|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "net/third_party/quiche/src/quic/core/quic_framer.h" | 
|  |  | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <utility> | 
|  |  | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/crypto_framer.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/crypto_handshake.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/crypto_handshake_message.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/crypto_utils.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/quic_random.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_connection_id.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_constants.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_data_reader.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_data_writer.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_error_codes.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_packets.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_socket_address_coder.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_stream_frame_data_producer.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_types.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_utils.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_versions.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_aligned.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_client_stats.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_fallthrough.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_logging.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_stack_trace.h" | 
|  | #include "net/third_party/quiche/src/common/platform/api/quiche_arraysize.h" | 
|  | #include "net/third_party/quiche/src/common/platform/api/quiche_str_cat.h" | 
|  | #include "net/third_party/quiche/src/common/platform/api/quiche_string_piece.h" | 
|  | #include "net/third_party/quiche/src/common/platform/api/quiche_text_utils.h" | 
|  |  | 
|  | namespace quic { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | #define ENDPOINT \ | 
|  | (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") | 
|  |  | 
|  | // Number of bits the packet number length bits are shifted from the right | 
|  | // edge of the header. | 
|  | const uint8_t kPublicHeaderSequenceNumberShift = 4; | 
|  |  | 
|  | // There are two interpretations for the Frame Type byte in the QUIC protocol, | 
|  | // resulting in two Frame Types: Special Frame Types and Regular Frame Types. | 
|  | // | 
|  | // Regular Frame Types use the Frame Type byte simply. Currently defined | 
|  | // Regular Frame Types are: | 
|  | // Padding            : 0b 00000000 (0x00) | 
|  | // ResetStream        : 0b 00000001 (0x01) | 
|  | // ConnectionClose    : 0b 00000010 (0x02) | 
|  | // GoAway             : 0b 00000011 (0x03) | 
|  | // WindowUpdate       : 0b 00000100 (0x04) | 
|  | // Blocked            : 0b 00000101 (0x05) | 
|  | // | 
|  | // Special Frame Types encode both a Frame Type and corresponding flags | 
|  | // all in the Frame Type byte. Currently defined Special Frame Types | 
|  | // are: | 
|  | // Stream             : 0b 1xxxxxxx | 
|  | // Ack                : 0b 01xxxxxx | 
|  | // | 
|  | // Semantics of the flag bits above (the x bits) depends on the frame type. | 
|  |  | 
|  | // Masks to determine if the frame type is a special use | 
|  | // and for specific special frame types. | 
|  | const uint8_t kQuicFrameTypeBrokenMask = 0xE0;   // 0b 11100000 | 
|  | const uint8_t kQuicFrameTypeSpecialMask = 0xC0;  // 0b 11000000 | 
|  | const uint8_t kQuicFrameTypeStreamMask = 0x80; | 
|  | const uint8_t kQuicFrameTypeAckMask = 0x40; | 
|  | static_assert(kQuicFrameTypeSpecialMask == | 
|  | (kQuicFrameTypeStreamMask | kQuicFrameTypeAckMask), | 
|  | "Invalid kQuicFrameTypeSpecialMask"); | 
|  |  | 
|  | // The stream type format is 1FDOOOSS, where | 
|  | //    F is the fin bit. | 
|  | //    D is the data length bit (0 or 2 bytes). | 
|  | //    OO/OOO are the size of the offset. | 
|  | //    SS is the size of the stream ID. | 
|  | // Note that the stream encoding can not be determined by inspection. It can | 
|  | // be determined only by knowing the QUIC Version. | 
|  | // Stream frame relative shifts and masks for interpreting the stream flags. | 
|  | // StreamID may be 1, 2, 3, or 4 bytes. | 
|  | const uint8_t kQuicStreamIdShift = 2; | 
|  | const uint8_t kQuicStreamIDLengthMask = 0x03; | 
|  |  | 
|  | // Offset may be 0, 2, 4, or 8 bytes. | 
|  | const uint8_t kQuicStreamShift = 3; | 
|  | const uint8_t kQuicStreamOffsetMask = 0x07; | 
|  |  | 
|  | // Data length may be 0 or 2 bytes. | 
|  | const uint8_t kQuicStreamDataLengthShift = 1; | 
|  | const uint8_t kQuicStreamDataLengthMask = 0x01; | 
|  |  | 
|  | // Fin bit may be set or not. | 
|  | const uint8_t kQuicStreamFinShift = 1; | 
|  | const uint8_t kQuicStreamFinMask = 0x01; | 
|  |  | 
|  | // The format is 01M0LLOO, where | 
|  | //   M if set, there are multiple ack blocks in the frame. | 
|  | //  LL is the size of the largest ack field. | 
|  | //  OO is the size of the ack blocks offset field. | 
|  | // packet number size shift used in AckFrames. | 
|  | const uint8_t kQuicSequenceNumberLengthNumBits = 2; | 
|  | const uint8_t kActBlockLengthOffset = 0; | 
|  | const uint8_t kLargestAckedOffset = 2; | 
|  |  | 
|  | // Acks may have only one ack block. | 
|  | const uint8_t kQuicHasMultipleAckBlocksOffset = 5; | 
|  |  | 
|  | // Timestamps are 4 bytes followed by 2 bytes. | 
|  | const uint8_t kQuicNumTimestampsLength = 1; | 
|  | const uint8_t kQuicFirstTimestampLength = 4; | 
|  | const uint8_t kQuicTimestampLength = 2; | 
|  | // Gaps between packet numbers are 1 byte. | 
|  | const uint8_t kQuicTimestampPacketNumberGapLength = 1; | 
|  |  | 
|  | // Maximum length of encoded error strings. | 
|  | const int kMaxErrorStringLength = 256; | 
|  |  | 
|  | const uint8_t kConnectionIdLengthAdjustment = 3; | 
|  | const uint8_t kDestinationConnectionIdLengthMask = 0xF0; | 
|  | const uint8_t kSourceConnectionIdLengthMask = 0x0F; | 
|  |  | 
|  | // Returns the absolute value of the difference between |a| and |b|. | 
|  | uint64_t Delta(uint64_t a, uint64_t b) { | 
|  | // Since these are unsigned numbers, we can't just return abs(a - b) | 
|  | if (a < b) { | 
|  | return b - a; | 
|  | } | 
|  | return a - b; | 
|  | } | 
|  |  | 
|  | uint64_t ClosestTo(uint64_t target, uint64_t a, uint64_t b) { | 
|  | return (Delta(target, a) < Delta(target, b)) ? a : b; | 
|  | } | 
|  |  | 
|  | QuicPacketNumberLength ReadSequenceNumberLength(uint8_t flags) { | 
|  | switch (flags & PACKET_FLAGS_8BYTE_PACKET) { | 
|  | case PACKET_FLAGS_8BYTE_PACKET: | 
|  | return PACKET_6BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_4BYTE_PACKET: | 
|  | return PACKET_4BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_2BYTE_PACKET: | 
|  | return PACKET_2BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_1BYTE_PACKET: | 
|  | return PACKET_1BYTE_PACKET_NUMBER; | 
|  | default: | 
|  | QUIC_BUG << "Unreachable case statement."; | 
|  | return PACKET_6BYTE_PACKET_NUMBER; | 
|  | } | 
|  | } | 
|  |  | 
|  | QuicPacketNumberLength ReadAckPacketNumberLength( | 
|  | uint8_t flags) { | 
|  | switch (flags & PACKET_FLAGS_8BYTE_PACKET) { | 
|  | case PACKET_FLAGS_8BYTE_PACKET: | 
|  | return PACKET_6BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_4BYTE_PACKET: | 
|  | return PACKET_4BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_2BYTE_PACKET: | 
|  | return PACKET_2BYTE_PACKET_NUMBER; | 
|  | case PACKET_FLAGS_1BYTE_PACKET: | 
|  | return PACKET_1BYTE_PACKET_NUMBER; | 
|  | default: | 
|  | QUIC_BUG << "Unreachable case statement."; | 
|  | return PACKET_6BYTE_PACKET_NUMBER; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint8_t PacketNumberLengthToOnWireValue( | 
|  | QuicPacketNumberLength packet_number_length) { | 
|  | return packet_number_length - 1; | 
|  | } | 
|  |  | 
|  | QuicPacketNumberLength GetShortHeaderPacketNumberLength(uint8_t type) { | 
|  | DCHECK(!(type & FLAGS_LONG_HEADER)); | 
|  | return static_cast<QuicPacketNumberLength>((type & 0x03) + 1); | 
|  | } | 
|  |  | 
|  | uint8_t LongHeaderTypeToOnWireValue(QuicLongHeaderType type) { | 
|  | switch (type) { | 
|  | case INITIAL: | 
|  | return 0; | 
|  | case ZERO_RTT_PROTECTED: | 
|  | return 1 << 4; | 
|  | case HANDSHAKE: | 
|  | return 2 << 4; | 
|  | case RETRY: | 
|  | return 3 << 4; | 
|  | case VERSION_NEGOTIATION: | 
|  | return 0xF0;  // Value does not matter | 
|  | default: | 
|  | QUIC_BUG << "Invalid long header type: " << type; | 
|  | return 0xFF; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool GetLongHeaderType(uint8_t type, QuicLongHeaderType* long_header_type) { | 
|  | DCHECK((type & FLAGS_LONG_HEADER)); | 
|  | switch ((type & 0x30) >> 4) { | 
|  | case 0: | 
|  | *long_header_type = INITIAL; | 
|  | break; | 
|  | case 1: | 
|  | *long_header_type = ZERO_RTT_PROTECTED; | 
|  | break; | 
|  | case 2: | 
|  | *long_header_type = HANDSHAKE; | 
|  | break; | 
|  | case 3: | 
|  | *long_header_type = RETRY; | 
|  | break; | 
|  | default: | 
|  | QUIC_BUG << "Unreachable statement"; | 
|  | *long_header_type = INVALID_PACKET_TYPE; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | QuicPacketNumberLength GetLongHeaderPacketNumberLength(uint8_t type) { | 
|  | return static_cast<QuicPacketNumberLength>((type & 0x03) + 1); | 
|  | } | 
|  |  | 
|  | // Used to get packet number space before packet gets decrypted. | 
|  | PacketNumberSpace GetPacketNumberSpace(const QuicPacketHeader& header) { | 
|  | switch (header.form) { | 
|  | case GOOGLE_QUIC_PACKET: | 
|  | QUIC_BUG << "Try to get packet number space of Google QUIC packet"; | 
|  | break; | 
|  | case IETF_QUIC_SHORT_HEADER_PACKET: | 
|  | return APPLICATION_DATA; | 
|  | case IETF_QUIC_LONG_HEADER_PACKET: | 
|  | switch (header.long_packet_type) { | 
|  | case INITIAL: | 
|  | return INITIAL_DATA; | 
|  | case HANDSHAKE: | 
|  | return HANDSHAKE_DATA; | 
|  | case ZERO_RTT_PROTECTED: | 
|  | return APPLICATION_DATA; | 
|  | case VERSION_NEGOTIATION: | 
|  | case RETRY: | 
|  | case INVALID_PACKET_TYPE: | 
|  | QUIC_BUG << "Try to get packet number space of long header type: " | 
|  | << QuicUtils::QuicLongHeaderTypetoString( | 
|  | header.long_packet_type); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NUM_PACKET_NUMBER_SPACES; | 
|  | } | 
|  |  | 
|  | EncryptionLevel GetEncryptionLevel(const QuicPacketHeader& header) { | 
|  | switch (header.form) { | 
|  | case GOOGLE_QUIC_PACKET: | 
|  | QUIC_BUG << "Cannot determine EncryptionLevel from Google QUIC header"; | 
|  | break; | 
|  | case IETF_QUIC_SHORT_HEADER_PACKET: | 
|  | return ENCRYPTION_FORWARD_SECURE; | 
|  | case IETF_QUIC_LONG_HEADER_PACKET: | 
|  | switch (header.long_packet_type) { | 
|  | case INITIAL: | 
|  | return ENCRYPTION_INITIAL; | 
|  | case HANDSHAKE: | 
|  | return ENCRYPTION_HANDSHAKE; | 
|  | case ZERO_RTT_PROTECTED: | 
|  | return ENCRYPTION_ZERO_RTT; | 
|  | case VERSION_NEGOTIATION: | 
|  | case RETRY: | 
|  | case INVALID_PACKET_TYPE: | 
|  | QUIC_BUG << "No encryption used with type " | 
|  | << QuicUtils::QuicLongHeaderTypetoString( | 
|  | header.long_packet_type); | 
|  | } | 
|  | } | 
|  | return NUM_ENCRYPTION_LEVELS; | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece TruncateErrorString(quiche::QuicheStringPiece error) { | 
|  | if (error.length() <= kMaxErrorStringLength) { | 
|  | return error; | 
|  | } | 
|  | return quiche::QuicheStringPiece(error.data(), kMaxErrorStringLength); | 
|  | } | 
|  |  | 
|  | size_t TruncatedErrorStringSize(const quiche::QuicheStringPiece& error) { | 
|  | if (error.length() < kMaxErrorStringLength) { | 
|  | return error.length(); | 
|  | } | 
|  | return kMaxErrorStringLength; | 
|  | } | 
|  |  | 
|  | uint8_t GetConnectionIdLengthValue(QuicConnectionIdLength length) { | 
|  | if (length == 0) { | 
|  | return 0; | 
|  | } | 
|  | return static_cast<uint8_t>(length - kConnectionIdLengthAdjustment); | 
|  | } | 
|  |  | 
|  | bool IsValidPacketNumberLength(QuicPacketNumberLength packet_number_length) { | 
|  | size_t length = packet_number_length; | 
|  | return length == 1 || length == 2 || length == 4 || length == 6 || | 
|  | length == 8; | 
|  | } | 
|  |  | 
|  | bool IsValidFullPacketNumber(uint64_t full_packet_number, | 
|  | ParsedQuicVersion version) { | 
|  | return full_packet_number > 0 || version.HasIetfQuicFrames(); | 
|  | } | 
|  |  | 
|  | bool AppendIetfConnectionIds(bool version_flag, | 
|  | bool use_length_prefix, | 
|  | QuicConnectionId destination_connection_id, | 
|  | QuicConnectionId source_connection_id, | 
|  | QuicDataWriter* writer) { | 
|  | if (!version_flag) { | 
|  | return writer->WriteConnectionId(destination_connection_id); | 
|  | } | 
|  |  | 
|  | if (use_length_prefix) { | 
|  | return writer->WriteLengthPrefixedConnectionId(destination_connection_id) && | 
|  | writer->WriteLengthPrefixedConnectionId(source_connection_id); | 
|  | } | 
|  |  | 
|  | // Compute connection ID length byte. | 
|  | uint8_t dcil = GetConnectionIdLengthValue( | 
|  | static_cast<QuicConnectionIdLength>(destination_connection_id.length())); | 
|  | uint8_t scil = GetConnectionIdLengthValue( | 
|  | static_cast<QuicConnectionIdLength>(source_connection_id.length())); | 
|  | uint8_t connection_id_length = dcil << 4 | scil; | 
|  |  | 
|  | return writer->WriteUInt8(connection_id_length) && | 
|  | writer->WriteConnectionId(destination_connection_id) && | 
|  | writer->WriteConnectionId(source_connection_id); | 
|  | } | 
|  |  | 
|  | enum class DroppedPacketReason { | 
|  | // General errors | 
|  | INVALID_PUBLIC_HEADER, | 
|  | VERSION_MISMATCH, | 
|  | // Version negotiation packet errors | 
|  | INVALID_VERSION_NEGOTIATION_PACKET, | 
|  | // Public reset packet errors, pre-v44 | 
|  | INVALID_PUBLIC_RESET_PACKET, | 
|  | // Data packet errors | 
|  | INVALID_PACKET_NUMBER, | 
|  | INVALID_DIVERSIFICATION_NONCE, | 
|  | DECRYPTION_FAILURE, | 
|  | NUM_REASONS, | 
|  | }; | 
|  |  | 
|  | void RecordDroppedPacketReason(DroppedPacketReason reason) { | 
|  | QUIC_CLIENT_HISTOGRAM_ENUM("QuicDroppedPacketReason", reason, | 
|  | DroppedPacketReason::NUM_REASONS, | 
|  | "The reason a packet was not processed. Recorded " | 
|  | "each time such a packet is dropped"); | 
|  | } | 
|  |  | 
|  | PacketHeaderFormat GetIetfPacketHeaderFormat(uint8_t type_byte) { | 
|  | return type_byte & FLAGS_LONG_HEADER ? IETF_QUIC_LONG_HEADER_PACKET | 
|  | : IETF_QUIC_SHORT_HEADER_PACKET; | 
|  | } | 
|  |  | 
|  | std::string GenerateErrorString(std::string initial_error_string, | 
|  | QuicErrorCode quic_error_code) { | 
|  | if (quic_error_code == QUIC_IETF_GQUIC_ERROR_MISSING) { | 
|  | // QUIC_IETF_GQUIC_ERROR_MISSING is special -- it means not to encode | 
|  | // the error value in the string. | 
|  | return initial_error_string; | 
|  | } | 
|  | return quiche::QuicheStrCat( | 
|  | std::to_string(static_cast<unsigned>(quic_error_code)), ":", | 
|  | initial_error_string); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | QuicFramer::QuicFramer(const ParsedQuicVersionVector& supported_versions, | 
|  | QuicTime creation_time, | 
|  | Perspective perspective, | 
|  | uint8_t expected_server_connection_id_length) | 
|  | : visitor_(nullptr), | 
|  | error_(QUIC_NO_ERROR), | 
|  | last_serialized_server_connection_id_(EmptyQuicConnectionId()), | 
|  | last_serialized_client_connection_id_(EmptyQuicConnectionId()), | 
|  | version_(PROTOCOL_UNSUPPORTED, QUIC_VERSION_UNSUPPORTED), | 
|  | supported_versions_(supported_versions), | 
|  | decrypter_level_(ENCRYPTION_INITIAL), | 
|  | alternative_decrypter_level_(NUM_ENCRYPTION_LEVELS), | 
|  | alternative_decrypter_latch_(false), | 
|  | perspective_(perspective), | 
|  | validate_flags_(true), | 
|  | process_timestamps_(false), | 
|  | creation_time_(creation_time), | 
|  | last_timestamp_(QuicTime::Delta::Zero()), | 
|  | first_sending_packet_number_(FirstSendingPacketNumber()), | 
|  | data_producer_(nullptr), | 
|  | infer_packet_header_type_from_version_(perspective == | 
|  | Perspective::IS_CLIENT), | 
|  | expected_server_connection_id_length_( | 
|  | expected_server_connection_id_length), | 
|  | expected_client_connection_id_length_(0), | 
|  | supports_multiple_packet_number_spaces_(false), | 
|  | last_written_packet_number_length_(0), | 
|  | peer_ack_delay_exponent_(kDefaultAckDelayExponent), | 
|  | local_ack_delay_exponent_(kDefaultAckDelayExponent), | 
|  | current_received_frame_type_(0) { | 
|  | DCHECK(!supported_versions.empty()); | 
|  | version_ = supported_versions_[0]; | 
|  | DCHECK(version_.IsKnown()) | 
|  | << ParsedQuicVersionVectorToString(supported_versions_); | 
|  | } | 
|  |  | 
|  | QuicFramer::~QuicFramer() {} | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMinStreamFrameSize(QuicTransportVersion version, | 
|  | QuicStreamId stream_id, | 
|  | QuicStreamOffset offset, | 
|  | bool last_frame_in_packet, | 
|  | size_t data_length) { | 
|  | if (VersionHasIetfQuicFrames(version)) { | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_id) + | 
|  | (last_frame_in_packet | 
|  | ? 0 | 
|  | : QuicDataWriter::GetVarInt62Len(data_length)) + | 
|  | (offset != 0 ? QuicDataWriter::GetVarInt62Len(offset) : 0); | 
|  | } | 
|  | return kQuicFrameTypeSize + GetStreamIdSize(stream_id) + | 
|  | GetStreamOffsetSize(offset) + | 
|  | (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMinCryptoFrameSize(QuicStreamOffset offset, | 
|  | QuicPacketLength data_length) { | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(offset) + | 
|  | QuicDataWriter::GetVarInt62Len(data_length); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMessageFrameSize(QuicTransportVersion version, | 
|  | bool last_frame_in_packet, | 
|  | QuicByteCount length) { | 
|  | QUIC_BUG_IF(!VersionSupportsMessageFrames(version)) | 
|  | << "Try to serialize MESSAGE frame in " << version; | 
|  | return kQuicFrameTypeSize + | 
|  | (last_frame_in_packet ? 0 : QuicDataWriter::GetVarInt62Len(length)) + | 
|  | length; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMinAckFrameSize(QuicTransportVersion version, | 
|  | const QuicAckFrame& ack_frame, | 
|  | uint32_t local_ack_delay_exponent) { | 
|  | if (VersionHasIetfQuicFrames(version)) { | 
|  | // The minimal ack frame consists of the following fields: Largest | 
|  | // Acknowledged, ACK Delay, 0 ACK Block Count, First ACK Block and ECN | 
|  | // counts. | 
|  | // Type byte + largest acked. | 
|  | size_t min_size = | 
|  | kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(LargestAcked(ack_frame).ToUint64()); | 
|  | // Ack delay. | 
|  | min_size += QuicDataWriter::GetVarInt62Len( | 
|  | ack_frame.ack_delay_time.ToMicroseconds() >> local_ack_delay_exponent); | 
|  | // 0 ack block count. | 
|  | min_size += QuicDataWriter::GetVarInt62Len(0); | 
|  | // First ack block. | 
|  | min_size += QuicDataWriter::GetVarInt62Len( | 
|  | ack_frame.packets.Empty() ? 0 | 
|  | : ack_frame.packets.rbegin()->Length() - 1); | 
|  | // ECN counts. | 
|  | if (ack_frame.ecn_counters_populated && | 
|  | (ack_frame.ect_0_count || ack_frame.ect_1_count || | 
|  | ack_frame.ecn_ce_count)) { | 
|  | min_size += (QuicDataWriter::GetVarInt62Len(ack_frame.ect_0_count) + | 
|  | QuicDataWriter::GetVarInt62Len(ack_frame.ect_1_count) + | 
|  | QuicDataWriter::GetVarInt62Len(ack_frame.ecn_ce_count)); | 
|  | } | 
|  | return min_size; | 
|  | } | 
|  | return kQuicFrameTypeSize + | 
|  | GetMinPacketNumberLength(LargestAcked(ack_frame)) + | 
|  | kQuicDeltaTimeLargestObservedSize + kQuicNumTimestampsSize; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetStopWaitingFrameSize( | 
|  | QuicPacketNumberLength packet_number_length) { | 
|  | size_t min_size = kQuicFrameTypeSize + packet_number_length; | 
|  | return min_size; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetRstStreamFrameSize(QuicTransportVersion version, | 
|  | const QuicRstStreamFrame& frame) { | 
|  | if (VersionHasIetfQuicFrames(version)) { | 
|  | return QuicDataWriter::GetVarInt62Len(frame.stream_id) + | 
|  | QuicDataWriter::GetVarInt62Len(frame.byte_offset) + | 
|  | kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.ietf_error_code); | 
|  | } | 
|  | return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize + | 
|  | kQuicErrorCodeSize; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetConnectionCloseFrameSize( | 
|  | QuicTransportVersion version, | 
|  | const QuicConnectionCloseFrame& frame) { | 
|  | if (!VersionHasIetfQuicFrames(version)) { | 
|  | // Not IETF QUIC, return Google QUIC CONNECTION CLOSE frame size. | 
|  | return kQuicFrameTypeSize + kQuicErrorCodeSize + | 
|  | kQuicErrorDetailsLengthSize + | 
|  | TruncatedErrorStringSize(frame.error_details); | 
|  | } | 
|  |  | 
|  | // Prepend the extra error information to the string and get the result's | 
|  | // length. | 
|  | const size_t truncated_error_string_size = TruncatedErrorStringSize( | 
|  | GenerateErrorString(frame.error_details, frame.quic_error_code)); | 
|  |  | 
|  | const size_t frame_size = | 
|  | truncated_error_string_size + | 
|  | QuicDataWriter::GetVarInt62Len(truncated_error_string_size) + | 
|  | kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.wire_error_code); | 
|  | if (frame.close_type == IETF_QUIC_APPLICATION_CONNECTION_CLOSE) { | 
|  | return frame_size; | 
|  | } | 
|  | // The Transport close frame has the transport_close_frame_type, so include | 
|  | // its length. | 
|  | return frame_size + | 
|  | QuicDataWriter::GetVarInt62Len(frame.transport_close_frame_type); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMinGoAwayFrameSize() { | 
|  | return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize + | 
|  | kQuicMaxStreamIdSize; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetWindowUpdateFrameSize( | 
|  | QuicTransportVersion version, | 
|  | const QuicWindowUpdateFrame& frame) { | 
|  | if (!VersionHasIetfQuicFrames(version)) { | 
|  | return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize; | 
|  | } | 
|  | if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { | 
|  | // Frame would be a MAX DATA frame, which has only a Maximum Data field. | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.max_data); | 
|  | } | 
|  | // Frame would be MAX STREAM DATA, has Maximum Stream Data and Stream ID | 
|  | // fields. | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.max_data) + | 
|  | QuicDataWriter::GetVarInt62Len(frame.stream_id); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetMaxStreamsFrameSize(QuicTransportVersion version, | 
|  | const QuicMaxStreamsFrame& frame) { | 
|  | if (!VersionHasIetfQuicFrames(version)) { | 
|  | QUIC_BUG << "In version " << version | 
|  | << ", which does not support IETF Frames, and tried to serialize " | 
|  | "MaxStreams Frame."; | 
|  | } | 
|  | return kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.stream_count); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetStreamsBlockedFrameSize( | 
|  | QuicTransportVersion version, | 
|  | const QuicStreamsBlockedFrame& frame) { | 
|  | if (!VersionHasIetfQuicFrames(version)) { | 
|  | QUIC_BUG << "In version " << version | 
|  | << ", which does not support IETF frames, and tried to serialize " | 
|  | "StreamsBlocked Frame."; | 
|  | } | 
|  |  | 
|  | return kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.stream_count); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetBlockedFrameSize(QuicTransportVersion version, | 
|  | const QuicBlockedFrame& frame) { | 
|  | if (!VersionHasIetfQuicFrames(version)) { | 
|  | return kQuicFrameTypeSize + kQuicMaxStreamIdSize; | 
|  | } | 
|  | if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { | 
|  | // return size of IETF QUIC Blocked frame | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset); | 
|  | } | 
|  | // return size of IETF QUIC Stream Blocked frame. | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset) + | 
|  | QuicDataWriter::GetVarInt62Len(frame.stream_id); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetStopSendingFrameSize(const QuicStopSendingFrame& frame) { | 
|  | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.stream_id) + | 
|  | QuicDataWriter::GetVarInt62Len(frame.application_error_code); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetPathChallengeFrameSize( | 
|  | const QuicPathChallengeFrame& frame) { | 
|  | return kQuicFrameTypeSize + sizeof(frame.data_buffer); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetPathResponseFrameSize( | 
|  | const QuicPathResponseFrame& frame) { | 
|  | return kQuicFrameTypeSize + sizeof(frame.data_buffer); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetRetransmittableControlFrameSize( | 
|  | QuicTransportVersion version, | 
|  | const QuicFrame& frame) { | 
|  | switch (frame.type) { | 
|  | case PING_FRAME: | 
|  | // Ping has no payload. | 
|  | return kQuicFrameTypeSize; | 
|  | case RST_STREAM_FRAME: | 
|  | return GetRstStreamFrameSize(version, *frame.rst_stream_frame); | 
|  | case CONNECTION_CLOSE_FRAME: | 
|  | return GetConnectionCloseFrameSize(version, | 
|  | *frame.connection_close_frame); | 
|  | case GOAWAY_FRAME: | 
|  | return GetMinGoAwayFrameSize() + | 
|  | TruncatedErrorStringSize(frame.goaway_frame->reason_phrase); | 
|  | case WINDOW_UPDATE_FRAME: | 
|  | // For IETF QUIC, this could be either a MAX DATA or MAX STREAM DATA. | 
|  | // GetWindowUpdateFrameSize figures this out and returns the correct | 
|  | // length. | 
|  | return GetWindowUpdateFrameSize(version, *frame.window_update_frame); | 
|  | case BLOCKED_FRAME: | 
|  | return GetBlockedFrameSize(version, *frame.blocked_frame); | 
|  | case NEW_CONNECTION_ID_FRAME: | 
|  | return GetNewConnectionIdFrameSize(*frame.new_connection_id_frame); | 
|  | case RETIRE_CONNECTION_ID_FRAME: | 
|  | return GetRetireConnectionIdFrameSize(*frame.retire_connection_id_frame); | 
|  | case NEW_TOKEN_FRAME: | 
|  | return GetNewTokenFrameSize(*frame.new_token_frame); | 
|  | case MAX_STREAMS_FRAME: | 
|  | return GetMaxStreamsFrameSize(version, frame.max_streams_frame); | 
|  | case STREAMS_BLOCKED_FRAME: | 
|  | return GetStreamsBlockedFrameSize(version, frame.streams_blocked_frame); | 
|  | case PATH_RESPONSE_FRAME: | 
|  | return GetPathResponseFrameSize(*frame.path_response_frame); | 
|  | case PATH_CHALLENGE_FRAME: | 
|  | return GetPathChallengeFrameSize(*frame.path_challenge_frame); | 
|  | case STOP_SENDING_FRAME: | 
|  | return GetStopSendingFrameSize(*frame.stop_sending_frame); | 
|  | case HANDSHAKE_DONE_FRAME: | 
|  | // HANDSHAKE_DONE has no payload. | 
|  | return kQuicFrameTypeSize; | 
|  |  | 
|  | case STREAM_FRAME: | 
|  | case ACK_FRAME: | 
|  | case STOP_WAITING_FRAME: | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | case PADDING_FRAME: | 
|  | case MESSAGE_FRAME: | 
|  | case CRYPTO_FRAME: | 
|  | case NUM_FRAME_TYPES: | 
|  | DCHECK(false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Not reachable, but some Chrome compilers can't figure that out.  *sigh* | 
|  | DCHECK(false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) { | 
|  | // Sizes are 1 through 4 bytes. | 
|  | for (int i = 1; i <= 4; ++i) { | 
|  | stream_id >>= 8; | 
|  | if (stream_id == 0) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | QUIC_BUG << "Failed to determine StreamIDSize."; | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) { | 
|  | // 0 is a special case. | 
|  | if (offset == 0) { | 
|  | return 0; | 
|  | } | 
|  | // 2 through 8 are the remaining sizes. | 
|  | offset >>= 8; | 
|  | for (int i = 2; i <= 8; ++i) { | 
|  | offset >>= 8; | 
|  | if (offset == 0) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | QUIC_BUG << "Failed to determine StreamOffsetSize."; | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetNewConnectionIdFrameSize( | 
|  | const QuicNewConnectionIdFrame& frame) { | 
|  | return kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.sequence_number) + | 
|  | QuicDataWriter::GetVarInt62Len(frame.retire_prior_to) + | 
|  | kConnectionIdLengthSize + frame.connection_id.length() + | 
|  | sizeof(frame.stateless_reset_token); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetRetireConnectionIdFrameSize( | 
|  | const QuicRetireConnectionIdFrame& frame) { | 
|  | return kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.sequence_number); | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t QuicFramer::GetNewTokenFrameSize(const QuicNewTokenFrame& frame) { | 
|  | return kQuicFrameTypeSize + | 
|  | QuicDataWriter::GetVarInt62Len(frame.token.length()) + | 
|  | frame.token.length(); | 
|  | } | 
|  |  | 
|  | // TODO(nharper): Change this method to take a ParsedQuicVersion. | 
|  | bool QuicFramer::IsSupportedTransportVersion( | 
|  | const QuicTransportVersion version) const { | 
|  | for (ParsedQuicVersion supported_version : supported_versions_) { | 
|  | if (version == supported_version.transport_version) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::IsSupportedVersion(const ParsedQuicVersion version) const { | 
|  | for (const ParsedQuicVersion& supported_version : supported_versions_) { | 
|  | if (version == supported_version) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetSerializedFrameLength( | 
|  | const QuicFrame& frame, | 
|  | size_t free_bytes, | 
|  | bool first_frame, | 
|  | bool last_frame, | 
|  | QuicPacketNumberLength packet_number_length) { | 
|  | // Prevent a rare crash reported in b/19458523. | 
|  | if (frame.type == ACK_FRAME && frame.ack_frame == nullptr) { | 
|  | QUIC_BUG << "Cannot compute the length of a null ack frame. free_bytes:" | 
|  | << free_bytes << " first_frame:" << first_frame | 
|  | << " last_frame:" << last_frame | 
|  | << " seq num length:" << packet_number_length; | 
|  | set_error(QUIC_INTERNAL_ERROR); | 
|  | visitor_->OnError(this); | 
|  | return 0; | 
|  | } | 
|  | if (frame.type == PADDING_FRAME) { | 
|  | if (frame.padding_frame.num_padding_bytes == -1) { | 
|  | // Full padding to the end of the packet. | 
|  | return free_bytes; | 
|  | } else { | 
|  | // Lite padding. | 
|  | return free_bytes < | 
|  | static_cast<size_t>(frame.padding_frame.num_padding_bytes) | 
|  | ? free_bytes | 
|  | : frame.padding_frame.num_padding_bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t frame_len = | 
|  | ComputeFrameLength(frame, last_frame, packet_number_length); | 
|  | if (frame_len <= free_bytes) { | 
|  | // Frame fits within packet. Note that acks may be truncated. | 
|  | return frame_len; | 
|  | } | 
