
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
}
TEST_P(EndToEndTest, SimpleRequestResponseWithLargeReject) {
chlo_multiplier_ = 1;
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
if (version_.UsesTls()) {
// REJ messages are a QUIC crypto feature, so TLS always returns false.
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
} else {
EXPECT_TRUE(client_->client()->ReceivedInchoateReject());
}
}
TEST_P(EndToEndTest, SimpleRequestResponsev6) {
server_address_ =
QuicSocketAddress(QuicIpAddress::Loopback6(), server_address_.port());
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
}
TEST_P(EndToEndTest,
ClientDoesNotAllowServerDataOnServerInitiatedBidirectionalStreams) {
set_client_initial_max_stream_data_incoming_bidirectional(0);
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
}
TEST_P(EndToEndTest,
ServerDoesNotAllowClientDataOnServerInitiatedBidirectionalStreams) {
set_server_initial_max_stream_data_outgoing_bidirectional(0);
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
}
TEST_P(EndToEndTest,
BothEndpointsDisallowDataOnServerInitiatedBidirectionalStreams) {
set_client_initial_max_stream_data_incoming_bidirectional(0);
set_server_initial_max_stream_data_outgoing_bidirectional(0);
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
}
// Regression test for a bug where we would always fail to decrypt the first
// initial packet. Undecryptable packets can be seen after the handshake
// is complete due to dropping the initial keys at that point, so we only test
// for undecryptable packets before then.
TEST_P(EndToEndTest, NoUndecryptablePacketsBeforeHandshakeComplete) {
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
QuicConnection* client_connection = GetClientConnection();
ASSERT_TRUE(client_connection);
QuicConnectionStats client_stats = client_connection->GetStats();
EXPECT_EQ(
0u,
client_stats.undecryptable_packets_received_before_handshake_complete);
server_thread_->Pause();
QuicConnection* server_connection = GetServerConnection();
if (server_connection != nullptr) {
QuicConnectionStats server_stats = server_connection->GetStats();
EXPECT_EQ(
0u,
server_stats.undecryptable_packets_received_before_handshake_complete);
} else {
ADD_FAILURE() << "Missing server connection";
}
server_thread_->Resume();
}
TEST_P(EndToEndTest, SeparateFinPacket) {
ASSERT_TRUE(Initialize());
// Send a request in two parts: the request and then an empty packet with FIN.
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
client_->SendMessage(headers, "", /*fin=*/false);
client_->SendData("", true);
WaitForFooResponseAndCheckIt();
// Now do the same thing but with a content length.
headers["content-length"] = "3";
client_->SendMessage(headers, "", /*fin=*/false);
client_->SendData("foo", true);
WaitForFooResponseAndCheckIt();
}
TEST_P(EndToEndTest, MultipleRequestResponse) {
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
SendSynchronousBarRequestAndCheckResponse();
}
TEST_P(EndToEndTest, MultipleRequestResponseZeroConnectionID) {
if (!version_.AllowsVariableLengthConnectionIds()) {
ASSERT_TRUE(Initialize());
return;
}
override_server_connection_id_length_ = 0;
expected_server_connection_id_length_ = 0;
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
SendSynchronousBarRequestAndCheckResponse();
}
TEST_P(EndToEndTest, MultipleStreams) {
// Verifies quic_test_client can track responses of all active streams.
ASSERT_TRUE(Initialize());
const int kNumRequests = 10;
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
headers["content-length"] = "3";
for (int i = 0; i < kNumRequests; ++i) {
client_->SendMessage(headers, "bar", /*fin=*/true);
}
while (kNumRequests > client_->num_responses()) {
client_->ClearPerRequestState();
ASSERT_TRUE(WaitForFooResponseAndCheckIt());
}
}
TEST_P(EndToEndTest, MultipleClients) {
ASSERT_TRUE(Initialize());
std::unique_ptr<QuicTestClient> client2(CreateQuicClient(nullptr));
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
headers["content-length"] = "3";
client_->SendMessage(headers, "", /*fin=*/false);
client2->SendMessage(headers, "", /*fin=*/false);
client_->SendData("bar", true);
WaitForFooResponseAndCheckIt();
client2->SendData("eep", true);
WaitForFooResponseAndCheckIt(client2.get());
}
TEST_P(EndToEndTest, RequestOverMultiplePackets) {
// Send a large enough request to guarantee fragmentation.
std::string huge_request =
"/some/path?query=" + std::string(kMaxOutgoingPacketSize, '.');
AddToCache(huge_request, 200, kBarResponseBody);
ASSERT_TRUE(Initialize());
SendSynchronousRequestAndCheckResponse(huge_request, kBarResponseBody);
}
TEST_P(EndToEndTest, MultiplePacketsRandomOrder) {
// Send a large enough request to guarantee fragmentation.
std::string huge_request =
"/some/path?query=" + std::string(kMaxOutgoingPacketSize, '.');
AddToCache(huge_request, 200, kBarResponseBody);
ASSERT_TRUE(Initialize());
SetPacketSendDelay(QuicTime::Delta::FromMilliseconds(2));
SetReorderPercentage(50);
SendSynchronousRequestAndCheckResponse(huge_request, kBarResponseBody);
}
TEST_P(EndToEndTest, PostMissingBytes) {
ASSERT_TRUE(Initialize());
// Add a content length header with no body.
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
headers["content-length"] = "3";
// This should be detected as stream fin without complete request,
// triggering an error response.
client_->SendCustomSynchronousRequest(headers, "");
EXPECT_EQ(QuicSimpleServerStream::kErrorResponseBody,
client_->response_body());
CheckResponseHeaders("500");
}
TEST_P(EndToEndTest, LargePostNoPacketLoss) {
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
// 1 MB body.
std::string body(1024 * 1024, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
// TODO(ianswett): There should not be packet loss in this test, but on some
// platforms the receive buffer overflows.
VerifyCleanConnection(true);
}
TEST_P(EndToEndTest, LargePostNoPacketLoss1sRTT) {
ASSERT_TRUE(Initialize());
SetPacketSendDelay(QuicTime::Delta::FromMilliseconds(1000));
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
// 100 KB body.
std::string body(100 * 1024, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
VerifyCleanConnection(false);
}
TEST_P(EndToEndTest, LargePostWithPacketLoss) {
// Connect with lower fake packet loss than we'd like to test.
// Until b/10126687 is fixed, losing handshake packets is pretty
// brutal.
// Disable blackhole detection as this test is testing loss recovery.
client_extra_copts_.push_back(kNBHD);
SetPacketLossPercentage(5);
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForHandshakeConfirmed());
SetPacketLossPercentage(30);
// 10 KB body.
std::string body(1024 * 10, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
VerifyCleanConnection(true);
}
// Regression test for b/80090281.
