| // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "quic/core/quic_connection.h" | 
 |  | 
 | #include <errno.h> | 
 |  | 
 | #include <memory> | 
 | #include <ostream> | 
 | #include <string> | 
 | #include <utility> | 
 |  | 
 | #include "absl/base/macros.h" | 
 | #include "absl/strings/str_cat.h" | 
 | #include "absl/strings/str_join.h" | 
 | #include "absl/strings/string_view.h" | 
 | #include "quic/core/congestion_control/loss_detection_interface.h" | 
 | #include "quic/core/congestion_control/send_algorithm_interface.h" | 
 | #include "quic/core/crypto/null_decrypter.h" | 
 | #include "quic/core/crypto/null_encrypter.h" | 
 | #include "quic/core/crypto/quic_decrypter.h" | 
 | #include "quic/core/crypto/quic_encrypter.h" | 
 | #include "quic/core/frames/quic_connection_close_frame.h" | 
 | #include "quic/core/frames/quic_new_connection_id_frame.h" | 
 | #include "quic/core/frames/quic_path_response_frame.h" | 
 | #include "quic/core/frames/quic_rst_stream_frame.h" | 
 | #include "quic/core/quic_connection_id.h" | 
 | #include "quic/core/quic_constants.h" | 
 | #include "quic/core/quic_error_codes.h" | 
 | #include "quic/core/quic_packet_creator.h" | 
 | #include "quic/core/quic_packets.h" | 
 | #include "quic/core/quic_path_validator.h" | 
 | #include "quic/core/quic_types.h" | 
 | #include "quic/core/quic_utils.h" | 
 | #include "quic/core/quic_versions.h" | 
 | #include "quic/platform/api/quic_error_code_wrappers.h" | 
 | #include "quic/platform/api/quic_expect_bug.h" | 
 | #include "quic/platform/api/quic_flags.h" | 
 | #include "quic/platform/api/quic_ip_address.h" | 
 | #include "quic/platform/api/quic_logging.h" | 
 | #include "quic/platform/api/quic_socket_address.h" | 
 | #include "quic/platform/api/quic_test.h" | 
 | #include "quic/test_tools/mock_clock.h" | 
 | #include "quic/test_tools/mock_random.h" | 
 | #include "quic/test_tools/quic_coalesced_packet_peer.h" | 
 | #include "quic/test_tools/quic_config_peer.h" | 
 | #include "quic/test_tools/quic_connection_peer.h" | 
 | #include "quic/test_tools/quic_framer_peer.h" | 
 | #include "quic/test_tools/quic_packet_creator_peer.h" | 
 | #include "quic/test_tools/quic_path_validator_peer.h" | 
 | #include "quic/test_tools/quic_sent_packet_manager_peer.h" | 
 | #include "quic/test_tools/quic_test_utils.h" | 
 | #include "quic/test_tools/simple_data_producer.h" | 
 | #include "quic/test_tools/simple_session_notifier.h" | 
 | #include "common/platform/api/quiche_reference_counted.h" | 
 | #include "common/simple_buffer_allocator.h" | 
 |  | 
 | using testing::_; | 
 | using testing::AnyNumber; | 
 | using testing::AtLeast; | 
 | using testing::DoAll; | 
 | using testing::ElementsAre; | 
 | using testing::Ge; | 
 | using testing::IgnoreResult; | 
 | using testing::InSequence; | 
 | using testing::Invoke; | 
 | using testing::InvokeWithoutArgs; | 
 | using testing::Lt; | 
 | using testing::Ref; | 
 | using testing::Return; | 
 | using testing::SaveArg; | 
 | using testing::SetArgPointee; | 
 | using testing::StrictMock; | 
 |  | 
 | namespace quic { | 
 | namespace test { | 
 | namespace { | 
 |  | 
 | const char data1[] = "foo data"; | 
 | const char data2[] = "bar data"; | 
 |  | 
 | const bool kHasStopWaiting = true; | 
 |  | 
 | const int kDefaultRetransmissionTimeMs = 500; | 
 |  | 
 | DiversificationNonce kTestDiversificationNonce = { | 
 |     'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', | 
 |     'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', | 
 |     'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', | 
 | }; | 
 |  | 
 | const StatelessResetToken kTestStatelessResetToken{ | 
 |     0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, | 
 |     0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f}; | 
 |  | 
 | const QuicSocketAddress kPeerAddress = | 
 |     QuicSocketAddress(QuicIpAddress::Loopback6(), | 
 |                       /*port=*/12345); | 
 | const QuicSocketAddress kSelfAddress = | 
 |     QuicSocketAddress(QuicIpAddress::Loopback6(), | 
 |                       /*port=*/443); | 
 |  | 
 | QuicStreamId GetNthClientInitiatedStreamId(int n, | 
 |                                            QuicTransportVersion version) { | 
 |   return QuicUtils::GetFirstBidirectionalStreamId(version, | 
 |                                                   Perspective::IS_CLIENT) + | 
 |          n * 2; | 
 | } | 
 |  | 
 | QuicLongHeaderType EncryptionlevelToLongHeaderType(EncryptionLevel level) { | 
 |   switch (level) { | 
 |     case ENCRYPTION_INITIAL: | 
 |       return INITIAL; | 
 |     case ENCRYPTION_HANDSHAKE: | 
 |       return HANDSHAKE; | 
 |     case ENCRYPTION_ZERO_RTT: | 
 |       return ZERO_RTT_PROTECTED; | 
 |     case ENCRYPTION_FORWARD_SECURE: | 
 |       QUICHE_DCHECK(false); | 
 |       return INVALID_PACKET_TYPE; | 
 |     default: | 
 |       QUICHE_DCHECK(false); | 
 |       return INVALID_PACKET_TYPE; | 
 |   } | 
 | } | 
 |  | 
 | // A NullEncrypterWithConfidentialityLimit is a NullEncrypter that allows | 
 | // specifying the confidentiality limit on the maximum number of packets that | 
 | // may be encrypted per key phase in TLS+QUIC. | 
 | class NullEncrypterWithConfidentialityLimit : public NullEncrypter { | 
 |  public: | 
 |   NullEncrypterWithConfidentialityLimit(Perspective perspective, | 
 |                                         QuicPacketCount confidentiality_limit) | 
 |       : NullEncrypter(perspective), | 
 |         confidentiality_limit_(confidentiality_limit) {} | 
 |  | 
 |   QuicPacketCount GetConfidentialityLimit() const override { | 
 |     return confidentiality_limit_; | 
 |   } | 
 |  | 
 |  private: | 
 |   QuicPacketCount confidentiality_limit_; | 
 | }; | 
 |  | 
 | class StrictTaggingDecrypterWithIntegrityLimit : public StrictTaggingDecrypter { | 
 |  public: | 
 |   StrictTaggingDecrypterWithIntegrityLimit(uint8_t tag, | 
 |                                            QuicPacketCount integrity_limit) | 
 |       : StrictTaggingDecrypter(tag), integrity_limit_(integrity_limit) {} | 
 |  | 
 |   QuicPacketCount GetIntegrityLimit() const override { | 
 |     return integrity_limit_; | 
 |   } | 
 |  | 
 |  private: | 
 |   QuicPacketCount integrity_limit_; | 
 | }; | 
 |  | 
 | class TestConnectionHelper : public QuicConnectionHelperInterface { | 
 |  public: | 
 |   TestConnectionHelper(MockClock* clock, MockRandom* random_generator) | 
 |       : clock_(clock), random_generator_(random_generator) { | 
 |     clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
 |   } | 
 |   TestConnectionHelper(const TestConnectionHelper&) = delete; | 
 |   TestConnectionHelper& operator=(const TestConnectionHelper&) = delete; | 
 |  | 
 |   // QuicConnectionHelperInterface | 
 |   const QuicClock* GetClock() const override { return clock_; } | 
 |  | 
 |   QuicRandom* GetRandomGenerator() override { return random_generator_; } | 
 |  | 
 |   quiche::QuicheBufferAllocator* GetStreamSendBufferAllocator() override { | 
 |     return &buffer_allocator_; | 
 |   } | 
 |  | 
 |  private: | 
 |   MockClock* clock_; | 
 |   MockRandom* random_generator_; | 
 |   quiche::SimpleBufferAllocator buffer_allocator_; | 
 | }; | 
 |  | 
 | class TestConnection : public QuicConnection { | 
 |  public: | 
 |   TestConnection(QuicConnectionId connection_id, | 
 |                  QuicSocketAddress initial_self_address, | 
 |                  QuicSocketAddress initial_peer_address, | 
 |                  TestConnectionHelper* helper, TestAlarmFactory* alarm_factory, | 
 |                  TestPacketWriter* writer, Perspective perspective, | 
 |                  ParsedQuicVersion version) | 
 |       : QuicConnection(connection_id, initial_self_address, | 
 |                        initial_peer_address, helper, alarm_factory, writer, | 
 |                        /* owns_writer= */ false, perspective, | 
 |                        SupportedVersions(version)), | 
 |         notifier_(nullptr) { | 
 |     writer->set_perspective(perspective); | 
 |     SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                  std::make_unique<NullEncrypter>(perspective)); | 
 |     SetDataProducer(&producer_); | 
 |     ON_CALL(*this, OnSerializedPacket(_)) | 
 |         .WillByDefault([this](SerializedPacket packet) { | 
 |           QuicConnection::OnSerializedPacket(std::move(packet)); | 
 |         }); | 
 |   } | 
 |   TestConnection(const TestConnection&) = delete; | 
 |   TestConnection& operator=(const TestConnection&) = delete; | 