|  | // Only truncate the first frame in a packet, so if subsequent ones go | 
|  | // over, stop including more frames. | 
|  | if (!first_frame) { | 
|  | return 0; | 
|  | } | 
|  | bool can_truncate = | 
|  | frame.type == ACK_FRAME && | 
|  | free_bytes >= GetMinAckFrameSize(version_.transport_version, | 
|  | *frame.ack_frame, | 
|  | local_ack_delay_exponent_); | 
|  | if (can_truncate) { | 
|  | // Truncate the frame so the packet will not exceed kMaxOutgoingPacketSize. | 
|  | // Note that we may not use every byte of the writer in this case. | 
|  | QUIC_DLOG(INFO) << ENDPOINT | 
|  | << "Truncating large frame, free bytes: " << free_bytes; | 
|  | return free_bytes; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | QuicFramer::AckFrameInfo::AckFrameInfo() | 
|  | : max_block_length(0), first_block_length(0), num_ack_blocks(0) {} | 
|  |  | 
|  | QuicFramer::AckFrameInfo::AckFrameInfo(const AckFrameInfo& other) = default; | 
|  |  | 
|  | QuicFramer::AckFrameInfo::~AckFrameInfo() {} | 
|  |  | 
|  | bool QuicFramer::WriteIetfLongHeaderLength(const QuicPacketHeader& header, | 
|  | QuicDataWriter* writer, | 
|  | size_t length_field_offset, | 
|  | EncryptionLevel level) { | 
|  | if (!QuicVersionHasLongHeaderLengths(transport_version()) || | 
|  | !header.version_flag || length_field_offset == 0) { | 
|  | return true; | 
|  | } | 
|  | if (writer->length() < length_field_offset || | 
|  | writer->length() - length_field_offset < | 
|  | kQuicDefaultLongHeaderLengthLength) { | 
|  | set_detailed_error("Invalid length_field_offset."); | 
|  | QUIC_BUG << "Invalid length_field_offset."; | 
|  | return false; | 
|  | } | 
|  | size_t length_to_write = writer->length() - length_field_offset - | 
|  | kQuicDefaultLongHeaderLengthLength; | 
|  | // Add length of auth tag. | 
|  | length_to_write = GetCiphertextSize(level, length_to_write); | 
|  |  | 
|  | QuicDataWriter length_writer(writer->length() - length_field_offset, | 
|  | writer->data() + length_field_offset); | 
|  | if (!length_writer.WriteVarInt62(length_to_write, | 
|  | kQuicDefaultLongHeaderLengthLength)) { | 
|  | set_detailed_error("Failed to overwrite long header length."); | 
|  | QUIC_BUG << "Failed to overwrite long header length."; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::BuildDataPacket(const QuicPacketHeader& header, | 
|  | const QuicFrames& frames, | 
|  | char* buffer, | 
|  | size_t packet_length, | 
|  | EncryptionLevel level) { | 
|  | QUIC_BUG_IF(header.version_flag && | 
|  | VersionHasIetfInvariantHeader(transport_version()) && | 
|  | header.long_packet_type == RETRY && !frames.empty()) | 
|  | << "IETF RETRY packets cannot contain frames " << header; | 
|  | QuicDataWriter writer(packet_length, buffer); | 
|  | size_t length_field_offset = 0; | 
|  | if (!AppendPacketHeader(header, &writer, &length_field_offset)) { | 
|  | QUIC_BUG << "AppendPacketHeader failed"; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (VersionHasIetfQuicFrames(transport_version())) { | 
|  | if (AppendIetfFrames(frames, &writer) == 0) { | 
|  | return 0; | 
|  | } | 
|  | if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset, | 
|  | level)) { | 
|  | return 0; | 
|  | } | 
|  | return writer.length(); | 
|  | } | 
|  |  | 
|  | size_t i = 0; | 
|  | for (const QuicFrame& frame : frames) { | 
|  | // Determine if we should write stream frame length in header. | 
|  | const bool last_frame_in_packet = i == frames.size() - 1; | 
|  | if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) { | 
|  | QUIC_BUG << "AppendTypeByte failed"; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (frame.type) { | 
|  | case PADDING_FRAME: | 
|  | if (!AppendPaddingFrame(frame.padding_frame, &writer)) { | 
|  | QUIC_BUG << "AppendPaddingFrame of " | 
|  | << frame.padding_frame.num_padding_bytes << " failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STREAM_FRAME: | 
|  | if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, | 
|  | &writer)) { | 
|  | QUIC_BUG << "AppendStreamFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case ACK_FRAME: | 
|  | if (!AppendAckFrameAndTypeByte(*frame.ack_frame, &writer)) { | 
|  | QUIC_BUG << "AppendAckFrameAndTypeByte failed: " << detailed_error_; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STOP_WAITING_FRAME: | 
|  | if (!AppendStopWaitingFrame(header, frame.stop_waiting_frame, | 
|  | &writer)) { | 
|  | QUIC_BUG << "AppendStopWaitingFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | // MTU discovery frames are serialized as ping frames. | 
|  | QUIC_FALLTHROUGH_INTENDED; | 
|  | case PING_FRAME: | 
|  | // Ping has no payload. | 
|  | break; | 
|  | case RST_STREAM_FRAME: | 
|  | if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) { | 
|  | QUIC_BUG << "AppendRstStreamFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case CONNECTION_CLOSE_FRAME: | 
|  | if (!AppendConnectionCloseFrame(*frame.connection_close_frame, | 
|  | &writer)) { | 
|  | QUIC_BUG << "AppendConnectionCloseFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case GOAWAY_FRAME: | 
|  | if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) { | 
|  | QUIC_BUG << "AppendGoAwayFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case WINDOW_UPDATE_FRAME: | 
|  | if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) { | 
|  | QUIC_BUG << "AppendWindowUpdateFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case BLOCKED_FRAME: | 
|  | if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) { | 
|  | QUIC_BUG << "AppendBlockedFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case NEW_CONNECTION_ID_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append NEW_CONNECTION_ID frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case RETIRE_CONNECTION_ID_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append RETIRE_CONNECTION_ID frame and not in IETF " | 
|  | "QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case NEW_TOKEN_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append NEW_TOKEN_ID frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case MAX_STREAMS_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append MAX_STREAMS frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case STREAMS_BLOCKED_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append STREAMS_BLOCKED frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case PATH_RESPONSE_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append PATH_RESPONSE frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case PATH_CHALLENGE_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append PATH_CHALLENGE frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case STOP_SENDING_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append STOP_SENDING frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case MESSAGE_FRAME: | 
|  | if (!AppendMessageFrameAndTypeByte(*frame.message_frame, | 
|  | last_frame_in_packet, &writer)) { | 
|  | QUIC_BUG << "AppendMessageFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case CRYPTO_FRAME: | 
|  | if (!QuicVersionUsesCryptoFrames(version_.transport_version)) { | 
|  | set_detailed_error( | 
|  | "Attempt to append CRYPTO frame in version prior to 47."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | } | 
|  | if (!AppendCryptoFrame(*frame.crypto_frame, &writer)) { | 
|  | QUIC_BUG << "AppendCryptoFrame failed"; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | QUIC_BUG << "QUIC_INVALID_FRAME_DATA"; | 
|  | return 0; | 
|  | } | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset, level)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return writer.length(); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::AppendIetfFrames(const QuicFrames& frames, | 
|  | QuicDataWriter* writer) { | 
|  | size_t i = 0; | 
|  | for (const QuicFrame& frame : frames) { | 
|  | // Determine if we should write stream frame length in header. | 
|  | const bool last_frame_in_packet = i == frames.size() - 1; | 
|  | if (!AppendIetfTypeByte(frame, last_frame_in_packet, writer)) { | 
|  | QUIC_BUG << "AppendIetfTypeByte failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (frame.type) { | 
|  | case PADDING_FRAME: | 
|  | if (!AppendPaddingFrame(frame.padding_frame, writer)) { | 
|  | QUIC_BUG << "AppendPaddingFrame of " | 
|  | << frame.padding_frame.num_padding_bytes | 
|  | << " failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STREAM_FRAME: | 
|  | if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, | 
|  | writer)) { | 
|  | QUIC_BUG << "AppendStreamFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case ACK_FRAME: | 
|  | if (!AppendIetfAckFrameAndTypeByte(*frame.ack_frame, writer)) { | 
|  | QUIC_BUG << "AppendIetfAckFrameAndTypeByte failed: " | 
|  | << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STOP_WAITING_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append STOP WAITING frame in IETF QUIC."); | 
|  | RaiseError(QUIC_INTERNAL_ERROR); | 
|  | QUIC_BUG << detailed_error(); | 
|  | return 0; | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | // MTU discovery frames are serialized as ping frames. | 
|  | QUIC_FALLTHROUGH_INTENDED; | 
|  | case PING_FRAME: | 
|  | // Ping has no payload. | 
|  | break; | 
|  | case RST_STREAM_FRAME: | 
|  | if (!AppendRstStreamFrame(*frame.rst_stream_frame, writer)) { | 
|  | QUIC_BUG << "AppendRstStreamFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case CONNECTION_CLOSE_FRAME: | 
|  | if (!AppendIetfConnectionCloseFrame(*frame.connection_close_frame, | 
|  | writer)) { | 
|  | QUIC_BUG << "AppendIetfConnectionCloseFrame failed: " | 
|  | << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case GOAWAY_FRAME: | 
|  | set_detailed_error("Attempt to append GOAWAY frame in IETF QUIC."); | 
|  | RaiseError(QUIC_INTERNAL_ERROR); | 
|  | QUIC_BUG << detailed_error(); | 
|  | return 0; | 
|  | case WINDOW_UPDATE_FRAME: | 
|  | // Depending on whether there is a stream ID or not, will be either a | 
|  | // MAX STREAM DATA frame or a MAX DATA frame. | 
|  | if (frame.window_update_frame->stream_id == | 
|  | QuicUtils::GetInvalidStreamId(transport_version())) { | 
|  | if (!AppendMaxDataFrame(*frame.window_update_frame, writer)) { | 
|  | QUIC_BUG << "AppendMaxDataFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (!AppendMaxStreamDataFrame(*frame.window_update_frame, writer)) { | 
|  | QUIC_BUG << "AppendMaxStreamDataFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case BLOCKED_FRAME: | 
|  | if (!AppendBlockedFrame(*frame.blocked_frame, writer)) { | 
|  | QUIC_BUG << "AppendBlockedFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case MAX_STREAMS_FRAME: | 
|  | if (!AppendMaxStreamsFrame(frame.max_streams_frame, writer)) { | 
|  | QUIC_BUG << "AppendMaxStreamsFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STREAMS_BLOCKED_FRAME: | 
|  | if (!AppendStreamsBlockedFrame(frame.streams_blocked_frame, writer)) { | 
|  | QUIC_BUG << "AppendStreamsBlockedFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case NEW_CONNECTION_ID_FRAME: | 
|  | if (!AppendNewConnectionIdFrame(*frame.new_connection_id_frame, | 
|  | writer)) { | 
|  | QUIC_BUG << "AppendNewConnectionIdFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case RETIRE_CONNECTION_ID_FRAME: | 
|  | if (!AppendRetireConnectionIdFrame(*frame.retire_connection_id_frame, | 
|  | writer)) { | 
|  | QUIC_BUG << "AppendRetireConnectionIdFrame failed: " | 
|  | << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case NEW_TOKEN_FRAME: | 
|  | if (!AppendNewTokenFrame(*frame.new_token_frame, writer)) { | 
|  | QUIC_BUG << "AppendNewTokenFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case STOP_SENDING_FRAME: | 
|  | if (!AppendStopSendingFrame(*frame.stop_sending_frame, writer)) { | 
|  | QUIC_BUG << "AppendStopSendingFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case PATH_CHALLENGE_FRAME: | 
|  | if (!AppendPathChallengeFrame(*frame.path_challenge_frame, writer)) { | 
|  | QUIC_BUG << "AppendPathChallengeFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case PATH_RESPONSE_FRAME: | 
|  | if (!AppendPathResponseFrame(*frame.path_response_frame, writer)) { | 
|  | QUIC_BUG << "AppendPathResponseFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case MESSAGE_FRAME: | 
|  | if (!AppendMessageFrameAndTypeByte(*frame.message_frame, | 
|  | last_frame_in_packet, writer)) { | 
|  | QUIC_BUG << "AppendMessageFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case CRYPTO_FRAME: | 
|  | if (!AppendCryptoFrame(*frame.crypto_frame, writer)) { | 
|  | QUIC_BUG << "AppendCryptoFrame failed: " << detailed_error(); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case HANDSHAKE_DONE_FRAME: | 
|  | // HANDSHAKE_DONE has no payload. | 
|  | break; | 
|  | default: | 
|  | set_detailed_error("Tried to append unknown frame type."); | 
|  | RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | QUIC_BUG << "QUIC_INVALID_FRAME_DATA: " << frame.type; | 
|  | return 0; | 
|  | } | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | return writer->length(); | 
|  | } | 
|  |  | 
|  | // static | 
|  | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildPublicResetPacket( | 
|  | const QuicPublicResetPacket& packet) { | 
|  | CryptoHandshakeMessage reset; | 
|  | reset.set_tag(kPRST); | 
|  | reset.SetValue(kRNON, packet.nonce_proof); | 
|  | if (packet.client_address.host().address_family() != | 
|  | IpAddressFamily::IP_UNSPEC) { | 
|  | // packet.client_address is non-empty. | 
|  | QuicSocketAddressCoder address_coder(packet.client_address); | 
|  | std::string serialized_address = address_coder.Encode(); | 
|  | if (serialized_address.empty()) { | 
|  | return nullptr; | 
|  | } | 
|  | reset.SetStringPiece(kCADR, serialized_address); | 
|  | } | 
|  | if (!packet.endpoint_id.empty()) { | 
|  | reset.SetStringPiece(kEPID, packet.endpoint_id); | 
|  | } | 
|  | const QuicData& reset_serialized = reset.GetSerialized(); | 
|  |  | 
|  | size_t len = kPublicFlagsSize + packet.connection_id.length() + | 
|  | reset_serialized.length(); | 
|  | std::unique_ptr<char[]> buffer(new char[len]); | 
|  | QuicDataWriter writer(len, buffer.get()); | 
|  |  | 
|  | uint8_t flags = static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_RST | | 
|  | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID); | 
|  | // This hack makes post-v33 public reset packet look like pre-v33 packets. | 
|  | flags |= static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); | 
|  | if (!writer.WriteUInt8(flags)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!writer.WriteConnectionId(packet.connection_id)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return std::make_unique<QuicEncryptedPacket>(buffer.release(), len, true); | 
|  | } | 
|  |  | 
|  | // static | 
|  | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildIetfStatelessResetPacket( | 
|  | QuicConnectionId /*connection_id*/, | 
|  | QuicUint128 stateless_reset_token) { | 
|  | QUIC_DVLOG(1) << "Building IETF stateless reset packet."; | 
|  | size_t len = kPacketHeaderTypeSize + kMinRandomBytesLengthInStatelessReset + | 
|  | sizeof(stateless_reset_token); | 
|  | std::unique_ptr<char[]> buffer(new char[len]); | 
|  | QuicDataWriter writer(len, buffer.get()); | 
|  |  | 
|  | uint8_t type = 0; | 
|  | type |= FLAGS_FIXED_BIT; | 
|  | type |= FLAGS_SHORT_HEADER_RESERVED_1; | 
|  | type |= FLAGS_SHORT_HEADER_RESERVED_2; | 
|  | type |= PacketNumberLengthToOnWireValue(PACKET_1BYTE_PACKET_NUMBER); | 
|  |  | 
|  | // Append type byte. | 
|  | if (!writer.WriteUInt8(type)) { | 
|  | return nullptr; | 
|  | } | 
|  | // Append random bytes. | 
|  | if (!writer.WriteRandomBytes(QuicRandom::GetInstance(), | 
|  | kMinRandomBytesLengthInStatelessReset)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Append stateless reset token. | 
|  | if (!writer.WriteBytes(&stateless_reset_token, | 
|  | sizeof(stateless_reset_token))) { | 
|  | return nullptr; | 
|  | } | 
|  | return std::make_unique<QuicEncryptedPacket>(buffer.release(), len, true); | 
|  | } | 
|  |  | 
|  | // static | 
|  | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildVersionNegotiationPacket( | 
|  | QuicConnectionId server_connection_id, | 
|  | QuicConnectionId client_connection_id, | 
|  | bool ietf_quic, | 
|  | bool use_length_prefix, | 
|  | const ParsedQuicVersionVector& versions) { | 
|  | ParsedQuicVersionVector wire_versions = versions; | 
|  | // Add a version reserved for negotiation as suggested by the | 
|  | // "Using Reserved Versions" section of draft-ietf-quic-transport. | 
|  | if (wire_versions.empty()) { | 
|  | // Ensure that version negotiation packets we send have at least two | 
|  | // versions. This guarantees that, under all circumstances, all QUIC | 
|  | // packets we send are at least 14 bytes long. | 
|  | wire_versions = {QuicVersionReservedForNegotiation(), | 
|  | QuicVersionReservedForNegotiation()}; | 
|  | } else { | 
|  | // This is not uniformely distributed but is acceptable since no security | 
|  | // depends on this randomness. | 
|  | size_t version_index = 0; | 
|  | const bool disable_randomness = | 
|  | GetQuicFlag(FLAGS_quic_disable_version_negotiation_grease_randomness); | 
|  | if (!disable_randomness) { | 
|  | version_index = | 
|  | QuicRandom::GetInstance()->RandUint64() % (wire_versions.size() + 1); | 
|  | } | 
|  | wire_versions.insert(wire_versions.begin() + version_index, | 
|  | QuicVersionReservedForNegotiation()); | 
|  | } | 
|  | if (ietf_quic) { | 
|  | return BuildIetfVersionNegotiationPacket( | 
|  | use_length_prefix, server_connection_id, client_connection_id, | 
|  | wire_versions); | 
|  | } | 
|  |  | 
|  | // The GQUIC encoding does not support encoding client connection IDs. | 
|  | DCHECK(client_connection_id.IsEmpty()); | 
|  | // The GQUIC encoding does not support length-prefixed connection IDs. | 
|  | DCHECK(!use_length_prefix); | 
|  |  | 
|  | DCHECK(!wire_versions.empty()); | 
|  | size_t len = kPublicFlagsSize + server_connection_id.length() + | 
|  | wire_versions.size() * kQuicVersionSize; | 
|  | std::unique_ptr<char[]> buffer(new char[len]); | 
|  | QuicDataWriter writer(len, buffer.get()); | 
|  |  | 
|  | uint8_t flags = static_cast<uint8_t>( | 
|  | PACKET_PUBLIC_FLAGS_VERSION | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID | | 
|  | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); | 
|  | if (!writer.WriteUInt8(flags)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!writer.WriteConnectionId(server_connection_id)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | for (const ParsedQuicVersion& version : wire_versions) { | 
|  | if (!writer.WriteUInt32(CreateQuicVersionLabel(version))) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::make_unique<QuicEncryptedPacket>(buffer.release(), len, true); | 
|  | } | 
|  |  | 
|  | // static | 
|  | std::unique_ptr<QuicEncryptedPacket> | 
|  | QuicFramer::BuildIetfVersionNegotiationPacket( | 
|  | bool use_length_prefix, | 
|  | QuicConnectionId server_connection_id, | 
|  | QuicConnectionId client_connection_id, | 
|  | const ParsedQuicVersionVector& versions) { | 
|  | QUIC_DVLOG(1) << "Building IETF version negotiation packet with" | 
|  | << (use_length_prefix ? "" : "out") | 
|  | << " length prefix, server_connection_id " | 
|  | << server_connection_id << " client_connection_id " | 
|  | << client_connection_id << " versions " | 
|  | << ParsedQuicVersionVectorToString(versions); | 
|  | DCHECK(!versions.empty()); | 
|  | size_t len = kPacketHeaderTypeSize + kConnectionIdLengthSize + | 
|  | client_connection_id.length() + server_connection_id.length() + | 
|  | (versions.size() + 1) * kQuicVersionSize; | 
|  | if (use_length_prefix) { | 
|  | // When using length-prefixed connection IDs, packets carry two lengths | 
|  | // instead of one. | 
|  | len += kConnectionIdLengthSize; | 
|  | } | 
|  | std::unique_ptr<char[]> buffer(new char[len]); | 
|  | QuicDataWriter writer(len, buffer.get()); | 
|  |  | 
|  | // TODO(fayang): Randomly select a value for the type. | 
|  | uint8_t type = static_cast<uint8_t>(FLAGS_LONG_HEADER | FLAGS_FIXED_BIT); | 
|  | if (!writer.WriteUInt8(type)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!writer.WriteUInt32(0)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!AppendIetfConnectionIds(true, use_length_prefix, client_connection_id, | 
|  | server_connection_id, &writer)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | for (const ParsedQuicVersion& version : versions) { | 
|  | if (!writer.WriteUInt32(CreateQuicVersionLabel(version))) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::make_unique<QuicEncryptedPacket>(buffer.release(), len, true); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) { | 
|  | QuicDataReader reader(packet.data(), packet.length()); | 
|  |  | 
|  | bool packet_has_ietf_packet_header = false; | 
|  | if (infer_packet_header_type_from_version_) { | 
|  | packet_has_ietf_packet_header = | 
|  | VersionHasIetfInvariantHeader(version_.transport_version); | 
|  | } else if (!reader.IsDoneReading()) { | 
|  | uint8_t type = reader.PeekByte(); | 
|  | packet_has_ietf_packet_header = QuicUtils::IsIetfPacketHeader(type); | 
|  | } | 
|  | if (packet_has_ietf_packet_header) { | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Processing IETF QUIC packet."; | 
|  | } | 
|  |  | 
|  | visitor_->OnPacket(); | 
|  |  | 
|  | QuicPacketHeader header; | 
|  | if (!ProcessPublicHeader(&reader, packet_has_ietf_packet_header, &header)) { | 
|  | DCHECK_NE("", detailed_error_); | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Unable to process public header. Error: " | 
|  | << detailed_error_; | 
|  | DCHECK_NE("", detailed_error_); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_HEADER); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnUnauthenticatedPublicHeader(header)) { | 
|  | // The visitor suppresses further processing of the packet. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (IsVersionNegotiation(header, packet_has_ietf_packet_header)) { | 
|  | if (perspective_ == Perspective::IS_CLIENT) { | 
|  | QUIC_DVLOG(1) << "Client received version negotiation packet"; | 
|  | return ProcessVersionNegotiationPacket(&reader, header); | 
|  | } else { | 
|  | QUIC_DLOG(ERROR) << "Server received version negotiation packet"; | 
|  | set_detailed_error("Server received version negotiation packet."); | 
|  | return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (header.version_flag && header.version != version_) { | 
|  | if (perspective_ == Perspective::IS_SERVER) { | 
|  | if (!visitor_->OnProtocolVersionMismatch(header.version)) { | 
|  | RecordDroppedPacketReason(DroppedPacketReason::VERSION_MISMATCH); | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | // A client received a packet of a different version but that packet is | 
|  | // not a version negotiation packet. It is therefore invalid and dropped. | 
|  | QUIC_DLOG(ERROR) << "Client received unexpected version " | 
|  | << ParsedQuicVersionToString(header.version) | 
|  | << " instead of " << ParsedQuicVersionToString(version_); | 
|  | set_detailed_error("Client received unexpected version."); | 
|  | return RaiseError(QUIC_INVALID_VERSION); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool rv; | 
|  | if (header.long_packet_type == RETRY) { | 
|  | rv = ProcessRetryPacket(&reader, header); | 
|  | } else if (header.reset_flag) { | 
|  | rv = ProcessPublicResetPacket(&reader, header); | 
|  | } else if (packet.length() <= kMaxIncomingPacketSize) { | 
|  | // The optimized decryption algorithm implementations run faster when | 
|  | // operating on aligned memory. | 
|  | QUIC_CACHELINE_ALIGNED char buffer[kMaxIncomingPacketSize]; | 
|  | if (packet_has_ietf_packet_header) { | 
|  | rv = ProcessIetfDataPacket(&reader, &header, packet, buffer, | 
|  | QUICHE_ARRAYSIZE(buffer)); | 
|  | } else { | 
|  | rv = ProcessDataPacket(&reader, &header, packet, buffer, | 
|  | QUICHE_ARRAYSIZE(buffer)); | 
|  | } | 
|  | } else { | 
|  | std::unique_ptr<char[]> large_buffer(new char[packet.length()]); | 
|  | if (packet_has_ietf_packet_header) { | 
|  | rv = ProcessIetfDataPacket(&reader, &header, packet, large_buffer.get(), | 
|  | packet.length()); | 
|  | } else { | 
|  | rv = ProcessDataPacket(&reader, &header, packet, large_buffer.get(), | 
|  | packet.length()); | 
|  | } | 
|  | QUIC_BUG_IF(rv) << "QUIC should never successfully process packets larger" | 
|  | << "than kMaxIncomingPacketSize. packet size:" | 
|  | << packet.length(); | 
|  | } | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessVersionNegotiationPacket( | 
|  | QuicDataReader* reader, | 
|  | const QuicPacketHeader& header) { | 
|  | DCHECK_EQ(Perspective::IS_CLIENT, perspective_); | 
|  |  | 
|  | QuicVersionNegotiationPacket packet( | 
|  | GetServerConnectionIdAsRecipient(header, perspective_)); | 
|  | // Try reading at least once to raise error if the packet is invalid. | 
|  | do { | 
|  | QuicVersionLabel version_label; | 
|  | if (!ProcessVersionLabel(reader, &version_label)) { | 
|  | set_detailed_error("Unable to read supported version in negotiation."); | 
|  | RecordDroppedPacketReason( | 
|  | DroppedPacketReason::INVALID_VERSION_NEGOTIATION_PACKET); | 
|  | return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); | 
|  | } | 
|  | ParsedQuicVersion parsed_version = ParseQuicVersionLabel(version_label); | 
|  | if (parsed_version != UnsupportedQuicVersion()) { | 
|  | packet.versions.push_back(parsed_version); | 
|  | } | 
|  | } while (!reader->IsDoneReading()); | 
|  |  | 
|  | QUIC_DLOG(INFO) << ENDPOINT << "parsed version negotiation: " | 
|  | << ParsedQuicVersionVectorToString(packet.versions); | 
|  |  | 
|  | visitor_->OnVersionNegotiationPacket(packet); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessRetryPacket(QuicDataReader* reader, | 
|  | const QuicPacketHeader& header) { | 
|  | DCHECK_EQ(Perspective::IS_CLIENT, perspective_); | 
|  |  | 
|  | if (version_.HasRetryIntegrityTag()) { | 
|  | DCHECK(version_.HasLengthPrefixedConnectionIds()) << version_; | 
|  | const size_t bytes_remaining = reader->BytesRemaining(); | 
|  | if (bytes_remaining <= kRetryIntegrityTagLength) { | 
|  | set_detailed_error("Retry packet too short to parse integrity tag."); | 
|  | return false; | 
|  | } | 
|  | const size_t retry_token_length = | 
|  | bytes_remaining - kRetryIntegrityTagLength; | 
|  | DCHECK_GT(retry_token_length, 0u); | 
|  | quiche::QuicheStringPiece retry_token; | 
|  | if (!reader->ReadStringPiece(&retry_token, retry_token_length)) { | 
|  | set_detailed_error("Failed to read retry token."); | 
|  | return false; | 
|  | } | 
|  | quiche::QuicheStringPiece retry_without_tag = | 
|  | reader->PreviouslyReadPayload(); | 
|  | quiche::QuicheStringPiece integrity_tag = reader->ReadRemainingPayload(); | 
|  | DCHECK_EQ(integrity_tag.length(), kRetryIntegrityTagLength); | 
|  | visitor_->OnRetryPacket(EmptyQuicConnectionId(), | 
|  | header.source_connection_id, retry_token, | 
|  | integrity_tag, retry_without_tag); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | QuicConnectionId original_destination_connection_id; | 
|  | if (version_.HasLengthPrefixedConnectionIds()) { | 
|  | // Parse Original Destination Connection ID. | 
|  | if (!reader->ReadLengthPrefixedConnectionId( | 
|  | &original_destination_connection_id)) { | 
|  | set_detailed_error("Unable to read Original Destination ConnectionId."); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // Parse Original Destination Connection ID Length. | 
|  | uint8_t odcil = header.type_byte & 0xf; | 
|  | if (odcil != 0) { | 
|  | odcil += kConnectionIdLengthAdjustment; | 
|  | } | 
|  |  | 
|  | // Parse Original Destination Connection ID. | 
|  | if (!reader->ReadConnectionId(&original_destination_connection_id, odcil)) { | 
|  | set_detailed_error("Unable to read Original Destination ConnectionId."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!QuicUtils::IsConnectionIdValidForVersion( | 
|  | original_destination_connection_id, transport_version())) { | 
|  | set_detailed_error( | 
|  | "Received Original Destination ConnectionId with invalid length."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece retry_token = reader->ReadRemainingPayload(); | 
|  | visitor_->OnRetryPacket(original_destination_connection_id, | 
|  | header.source_connection_id, retry_token, | 
|  | /*retry_integrity_tag=*/quiche::QuicheStringPiece(), | 
|  | /*retry_without_tag=*/quiche::QuicheStringPiece()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Seeks the current packet to check for a coalesced packet at the end. | 
|  | // If the IETF length field only spans part of the outer packet, | 
|  | // then there is a coalesced packet after this one. | 
|  | void QuicFramer::MaybeProcessCoalescedPacket( | 
|  | const QuicDataReader& encrypted_reader, | 
|  | uint64_t remaining_bytes_length, | 
|  | const QuicPacketHeader& header) { | 
|  | if (header.remaining_packet_length >= remaining_bytes_length) { | 
|  | // There is no coalesced packet. | 
|  | return; | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece remaining_data = | 
|  | encrypted_reader.PeekRemainingPayload(); | 
|  | DCHECK_EQ(remaining_data.length(), remaining_bytes_length); | 
|  |  | 
|  | const char* coalesced_data = | 
|  | remaining_data.data() + header.remaining_packet_length; | 
|  | uint64_t coalesced_data_length = | 
|  | remaining_bytes_length - header.remaining_packet_length; | 
|  | QuicDataReader coalesced_reader(coalesced_data, coalesced_data_length); | 
|  |  | 
|  | QuicPacketHeader coalesced_header; | 
|  | if (!ProcessIetfPacketHeader(&coalesced_reader, &coalesced_header)) { | 
|  | // Some implementations pad their INITIAL packets by sending random invalid | 
|  | // data after the INITIAL, and that is allowed by the specification. If we | 
|  | // fail to parse a subsequent coalesced packet, simply ignore it. | 
|  | QUIC_DLOG(INFO) << ENDPOINT | 
|  | << "Failed to parse received coalesced header of length " | 
|  | << coalesced_data_length | 
|  | << " with error: " << detailed_error_ << ": " | 
|  | << quiche::QuicheTextUtils::HexEncode(coalesced_data, | 
|  | coalesced_data_length) | 
|  | << " previous header was " << header; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (coalesced_header.destination_connection_id != | 
|  | header.destination_connection_id) { | 
|  | // Drop coalesced packets with mismatched connection IDs. | 
|  | QUIC_DLOG(INFO) << ENDPOINT << "Received mismatched coalesced header " | 