TEST_P(EndToEndTest, LargePostWithPacketLossAndAlwaysBundleWindowUpdates) {
// Disable blackhole detection as this test is testing loss recovery.
client_extra_copts_.push_back(kNBHD);
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForHandshakeConfirmed());
server_thread_->WaitForCryptoHandshakeConfirmed();
// Normally server only bundles a retransmittable frame once every other
// kMaxConsecutiveNonRetransmittablePackets ack-only packets. Setting the max
// to 0 to reliably reproduce b/80090281.
server_thread_->Schedule([this]() {
QuicConnection* server_connection = GetServerConnection();
if (server_connection != nullptr) {
QuicConnectionPeer::
SetMaxConsecutiveNumPacketsWithNoRetransmittableFrames(
server_connection, 0);
} else {
ADD_FAILURE() << "Missing server connection";
}
});
SetPacketLossPercentage(30);
// 10 KB body.
std::string body(1024 * 10, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
VerifyCleanConnection(true);
}
TEST_P(EndToEndTest, LargePostWithPacketLossAndBlockedSocket) {
// Connect with lower fake packet loss than we'd like to test. Until
// b/10126687 is fixed, losing handshake packets is pretty brutal.
// Disable blackhole detection as this test is testing loss recovery.
client_extra_copts_.push_back(kNBHD);
SetPacketLossPercentage(5);
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForHandshakeConfirmed());
SetPacketLossPercentage(10);
client_writer_->set_fake_blocked_socket_percentage(10);
// 10 KB body.
std::string body(1024 * 10, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
}
TEST_P(EndToEndTest, LargePostNoPacketLossWithDelayAndReordering) {
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForHandshakeConfirmed());
// Both of these must be called when the writer is not actively used.
SetPacketSendDelay(QuicTime::Delta::FromMilliseconds(2));
SetReorderPercentage(30);
// 1 MB body.
std::string body(1024 * 1024, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
}
TEST_P(EndToEndTest, AddressToken) {
client_extra_copts_.push_back(kTRTT);
ASSERT_TRUE(Initialize());
if (!version_.HasIetfQuicFrames()) {
return;
}
SendSynchronousFooRequestAndCheckResponse();
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_session->ReceivedInchoateReject());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
client_->Disconnect();
// The 0-RTT handshake should succeed.
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForHandshakeConfirmed());
ASSERT_TRUE(client_->client()->connected());
SendSynchronousFooRequestAndCheckResponse();
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_TRUE(client_session->EarlyDataAccepted());
EXPECT_TRUE(client_->client()->EarlyDataAccepted());
server_thread_->Pause();
QuicSpdySession* server_session = GetServerSession();
QuicConnection* server_connection = GetServerConnection();
if (server_session != nullptr && server_connection != nullptr) {
// Verify address is validated via validating token received in INITIAL
// packet.
EXPECT_FALSE(
server_connection->GetStats().address_validated_via_decrypting_packet);
EXPECT_TRUE(server_connection->GetStats().address_validated_via_token);
// Verify the server received a cached min_rtt from the token and used it as
// the initial rtt.
const CachedNetworkParameters* server_received_network_params =
static_cast<const QuicCryptoServerStreamBase*>(
server_session->GetCryptoStream())
->PreviousCachedNetworkParams();
if (GetQuicReloadableFlag(
quic_add_cached_network_parameters_to_address_token2)) {
ASSERT_NE(server_received_network_params, nullptr);
// QuicSentPacketManager::SetInitialRtt clamps the initial_rtt to between
// [min_initial_rtt, max_initial_rtt].
const QuicTime::Delta min_initial_rtt =
QuicTime::Delta::FromMicroseconds(kMinInitialRoundTripTimeUs);
const QuicTime::Delta max_initial_rtt =
QuicTime::Delta::FromMicroseconds(kMaxInitialRoundTripTimeUs);
const QuicTime::Delta expected_initial_rtt =
std::max(min_initial_rtt,
std::min(max_initial_rtt,
QuicTime::Delta::FromMilliseconds(
server_received_network_params->min_rtt_ms())));
EXPECT_EQ(
server_connection->sent_packet_manager().GetRttStats()->initial_rtt(),
expected_initial_rtt);
} else {
EXPECT_EQ(server_received_network_params, nullptr);
}
} else {
ADD_FAILURE() << "Missing server connection";
}
server_thread_->Resume();
client_->Disconnect();
// Regression test for b/206087883.
// Mock server crash.
StopServer();
// The handshake fails due to idle timeout.
client_->Connect();
ASSERT_FALSE(client_->client()->WaitForOneRttKeysAvailable());
client_->WaitForWriteToFlush();
client_->WaitForResponse();
ASSERT_FALSE(client_->client()->connected());
EXPECT_THAT(client_->connection_error(), IsError(QUIC_NETWORK_IDLE_TIMEOUT));
// Server restarts.
server_writer_ = new PacketDroppingTestWriter();
StartServer();
// Client re-connect.
client_->Connect();
ASSERT_TRUE(client_->client()->WaitForHandshakeConfirmed());
client_->WaitForWriteToFlush();
client_->WaitForResponse();
ASSERT_TRUE(client_->client()->connected());
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
server_thread_->Pause();
server_session = GetServerSession();
server_connection = GetServerConnection();
if (!GetQuicReloadableFlag(quic_tls_use_token_in_session_cache)) {
// Address token is reused.
if (server_session != nullptr && server_connection != nullptr) {
// Verify address is validated via validating token received in INITIAL
// packet.
EXPECT_FALSE(server_connection->GetStats()
.address_validated_via_decrypting_packet);
EXPECT_TRUE(server_connection->GetStats().address_validated_via_token);
} else {
ADD_FAILURE() << "Missing server connection";
}
} else {
// Verify address token is only used once.
if (server_session != nullptr && server_connection != nullptr) {
// Verify address is validated via decrypting packet.
EXPECT_TRUE(server_connection->GetStats()
.address_validated_via_decrypting_packet);
EXPECT_FALSE(server_connection->GetStats().address_validated_via_token);
} else {
ADD_FAILURE() << "Missing server connection";
}
}
server_thread_->Resume();
client_->Disconnect();
}
TEST_P(EndToEndTest, AddressTokenRefreshedByServer) {
SetQuicReloadableFlag(quic_add_cached_network_parameters_to_address_token2,
true);
ASSERT_TRUE(Initialize());
if (!version_.HasIetfQuicFrames()) {
return;
}
QuicCryptoClientConfig* client_crypto_config =
client_->client()->crypto_config();
QuicServerId server_id = client_->client()->server_id();
SendSynchronousFooRequestAndCheckResponse();
EXPECT_FALSE(GetClientSession()->EarlyDataAccepted());
client_->Disconnect();
QuicClientSessionCache* session_cache = static_cast<QuicClientSessionCache*>(
client_crypto_config->mutable_session_cache());
std::string old_address_token;
if (GetQuicReloadableFlag(quic_tls_use_token_in_session_cache)) {
old_address_token =
QuicClientSessionCachePeer::GetToken(session_cache, server_id);
} else {
old_address_token =
client_crypto_config->LookupOrCreate(server_id)->source_address_token();
}
ASSERT_TRUE(!old_address_token.empty());
SetQuicReloadableFlag(quic_add_cached_network_parameters_to_address_token2,
false);
// The 0-RTT handshake should succeed.