 |  | 
 |   MOCK_METHOD(void, OnSerializedPacket, (SerializedPacket packet), (override)); | 
 |  | 
 |   void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) { | 
 |     QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm); | 
 |   } | 
 |  | 
 |   void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) { | 
 |     QuicConnectionPeer::SetLossAlgorithm(this, loss_algorithm); | 
 |   } | 
 |  | 
 |   void SendPacket(EncryptionLevel /*level*/, uint64_t packet_number, | 
 |                   std::unique_ptr<QuicPacket> packet, | 
 |                   HasRetransmittableData retransmittable, bool has_ack, | 
 |                   bool has_pending_frames) { | 
 |     ScopedPacketFlusher flusher(this); | 
 |     char buffer[kMaxOutgoingPacketSize]; | 
 |     size_t encrypted_length = | 
 |         QuicConnectionPeer::GetFramer(this)->EncryptPayload( | 
 |             ENCRYPTION_INITIAL, QuicPacketNumber(packet_number), *packet, | 
 |             buffer, kMaxOutgoingPacketSize); | 
 |     SerializedPacket serialized_packet( | 
 |         QuicPacketNumber(packet_number), PACKET_4BYTE_PACKET_NUMBER, buffer, | 
 |         encrypted_length, has_ack, has_pending_frames); | 
 |     serialized_packet.peer_address = kPeerAddress; | 
 |     if (retransmittable == HAS_RETRANSMITTABLE_DATA) { | 
 |       serialized_packet.retransmittable_frames.push_back( | 
 |           QuicFrame(QuicPingFrame())); | 
 |     } | 
 |     OnSerializedPacket(std::move(serialized_packet)); | 
 |   } | 
 |  | 
 |   QuicConsumedData SaveAndSendStreamData(QuicStreamId id, | 
 |                                          absl::string_view data, | 
 |                                          QuicStreamOffset offset, | 
 |                                          StreamSendingState state) { | 
 |     ScopedPacketFlusher flusher(this); | 
 |     producer_.SaveStreamData(id, data); | 
 |     if (notifier_ != nullptr) { | 
 |       return notifier_->WriteOrBufferData(id, data.length(), state); | 
 |     } | 
 |     return QuicConnection::SendStreamData(id, data.length(), offset, state); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendStreamDataWithString(QuicStreamId id, | 
 |                                             absl::string_view data, | 
 |                                             QuicStreamOffset offset, | 
 |                                             StreamSendingState state) { | 
 |     ScopedPacketFlusher flusher(this); | 
 |     if (!QuicUtils::IsCryptoStreamId(transport_version(), id) && | 
 |         this->encryption_level() == ENCRYPTION_INITIAL) { | 
 |       this->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |       if (perspective() == Perspective::IS_CLIENT && !IsHandshakeComplete()) { | 
 |         OnHandshakeComplete(); | 
 |       } | 
 |       if (version().SupportsAntiAmplificationLimit()) { | 
 |         QuicConnectionPeer::SetAddressValidated(this); | 
 |       } | 
 |     } | 
 |     return SaveAndSendStreamData(id, data, offset, state); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendApplicationDataAtLevel(EncryptionLevel encryption_level, | 
 |                                               QuicStreamId id, | 
 |                                               absl::string_view data, | 
 |                                               QuicStreamOffset offset, | 
 |                                               StreamSendingState state) { | 
 |     ScopedPacketFlusher flusher(this); | 
 |     QUICHE_DCHECK(encryption_level >= ENCRYPTION_ZERO_RTT); | 
 |     SetEncrypter(encryption_level, std::make_unique<TaggingEncrypter>(0x01)); | 
 |     SetDefaultEncryptionLevel(encryption_level); | 
 |     return SaveAndSendStreamData(id, data, offset, state); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendStreamData3() { | 
 |     return SendStreamDataWithString( | 
 |         GetNthClientInitiatedStreamId(1, transport_version()), "food", 0, | 
 |         NO_FIN); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendStreamData5() { | 
 |     return SendStreamDataWithString( | 
 |         GetNthClientInitiatedStreamId(2, transport_version()), "food2", 0, | 
 |         NO_FIN); | 
 |   } | 
 |  | 
 |   // Ensures the connection can write stream data before writing. | 
 |   QuicConsumedData EnsureWritableAndSendStreamData5() { | 
 |     EXPECT_TRUE(CanWrite(HAS_RETRANSMITTABLE_DATA)); | 
 |     return SendStreamData5(); | 
 |   } | 
 |  | 
 |   // The crypto stream has special semantics so that it is not blocked by a | 
 |   // congestion window limitation, and also so that it gets put into a separate | 
 |   // packet (so that it is easier to reason about a crypto frame not being | 
 |   // split needlessly across packet boundaries).  As a result, we have separate | 
 |   // tests for some cases for this stream. | 
 |   QuicConsumedData SendCryptoStreamData() { | 
 |     QuicStreamOffset offset = 0; | 
 |     absl::string_view data("chlo"); | 
 |     if (!QuicVersionUsesCryptoFrames(transport_version())) { | 
 |       return SendCryptoDataWithString(data, offset); | 
 |     } | 
 |     producer_.SaveCryptoData(ENCRYPTION_INITIAL, offset, data); | 
 |     size_t bytes_written; | 
 |     if (notifier_) { | 
 |       bytes_written = | 
 |           notifier_->WriteCryptoData(ENCRYPTION_INITIAL, data.length(), offset); | 
 |     } else { | 
 |       bytes_written = QuicConnection::SendCryptoData(ENCRYPTION_INITIAL, | 
 |                                                      data.length(), offset); | 
 |     } | 
 |     return QuicConsumedData(bytes_written, /*fin_consumed*/ false); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendCryptoDataWithString(absl::string_view data, | 
 |                                             QuicStreamOffset offset) { | 
 |     return SendCryptoDataWithString(data, offset, ENCRYPTION_INITIAL); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendCryptoDataWithString(absl::string_view data, | 
 |                                             QuicStreamOffset offset, | 
 |                                             EncryptionLevel encryption_level) { | 
 |     if (!QuicVersionUsesCryptoFrames(transport_version())) { | 
 |       return SendStreamDataWithString( | 
 |           QuicUtils::GetCryptoStreamId(transport_version()), data, offset, | 
 |           NO_FIN); | 
 |     } | 
 |     producer_.SaveCryptoData(encryption_level, offset, data); | 
 |     size_t bytes_written; | 
 |     if (notifier_) { | 
 |       bytes_written = | 
 |           notifier_->WriteCryptoData(encryption_level, data.length(), offset); | 
 |     } else { | 
 |       bytes_written = QuicConnection::SendCryptoData(encryption_level, | 
 |                                                      data.length(), offset); | 
 |     } | 
 |     return QuicConsumedData(bytes_written, /*fin_consumed*/ false); | 
 |   } | 
 |  | 
 |   void set_version(ParsedQuicVersion version) { | 
 |     QuicConnectionPeer::GetFramer(this)->set_version(version); | 
 |   } | 
 |  | 
 |   void SetSupportedVersions(const ParsedQuicVersionVector& versions) { | 
 |     QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions); | 
 |     writer()->SetSupportedVersions(versions); | 
 |   } | 
 |  | 
 |   // This should be called before setting customized encrypters/decrypters for | 
 |   // connection and peer creator. | 
 |   void set_perspective(Perspective perspective) { | 
 |     writer()->set_perspective(perspective); | 
 |     QuicConnectionPeer::ResetPeerIssuedConnectionIdManager(this); | 
 |     QuicConnectionPeer::SetPerspective(this, perspective); | 
 |     QuicSentPacketManagerPeer::SetPerspective( | 
 |         QuicConnectionPeer::GetSentPacketManager(this), perspective); | 
 |     QuicConnectionPeer::GetFramer(this)->SetInitialObfuscators( | 
 |         TestConnectionId()); | 
 |     for (EncryptionLevel level : {ENCRYPTION_ZERO_RTT, ENCRYPTION_HANDSHAKE, | 
 |                                   ENCRYPTION_FORWARD_SECURE}) { | 
 |       if (QuicConnectionPeer::GetFramer(this)->HasEncrypterOfEncryptionLevel( | 
 |               level)) { | 
 |         SetEncrypter(level, std::make_unique<NullEncrypter>(perspective)); | 
 |       } | 
 |       if (QuicConnectionPeer::GetFramer(this)->HasDecrypterOfEncryptionLevel( | 
 |               level)) { | 
 |         InstallDecrypter(level, std::make_unique<NullDecrypter>(perspective)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Enable path MTU discovery.  Assumes that the test is performed from the | 