|  | << coalesced_header << " previous header was " << header; | 
|  | QUIC_CODE_COUNT( | 
|  | quic_received_coalesced_packets_with_mismatched_connection_id); | 
|  | return; | 
|  | } | 
|  |  | 
|  | QuicEncryptedPacket coalesced_packet(coalesced_data, coalesced_data_length, | 
|  | /*owns_buffer=*/false); | 
|  | visitor_->OnCoalescedPacket(coalesced_packet); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::MaybeProcessIetfLength(QuicDataReader* encrypted_reader, | 
|  | QuicPacketHeader* header) { | 
|  | if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) || | 
|  | header->form != IETF_QUIC_LONG_HEADER_PACKET || | 
|  | (header->long_packet_type != INITIAL && | 
|  | header->long_packet_type != HANDSHAKE && | 
|  | header->long_packet_type != ZERO_RTT_PROTECTED)) { | 
|  | return true; | 
|  | } | 
|  | header->length_length = encrypted_reader->PeekVarInt62Length(); | 
|  | if (!encrypted_reader->ReadVarInt62(&header->remaining_packet_length)) { | 
|  | set_detailed_error("Unable to read long header payload length."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | uint64_t remaining_bytes_length = encrypted_reader->BytesRemaining(); | 
|  | if (header->remaining_packet_length > remaining_bytes_length) { | 
|  | set_detailed_error("Long header payload length longer than packet."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  |  | 
|  | MaybeProcessCoalescedPacket(*encrypted_reader, remaining_bytes_length, | 
|  | *header); | 
|  |  | 
|  | if (!encrypted_reader->TruncateRemaining(header->remaining_packet_length)) { | 
|  | set_detailed_error("Length TruncateRemaining failed."); | 
|  | QUIC_BUG << "Length TruncateRemaining failed."; | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfDataPacket(QuicDataReader* encrypted_reader, | 
|  | QuicPacketHeader* header, | 
|  | const QuicEncryptedPacket& packet, | 
|  | char* decrypted_buffer, | 
|  | size_t buffer_length) { | 
|  | DCHECK_NE(GOOGLE_QUIC_PACKET, header->form); | 
|  | DCHECK(!header->has_possible_stateless_reset_token); | 
|  | header->length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; | 
|  | header->remaining_packet_length = 0; | 
|  | if (header->form == IETF_QUIC_SHORT_HEADER_PACKET && | 
|  | perspective_ == Perspective::IS_CLIENT) { | 
|  | // Peek possible stateless reset token. Will only be used on decryption | 
|  | // failure. | 
|  | quiche::QuicheStringPiece remaining = | 
|  | encrypted_reader->PeekRemainingPayload(); | 
|  | if (remaining.length() >= sizeof(header->possible_stateless_reset_token)) { | 
|  | header->has_possible_stateless_reset_token = true; | 
|  | memcpy(&header->possible_stateless_reset_token, | 
|  | &remaining.data()[remaining.length() - | 
|  | sizeof(header->possible_stateless_reset_token)], | 
|  | sizeof(header->possible_stateless_reset_token)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MaybeProcessIetfLength(encrypted_reader, header)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece associated_data; | 
|  | std::vector<char> ad_storage; | 
|  | if (header->form == IETF_QUIC_SHORT_HEADER_PACKET || | 
|  | header->long_packet_type != VERSION_NEGOTIATION) { | 
|  | DCHECK(header->form == IETF_QUIC_SHORT_HEADER_PACKET || | 
|  | header->long_packet_type == INITIAL || | 
|  | header->long_packet_type == HANDSHAKE || | 
|  | header->long_packet_type == ZERO_RTT_PROTECTED); | 
|  | // Process packet number. | 
|  | QuicPacketNumber base_packet_number; | 
|  | if (supports_multiple_packet_number_spaces_) { | 
|  | PacketNumberSpace pn_space = GetPacketNumberSpace(*header); | 
|  | if (pn_space == NUM_PACKET_NUMBER_SPACES) { | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | base_packet_number = largest_decrypted_packet_numbers_[pn_space]; | 
|  | } else { | 
|  | base_packet_number = largest_packet_number_; | 
|  | } | 
|  | uint64_t full_packet_number; | 
|  | bool hp_removal_failed = false; | 
|  | if (version_.HasHeaderProtection()) { | 
|  | if (!RemoveHeaderProtection(encrypted_reader, packet, header, | 
|  | &full_packet_number, &ad_storage)) { | 
|  | hp_removal_failed = true; | 
|  | } | 
|  | associated_data = | 
|  | quiche::QuicheStringPiece(ad_storage.data(), ad_storage.size()); | 
|  | } else if (!ProcessAndCalculatePacketNumber( | 
|  | encrypted_reader, header->packet_number_length, | 
|  | base_packet_number, &full_packet_number)) { | 
|  | set_detailed_error("Unable to read packet number."); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  |  | 
|  | if (hp_removal_failed || | 
|  | !IsValidFullPacketNumber(full_packet_number, version())) { | 
|  | if (IsIetfStatelessResetPacket(*header)) { | 
|  | // This is a stateless reset packet. | 
|  | QuicIetfStatelessResetPacket packet( | 
|  | *header, header->possible_stateless_reset_token); | 
|  | visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); | 
|  | return true; | 
|  | } | 
|  | if (hp_removal_failed) { | 
|  | const EncryptionLevel decryption_level = GetEncryptionLevel(*header); | 
|  | const bool has_decryption_key = decrypter_[decryption_level] != nullptr; | 
|  | visitor_->OnUndecryptablePacket( | 
|  | QuicEncryptedPacket(encrypted_reader->FullPayload()), | 
|  | decryption_level, has_decryption_key); | 
|  | set_detailed_error(quiche::QuicheStrCat( | 
|  | "Unable to decrypt ", EncryptionLevelToString(decryption_level), | 
|  | " header protection", has_decryption_key ? "" : " (missing key)", | 
|  | ".")); | 
|  | return RaiseError(QUIC_DECRYPTION_FAILURE); | 
|  | } | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); | 
|  | set_detailed_error("packet numbers cannot be 0."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | header->packet_number = QuicPacketNumber(full_packet_number); | 
|  | } | 
|  |  | 
|  | // A nonce should only present in SHLO from the server to the client when | 
|  | // using QUIC crypto. | 
|  | if (header->form == IETF_QUIC_LONG_HEADER_PACKET && | 
|  | header->long_packet_type == ZERO_RTT_PROTECTED && | 
|  | perspective_ == Perspective::IS_CLIENT && | 
|  | version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { | 
|  | if (!encrypted_reader->ReadBytes( | 
|  | reinterpret_cast<uint8_t*>(last_nonce_.data()), | 
|  | last_nonce_.size())) { | 
|  | set_detailed_error("Unable to read nonce."); | 
|  | RecordDroppedPacketReason( | 
|  | DroppedPacketReason::INVALID_DIVERSIFICATION_NONCE); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  |  | 
|  | header->nonce = &last_nonce_; | 
|  | } else { | 
|  | header->nonce = nullptr; | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnUnauthenticatedHeader(*header)) { | 
|  | set_detailed_error( | 
|  | "Visitor asked to stop processing of unauthenticated header."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece encrypted = | 
|  | encrypted_reader->ReadRemainingPayload(); | 
|  | if (!version_.HasHeaderProtection()) { | 
|  | associated_data = GetAssociatedDataFromEncryptedPacket( | 
|  | version_.transport_version, packet, | 
|  | GetIncludedDestinationConnectionIdLength(*header), | 
|  | GetIncludedSourceConnectionIdLength(*header), header->version_flag, | 
|  | header->nonce != nullptr, header->packet_number_length, | 
|  | header->retry_token_length_length, header->retry_token.length(), | 
|  | header->length_length); | 
|  | } | 
|  |  | 
|  | size_t decrypted_length = 0; | 
|  | EncryptionLevel decrypted_level; | 
|  | if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer, | 
|  | buffer_length, &decrypted_length, &decrypted_level)) { | 
|  | if (IsIetfStatelessResetPacket(*header)) { | 
|  | // This is a stateless reset packet. | 
|  | QuicIetfStatelessResetPacket packet( | 
|  | *header, header->possible_stateless_reset_token); | 
|  | visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); | 
|  | return true; | 
|  | } | 
|  | const EncryptionLevel decryption_level = GetEncryptionLevel(*header); | 
|  | const bool has_decryption_key = version_.KnowsWhichDecrypterToUse() && | 
|  | decrypter_[decryption_level] != nullptr; | 
|  | visitor_->OnUndecryptablePacket( | 
|  | QuicEncryptedPacket(encrypted_reader->FullPayload()), decryption_level, | 
|  | has_decryption_key); | 
|  | set_detailed_error(quiche::QuicheStrCat( | 
|  | "Unable to decrypt ", EncryptionLevelToString(decryption_level), | 
|  | " payload", | 
|  | has_decryption_key || !version_.KnowsWhichDecrypterToUse() | 
|  | ? "" | 
|  | : " (missing key)", | 
|  | ".")); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); | 
|  | return RaiseError(QUIC_DECRYPTION_FAILURE); | 
|  | } | 
|  | QuicDataReader reader(decrypted_buffer, decrypted_length); | 
|  |  | 
|  | // Update the largest packet number after we have decrypted the packet | 
|  | // so we are confident is not attacker controlled. | 
|  | if (supports_multiple_packet_number_spaces_) { | 
|  | largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace( | 
|  | decrypted_level)] | 
|  | .UpdateMax(header->packet_number); | 
|  | } else { | 
|  | largest_packet_number_.UpdateMax(header->packet_number); | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnPacketHeader(*header)) { | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); | 
|  | // The visitor suppresses further processing of the packet. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (packet.length() > kMaxIncomingPacketSize) { | 
|  | set_detailed_error("Packet too large."); | 
|  | return RaiseError(QUIC_PACKET_TOO_LARGE); | 
|  | } | 
|  |  | 
|  | // Handle the payload. | 
|  | if (VersionHasIetfQuicFrames(version_.transport_version)) { | 
|  | current_received_frame_type_ = 0; | 
|  | if (!ProcessIetfFrameData(&reader, *header)) { | 
|  | current_received_frame_type_ = 0; | 
|  | DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessIetfFrameData sets the error. | 
|  | DCHECK_NE("", detailed_error_); | 
|  | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " | 
|  | << detailed_error_; | 
|  | return false; | 
|  | } | 
|  | current_received_frame_type_ = 0; | 
|  | } else { | 
|  | if (!ProcessFrameData(&reader, *header)) { | 
|  | DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error. | 
|  | DCHECK_NE("", detailed_error_); | 
|  | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " | 
|  | << detailed_error_; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | visitor_->OnPacketComplete(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader, | 
|  | QuicPacketHeader* header, | 
|  | const QuicEncryptedPacket& packet, | 
|  | char* decrypted_buffer, | 
|  | size_t buffer_length) { | 
|  | if (!ProcessUnauthenticatedHeader(encrypted_reader, header)) { | 
|  | DCHECK_NE("", detailed_error_); | 
|  | QUIC_DVLOG(1) | 
|  | << ENDPOINT | 
|  | << "Unable to process packet header. Stopping parsing. Error: " | 
|  | << detailed_error_; | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece encrypted = | 
|  | encrypted_reader->ReadRemainingPayload(); | 
|  | quiche::QuicheStringPiece associated_data = | 
|  | GetAssociatedDataFromEncryptedPacket( | 
|  | version_.transport_version, packet, | 
|  | GetIncludedDestinationConnectionIdLength(*header), | 
|  | GetIncludedSourceConnectionIdLength(*header), header->version_flag, | 
|  | header->nonce != nullptr, header->packet_number_length, | 
|  | header->retry_token_length_length, header->retry_token.length(), | 
|  | header->length_length); | 
|  |  | 
|  | size_t decrypted_length = 0; | 
|  | EncryptionLevel decrypted_level; | 
|  | if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer, | 
|  | buffer_length, &decrypted_length, &decrypted_level)) { | 
|  | const EncryptionLevel decryption_level = decrypter_level_; | 
|  | // This version uses trial decryption so we always report to our visitor | 
|  | // that we are not certain we have the correct decryption key. | 
|  | const bool has_decryption_key = false; | 
|  | visitor_->OnUndecryptablePacket( | 
|  | QuicEncryptedPacket(encrypted_reader->FullPayload()), decryption_level, | 
|  | has_decryption_key); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); | 
|  | set_detailed_error(quiche::QuicheStrCat( | 
|  | "Unable to decrypt ", EncryptionLevelToString(decryption_level), | 
|  | " payload.")); | 
|  | return RaiseError(QUIC_DECRYPTION_FAILURE); | 
|  | } | 
|  |  | 
|  | QuicDataReader reader(decrypted_buffer, decrypted_length); | 
|  |  | 
|  | // Update the largest packet number after we have decrypted the packet | 
|  | // so we are confident is not attacker controlled. | 
|  | if (supports_multiple_packet_number_spaces_) { | 
|  | largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace( | 
|  | decrypted_level)] | 
|  | .UpdateMax(header->packet_number); | 
|  | } else { | 
|  | largest_packet_number_.UpdateMax(header->packet_number); | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnPacketHeader(*header)) { | 
|  | // The visitor suppresses further processing of the packet. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (packet.length() > kMaxIncomingPacketSize) { | 
|  | set_detailed_error("Packet too large."); | 
|  | return RaiseError(QUIC_PACKET_TOO_LARGE); | 
|  | } | 
|  |  | 
|  | // Handle the payload. | 
|  | if (!ProcessFrameData(&reader, *header)) { | 
|  | DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error. | 
|  | DCHECK_NE("", detailed_error_); | 
|  | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " | 
|  | << detailed_error_; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | visitor_->OnPacketComplete(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessPublicResetPacket(QuicDataReader* reader, | 
|  | const QuicPacketHeader& header) { | 
|  | QuicPublicResetPacket packet( | 
|  | GetServerConnectionIdAsRecipient(header, perspective_)); | 
|  |  | 
|  | std::unique_ptr<CryptoHandshakeMessage> reset( | 
|  | CryptoFramer::ParseMessage(reader->ReadRemainingPayload())); | 
|  | if (!reset) { | 
|  | set_detailed_error("Unable to read reset message."); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); | 
|  | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); | 
|  | } | 
|  | if (reset->tag() != kPRST) { | 
|  | set_detailed_error("Incorrect message tag."); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); | 
|  | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); | 
|  | } | 
|  |  | 
|  | if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) { | 
|  | set_detailed_error("Unable to read nonce proof."); | 
|  | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); | 
|  | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); | 
|  | } | 
|  | // TODO(satyamshekhar): validate nonce to protect against DoS. | 
|  |  | 
|  | quiche::QuicheStringPiece address; | 
|  | if (reset->GetStringPiece(kCADR, &address)) { | 
|  | QuicSocketAddressCoder address_coder; | 
|  | if (address_coder.Decode(address.data(), address.length())) { | 
|  | packet.client_address = | 
|  | QuicSocketAddress(address_coder.ip(), address_coder.port()); | 
|  | } | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece endpoint_id; | 
|  | if (perspective_ == Perspective::IS_CLIENT && | 
|  | reset->GetStringPiece(kEPID, &endpoint_id)) { | 
|  | packet.endpoint_id = std::string(endpoint_id); | 
|  | packet.endpoint_id += '\0'; | 
|  | } | 
|  |  | 
|  | visitor_->OnPublicResetPacket(packet); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::IsIetfStatelessResetPacket( | 
|  | const QuicPacketHeader& header) const { | 
|  | QUIC_BUG_IF(header.has_possible_stateless_reset_token && | 
|  | perspective_ != Perspective::IS_CLIENT) | 
|  | << "has_possible_stateless_reset_token can only be true at client side."; | 
|  | return header.form == IETF_QUIC_SHORT_HEADER_PACKET && | 
|  | header.has_possible_stateless_reset_token && | 
|  | visitor_->IsValidStatelessResetToken( | 
|  | header.possible_stateless_reset_token); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::HasEncrypterOfEncryptionLevel(EncryptionLevel level) const { | 
|  | return encrypter_[level] != nullptr; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header, | 
|  | QuicDataWriter* writer, | 
|  | size_t* length_field_offset) { | 
|  | if (VersionHasIetfInvariantHeader(transport_version())) { | 
|  | return AppendIetfPacketHeader(header, writer, length_field_offset); | 
|  | } | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Appending header: " << header; | 
|  | uint8_t public_flags = 0; | 
|  | if (header.reset_flag) { | 
|  | public_flags |= PACKET_PUBLIC_FLAGS_RST; | 
|  | } | 
|  | if (header.version_flag) { | 
|  | public_flags |= PACKET_PUBLIC_FLAGS_VERSION; | 
|  | } | 
|  |  | 
|  | public_flags |= GetPacketNumberFlags(header.packet_number_length) | 
|  | << kPublicHeaderSequenceNumberShift; | 
|  |  | 
|  | if (header.nonce != nullptr) { | 
|  | DCHECK_EQ(Perspective::IS_SERVER, perspective_); | 
|  | public_flags |= PACKET_PUBLIC_FLAGS_NONCE; | 
|  | } | 
|  |  | 
|  | QuicConnectionId server_connection_id = | 
|  | GetServerConnectionIdAsSender(header, perspective_); | 
|  | QuicConnectionIdIncluded server_connection_id_included = | 
|  | GetServerConnectionIdIncludedAsSender(header, perspective_); | 
|  | DCHECK_EQ(CONNECTION_ID_ABSENT, | 
|  | GetClientConnectionIdIncludedAsSender(header, perspective_)) | 
|  | << ENDPOINT << ParsedQuicVersionToString(version_) | 
|  | << " invalid header: " << header; | 
|  |  | 
|  | switch (server_connection_id_included) { | 
|  | case CONNECTION_ID_ABSENT: | 
|  | if (!writer->WriteUInt8(public_flags | | 
|  | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case CONNECTION_ID_PRESENT: | 
|  | QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion( | 
|  | server_connection_id, transport_version())) | 
|  | << "AppendPacketHeader: attempted to use connection ID " | 
|  | << server_connection_id << " which is invalid with version " | 
|  | << QuicVersionToString(transport_version()); | 
|  |  | 
|  | public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID; | 
|  | if (perspective_ == Perspective::IS_CLIENT) { | 
|  | public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD; | 
|  | } | 
|  | if (!writer->WriteUInt8(public_flags) || | 
|  | !writer->WriteConnectionId(server_connection_id)) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | last_serialized_server_connection_id_ = server_connection_id; | 
|  |  | 
|  | if (header.version_flag) { | 
|  | DCHECK_EQ(Perspective::IS_CLIENT, perspective_); | 
|  | QuicVersionLabel version_label = CreateQuicVersionLabel(version_); | 
|  | if (!writer->WriteUInt32(version_label)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QUIC_DVLOG(1) << ENDPOINT << "label = '" | 
|  | << QuicVersionLabelToString(version_label) << "'"; | 
|  | } | 
|  |  | 
|  | if (header.nonce != nullptr && | 
|  | !writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!AppendPacketNumber(header.packet_number_length, header.packet_number, | 
|  | writer)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendIetfHeaderTypeByte(const QuicPacketHeader& header, | 
|  | QuicDataWriter* writer) { | 
|  | uint8_t type = 0; | 
|  | if (header.version_flag) { | 
|  | type = static_cast<uint8_t>( | 
|  | FLAGS_LONG_HEADER | FLAGS_FIXED_BIT | | 
|  | LongHeaderTypeToOnWireValue(header.long_packet_type) | | 
|  | PacketNumberLengthToOnWireValue(header.packet_number_length)); | 
|  | } else { | 
|  | type = static_cast<uint8_t>( | 
|  | FLAGS_FIXED_BIT | | 
|  | PacketNumberLengthToOnWireValue(header.packet_number_length)); | 
|  | } | 
|  | return writer->WriteUInt8(type); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendIetfPacketHeader(const QuicPacketHeader& header, | 
|  | QuicDataWriter* writer, | 
|  | size_t* length_field_offset) { | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Appending IETF header: " << header; | 
|  | QuicConnectionId server_connection_id = | 
|  | GetServerConnectionIdAsSender(header, perspective_); | 
|  | QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion(server_connection_id, | 
|  | transport_version())) | 
|  | << "AppendIetfPacketHeader: attempted to use connection ID " | 
|  | << server_connection_id << " which is invalid with version " | 
|  | << QuicVersionToString(transport_version()); | 
|  | if (!AppendIetfHeaderTypeByte(header, writer)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (header.version_flag) { | 
|  | DCHECK_NE(VERSION_NEGOTIATION, header.long_packet_type) | 
|  | << "QuicFramer::AppendIetfPacketHeader does not support sending " | 
|  | "version negotiation packets, use " | 
|  | "QuicFramer::BuildVersionNegotiationPacket instead " | 
|  | << header; | 
|  | // Append version for long header. | 
|  | QuicVersionLabel version_label = CreateQuicVersionLabel(version_); | 
|  | if (!writer->WriteUInt32(version_label)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Append connection ID. | 
|  | if (!AppendIetfConnectionIds( | 
|  | header.version_flag, version_.HasLengthPrefixedConnectionIds(), | 
|  | header.destination_connection_id_included != CONNECTION_ID_ABSENT | 
|  | ? header.destination_connection_id | 
|  | : EmptyQuicConnectionId(), | 
|  | header.source_connection_id_included != CONNECTION_ID_ABSENT | 
|  | ? header.source_connection_id | 
|  | : EmptyQuicConnectionId(), | 
|  | writer)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | last_serialized_server_connection_id_ = server_connection_id; | 
|  | if (version_.SupportsClientConnectionIds()) { | 
|  | last_serialized_client_connection_id_ = | 
|  | GetClientConnectionIdAsSender(header, perspective_); | 
|  | } | 
|  |  | 
|  | // TODO(b/141924462) Remove this QUIC_BUG once we do support sending RETRY. | 
|  | QUIC_BUG_IF(header.version_flag && header.long_packet_type == RETRY) | 
|  | << "Sending IETF RETRY packets is not currently supported " << header; | 
|  |  | 
|  | if (QuicVersionHasLongHeaderLengths(transport_version()) && | 
|  | header.version_flag) { | 
|  | if (header.long_packet_type == INITIAL) { | 
|  | DCHECK_NE(VARIABLE_LENGTH_INTEGER_LENGTH_0, | 
|  | header.retry_token_length_length) | 
|  | << ENDPOINT << ParsedQuicVersionToString(version_) | 
|  | << " bad retry token length length in header: " << header; | 
|  | // Write retry token length. | 
|  | if (!writer->WriteVarInt62(header.retry_token.length(), | 
|  | header.retry_token_length_length)) { | 
|  | return false; | 
|  | } | 
|  | // Write retry token. | 
|  | if (!header.retry_token.empty() && | 
|  | !writer->WriteStringPiece(header.retry_token)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (length_field_offset != nullptr) { | 
|  | *length_field_offset = writer->length(); | 
|  | } | 
|  | // Add fake length to reserve two bytes to add length in later. | 
|  | writer->WriteVarInt62(256); | 
|  | } else if (length_field_offset != nullptr) { | 
|  | *length_field_offset = 0; | 
|  | } | 
|  |  | 
|  | // Append packet number. | 
|  | if (!AppendPacketNumber(header.packet_number_length, header.packet_number, | 
|  | writer)) { | 
|  | return false; | 
|  | } | 
|  | last_written_packet_number_length_ = header.packet_number_length; | 
|  |  | 
|  | if (!header.version_flag) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (header.nonce != nullptr) { | 
|  | DCHECK(header.version_flag); | 
|  | DCHECK_EQ(ZERO_RTT_PROTECTED, header.long_packet_type); | 
|  | DCHECK_EQ(Perspective::IS_SERVER, perspective_); | 
|  | if (!writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const QuicTime::Delta QuicFramer::CalculateTimestampFromWire( | 
|  | uint32_t time_delta_us) { | 
|  | // The new time_delta might have wrapped to the next epoch, or it | 
|  | // might have reverse wrapped to the previous epoch, or it might | 
|  | // remain in the same epoch. Select the time closest to the previous | 
|  | // time. | 
|  | // | 
|  | // epoch_delta is the delta between epochs. A delta is 4 bytes of | 
|  | // microseconds. | 
|  | const uint64_t epoch_delta = UINT64_C(1) << 32; | 
|  | uint64_t epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1); | 
|  | // Wrapping is safe here because a wrapped value will not be ClosestTo below. | 
|  | uint64_t prev_epoch = epoch - epoch_delta; | 
|  | uint64_t next_epoch = epoch + epoch_delta; | 
|  |  | 
|  | uint64_t time = ClosestTo( | 
|  | last_timestamp_.ToMicroseconds(), epoch + time_delta_us, | 
|  | ClosestTo(last_timestamp_.ToMicroseconds(), prev_epoch + time_delta_us, | 
|  | next_epoch + time_delta_us)); | 
|  |  | 
|  | return QuicTime::Delta::FromMicroseconds(time); | 
|  | } | 
|  |  | 
|  | uint64_t QuicFramer::CalculatePacketNumberFromWire( | 
|  | QuicPacketNumberLength packet_number_length, | 
|  | QuicPacketNumber base_packet_number, | 
|  | uint64_t packet_number) const { | 
|  | // The new packet number might have wrapped to the next epoch, or | 
|  | // it might have reverse wrapped to the previous epoch, or it might | 
|  | // remain in the same epoch.  Select the packet number closest to the | 
|  | // next expected packet number, the previous packet number plus 1. | 
|  |  | 
|  | // epoch_delta is the delta between epochs the packet number was serialized | 
|  | // with, so the correct value is likely the same epoch as the last sequence | 
|  | // number or an adjacent epoch. | 
|  | if (!base_packet_number.IsInitialized()) { | 
|  | return packet_number; | 
|  | } | 
|  | const uint64_t epoch_delta = UINT64_C(1) << (8 * packet_number_length); | 
|  | uint64_t next_packet_number = base_packet_number.ToUint64() + 1; | 
|  | uint64_t epoch = base_packet_number.ToUint64() & ~(epoch_delta - 1); | 
|  | uint64_t prev_epoch = epoch - epoch_delta; | 
|  | uint64_t next_epoch = epoch + epoch_delta; | 
|  |  | 
|  | return ClosestTo(next_packet_number, epoch + packet_number, | 
|  | ClosestTo(next_packet_number, prev_epoch + packet_number, | 
|  | next_epoch + packet_number)); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader, | 
|  | bool packet_has_ietf_packet_header, | 
|  | QuicPacketHeader* header) { | 
|  | if (packet_has_ietf_packet_header) { | 
|  | return ProcessIetfPacketHeader(reader, header); | 
|  | } | 
|  | uint8_t public_flags; | 
|  | if (!reader->ReadBytes(&public_flags, 1)) { | 
|  | set_detailed_error("Unable to read public flags."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0; | 
|  | header->version_flag = (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0; | 
|  |  | 
|  | if (validate_flags_ && !header->version_flag && | 
|  | public_flags > PACKET_PUBLIC_FLAGS_MAX) { | 
|  | set_detailed_error("Illegal public flags value."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (header->reset_flag && header->version_flag) { | 
|  | set_detailed_error("Got version flag in reset packet"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QuicConnectionId* header_connection_id = &header->destination_connection_id; | 
|  | QuicConnectionIdIncluded* header_connection_id_included = | 
|  | &header->destination_connection_id_included; | 
|  | if (perspective_ == Perspective::IS_CLIENT) { | 
|  | header_connection_id = &header->source_connection_id; | 
|  | header_connection_id_included = &header->source_connection_id_included; | 
|  | } | 
|  | switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) { | 
|  | case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID: | 
|  | if (!reader->ReadConnectionId(header_connection_id, | 
|  | kQuicDefaultConnectionIdLength)) { | 
|  | set_detailed_error("Unable to read ConnectionId."); | 
|  | return false; | 
|  | } | 
|  | *header_connection_id_included = CONNECTION_ID_PRESENT; | 
|  | break; | 
|  | case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID: | 
|  | *header_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | *header_connection_id = last_serialized_server_connection_id_; | 
|  | break; | 
|  | } | 
|  |  | 
|  | header->packet_number_length = ReadSequenceNumberLength( | 
|  | public_flags >> kPublicHeaderSequenceNumberShift); | 
|  |  | 
|  | // Read the version only if the packet is from the client. | 
|  | // version flag from the server means version negotiation packet. | 
|  | if (header->version_flag && perspective_ == Perspective::IS_SERVER) { | 
|  | QuicVersionLabel version_label; | 
|  | if (!ProcessVersionLabel(reader, &version_label)) { | 
|  | set_detailed_error("Unable to read protocol version."); | 
|  | return false; | 
|  | } | 
|  | // If the version from the new packet is the same as the version of this | 
|  | // framer, then the public flags should be set to something we understand. | 
|  | // If not, this raises an error. | 
|  | ParsedQuicVersion version = ParseQuicVersionLabel(version_label); | 
|  | if (version == version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) { | 
|  | set_detailed_error("Illegal public flags value."); | 
|  | return false; | 
|  | } | 
|  | header->version = version; | 
|  | } | 
|  |  | 
|  | // A nonce should only be present in packets from the server to the client, | 
|  | // which are neither version negotiation nor public reset packets. | 
|  | if (public_flags & PACKET_PUBLIC_FLAGS_NONCE && | 
|  | !(public_flags & PACKET_PUBLIC_FLAGS_VERSION) && | 
|  | !(public_flags & PACKET_PUBLIC_FLAGS_RST) && | 
|  | // The nonce flag from a client is ignored and is assumed to be an older | 
|  | // client indicating an eight-byte connection ID. | 
|  | perspective_ == Perspective::IS_CLIENT) { | 
|  | if (!reader->ReadBytes(reinterpret_cast<uint8_t*>(last_nonce_.data()), | 
|  | last_nonce_.size())) { | 
|  | set_detailed_error("Unable to read nonce."); | 
|  | return false; | 
|  | } | 
|  | header->nonce = &last_nonce_; | 
|  | } else { | 
|  | header->nonce = nullptr; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // static | 
|  | QuicPacketNumberLength QuicFramer::GetMinPacketNumberLength( | 
|  | QuicPacketNumber packet_number) { | 
|  | DCHECK(packet_number.IsInitialized()); | 
|  | if (packet_number < QuicPacketNumber(1 << (PACKET_1BYTE_PACKET_NUMBER * 8))) { | 
|  | return PACKET_1BYTE_PACKET_NUMBER; | 
|  | } else if (packet_number < | 
|  | QuicPacketNumber(1 << (PACKET_2BYTE_PACKET_NUMBER * 8))) { | 
|  | return PACKET_2BYTE_PACKET_NUMBER; | 
|  | } else if (packet_number < | 
|  | QuicPacketNumber(UINT64_C(1) | 
|  | << (PACKET_4BYTE_PACKET_NUMBER * 8))) { | 
|  | return PACKET_4BYTE_PACKET_NUMBER; | 
|  | } else { | 
|  | return PACKET_6BYTE_PACKET_NUMBER; | 
|  | } | 
|  | } | 
|  |  | 
|  | // static | 
|  | uint8_t QuicFramer::GetPacketNumberFlags( | 
|  | QuicPacketNumberLength packet_number_length) { | 
|  | switch (packet_number_length) { | 
|  | case PACKET_1BYTE_PACKET_NUMBER: | 
|  | return PACKET_FLAGS_1BYTE_PACKET; | 
|  | case PACKET_2BYTE_PACKET_NUMBER: | 
|  | return PACKET_FLAGS_2BYTE_PACKET; | 