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(client_->client()->connected());
SendSynchronousFooRequestAndCheckResponse();
EXPECT_TRUE(GetClientSession()->EarlyDataAccepted());
server_thread_->Pause();
QuicSpdySession* server_session = GetServerSession();
QuicConnection* server_connection = GetServerConnection();
ASSERT_TRUE(server_session != nullptr && server_connection != nullptr);
// Verify address is validated via validating token received in INITIAL
// packet.
EXPECT_FALSE(
server_connection->GetStats().address_validated_via_decrypting_packet);
EXPECT_TRUE(server_connection->GetStats().address_validated_via_token);
server_thread_->Resume();
client_->Disconnect();
std::string new_address_token;
if (GetQuicReloadableFlag(quic_tls_use_token_in_session_cache)) {
new_address_token =
QuicClientSessionCachePeer::GetToken(session_cache, server_id);
} else {
new_address_token =
client_crypto_config->LookupOrCreate(server_id)->source_address_token();
}
ASSERT_TRUE(!new_address_token.empty());
ASSERT_NE(new_address_token, old_address_token);
}
// Verify that client does not reuse a source address token.
TEST_P(EndToEndTest, AddressTokenNotReusedByClient) {
ASSERT_TRUE(Initialize());
if (!version_.HasIetfQuicFrames()) {
return;
}
QuicCryptoClientConfig* client_crypto_config =
client_->client()->crypto_config();
QuicServerId server_id = client_->client()->server_id();
SendSynchronousFooRequestAndCheckResponse();
EXPECT_FALSE(GetClientSession()->EarlyDataAccepted());
client_->Disconnect();
QuicClientSessionCache* session_cache = static_cast<QuicClientSessionCache*>(
client_crypto_config->mutable_session_cache());
std::string old_address_token;
if (GetQuicReloadableFlag(quic_tls_use_token_in_session_cache)) {
old_address_token =
QuicClientSessionCachePeer::GetToken(session_cache, server_id);
} else {
old_address_token =
client_crypto_config->LookupOrCreate(server_id)->source_address_token();
}
ASSERT_TRUE(!old_address_token.empty());
// Pause the server thread again to blackhole packets from client.
server_thread_->Pause();
client_->Connect();
EXPECT_FALSE(client_->client()->WaitForOneRttKeysAvailable());
EXPECT_FALSE(client_->client()->connected());
std::string new_address_token;
if (GetQuicReloadableFlag(quic_tls_use_token_in_session_cache)) {
new_address_token =
QuicClientSessionCachePeer::GetToken(session_cache, server_id);
// Verify address token gets cleared.
ASSERT_TRUE(new_address_token.empty());
} else {
new_address_token =
client_crypto_config->LookupOrCreate(server_id)->source_address_token();
ASSERT_FALSE(new_address_token.empty());
}
server_thread_->Resume();
}
TEST_P(EndToEndTest, LargePostZeroRTTFailure) {
// Send a request and then disconnect. This prepares the client to attempt
// a 0-RTT handshake for the next request.
ASSERT_TRUE(Initialize());
std::string body(20480, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_session->ReceivedInchoateReject());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
client_->Disconnect();
// The 0-RTT handshake should succeed.
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(client_->client()->connected());
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_TRUE(client_session->EarlyDataAccepted());
EXPECT_TRUE(client_->client()->EarlyDataAccepted());
client_->Disconnect();
// Restart the server so that the 0-RTT handshake will take 1 RTT.
StopServer();
server_writer_ = new PacketDroppingTestWriter();
StartServer();
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(client_->client()->connected());
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_session->ReceivedInchoateReject());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
VerifyCleanConnection(false);
}
// Regression test for b/168020146.
TEST_P(EndToEndTest, MultipleZeroRtt) {
ASSERT_TRUE(Initialize());
EXPECT_EQ(kFooResponseBody, client_->SendSynchronousRequest("/foo"));
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_session->ReceivedInchoateReject());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
client_->Disconnect();
// The 0-RTT handshake should succeed.
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(client_->client()->connected());
EXPECT_EQ(kFooResponseBody, client_->SendSynchronousRequest("/foo"));
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_TRUE(client_session->EarlyDataAccepted());
EXPECT_TRUE(client_->client()->EarlyDataAccepted());
client_->Disconnect();
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(client_->client()->connected());
EXPECT_EQ(kFooResponseBody, client_->SendSynchronousRequest("/foo"));
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_TRUE(client_session->EarlyDataAccepted());
EXPECT_TRUE(client_->client()->EarlyDataAccepted());
client_->Disconnect();
}
TEST_P(EndToEndTest, SynchronousRequestZeroRTTFailure) {
// Send a request and then disconnect. This prepares the client to attempt
// a 0-RTT handshake for the next request.
ASSERT_TRUE(Initialize());
EXPECT_EQ(kFooResponseBody, client_->SendSynchronousRequest("/foo"));
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_session->ReceivedInchoateReject());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
client_->Disconnect();
// The 0-RTT handshake should succeed.
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(client_->client()->connected());
EXPECT_EQ(kFooResponseBody, client_->SendSynchronousRequest("/foo"));
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_TRUE(client_session->EarlyDataAccepted());
EXPECT_TRUE(client_->client()->EarlyDataAccepted());
client_->Disconnect();
// Restart the server so that the 0-RTT handshake will take 1 RTT.
StopServer();
server_writer_ = new PacketDroppingTestWriter();
StartServer();
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(client_->client()->connected());
EXPECT_EQ(kFooResponseBody, client_->SendSynchronousRequest("/foo"));
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_session->ReceivedInchoateReject());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
VerifyCleanConnection(false);
}
TEST_P(EndToEndTest, LargePostSynchronousRequest) {
// Send a request and then disconnect. This prepares the client to attempt
// a 0-RTT handshake for the next request.
ASSERT_TRUE(Initialize());
std::string body(20480, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_session->ReceivedInchoateReject());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
client_->Disconnect();
// The 0-RTT handshake should succeed.
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(client_->client()->connected());
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_TRUE(client_session->EarlyDataAccepted());
EXPECT_TRUE(client_->client()->EarlyDataAccepted());
client_->Disconnect();
// Restart the server so that the 0-RTT handshake will take 1 RTT.