 |   // server perspective and the higher value of MTU target is used. | 
 |   void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) { | 
 |     ASSERT_EQ(Perspective::IS_SERVER, perspective()); | 
 |  | 
 |     if (GetQuicReloadableFlag(quic_enable_mtu_discovery_at_server)) { | 
 |       OnConfigNegotiated(); | 
 |     } else { | 
 |       QuicConfig config; | 
 |       QuicTagVector connection_options; | 
 |       connection_options.push_back(kMTUH); | 
 |       config.SetInitialReceivedConnectionOptions(connection_options); | 
 |       EXPECT_CALL(*send_algorithm, SetFromConfig(_, _)); | 
 |       SetFromConfig(config); | 
 |     } | 
 |  | 
 |     // Normally, the pacing would be disabled in the test, but calling | 
 |     // SetFromConfig enables it.  Set nearly-infinite bandwidth to make the | 
 |     // pacing algorithm work. | 
 |     EXPECT_CALL(*send_algorithm, PacingRate(_)) | 
 |         .WillRepeatedly(Return(QuicBandwidth::Infinite())); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetAckAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetAckAlarm(this)); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetPingAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetPingAlarm(this)); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetRetransmissionAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetRetransmissionAlarm(this)); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetSendAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetSendAlarm(this)); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetTimeoutAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetIdleNetworkDetectorAlarm(this)); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetMtuDiscoveryAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetMtuDiscoveryAlarm(this)); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetProcessUndecryptablePacketsAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetProcessUndecryptablePacketsAlarm(this)); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetDiscardPreviousOneRttKeysAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetDiscardPreviousOneRttKeysAlarm(this)); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetDiscardZeroRttDecryptionKeysAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetDiscardZeroRttDecryptionKeysAlarm(this)); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetBlackholeDetectorAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetBlackholeDetectorAlarm(this)); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetRetirePeerIssuedConnectionIdAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetRetirePeerIssuedConnectionIdAlarm(this)); | 
 |   } | 
 |  | 
 |   TestAlarmFactory::TestAlarm* GetRetireSelfIssuedConnectionIdAlarm() { | 
 |     return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicConnectionPeer::GetRetireSelfIssuedConnectionIdAlarm(this)); | 
 |   } | 
 |  | 
 |   void PathDegradingTimeout() { | 
 |     QUICHE_DCHECK(PathDegradingDetectionInProgress()); | 
 |     GetBlackholeDetectorAlarm()->Fire(); | 
 |   } | 
 |  | 
 |   bool PathDegradingDetectionInProgress() { | 
 |     return QuicConnectionPeer::GetPathDegradingDeadline(this).IsInitialized(); | 
 |   } | 
 |  | 
 |   bool BlackholeDetectionInProgress() { | 
 |     return QuicConnectionPeer::GetBlackholeDetectionDeadline(this) | 
 |         .IsInitialized(); | 
 |   } | 
 |  | 
 |   bool PathMtuReductionDetectionInProgress() { | 
 |     return QuicConnectionPeer::GetPathMtuReductionDetectionDeadline(this) | 
 |         .IsInitialized(); | 
 |   } | 
 |  | 
 |   void SetMaxTailLossProbes(size_t max_tail_loss_probes) { | 
 |     QuicSentPacketManagerPeer::SetMaxTailLossProbes( | 
 |         QuicConnectionPeer::GetSentPacketManager(this), max_tail_loss_probes); | 
 |   } | 
 |  | 
 |   QuicByteCount GetBytesInFlight() { | 
 |     return QuicConnectionPeer::GetSentPacketManager(this)->GetBytesInFlight(); | 
 |   } | 
 |  | 
 |   void set_notifier(SimpleSessionNotifier* notifier) { notifier_ = notifier; } | 
 |  | 
 |   void ReturnEffectivePeerAddressForNextPacket(const QuicSocketAddress& addr) { | 
 |     next_effective_peer_addr_ = std::make_unique<QuicSocketAddress>(addr); | 
 |   } | 
 |  | 
 |   bool PtoEnabled() { | 
 |     if (QuicConnectionPeer::GetSentPacketManager(this)->pto_enabled()) { | 
 |       // TLP/RTO related tests are stale when PTO is enabled. | 
 |       QUICHE_DCHECK(PROTOCOL_TLS1_3 == version().handshake_protocol || | 
 |                     GetQuicRestartFlag(quic_default_on_pto2)); | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   void SendOrQueuePacket(SerializedPacket packet) override { | 
 |     QuicConnection::SendOrQueuePacket(std::move(packet)); | 
 |     self_address_on_default_path_while_sending_packet_ = self_address(); | 
 |   } | 
 |  | 
 |   QuicSocketAddress self_address_on_default_path_while_sending_packet() { | 
 |     return self_address_on_default_path_while_sending_packet_; | 
 |   } | 
 |  | 
 |   SimpleDataProducer* producer() { return &producer_; } | 
 |  | 
 |   using QuicConnection::active_effective_peer_migration_type; | 
 |   using QuicConnection::IsCurrentPacketConnectivityProbing; | 
 |   using QuicConnection::SelectMutualVersion; | 
 |   using QuicConnection::SendProbingRetransmissions; | 
 |   using QuicConnection::set_defer_send_in_response_to_packets; | 
 |  | 
 |  protected: | 
 |   QuicSocketAddress GetEffectivePeerAddressFromCurrentPacket() const override { | 
 |     if (next_effective_peer_addr_) { | 
 |       return *std::move(next_effective_peer_addr_); | 
 |     } | 
 |     return QuicConnection::GetEffectivePeerAddressFromCurrentPacket(); | 
 |   } | 
 |  | 
 |  private: | 
 |   TestPacketWriter* writer() { | 
 |     return static_cast<TestPacketWriter*>(QuicConnection::writer()); | 
 |   } | 
 |  | 
 |   SimpleDataProducer producer_; | 
 |  | 
 |   SimpleSessionNotifier* notifier_; | 
 |  | 
 |   std::unique_ptr<QuicSocketAddress> next_effective_peer_addr_; | 
 |  | 
 |   QuicSocketAddress self_address_on_default_path_while_sending_packet_; | 
 | }; | 
 |  | 
 | enum class AckResponse { kDefer, kImmediate }; | 
 |  | 
 | // Run tests with combinations of {ParsedQuicVersion, AckResponse}. | 
 | struct TestParams { | 
 |   TestParams(ParsedQuicVersion version, AckResponse ack_response, | 
 |              bool no_stop_waiting) | 
 |       : version(version), | 
 |         ack_response(ack_response), | 
 |         no_stop_waiting(no_stop_waiting) {} | 
 |  | 
 |   ParsedQuicVersion version; | 
 |   AckResponse ack_response; | 
 |   bool no_stop_waiting; | 
 | }; | 
 |  | 
 | // Used by ::testing::PrintToStringParamName(). | 
 | std::string PrintToString(const TestParams& p) { | 
 |   return absl::StrCat( | 
 |       ParsedQuicVersionToString(p.version), "_", | 
 |       (p.ack_response == AckResponse::kDefer ? "defer" : "immediate"), "_", | 
 |       (p.no_stop_waiting ? "No" : ""), "StopWaiting"); | 
 | } | 
 |  | 
 | // Constructs various test permutations. | 
 | std::vector<TestParams> GetTestParams() { | 
 |   QuicFlagSaver flags; | 
 |   std::vector<TestParams> params; | 
 |   ParsedQuicVersionVector all_supported_versions = AllSupportedVersions(); | 
 |   for (size_t i = 0; i < all_supported_versions.size(); ++i) { | 
 |     for (AckResponse ack_response : | 
 |          {AckResponse::kDefer, AckResponse::kImmediate}) { | 
 |       params.push_back( | 
 |           TestParams(all_supported_versions[i], ack_response, true)); | 
 |       if (!all_supported_versions[i].HasIetfInvariantHeader()) { | 
 |         params.push_back( | 
 |             TestParams(all_supported_versions[i], ack_response, false)); | 
 |       } | 
 |     } | 
 |   } | 
 |   return params; | 
 | } | 
 |  | 
 | class QuicConnectionTest : public QuicTestWithParam<TestParams> { | 
 |  public: | 
 |   // For tests that do silent connection closes, no such packet is generated. In | 
 |   // order to verify the contents of the OnConnectionClosed upcall, EXPECTs | 
 |   // should invoke this method, saving the frame, and then the test can verify | 
 |   // the contents. | 
 |   void SaveConnectionCloseFrame(const QuicConnectionCloseFrame& frame, | 
 |                                 ConnectionCloseSource /*source*/) { | 
 |     saved_connection_close_frame_ = frame; | 
 |     connection_close_frame_count_++; | 
 |   } | 
 |  | 
 |  protected: | 
 |   QuicConnectionTest() | 
 |       : connection_id_(TestConnectionId()), | 
 |         framer_(SupportedVersions(version()), QuicTime::Zero(), | 