|  | case PACKET_4BYTE_PACKET_NUMBER: | 
|  | return PACKET_FLAGS_4BYTE_PACKET; | 
|  | case PACKET_6BYTE_PACKET_NUMBER: | 
|  | case PACKET_8BYTE_PACKET_NUMBER: | 
|  | return PACKET_FLAGS_8BYTE_PACKET; | 
|  | default: | 
|  | QUIC_BUG << "Unreachable case statement."; | 
|  | return PACKET_FLAGS_8BYTE_PACKET; | 
|  | } | 
|  | } | 
|  |  | 
|  | // static | 
|  | QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo( | 
|  | const QuicAckFrame& frame) { | 
|  | AckFrameInfo new_ack_info; | 
|  | if (frame.packets.Empty()) { | 
|  | return new_ack_info; | 
|  | } | 
|  | // The first block is the last interval. It isn't encoded with the gap-length | 
|  | // encoding, so skip it. | 
|  | new_ack_info.first_block_length = frame.packets.LastIntervalLength(); | 
|  | auto itr = frame.packets.rbegin(); | 
|  | QuicPacketNumber previous_start = itr->min(); | 
|  | new_ack_info.max_block_length = itr->Length(); | 
|  | ++itr; | 
|  |  | 
|  | // Don't do any more work after getting information for 256 ACK blocks; any | 
|  | // more can't be encoded anyway. | 
|  | for (; itr != frame.packets.rend() && | 
|  | new_ack_info.num_ack_blocks < std::numeric_limits<uint8_t>::max(); | 
|  | previous_start = itr->min(), ++itr) { | 
|  | const auto& interval = *itr; | 
|  | const QuicPacketCount total_gap = previous_start - interval.max(); | 
|  | new_ack_info.num_ack_blocks += | 
|  | (total_gap + std::numeric_limits<uint8_t>::max() - 1) / | 
|  | std::numeric_limits<uint8_t>::max(); | 
|  | new_ack_info.max_block_length = | 
|  | std::max(new_ack_info.max_block_length, interval.Length()); | 
|  | } | 
|  | return new_ack_info; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader, | 
|  | QuicPacketHeader* header) { | 
|  | QuicPacketNumber base_packet_number; | 
|  | if (supports_multiple_packet_number_spaces_) { | 
|  | PacketNumberSpace pn_space = GetPacketNumberSpace(*header); | 
|  | if (pn_space == NUM_PACKET_NUMBER_SPACES) { | 
|  | set_detailed_error("Unable to determine packet number space."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | base_packet_number = largest_decrypted_packet_numbers_[pn_space]; | 
|  | } else { | 
|  | base_packet_number = largest_packet_number_; | 
|  | } | 
|  | uint64_t full_packet_number; | 
|  | if (!ProcessAndCalculatePacketNumber( | 
|  | encrypted_reader, header->packet_number_length, base_packet_number, | 
|  | &full_packet_number)) { | 
|  | set_detailed_error("Unable to read packet number."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  |  | 
|  | if (!IsValidFullPacketNumber(full_packet_number, version())) { | 
|  | set_detailed_error("packet numbers cannot be 0."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | header->packet_number = QuicPacketNumber(full_packet_number); | 
|  |  | 
|  | if (!visitor_->OnUnauthenticatedHeader(*header)) { | 
|  | set_detailed_error( | 
|  | "Visitor asked to stop processing of unauthenticated header."); | 
|  | return false; | 
|  | } | 
|  | // The function we are in is called because the framer believes that it is | 
|  | // processing a packet that uses the non-IETF (i.e. Google QUIC) packet header | 
|  | // type. Usually, the framer makes that decision based on the framer's | 
|  | // version, but when the framer is used with Perspective::IS_SERVER, then | 
|  | // before version negotiation is complete (specifically, before | 
|  | // InferPacketHeaderTypeFromVersion is called), this decision is made based on | 
|  | // the type byte of the packet. | 
|  | // | 
|  | // If the framer's version KnowsWhichDecrypterToUse, then that version expects | 
|  | // to use the IETF packet header type. If that's the case and we're in this | 
|  | // function, then the packet received is invalid: the framer was expecting an | 
|  | // IETF packet header and didn't get one. | 
|  | if (version().KnowsWhichDecrypterToUse()) { | 
|  | set_detailed_error("Invalid public header type for expected version."); | 
|  | return RaiseError(QUIC_INVALID_PACKET_HEADER); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfHeaderTypeByte(QuicDataReader* reader, | 
|  | QuicPacketHeader* header) { | 
|  | uint8_t type; | 
|  | if (!reader->ReadBytes(&type, 1)) { | 
|  | set_detailed_error("Unable to read first byte."); | 
|  | return false; | 
|  | } | 
|  | header->type_byte = type; | 
|  | // Determine whether this is a long or short header. | 
|  | header->form = GetIetfPacketHeaderFormat(type); | 
|  | if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { | 
|  | // Version is always present in long headers. | 
|  | header->version_flag = true; | 
|  | // In versions that do not support client connection IDs, we mark the | 
|  | // corresponding connection ID as absent. | 
|  | header->destination_connection_id_included = | 
|  | (perspective_ == Perspective::IS_SERVER || | 
|  | version_.SupportsClientConnectionIds()) | 
|  | ? CONNECTION_ID_PRESENT | 
|  | : CONNECTION_ID_ABSENT; | 
|  | header->source_connection_id_included = | 
|  | (perspective_ == Perspective::IS_CLIENT || | 
|  | version_.SupportsClientConnectionIds()) | 
|  | ? CONNECTION_ID_PRESENT | 
|  | : CONNECTION_ID_ABSENT; | 
|  | // Read version tag. | 
|  | QuicVersionLabel version_label; | 
|  | if (!ProcessVersionLabel(reader, &version_label)) { | 
|  | set_detailed_error("Unable to read protocol version."); | 
|  | return false; | 
|  | } | 
|  | if (!version_label) { | 
|  | // Version label is 0 indicating this is a version negotiation packet. | 
|  | header->long_packet_type = VERSION_NEGOTIATION; | 
|  | } else { | 
|  | header->version = ParseQuicVersionLabel(version_label); | 
|  | if (header->version.transport_version != QUIC_VERSION_UNSUPPORTED) { | 
|  | if (!(type & FLAGS_FIXED_BIT)) { | 
|  | set_detailed_error("Fixed bit is 0 in long header."); | 
|  | return false; | 
|  | } | 
|  | if (!GetLongHeaderType(type, &header->long_packet_type)) { | 
|  | set_detailed_error("Illegal long header type value."); | 
|  | return false; | 
|  | } | 
|  | if (header->long_packet_type == RETRY) { | 
|  | if (!version().SupportsRetry()) { | 
|  | set_detailed_error("RETRY not supported in this version."); | 
|  | return false; | 
|  | } | 
|  | if (perspective_ == Perspective::IS_SERVER) { | 
|  | set_detailed_error("Client-initiated RETRY is invalid."); | 
|  | return false; | 
|  | } | 
|  | } else if (!header->version.HasHeaderProtection()) { | 
|  | header->packet_number_length = GetLongHeaderPacketNumberLength(type); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Received IETF long header: " | 
|  | << QuicUtils::QuicLongHeaderTypetoString( | 
|  | header->long_packet_type); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Received IETF short header"; | 
|  | // Version is not present in short headers. | 
|  | header->version_flag = false; | 
|  | // In versions that do not support client connection IDs, the client will not | 
|  | // receive destination connection IDs. | 
|  | header->destination_connection_id_included = | 
|  | (perspective_ == Perspective::IS_SERVER || | 
|  | version_.SupportsClientConnectionIds()) | 
|  | ? CONNECTION_ID_PRESENT | 
|  | : CONNECTION_ID_ABSENT; | 
|  | header->source_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | if (!(type & FLAGS_FIXED_BIT)) { | 
|  | set_detailed_error("Fixed bit is 0 in short header."); | 
|  | return false; | 
|  | } | 
|  | if (!version_.HasHeaderProtection()) { | 
|  | header->packet_number_length = GetShortHeaderPacketNumberLength(type); | 
|  | } | 
|  | QUIC_DVLOG(1) << "packet_number_length = " << header->packet_number_length; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::ProcessVersionLabel(QuicDataReader* reader, | 
|  | QuicVersionLabel* version_label) { | 
|  | if (!reader->ReadUInt32(version_label)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::ProcessAndValidateIetfConnectionIdLength( | 
|  | QuicDataReader* reader, | 
|  | ParsedQuicVersion version, | 
|  | Perspective perspective, | 
|  | bool should_update_expected_server_connection_id_length, | 
|  | uint8_t* expected_server_connection_id_length, | 
|  | uint8_t* destination_connection_id_length, | 
|  | uint8_t* source_connection_id_length, | 
|  | std::string* detailed_error) { | 
|  | uint8_t connection_id_lengths_byte; | 
|  | if (!reader->ReadBytes(&connection_id_lengths_byte, 1)) { | 
|  | *detailed_error = "Unable to read ConnectionId length."; | 
|  | return false; | 
|  | } | 
|  | uint8_t dcil = | 
|  | (connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4; | 
|  | if (dcil != 0) { | 
|  | dcil += kConnectionIdLengthAdjustment; | 
|  | } | 
|  | uint8_t scil = connection_id_lengths_byte & kSourceConnectionIdLengthMask; | 
|  | if (scil != 0) { | 
|  | scil += kConnectionIdLengthAdjustment; | 
|  | } | 
|  | if (should_update_expected_server_connection_id_length) { | 
|  | uint8_t server_connection_id_length = | 
|  | perspective == Perspective::IS_SERVER ? dcil : scil; | 
|  | if (*expected_server_connection_id_length != server_connection_id_length) { | 
|  | QUIC_DVLOG(1) << "Updating expected_server_connection_id_length: " | 
|  | << static_cast<int>(*expected_server_connection_id_length) | 
|  | << " -> " << static_cast<int>(server_connection_id_length); | 
|  | *expected_server_connection_id_length = server_connection_id_length; | 
|  | } | 
|  | } | 
|  | if (!should_update_expected_server_connection_id_length && | 
|  | (dcil != *destination_connection_id_length || | 
|  | scil != *source_connection_id_length) && | 
|  | version.IsKnown() && !version.AllowsVariableLengthConnectionIds()) { | 
|  | QUIC_DVLOG(1) << "dcil: " << static_cast<uint32_t>(dcil) | 
|  | << ", scil: " << static_cast<uint32_t>(scil); | 
|  | *detailed_error = "Invalid ConnectionId length."; | 
|  | return false; | 
|  | } | 
|  | *destination_connection_id_length = dcil; | 
|  | *source_connection_id_length = scil; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ValidateReceivedConnectionIds(const QuicPacketHeader& header) { | 
|  | if (!QuicUtils::IsConnectionIdValidForVersion( | 
|  | GetServerConnectionIdAsRecipient(header, perspective_), | 
|  | transport_version())) { | 
|  | set_detailed_error("Received server connection ID with invalid length."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (version_.SupportsClientConnectionIds() && | 
|  | !QuicUtils::IsConnectionIdValidForVersion( | 
|  | GetClientConnectionIdAsRecipient(header, perspective_), | 
|  | transport_version())) { | 
|  | set_detailed_error("Received client connection ID with invalid length."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfPacketHeader(QuicDataReader* reader, | 
|  | QuicPacketHeader* header) { | 
|  | if (version_.HasLengthPrefixedConnectionIds()) { | 
|  | uint8_t expected_destination_connection_id_length = | 
|  | perspective_ == Perspective::IS_CLIENT | 
|  | ? expected_client_connection_id_length_ | 
|  | : expected_server_connection_id_length_; | 
|  | QuicVersionLabel version_label; | 
|  | bool has_length_prefix; | 
|  | std::string detailed_error; | 
|  | QuicErrorCode parse_result = QuicFramer::ParsePublicHeader( | 
|  | reader, expected_destination_connection_id_length, | 
|  | VersionHasIetfInvariantHeader(version_.transport_version), | 
|  | &header->type_byte, &header->form, &header->version_flag, | 
|  | &has_length_prefix, &version_label, &header->version, | 
|  | &header->destination_connection_id, &header->source_connection_id, | 
|  | &header->long_packet_type, &header->retry_token_length_length, | 
|  | &header->retry_token, &detailed_error); | 
|  | if (parse_result != QUIC_NO_ERROR) { | 
|  | set_detailed_error(detailed_error); | 
|  | return false; | 
|  | } | 
|  | header->destination_connection_id_included = CONNECTION_ID_PRESENT; | 
|  | header->source_connection_id_included = | 
|  | header->version_flag ? CONNECTION_ID_PRESENT : CONNECTION_ID_ABSENT; | 
|  | if (header->source_connection_id_included == CONNECTION_ID_ABSENT) { | 
|  | DCHECK(header->source_connection_id.IsEmpty()); | 
|  | if (perspective_ == Perspective::IS_CLIENT) { | 
|  | header->source_connection_id = last_serialized_server_connection_id_; | 
|  | } else { | 
|  | header->source_connection_id = last_serialized_client_connection_id_; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ValidateReceivedConnectionIds(*header)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (header->version_flag && | 
|  | header->long_packet_type != VERSION_NEGOTIATION && | 
|  | !(header->type_byte & FLAGS_FIXED_BIT)) { | 
|  | set_detailed_error("Fixed bit is 0 in long header."); | 
|  | return false; | 
|  | } | 
|  | if (!header->version_flag && !(header->type_byte & FLAGS_FIXED_BIT)) { | 
|  | set_detailed_error("Fixed bit is 0 in short header."); | 
|  | return false; | 
|  | } | 
|  | if (!header->version_flag) { | 
|  | if (!version_.HasHeaderProtection()) { | 
|  | header->packet_number_length = | 
|  | GetShortHeaderPacketNumberLength(header->type_byte); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | if (header->long_packet_type == RETRY) { | 
|  | if (!version().SupportsRetry()) { | 
|  | set_detailed_error("RETRY not supported in this version."); | 
|  | return false; | 
|  | } | 
|  | if (perspective_ == Perspective::IS_SERVER) { | 
|  | set_detailed_error("Client-initiated RETRY is invalid."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | if (header->version.IsKnown() && !header->version.HasHeaderProtection()) { | 
|  | header->packet_number_length = | 
|  | GetLongHeaderPacketNumberLength(header->type_byte); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!ProcessIetfHeaderTypeByte(reader, header)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint8_t destination_connection_id_length = | 
|  | header->destination_connection_id_included == CONNECTION_ID_PRESENT | 
|  | ? (perspective_ == Perspective::IS_SERVER | 
|  | ? expected_server_connection_id_length_ | 
|  | : expected_client_connection_id_length_) | 
|  | : 0; | 
|  | uint8_t source_connection_id_length = | 
|  | header->source_connection_id_included == CONNECTION_ID_PRESENT | 
|  | ? (perspective_ == Perspective::IS_CLIENT | 
|  | ? expected_server_connection_id_length_ | 
|  | : expected_client_connection_id_length_) | 
|  | : 0; | 
|  | if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { | 
|  | if (!ProcessAndValidateIetfConnectionIdLength( | 
|  | reader, header->version, perspective_, | 
|  | /*should_update_expected_server_connection_id_length=*/false, | 
|  | &expected_server_connection_id_length_, | 
|  | &destination_connection_id_length, &source_connection_id_length, | 
|  | &detailed_error_)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Read connection ID. | 
|  | if (!reader->ReadConnectionId(&header->destination_connection_id, | 
|  | destination_connection_id_length)) { | 
|  | set_detailed_error("Unable to read destination connection ID."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadConnectionId(&header->source_connection_id, | 
|  | source_connection_id_length)) { | 
|  | set_detailed_error("Unable to read source connection ID."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (header->source_connection_id_included == CONNECTION_ID_ABSENT) { | 
|  | if (!header->source_connection_id.IsEmpty()) { | 
|  | DCHECK(!version_.SupportsClientConnectionIds()); | 
|  | set_detailed_error("Client connection ID not supported in this version."); | 
|  | return false; | 
|  | } | 
|  | if (perspective_ == Perspective::IS_CLIENT) { | 
|  | header->source_connection_id = last_serialized_server_connection_id_; | 
|  | } else { | 
|  | header->source_connection_id = last_serialized_client_connection_id_; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ValidateReceivedConnectionIds(*header); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessAndCalculatePacketNumber( | 
|  | QuicDataReader* reader, | 
|  | QuicPacketNumberLength packet_number_length, | 
|  | QuicPacketNumber base_packet_number, | 
|  | uint64_t* packet_number) { | 
|  | uint64_t wire_packet_number; | 
|  | if (!reader->ReadBytesToUInt64(packet_number_length, &wire_packet_number)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO(ianswett): Explore the usefulness of trying multiple packet numbers | 
|  | // in case the first guess is incorrect. | 
|  | *packet_number = CalculatePacketNumberFromWire( | 
|  | packet_number_length, base_packet_number, wire_packet_number); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessFrameData(QuicDataReader* reader, | 
|  | const QuicPacketHeader& header) { | 
|  | DCHECK(!VersionHasIetfQuicFrames(version_.transport_version)) | 
|  | << "IETF QUIC Framing negotiated but attempting to process frames as " | 
|  | "non-IETF QUIC."; | 
|  | if (reader->IsDoneReading()) { | 
|  | set_detailed_error("Packet has no frames."); | 
|  | return RaiseError(QUIC_MISSING_PAYLOAD); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing packet with header " << header; | 
|  | while (!reader->IsDoneReading()) { | 
|  | uint8_t frame_type; | 
|  | if (!reader->ReadBytes(&frame_type, 1)) { | 
|  | set_detailed_error("Unable to read frame type."); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | const uint8_t special_mask = transport_version() <= QUIC_VERSION_43 | 
|  | ? kQuicFrameTypeBrokenMask | 
|  | : kQuicFrameTypeSpecialMask; | 
|  | if (frame_type & special_mask) { | 
|  | // Stream Frame | 
|  | if (frame_type & kQuicFrameTypeStreamMask) { | 
|  | QuicStreamFrame frame; | 
|  | if (!ProcessStreamFrame(reader, frame_type, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_STREAM_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing stream frame " << frame; | 
|  | if (!visitor_->OnStreamFrame(frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Ack Frame | 
|  | if (frame_type & kQuicFrameTypeAckMask) { | 
|  | if (!ProcessAckFrame(reader, frame_type)) { | 
|  | return RaiseError(QUIC_INVALID_ACK_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing ACK frame"; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // This was a special frame type that did not match any | 
|  | // of the known ones. Error. | 
|  | set_detailed_error("Illegal frame type."); | 
|  | QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " | 
|  | << static_cast<int>(frame_type); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  |  | 
|  | switch (frame_type) { | 
|  | case PADDING_FRAME: { | 
|  | QuicPaddingFrame frame; | 
|  | ProcessPaddingFrame(reader, &frame); | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing padding frame " << frame; | 
|  | if (!visitor_->OnPaddingFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case RST_STREAM_FRAME: { | 
|  | QuicRstStreamFrame frame; | 
|  | if (!ProcessRstStreamFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_RST_STREAM_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing reset stream frame " << frame; | 
|  | if (!visitor_->OnRstStreamFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case CONNECTION_CLOSE_FRAME: { | 
|  | QuicConnectionCloseFrame frame; | 
|  | if (!ProcessConnectionCloseFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); | 
|  | } | 
|  |  | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing connection close frame " | 
|  | << frame; | 
|  | if (!visitor_->OnConnectionCloseFrame(frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case GOAWAY_FRAME: { | 
|  | QuicGoAwayFrame goaway_frame; | 
|  | if (!ProcessGoAwayFrame(reader, &goaway_frame)) { | 
|  | return RaiseError(QUIC_INVALID_GOAWAY_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing go away frame " | 
|  | << goaway_frame; | 
|  | if (!visitor_->OnGoAwayFrame(goaway_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case WINDOW_UPDATE_FRAME: { | 
|  | QuicWindowUpdateFrame window_update_frame; | 
|  | if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) { | 
|  | return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing window update frame " | 
|  | << window_update_frame; | 
|  | if (!visitor_->OnWindowUpdateFrame(window_update_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case BLOCKED_FRAME: { | 
|  | QuicBlockedFrame blocked_frame; | 
|  | if (!ProcessBlockedFrame(reader, &blocked_frame)) { | 
|  | return RaiseError(QUIC_INVALID_BLOCKED_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing blocked frame " | 
|  | << blocked_frame; | 
|  | if (!visitor_->OnBlockedFrame(blocked_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case STOP_WAITING_FRAME: { | 
|  | if (GetQuicReloadableFlag(quic_do_not_accept_stop_waiting) && | 
|  | version_.transport_version > QUIC_VERSION_43) { | 
|  | QUIC_RELOADABLE_FLAG_COUNT(quic_do_not_accept_stop_waiting); | 
|  | set_detailed_error("STOP WAITING not supported in version 44+."); | 
|  | return RaiseError(QUIC_INVALID_STOP_WAITING_DATA); | 
|  | } | 
|  | QuicStopWaitingFrame stop_waiting_frame; | 
|  | if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) { | 
|  | return RaiseError(QUIC_INVALID_STOP_WAITING_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing stop waiting frame " | 
|  | << stop_waiting_frame; | 
|  | if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | case PING_FRAME: { | 
|  | // Ping has no payload. | 
|  | QuicPingFrame ping_frame; | 
|  | if (!visitor_->OnPingFrame(ping_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing ping frame " << ping_frame; | 
|  | continue; | 
|  | } | 
|  | case IETF_EXTENSION_MESSAGE_NO_LENGTH: | 
|  | QUIC_FALLTHROUGH_INTENDED; | 
|  | case IETF_EXTENSION_MESSAGE: { | 
|  | QuicMessageFrame message_frame; | 
|  | if (!ProcessMessageFrame(reader, | 
|  | frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH, | 
|  | &message_frame)) { | 
|  | return RaiseError(QUIC_INVALID_MESSAGE_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing message frame " | 
|  | << message_frame; | 
|  | if (!visitor_->OnMessageFrame(message_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case CRYPTO_FRAME: { | 
|  | if (!QuicVersionUsesCryptoFrames(version_.transport_version)) { | 
|  | set_detailed_error("Illegal frame type."); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | QuicCryptoFrame frame; | 
|  | if (!ProcessCryptoFrame(reader, GetEncryptionLevel(header), &frame)) { | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing crypto frame " << frame; | 
|  | if (!visitor_->OnCryptoFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | set_detailed_error("Illegal frame type."); | 
|  | QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " | 
|  | << static_cast<int>(frame_type); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfFrameData(QuicDataReader* reader, | 
|  | const QuicPacketHeader& header) { | 
|  | DCHECK(VersionHasIetfQuicFrames(version_.transport_version)) | 
|  | << "Attempt to process frames as IETF frames but version (" | 
|  | << version_.transport_version << ") does not support IETF Framing."; | 
|  |  | 
|  | if (reader->IsDoneReading()) { | 
|  | set_detailed_error("Packet has no frames."); | 
|  | return RaiseError(QUIC_MISSING_PAYLOAD); | 
|  | } | 
|  |  | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF packet with header " << header; | 
|  | while (!reader->IsDoneReading()) { | 
|  | uint64_t frame_type; | 
|  | // Will be the number of bytes into which frame_type was encoded. | 
|  | size_t encoded_bytes = reader->BytesRemaining(); | 
|  | if (!reader->ReadVarInt62(&frame_type)) { | 
|  | set_detailed_error("Unable to read frame type."); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | current_received_frame_type_ = frame_type; | 
|  |  | 
|  | // Is now the number of bytes into which the frame type was encoded. | 
|  | encoded_bytes -= reader->BytesRemaining(); | 
|  |  | 
|  | // Check that the frame type is minimally encoded. | 
|  | if (encoded_bytes != | 
|  | static_cast<size_t>(QuicDataWriter::GetVarInt62Len(frame_type))) { | 
|  | // The frame type was not minimally encoded. | 
|  | set_detailed_error("Frame type not minimally encoded."); | 
|  | return RaiseError(IETF_QUIC_PROTOCOL_VIOLATION); | 
|  | } | 
|  |  | 
|  | if (IS_IETF_STREAM_FRAME(frame_type)) { | 
|  | QuicStreamFrame frame; | 
|  | if (!ProcessIetfStreamFrame(reader, frame_type, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_STREAM_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stream frame " << frame; | 
|  | if (!visitor_->OnStreamFrame(frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | switch (frame_type) { | 
|  | case IETF_PADDING: { | 
|  | QuicPaddingFrame frame; | 
|  | ProcessPaddingFrame(reader, &frame); | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF padding frame " | 
|  | << frame; | 
|  | if (!visitor_->OnPaddingFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_RST_STREAM: { | 
|  | QuicRstStreamFrame frame; | 
|  | if (!ProcessIetfResetStreamFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_RST_STREAM_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF reset stream frame " | 
|  | << frame; | 
|  | if (!visitor_->OnRstStreamFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_APPLICATION_CLOSE: | 
|  | case IETF_CONNECTION_CLOSE: { | 
|  | QuicConnectionCloseFrame frame; | 
|  | if (!ProcessIetfConnectionCloseFrame( | 
|  | reader, | 
|  | (frame_type == IETF_CONNECTION_CLOSE) | 
|  | ? IETF_QUIC_TRANSPORT_CONNECTION_CLOSE | 
|  | : IETF_QUIC_APPLICATION_CONNECTION_CLOSE, | 
|  | &frame)) { | 
|  | return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF connection close frame " | 
|  | << frame; | 
|  | if (!visitor_->OnConnectionCloseFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_MAX_DATA: { | 
|  | QuicWindowUpdateFrame frame; | 
|  | if (!ProcessMaxDataFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_MAX_DATA_FRAME_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max data frame " | 
|  | << frame; | 
|  | if (!visitor_->OnWindowUpdateFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_MAX_STREAM_DATA: { | 
|  | QuicWindowUpdateFrame frame; | 
|  | if (!ProcessMaxStreamDataFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_MAX_STREAM_DATA_FRAME_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max stream data frame " | 
|  | << frame; | 
|  | if (!visitor_->OnWindowUpdateFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_MAX_STREAMS_BIDIRECTIONAL: | 
|  | case IETF_MAX_STREAMS_UNIDIRECTIONAL: { | 
|  | QuicMaxStreamsFrame frame; | 
|  | if (!ProcessMaxStreamsFrame(reader, &frame, frame_type)) { | 
|  | return RaiseError(QUIC_MAX_STREAMS_DATA); | 
|  | } | 
|  | QUIC_CODE_COUNT_N(quic_max_streams_received, 1, 2); | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max streams frame " | 
|  | << frame; | 
|  | if (!visitor_->OnMaxStreamsFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_PING: { | 
|  | // Ping has no payload. | 
|  | QuicPingFrame ping_frame; | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF ping frame " | 
|  | << ping_frame; | 
|  | if (!visitor_->OnPingFrame(ping_frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_DATA_BLOCKED: { | 
|  | QuicBlockedFrame frame; | 
|  | if (!ProcessDataBlockedFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_BLOCKED_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF blocked frame " | 
|  | << frame; | 
|  | if (!visitor_->OnBlockedFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_STREAM_DATA_BLOCKED: { | 
|  | QuicBlockedFrame frame; | 
|  | if (!ProcessStreamDataBlockedFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_STREAM_BLOCKED_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stream blocked frame " | 
|  | << frame; | 
|  | if (!visitor_->OnBlockedFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_STREAMS_BLOCKED_UNIDIRECTIONAL: | 
|  | case IETF_STREAMS_BLOCKED_BIDIRECTIONAL: { | 
|  | QuicStreamsBlockedFrame frame; | 
|  | if (!ProcessStreamsBlockedFrame(reader, &frame, frame_type)) { | 
|  | return RaiseError(QUIC_STREAMS_BLOCKED_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF streams blocked frame " | 
|  | << frame; | 
|  | if (!visitor_->OnStreamsBlockedFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_NEW_CONNECTION_ID: { | 
|  | QuicNewConnectionIdFrame frame; | 
|  | if (!ProcessNewConnectionIdFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_NEW_CONNECTION_ID_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT | 
|  | << "Processing IETF new connection ID frame " << frame; | 
|  | if (!visitor_->OnNewConnectionIdFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_RETIRE_CONNECTION_ID: { | 
|  | QuicRetireConnectionIdFrame frame; | 
|  | if (!ProcessRetireConnectionIdFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_RETIRE_CONNECTION_ID_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT | 
|  | << "Processing IETF retire connection ID frame " | 
|  | << frame; | 
|  | if (!visitor_->OnRetireConnectionIdFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_NEW_TOKEN: { | 
|  | QuicNewTokenFrame frame; | 
|  | if (!ProcessNewTokenFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_NEW_TOKEN); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF new token frame " | 
|  | << frame; | 
|  | if (!visitor_->OnNewTokenFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_STOP_SENDING: { | 
|  | QuicStopSendingFrame frame; | 
|  | if (!ProcessStopSendingFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_STOP_SENDING_FRAME_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stop sending frame " | 
|  | << frame; | 
|  | if (!visitor_->OnStopSendingFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_ACK_ECN: | 
|  | case IETF_ACK: { | 
|  | QuicAckFrame frame; | 
|  | if (!ProcessIetfAckFrame(reader, frame_type, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_ACK_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF ACK frame " << frame; | 
|  | break; | 
|  | } | 
|  | case IETF_PATH_CHALLENGE: { | 
|  | QuicPathChallengeFrame frame; | 
|  | if (!ProcessPathChallengeFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_PATH_CHALLENGE_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF path challenge frame " | 
|  | << frame; | 
|  | if (!visitor_->OnPathChallengeFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_PATH_RESPONSE: { | 
|  | QuicPathResponseFrame frame; | 
|  | if (!ProcessPathResponseFrame(reader, &frame)) { | 
|  | return RaiseError(QUIC_INVALID_PATH_RESPONSE_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF path response frame " | 
|  | << frame; | 
|  | if (!visitor_->OnPathResponseFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_EXTENSION_MESSAGE_NO_LENGTH_V99: | 
|  | QUIC_FALLTHROUGH_INTENDED; | 
|  | case IETF_EXTENSION_MESSAGE_V99: { | 