StopServer();
server_writer_ = new PacketDroppingTestWriter();
StartServer();
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(client_->client()->connected());
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_session->ReceivedInchoateReject());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
VerifyCleanConnection(false);
}
// This is a regression test for b/162595387
TEST_P(EndToEndTest, PostZeroRTTRequestDuringHandshake) {
if (!version_.UsesTls()) {
// This test is TLS specific.
ASSERT_TRUE(Initialize());
return;
}
// Send a request and then disconnect. This prepares the client to attempt
// a 0-RTT handshake for the next request.
NiceMock<MockQuicConnectionDebugVisitor> visitor;
connection_debug_visitor_ = &visitor;
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_session->ReceivedInchoateReject());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
client_->Disconnect();
// The 0-RTT handshake should succeed.
ON_CALL(visitor, OnCryptoFrame(_))
.WillByDefault(Invoke([this](const QuicCryptoFrame& frame) {
if (frame.level != ENCRYPTION_HANDSHAKE) {
return;
}
// At this point in the handshake, the client should have derived
// ENCRYPTION_ZERO_RTT keys (thus set encryption_established). It
// should also have set ENCRYPTION_HANDSHAKE keys after receiving
// the server's ENCRYPTION_INITIAL flight.
EXPECT_TRUE(
GetClientSession()->GetCryptoStream()->encryption_established());
EXPECT_TRUE(
GetClientConnection()->framer().HasEncrypterOfEncryptionLevel(
ENCRYPTION_HANDSHAKE));
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
EXPECT_GT(
client_->SendMessage(headers, "", /*fin*/ true, /*flush*/ false),
0);
}));
client_->Connect();
ASSERT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
client_->WaitForWriteToFlush();
client_->WaitForResponse();
ASSERT_TRUE(client_->client()->connected());
EXPECT_EQ(kFooResponseBody, client_->response_body());
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_TRUE(client_session->EarlyDataAccepted());
EXPECT_TRUE(client_->client()->EarlyDataAccepted());
}
// Regression test for b/166836136.
TEST_P(EndToEndTest, RetransmissionAfterZeroRTTRejectBeforeOneRtt) {
if (!version_.UsesTls()) {
// This test is TLS specific.
ASSERT_TRUE(Initialize());
return;
}
// Send a request and then disconnect. This prepares the client to attempt
// a 0-RTT handshake for the next request.
NiceMock<MockQuicConnectionDebugVisitor> visitor;
connection_debug_visitor_ = &visitor;
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_session->ReceivedInchoateReject());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
client_->Disconnect();
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(client_->client()->connected());
EXPECT_EQ(kFooResponseBody, client_->SendSynchronousRequest("/foo"));
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_TRUE(client_session->EarlyDataAccepted());
EXPECT_TRUE(client_->client()->EarlyDataAccepted());
client_->Disconnect();
// Restart the server so that the 0-RTT handshake will take 1 RTT.
StopServer();
server_writer_ = new PacketDroppingTestWriter();
StartServer();
ON_CALL(visitor, OnZeroRttRejected(_)).WillByDefault(Invoke([this]() {
EXPECT_FALSE(GetClientSession()->IsEncryptionEstablished());
}));
// The 0-RTT handshake should fail.
client_->Connect();
ASSERT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
client_->WaitForWriteToFlush();
client_->WaitForResponse();
ASSERT_TRUE(client_->client()->connected());
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
}
TEST_P(EndToEndTest, RejectWithPacketLoss) {
// In this test, we intentionally drop the first packet from the
// server, which corresponds with the initial REJ response from
// the server.
server_writer_->set_fake_drop_first_n_packets(1);
ASSERT_TRUE(Initialize());
}
TEST_P(EndToEndTest, SetInitialReceivedConnectionOptions) {
QuicTagVector initial_received_options;
initial_received_options.push_back(kTBBR);
initial_received_options.push_back(kIW10);
initial_received_options.push_back(kPRST);
EXPECT_TRUE(server_config_.SetInitialReceivedConnectionOptions(
initial_received_options));
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
server_thread_->WaitForCryptoHandshakeConfirmed();
EXPECT_FALSE(server_config_.SetInitialReceivedConnectionOptions(
initial_received_options));
// Verify that server's configuration is correct.
server_thread_->Pause();
EXPECT_TRUE(server_config_.HasReceivedConnectionOptions());
EXPECT_TRUE(
ContainsQuicTag(server_config_.ReceivedConnectionOptions(), kTBBR));
EXPECT_TRUE(
ContainsQuicTag(server_config_.ReceivedConnectionOptions(), kIW10));
EXPECT_TRUE(
ContainsQuicTag(server_config_.ReceivedConnectionOptions(), kPRST));
}
TEST_P(EndToEndTest, LargePostSmallBandwidthLargeBuffer) {
ASSERT_TRUE(Initialize());
SetPacketSendDelay(QuicTime::Delta::FromMicroseconds(1));
// 256KB per second with a 256KB buffer from server to client. Wireless
// clients commonly have larger buffers, but our max CWND is 200.
server_writer_->set_max_bandwidth_and_buffer_size(
QuicBandwidth::FromBytesPerSecond(256 * 1024), 256 * 1024);
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
// 1 MB body.
std::string body(1024 * 1024, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
EXPECT_EQ(kFooResponseBody,
client_->SendCustomSynchronousRequest(headers, body));
// This connection may drop packets, because the buffer is smaller than the
// max CWND.
VerifyCleanConnection(true);
}
TEST_P(EndToEndTest, DoNotSetSendAlarmIfConnectionFlowControlBlocked) {
// Regression test for b/14677858.
// Test that the resume write alarm is not set in QuicConnection::OnCanWrite
// if currently connection level flow control blocked. If set, this results in
// an infinite loop in the EpollServer, as the alarm fires and is immediately
// rescheduled.
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
// Ensure both stream and connection level are flow control blocked by setting
// the send window offset to 0.
const uint64_t flow_control_window =
server_config_.GetInitialStreamFlowControlWindowToSend();
QuicSpdyClientStream* stream = client_->GetOrCreateStream();
QuicSession* session = GetClientSession();
ASSERT_TRUE(session);
QuicStreamPeer::SetSendWindowOffset(stream, 0);
QuicFlowControllerPeer::SetSendWindowOffset(session->flow_controller(), 0);
EXPECT_TRUE(stream->IsFlowControlBlocked());
EXPECT_TRUE(session->flow_controller()->IsBlocked());
// Make sure that the stream has data pending so that it will be marked as
// write blocked when it receives a stream level WINDOW_UPDATE.
stream->WriteOrBufferBody("hello", false);
// The stream now attempts to write, fails because it is still connection
// level flow control blocked, and is added to the write blocked list.