 |                 Perspective::IS_CLIENT, connection_id_.length()), | 
 |         send_algorithm_(new StrictMock<MockSendAlgorithm>), | 
 |         loss_algorithm_(new MockLossAlgorithm()), | 
 |         helper_(new TestConnectionHelper(&clock_, &random_generator_)), | 
 |         alarm_factory_(new TestAlarmFactory()), | 
 |         peer_framer_(SupportedVersions(version()), QuicTime::Zero(), | 
 |                      Perspective::IS_SERVER, connection_id_.length()), | 
 |         peer_creator_(connection_id_, &peer_framer_, | 
 |                       /*delegate=*/nullptr), | 
 |         writer_( | 
 |             new TestPacketWriter(version(), &clock_, Perspective::IS_CLIENT)), | 
 |         connection_(connection_id_, kSelfAddress, kPeerAddress, helper_.get(), | 
 |                     alarm_factory_.get(), writer_.get(), Perspective::IS_CLIENT, | 
 |                     version()), | 
 |         creator_(QuicConnectionPeer::GetPacketCreator(&connection_)), | 
 |         manager_(QuicConnectionPeer::GetSentPacketManager(&connection_)), | 
 |         frame1_(0, false, 0, absl::string_view(data1)), | 
 |         frame2_(0, false, 3, absl::string_view(data2)), | 
 |         crypto_frame_(ENCRYPTION_INITIAL, 0, absl::string_view(data1)), | 
 |         packet_number_length_(PACKET_4BYTE_PACKET_NUMBER), | 
 |         connection_id_included_(CONNECTION_ID_PRESENT), | 
 |         notifier_(&connection_), | 
 |         connection_close_frame_count_(0) { | 
 |     QUIC_DVLOG(2) << "QuicConnectionTest(" << PrintToString(GetParam()) << ")"; | 
 |     connection_.set_defer_send_in_response_to_packets(GetParam().ack_response == | 
 |                                                       AckResponse::kDefer); | 
 |     framer_.SetInitialObfuscators(TestConnectionId()); | 
 |     connection_.InstallInitialCrypters(TestConnectionId()); | 
 |     CrypterPair crypters; | 
 |     CryptoUtils::CreateInitialObfuscators(Perspective::IS_SERVER, version(), | 
 |                                           TestConnectionId(), &crypters); | 
 |     peer_creator_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                                std::move(crypters.encrypter)); | 
 |     if (version().KnowsWhichDecrypterToUse()) { | 
 |       peer_framer_.InstallDecrypter(ENCRYPTION_INITIAL, | 
 |                                     std::move(crypters.decrypter)); | 
 |     } else { | 
 |       peer_framer_.SetDecrypter(ENCRYPTION_INITIAL, | 
 |                                 std::move(crypters.decrypter)); | 
 |     } | 
 |     for (EncryptionLevel level : | 
 |          {ENCRYPTION_ZERO_RTT, ENCRYPTION_FORWARD_SECURE}) { | 
 |       peer_creator_.SetEncrypter( | 
 |           level, std::make_unique<NullEncrypter>(peer_framer_.perspective())); | 
 |     } | 
 |     QuicFramerPeer::SetLastSerializedServerConnectionId( | 
 |         QuicConnectionPeer::GetFramer(&connection_), connection_id_); | 
 |     QuicFramerPeer::SetLastWrittenPacketNumberLength( | 
 |         QuicConnectionPeer::GetFramer(&connection_), packet_number_length_); | 
 |     if (version().HasIetfInvariantHeader()) { | 
 |       EXPECT_TRUE(QuicConnectionPeer::GetNoStopWaitingFrames(&connection_)); | 
 |     } else { | 
 |       QuicConnectionPeer::SetNoStopWaitingFrames(&connection_, | 
 |                                                  GetParam().no_stop_waiting); | 
 |     } | 
 |     QuicStreamId stream_id; | 
 |     if (QuicVersionUsesCryptoFrames(version().transport_version)) { | 
 |       stream_id = QuicUtils::GetFirstBidirectionalStreamId( | 
 |           version().transport_version, Perspective::IS_CLIENT); | 
 |     } else { | 
 |       stream_id = QuicUtils::GetCryptoStreamId(version().transport_version); | 
 |     } | 
 |     frame1_.stream_id = stream_id; | 
 |     frame2_.stream_id = stream_id; | 
 |     connection_.set_visitor(&visitor_); | 
 |     connection_.SetSessionNotifier(¬ifier_); | 
 |     connection_.set_notifier(¬ifier_); | 
 |     connection_.SetSendAlgorithm(send_algorithm_); | 
 |     connection_.SetLossAlgorithm(loss_algorithm_.get()); | 
 |     EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .Times(AnyNumber()); | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketNeutered(_)).Times(AnyNumber()); | 
 |     EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) | 
 |         .WillRepeatedly(Return(kDefaultTCPMSS)); | 
 |     EXPECT_CALL(*send_algorithm_, PacingRate(_)) | 
 |         .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
 |     EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) | 
 |         .Times(AnyNumber()) | 
 |         .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
 |     EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)) | 
 |         .Times(AnyNumber()); | 
 |     EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); | 
 |     EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); | 
 |     EXPECT_CALL(*send_algorithm_, GetCongestionControlType()) | 
 |         .Times(AnyNumber()); | 
 |     EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber()); | 
 |     EXPECT_CALL(*send_algorithm_, GetCongestionControlType()) | 
 |         .Times(AnyNumber()); | 
 |     EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber()); | 
 |     EXPECT_CALL(visitor_, OnPacketDecrypted(_)).Times(AnyNumber()); | 
 |     EXPECT_CALL(visitor_, OnCanWrite()) | 
 |         .WillRepeatedly(Invoke(¬ifier_, &SimpleSessionNotifier::OnCanWrite)); | 
 |     EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |         .WillRepeatedly(Return(false)); | 
 |     EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber()); | 
 |     EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(AnyNumber()); | 
 |     EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber()); | 
 |     EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()) | 
 |         .Times(testing::AtMost(1)); | 
 |     EXPECT_CALL(*loss_algorithm_, GetLossTimeout()) | 
 |         .WillRepeatedly(Return(QuicTime::Zero())); | 
 |     EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |         .Times(AnyNumber()); | 
 |     EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |         .WillRepeatedly(Return(HANDSHAKE_START)); | 
 |     if (connection_.version().KnowsWhichDecrypterToUse()) { | 
 |       connection_.InstallDecrypter( | 
 |           ENCRYPTION_FORWARD_SECURE, | 
 |           std::make_unique<NullDecrypter>(Perspective::IS_CLIENT)); | 
 |     } | 
 |     peer_creator_.SetDefaultPeerAddress(kSelfAddress); | 
 |   } | 
 |  | 
 |   QuicConnectionTest(const QuicConnectionTest&) = delete; | 
 |   QuicConnectionTest& operator=(const QuicConnectionTest&) = delete; | 
 |  | 
 |   ParsedQuicVersion version() { return GetParam().version; } | 
 |  | 
 |   QuicStopWaitingFrame* stop_waiting() { | 
 |     QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_); | 
 |     return &stop_waiting_; | 
 |   } | 
 |  | 
 |   QuicPacketNumber least_unacked() { | 
 |     if (writer_->stop_waiting_frames().empty()) { | 
 |       return QuicPacketNumber(); | 
 |     } | 
 |     return writer_->stop_waiting_frames()[0].least_unacked; | 
 |   } | 
 |  | 
 |   void use_tagging_decrypter() { writer_->use_tagging_decrypter(); } | 
 |  | 
 |   void SetClientConnectionId(const QuicConnectionId& client_connection_id) { | 
 |     connection_.set_client_connection_id(client_connection_id); | 
 |     writer_->framer()->framer()->SetExpectedClientConnectionIdLength( | 
 |         client_connection_id.length()); | 
 |   } | 
 |  | 
 |   void SetDecrypter(EncryptionLevel level, | 
 |                     std::unique_ptr<QuicDecrypter> decrypter) { | 
 |     if (connection_.version().KnowsWhichDecrypterToUse()) { | 
 |       connection_.InstallDecrypter(level, std::move(decrypter)); | 
 |     } else { | 
 |       connection_.SetDecrypter(level, std::move(decrypter)); | 
 |     } | 
 |   } | 
 |  | 
 |   void ProcessPacket(uint64_t number) { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |     ProcessDataPacket(number); | 
 |     if (connection_.GetSendAlarm()->IsSet()) { | 
 |       connection_.GetSendAlarm()->Fire(); | 
 |     } | 
 |   } | 
 |  | 
 |   void ProcessReceivedPacket(const QuicSocketAddress& self_address, | 
 |                              const QuicSocketAddress& peer_address, | 
 |                              const QuicReceivedPacket& packet) { | 
 |     connection_.ProcessUdpPacket(self_address, peer_address, packet); | 
 |     if (connection_.GetSendAlarm()->IsSet()) { | 