|  | QuicMessageFrame message_frame; | 
|  | if (!ProcessMessageFrame( | 
|  | reader, frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH_V99, | 
|  | &message_frame)) { | 
|  | return RaiseError(QUIC_INVALID_MESSAGE_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF message frame " | 
|  | << message_frame; | 
|  | if (!visitor_->OnMessageFrame(message_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_CRYPTO: { | 
|  | QuicCryptoFrame frame; | 
|  | if (!ProcessCryptoFrame(reader, GetEncryptionLevel(header), &frame)) { | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF crypto frame " << frame; | 
|  | if (!visitor_->OnCryptoFrame(frame)) { | 
|  | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case IETF_HANDSHAKE_DONE: { | 
|  | // HANDSHAKE_DONE has no payload. | 
|  | QuicHandshakeDoneFrame handshake_done_frame; | 
|  | if (!visitor_->OnHandshakeDoneFrame(handshake_done_frame)) { | 
|  | QUIC_DVLOG(1) << ENDPOINT | 
|  | << "Visitor asked to stop further processing."; | 
|  | // Returning true since there was no parsing error. | 
|  | return true; | 
|  | } | 
|  | QUIC_DVLOG(2) << ENDPOINT << "Processing handshake done frame " | 
|  | << handshake_done_frame; | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | set_detailed_error("Illegal frame type."); | 
|  | QUIC_DLOG(WARNING) | 
|  | << ENDPOINT | 
|  | << "Illegal frame type: " << static_cast<int>(frame_type); | 
|  | return RaiseError(QUIC_INVALID_FRAME_DATA); | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Create a mask that sets the last |num_bits| to 1 and the rest to 0. | 
|  | inline uint8_t GetMaskFromNumBits(uint8_t num_bits) { | 
|  | return (1u << num_bits) - 1; | 
|  | } | 
|  |  | 
|  | // Extract |num_bits| from |flags| offset by |offset|. | 
|  | uint8_t ExtractBits(uint8_t flags, uint8_t num_bits, uint8_t offset) { | 
|  | return (flags >> offset) & GetMaskFromNumBits(num_bits); | 
|  | } | 
|  |  | 
|  | // Extract the bit at position |offset| from |flags| as a bool. | 
|  | bool ExtractBit(uint8_t flags, uint8_t offset) { | 
|  | return ((flags >> offset) & GetMaskFromNumBits(1)) != 0; | 
|  | } | 
|  |  | 
|  | // Set |num_bits|, offset by |offset| to |val| in |flags|. | 
|  | void SetBits(uint8_t* flags, uint8_t val, uint8_t num_bits, uint8_t offset) { | 
|  | DCHECK_LE(val, GetMaskFromNumBits(num_bits)); | 
|  | *flags |= val << offset; | 
|  | } | 
|  |  | 
|  | // Set the bit at position |offset| to |val| in |flags|. | 
|  | void SetBit(uint8_t* flags, bool val, uint8_t offset) { | 
|  | SetBits(flags, val ? 1 : 0, 1, offset); | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader, | 
|  | uint8_t frame_type, | 
|  | QuicStreamFrame* frame) { | 
|  | uint8_t stream_flags = frame_type; | 
|  |  | 
|  | uint8_t stream_id_length = 0; | 
|  | uint8_t offset_length = 4; | 
|  | bool has_data_length = true; | 
|  | stream_flags &= ~kQuicFrameTypeStreamMask; | 
|  |  | 
|  | // Read from right to left: StreamID, Offset, Data Length, Fin. | 
|  | stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1; | 
|  | stream_flags >>= kQuicStreamIdShift; | 
|  |  | 
|  | offset_length = (stream_flags & kQuicStreamOffsetMask); | 
|  | // There is no encoding for 1 byte, only 0 and 2 through 8. | 
|  | if (offset_length > 0) { | 
|  | offset_length += 1; | 
|  | } | 
|  | stream_flags >>= kQuicStreamShift; | 
|  |  | 
|  | has_data_length = | 
|  | (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask; | 
|  | stream_flags >>= kQuicStreamDataLengthShift; | 
|  |  | 
|  | frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift; | 
|  |  | 
|  | uint64_t stream_id; | 
|  | if (!reader->ReadBytesToUInt64(stream_id_length, &stream_id)) { | 
|  | set_detailed_error("Unable to read stream_id."); | 
|  | return false; | 
|  | } | 
|  | frame->stream_id = static_cast<QuicStreamId>(stream_id); | 
|  |  | 
|  | if (!reader->ReadBytesToUInt64(offset_length, &frame->offset)) { | 
|  | set_detailed_error("Unable to read offset."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO(ianswett): Don't use quiche::QuicheStringPiece as an intermediary. | 
|  | quiche::QuicheStringPiece data; | 
|  | if (has_data_length) { | 
|  | if (!reader->ReadStringPiece16(&data)) { | 
|  | set_detailed_error("Unable to read frame data."); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!reader->ReadStringPiece(&data, reader->BytesRemaining())) { | 
|  | set_detailed_error("Unable to read frame data."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | frame->data_buffer = data.data(); | 
|  | frame->data_length = static_cast<uint16_t>(data.length()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfStreamFrame(QuicDataReader* reader, | 
|  | uint8_t frame_type, | 
|  | QuicStreamFrame* frame) { | 
|  | // Read stream id from the frame. It's always present. | 
|  | if (!ReadUint32FromVarint62(reader, IETF_STREAM, &frame->stream_id)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we have a data offset, read it. If not, set to 0. | 
|  | if (frame_type & IETF_STREAM_FRAME_OFF_BIT) { | 
|  | if (!reader->ReadVarInt62(&frame->offset)) { | 
|  | set_detailed_error("Unable to read stream data offset."); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // no offset in the frame, ensure it's 0 in the Frame. | 
|  | frame->offset = 0; | 
|  | } | 
|  |  | 
|  | // If we have a data length, read it. If not, set to 0. | 
|  | if (frame_type & IETF_STREAM_FRAME_LEN_BIT) { | 
|  | uint64_t length; | 
|  | if (!reader->ReadVarInt62(&length)) { | 
|  | set_detailed_error("Unable to read stream data length."); | 
|  | return false; | 
|  | } | 
|  | if (length > std::numeric_limits<decltype(frame->data_length)>::max()) { | 
|  | set_detailed_error("Stream data length is too large."); | 
|  | return false; | 
|  | } | 
|  | frame->data_length = length; | 
|  | } else { | 
|  | // no length in the frame, it is the number of bytes remaining in the | 
|  | // packet. | 
|  | frame->data_length = reader->BytesRemaining(); | 
|  | } | 
|  |  | 
|  | if (frame_type & IETF_STREAM_FRAME_FIN_BIT) { | 
|  | frame->fin = true; | 
|  | } else { | 
|  | frame->fin = false; | 
|  | } | 
|  |  | 
|  | // TODO(ianswett): Don't use quiche::QuicheStringPiece as an intermediary. | 
|  | quiche::QuicheStringPiece data; | 
|  | if (!reader->ReadStringPiece(&data, frame->data_length)) { | 
|  | set_detailed_error("Unable to read frame data."); | 
|  | return false; | 
|  | } | 
|  | frame->data_buffer = data.data(); | 
|  | DCHECK_EQ(frame->data_length, data.length()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessCryptoFrame(QuicDataReader* reader, | 
|  | EncryptionLevel encryption_level, | 
|  | QuicCryptoFrame* frame) { | 
|  | frame->level = encryption_level; | 
|  | if (!reader->ReadVarInt62(&frame->offset)) { | 
|  | set_detailed_error("Unable to read crypto data offset."); | 
|  | return false; | 
|  | } | 
|  | uint64_t len; | 
|  | if (!reader->ReadVarInt62(&len) || | 
|  | len > std::numeric_limits<QuicPacketLength>::max()) { | 
|  | set_detailed_error("Invalid data length."); | 
|  | return false; | 
|  | } | 
|  | frame->data_length = len; | 
|  |  | 
|  | // TODO(ianswett): Don't use quiche::QuicheStringPiece as an intermediary. | 
|  | quiche::QuicheStringPiece data; | 
|  | if (!reader->ReadStringPiece(&data, frame->data_length)) { | 
|  | set_detailed_error("Unable to read frame data."); | 
|  | return false; | 
|  | } | 
|  | frame->data_buffer = data.data(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessAckFrame(QuicDataReader* reader, uint8_t frame_type) { | 
|  | const bool has_ack_blocks = | 
|  | ExtractBit(frame_type, kQuicHasMultipleAckBlocksOffset); | 
|  | uint8_t num_ack_blocks = 0; | 
|  | uint8_t num_received_packets = 0; | 
|  |  | 
|  | // Determine the two lengths from the frame type: largest acked length, | 
|  | // ack block length. | 
|  | const QuicPacketNumberLength ack_block_length = ReadAckPacketNumberLength( | 
|  | ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, | 
|  | kActBlockLengthOffset)); | 
|  | const QuicPacketNumberLength largest_acked_length = ReadAckPacketNumberLength( | 
|  | ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, | 
|  | kLargestAckedOffset)); | 
|  |  | 
|  | uint64_t largest_acked; | 
|  | if (!reader->ReadBytesToUInt64(largest_acked_length, &largest_acked)) { | 
|  | set_detailed_error("Unable to read largest acked."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (largest_acked < first_sending_packet_number_.ToUint64()) { | 
|  | // Connection always sends packet starting from kFirstSendingPacketNumber > | 
|  | // 0, peer has observed an unsent packet. | 
|  | set_detailed_error("Largest acked is 0."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t ack_delay_time_us; | 
|  | if (!reader->ReadUFloat16(&ack_delay_time_us)) { | 
|  | set_detailed_error("Unable to read ack delay time."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnAckFrameStart( | 
|  | QuicPacketNumber(largest_acked), | 
|  | ack_delay_time_us == kUFloat16MaxValue | 
|  | ? QuicTime::Delta::Infinite() | 
|  | : QuicTime::Delta::FromMicroseconds(ack_delay_time_us))) { | 
|  | // The visitor suppresses further processing of the packet. Although this is | 
|  | // not a parsing error, returns false as this is in middle of processing an | 
|  | // ack frame, | 
|  | set_detailed_error("Visitor suppresses further processing of ack frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (has_ack_blocks && !reader->ReadUInt8(&num_ack_blocks)) { | 
|  | set_detailed_error("Unable to read num of ack blocks."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t first_block_length; | 
|  | if (!reader->ReadBytesToUInt64(ack_block_length, &first_block_length)) { | 
|  | set_detailed_error("Unable to read first ack block length."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (first_block_length == 0) { | 
|  | set_detailed_error("First block length is zero."); | 
|  | return false; | 
|  | } | 
|  | bool first_ack_block_underflow = first_block_length > largest_acked + 1; | 
|  | if (first_block_length + first_sending_packet_number_.ToUint64() > | 
|  | largest_acked + 1) { | 
|  | first_ack_block_underflow = true; | 
|  | } | 
|  | if (first_ack_block_underflow) { | 
|  | set_detailed_error( | 
|  | quiche::QuicheStrCat("Underflow with first ack block length ", | 
|  | first_block_length, " largest acked is ", | 
|  | largest_acked, ".") | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t first_received = largest_acked + 1 - first_block_length; | 
|  | if (!visitor_->OnAckRange(QuicPacketNumber(first_received), | 
|  | QuicPacketNumber(largest_acked + 1))) { | 
|  | // The visitor suppresses further processing of the packet. Although | 
|  | // this is not a parsing error, returns false as this is in middle | 
|  | // of processing an ack frame, | 
|  | set_detailed_error("Visitor suppresses further processing of ack frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (num_ack_blocks > 0) { | 
|  | for (size_t i = 0; i < num_ack_blocks; ++i) { | 
|  | uint8_t gap = 0; | 
|  | if (!reader->ReadUInt8(&gap)) { | 
|  | set_detailed_error("Unable to read gap to next ack block."); | 
|  | return false; | 
|  | } | 
|  | uint64_t current_block_length; | 
|  | if (!reader->ReadBytesToUInt64(ack_block_length, ¤t_block_length)) { | 
|  | set_detailed_error("Unable to ack block length."); | 
|  | return false; | 
|  | } | 
|  | bool ack_block_underflow = first_received < gap + current_block_length; | 
|  | if (first_received < gap + current_block_length + | 
|  | first_sending_packet_number_.ToUint64()) { | 
|  | ack_block_underflow = true; | 
|  | } | 
|  | if (ack_block_underflow) { | 
|  | set_detailed_error( | 
|  | quiche::QuicheStrCat("Underflow with ack block length ", | 
|  | current_block_length, ", end of block is ", | 
|  | first_received - gap, ".") | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | first_received -= (gap + current_block_length); | 
|  | if (current_block_length > 0) { | 
|  | if (!visitor_->OnAckRange( | 
|  | QuicPacketNumber(first_received), | 
|  | QuicPacketNumber(first_received) + current_block_length)) { | 
|  | // The visitor suppresses further processing of the packet. Although | 
|  | // this is not a parsing error, returns false as this is in middle | 
|  | // of processing an ack frame, | 
|  | set_detailed_error( | 
|  | "Visitor suppresses further processing of ack frame."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!reader->ReadUInt8(&num_received_packets)) { | 
|  | set_detailed_error("Unable to read num received packets."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ProcessTimestampsInAckFrame(num_received_packets, | 
|  | QuicPacketNumber(largest_acked), reader)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Done processing the ACK frame. | 
|  | if (!visitor_->OnAckFrameEnd(QuicPacketNumber(first_received))) { | 
|  | set_detailed_error( | 
|  | "Error occurs when visitor finishes processing the ACK frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessTimestampsInAckFrame(uint8_t num_received_packets, | 
|  | QuicPacketNumber largest_acked, | 
|  | QuicDataReader* reader) { | 
|  | if (num_received_packets == 0) { | 
|  | return true; | 
|  | } | 
|  | uint8_t delta_from_largest_observed; | 
|  | if (!reader->ReadUInt8(&delta_from_largest_observed)) { | 
|  | set_detailed_error("Unable to read sequence delta in received packets."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (largest_acked.ToUint64() <= delta_from_largest_observed) { | 
|  | set_detailed_error( | 
|  | quiche::QuicheStrCat("delta_from_largest_observed too high: ", | 
|  | delta_from_largest_observed, | 
|  | ", largest_acked: ", largest_acked.ToUint64()) | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Time delta from the framer creation. | 
|  | uint32_t time_delta_us; | 
|  | if (!reader->ReadUInt32(&time_delta_us)) { | 
|  | set_detailed_error("Unable to read time delta in received packets."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QuicPacketNumber seq_num = largest_acked - delta_from_largest_observed; | 
|  | if (process_timestamps_) { | 
|  | last_timestamp_ = CalculateTimestampFromWire(time_delta_us); | 
|  |  | 
|  | visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); | 
|  | } | 
|  |  | 
|  | for (uint8_t i = 1; i < num_received_packets; ++i) { | 
|  | if (!reader->ReadUInt8(&delta_from_largest_observed)) { | 
|  | set_detailed_error("Unable to read sequence delta in received packets."); | 
|  | return false; | 
|  | } | 
|  | if (largest_acked.ToUint64() <= delta_from_largest_observed) { | 
|  | set_detailed_error( | 
|  | quiche::QuicheStrCat("delta_from_largest_observed too high: ", | 
|  | delta_from_largest_observed, | 
|  | ", largest_acked: ", largest_acked.ToUint64()) | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  | seq_num = largest_acked - delta_from_largest_observed; | 
|  |  | 
|  | // Time delta from the previous timestamp. | 
|  | uint64_t incremental_time_delta_us; | 
|  | if (!reader->ReadUFloat16(&incremental_time_delta_us)) { | 
|  | set_detailed_error( | 
|  | "Unable to read incremental time delta in received packets."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (process_timestamps_) { | 
|  | last_timestamp_ = last_timestamp_ + QuicTime::Delta::FromMicroseconds( | 
|  | incremental_time_delta_us); | 
|  | visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfAckFrame(QuicDataReader* reader, | 
|  | uint64_t frame_type, | 
|  | QuicAckFrame* ack_frame) { | 
|  | uint64_t largest_acked; | 
|  | if (!reader->ReadVarInt62(&largest_acked)) { | 
|  | set_detailed_error("Unable to read largest acked."); | 
|  | return false; | 
|  | } | 
|  | if (largest_acked < first_sending_packet_number_.ToUint64()) { | 
|  | // Connection always sends packet starting from kFirstSendingPacketNumber > | 
|  | // 0, peer has observed an unsent packet. | 
|  | set_detailed_error("Largest acked is 0."); | 
|  | return false; | 
|  | } | 
|  | ack_frame->largest_acked = static_cast<QuicPacketNumber>(largest_acked); | 
|  | uint64_t ack_delay_time_in_us; | 
|  | if (!reader->ReadVarInt62(&ack_delay_time_in_us)) { | 
|  | set_detailed_error("Unable to read ack delay time."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (ack_delay_time_in_us >= (kVarInt62MaxValue >> peer_ack_delay_exponent_)) { | 
|  | ack_frame->ack_delay_time = QuicTime::Delta::Infinite(); | 
|  | } else { | 
|  | ack_delay_time_in_us = (ack_delay_time_in_us << peer_ack_delay_exponent_); | 
|  | ack_frame->ack_delay_time = | 
|  | QuicTime::Delta::FromMicroseconds(ack_delay_time_in_us); | 
|  | } | 
|  | if (!visitor_->OnAckFrameStart(QuicPacketNumber(largest_acked), | 
|  | ack_frame->ack_delay_time)) { | 
|  | // The visitor suppresses further processing of the packet. Although this is | 
|  | // not a parsing error, returns false as this is in middle of processing an | 
|  | // ACK frame. | 
|  | set_detailed_error("Visitor suppresses further processing of ACK frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Get number of ACK blocks from the packet. | 
|  | uint64_t ack_block_count; | 
|  | if (!reader->ReadVarInt62(&ack_block_count)) { | 
|  | set_detailed_error("Unable to read ack block count."); | 
|  | return false; | 
|  | } | 
|  | // There always is a first ACK block, which is the (number of packets being | 
|  | // acked)-1, up to and including the packet at largest_acked. Therefore if the | 
|  | // value is 0, then only largest is acked. If it is 1, then largest-1, | 
|  | // largest] are acked, etc | 
|  | uint64_t ack_block_value; | 
|  | if (!reader->ReadVarInt62(&ack_block_value)) { | 
|  | set_detailed_error("Unable to read first ack block length."); | 
|  | return false; | 
|  | } | 
|  | // Calculate the packets being acked in the first block. | 
|  | //  +1 because AddRange implementation requires [low,high) | 
|  | uint64_t block_high = largest_acked + 1; | 
|  | uint64_t block_low = largest_acked - ack_block_value; | 
|  |  | 
|  | // ack_block_value is the number of packets preceding the | 
|  | // largest_acked packet which are in the block being acked. Thus, | 
|  | // its maximum value is largest_acked-1. Test this, reporting an | 
|  | // error if the value is wrong. | 
|  | if (ack_block_value + first_sending_packet_number_.ToUint64() > | 
|  | largest_acked) { | 
|  | set_detailed_error( | 
|  | quiche::QuicheStrCat("Underflow with first ack block length ", | 
|  | ack_block_value + 1, " largest acked is ", | 
|  | largest_acked, ".") | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!visitor_->OnAckRange(QuicPacketNumber(block_low), | 
|  | QuicPacketNumber(block_high))) { | 
|  | // The visitor suppresses further processing of the packet. Although | 
|  | // this is not a parsing error, returns false as this is in middle | 
|  | // of processing an ACK frame. | 
|  | set_detailed_error("Visitor suppresses further processing of ACK frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | while (ack_block_count != 0) { | 
|  | uint64_t gap_block_value; | 
|  | // Get the sizes of the gap and ack blocks, | 
|  | if (!reader->ReadVarInt62(&gap_block_value)) { | 
|  | set_detailed_error("Unable to read gap block value."); | 
|  | return false; | 
|  | } | 
|  | // It's an error if the gap is larger than the space from packet | 
|  | // number 0 to the start of the block that's just been acked, PLUS | 
|  | // there must be space for at least 1 packet to be acked. For | 
|  | // example, if block_low is 10 and gap_block_value is 9, it means | 
|  | // the gap block is 10 packets long, leaving no room for a packet | 
|  | // to be acked. Thus, gap_block_value+2 can not be larger than | 
|  | // block_low. | 
|  | // The test is written this way to detect wrap-arounds. | 
|  | if ((gap_block_value + 2) > block_low) { | 
|  | set_detailed_error( | 
|  | quiche::QuicheStrCat("Underflow with gap block length ", | 
|  | gap_block_value + 1, | 
|  | " previous ack block start is ", block_low, ".") | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Adjust block_high to be the top of the next ack block. | 
|  | // There is a gap of |gap_block_value| packets between the bottom | 
|  | // of ack block N and top of block N+1.  Note that gap_block_value | 
|  | // is he size of the gap minus 1 (per the QUIC protocol), and | 
|  | // block_high is the packet number of the first packet of the gap | 
|  | // (per the implementation of OnAckRange/AddAckRange, below). | 
|  | block_high = block_low - 1 - gap_block_value; | 
|  |  | 
|  | if (!reader->ReadVarInt62(&ack_block_value)) { | 
|  | set_detailed_error("Unable to read ack block value."); | 
|  | return false; | 
|  | } | 
|  | if (ack_block_value + first_sending_packet_number_.ToUint64() > | 
|  | (block_high - 1)) { | 
|  | set_detailed_error( | 
|  | quiche::QuicheStrCat("Underflow with ack block length ", | 
|  | ack_block_value + 1, " latest ack block end is ", | 
|  | block_high - 1, ".") | 
|  | .c_str()); | 
|  | return false; | 
|  | } | 
|  | // Calculate the low end of the new nth ack block. The +1 is | 
|  | // because the encoded value is the blocksize-1. | 
|  | block_low = block_high - 1 - ack_block_value; | 
|  | if (!visitor_->OnAckRange(QuicPacketNumber(block_low), | 
|  | QuicPacketNumber(block_high))) { | 
|  | // The visitor suppresses further processing of the packet. Although | 
|  | // this is not a parsing error, returns false as this is in middle | 
|  | // of processing an ACK frame. | 
|  | set_detailed_error("Visitor suppresses further processing of ACK frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Another one done. | 
|  | ack_block_count--; | 
|  | } | 
|  |  | 
|  | if (frame_type == IETF_ACK_ECN) { | 
|  | ack_frame->ecn_counters_populated = true; | 
|  | if (!reader->ReadVarInt62(&ack_frame->ect_0_count)) { | 
|  | set_detailed_error("Unable to read ack ect_0_count."); | 
|  | return false; | 
|  | } | 
|  | if (!reader->ReadVarInt62(&ack_frame->ect_1_count)) { | 
|  | set_detailed_error("Unable to read ack ect_1_count."); | 
|  | return false; | 
|  | } | 
|  | if (!reader->ReadVarInt62(&ack_frame->ecn_ce_count)) { | 
|  | set_detailed_error("Unable to read ack ecn_ce_count."); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | ack_frame->ecn_counters_populated = false; | 
|  | ack_frame->ect_0_count = 0; | 
|  | ack_frame->ect_1_count = 0; | 
|  | ack_frame->ecn_ce_count = 0; | 
|  | } | 
|  | // TODO(fayang): Report ECN counts to visitor when they are actually used. | 
|  | if (!visitor_->OnAckFrameEnd(QuicPacketNumber(block_low))) { | 
|  | set_detailed_error( | 
|  | "Error occurs when visitor finishes processing the ACK frame."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader, | 
|  | const QuicPacketHeader& header, | 
|  | QuicStopWaitingFrame* stop_waiting) { | 
|  | uint64_t least_unacked_delta; | 
|  | if (!reader->ReadBytesToUInt64(header.packet_number_length, | 
|  | &least_unacked_delta)) { | 
|  | set_detailed_error("Unable to read least unacked delta."); | 
|  | return false; | 
|  | } | 
|  | if (header.packet_number.ToUint64() <= least_unacked_delta) { | 
|  | set_detailed_error("Invalid unacked delta."); | 
|  | return false; | 
|  | } | 
|  | stop_waiting->least_unacked = header.packet_number - least_unacked_delta; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader, | 
|  | QuicRstStreamFrame* frame) { | 
|  | if (!reader->ReadUInt32(&frame->stream_id)) { | 
|  | set_detailed_error("Unable to read stream_id."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadUInt64(&frame->byte_offset)) { | 
|  | set_detailed_error("Unable to read rst stream sent byte offset."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint32_t error_code; | 
|  | if (!reader->ReadUInt32(&error_code)) { | 
|  | set_detailed_error("Unable to read rst stream error code."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (error_code >= QUIC_STREAM_LAST_ERROR) { | 
|  | // Ignore invalid stream error code if any. | 
|  | error_code = QUIC_STREAM_LAST_ERROR; | 
|  | } | 
|  |  | 
|  | frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader, | 
|  | QuicConnectionCloseFrame* frame) { | 
|  | uint32_t error_code; | 
|  | frame->close_type = GOOGLE_QUIC_CONNECTION_CLOSE; | 
|  |  | 
|  | if (!reader->ReadUInt32(&error_code)) { | 
|  | set_detailed_error("Unable to read connection close error code."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (error_code >= QUIC_LAST_ERROR) { | 
|  | // Ignore invalid QUIC error code if any. | 
|  | error_code = QUIC_LAST_ERROR; | 
|  | } | 
|  |  | 
|  | // For Google QUIC connection closes, |wire_error_code| and |quic_error_code| | 
|  | // must have the same value. | 
|  | frame->wire_error_code = error_code; | 
|  | frame->quic_error_code = static_cast<QuicErrorCode>(error_code); | 
|  |  | 
|  | quiche::QuicheStringPiece error_details; | 
|  | if (!reader->ReadStringPiece16(&error_details)) { | 
|  | set_detailed_error("Unable to read connection close error details."); | 
|  | return false; | 
|  | } | 
|  | frame->error_details = std::string(error_details); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader, | 
|  | QuicGoAwayFrame* frame) { | 
|  | uint32_t error_code; | 
|  | if (!reader->ReadUInt32(&error_code)) { | 
|  | set_detailed_error("Unable to read go away error code."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (error_code >= QUIC_LAST_ERROR) { | 
|  | // Ignore invalid QUIC error code if any. | 
|  | error_code = QUIC_LAST_ERROR; | 
|  | } | 
|  | frame->error_code = static_cast<QuicErrorCode>(error_code); | 
|  |  | 
|  | uint32_t stream_id; | 
|  | if (!reader->ReadUInt32(&stream_id)) { | 
|  | set_detailed_error("Unable to read last good stream id."); | 
|  | return false; | 
|  | } | 
|  | frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id); | 
|  |  | 
|  | quiche::QuicheStringPiece reason_phrase; | 
|  | if (!reader->ReadStringPiece16(&reason_phrase)) { | 
|  | set_detailed_error("Unable to read goaway reason."); | 
|  | return false; | 
|  | } | 
|  | frame->reason_phrase = std::string(reason_phrase); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader, | 
|  | QuicWindowUpdateFrame* frame) { | 
|  | if (!reader->ReadUInt32(&frame->stream_id)) { | 
|  | set_detailed_error("Unable to read stream_id."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadUInt64(&frame->max_data)) { | 
|  | set_detailed_error("Unable to read window byte_offset."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader, | 
|  | QuicBlockedFrame* frame) { | 
|  | DCHECK(!VersionHasIetfQuicFrames(version_.transport_version)) | 
|  | << "Attempt to process non-IETF QUIC frames in an IETF QUIC version."; | 
|  |  | 
|  | if (!reader->ReadUInt32(&frame->stream_id)) { | 
|  | set_detailed_error("Unable to read stream_id."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void QuicFramer::ProcessPaddingFrame(QuicDataReader* reader, | 
|  | QuicPaddingFrame* frame) { | 
|  | // Type byte has been read. | 
|  | frame->num_padding_bytes = 1; | 
|  | uint8_t next_byte; | 
|  | while (!reader->IsDoneReading() && reader->PeekByte() == 0x00) { | 
|  | reader->ReadBytes(&next_byte, 1); | 
|  | DCHECK_EQ(0x00, next_byte); | 
|  | ++frame->num_padding_bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessMessageFrame(QuicDataReader* reader, | 
|  | bool no_message_length, | 
|  | QuicMessageFrame* frame) { | 
|  | if (no_message_length) { | 
|  | quiche::QuicheStringPiece remaining(reader->ReadRemainingPayload()); | 
|  | frame->data = remaining.data(); | 
|  | frame->message_length = remaining.length(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint64_t message_length; | 
|  | if (!reader->ReadVarInt62(&message_length)) { | 
|  | set_detailed_error("Unable to read message length"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece message_piece; | 
|  | if (!reader->ReadStringPiece(&message_piece, message_length)) { | 
|  | set_detailed_error("Unable to read message data"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | frame->data = message_piece.data(); | 
|  | frame->message_length = message_length; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // static | 
|  | quiche::QuicheStringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket( | 
|  | QuicTransportVersion version, | 
|  | const QuicEncryptedPacket& encrypted, | 
|  | QuicConnectionIdLength destination_connection_id_length, | 
|  | QuicConnectionIdLength source_connection_id_length, | 
|  | bool includes_version, | 
|  | bool includes_diversification_nonce, | 
|  | QuicPacketNumberLength packet_number_length, | 
|  | QuicVariableLengthIntegerLength retry_token_length_length, | 
|  | uint64_t retry_token_length, | 
|  | QuicVariableLengthIntegerLength length_length) { | 
|  | // TODO(ianswett): This is identical to QuicData::AssociatedData. | 
|  | return quiche::QuicheStringPiece( | 
|  | encrypted.data(), | 
|  | GetStartOfEncryptedData(version, destination_connection_id_length, | 
|  | source_connection_id_length, includes_version, | 
|  | includes_diversification_nonce, | 
|  | packet_number_length, retry_token_length_length, | 
|  | retry_token_length, length_length)); | 
|  | } | 
|  |  | 
|  | void QuicFramer::SetDecrypter(EncryptionLevel level, | 
|  | std::unique_ptr<QuicDecrypter> decrypter) { | 
|  | DCHECK_EQ(alternative_decrypter_level_, NUM_ENCRYPTION_LEVELS); | 
|  | DCHECK_GE(level, decrypter_level_); | 
|  | DCHECK(!version_.KnowsWhichDecrypterToUse()); | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Setting decrypter from level " | 
|  | << EncryptionLevelToString(decrypter_level_) << " to " | 
|  | << EncryptionLevelToString(level); | 
|  | decrypter_[decrypter_level_] = nullptr; | 
|  | decrypter_[level] = std::move(decrypter); | 
|  | decrypter_level_ = level; | 
|  | } | 
|  |  | 
|  | void QuicFramer::SetAlternativeDecrypter( | 
|  | EncryptionLevel level, | 
|  | std::unique_ptr<QuicDecrypter> decrypter, | 
|  | bool latch_once_used) { | 
|  | DCHECK_NE(level, decrypter_level_); | 
|  | DCHECK(!version_.KnowsWhichDecrypterToUse()); | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Setting alternative decrypter from level " | 
|  | << EncryptionLevelToString(alternative_decrypter_level_) | 
|  | << " to " << EncryptionLevelToString(level); | 
|  | if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) { | 
|  | decrypter_[alternative_decrypter_level_] = nullptr; | 
|  | } | 
|  | decrypter_[level] = std::move(decrypter); | 
|  | alternative_decrypter_level_ = level; | 
|  | alternative_decrypter_latch_ = latch_once_used; | 
|  | } | 