QuicWindowUpdateFrame window_update(kInvalidControlFrameId, stream->id(),
2 * flow_control_window);
stream->OnWindowUpdateFrame(window_update);
// Prior to fixing b/14677858 this call would result in an infinite loop in
// Chromium. As a proxy for detecting this, we now check whether the
// send alarm is set after OnCanWrite. It should not be, as the
// connection is still flow control blocked.
session->connection()->OnCanWrite();
QuicAlarm* send_alarm =
QuicConnectionPeer::GetSendAlarm(session->connection());
EXPECT_FALSE(send_alarm->IsSet());
}
TEST_P(EndToEndTest, InvalidStream) {
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
std::string body(kMaxOutgoingPacketSize, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
// Force the client to write with a stream ID belonging to a nonexistent
// server-side stream.
QuicSpdySession* session = GetClientSession();
ASSERT_TRUE(session);
QuicSessionPeer::SetNextOutgoingBidirectionalStreamId(
session, GetNthServerInitiatedBidirectionalId(0));
client_->SendCustomSynchronousRequest(headers, body);
EXPECT_THAT(client_->stream_error(),
IsStreamError(QUIC_STREAM_CONNECTION_ERROR));
EXPECT_THAT(client_->connection_error(), IsError(QUIC_INVALID_STREAM_ID));
}
// Test that the server resets the stream if the client sends a request
// with overly large headers.
TEST_P(EndToEndTest, LargeHeaders) {
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
std::string body(kMaxOutgoingPacketSize, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
headers["key1"] = std::string(15 * 1024, 'a');
headers["key2"] = std::string(15 * 1024, 'a');
headers["key3"] = std::string(15 * 1024, 'a');
client_->SendCustomSynchronousRequest(headers, body);
if (version_.UsesHttp3()) {
// QuicSpdyStream::OnHeadersTooLarge() resets the stream with
// QUIC_HEADERS_TOO_LARGE. This is sent as H3_EXCESSIVE_LOAD, the closest
// HTTP/3 error code, and translated back to QUIC_STREAM_EXCESSIVE_LOAD on
// the receiving side.
EXPECT_THAT(client_->stream_error(),
IsStreamError(QUIC_STREAM_EXCESSIVE_LOAD));
} else {
EXPECT_THAT(client_->stream_error(), IsStreamError(QUIC_HEADERS_TOO_LARGE));
}
EXPECT_THAT(client_->connection_error(), IsQuicNoError());
}
TEST_P(EndToEndTest, EarlyResponseWithQuicStreamNoError) {
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
std::string large_body(1024 * 1024, 'a');
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
// Insert an invalid content_length field in request to trigger an early
// response from server.
headers["content-length"] = "-3";
client_->SendCustomSynchronousRequest(headers, large_body);
EXPECT_EQ("bad", client_->response_body());
CheckResponseHeaders("500");
EXPECT_THAT(client_->stream_error(), IsQuicStreamNoError());
EXPECT_THAT(client_->connection_error(), IsQuicNoError());
}
// TODO(rch): this test seems to cause net_unittests timeouts :|
TEST_P(EndToEndTest, QUIC_TEST_DISABLED_IN_CHROME(MultipleTermination)) {
ASSERT_TRUE(Initialize());
// Set the offset so we won't frame. Otherwise when we pick up termination
// before HTTP framing is complete, we send an error and close the stream,
// and the second write is picked up as writing on a closed stream.
QuicSpdyClientStream* stream = client_->GetOrCreateStream();
ASSERT_TRUE(stream != nullptr);
QuicStreamPeer::SetStreamBytesWritten(3, stream);
client_->SendData("bar", true);
client_->WaitForWriteToFlush();
// By default the stream protects itself from writes after terminte is set.
// Override this to test the server handling buggy clients.
QuicStreamPeer::SetWriteSideClosed(false, client_->GetOrCreateStream());
EXPECT_QUIC_BUG(client_->SendData("eep", true), "Fin already buffered");
}
TEST_P(EndToEndTest, Timeout) {
client_config_.SetIdleNetworkTimeout(QuicTime::Delta::FromMicroseconds(500));
// Note: we do NOT ASSERT_TRUE: we may time out during initial handshake:
// that's enough to validate timeout in this case.
Initialize();
while (client_->client()->connected()) {
client_->client()->WaitForEvents();
}
}
TEST_P(EndToEndTest, MaxDynamicStreamsLimitRespected) {
// Set a limit on maximum number of incoming dynamic streams.
// Make sure the limit is respected by the peer.
const uint32_t kServerMaxDynamicStreams = 1;
server_config_.SetMaxBidirectionalStreamsToSend(kServerMaxDynamicStreams);
ASSERT_TRUE(Initialize());
if (version_.HasIetfQuicFrames()) {
// Do not run this test for /IETF QUIC. This test relies on the fact that
// Google QUIC allows a small number of additional streams beyond the
// negotiated limit, which is not supported in IETF QUIC. Note that the test
// needs to be here, after calling Initialize(), because all tests end up
// calling EndToEndTest::TearDown(), which asserts that Initialize has been
// called and then proceeds to tear things down -- which fails if they are
// not properly set up.
return;
}
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
// Make the client misbehave after negotiation.
const int kServerMaxStreams = kMaxStreamsMinimumIncrement + 1;
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
QuicSessionPeer::SetMaxOpenOutgoingStreams(client_session,
kServerMaxStreams + 1);
SpdyHeaderBlock headers;
headers[":method"] = "POST";
headers[":path"] = "/foo";
headers[":scheme"] = "https";
headers[":authority"] = server_hostname_;
headers["content-length"] = "3";
// The server supports a small number of additional streams beyond the
// negotiated limit. Open enough streams to go beyond that limit.
for (int i = 0; i < kServerMaxStreams + 1; ++i) {
client_->SendMessage(headers, "", /*fin=*/false);
}
client_->WaitForResponse();
EXPECT_TRUE(client_->connected());
EXPECT_THAT(client_->stream_error(), IsStreamError(QUIC_REFUSED_STREAM));
EXPECT_THAT(client_->connection_error(), IsQuicNoError());
}
TEST_P(EndToEndTest, SetIndependentMaxDynamicStreamsLimits) {
// Each endpoint can set max dynamic streams independently.
const uint32_t kClientMaxDynamicStreams = 4;
const uint32_t kServerMaxDynamicStreams = 3;
client_config_.SetMaxBidirectionalStreamsToSend(kClientMaxDynamicStreams);
server_config_.SetMaxBidirectionalStreamsToSend(kServerMaxDynamicStreams);
client_config_.SetMaxUnidirectionalStreamsToSend(kClientMaxDynamicStreams);
server_config_.SetMaxUnidirectionalStreamsToSend(kServerMaxDynamicStreams);
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
// The client has received the server's limit and vice versa.