 |       connection_.GetSendAlarm()->Fire(); | 
 |     } | 
 |   } | 
 |  | 
 |   QuicFrame MakeCryptoFrame() const { | 
 |     if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |       return QuicFrame(new QuicCryptoFrame(crypto_frame_)); | 
 |     } | 
 |     return QuicFrame(QuicStreamFrame( | 
 |         QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, | 
 |         0u, absl::string_view())); | 
 |   } | 
 |  | 
 |   void ProcessFramePacket(QuicFrame frame) { | 
 |     ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress, | 
 |                                     ENCRYPTION_FORWARD_SECURE); | 
 |   } | 
 |  | 
 |   void ProcessFramePacketWithAddresses(QuicFrame frame, | 
 |                                        QuicSocketAddress self_address, | 
 |                                        QuicSocketAddress peer_address, | 
 |                                        EncryptionLevel level) { | 
 |     QuicFrames frames; | 
 |     frames.push_back(QuicFrame(frame)); | 
 |     return ProcessFramesPacketWithAddresses(frames, self_address, peer_address, | 
 |                                             level); | 
 |   } | 
 |  | 
 |   std::unique_ptr<QuicReceivedPacket> ConstructPacket(QuicFrames frames, | 
 |                                                       EncryptionLevel level, | 
 |                                                       char* buffer, | 
 |                                                       size_t buffer_len) { | 
 |     QUICHE_DCHECK(peer_framer_.HasEncrypterOfEncryptionLevel(level)); | 
 |     peer_creator_.set_encryption_level(level); | 
 |     QuicPacketCreatorPeer::SetSendVersionInPacket( | 
 |         &peer_creator_, | 
 |         level < ENCRYPTION_FORWARD_SECURE && | 
 |             connection_.perspective() == Perspective::IS_SERVER); | 
 |  | 
 |     SerializedPacket serialized_packet = | 
 |         QuicPacketCreatorPeer::SerializeAllFrames(&peer_creator_, frames, | 
 |                                                   buffer, buffer_len); | 
 |     return std::make_unique<QuicReceivedPacket>( | 
 |         serialized_packet.encrypted_buffer, serialized_packet.encrypted_length, | 
 |         clock_.Now()); | 
 |   } | 
 |  | 
 |   void ProcessFramesPacketWithAddresses(QuicFrames frames, | 
 |                                         QuicSocketAddress self_address, | 
 |                                         QuicSocketAddress peer_address, | 
 |                                         EncryptionLevel level) { | 
 |     char buffer[kMaxOutgoingPacketSize]; | 
 |     connection_.ProcessUdpPacket( | 
 |         self_address, peer_address, | 
 |         *ConstructPacket(std::move(frames), level, buffer, | 
 |                          kMaxOutgoingPacketSize)); | 
 |     if (connection_.GetSendAlarm()->IsSet()) { | 
 |       connection_.GetSendAlarm()->Fire(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Bypassing the packet creator is unrealistic, but allows us to process | 
 |   // packets the QuicPacketCreator won't allow us to create. | 
 |   void ForceProcessFramePacket(QuicFrame frame) { | 
 |     QuicFrames frames; | 
 |     frames.push_back(QuicFrame(frame)); | 
 |     bool send_version = connection_.perspective() == Perspective::IS_SERVER; | 
 |     if (connection_.version().KnowsWhichDecrypterToUse()) { | 
 |       send_version = true; | 
 |     } | 
 |     QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_, send_version); | 
 |     QuicPacketHeader header; | 
 |     QuicPacketCreatorPeer::FillPacketHeader(&peer_creator_, &header); | 
 |     char encrypted_buffer[kMaxOutgoingPacketSize]; | 
 |     size_t length = peer_framer_.BuildDataPacket( | 
 |         header, frames, encrypted_buffer, kMaxOutgoingPacketSize, | 
 |         ENCRYPTION_INITIAL); | 
 |     QUICHE_DCHECK_GT(length, 0u); | 
 |  | 
 |     const size_t encrypted_length = peer_framer_.EncryptInPlace( | 
 |         ENCRYPTION_INITIAL, header.packet_number, | 
 |         GetStartOfEncryptedData(peer_framer_.version().transport_version, | 
 |                                 header), | 
 |         length, kMaxOutgoingPacketSize, encrypted_buffer); | 
 |     QUICHE_DCHECK_GT(encrypted_length, 0u); | 
 |  | 
 |     connection_.ProcessUdpPacket( | 
 |         kSelfAddress, kPeerAddress, | 
 |         QuicReceivedPacket(encrypted_buffer, encrypted_length, clock_.Now())); | 
 |   } | 
 |  | 
 |   size_t ProcessFramePacketAtLevel(uint64_t number, QuicFrame frame, | 
 |                                    EncryptionLevel level) { | 
 |     QuicFrames frames; | 
 |     frames.push_back(frame); | 
 |     return ProcessFramesPacketAtLevel(number, frames, level); | 
 |   } | 
 |  | 
 |   size_t ProcessFramesPacketAtLevel(uint64_t number, const QuicFrames& frames, | 
 |                                     EncryptionLevel level) { | 
 |     QuicPacketHeader header = ConstructPacketHeader(number, level); | 
 |     // Set the correct encryption level and encrypter on peer_creator and | 
 |     // peer_framer, respectively. | 
 |     peer_creator_.set_encryption_level(level); | 
 |     if (QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) > | 
 |         ENCRYPTION_INITIAL) { | 
 |       peer_framer_.SetEncrypter( | 
 |           QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), | 
 |           std::make_unique<TaggingEncrypter>(0x01)); | 
 |       // Set the corresponding decrypter. | 
 |       if (connection_.version().KnowsWhichDecrypterToUse()) { | 
 |         connection_.InstallDecrypter( | 
 |             QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), | 
 |             std::make_unique<StrictTaggingDecrypter>(0x01)); | 
 |       } else { | 
 |         connection_.SetDecrypter( | 
 |             QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), | 
 |             std::make_unique<StrictTaggingDecrypter>(0x01)); | 
 |       } | 
 |     } | 
 |     std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
 |  | 
 |     char buffer[kMaxOutgoingPacketSize]; | 
 |     size_t encrypted_length = | 
 |         peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet, | 
 |                                     buffer, kMaxOutgoingPacketSize); | 
 |     connection_.ProcessUdpPacket( | 
 |         kSelfAddress, kPeerAddress, | 
 |         QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
 |     if (connection_.GetSendAlarm()->IsSet()) { | 
 |       connection_.GetSendAlarm()->Fire(); | 
 |     } | 
 |     return encrypted_length; | 
 |   } | 
 |  | 
 |   struct PacketInfo { | 
 |     PacketInfo(uint64_t packet_number, QuicFrames frames, EncryptionLevel level) | 
 |         : packet_number(packet_number), frames(frames), level(level) {} | 
 |  | 
 |     uint64_t packet_number; | 
 |     QuicFrames frames; | 
 |     EncryptionLevel level; | 
 |   }; | 
 |  | 
 |   size_t ProcessCoalescedPacket(std::vector<PacketInfo> packets) { | 
 |     char coalesced_buffer[kMaxOutgoingPacketSize]; | 
 |     size_t coalesced_size = 0; | 
 |     bool contains_initial = false; | 
 |     for (const auto& packet : packets) { | 
 |       QuicPacketHeader header = | 
 |           ConstructPacketHeader(packet.packet_number, packet.level); | 
 |       // Set the correct encryption level and encrypter on peer_creator and | 
 |       // peer_framer, respectively. | 
 |       peer_creator_.set_encryption_level(packet.level); | 
 |       if (packet.level == ENCRYPTION_INITIAL) { | 
 |         contains_initial = true; | 
 |       } | 
 |       if (QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) > | 
 |           ENCRYPTION_INITIAL) { | 
 |         peer_framer_.SetEncrypter( | 
 |             QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), | 
 |             std::make_unique<TaggingEncrypter>(0x01)); | 
 |         // Set the corresponding decrypter. | 
 |         if (connection_.version().KnowsWhichDecrypterToUse()) { | 
 |           connection_.InstallDecrypter( | 
 |               QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), | 
 |               std::make_unique<StrictTaggingDecrypter>(0x01)); | 
 |         } else { | 
 |           connection_.SetDecrypter( | 
 |               QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), | 
 |               std::make_unique<StrictTaggingDecrypter>(0x01)); | 
 |         } | 
 |       } | 
 |       std::unique_ptr<QuicPacket> constructed_packet( | 
 |           ConstructPacket(header, packet.frames)); | 
 |  | 
 |       char buffer[kMaxOutgoingPacketSize]; | 