|  |  | 
|  | void QuicFramer::InstallDecrypter(EncryptionLevel level, | 
|  | std::unique_ptr<QuicDecrypter> decrypter) { | 
|  | DCHECK(version_.KnowsWhichDecrypterToUse()); | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Installing decrypter at level " | 
|  | << EncryptionLevelToString(level); | 
|  | decrypter_[level] = std::move(decrypter); | 
|  | } | 
|  |  | 
|  | void QuicFramer::RemoveDecrypter(EncryptionLevel level) { | 
|  | DCHECK(version_.KnowsWhichDecrypterToUse()); | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Removing decrypter at level " | 
|  | << EncryptionLevelToString(level); | 
|  | decrypter_[level] = nullptr; | 
|  | } | 
|  |  | 
|  | const QuicDecrypter* QuicFramer::GetDecrypter(EncryptionLevel level) const { | 
|  | DCHECK(version_.KnowsWhichDecrypterToUse()); | 
|  | return decrypter_[level].get(); | 
|  | } | 
|  |  | 
|  | const QuicDecrypter* QuicFramer::decrypter() const { | 
|  | return decrypter_[decrypter_level_].get(); | 
|  | } | 
|  |  | 
|  | const QuicDecrypter* QuicFramer::alternative_decrypter() const { | 
|  | if (alternative_decrypter_level_ == NUM_ENCRYPTION_LEVELS) { | 
|  | return nullptr; | 
|  | } | 
|  | return decrypter_[alternative_decrypter_level_].get(); | 
|  | } | 
|  |  | 
|  | void QuicFramer::SetEncrypter(EncryptionLevel level, | 
|  | std::unique_ptr<QuicEncrypter> encrypter) { | 
|  | DCHECK_GE(level, 0); | 
|  | DCHECK_LT(level, NUM_ENCRYPTION_LEVELS); | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Setting encrypter at level " | 
|  | << EncryptionLevelToString(level); | 
|  | encrypter_[level] = std::move(encrypter); | 
|  | } | 
|  |  | 
|  | void QuicFramer::RemoveEncrypter(EncryptionLevel level) { | 
|  | QUIC_DVLOG(1) << ENDPOINT << "Removing encrypter of " | 
|  | << EncryptionLevelToString(level); | 
|  | encrypter_[level] = nullptr; | 
|  | } | 
|  |  | 
|  | void QuicFramer::SetInitialObfuscators(QuicConnectionId connection_id) { | 
|  | CrypterPair crypters; | 
|  | CryptoUtils::CreateInitialObfuscators(perspective_, version_, connection_id, | 
|  | &crypters); | 
|  | encrypter_[ENCRYPTION_INITIAL] = std::move(crypters.encrypter); | 
|  | decrypter_[ENCRYPTION_INITIAL] = std::move(crypters.decrypter); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::EncryptInPlace(EncryptionLevel level, | 
|  | QuicPacketNumber packet_number, | 
|  | size_t ad_len, | 
|  | size_t total_len, | 
|  | size_t buffer_len, | 
|  | char* buffer) { | 
|  | DCHECK(packet_number.IsInitialized()); | 
|  | if (encrypter_[level] == nullptr) { | 
|  | QUIC_BUG << ENDPOINT | 
|  | << "Attempted to encrypt in place without encrypter at level " | 
|  | << EncryptionLevelToString(level); | 
|  | RaiseError(QUIC_ENCRYPTION_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t output_length = 0; | 
|  | if (!encrypter_[level]->EncryptPacket( | 
|  | packet_number.ToUint64(), | 
|  | quiche::QuicheStringPiece(buffer, ad_len),  // Associated data | 
|  | quiche::QuicheStringPiece(buffer + ad_len, | 
|  | total_len - ad_len),  // Plaintext | 
|  | buffer + ad_len,                                // Destination buffer | 
|  | &output_length, buffer_len - ad_len)) { | 
|  | RaiseError(QUIC_ENCRYPTION_FAILURE); | 
|  | return 0; | 
|  | } | 
|  | if (version_.HasHeaderProtection() && | 
|  | !ApplyHeaderProtection(level, buffer, ad_len + output_length, ad_len)) { | 
|  | QUIC_DLOG(ERROR) << "Applying header protection failed."; | 
|  | RaiseError(QUIC_ENCRYPTION_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ad_len + output_length; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | const size_t kHPSampleLen = 16; | 
|  |  | 
|  | constexpr bool IsLongHeader(uint8_t type_byte) { | 
|  | return (type_byte & FLAGS_LONG_HEADER) != 0; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | bool QuicFramer::ApplyHeaderProtection(EncryptionLevel level, | 
|  | char* buffer, | 
|  | size_t buffer_len, | 
|  | size_t ad_len) { | 
|  | QuicDataReader buffer_reader(buffer, buffer_len); | 
|  | QuicDataWriter buffer_writer(buffer_len, buffer); | 
|  | // The sample starts 4 bytes after the start of the packet number. | 
|  | if (ad_len < last_written_packet_number_length_) { | 
|  | return false; | 
|  | } | 
|  | size_t pn_offset = ad_len - last_written_packet_number_length_; | 
|  | // Sample the ciphertext and generate the mask to use for header protection. | 
|  | size_t sample_offset = pn_offset + 4; | 
|  | QuicDataReader sample_reader(buffer, buffer_len); | 
|  | quiche::QuicheStringPiece sample; | 
|  | if (!sample_reader.Seek(sample_offset) || | 
|  | !sample_reader.ReadStringPiece(&sample, kHPSampleLen)) { | 
|  | QUIC_BUG << "Not enough bytes to sample: sample_offset " << sample_offset | 
|  | << ", sample len: " << kHPSampleLen | 
|  | << ", buffer len: " << buffer_len; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (encrypter_[level] == nullptr) { | 
|  | QUIC_BUG | 
|  | << ENDPOINT | 
|  | << "Attempted to apply header protection without encrypter at level " | 
|  | << EncryptionLevelToString(level) << " using " << version_; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::string mask = encrypter_[level]->GenerateHeaderProtectionMask(sample); | 
|  | if (mask.empty()) { | 
|  | QUIC_BUG << "Unable to generate header protection mask."; | 
|  | return false; | 
|  | } | 
|  | QuicDataReader mask_reader(mask.data(), mask.size()); | 
|  |  | 
|  | // Apply the mask to the 4 or 5 least significant bits of the first byte. | 
|  | uint8_t bitmask = 0x1f; | 
|  | uint8_t type_byte; | 
|  | if (!buffer_reader.ReadUInt8(&type_byte)) { | 
|  | return false; | 
|  | } | 
|  | QuicLongHeaderType header_type; | 
|  | if (IsLongHeader(type_byte)) { | 
|  | bitmask = 0x0f; | 
|  | if (!GetLongHeaderType(type_byte, &header_type)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | uint8_t mask_byte; | 
|  | if (!mask_reader.ReadUInt8(&mask_byte) || | 
|  | !buffer_writer.WriteUInt8(type_byte ^ (mask_byte & bitmask))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Adjust |pn_offset| to account for the diversification nonce. | 
|  | if (IsLongHeader(type_byte) && header_type == ZERO_RTT_PROTECTED && | 
|  | perspective_ == Perspective::IS_SERVER && | 
|  | version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { | 
|  | if (pn_offset <= kDiversificationNonceSize) { | 
|  | QUIC_BUG << "Expected diversification nonce, but not enough bytes"; | 
|  | return false; | 
|  | } | 
|  | pn_offset -= kDiversificationNonceSize; | 
|  | } | 
|  | // Advance the reader and writer to the packet number. Both the reader and | 
|  | // writer have each read/written one byte. | 
|  | if (!buffer_writer.Seek(pn_offset - 1) || | 
|  | !buffer_reader.Seek(pn_offset - 1)) { | 
|  | return false; | 
|  | } | 
|  | // Apply the rest of the mask to the packet number. | 
|  | for (size_t i = 0; i < last_written_packet_number_length_; ++i) { | 
|  | uint8_t buffer_byte; | 
|  | uint8_t mask_byte; | 
|  | if (!mask_reader.ReadUInt8(&mask_byte) || | 
|  | !buffer_reader.ReadUInt8(&buffer_byte) || | 
|  | !buffer_writer.WriteUInt8(buffer_byte ^ mask_byte)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::RemoveHeaderProtection(QuicDataReader* reader, | 
|  | const QuicEncryptedPacket& packet, | 
|  | QuicPacketHeader* header, | 
|  | uint64_t* full_packet_number, | 
|  | std::vector<char>* associated_data) { | 
|  | EncryptionLevel expected_decryption_level = GetEncryptionLevel(*header); | 
|  | QuicDecrypter* decrypter = decrypter_[expected_decryption_level].get(); | 
|  | if (decrypter == nullptr) { | 
|  | QUIC_DVLOG(1) | 
|  | << ENDPOINT | 
|  | << "No decrypter available for removing header protection at level " | 
|  | << EncryptionLevelToString(expected_decryption_level); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool has_diversification_nonce = | 
|  | header->form == IETF_QUIC_LONG_HEADER_PACKET && | 
|  | header->long_packet_type == ZERO_RTT_PROTECTED && | 
|  | perspective_ == Perspective::IS_CLIENT && | 
|  | version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO; | 
|  |  | 
|  | // Read a sample from the ciphertext and compute the mask to use for header | 
|  | // protection. | 
|  | quiche::QuicheStringPiece remaining_packet = reader->PeekRemainingPayload(); | 
|  | QuicDataReader sample_reader(remaining_packet); | 
|  |  | 
|  | // The sample starts 4 bytes after the start of the packet number. | 
|  | quiche::QuicheStringPiece pn; | 
|  | if (!sample_reader.ReadStringPiece(&pn, 4)) { | 
|  | QUIC_DVLOG(1) << "Not enough data to sample"; | 
|  | return false; | 
|  | } | 
|  | if (has_diversification_nonce) { | 
|  | // In Google QUIC, the diversification nonce comes between the packet number | 
|  | // and the sample. | 
|  | if (!sample_reader.Seek(kDiversificationNonceSize)) { | 
|  | QUIC_DVLOG(1) << "No diversification nonce to skip over"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | std::string mask = decrypter->GenerateHeaderProtectionMask(&sample_reader); | 
|  | QuicDataReader mask_reader(mask.data(), mask.size()); | 
|  | if (mask.empty()) { | 
|  | QUIC_DVLOG(1) << "Failed to compute mask"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Unmask the rest of the type byte. | 
|  | uint8_t bitmask = 0x1f; | 
|  | if (IsLongHeader(header->type_byte)) { | 
|  | bitmask = 0x0f; | 
|  | } | 
|  | uint8_t mask_byte; | 
|  | if (!mask_reader.ReadUInt8(&mask_byte)) { | 
|  | QUIC_DVLOG(1) << "No first byte to read from mask"; | 
|  | return false; | 
|  | } | 
|  | header->type_byte ^= (mask_byte & bitmask); | 
|  |  | 
|  | // Compute the packet number length. | 
|  | header->packet_number_length = | 
|  | static_cast<QuicPacketNumberLength>((header->type_byte & 0x03) + 1); | 
|  |  | 
|  | char pn_buffer[IETF_MAX_PACKET_NUMBER_LENGTH] = {}; | 
|  | QuicDataWriter pn_writer(QUICHE_ARRAYSIZE(pn_buffer), pn_buffer); | 
|  |  | 
|  | // Read the (protected) packet number from the reader and unmask the packet | 
|  | // number. | 
|  | for (size_t i = 0; i < header->packet_number_length; ++i) { | 
|  | uint8_t protected_pn_byte, mask_byte; | 
|  | if (!mask_reader.ReadUInt8(&mask_byte) || | 
|  | !reader->ReadUInt8(&protected_pn_byte) || | 
|  | !pn_writer.WriteUInt8(protected_pn_byte ^ mask_byte)) { | 
|  | QUIC_DVLOG(1) << "Failed to unmask packet number"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | QuicDataReader packet_number_reader(pn_writer.data(), pn_writer.length()); | 
|  | QuicPacketNumber base_packet_number; | 
|  | if (supports_multiple_packet_number_spaces_) { | 
|  | PacketNumberSpace pn_space = GetPacketNumberSpace(*header); | 
|  | if (pn_space == NUM_PACKET_NUMBER_SPACES) { | 
|  | return false; | 
|  | } | 
|  | base_packet_number = largest_decrypted_packet_numbers_[pn_space]; | 
|  | } else { | 
|  | base_packet_number = largest_packet_number_; | 
|  | } | 
|  | if (!ProcessAndCalculatePacketNumber( | 
|  | &packet_number_reader, header->packet_number_length, | 
|  | base_packet_number, full_packet_number)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Get the associated data, and apply the same unmasking operations to it. | 
|  | quiche::QuicheStringPiece ad = GetAssociatedDataFromEncryptedPacket( | 
|  | version_.transport_version, packet, | 
|  | GetIncludedDestinationConnectionIdLength(*header), | 
|  | GetIncludedSourceConnectionIdLength(*header), header->version_flag, | 
|  | has_diversification_nonce, header->packet_number_length, | 
|  | header->retry_token_length_length, header->retry_token.length(), | 
|  | header->length_length); | 
|  | *associated_data = std::vector<char>(ad.begin(), ad.end()); | 
|  | QuicDataWriter ad_writer(associated_data->size(), associated_data->data()); | 
|  |  | 
|  | // Apply the unmasked type byte and packet number to |associated_data|. | 
|  | if (!ad_writer.WriteUInt8(header->type_byte)) { | 
|  | return false; | 
|  | } | 
|  | // Put the packet number at the end of the AD, or if there's a diversification | 
|  | // nonce, before that (which is at the end of the AD). | 
|  | size_t seek_len = ad_writer.remaining() - header->packet_number_length; | 
|  | if (has_diversification_nonce) { | 
|  | seek_len -= kDiversificationNonceSize; | 
|  | } | 
|  | if (!ad_writer.Seek(seek_len) || | 
|  | !ad_writer.WriteBytes(pn_writer.data(), pn_writer.length())) { | 
|  | QUIC_DVLOG(1) << "Failed to apply unmasking operations to AD"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::EncryptPayload(EncryptionLevel level, | 
|  | QuicPacketNumber packet_number, | 
|  | const QuicPacket& packet, | 
|  | char* buffer, | 
|  | size_t buffer_len) { | 
|  | DCHECK(packet_number.IsInitialized()); | 
|  | if (encrypter_[level] == nullptr) { | 
|  | QUIC_BUG << ENDPOINT << "Attempted to encrypt without encrypter at level " | 
|  | << EncryptionLevelToString(level); | 
|  | RaiseError(QUIC_ENCRYPTION_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece associated_data = | 
|  | packet.AssociatedData(version_.transport_version); | 
|  | // Copy in the header, because the encrypter only populates the encrypted | 
|  | // plaintext content. | 
|  | const size_t ad_len = associated_data.length(); | 
|  | memmove(buffer, associated_data.data(), ad_len); | 
|  | // Encrypt the plaintext into the buffer. | 
|  | size_t output_length = 0; | 
|  | if (!encrypter_[level]->EncryptPacket( | 
|  | packet_number.ToUint64(), associated_data, | 
|  | packet.Plaintext(version_.transport_version), buffer + ad_len, | 
|  | &output_length, buffer_len - ad_len)) { | 
|  | RaiseError(QUIC_ENCRYPTION_FAILURE); | 
|  | return 0; | 
|  | } | 
|  | if (version_.HasHeaderProtection() && | 
|  | !ApplyHeaderProtection(level, buffer, ad_len + output_length, ad_len)) { | 
|  | QUIC_DLOG(ERROR) << "Applying header protection failed."; | 
|  | RaiseError(QUIC_ENCRYPTION_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ad_len + output_length; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetCiphertextSize(EncryptionLevel level, | 
|  | size_t plaintext_size) const { | 
|  | if (encrypter_[level] == nullptr) { | 
|  | QUIC_BUG << ENDPOINT | 
|  | << "Attempted to get ciphertext size without encrypter at level " | 
|  | << EncryptionLevelToString(level) << " using " << version_; | 
|  | return plaintext_size; | 
|  | } | 
|  | return encrypter_[level]->GetCiphertextSize(plaintext_size); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) { | 
|  | // In order to keep the code simple, we don't have the current encryption | 
|  | // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12. | 
|  | size_t min_plaintext_size = ciphertext_size; | 
|  |  | 
|  | for (int i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; i++) { | 
|  | if (encrypter_[i] != nullptr) { | 
|  | size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size); | 
|  | if (size < min_plaintext_size) { | 
|  | min_plaintext_size = size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return min_plaintext_size; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::DecryptPayload(quiche::QuicheStringPiece encrypted, | 
|  | quiche::QuicheStringPiece associated_data, | 
|  | const QuicPacketHeader& header, | 
|  | char* decrypted_buffer, | 
|  | size_t buffer_length, | 
|  | size_t* decrypted_length, | 
|  | EncryptionLevel* decrypted_level) { | 
|  | if (!EncryptionLevelIsValid(decrypter_level_)) { | 
|  | QUIC_BUG << "Attempted to decrypt with bad decrypter_level_"; | 
|  | return false; | 
|  | } | 
|  | EncryptionLevel level = decrypter_level_; | 
|  | QuicDecrypter* decrypter = decrypter_[level].get(); | 
|  | QuicDecrypter* alternative_decrypter = nullptr; | 
|  | if (version().KnowsWhichDecrypterToUse()) { | 
|  | if (header.form == GOOGLE_QUIC_PACKET) { | 
|  | QUIC_BUG << "Attempted to decrypt GOOGLE_QUIC_PACKET with a version that " | 
|  | "knows which decrypter to use"; | 
|  | return false; | 
|  | } | 
|  | level = GetEncryptionLevel(header); | 
|  | if (!EncryptionLevelIsValid(level)) { | 
|  | QUIC_BUG << "Attempted to decrypt with bad level"; | 
|  | return false; | 
|  | } | 
|  | decrypter = decrypter_[level].get(); | 
|  | if (decrypter == nullptr) { | 
|  | return false; | 
|  | } | 
|  | if (level == ENCRYPTION_ZERO_RTT && | 
|  | perspective_ == Perspective::IS_CLIENT && header.nonce != nullptr) { | 
|  | decrypter->SetDiversificationNonce(*header.nonce); | 
|  | } | 
|  | } else if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) { | 
|  | if (!EncryptionLevelIsValid(alternative_decrypter_level_)) { | 
|  | QUIC_BUG << "Attempted to decrypt with bad alternative_decrypter_level_"; | 
|  | return false; | 
|  | } | 
|  | alternative_decrypter = decrypter_[alternative_decrypter_level_].get(); | 
|  | } | 
|  |  | 
|  | if (decrypter == nullptr) { | 
|  | QUIC_BUG << "Attempting to decrypt without decrypter, encryption level:" | 
|  | << level << " version:" << version(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool success = decrypter->DecryptPacket( | 
|  | header.packet_number.ToUint64(), associated_data, encrypted, | 
|  | decrypted_buffer, decrypted_length, buffer_length); | 
|  | if (success) { | 
|  | visitor_->OnDecryptedPacket(level); | 
|  | *decrypted_level = level; | 
|  | } else if (alternative_decrypter != nullptr) { | 
|  | if (header.nonce != nullptr) { | 
|  | DCHECK_EQ(perspective_, Perspective::IS_CLIENT); | 
|  | alternative_decrypter->SetDiversificationNonce(*header.nonce); | 
|  | } | 
|  | bool try_alternative_decryption = true; | 
|  | if (alternative_decrypter_level_ == ENCRYPTION_ZERO_RTT) { | 
|  | if (perspective_ == Perspective::IS_CLIENT) { | 
|  | if (header.nonce == nullptr) { | 
|  | // Can not use INITIAL decryption without a diversification nonce. | 
|  | try_alternative_decryption = false; | 
|  | } | 
|  | } else { | 
|  | DCHECK(header.nonce == nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (try_alternative_decryption) { | 
|  | success = alternative_decrypter->DecryptPacket( | 
|  | header.packet_number.ToUint64(), associated_data, encrypted, | 
|  | decrypted_buffer, decrypted_length, buffer_length); | 
|  | } | 
|  | if (success) { | 
|  | visitor_->OnDecryptedPacket(alternative_decrypter_level_); | 
|  | *decrypted_level = decrypter_level_; | 
|  | if (alternative_decrypter_latch_) { | 
|  | if (!EncryptionLevelIsValid(alternative_decrypter_level_)) { | 
|  | QUIC_BUG << "Attempted to latch alternate decrypter with bad " | 
|  | "alternative_decrypter_level_"; | 
|  | return false; | 
|  | } | 
|  | // Switch to the alternative decrypter and latch so that we cannot | 
|  | // switch back. | 
|  | decrypter_level_ = alternative_decrypter_level_; | 
|  | alternative_decrypter_level_ = NUM_ENCRYPTION_LEVELS; | 
|  | } else { | 
|  | // Switch the alternative decrypter so that we use it first next time. | 
|  | EncryptionLevel level = alternative_decrypter_level_; | 
|  | alternative_decrypter_level_ = decrypter_level_; | 
|  | decrypter_level_ = level; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!success) { | 
|  | QUIC_DVLOG(1) << ENDPOINT << "DecryptPacket failed for: " << header; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetIetfAckFrameSize(const QuicAckFrame& frame) { | 
|  | // Type byte, largest_acked, and delay_time are straight-forward. | 
|  | size_t ack_frame_size = kQuicFrameTypeSize; | 
|  | QuicPacketNumber largest_acked = LargestAcked(frame); | 
|  | ack_frame_size += QuicDataWriter::GetVarInt62Len(largest_acked.ToUint64()); | 
|  | uint64_t ack_delay_time_us; | 
|  | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); | 
|  | ack_delay_time_us = ack_delay_time_us >> local_ack_delay_exponent_; | 
|  | ack_frame_size += QuicDataWriter::GetVarInt62Len(ack_delay_time_us); | 
|  |  | 
|  | if (frame.packets.Empty() || frame.packets.Max() != largest_acked) { | 
|  | QUIC_BUG << "Malformed ack frame"; | 
|  | // ACK frame serialization will fail and connection will be closed. | 
|  | return ack_frame_size; | 
|  | } | 
|  |  | 
|  | // Ack block count. | 
|  | ack_frame_size += | 
|  | QuicDataWriter::GetVarInt62Len(frame.packets.NumIntervals() - 1); | 
|  |  | 
|  | // First Ack range. | 
|  | auto iter = frame.packets.rbegin(); | 
|  | ack_frame_size += QuicDataWriter::GetVarInt62Len(iter->Length() - 1); | 
|  | QuicPacketNumber previous_smallest = iter->min(); | 
|  | ++iter; | 
|  |  | 
|  | // Ack blocks. | 
|  | for (; iter != frame.packets.rend(); ++iter) { | 
|  | const uint64_t gap = previous_smallest - iter->max() - 1; | 
|  | const uint64_t ack_range = iter->Length() - 1; | 
|  | ack_frame_size += (QuicDataWriter::GetVarInt62Len(gap) + | 
|  | QuicDataWriter::GetVarInt62Len(ack_range)); | 
|  | previous_smallest = iter->min(); | 
|  | } | 
|  |  | 
|  | // ECN counts. | 
|  | if (frame.ecn_counters_populated && | 
|  | (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { | 
|  | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_0_count); | 
|  | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_1_count); | 
|  | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count); | 
|  | } | 
|  |  | 
|  | return ack_frame_size; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetAckFrameSize( | 
|  | const QuicAckFrame& ack, | 
|  | QuicPacketNumberLength /*packet_number_length*/) { | 
|  | DCHECK(!ack.packets.Empty()); | 
|  | size_t ack_size = 0; | 
|  |  | 
|  | if (VersionHasIetfQuicFrames(version_.transport_version)) { | 
|  | return GetIetfAckFrameSize(ack); | 
|  | } | 
|  | AckFrameInfo ack_info = GetAckFrameInfo(ack); | 
|  | QuicPacketNumberLength ack_block_length = | 
|  | GetMinPacketNumberLength(QuicPacketNumber(ack_info.max_block_length)); | 
|  |  | 
|  | ack_size = GetMinAckFrameSize(version_.transport_version, ack, | 
|  | local_ack_delay_exponent_); | 
|  | // First ack block length. | 
|  | ack_size += ack_block_length; | 
|  | if (ack_info.num_ack_blocks != 0) { | 
|  | ack_size += kNumberOfAckBlocksSize; | 
|  | ack_size += std::min(ack_info.num_ack_blocks, kMaxAckBlocks) * | 
|  | (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); | 
|  | } | 
|  |  | 
|  | // Include timestamps. | 
|  | if (process_timestamps_) { | 
|  | ack_size += GetAckFrameTimeStampSize(ack); | 
|  | } | 
|  |  | 
|  | return ack_size; | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::GetAckFrameTimeStampSize(const QuicAckFrame& ack) { | 
|  | if (ack.received_packet_times.empty()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return kQuicNumTimestampsLength + kQuicFirstTimestampLength + | 
|  | (kQuicTimestampLength + kQuicTimestampPacketNumberGapLength) * | 
|  | (ack.received_packet_times.size() - 1); | 
|  | } | 
|  |  | 
|  | size_t QuicFramer::ComputeFrameLength( | 
|  | const QuicFrame& frame, | 
|  | bool last_frame_in_packet, | 
|  | QuicPacketNumberLength packet_number_length) { | 
|  | switch (frame.type) { | 
|  | case STREAM_FRAME: | 
|  | return GetMinStreamFrameSize( | 
|  | version_.transport_version, frame.stream_frame.stream_id, | 
|  | frame.stream_frame.offset, last_frame_in_packet, | 
|  | frame.stream_frame.data_length) + | 
|  | frame.stream_frame.data_length; | 
|  | case CRYPTO_FRAME: | 
|  | return GetMinCryptoFrameSize(frame.crypto_frame->offset, | 
|  | frame.crypto_frame->data_length) + | 
|  | frame.crypto_frame->data_length; | 
|  | case ACK_FRAME: { | 
|  | return GetAckFrameSize(*frame.ack_frame, packet_number_length); | 
|  | } | 
|  | case STOP_WAITING_FRAME: | 
|  | return GetStopWaitingFrameSize(packet_number_length); | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | // MTU discovery frames are serialized as ping frames. | 
|  | return kQuicFrameTypeSize; | 
|  | case MESSAGE_FRAME: | 
|  | return GetMessageFrameSize(version_.transport_version, | 
|  | last_frame_in_packet, | 
|  | frame.message_frame->message_length); | 
|  | case PADDING_FRAME: | 
|  | DCHECK(false); | 
|  | return 0; | 
|  | default: | 
|  | return GetRetransmittableControlFrameSize(version_.transport_version, | 
|  | frame); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendTypeByte(const QuicFrame& frame, | 
|  | bool last_frame_in_packet, | 
|  | QuicDataWriter* writer) { | 
|  | if (VersionHasIetfQuicFrames(version_.transport_version)) { | 
|  | return AppendIetfTypeByte(frame, last_frame_in_packet, writer); | 
|  | } | 
|  | uint8_t type_byte = 0; | 
|  | switch (frame.type) { | 
|  | case STREAM_FRAME: | 
|  | type_byte = | 
|  | GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); | 
|  | break; | 
|  | case ACK_FRAME: | 
|  | return true; | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | type_byte = static_cast<uint8_t>(PING_FRAME); | 
|  | break; | 
|  | case NEW_CONNECTION_ID_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append NEW_CONNECTION_ID frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case RETIRE_CONNECTION_ID_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append RETIRE_CONNECTION_ID frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case NEW_TOKEN_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append NEW_TOKEN frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case MAX_STREAMS_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append MAX_STREAMS frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case STREAMS_BLOCKED_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append STREAMS_BLOCKED frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case PATH_RESPONSE_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append PATH_RESPONSE frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case PATH_CHALLENGE_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append PATH_CHALLENGE frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case STOP_SENDING_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append STOP_SENDING frame and not in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case MESSAGE_FRAME: | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | type_byte = static_cast<uint8_t>(frame.type); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return writer->WriteUInt8(type_byte); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendIetfTypeByte(const QuicFrame& frame, | 
|  | bool last_frame_in_packet, | 
|  | QuicDataWriter* writer) { | 
|  | uint8_t type_byte = 0; | 
|  | switch (frame.type) { | 
|  | case PADDING_FRAME: | 
|  | type_byte = IETF_PADDING; | 
|  | break; | 
|  | case RST_STREAM_FRAME: | 
|  | type_byte = IETF_RST_STREAM; | 
|  | break; | 
|  | case CONNECTION_CLOSE_FRAME: | 
|  | switch (frame.connection_close_frame->close_type) { | 
|  | case IETF_QUIC_APPLICATION_CONNECTION_CLOSE: | 
|  | type_byte = IETF_APPLICATION_CLOSE; | 
|  | break; | 
|  | case IETF_QUIC_TRANSPORT_CONNECTION_CLOSE: | 
|  | type_byte = IETF_CONNECTION_CLOSE; | 
|  | break; | 
|  | default: | 
|  | set_detailed_error("Invalid QuicConnectionCloseFrame type."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | } | 
|  | break; | 
|  | case GOAWAY_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to create non-IETF QUIC GOAWAY frame in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case WINDOW_UPDATE_FRAME: | 
|  | // Depending on whether there is a stream ID or not, will be either a | 
|  | // MAX_STREAM_DATA frame or a MAX_DATA frame. | 
|  | if (frame.window_update_frame->stream_id == | 
|  | QuicUtils::GetInvalidStreamId(transport_version())) { | 
|  | type_byte = IETF_MAX_DATA; | 
|  | } else { | 
|  | type_byte = IETF_MAX_STREAM_DATA; | 
|  | } | 
|  | break; | 
|  | case BLOCKED_FRAME: | 
|  | if (frame.blocked_frame->stream_id == | 
|  | QuicUtils::GetInvalidStreamId(transport_version())) { | 
|  | type_byte = IETF_DATA_BLOCKED; | 
|  | } else { | 
|  | type_byte = IETF_STREAM_DATA_BLOCKED; | 
|  | } | 
|  | break; | 
|  | case STOP_WAITING_FRAME: | 
|  | set_detailed_error( | 
|  | "Attempt to append type byte of STOP WAITING frame in IETF QUIC."); | 
|  | return RaiseError(QUIC_INTERNAL_ERROR); | 
|  | case PING_FRAME: | 
|  | type_byte = IETF_PING; | 
|  | break; | 
|  | case STREAM_FRAME: | 
|  | type_byte = | 
|  | GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); | 
|  | break; | 
|  | case ACK_FRAME: | 
|  | // Do nothing here, AppendIetfAckFrameAndTypeByte() will put the type byte | 
|  | // in the buffer. | 
|  | return true; | 
|  | case MTU_DISCOVERY_FRAME: | 
|  | // The path MTU discovery frame is encoded as a PING frame on the wire. | 
|  | type_byte = IETF_PING; | 
|  | break; | 
|  | case NEW_CONNECTION_ID_FRAME: | 
|  | type_byte = IETF_NEW_CONNECTION_ID; | 
|  | break; | 
|  | case RETIRE_CONNECTION_ID_FRAME: | 
|  | type_byte = IETF_RETIRE_CONNECTION_ID; | 
|  | break; | 
|  | case NEW_TOKEN_FRAME: | 
|  | type_byte = IETF_NEW_TOKEN; | 
|  | break; | 
|  | case MAX_STREAMS_FRAME: | 
|  | if (frame.max_streams_frame.unidirectional) { | 
|  | type_byte = IETF_MAX_STREAMS_UNIDIRECTIONAL; | 
|  | } else { | 
|  | type_byte = IETF_MAX_STREAMS_BIDIRECTIONAL; | 
|  | } | 
|  | break; | 
|  | case STREAMS_BLOCKED_FRAME: | 
|  | if (frame.streams_blocked_frame.unidirectional) { | 
|  | type_byte = IETF_STREAMS_BLOCKED_UNIDIRECTIONAL; | 
|  | } else { | 
|  | type_byte = IETF_STREAMS_BLOCKED_BIDIRECTIONAL; | 
|  | } | 
|  | break; | 
|  | case PATH_RESPONSE_FRAME: | 
|  | type_byte = IETF_PATH_RESPONSE; | 
|  | break; | 
|  | case PATH_CHALLENGE_FRAME: | 
|  | type_byte = IETF_PATH_CHALLENGE; | 
|  | break; | 
|  | case STOP_SENDING_FRAME: | 
|  | type_byte = IETF_STOP_SENDING; | 
|  | break; | 
|  | case MESSAGE_FRAME: | 
|  | return true; | 
|  | case CRYPTO_FRAME: | 
|  | type_byte = IETF_CRYPTO; | 
|  | break; | 
|  | case HANDSHAKE_DONE_FRAME: | 
|  | type_byte = IETF_HANDSHAKE_DONE; | 
|  | break; | 
|  | default: | 
|  | QUIC_BUG << "Attempt to generate a frame type for an unsupported value: " | 
|  | << frame.type; | 
|  | return false; | 
|  | } | 
|  | return writer->WriteUInt8(type_byte); | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::AppendPacketNumber(QuicPacketNumberLength packet_number_length, | 
|  | QuicPacketNumber packet_number, | 
|  | QuicDataWriter* writer) { | 
|  | DCHECK(packet_number.IsInitialized()); | 
|  | if (!IsValidPacketNumberLength(packet_number_length)) { | 
|  | QUIC_BUG << "Invalid packet_number_length: " << packet_number_length; | 
|  | return false; | 
|  | } | 
|  | return writer->WriteBytesToUInt64(packet_number_length, | 
|  | packet_number.ToUint64()); | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::AppendStreamId(size_t stream_id_length, | 
|  | QuicStreamId stream_id, | 
|  | QuicDataWriter* writer) { | 
|  | if (stream_id_length == 0 || stream_id_length > 4) { | 
|  | QUIC_BUG << "Invalid stream_id_length: " << stream_id_length; | 