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
// The value returned by max_allowed... includes the Crypto and Header
// stream (created as a part of initialization). The config. values,
// above, are treated as "number of requests/responses" - that is, they do
// not include the static Crypto and Header streams. Reduce the value
// returned by max_allowed... by 2 to remove the static streams from the
// count.
size_t client_max_open_outgoing_bidirectional_streams =
version_.HasIetfQuicFrames()
? QuicSessionPeer::ietf_streamid_manager(client_session)
->max_outgoing_bidirectional_streams()
: QuicSessionPeer::GetStreamIdManager(client_session)
->max_open_outgoing_streams();
size_t client_max_open_outgoing_unidirectional_streams =
version_.HasIetfQuicFrames()
? QuicSessionPeer::ietf_streamid_manager(client_session)
->max_outgoing_unidirectional_streams() -
kHttp3StaticUnidirectionalStreamCount
: QuicSessionPeer::GetStreamIdManager(client_session)
->max_open_outgoing_streams();
EXPECT_EQ(kServerMaxDynamicStreams,
client_max_open_outgoing_bidirectional_streams);
EXPECT_EQ(kServerMaxDynamicStreams,
client_max_open_outgoing_unidirectional_streams);
server_thread_->Pause();
QuicSession* server_session = GetServerSession();
if (server_session != nullptr) {
size_t server_max_open_outgoing_bidirectional_streams =
version_.HasIetfQuicFrames()
? QuicSessionPeer::ietf_streamid_manager(server_session)
->max_outgoing_bidirectional_streams()
: QuicSessionPeer::GetStreamIdManager(server_session)
->max_open_outgoing_streams();
size_t server_max_open_outgoing_unidirectional_streams =
version_.HasIetfQuicFrames()
? QuicSessionPeer::ietf_streamid_manager(server_session)
->max_outgoing_unidirectional_streams() -
kHttp3StaticUnidirectionalStreamCount
: QuicSessionPeer::GetStreamIdManager(server_session)
->max_open_outgoing_streams();
EXPECT_EQ(kClientMaxDynamicStreams,
server_max_open_outgoing_bidirectional_streams);
EXPECT_EQ(kClientMaxDynamicStreams,
server_max_open_outgoing_unidirectional_streams);
} else {
ADD_FAILURE() << "Missing server session";
}
server_thread_->Resume();
}
TEST_P(EndToEndTest, NegotiateCongestionControl) {
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
CongestionControlType expected_congestion_control_type = kRenoBytes;
switch (GetParam().congestion_control_tag) {
case kRENO:
expected_congestion_control_type = kRenoBytes;
break;
case kTBBR:
expected_congestion_control_type = kBBR;
break;
case kQBIC:
expected_congestion_control_type = kCubicBytes;
break;
case kB2ON:
expected_congestion_control_type = kBBRv2;
break;
default:
QUIC_DLOG(FATAL) << "Unexpected congestion control tag";
}
server_thread_->Pause();
const QuicSentPacketManager* server_sent_packet_manager =
GetSentPacketManagerFromFirstServerSession();
if (server_sent_packet_manager != nullptr) {
EXPECT_EQ(
expected_congestion_control_type,
QuicSentPacketManagerPeer::GetSendAlgorithm(*server_sent_packet_manager)
->GetCongestionControlType());
} else {
ADD_FAILURE() << "Missing server sent packet manager";
}
server_thread_->Resume();
}
TEST_P(EndToEndTest, ClientSuggestsRTT) {
// Client suggests initial RTT, verify it is used.
const QuicTime::Delta kInitialRTT = QuicTime::Delta::FromMicroseconds(20000);
client_config_.SetInitialRoundTripTimeUsToSend(kInitialRTT.ToMicroseconds());
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(server_thread_);
server_thread_->WaitForCryptoHandshakeConfirmed();
// Pause the server so we can access the server's internals without races.
server_thread_->Pause();
const QuicSentPacketManager* client_sent_packet_manager =
GetSentPacketManagerFromClientSession();
const QuicSentPacketManager* server_sent_packet_manager =
GetSentPacketManagerFromFirstServerSession();
if (client_sent_packet_manager != nullptr &&
server_sent_packet_manager != nullptr) {
EXPECT_EQ(kInitialRTT,
client_sent_packet_manager->GetRttStats()->initial_rtt());
EXPECT_EQ(kInitialRTT,
server_sent_packet_manager->GetRttStats()->initial_rtt());
} else {
ADD_FAILURE() << "Missing sent packet manager";
}
server_thread_->Resume();
}
TEST_P(EndToEndTest, ClientSuggestsIgnoredRTT) {
// Client suggests initial RTT, but also specifies NRTT, so it's not used.
const QuicTime::Delta kInitialRTT = QuicTime::Delta::FromMicroseconds(20000);
client_config_.SetInitialRoundTripTimeUsToSend(kInitialRTT.ToMicroseconds());
QuicTagVector options;
options.push_back(kNRTT);
client_config_.SetConnectionOptionsToSend(options);
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(server_thread_);
server_thread_->WaitForCryptoHandshakeConfirmed();
// Pause the server so we can access the server's internals without races.
server_thread_->Pause();
const QuicSentPacketManager* client_sent_packet_manager =
GetSentPacketManagerFromClientSession();
const QuicSentPacketManager* server_sent_packet_manager =
GetSentPacketManagerFromFirstServerSession();
if (client_sent_packet_manager != nullptr &&
server_sent_packet_manager != nullptr) {
EXPECT_EQ(kInitialRTT,
client_sent_packet_manager->GetRttStats()->initial_rtt());
EXPECT_EQ(kInitialRTT,
server_sent_packet_manager->GetRttStats()->initial_rtt());
} else {
ADD_FAILURE() << "Missing sent packet manager";
}
server_thread_->Resume();
}
// Regression test for b/171378845
TEST_P(EndToEndTest, ClientDisablesGQuicZeroRtt) {
if (version_.UsesTls()) {
// This feature is gQUIC only.
ASSERT_TRUE(Initialize());
return;
}
QuicTagVector options;
options.push_back(kQNZ2);
client_config_.SetClientConnectionOptions(options);
ASSERT_TRUE(Initialize());
EXPECT_EQ(kFooResponseBody, client_->SendSynchronousRequest("/foo"));
QuicSpdyClientSession* client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_session->ReceivedInchoateReject());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->ReceivedInchoateReject());
client_->Disconnect();
// Make sure that the request succeeds but 0-RTT was not used.
client_->Connect();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(client_->client()->connected());
EXPECT_EQ(kFooResponseBody, client_->SendSynchronousRequest("/foo"));
client_session = GetClientSession();
ASSERT_TRUE(client_session);
EXPECT_FALSE(client_session->EarlyDataAccepted());
EXPECT_FALSE(client_->client()->EarlyDataAccepted());
}
TEST_P(EndToEndTest, MaxInitialRTT) {
// Client tries to suggest twice the server's max initial rtt and the server
// uses the max.
client_config_.SetInitialRoundTripTimeUsToSend(2 *
kMaxInitialRoundTripTimeUs);
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
ASSERT_TRUE(server_thread_);
server_thread_->WaitForCryptoHandshakeConfirmed();
// Pause the server so we can access the server's internals without races.
server_thread_->Pause();
const QuicSentPacketManager* client_sent_packet_manager =
GetSentPacketManagerFromClientSession();
const QuicSentPacketManager* server_sent_packet_manager =
GetSentPacketManagerFromFirstServerSession();
if (client_sent_packet_manager != nullptr &&
server_sent_packet_manager != nullptr) {
// Now that acks have been exchanged, the RTT estimate has decreased on the
// server and is not infinite on the client.