 |       size_t encrypted_length = peer_framer_.EncryptPayload( | 
 |           packet.level, QuicPacketNumber(packet.packet_number), | 
 |           *constructed_packet, buffer, kMaxOutgoingPacketSize); | 
 |       QUICHE_DCHECK_LE(coalesced_size + encrypted_length, | 
 |                        kMaxOutgoingPacketSize); | 
 |       memcpy(coalesced_buffer + coalesced_size, buffer, encrypted_length); | 
 |       coalesced_size += encrypted_length; | 
 |     } | 
 |     if (contains_initial) { | 
 |       // Padded coalesced packet to full if it contains initial packet. | 
 |       memset(coalesced_buffer + coalesced_size, '0', | 
 |              kMaxOutgoingPacketSize - coalesced_size); | 
 |     } | 
 |     connection_.ProcessUdpPacket( | 
 |         kSelfAddress, kPeerAddress, | 
 |         QuicReceivedPacket(coalesced_buffer, coalesced_size, clock_.Now(), | 
 |                            false)); | 
 |     if (connection_.GetSendAlarm()->IsSet()) { | 
 |       connection_.GetSendAlarm()->Fire(); | 
 |     } | 
 |     return coalesced_size; | 
 |   } | 
 |  | 
 |   size_t ProcessDataPacket(uint64_t number) { | 
 |     return ProcessDataPacketAtLevel(number, false, ENCRYPTION_FORWARD_SECURE); | 
 |   } | 
 |  | 
 |   size_t ProcessDataPacket(QuicPacketNumber packet_number) { | 
 |     return ProcessDataPacketAtLevel(packet_number, false, | 
 |                                     ENCRYPTION_FORWARD_SECURE); | 
 |   } | 
 |  | 
 |   size_t ProcessDataPacketAtLevel(QuicPacketNumber packet_number, | 
 |                                   bool has_stop_waiting, | 
 |                                   EncryptionLevel level) { | 
 |     return ProcessDataPacketAtLevel(packet_number.ToUint64(), has_stop_waiting, | 
 |                                     level); | 
 |   } | 
 |  | 
 |   size_t ProcessCryptoPacketAtLevel(uint64_t number, EncryptionLevel level) { | 
 |     QuicPacketHeader header = ConstructPacketHeader(number, level); | 
 |     QuicFrames frames; | 
 |     if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |       frames.push_back(QuicFrame(&crypto_frame_)); | 
 |     } else { | 
 |       frames.push_back(QuicFrame(frame1_)); | 
 |     } | 
 |     if (level == ENCRYPTION_INITIAL) { | 
 |       frames.push_back(QuicFrame(QuicPaddingFrame(-1))); | 
 |     } | 
 |     std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames); | 
 |     char buffer[kMaxOutgoingPacketSize]; | 
 |     peer_creator_.set_encryption_level(level); | 
 |     size_t encrypted_length = | 
 |         peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet, | 
 |                                     buffer, kMaxOutgoingPacketSize); | 
 |     connection_.ProcessUdpPacket( | 
 |         kSelfAddress, kPeerAddress, | 
 |         QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
 |     if (connection_.GetSendAlarm()->IsSet()) { | 
 |       connection_.GetSendAlarm()->Fire(); | 
 |     } | 
 |     return encrypted_length; | 
 |   } | 
 |  | 
 |   size_t ProcessDataPacketAtLevel(uint64_t number, bool has_stop_waiting, | 
 |                                   EncryptionLevel level) { | 
 |     std::unique_ptr<QuicPacket> packet( | 
 |         ConstructDataPacket(number, has_stop_waiting, level)); | 
 |     char buffer[kMaxOutgoingPacketSize]; | 
 |     peer_creator_.set_encryption_level(level); | 
 |     size_t encrypted_length = | 
 |         peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet, | 
 |                                     buffer, kMaxOutgoingPacketSize); | 
 |     connection_.ProcessUdpPacket( | 
 |         kSelfAddress, kPeerAddress, | 
 |         QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
 |     if (connection_.GetSendAlarm()->IsSet()) { | 
 |       connection_.GetSendAlarm()->Fire(); | 
 |     } | 
 |     return encrypted_length; | 
 |   } | 
 |  | 
 |   void ProcessClosePacket(uint64_t number) { | 
 |     std::unique_ptr<QuicPacket> packet(ConstructClosePacket(number)); | 
 |     char buffer[kMaxOutgoingPacketSize]; | 
 |     size_t encrypted_length = peer_framer_.EncryptPayload( | 
 |         ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(number), *packet, buffer, | 
 |         kMaxOutgoingPacketSize); | 
 |     connection_.ProcessUdpPacket( | 
 |         kSelfAddress, kPeerAddress, | 
 |         QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
 |   } | 
 |  | 
 |   QuicByteCount SendStreamDataToPeer(QuicStreamId id, absl::string_view data, | 
 |                                      QuicStreamOffset offset, | 
 |                                      StreamSendingState state, | 
 |                                      QuicPacketNumber* last_packet) { | 
 |     QuicByteCount packet_size; | 
 |     // Save the last packet's size. | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .Times(AnyNumber()) | 
 |         .WillRepeatedly(SaveArg<3>(&packet_size)); | 
 |     connection_.SendStreamDataWithString(id, data, offset, state); | 
 |     if (last_packet != nullptr) { | 
 |       *last_packet = creator_->packet_number(); | 
 |     } | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .Times(AnyNumber()); | 
 |     return packet_size; | 
 |   } | 
 |  | 
 |   void SendAckPacketToPeer() { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     { | 
 |       QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |       connection_.SendAck(); | 
 |     } | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .Times(AnyNumber()); | 
 |   } | 
 |  | 
 |   void SendRstStream(QuicStreamId id, QuicRstStreamErrorCode error, | 
 |                      QuicStreamOffset bytes_written) { | 
 |     notifier_.WriteOrBufferRstStream(id, error, bytes_written); | 
 |     connection_.OnStreamReset(id, error); | 
 |   } | 
 |  | 
 |   void SendPing() { notifier_.WriteOrBufferPing(); } | 
 |  | 
 |   MessageStatus SendMessage(absl::string_view message) { | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     quiche::QuicheMemSlice slice(quiche::QuicheBuffer::Copy( | 
 |         connection_.helper()->GetStreamSendBufferAllocator(), message)); | 
 |     return connection_.SendMessage(1, absl::MakeSpan(&slice, 1), false); | 
 |   } | 
 |  | 
 |   void ProcessAckPacket(uint64_t packet_number, QuicAckFrame* frame) { | 
 |     if (packet_number > 1) { | 
 |       QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, packet_number - 1); | 
 |     } else { | 
 |       QuicPacketCreatorPeer::ClearPacketNumber(&peer_creator_); | 
 |     } | 
 |     ProcessFramePacket(QuicFrame(frame)); | 
 |   } | 
 |  | 
 |   void ProcessAckPacket(QuicAckFrame* frame) { | 
 |     ProcessFramePacket(QuicFrame(frame)); | 
 |   } | 
 |  | 
 |   void ProcessStopWaitingPacket(QuicStopWaitingFrame frame) { | 
 |     ProcessFramePacket(QuicFrame(frame)); | 
 |   } | 
 |  | 
 |   size_t ProcessStopWaitingPacketAtLevel(uint64_t number, | 
 |                                          QuicStopWaitingFrame frame, | 
 |                                          EncryptionLevel /*level*/) { | 
 |     return ProcessFramePacketAtLevel(number, QuicFrame(frame), | 
 |                                      ENCRYPTION_ZERO_RTT); | 
 |   } | 
 |  | 
 |   void ProcessGoAwayPacket(QuicGoAwayFrame* frame) { | 
 |     ProcessFramePacket(QuicFrame(frame)); | 
 |   } | 
 |  | 
 |   bool IsMissing(uint64_t number) { | 
 |     return IsAwaitingPacket(connection_.ack_frame(), QuicPacketNumber(number), | 
 |                             QuicPacketNumber()); | 
 |   } | 
 |  | 
 |   std::unique_ptr<QuicPacket> ConstructPacket(const QuicPacketHeader& header, | 
 |                                               const QuicFrames& frames) { | 
 |     auto packet = BuildUnsizedDataPacket(&peer_framer_, header, frames); | 
 |     EXPECT_NE(nullptr, packet.get()); | 
 |     return packet; | 
 |   } | 
 |  | 
 |   QuicPacketHeader ConstructPacketHeader(uint64_t number, | 
 |                                          EncryptionLevel level) { | 
 |     QuicPacketHeader header; | 
 |     if (peer_framer_.version().HasIetfInvariantHeader() && | 
 |         level < ENCRYPTION_FORWARD_SECURE) { | 
 |       // Set long header type accordingly. | 
 |       header.version_flag = true; | 
 |       header.form = IETF_QUIC_LONG_HEADER_PACKET; | 
 |       header.long_packet_type = EncryptionlevelToLongHeaderType(level); | 
 |       if (QuicVersionHasLongHeaderLengths( | 
 |               peer_framer_.version().transport_version)) { | 
 |         header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2; | 