|  | return false; | 
|  | } | 
|  | return writer->WriteBytesToUInt64(stream_id_length, stream_id); | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::AppendStreamOffset(size_t offset_length, | 
|  | QuicStreamOffset offset, | 
|  | QuicDataWriter* writer) { | 
|  | if (offset_length == 1 || offset_length > 8) { | 
|  | QUIC_BUG << "Invalid stream_offset_length: " << offset_length; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return writer->WriteBytesToUInt64(offset_length, offset); | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::AppendAckBlock(uint8_t gap, | 
|  | QuicPacketNumberLength length_length, | 
|  | uint64_t length, | 
|  | QuicDataWriter* writer) { | 
|  | if (length == 0) { | 
|  | if (!IsValidPacketNumberLength(length_length)) { | 
|  | QUIC_BUG << "Invalid packet_number_length: " << length_length; | 
|  | return false; | 
|  | } | 
|  | return writer->WriteUInt8(gap) && | 
|  | writer->WriteBytesToUInt64(length_length, length); | 
|  | } | 
|  | return writer->WriteUInt8(gap) && | 
|  | AppendPacketNumber(length_length, QuicPacketNumber(length), writer); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendStreamFrame(const QuicStreamFrame& frame, | 
|  | bool no_stream_frame_length, | 
|  | QuicDataWriter* writer) { | 
|  | if (VersionHasIetfQuicFrames(version_.transport_version)) { | 
|  | return AppendIetfStreamFrame(frame, no_stream_frame_length, writer); | 
|  | } | 
|  | if (!AppendStreamId(GetStreamIdSize(frame.stream_id), frame.stream_id, | 
|  | writer)) { | 
|  | QUIC_BUG << "Writing stream id size failed."; | 
|  | return false; | 
|  | } | 
|  | if (!AppendStreamOffset(GetStreamOffsetSize(frame.offset), frame.offset, | 
|  | writer)) { | 
|  | QUIC_BUG << "Writing offset size failed."; | 
|  | return false; | 
|  | } | 
|  | if (!no_stream_frame_length) { | 
|  | static_assert( | 
|  | std::numeric_limits<decltype(frame.data_length)>::max() <= | 
|  | std::numeric_limits<uint16_t>::max(), | 
|  | "If frame.data_length can hold more than a uint16_t than we need to " | 
|  | "check that frame.data_length <= std::numeric_limits<uint16_t>::max()"); | 
|  | if (!writer->WriteUInt16(static_cast<uint16_t>(frame.data_length))) { | 
|  | QUIC_BUG << "Writing stream frame length failed"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (data_producer_ != nullptr) { | 
|  | DCHECK_EQ(nullptr, frame.data_buffer); | 
|  | if (frame.data_length == 0) { | 
|  | return true; | 
|  | } | 
|  | if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, | 
|  | frame.data_length, | 
|  | writer) != WRITE_SUCCESS) { | 
|  | QUIC_BUG << "Writing frame data failed."; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { | 
|  | QUIC_BUG << "Writing frame data failed."; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendNewTokenFrame(const QuicNewTokenFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.token.length()))) { | 
|  | set_detailed_error("Writing token length failed."); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteBytes(frame.token.data(), frame.token.length())) { | 
|  | set_detailed_error("Writing token buffer failed."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessNewTokenFrame(QuicDataReader* reader, | 
|  | QuicNewTokenFrame* frame) { | 
|  | uint64_t length; | 
|  | if (!reader->ReadVarInt62(&length)) { | 
|  | set_detailed_error("Unable to read new token length."); | 
|  | return false; | 
|  | } | 
|  | if (length > kMaxNewTokenTokenLength) { | 
|  | set_detailed_error("Token length larger than maximum."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO(ianswett): Don't use quiche::QuicheStringPiece as an intermediary. | 
|  | quiche::QuicheStringPiece data; | 
|  | if (!reader->ReadStringPiece(&data, length)) { | 
|  | set_detailed_error("Unable to read new token data."); | 
|  | return false; | 
|  | } | 
|  | frame->token = std::string(data); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Add a new ietf-format stream frame. | 
|  | // Bits controlling whether there is a frame-length and frame-offset | 
|  | // are in the QuicStreamFrame. | 
|  | bool QuicFramer::AppendIetfStreamFrame(const QuicStreamFrame& frame, | 
|  | bool last_frame_in_packet, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) { | 
|  | set_detailed_error("Writing stream id failed."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (frame.offset != 0) { | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) { | 
|  | set_detailed_error("Writing data offset failed."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!last_frame_in_packet) { | 
|  | if (!writer->WriteVarInt62(frame.data_length)) { | 
|  | set_detailed_error("Writing data length failed."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (frame.data_length == 0) { | 
|  | return true; | 
|  | } | 
|  | if (data_producer_ == nullptr) { | 
|  | if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { | 
|  | set_detailed_error("Writing frame data failed."); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | DCHECK_EQ(nullptr, frame.data_buffer); | 
|  |  | 
|  | if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, | 
|  | frame.data_length, | 
|  | writer) != WRITE_SUCCESS) { | 
|  | set_detailed_error("Writing frame data failed."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendCryptoFrame(const QuicCryptoFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) { | 
|  | set_detailed_error("Writing data offset failed."); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.data_length))) { | 
|  | set_detailed_error("Writing data length failed."); | 
|  | return false; | 
|  | } | 
|  | if (data_producer_ == nullptr) { | 
|  | if (frame.data_buffer == nullptr || | 
|  | !writer->WriteBytes(frame.data_buffer, frame.data_length)) { | 
|  | set_detailed_error("Writing frame data failed."); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | DCHECK_EQ(nullptr, frame.data_buffer); | 
|  | if (!data_producer_->WriteCryptoData(frame.level, frame.offset, | 
|  | frame.data_length, writer)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void QuicFramer::set_version(const ParsedQuicVersion version) { | 
|  | DCHECK(IsSupportedVersion(version)) << ParsedQuicVersionToString(version); | 
|  | version_ = version; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendAckFrameAndTypeByte(const QuicAckFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (VersionHasIetfQuicFrames(transport_version())) { | 
|  | return AppendIetfAckFrameAndTypeByte(frame, writer); | 
|  | } | 
|  |  | 
|  | const AckFrameInfo new_ack_info = GetAckFrameInfo(frame); | 
|  | QuicPacketNumber largest_acked = LargestAcked(frame); | 
|  | QuicPacketNumberLength largest_acked_length = | 
|  | GetMinPacketNumberLength(largest_acked); | 
|  | QuicPacketNumberLength ack_block_length = | 
|  | GetMinPacketNumberLength(QuicPacketNumber(new_ack_info.max_block_length)); | 
|  | // Calculate available bytes for timestamps and ack blocks. | 
|  | int32_t available_timestamp_and_ack_block_bytes = | 
|  | writer->capacity() - writer->length() - ack_block_length - | 
|  | GetMinAckFrameSize(version_.transport_version, frame, | 
|  | local_ack_delay_exponent_) - | 
|  | (new_ack_info.num_ack_blocks != 0 ? kNumberOfAckBlocksSize : 0); | 
|  | DCHECK_LE(0, available_timestamp_and_ack_block_bytes); | 
|  |  | 
|  | uint8_t type_byte = 0; | 
|  | SetBit(&type_byte, new_ack_info.num_ack_blocks != 0, | 
|  | kQuicHasMultipleAckBlocksOffset); | 
|  |  | 
|  | SetBits(&type_byte, GetPacketNumberFlags(largest_acked_length), | 
|  | kQuicSequenceNumberLengthNumBits, kLargestAckedOffset); | 
|  |  | 
|  | SetBits(&type_byte, GetPacketNumberFlags(ack_block_length), | 
|  | kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset); | 
|  |  | 
|  | type_byte |= kQuicFrameTypeAckMask; | 
|  |  | 
|  | if (!writer->WriteUInt8(type_byte)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t max_num_ack_blocks = available_timestamp_and_ack_block_bytes / | 
|  | (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); | 
|  |  | 
|  | // Number of ack blocks. | 
|  | size_t num_ack_blocks = | 
|  | std::min(new_ack_info.num_ack_blocks, max_num_ack_blocks); | 
|  | if (num_ack_blocks > std::numeric_limits<uint8_t>::max()) { | 
|  | num_ack_blocks = std::numeric_limits<uint8_t>::max(); | 
|  | } | 
|  |  | 
|  | // Largest acked. | 
|  | if (!AppendPacketNumber(largest_acked_length, largest_acked, writer)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Largest acked delta time. | 
|  | uint64_t ack_delay_time_us = kUFloat16MaxValue; | 
|  | if (!frame.ack_delay_time.IsInfinite()) { | 
|  | DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); | 
|  | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); | 
|  | } | 
|  | if (!writer->WriteUFloat16(ack_delay_time_us)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (num_ack_blocks > 0) { | 
|  | if (!writer->WriteBytes(&num_ack_blocks, 1)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // First ack block length. | 
|  | if (!AppendPacketNumber(ack_block_length, | 
|  | QuicPacketNumber(new_ack_info.first_block_length), | 
|  | writer)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Ack blocks. | 
|  | if (num_ack_blocks > 0) { | 
|  | size_t num_ack_blocks_written = 0; | 
|  | // Append, in descending order from the largest ACKed packet, a series of | 
|  | // ACK blocks that represents the successfully acknoweldged packets. Each | 
|  | // appended gap/block length represents a descending delta from the previous | 
|  | // block. i.e.: | 
|  | // |--- length ---|--- gap ---|--- length ---|--- gap ---|--- largest ---| | 
|  | // For gaps larger than can be represented by a single encoded gap, a 0 | 
|  | // length gap of the maximum is used, i.e.: | 
|  | // |--- length ---|--- gap ---|- 0 -|--- gap ---|--- largest ---| | 
|  | auto itr = frame.packets.rbegin(); | 
|  | QuicPacketNumber previous_start = itr->min(); | 
|  | ++itr; | 
|  |  | 
|  | for (; | 
|  | itr != frame.packets.rend() && num_ack_blocks_written < num_ack_blocks; | 
|  | previous_start = itr->min(), ++itr) { | 
|  | const auto& interval = *itr; | 
|  | const uint64_t total_gap = previous_start - interval.max(); | 
|  | const size_t num_encoded_gaps = | 
|  | (total_gap + std::numeric_limits<uint8_t>::max() - 1) / | 
|  | std::numeric_limits<uint8_t>::max(); | 
|  |  | 
|  | // Append empty ACK blocks because the gap is longer than a single gap. | 
|  | for (size_t i = 1; | 
|  | i < num_encoded_gaps && num_ack_blocks_written < num_ack_blocks; | 
|  | ++i) { | 
|  | if (!AppendAckBlock(std::numeric_limits<uint8_t>::max(), | 
|  | ack_block_length, 0, writer)) { | 
|  | return false; | 
|  | } | 
|  | ++num_ack_blocks_written; | 
|  | } | 
|  | if (num_ack_blocks_written >= num_ack_blocks) { | 
|  | if (QUIC_PREDICT_FALSE(num_ack_blocks_written != num_ack_blocks)) { | 
|  | QUIC_BUG << "Wrote " << num_ack_blocks_written | 
|  | << ", expected to write " << num_ack_blocks; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | const uint8_t last_gap = | 
|  | total_gap - | 
|  | (num_encoded_gaps - 1) * std::numeric_limits<uint8_t>::max(); | 
|  | // Append the final ACK block with a non-empty size. | 
|  | if (!AppendAckBlock(last_gap, ack_block_length, interval.Length(), | 
|  | writer)) { | 
|  | return false; | 
|  | } | 
|  | ++num_ack_blocks_written; | 
|  | } | 
|  | DCHECK_EQ(num_ack_blocks, num_ack_blocks_written); | 
|  | } | 
|  | // Timestamps. | 
|  | // If we don't process timestamps or if we don't have enough available space | 
|  | // to append all the timestamps, don't append any of them. | 
|  | if (process_timestamps_ && writer->capacity() - writer->length() >= | 
|  | GetAckFrameTimeStampSize(frame)) { | 
|  | if (!AppendTimestampsToAckFrame(frame, writer)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | uint8_t num_received_packets = 0; | 
|  | if (!writer->WriteBytes(&num_received_packets, 1)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendTimestampsToAckFrame(const QuicAckFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | DCHECK_GE(std::numeric_limits<uint8_t>::max(), | 
|  | frame.received_packet_times.size()); | 
|  | // num_received_packets is only 1 byte. | 
|  | if (frame.received_packet_times.size() > | 
|  | std::numeric_limits<uint8_t>::max()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint8_t num_received_packets = frame.received_packet_times.size(); | 
|  | if (!writer->WriteBytes(&num_received_packets, 1)) { | 
|  | return false; | 
|  | } | 
|  | if (num_received_packets == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | auto it = frame.received_packet_times.begin(); | 
|  | QuicPacketNumber packet_number = it->first; | 
|  | uint64_t delta_from_largest_observed = LargestAcked(frame) - packet_number; | 
|  |  | 
|  | DCHECK_GE(std::numeric_limits<uint8_t>::max(), delta_from_largest_observed); | 
|  | if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteUInt8(delta_from_largest_observed)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Use the lowest 4 bytes of the time delta from the creation_time_. | 
|  | const uint64_t time_epoch_delta_us = UINT64_C(1) << 32; | 
|  | uint32_t time_delta_us = | 
|  | static_cast<uint32_t>((it->second - creation_time_).ToMicroseconds() & | 
|  | (time_epoch_delta_us - 1)); | 
|  | if (!writer->WriteUInt32(time_delta_us)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QuicTime prev_time = it->second; | 
|  |  | 
|  | for (++it; it != frame.received_packet_times.end(); ++it) { | 
|  | packet_number = it->first; | 
|  | delta_from_largest_observed = LargestAcked(frame) - packet_number; | 
|  |  | 
|  | if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteUInt8(delta_from_largest_observed)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t frame_time_delta_us = (it->second - prev_time).ToMicroseconds(); | 
|  | prev_time = it->second; | 
|  | if (!writer->WriteUFloat16(frame_time_delta_us)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendStopWaitingFrame(const QuicPacketHeader& header, | 
|  | const QuicStopWaitingFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | DCHECK(!VersionHasIetfInvariantHeader(version_.transport_version)); | 
|  | DCHECK(frame.least_unacked.IsInitialized()); | 
|  | DCHECK_GE(header.packet_number, frame.least_unacked); | 
|  | const uint64_t least_unacked_delta = | 
|  | header.packet_number - frame.least_unacked; | 
|  | const uint64_t length_shift = header.packet_number_length * 8; | 
|  |  | 
|  | if (least_unacked_delta >> length_shift > 0) { | 
|  | QUIC_BUG << "packet_number_length " << header.packet_number_length | 
|  | << " is too small for least_unacked_delta: " << least_unacked_delta | 
|  | << " packet_number:" << header.packet_number | 
|  | << " least_unacked:" << frame.least_unacked | 
|  | << " version:" << version_.transport_version; | 
|  | return false; | 
|  | } | 
|  | if (least_unacked_delta == 0) { | 
|  | return writer->WriteBytesToUInt64(header.packet_number_length, | 
|  | least_unacked_delta); | 
|  | } | 
|  | if (!AppendPacketNumber(header.packet_number_length, | 
|  | QuicPacketNumber(least_unacked_delta), writer)) { | 
|  | QUIC_BUG << " seq failed: " << header.packet_number_length; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendIetfAckFrameAndTypeByte(const QuicAckFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | uint8_t type = IETF_ACK; | 
|  | uint64_t ecn_size = 0; | 
|  | if (frame.ecn_counters_populated && | 
|  | (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { | 
|  | // Change frame type to ACK_ECN if any ECN count is available. | 
|  | type = IETF_ACK_ECN; | 
|  | ecn_size = (QuicDataWriter::GetVarInt62Len(frame.ect_0_count) + | 
|  | QuicDataWriter::GetVarInt62Len(frame.ect_1_count) + | 
|  | QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count)); | 
|  | } | 
|  |  | 
|  | if (!writer->WriteUInt8(type)) { | 
|  | set_detailed_error("No room for frame-type"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QuicPacketNumber largest_acked = LargestAcked(frame); | 
|  | if (!writer->WriteVarInt62(largest_acked.ToUint64())) { | 
|  | set_detailed_error("No room for largest-acked in ack frame"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t ack_delay_time_us = kVarInt62MaxValue; | 
|  | if (!frame.ack_delay_time.IsInfinite()) { | 
|  | DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); | 
|  | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); | 
|  | ack_delay_time_us = ack_delay_time_us >> local_ack_delay_exponent_; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteVarInt62(ack_delay_time_us)) { | 
|  | set_detailed_error("No room for ack-delay in ack frame"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (frame.packets.Empty() || frame.packets.Max() != largest_acked) { | 
|  | QUIC_BUG << "Malformed ack frame: " << frame; | 
|  | set_detailed_error("Malformed ack frame"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Latch ack_block_count for potential truncation. | 
|  | const uint64_t ack_block_count = frame.packets.NumIntervals() - 1; | 
|  | QuicDataWriter count_writer(QuicDataWriter::GetVarInt62Len(ack_block_count), | 
|  | writer->data() + writer->length()); | 
|  | if (!writer->WriteVarInt62(ack_block_count)) { | 
|  | set_detailed_error("No room for ack block count in ack frame"); | 
|  | return false; | 
|  | } | 
|  | auto iter = frame.packets.rbegin(); | 
|  | if (!writer->WriteVarInt62(iter->Length() - 1)) { | 
|  | set_detailed_error("No room for first ack block in ack frame"); | 
|  | return false; | 
|  | } | 
|  | QuicPacketNumber previous_smallest = iter->min(); | 
|  | ++iter; | 
|  | // Append remaining ACK blocks. | 
|  | uint64_t appended_ack_blocks = 0; | 
|  | for (; iter != frame.packets.rend(); ++iter) { | 
|  | const uint64_t gap = previous_smallest - iter->max() - 1; | 
|  | const uint64_t ack_range = iter->Length() - 1; | 
|  |  | 
|  | if (writer->remaining() < ecn_size || | 
|  | writer->remaining() - ecn_size < | 
|  | QuicDataWriter::GetVarInt62Len(gap) + | 
|  | QuicDataWriter::GetVarInt62Len(ack_range)) { | 
|  | // ACK range does not fit, truncate it. | 
|  | break; | 
|  | } | 
|  | const bool success = | 
|  | writer->WriteVarInt62(gap) && writer->WriteVarInt62(ack_range); | 
|  | DCHECK(success); | 
|  | previous_smallest = iter->min(); | 
|  | ++appended_ack_blocks; | 
|  | } | 
|  |  | 
|  | if (appended_ack_blocks < ack_block_count) { | 
|  | // Truncation is needed, rewrite the ack block count. | 
|  | if (QuicDataWriter::GetVarInt62Len(appended_ack_blocks) != | 
|  | QuicDataWriter::GetVarInt62Len(ack_block_count) || | 
|  | !count_writer.WriteVarInt62(appended_ack_blocks)) { | 
|  | // This should never happen as ack_block_count is limited by | 
|  | // max_ack_ranges_. | 
|  | QUIC_BUG << "Ack frame truncation fails. ack_block_count: " | 
|  | << ack_block_count | 
|  | << ", appended count: " << appended_ack_blocks; | 
|  | set_detailed_error("ACK frame truncation fails"); | 
|  | return false; | 
|  | } | 
|  | QUIC_DLOG(INFO) << ENDPOINT << "ACK ranges get truncated from " | 
|  | << ack_block_count << " to " << appended_ack_blocks; | 
|  | } | 
|  |  | 
|  | if (type == IETF_ACK_ECN) { | 
|  | // Encode the ECN counts. | 
|  | if (!writer->WriteVarInt62(frame.ect_0_count)) { | 
|  | set_detailed_error("No room for ect_0_count in ack frame"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(frame.ect_1_count)) { | 
|  | set_detailed_error("No room for ect_1_count in ack frame"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(frame.ecn_ce_count)) { | 
|  | set_detailed_error("No room for ecn_ce_count in ack frame"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (VersionHasIetfQuicFrames(version_.transport_version)) { | 
|  | return AppendIetfResetStreamFrame(frame, writer); | 
|  | } | 
|  | if (!writer->WriteUInt32(frame.stream_id)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteUInt64(frame.byte_offset)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint32_t error_code = static_cast<uint32_t>(frame.error_code); | 
|  | if (!writer->WriteUInt32(error_code)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendConnectionCloseFrame( | 
|  | const QuicConnectionCloseFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (VersionHasIetfQuicFrames(version_.transport_version)) { | 
|  | return AppendIetfConnectionCloseFrame(frame, writer); | 
|  | } | 
|  | uint32_t error_code = static_cast<uint32_t>(frame.wire_error_code); | 
|  | if (!writer->WriteUInt32(error_code)) { | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteStringPiece16(TruncateErrorString(frame.error_details))) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | uint32_t error_code = static_cast<uint32_t>(frame.error_code); | 
|  | if (!writer->WriteUInt32(error_code)) { | 
|  | return false; | 
|  | } | 
|  | uint32_t stream_id = static_cast<uint32_t>(frame.last_good_stream_id); | 
|  | if (!writer->WriteUInt32(stream_id)) { | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteStringPiece16(TruncateErrorString(frame.reason_phrase))) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | uint32_t stream_id = static_cast<uint32_t>(frame.stream_id); | 
|  | if (!writer->WriteUInt32(stream_id)) { | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteUInt64(frame.max_data)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (VersionHasIetfQuicFrames(version_.transport_version)) { | 
|  | if (frame.stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { | 
|  | return AppendDataBlockedFrame(frame, writer); | 
|  | } | 
|  | return AppendStreamDataBlockedFrame(frame, writer); | 
|  | } | 
|  | uint32_t stream_id = static_cast<uint32_t>(frame.stream_id); | 
|  | if (!writer->WriteUInt32(stream_id)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendPaddingFrame(const QuicPaddingFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (frame.num_padding_bytes == 0) { | 
|  | return false; | 
|  | } | 
|  | if (frame.num_padding_bytes < 0) { | 
|  | QUIC_BUG_IF(frame.num_padding_bytes != -1); | 
|  | writer->WritePadding(); | 
|  | return true; | 
|  | } | 
|  | // Please note, num_padding_bytes includes type byte which has been written. | 
|  | return writer->WritePaddingBytes(frame.num_padding_bytes - 1); | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendMessageFrameAndTypeByte(const QuicMessageFrame& frame, | 
|  | bool last_frame_in_packet, | 
|  | QuicDataWriter* writer) { | 
|  | uint8_t type_byte; | 
|  | if (VersionHasIetfQuicFrames(version_.transport_version)) { | 
|  | type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH_V99 | 
|  | : IETF_EXTENSION_MESSAGE_V99; | 
|  | } else { | 
|  | type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH | 
|  | : IETF_EXTENSION_MESSAGE; | 
|  | } | 
|  | if (!writer->WriteUInt8(type_byte)) { | 
|  | return false; | 
|  | } | 
|  | if (!last_frame_in_packet && !writer->WriteVarInt62(frame.message_length)) { | 
|  | return false; | 
|  | } | 
|  | for (const auto& slice : frame.message_data) { | 
|  | if (!writer->WriteBytes(slice.data(), slice.length())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::RaiseError(QuicErrorCode error) { | 
|  | QUIC_DLOG(INFO) << ENDPOINT << "Error: " << QuicErrorCodeToString(error) | 
|  | << " detail: " << detailed_error_; | 
|  | set_error(error); | 
|  | if (visitor_) { | 
|  | visitor_->OnError(this); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::IsVersionNegotiation( | 
|  | const QuicPacketHeader& header, | 
|  | bool packet_has_ietf_packet_header) const { | 
|  | if (!packet_has_ietf_packet_header && | 
|  | perspective_ == Perspective::IS_CLIENT) { | 
|  | return header.version_flag; | 
|  | } | 
|  | if (header.form == IETF_QUIC_SHORT_HEADER_PACKET) { | 
|  | return false; | 
|  | } | 
|  | return header.long_packet_type == VERSION_NEGOTIATION; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendIetfConnectionCloseFrame( | 
|  | const QuicConnectionCloseFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (frame.close_type != IETF_QUIC_TRANSPORT_CONNECTION_CLOSE && | 
|  | frame.close_type != IETF_QUIC_APPLICATION_CONNECTION_CLOSE) { | 
|  | QUIC_BUG << "Invalid close_type for writing IETF CONNECTION CLOSE."; | 
|  | set_detailed_error("Invalid close_type for writing IETF CONNECTION CLOSE."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteVarInt62(frame.wire_error_code)) { | 
|  | set_detailed_error("Can not write connection close frame error code"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (frame.close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) { | 
|  | // Write the frame-type of the frame causing the error only | 
|  | // if it's a CONNECTION_CLOSE/Transport. | 
|  | if (!writer->WriteVarInt62(frame.transport_close_frame_type)) { | 
|  | set_detailed_error("Writing frame type failed."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // There may be additional error information available in the extracted error | 
|  | // code. Encode the error information in the reason phrase and serialize the | 
|  | // result. | 
|  | std::string final_error_string = | 
|  | GenerateErrorString(frame.error_details, frame.quic_error_code); | 
|  | if (!writer->WriteStringPieceVarInt62( | 
|  | TruncateErrorString(final_error_string))) { | 
|  | set_detailed_error("Can not write connection close phrase"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfConnectionCloseFrame( | 
|  | QuicDataReader* reader, | 
|  | QuicConnectionCloseType type, | 
|  | QuicConnectionCloseFrame* frame) { | 
|  | frame->close_type = type; | 
|  |  | 
|  | uint64_t error_code; | 
|  | if (!reader->ReadVarInt62(&error_code)) { | 
|  | set_detailed_error("Unable to read connection close error code."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | frame->wire_error_code = error_code; | 
|  |  | 
|  | if (type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) { | 
|  | // The frame-type of the frame causing the error is present only | 
|  | // if it's a CONNECTION_CLOSE/Transport. | 
|  | if (!reader->ReadVarInt62(&frame->transport_close_frame_type)) { | 
|  | set_detailed_error("Unable to read connection close frame type."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t phrase_length; | 
|  | if (!reader->ReadVarInt62(&phrase_length)) { | 
|  | set_detailed_error("Unable to read connection close error details."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece phrase; | 
|  | if (!reader->ReadStringPiece(&phrase, static_cast<size_t>(phrase_length))) { | 
|  | set_detailed_error("Unable to read connection close error details."); | 
|  | return false; | 
|  | } | 
|  | frame->error_details = std::string(phrase); | 
|  |  | 
|  | // The frame may have an extracted error code in it. Look for it and | 
|  | // extract it. If it's not present, MaybeExtract will return | 
|  | // QUIC_IETF_GQUIC_ERROR_MISSING. | 
|  | MaybeExtractQuicErrorCode(frame); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // IETF Quic Path Challenge/Response frames. | 
|  | bool QuicFramer::ProcessPathChallengeFrame(QuicDataReader* reader, | 
|  | QuicPathChallengeFrame* frame) { | 
|  | if (!reader->ReadBytes(frame->data_buffer.data(), | 
|  | frame->data_buffer.size())) { | 
|  | set_detailed_error("Can not read path challenge data."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessPathResponseFrame(QuicDataReader* reader, | 
|  | QuicPathResponseFrame* frame) { | 
|  | if (!reader->ReadBytes(frame->data_buffer.data(), | 
|  | frame->data_buffer.size())) { | 
|  | set_detailed_error("Can not read path response data."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendPathChallengeFrame(const QuicPathChallengeFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { | 
|  | set_detailed_error("Writing Path Challenge data failed."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendPathResponseFrame(const QuicPathResponseFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { | 
|  | set_detailed_error("Writing Path Response data failed."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Add a new ietf-format stream reset frame. | 
|  | // General format is | 
|  | //    stream id | 
|  | //    application error code | 
|  | //    final offset | 
|  | bool QuicFramer::AppendIetfResetStreamFrame(const QuicRstStreamFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) { | 
|  | set_detailed_error("Writing reset-stream stream id failed."); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.ietf_error_code))) { | 
|  | set_detailed_error("Writing reset-stream error code failed."); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.byte_offset))) { | 
|  | set_detailed_error("Writing reset-stream final-offset failed."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessIetfResetStreamFrame(QuicDataReader* reader, | 
|  | QuicRstStreamFrame* frame) { | 
|  | // Get Stream ID from frame. ReadVarIntStreamID returns false | 
|  | // if either A) there is a read error or B) the resulting value of | 
|  | // the Stream ID is larger than the maximum allowed value. | 
|  | if (!ReadUint32FromVarint62(reader, IETF_RST_STREAM, &frame->stream_id)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadVarInt62(&frame->ietf_error_code)) { | 
|  | set_detailed_error("Unable to read rst stream error code."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | frame->error_code = | 
|  | IetfResetStreamErrorCodeToRstStreamErrorCode(frame->ietf_error_code); | 
|  |  | 
|  | if (!reader->ReadVarInt62(&frame->byte_offset)) { | 
|  | set_detailed_error("Unable to read rst stream sent byte offset."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessStopSendingFrame( | 
|  | QuicDataReader* reader, | 
|  | QuicStopSendingFrame* stop_sending_frame) { | 
|  | if (!ReadUint32FromVarint62(reader, IETF_STOP_SENDING, | 
|  | &stop_sending_frame->stream_id)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t error_code; | 
|  | if (!reader->ReadVarInt62(&error_code)) { | 
|  | set_detailed_error("Unable to read stop sending application error code."); | 
|  | return false; | 
|  | } | 
|  | // TODO(fkastenholz): when error codes go to uint64_t, remove this. | 
|  | if (error_code > 0xffff) { | 
|  | stop_sending_frame->application_error_code = 0xffff; | 
|  | QUIC_DLOG(ERROR) << "Stop sending error code (" << error_code | 
|  | << ") > 0xffff"; | 
|  | } else { | 
|  | stop_sending_frame->application_error_code = | 
|  | static_cast<uint16_t>(error_code); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendStopSendingFrame( | 
|  | const QuicStopSendingFrame& stop_sending_frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(stop_sending_frame.stream_id)) { | 