EXPECT_FALSE(
client_sent_packet_manager->GetRttStats()->smoothed_rtt().IsInfinite());
const RttStats* server_rtt_stats =
server_sent_packet_manager->GetRttStats();
EXPECT_EQ(static_cast<int64_t>(kMaxInitialRoundTripTimeUs),
server_rtt_stats->initial_rtt().ToMicroseconds());
EXPECT_GE(static_cast<int64_t>(kMaxInitialRoundTripTimeUs),
server_rtt_stats->smoothed_rtt().ToMicroseconds());
} else {
ADD_FAILURE() << "Missing sent packet manager";
}
server_thread_->Resume();
}
TEST_P(EndToEndTest, MinInitialRTT) {
// Client tries to suggest 0 and the server uses the default.
client_config_.SetInitialRoundTripTimeUsToSend(0);
ASSERT_TRUE(Initialize());
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
server_thread_->WaitForCryptoHandshakeConfirmed();
// Pause the server so we can access the server's internals without races.
server_thread_->Pause();
const QuicSentPacketManager* client_sent_packet_manager =
GetSentPacketManagerFromClientSession();
const QuicSentPacketManager* server_sent_packet_manager =
GetSentPacketManagerFromFirstServerSession();
if (client_sent_packet_manager != nullptr &&
server_sent_packet_manager != nullptr) {
// Now that acks have been exchanged, the RTT estimate has decreased on the
// server and is not infinite on the client.
EXPECT_FALSE(
client_sent_packet_manager->GetRttStats()->smoothed_rtt().IsInfinite());
// Expect the default rtt of 100ms.
EXPECT_EQ(QuicTime::Delta::FromMilliseconds(100),
server_sent_packet_manager->GetRttStats()->initial_rtt());
// Ensure the bandwidth is valid.
client_sent_packet_manager->BandwidthEstimate();
server_sent_packet_manager->BandwidthEstimate();
} else {
ADD_FAILURE() << "Missing sent packet manager";
}
server_thread_->Resume();
}
TEST_P(EndToEndTest, 0ByteConnectionId) {
if (version_.HasIetfInvariantHeader()) {
// SetBytesForConnectionIdToSend only applies to Google QUIC encoding.
ASSERT_TRUE(Initialize());
return;
}
client_config_.SetBytesForConnectionIdToSend(0);
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
QuicConnection* client_connection = GetClientConnection();
ASSERT_TRUE(client_connection);
QuicPacketHeader* header =
QuicConnectionPeer::GetLastHeader(client_connection);
EXPECT_EQ(CONNECTION_ID_ABSENT, header->source_connection_id_included);
}
TEST_P(EndToEndTest, 8ByteConnectionId) {
if (version_.HasIetfInvariantHeader()) {
// SetBytesForConnectionIdToSend only applies to Google QUIC encoding.
ASSERT_TRUE(Initialize());
return;
}
client_config_.SetBytesForConnectionIdToSend(8);
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
QuicConnection* client_connection = GetClientConnection();
ASSERT_TRUE(client_connection);
QuicPacketHeader* header =
QuicConnectionPeer::GetLastHeader(client_connection);
EXPECT_EQ(CONNECTION_ID_PRESENT, header->destination_connection_id_included);
}
TEST_P(EndToEndTest, 15ByteConnectionId) {
if (version_.HasIetfInvariantHeader()) {
// SetBytesForConnectionIdToSend only applies to Google QUIC encoding.
ASSERT_TRUE(Initialize());
return;
}
client_config_.SetBytesForConnectionIdToSend(15);
ASSERT_TRUE(Initialize());
// Our server is permissive and allows for out of bounds values.
SendSynchronousFooRequestAndCheckResponse();
QuicConnection* client_connection = GetClientConnection();
ASSERT_TRUE(client_connection);
QuicPacketHeader* header =
QuicConnectionPeer::GetLastHeader(client_connection);
EXPECT_EQ(CONNECTION_ID_PRESENT, header->destination_connection_id_included);
}
TEST_P(EndToEndTest, ResetConnection) {
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
client_->ResetConnection();
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
SendSynchronousBarRequestAndCheckResponse();
}
// Regression test for b/180737158.
TEST_P(
EndToEndTest,
HalfRttResponseBlocksShloRetransmissionWithoutTokenBasedAddressValidation) {
// Turn off token based address validation to make the server get constrained
// by amplification factor during handshake.
SetQuicFlag(FLAGS_quic_reject_retry_token_in_initial_packet, true);
ASSERT_TRUE(Initialize());
if (!version_.SupportsAntiAmplificationLimit()) {
return;
}
// Perform a full 1-RTT handshake to get the new session ticket such that the
// next connection will perform a 0-RTT handshake.
EXPECT_TRUE(client_->client()->WaitForHandshakeConfirmed());
client_->Disconnect();
server_thread_->Pause();
// Drop the 1st server packet which is the coalesced INITIAL + HANDSHAKE +
// 1RTT.
PacketDroppingTestWriter* writer = new PacketDroppingTestWriter();
writer->set_fake_drop_first_n_packets(1);
QuicDispatcherPeer::UseWriter(
QuicServerPeer::GetDispatcher(server_thread_->server()), writer);
server_thread_->Resume();
// Large response (100KB) for 0-RTT request.
std::string large_body(102400, 'a');
AddToCache("/large_response", 200, large_body);
SendSynchronousRequestAndCheckResponse(client_.get(), "/large_response",
large_body);
}
TEST_P(EndToEndTest, MaxStreamsUberTest) {
// Connect with lower fake packet loss than we'd like to test. Until
// b/10126687 is fixed, losing handshake packets is pretty brutal.
SetPacketLossPercentage(1);
ASSERT_TRUE(Initialize());
std::string large_body(10240, 'a');
int max_streams = 100;
AddToCache("/large_response", 200, large_body);
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
SetPacketLossPercentage(10);
for (int i = 0; i < max_streams; ++i) {
EXPECT_LT(0, client_->SendRequest("/large_response"));
}
// WaitForEvents waits 50ms and returns true if there are outstanding
// requests.
while (client_->client()->WaitForEvents()) {
ASSERT_TRUE(client_->connected());
}
}
TEST_P(EndToEndTest, StreamCancelErrorTest) {
ASSERT_TRUE(Initialize());
std::string small_body(256, 'a');
AddToCache("/small_response", 200, small_body);
EXPECT_TRUE(client_->client()->WaitForOneRttKeysAvailable());
QuicSession* session = GetClientSession();
ASSERT_TRUE(session);
// Lose the request.