 |         if (header.long_packet_type == INITIAL) { | 
 |           header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1; | 
 |         } | 
 |       } | 
 |     } | 
 |     // Set connection_id to peer's in memory representation as this data packet | 
 |     // is created by peer_framer. | 
 |     if (peer_framer_.perspective() == Perspective::IS_SERVER) { | 
 |       header.source_connection_id = connection_id_; | 
 |       header.source_connection_id_included = connection_id_included_; | 
 |       header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
 |     } else { | 
 |       header.destination_connection_id = connection_id_; | 
 |       header.destination_connection_id_included = connection_id_included_; | 
 |     } | 
 |     if (peer_framer_.version().HasIetfInvariantHeader() && | 
 |         peer_framer_.perspective() == Perspective::IS_SERVER) { | 
 |       if (!connection_.client_connection_id().IsEmpty()) { | 
 |         header.destination_connection_id = connection_.client_connection_id(); | 
 |         header.destination_connection_id_included = CONNECTION_ID_PRESENT; | 
 |       } else { | 
 |         header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
 |       } | 
 |       if (header.version_flag) { | 
 |         header.source_connection_id = connection_id_; | 
 |         header.source_connection_id_included = CONNECTION_ID_PRESENT; | 
 |         if (GetParam().version.handshake_protocol == PROTOCOL_QUIC_CRYPTO && | 
 |             header.long_packet_type == ZERO_RTT_PROTECTED) { | 
 |           header.nonce = &kTestDiversificationNonce; | 
 |         } | 
 |       } | 
 |     } | 
 |     header.packet_number_length = packet_number_length_; | 
 |     header.packet_number = QuicPacketNumber(number); | 
 |     return header; | 
 |   } | 
 |  | 
 |   std::unique_ptr<QuicPacket> ConstructDataPacket(uint64_t number, | 
 |                                                   bool has_stop_waiting, | 
 |                                                   EncryptionLevel level) { | 
 |     QuicPacketHeader header = ConstructPacketHeader(number, level); | 
 |     QuicFrames frames; | 
 |     if (VersionHasIetfQuicFrames(version().transport_version) && | 
 |         (level == ENCRYPTION_INITIAL || level == ENCRYPTION_HANDSHAKE)) { | 
 |       frames.push_back(QuicFrame(QuicPingFrame())); | 
 |       frames.push_back(QuicFrame(QuicPaddingFrame(100))); | 
 |     } else { | 
 |       frames.push_back(QuicFrame(frame1_)); | 
 |       if (has_stop_waiting) { | 
 |         frames.push_back(QuicFrame(stop_waiting_)); | 
 |       } | 
 |     } | 
 |     return ConstructPacket(header, frames); | 
 |   } | 
 |  | 
 |   std::unique_ptr<SerializedPacket> ConstructProbingPacket() { | 
 |     peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); | 
 |     if (VersionHasIetfQuicFrames(version().transport_version)) { | 
 |       QuicPathFrameBuffer payload = { | 
 |           {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}}; | 
 |       return QuicPacketCreatorPeer:: | 
 |           SerializePathChallengeConnectivityProbingPacket(&peer_creator_, | 
 |                                                           payload); | 
 |     } | 
 |     return QuicPacketCreatorPeer::SerializeConnectivityProbingPacket( | 
 |         &peer_creator_); | 
 |   } | 
 |  | 
 |   std::unique_ptr<QuicPacket> ConstructClosePacket(uint64_t number) { | 
 |     peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); | 
 |     QuicPacketHeader header; | 
 |     // Set connection_id to peer's in memory representation as this connection | 
 |     // close packet is created by peer_framer. | 
 |     if (peer_framer_.perspective() == Perspective::IS_SERVER) { | 
 |       header.source_connection_id = connection_id_; | 
 |       header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
 |       if (!peer_framer_.version().HasIetfInvariantHeader()) { | 
 |         header.source_connection_id_included = CONNECTION_ID_PRESENT; | 
 |       } | 
 |     } else { | 
 |       header.destination_connection_id = connection_id_; | 
 |       if (peer_framer_.version().HasIetfInvariantHeader()) { | 
 |         header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
 |       } | 
 |     } | 
 |  | 
 |     header.packet_number = QuicPacketNumber(number); | 
 |  | 
 |     QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY; | 
 |     QuicConnectionCloseFrame qccf(peer_framer_.transport_version(), | 
 |                                   kQuicErrorCode, NO_IETF_QUIC_ERROR, "", | 
 |                                   /*transport_close_frame_type=*/0); | 
 |     QuicFrames frames; | 
 |     frames.push_back(QuicFrame(&qccf)); | 
 |     return ConstructPacket(header, frames); | 
 |   } | 
 |  | 
 |   QuicTime::Delta DefaultRetransmissionTime() { | 
 |     return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); | 
 |   } | 
 |  | 
 |   QuicTime::Delta DefaultDelayedAckTime() { | 
 |     return QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs); | 
 |   } | 
 |  | 
 |   const QuicStopWaitingFrame InitStopWaitingFrame(uint64_t least_unacked) { | 
 |     QuicStopWaitingFrame frame; | 
 |     frame.least_unacked = QuicPacketNumber(least_unacked); | 
 |     return frame; | 
 |   } | 
 |  | 
 |   // Construct a ack_frame that acks all packet numbers between 1 and | 
 |   // |largest_acked|, except |missing|. | 
 |   // REQUIRES: 1 <= |missing| < |largest_acked| | 
 |   QuicAckFrame ConstructAckFrame(uint64_t largest_acked, uint64_t missing) { | 
 |     return ConstructAckFrame(QuicPacketNumber(largest_acked), | 
 |                              QuicPacketNumber(missing)); | 
 |   } | 
 |  | 
 |   QuicAckFrame ConstructAckFrame(QuicPacketNumber largest_acked, | 
 |                                  QuicPacketNumber missing) { | 
 |     if (missing == QuicPacketNumber(1)) { | 
 |       return InitAckFrame({{missing + 1, largest_acked + 1}}); | 
 |     } | 
 |     return InitAckFrame( | 
 |         {{QuicPacketNumber(1), missing}, {missing + 1, largest_acked + 1}}); | 
 |   } | 
 |  | 
 |   // Undo nacking a packet within the frame. | 
 |   void AckPacket(QuicPacketNumber arrived, QuicAckFrame* frame) { | 
 |     EXPECT_FALSE(frame->packets.Contains(arrived)); | 
 |     frame->packets.Add(arrived); | 
 |   } | 
 |  | 
 |   void TriggerConnectionClose() { | 
 |     // Send an erroneous packet to close the connection. | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |         .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |  | 
 |     EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |     // Triggers a connection by receiving ACK of unsent packet. | 
 |     QuicAckFrame frame = InitAckFrame(10000); | 
 |     ProcessAckPacket(1, &frame); | 
 |     EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == | 
 |                  nullptr); | 
 |     EXPECT_EQ(1, connection_close_frame_count_); | 
 |     EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |                 IsError(QUIC_INVALID_ACK_DATA)); | 
 |   } | 
 |  | 
 |   void BlockOnNextWrite() { | 
 |     writer_->BlockOnNextWrite(); | 
 |     EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); | 
 |   } | 
 |  | 
 |   void SimulateNextPacketTooLarge() { writer_->SimulateNextPacketTooLarge(); } | 
 |  | 
 |   void AlwaysGetPacketTooLarge() { writer_->AlwaysGetPacketTooLarge(); } | 
 |  | 
 |   void SetWritePauseTimeDelta(QuicTime::Delta delta) { | 
 |     writer_->SetWritePauseTimeDelta(delta); | 
 |   } | 
 |  | 
 |   void CongestionBlockWrites() { | 
 |     EXPECT_CALL(*send_algorithm_, CanSend(_)) | 
 |         .WillRepeatedly(testing::Return(false)); | 
 |   } | 
 |  | 
 |   void CongestionUnblockWrites() { | 
 |     EXPECT_CALL(*send_algorithm_, CanSend(_)) | 
 |         .WillRepeatedly(testing::Return(true)); | 
 |   } | 
 |  | 
 |   void set_perspective(Perspective perspective) { | 
 |     connection_.set_perspective(perspective); | 
 |     if (perspective == Perspective::IS_SERVER) { | 
 |       QuicConfig config; | 
 |       if (!GetQuicReloadableFlag( | 
 |               quic_remove_connection_migration_connection_option)) { | 
 |         QuicTagVector connection_options; | 
 |         connection_options.push_back(kRVCM); | 
 |         config.SetInitialReceivedConnectionOptions(connection_options); | 
 |       } | 
 |       EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |       connection_.SetFromConfig(config); | 
 |  | 
 |       connection_.set_can_truncate_connection_ids(true); | 