|  | set_detailed_error("Can not write stop sending stream id"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62( | 
|  | static_cast<uint64_t>(stop_sending_frame.application_error_code))) { | 
|  | set_detailed_error("Can not write application error code"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Append/process IETF-Format MAX_DATA Frame | 
|  | bool QuicFramer::AppendMaxDataFrame(const QuicWindowUpdateFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.max_data)) { | 
|  | set_detailed_error("Can not write MAX_DATA byte-offset"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessMaxDataFrame(QuicDataReader* reader, | 
|  | QuicWindowUpdateFrame* frame) { | 
|  | frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); | 
|  | if (!reader->ReadVarInt62(&frame->max_data)) { | 
|  | set_detailed_error("Can not read MAX_DATA byte-offset"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Append/process IETF-Format MAX_STREAM_DATA Frame | 
|  | bool QuicFramer::AppendMaxStreamDataFrame(const QuicWindowUpdateFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.stream_id)) { | 
|  | set_detailed_error("Can not write MAX_STREAM_DATA stream id"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(frame.max_data)) { | 
|  | set_detailed_error("Can not write MAX_STREAM_DATA byte-offset"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessMaxStreamDataFrame(QuicDataReader* reader, | 
|  | QuicWindowUpdateFrame* frame) { | 
|  | if (!ReadUint32FromVarint62(reader, IETF_MAX_STREAM_DATA, | 
|  | &frame->stream_id)) { | 
|  | return false; | 
|  | } | 
|  | if (!reader->ReadVarInt62(&frame->max_data)) { | 
|  | set_detailed_error("Can not read MAX_STREAM_DATA byte-count"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendMaxStreamsFrame(const QuicMaxStreamsFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.stream_count)) { | 
|  | set_detailed_error("Can not write MAX_STREAMS stream count"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessMaxStreamsFrame(QuicDataReader* reader, | 
|  | QuicMaxStreamsFrame* frame, | 
|  | uint64_t frame_type) { | 
|  | if (!ReadUint32FromVarint62(reader, | 
|  | static_cast<QuicIetfFrameType>(frame_type), | 
|  | &frame->stream_count)) { | 
|  | return false; | 
|  | } | 
|  | frame->unidirectional = (frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendDataBlockedFrame(const QuicBlockedFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.offset)) { | 
|  | set_detailed_error("Can not write blocked offset."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessDataBlockedFrame(QuicDataReader* reader, | 
|  | QuicBlockedFrame* frame) { | 
|  | // Indicates that it is a BLOCKED frame (as opposed to STREAM_BLOCKED). | 
|  | frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); | 
|  | if (!reader->ReadVarInt62(&frame->offset)) { | 
|  | set_detailed_error("Can not read blocked offset."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendStreamDataBlockedFrame(const QuicBlockedFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.stream_id)) { | 
|  | set_detailed_error("Can not write stream blocked stream id."); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(frame.offset)) { | 
|  | set_detailed_error("Can not write stream blocked offset."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessStreamDataBlockedFrame(QuicDataReader* reader, | 
|  | QuicBlockedFrame* frame) { | 
|  | if (!ReadUint32FromVarint62(reader, IETF_STREAM_DATA_BLOCKED, | 
|  | &frame->stream_id)) { | 
|  | return false; | 
|  | } | 
|  | if (!reader->ReadVarInt62(&frame->offset)) { | 
|  | set_detailed_error("Can not read stream blocked offset."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendStreamsBlockedFrame(const QuicStreamsBlockedFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.stream_count)) { | 
|  | set_detailed_error("Can not write STREAMS_BLOCKED stream count"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessStreamsBlockedFrame(QuicDataReader* reader, | 
|  | QuicStreamsBlockedFrame* frame, | 
|  | uint64_t frame_type) { | 
|  | if (!ReadUint32FromVarint62(reader, | 
|  | static_cast<QuicIetfFrameType>(frame_type), | 
|  | &frame->stream_count)) { | 
|  | return false; | 
|  | } | 
|  | if (frame->stream_count > QuicUtils::GetMaxStreamCount()) { | 
|  | // If stream count is such that the resulting stream ID would exceed our | 
|  | // implementation limit, generate an error. | 
|  | set_detailed_error( | 
|  | "STREAMS_BLOCKED stream count exceeds implementation limit."); | 
|  | return false; | 
|  | } | 
|  | frame->unidirectional = (frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendNewConnectionIdFrame( | 
|  | const QuicNewConnectionIdFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.sequence_number)) { | 
|  | set_detailed_error("Can not write New Connection ID sequence number"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteVarInt62(frame.retire_prior_to)) { | 
|  | set_detailed_error("Can not write New Connection ID retire_prior_to"); | 
|  | return false; | 
|  | } | 
|  | if (!writer->WriteLengthPrefixedConnectionId(frame.connection_id)) { | 
|  | set_detailed_error("Can not write New Connection ID frame connection ID"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!writer->WriteBytes( | 
|  | static_cast<const void*>(&frame.stateless_reset_token), | 
|  | sizeof(frame.stateless_reset_token))) { | 
|  | set_detailed_error("Can not write New Connection ID Reset Token"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessNewConnectionIdFrame(QuicDataReader* reader, | 
|  | QuicNewConnectionIdFrame* frame) { | 
|  | if (!reader->ReadVarInt62(&frame->sequence_number)) { | 
|  | set_detailed_error( | 
|  | "Unable to read new connection ID frame sequence number."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadVarInt62(&frame->retire_prior_to)) { | 
|  | set_detailed_error( | 
|  | "Unable to read new connection ID frame retire_prior_to."); | 
|  | return false; | 
|  | } | 
|  | if (frame->retire_prior_to > frame->sequence_number) { | 
|  | set_detailed_error("Retire_prior_to > sequence_number."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadLengthPrefixedConnectionId(&frame->connection_id)) { | 
|  | set_detailed_error("Unable to read new connection ID frame connection id."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!QuicUtils::IsConnectionIdValidForVersion(frame->connection_id, | 
|  | transport_version())) { | 
|  | set_detailed_error("Invalid new connection ID length for version."); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadBytes(&frame->stateless_reset_token, | 
|  | sizeof(frame->stateless_reset_token))) { | 
|  | set_detailed_error("Can not read new connection ID frame reset token."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::AppendRetireConnectionIdFrame( | 
|  | const QuicRetireConnectionIdFrame& frame, | 
|  | QuicDataWriter* writer) { | 
|  | if (!writer->WriteVarInt62(frame.sequence_number)) { | 
|  | set_detailed_error("Can not write Retire Connection ID sequence number"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ProcessRetireConnectionIdFrame( | 
|  | QuicDataReader* reader, | 
|  | QuicRetireConnectionIdFrame* frame) { | 
|  | if (!reader->ReadVarInt62(&frame->sequence_number)) { | 
|  | set_detailed_error( | 
|  | "Unable to read retire connection ID frame sequence number."); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicFramer::ReadUint32FromVarint62(QuicDataReader* reader, | 
|  | QuicIetfFrameType type, | 
|  | QuicStreamId* id) { | 
|  | uint64_t temp_uint64; | 
|  | if (!reader->ReadVarInt62(&temp_uint64)) { | 
|  | set_detailed_error("Unable to read " + QuicIetfFrameTypeString(type) + | 
|  | " frame stream id/count."); | 
|  | return false; | 
|  | } | 
|  | if (temp_uint64 > kMaxQuicStreamId) { | 
|  | set_detailed_error("Stream id/count of " + QuicIetfFrameTypeString(type) + | 
|  | "frame is too large."); | 
|  | return false; | 
|  | } | 
|  | *id = static_cast<uint32_t>(temp_uint64); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint8_t QuicFramer::GetStreamFrameTypeByte(const QuicStreamFrame& frame, | 
|  | bool last_frame_in_packet) const { | 
|  | if (VersionHasIetfQuicFrames(version_.transport_version)) { | 
|  | return GetIetfStreamFrameTypeByte(frame, last_frame_in_packet); | 
|  | } | 
|  | uint8_t type_byte = 0; | 
|  | // Fin bit. | 
|  | type_byte |= frame.fin ? kQuicStreamFinMask : 0; | 
|  |  | 
|  | // Data Length bit. | 
|  | type_byte <<= kQuicStreamDataLengthShift; | 
|  | type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask; | 
|  |  | 
|  | // Offset 3 bits. | 
|  | type_byte <<= kQuicStreamShift; | 
|  | const size_t offset_len = GetStreamOffsetSize(frame.offset); | 
|  | if (offset_len > 0) { | 
|  | type_byte |= offset_len - 1; | 
|  | } | 
|  |  | 
|  | // stream id 2 bits. | 
|  | type_byte <<= kQuicStreamIdShift; | 
|  | type_byte |= GetStreamIdSize(frame.stream_id) - 1; | 
|  | type_byte |= kQuicFrameTypeStreamMask;  // Set Stream Frame Type to 1. | 
|  |  | 
|  | return type_byte; | 
|  | } | 
|  |  | 
|  | uint8_t QuicFramer::GetIetfStreamFrameTypeByte( | 
|  | const QuicStreamFrame& frame, | 
|  | bool last_frame_in_packet) const { | 
|  | DCHECK(VersionHasIetfQuicFrames(version_.transport_version)); | 
|  | uint8_t type_byte = IETF_STREAM; | 
|  | if (!last_frame_in_packet) { | 
|  | type_byte |= IETF_STREAM_FRAME_LEN_BIT; | 
|  | } | 
|  | if (frame.offset != 0) { | 
|  | type_byte |= IETF_STREAM_FRAME_OFF_BIT; | 
|  | } | 
|  | if (frame.fin) { | 
|  | type_byte |= IETF_STREAM_FRAME_FIN_BIT; | 
|  | } | 
|  | return type_byte; | 
|  | } | 
|  |  | 
|  | void QuicFramer::InferPacketHeaderTypeFromVersion() { | 
|  | // This function should only be called when server connection negotiates the | 
|  | // version. | 
|  | DCHECK_EQ(perspective_, Perspective::IS_SERVER); | 
|  | DCHECK(!infer_packet_header_type_from_version_); | 
|  | infer_packet_header_type_from_version_ = true; | 
|  | } | 
|  |  | 
|  | void QuicFramer::EnableMultiplePacketNumberSpacesSupport() { | 
|  | if (supports_multiple_packet_number_spaces_) { | 
|  | QUIC_BUG << "Multiple packet number spaces has already been enabled"; | 
|  | return; | 
|  | } | 
|  | if (largest_packet_number_.IsInitialized()) { | 
|  | QUIC_BUG << "Try to enable multiple packet number spaces support after any " | 
|  | "packet has been received."; | 
|  | return; | 
|  | } | 
|  |  | 
|  | supports_multiple_packet_number_spaces_ = true; | 
|  | } | 
|  |  | 
|  | // static | 
|  | QuicErrorCode QuicFramer::ParsePublicHeaderDispatcher( | 
|  | const QuicEncryptedPacket& packet, | 
|  | uint8_t expected_destination_connection_id_length, | 
|  | PacketHeaderFormat* format, | 
|  | QuicLongHeaderType* long_packet_type, | 
|  | bool* version_present, | 
|  | bool* has_length_prefix, | 
|  | QuicVersionLabel* version_label, | 
|  | ParsedQuicVersion* parsed_version, | 
|  | QuicConnectionId* destination_connection_id, | 
|  | QuicConnectionId* source_connection_id, | 
|  | bool* retry_token_present, | 
|  | quiche::QuicheStringPiece* retry_token, | 
|  | std::string* detailed_error) { | 
|  | QuicDataReader reader(packet.data(), packet.length()); | 
|  | if (reader.IsDoneReading()) { | 
|  | *detailed_error = "Unable to read first byte."; | 
|  | return QUIC_INVALID_PACKET_HEADER; | 
|  | } | 
|  | const uint8_t first_byte = reader.PeekByte(); | 
|  | const bool ietf_format = QuicUtils::IsIetfPacketHeader(first_byte); | 
|  | uint8_t unused_first_byte; | 
|  | QuicVariableLengthIntegerLength retry_token_length_length; | 
|  | QuicErrorCode error_code = ParsePublicHeader( | 
|  | &reader, expected_destination_connection_id_length, ietf_format, | 
|  | &unused_first_byte, format, version_present, has_length_prefix, | 
|  | version_label, parsed_version, destination_connection_id, | 
|  | source_connection_id, long_packet_type, &retry_token_length_length, | 
|  | retry_token, detailed_error); | 
|  | *retry_token_present = | 
|  | retry_token_length_length != VARIABLE_LENGTH_INTEGER_LENGTH_0; | 
|  | return error_code; | 
|  | } | 
|  |  | 
|  | // static | 
|  | QuicErrorCode QuicFramer::ParsePublicHeaderGoogleQuic( | 
|  | QuicDataReader* reader, | 
|  | uint8_t* first_byte, | 
|  | PacketHeaderFormat* format, | 
|  | bool* version_present, | 
|  | QuicVersionLabel* version_label, | 
|  | ParsedQuicVersion* parsed_version, | 
|  | QuicConnectionId* destination_connection_id, | 
|  | std::string* detailed_error) { | 
|  | *format = GOOGLE_QUIC_PACKET; | 
|  | *version_present = (*first_byte & PACKET_PUBLIC_FLAGS_VERSION) != 0; | 
|  | uint8_t destination_connection_id_length = 0; | 
|  | if ((*first_byte & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) != 0) { | 
|  | destination_connection_id_length = kQuicDefaultConnectionIdLength; | 
|  | } | 
|  | if (!reader->ReadConnectionId(destination_connection_id, | 
|  | destination_connection_id_length)) { | 
|  | *detailed_error = "Unable to read ConnectionId."; | 
|  | return QUIC_INVALID_PACKET_HEADER; | 
|  | } | 
|  | if (*version_present) { | 
|  | if (!ProcessVersionLabel(reader, version_label)) { | 
|  | *detailed_error = "Unable to read protocol version."; | 
|  | return QUIC_INVALID_PACKET_HEADER; | 
|  | } | 
|  | *parsed_version = ParseQuicVersionLabel(*version_label); | 
|  | } | 
|  | return QUIC_NO_ERROR; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | const QuicVersionLabel kProxVersionLabel = 0x50524F58;  // "PROX" | 
|  |  | 
|  | inline bool PacketHasLengthPrefixedConnectionIds( | 
|  | const QuicDataReader& reader, | 
|  | ParsedQuicVersion parsed_version, | 
|  | QuicVersionLabel version_label, | 
|  | uint8_t first_byte) { | 
|  | if (parsed_version.transport_version != QUIC_VERSION_UNSUPPORTED) { | 
|  | return parsed_version.HasLengthPrefixedConnectionIds(); | 
|  | } | 
|  |  | 
|  | // Received unsupported version, check known old unsupported versions. | 
|  | if (QuicVersionLabelUses4BitConnectionIdLength(version_label)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Received unknown version, check connection ID length byte. | 
|  | if (reader.IsDoneReading()) { | 
|  | // This check is required to safely peek the connection ID length byte. | 
|  | return true; | 
|  | } | 
|  | const uint8_t connection_id_length_byte = reader.PeekByte(); | 
|  |  | 
|  | // Check for packets produced by older versions of | 
|  | // QuicFramer::WriteClientVersionNegotiationProbePacket | 
|  | if (first_byte == 0xc0 && (connection_id_length_byte & 0x0f) == 0 && | 
|  | connection_id_length_byte >= 0x50 && version_label == 0xcabadaba) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check for munged packets with version tag PROX. | 
|  | if ((connection_id_length_byte & 0x0f) == 0 && | 
|  | connection_id_length_byte >= 0x20 && version_label == kProxVersionLabel) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | inline bool ParseLongHeaderConnectionIds( | 
|  | QuicDataReader* reader, | 
|  | bool has_length_prefix, | 
|  | QuicVersionLabel version_label, | 
|  | QuicConnectionId* destination_connection_id, | 
|  | QuicConnectionId* source_connection_id, | 
|  | std::string* detailed_error) { | 
|  | if (has_length_prefix) { | 
|  | if (!reader->ReadLengthPrefixedConnectionId(destination_connection_id)) { | 
|  | *detailed_error = "Unable to read destination connection ID."; | 
|  | return false; | 
|  | } | 
|  | if (!reader->ReadLengthPrefixedConnectionId(source_connection_id)) { | 
|  | if (version_label == kProxVersionLabel) { | 
|  | // The "PROX" version does not follow the length-prefixed invariants, | 
|  | // and can therefore attempt to read a payload byte and interpret it | 
|  | // as the source connection ID length, which could fail to parse. | 
|  | // In that scenario we keep the source connection ID empty but mark | 
|  | // parsing as successful. | 
|  | return true; | 
|  | } | 
|  | *detailed_error = "Unable to read source connection ID."; | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // Parse connection ID lengths. | 
|  | uint8_t connection_id_lengths_byte; | 
|  | if (!reader->ReadUInt8(&connection_id_lengths_byte)) { | 
|  | *detailed_error = "Unable to read connection ID lengths."; | 
|  | return false; | 
|  | } | 
|  | uint8_t destination_connection_id_length = | 
|  | (connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4; | 
|  | if (destination_connection_id_length != 0) { | 
|  | destination_connection_id_length += kConnectionIdLengthAdjustment; | 
|  | } | 
|  | uint8_t source_connection_id_length = | 
|  | connection_id_lengths_byte & kSourceConnectionIdLengthMask; | 
|  | if (source_connection_id_length != 0) { | 
|  | source_connection_id_length += kConnectionIdLengthAdjustment; | 
|  | } | 
|  |  | 
|  | // Read destination connection ID. | 
|  | if (!reader->ReadConnectionId(destination_connection_id, | 
|  | destination_connection_id_length)) { | 
|  | *detailed_error = "Unable to read destination connection ID."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Read source connection ID. | 
|  | if (!reader->ReadConnectionId(source_connection_id, | 
|  | source_connection_id_length)) { | 
|  | *detailed_error = "Unable to read source connection ID."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // static | 
|  | QuicErrorCode QuicFramer::ParsePublicHeader( | 
|  | QuicDataReader* reader, | 
|  | uint8_t expected_destination_connection_id_length, | 
|  | bool ietf_format, | 
|  | uint8_t* first_byte, | 
|  | PacketHeaderFormat* format, | 
|  | bool* version_present, | 
|  | bool* has_length_prefix, | 
|  | QuicVersionLabel* version_label, | 
|  | ParsedQuicVersion* parsed_version, | 
|  | QuicConnectionId* destination_connection_id, | 
|  | QuicConnectionId* source_connection_id, | 
|  | QuicLongHeaderType* long_packet_type, | 
|  | QuicVariableLengthIntegerLength* retry_token_length_length, | 
|  | quiche::QuicheStringPiece* retry_token, | 
|  | std::string* detailed_error) { | 
|  | *version_present = false; | 
|  | *has_length_prefix = false; | 
|  | *version_label = 0; | 
|  | *parsed_version = UnsupportedQuicVersion(); | 
|  | *source_connection_id = EmptyQuicConnectionId(); | 
|  | *long_packet_type = INVALID_PACKET_TYPE; | 
|  | *retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; | 
|  | *retry_token = quiche::QuicheStringPiece(); | 
|  | *detailed_error = ""; | 
|  |  | 
|  | if (!reader->ReadUInt8(first_byte)) { | 
|  | *detailed_error = "Unable to read first byte."; | 
|  | return QUIC_INVALID_PACKET_HEADER; | 
|  | } | 
|  |  | 
|  | if (!ietf_format) { | 
|  | return ParsePublicHeaderGoogleQuic( | 
|  | reader, first_byte, format, version_present, version_label, | 
|  | parsed_version, destination_connection_id, detailed_error); | 
|  | } | 
|  |  | 
|  | *format = GetIetfPacketHeaderFormat(*first_byte); | 
|  |  | 
|  | if (*format == IETF_QUIC_SHORT_HEADER_PACKET) { | 
|  | // Read destination connection ID using | 
|  | // expected_destination_connection_id_length to determine its length. | 
|  | if (!reader->ReadConnectionId(destination_connection_id, | 
|  | expected_destination_connection_id_length)) { | 
|  | *detailed_error = "Unable to read destination connection ID."; | 
|  | return QUIC_INVALID_PACKET_HEADER; | 
|  | } | 
|  | return QUIC_NO_ERROR; | 
|  | } | 
|  |  | 
|  | DCHECK_EQ(IETF_QUIC_LONG_HEADER_PACKET, *format); | 
|  | *version_present = true; | 
|  | if (!ProcessVersionLabel(reader, version_label)) { | 
|  | *detailed_error = "Unable to read protocol version."; | 
|  | return QUIC_INVALID_PACKET_HEADER; | 
|  | } | 
|  |  | 
|  | if (*version_label == 0) { | 
|  | *long_packet_type = VERSION_NEGOTIATION; | 
|  | } | 
|  |  | 
|  | // Parse version. | 
|  | *parsed_version = ParseQuicVersionLabel(*version_label); | 
|  |  | 
|  | // Figure out which IETF QUIC invariants this packet follows. | 
|  | *has_length_prefix = PacketHasLengthPrefixedConnectionIds( | 
|  | *reader, *parsed_version, *version_label, *first_byte); | 
|  |  | 
|  | // Parse connection IDs. | 
|  | if (!ParseLongHeaderConnectionIds(reader, *has_length_prefix, *version_label, | 
|  | destination_connection_id, | 
|  | source_connection_id, detailed_error)) { | 
|  | return QUIC_INVALID_PACKET_HEADER; | 
|  | } | 
|  |  | 
|  | if (parsed_version->transport_version == QUIC_VERSION_UNSUPPORTED) { | 
|  | // Skip parsing of long packet type and retry token for unknown versions. | 
|  | return QUIC_NO_ERROR; | 
|  | } | 
|  |  | 
|  | // Parse long packet type. | 
|  | if (!GetLongHeaderType(*first_byte, long_packet_type)) { | 
|  | *detailed_error = "Unable to parse long packet type."; | 
|  | return QUIC_INVALID_PACKET_HEADER; | 
|  | } | 
|  |  | 
|  | if (!parsed_version->SupportsRetry() || *long_packet_type != INITIAL) { | 
|  | // Retry token is only present on initial packets for some versions. | 
|  | return QUIC_NO_ERROR; | 
|  | } | 
|  |  | 
|  | *retry_token_length_length = reader->PeekVarInt62Length(); | 
|  | uint64_t retry_token_length; | 
|  | if (!reader->ReadVarInt62(&retry_token_length)) { | 
|  | *retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; | 
|  | *detailed_error = "Unable to read retry token length."; | 
|  | return QUIC_INVALID_PACKET_HEADER; | 
|  | } | 
|  |  | 
|  | if (!reader->ReadStringPiece(retry_token, retry_token_length)) { | 
|  | *detailed_error = "Unable to read retry token."; | 
|  | return QUIC_INVALID_PACKET_HEADER; | 
|  | } | 
|  |  | 
|  | return QUIC_NO_ERROR; | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::WriteClientVersionNegotiationProbePacket( | 
|  | char* packet_bytes, | 
|  | QuicByteCount packet_length, | 
|  | const char* destination_connection_id_bytes, | 
|  | uint8_t destination_connection_id_length) { | 
|  | if (packet_bytes == nullptr) { | 
|  | QUIC_BUG << "Invalid packet_bytes"; | 
|  | return false; | 
|  | } | 
|  | if (packet_length < kMinPacketSizeForVersionNegotiation || | 
|  | packet_length > 65535) { | 
|  | QUIC_BUG << "Invalid packet_length"; | 
|  | return false; | 
|  | } | 
|  | if (destination_connection_id_length > kQuicMaxConnectionId4BitLength || | 
|  | destination_connection_id_length < | 
|  | kQuicMinimumInitialConnectionIdLength) { | 
|  | QUIC_BUG << "Invalid connection_id_length"; | 
|  | return false; | 
|  | } | 
|  | const bool use_length_prefix = | 
|  | GetQuicFlag(FLAGS_quic_prober_uses_length_prefixed_connection_ids); | 
|  | const uint8_t last_version_byte = use_length_prefix ? 0xda : 0xba; | 
|  | // clang-format off | 
|  | const unsigned char packet_start_bytes[] = { | 
|  | // IETF long header with fixed bit set, type initial, all-0 encrypted bits. | 
|  | 0xc0, | 
|  | // Version, part of the IETF space reserved for negotiation. | 
|  | // This intentionally differs from QuicVersionReservedForNegotiation() | 
|  | // to allow differentiating them over the wire. | 
|  | 0xca, 0xba, 0xda, last_version_byte, | 
|  | }; | 
|  | // clang-format on | 
|  | static_assert(sizeof(packet_start_bytes) == 5, "bad packet_start_bytes size"); | 
|  | QuicDataWriter writer(packet_length, packet_bytes); | 
|  | if (!writer.WriteBytes(packet_start_bytes, sizeof(packet_start_bytes))) { | 
|  | QUIC_BUG << "Failed to write packet start"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QuicConnectionId destination_connection_id(destination_connection_id_bytes, | 
|  | destination_connection_id_length); | 
|  | if (!AppendIetfConnectionIds( | 
|  | /*version_flag=*/true, use_length_prefix, destination_connection_id, | 
|  | EmptyQuicConnectionId(), &writer)) { | 
|  | QUIC_BUG << "Failed to write connection IDs"; | 
|  | return false; | 
|  | } | 
|  | // Add 8 bytes of zeroes followed by 8 bytes of ones to ensure that this does | 
|  | // not parse with any known version. The zeroes make sure that packet numbers, | 
|  | // retry token lengths and payload lengths are parsed as zero, and if the | 
|  | // zeroes are treated as padding frames, 0xff is known to not parse as a | 
|  | // valid frame type. | 
|  | if (!writer.WriteUInt64(0) || | 
|  | !writer.WriteUInt64(std::numeric_limits<uint64_t>::max())) { | 
|  | QUIC_BUG << "Failed to write 18 bytes"; | 
|  | return false; | 
|  | } | 
|  | // Make sure the polite greeting below is padded to a 16-byte boundary to | 
|  | // make it easier to read in tcpdump. | 
|  | while (writer.length() % 16 != 0) { | 
|  | if (!writer.WriteUInt8(0)) { | 
|  | QUIC_BUG << "Failed to write padding byte"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // Add a polite greeting in case a human sees this in tcpdump. | 
|  | static const char polite_greeting[] = | 
|  | "This packet only exists to trigger IETF QUIC version negotiation. " | 
|  | "Please respond with a Version Negotiation packet indicating what " | 
|  | "versions you support. Thank you and have a nice day."; | 
|  | if (!writer.WriteBytes(polite_greeting, sizeof(polite_greeting))) { | 
|  | QUIC_BUG << "Failed to write polite greeting"; | 
|  | return false; | 
|  | } | 
|  | // Fill the rest of the packet with zeroes. | 
|  | writer.WritePadding(); | 
|  | DCHECK_EQ(0u, writer.remaining()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool QuicFramer::ParseServerVersionNegotiationProbeResponse( | 
|  | const char* packet_bytes, | 
|  | QuicByteCount packet_length, | 
|  | char* source_connection_id_bytes, | 
|  | uint8_t* source_connection_id_length_out, | 
|  | std::string* detailed_error) { | 
|  | if (detailed_error == nullptr) { | 
|  | QUIC_BUG << "Invalid error_details"; | 
|  | return false; | 
|  | } | 
|  | *detailed_error = ""; | 
|  | if (packet_bytes == nullptr) { | 
|  | *detailed_error = "Invalid packet_bytes"; | 
|  | return false; | 
|  | } | 
|  | if (packet_length < 6) { | 
|  | *detailed_error = "Invalid packet_length"; | 
|  | return false; | 
|  | } | 
|  | if (source_connection_id_bytes == nullptr) { | 
|  | *detailed_error = "Invalid source_connection_id_bytes"; | 
|  | return false; | 
|  | } | 
|  | if (source_connection_id_length_out == nullptr) { | 
|  | *detailed_error = "Invalid source_connection_id_length_out"; | 
|  | return false; | 
|  | } | 
|  | QuicDataReader reader(packet_bytes, packet_length); | 
|  | uint8_t type_byte = 0; | 
|  | if (!reader.ReadUInt8(&type_byte)) { | 
|  | *detailed_error = "Failed to read type byte"; | 
|  | return false; | 
|  | } | 
|  | if ((type_byte & 0x80) == 0) { | 
|  | *detailed_error = "Packet does not have long header"; | 
|  | return false; | 
|  | } | 
|  | uint32_t version = 0; | 
|  | if (!reader.ReadUInt32(&version)) { | 
|  | *detailed_error = "Failed to read version"; | 
|  | return false; | 
|  | } | 
|  | if (version != 0) { | 
|  | *detailed_error = "Packet is not a version negotiation packet"; | 
|  | return false; | 
|  | } | 
|  | const bool use_length_prefix = | 
|  | GetQuicFlag(FLAGS_quic_prober_uses_length_prefixed_connection_ids); | 
|  | QuicConnectionId destination_connection_id, source_connection_id; | 
|  | if (use_length_prefix) { | 
|  | if (!reader.ReadLengthPrefixedConnectionId(&destination_connection_id)) { | 
|  | *detailed_error = "Failed to read destination connection ID"; | 
|  | return false; | 
|  | } | 
|  | if (!reader.ReadLengthPrefixedConnectionId(&source_connection_id)) { | 
|  | *detailed_error = "Failed to read source connection ID"; | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | uint8_t expected_server_connection_id_length = 0, | 
|  | destination_connection_id_length = 0, | 
|  | source_connection_id_length = 0; | 
|  | if (!ProcessAndValidateIetfConnectionIdLength( | 
|  | &reader, UnsupportedQuicVersion(), Perspective::IS_CLIENT, | 
|  | /*should_update_expected_server_connection_id_length=*/true, | 
|  | &expected_server_connection_id_length, | 
|  | &destination_connection_id_length, &source_connection_id_length, | 
|  | detailed_error)) { | 
|  | return false; | 
|  | } | 
|  | if (!reader.ReadConnectionId(&destination_connection_id, | 
|  | destination_connection_id_length)) { | 
|  | *detailed_error = "Failed to read destination connection ID"; | 
|  | return false; | 
|  | } | 
|  | if (!reader.ReadConnectionId(&source_connection_id, | 
|  | source_connection_id_length)) { | 
|  | *detailed_error = "Failed to read source connection ID"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (destination_connection_id.length() != 0) { | 
|  | *detailed_error = "Received unexpected destination connection ID length"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | memcpy(source_connection_id_bytes, source_connection_id.data(), | 
|  | source_connection_id.length()); | 
|  | *source_connection_id_length_out = source_connection_id.length(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Look for and parse the error code from the "<quic_error_code>:" text that | 
|  | // may be present at the start of the CONNECTION_CLOSE error details string. | 
|  | // This text, inserted by the peer if it's using Google's QUIC implementation, | 
|  | // contains additional error information that narrows down the exact error.  If | 
|  | // the string is not found, or is not properly formed, it returns | 
|  | // ErrorCode::QUIC_IETF_GQUIC_ERROR_MISSING | 
|  | void MaybeExtractQuicErrorCode(QuicConnectionCloseFrame* frame) { | 
|  | std::vector<quiche::QuicheStringPiece> ed = | 
|  | quiche::QuicheTextUtils::Split(frame->error_details, ':'); | 
|  | uint64_t extracted_error_code; | 
|  | if (ed.size() < 2 || !quiche::QuicheTextUtils::IsAllDigits(ed[0]) || | 
|  | !quiche::QuicheTextUtils::StringToUint64(ed[0], &extracted_error_code)) { | 
|  | if (frame->close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE && | 
|  | frame->wire_error_code == NO_IETF_QUIC_ERROR) { | 
|  | frame->quic_error_code = QUIC_NO_ERROR; | 
|  | } else { | 
|  | frame->quic_error_code = QUIC_IETF_GQUIC_ERROR_MISSING; | 
|  | } | 
|  | return; | 
|  | } | 
|  | // Return the error code (numeric) and the error details string without the | 
|  | // error code prefix. Note that Split returns everything up to, but not | 
|  | // including, the split character, so the length of ed[0] is just the number | 
|  | // of digits in the error number. In removing the prefix, 1 is added to the | 
|  | // length to account for the : | 
|  | quiche::QuicheStringPiece x = quiche::QuicheStringPiece(frame->error_details); | 
|  | x.remove_prefix(ed[0].length() + 1); | 
|  | frame->error_details = std::string(x); | 
|  | frame->quic_error_code = static_cast<QuicErrorCode>(extracted_error_code); | 
|  | } | 
|  |  | 
|  | #undef ENDPOINT  // undef for jumbo builds | 
|  | }  // namespace quic |