SetPacketLossPercentage(100);
EXPECT_LT(0, client_->SendRequest("/small_response"));
client_->client()->WaitForEvents();
// Transmit the cancel, and ensure the connection is torn down properly.
SetPacketLossPercentage(0);
QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0);
QuicConnection* client_connection = GetClientConnection();
ASSERT_TRUE(client_connection);
const QuicPacketCount packets_sent_before =
client_connection->GetStats().packets_sent;
session->ResetStream(stream_id, QUIC_STREAM_CANCELLED);
const QuicPacketCount packets_sent_now =
client_connection->GetStats().packets_sent;
if (version_.UsesHttp3()) {
// Make sure 2 packets were sent, one for QPACK instructions, another for
// RESET_STREAM and STOP_SENDING.
EXPECT_EQ(packets_sent_before + 2, packets_sent_now);
}
// WaitForEvents waits 50ms and returns true if there are outstanding
// requests.
while (client_->client()->WaitForEvents()) {
ASSERT_TRUE(client_->connected());
}
// It should be completely fine to RST a stream before any data has been
// received for that stream.
EXPECT_THAT(client_->connection_error(), IsQuicNoError());
}
TEST_P(EndToEndTest, ConnectionMigrationClientIPChanged) {
ASSERT_TRUE(Initialize());
SendSynchronousFooRequestAndCheckResponse();
// Store the client IP address which was used to send the first request.
QuicIpAddress old_host =
client_->client()->network_helper()->GetLatestClientAddress().host();
// Migrate socket to the new IP address.
QuicIpAddress new_host = TestLoopback(2);
EXPECT_NE(old_host, new_host);
ASSERT_TRUE(client_->client()->MigrateSocket(new_host));
// Send a request using the new socket.
SendSynchronousBarRequestAndCheckResponse();
if (!version_.HasIetfQuicFrames() ||
!client_->client()->session()->connection()->validate_client_address()) {
return;
}
QuicConnection* client_connection = GetClientConnection();
ASSERT_TRUE(client_connection);
EXPECT_EQ(1u,
client_connection->GetStats().num_connectivity_probing_received);
// Send another request.
SendSynchronousBarRequestAndCheckResponse();
// By the time the 2nd request is completed, the PATH_RESPONSE must have been
// received by the server.
server_thread_->Pause();
QuicConnection* server_connection = GetServerConnection();
if (server_connection != nullptr) {
EXPECT_FALSE(server_connection->HasPendingPathValidation());
EXPECT_EQ(1u, server_connection->GetStats().num_validated_peer_migration);
} else {
ADD_FAILURE() << "Missing server connection";
}
server_thread_->Resume();
}
TEST_P(EndToEndTest, IetfConnectionMigrationClientIPChangedMultipleTimes) {
ASSERT_TRUE(Initialize());
if (!GetClientConnection()->connection_migration_use_new_cid()) {
return;
}
SendSynchronousFooRequestAndCheckResponse();
// Store the client IP address which was used to send the first request.
QuicIpAddress host0 =
client_->client()->network_helper()->GetLatestClientAddress().host();
QuicConnection* client_connection = GetClientConnection();
ASSERT_TRUE(client_connection != nullptr);
// Migrate socket to a new IP address.
QuicIpAddress host1 = TestLoopback(2);
EXPECT_NE(host0, host1);
ASSERT_TRUE(
QuicConnectionPeer::HasUnusedPeerIssuedConnectionId(client_connection));
QuicConnectionId server_cid0 = client_connection->connection_id();
EXPECT_TRUE(QuicConnectionPeer::GetServerConnectionIdOnAlternativePath(
client_connection)
.IsEmpty());
EXPECT_TRUE(client_->client()->MigrateSocket(host1));
QuicConnectionId server_cid1 = client_connection->connection_id();
EXPECT_FALSE(server_cid1.IsEmpty());
EXPECT_NE(server_cid0, server_cid1);
EXPECT_TRUE(QuicConnectionPeer::GetServerConnectionIdOnAlternativePath(
client_connection)
.IsEmpty());
// Send a request using the new socket.
SendSynchronousBarRequestAndCheckResponse();
EXPECT_EQ(1u,
client_connection->GetStats().num_connectivity_probing_received);
// Send another request and wait for response making sure path response is
// received at server.
SendSynchronousBarRequestAndCheckResponse();
// Migrate socket to a new IP address.
WaitForNewConnectionIds();
EXPECT_EQ(1u, client_connection->GetStats().num_retire_connection_id_sent);
QuicIpAddress host2 = TestLoopback(3);
EXPECT_NE(host0, host2);
EXPECT_NE(host1, host2);
EXPECT_TRUE(QuicConnectionPeer::GetServerConnectionIdOnAlternativePath(
client_connection)
.IsEmpty());
EXPECT_TRUE(client_->client()->MigrateSocket(host2));
QuicConnectionId server_cid2 = client_connection->connection_id();
EXPECT_FALSE(server_cid2.IsEmpty());
EXPECT_NE(server_cid0, server_cid2);
EXPECT_NE(server_cid1, server_cid2);
EXPECT_TRUE(QuicConnectionPeer::GetServerConnectionIdOnAlternativePath(
client_connection)
.IsEmpty());
// Send another request using the new socket and wait for response making sure
// path response is received at server.
SendSynchronousBarRequestAndCheckResponse();
EXPECT_EQ(2u,
client_connection->GetStats().num_connectivity_probing_received);
// Migrate socket back to an old IP address.
WaitForNewConnectionIds();
EXPECT_EQ(2u, client_connection->GetStats().num_retire_connection_id_sent);
EXPECT_TRUE(QuicConnectionPeer::GetServerConnectionIdOnAlternativePath(
client_connection)
.IsEmpty());
EXPECT_TRUE(client_->client()->MigrateSocket(host1));
QuicConnectionId server_cid3 = client_connection->connection_id();
EXPECT_FALSE(server_cid3.IsEmpty());
EXPECT_NE(server_cid0, server_cid3);
EXPECT_NE(server_cid1, server_cid3);
EXPECT_NE(server_cid2, server_cid3);
EXPECT_TRUE(QuicConnectionPeer::GetServerConnectionIdOnAlternativePath(
client_connection)
.IsEmpty());
const auto* client_packet_creator =
QuicConnectionPeer::GetPacketCreator(client_connection);
EXPECT_TRUE(client_packet_creator->GetClientConnectionId().IsEmpty());
EXPECT_EQ(server_cid3, client_packet_creator->GetServerConnectionId());
// Send another request using the new socket and wait for response making sure
// path response is received at server.
SendSynchronousBarRequestAndCheckResponse();