 |       QuicConnectionPeer::SetNegotiatedVersion(&connection_); | 
 |       connection_.OnSuccessfulVersionNegotiation(); | 
 |     } | 
 |     QuicFramerPeer::SetPerspective(&peer_framer_, | 
 |                                    QuicUtils::InvertPerspective(perspective)); | 
 |     peer_framer_.SetInitialObfuscators(TestConnectionId()); | 
 |     for (EncryptionLevel level : {ENCRYPTION_ZERO_RTT, ENCRYPTION_HANDSHAKE, | 
 |                                   ENCRYPTION_FORWARD_SECURE}) { | 
 |       if (peer_framer_.HasEncrypterOfEncryptionLevel(level)) { | 
 |         peer_creator_.SetEncrypter( | 
 |             level, std::make_unique<NullEncrypter>(peer_framer_.perspective())); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   void set_packets_between_probes_base( | 
 |       const QuicPacketCount packets_between_probes_base) { | 
 |     QuicConnectionPeer::ReInitializeMtuDiscoverer( | 
 |         &connection_, packets_between_probes_base, | 
 |         QuicPacketNumber(packets_between_probes_base)); | 
 |   } | 
 |  | 
 |   bool IsDefaultTestConfiguration() { | 
 |     TestParams p = GetParam(); | 
 |     return p.ack_response == AckResponse::kImmediate && | 
 |            p.version == AllSupportedVersions()[0] && p.no_stop_waiting; | 
 |   } | 
 |  | 
 |   void TestConnectionCloseQuicErrorCode(QuicErrorCode expected_code) { | 
 |     // Not strictly needed for this test, but is commonly done. | 
 |     EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == | 
 |                  nullptr); | 
 |     const std::vector<QuicConnectionCloseFrame>& connection_close_frames = | 
 |         writer_->connection_close_frames(); | 
 |     ASSERT_EQ(1u, connection_close_frames.size()); | 
 |  | 
 |     EXPECT_THAT(connection_close_frames[0].quic_error_code, | 
 |                 IsError(expected_code)); | 
 |  | 
 |     if (!VersionHasIetfQuicFrames(version().transport_version)) { | 
 |       EXPECT_THAT(connection_close_frames[0].wire_error_code, | 
 |                   IsError(expected_code)); | 
 |       EXPECT_EQ(GOOGLE_QUIC_CONNECTION_CLOSE, | 
 |                 connection_close_frames[0].close_type); | 
 |       return; | 
 |     } | 
 |  | 
 |     QuicErrorCodeToIetfMapping mapping = | 
 |         QuicErrorCodeToTransportErrorCode(expected_code); | 
 |  | 
 |     if (mapping.is_transport_close) { | 
 |       // This Google QUIC Error Code maps to a transport close, | 
 |       EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE, | 
 |                 connection_close_frames[0].close_type); | 
 |     } else { | 
 |       // This maps to an application close. | 
 |       EXPECT_EQ(IETF_QUIC_APPLICATION_CONNECTION_CLOSE, | 
 |                 connection_close_frames[0].close_type); | 
 |     } | 
 |     EXPECT_EQ(mapping.error_code, connection_close_frames[0].wire_error_code); | 
 |   } | 
 |  | 
 |   void MtuDiscoveryTestInit() { | 
 |     set_perspective(Perspective::IS_SERVER); | 
 |     QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |     if (version().SupportsAntiAmplificationLimit()) { | 
 |       QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |     } | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); | 
 |     // QuicFramer::GetMaxPlaintextSize uses the smallest max plaintext size | 
 |     // across all encrypters. The initial encrypter used with IETF QUIC has a | 
 |     // 16-byte overhead, while the NullEncrypter used throughout this test has a | 
 |     // 12-byte overhead. This test tests behavior that relies on computing the | 
 |     // packet size correctly, so by unsetting the initial encrypter, we avoid | 
 |     // having a mismatch between the overheads for the encrypters used. In | 
 |     // non-test scenarios all encrypters used for a given connection have the | 
 |     // same overhead, either 12 bytes for ones using Google QUIC crypto, or 16 | 
 |     // bytes for ones using TLS. | 
 |     connection_.SetEncrypter(ENCRYPTION_INITIAL, nullptr); | 
 |     // Prevent packets from being coalesced. | 
 |     EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |         .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |   } | 
 |  | 
 |   void PathProbeTestInit(Perspective perspective, | 
 |                          bool receive_new_server_connection_id = true) { | 
 |     set_perspective(perspective); | 
 |     connection_.CreateConnectionIdManager(); | 
 |     EXPECT_EQ(connection_.perspective(), perspective); | 
 |     if (perspective == Perspective::IS_SERVER) { | 
 |       QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |     } | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); | 
 |     // Discard INITIAL key. | 
 |     connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |     connection_.NeuterUnencryptedPackets(); | 
 |     // Prevent packets from being coalesced. | 
 |     EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |         .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |     if (version().SupportsAntiAmplificationLimit() && | 
 |         perspective == Perspective::IS_SERVER) { | 
 |       QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |     } | 
 |     // Clear direct_peer_address. | 
 |     QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
 |     // Clear effective_peer_address, it is the same as direct_peer_address for | 
 |     // this test. | 
 |     QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
 |                                                 QuicSocketAddress()); | 
 |     EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
 |  | 
 |     if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |       EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |     } else { | 
 |       EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |     } | 
 |     QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2); | 
 |     ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
 |                                     kPeerAddress, ENCRYPTION_FORWARD_SECURE); | 
 |     EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |     EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |     if (perspective == Perspective::IS_CLIENT && | 
 |         receive_new_server_connection_id && version().HasIetfQuicFrames()) { | 
 |       QuicNewConnectionIdFrame frame; | 
 |       frame.connection_id = TestConnectionId(1234); | 
 |       ASSERT_NE(frame.connection_id, connection_.connection_id()); | 
 |       frame.stateless_reset_token = | 
 |           QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |       frame.retire_prior_to = 0u; | 
 |       frame.sequence_number = 1u; | 
 |       connection_.OnNewConnectionIdFrame(frame); | 
 |     } | 
 |   } | 
 |  | 
 |   void TestClientRetryHandling(bool invalid_retry_tag, | 
 |                                bool missing_original_id_in_config, | 
 |                                bool wrong_original_id_in_config, | 
 |                                bool missing_retry_id_in_config, | 
 |                                bool wrong_retry_id_in_config); | 
 |  | 
 |   void TestReplaceConnectionIdFromInitial(); | 
 |  | 
 |   QuicConnectionId connection_id_; | 
 |   QuicFramer framer_; | 
 |  | 
 |   MockSendAlgorithm* send_algorithm_; | 
 |   std::unique_ptr<MockLossAlgorithm> loss_algorithm_; | 
 |   MockClock clock_; | 
 |   MockRandom random_generator_; | 
 |   quiche::SimpleBufferAllocator buffer_allocator_; | 
 |   std::unique_ptr<TestConnectionHelper> helper_; | 
 |   std::unique_ptr<TestAlarmFactory> alarm_factory_; | 
 |   QuicFramer peer_framer_; | 
 |   QuicPacketCreator peer_creator_; | 
 |   std::unique_ptr<TestPacketWriter> writer_; | 
 |   TestConnection connection_; | 
 |   QuicPacketCreator* creator_; | 
 |   QuicSentPacketManager* manager_; | 
 |   StrictMock<MockQuicConnectionVisitor> visitor_; | 
 |  | 
 |   QuicStreamFrame frame1_; | 
 |   QuicStreamFrame frame2_; | 
 |   QuicCryptoFrame crypto_frame_; | 
 |   QuicAckFrame ack_; | 
 |   QuicStopWaitingFrame stop_waiting_; | 
 |   QuicPacketNumberLength packet_number_length_; | 
 |   QuicConnectionIdIncluded connection_id_included_; | 
 |  | 
 |   SimpleSessionNotifier notifier_; | 
 |  | 
 |   QuicConnectionCloseFrame saved_connection_close_frame_; | 
 |   int connection_close_frame_count_; | 
 | }; | 
 |  | 
 | // Run all end to end tests with all supported versions. | 
 | INSTANTIATE_TEST_SUITE_P(QuicConnectionTests, QuicConnectionTest, | 
 |                          ::testing::ValuesIn(GetTestParams()), | 
 |                          ::testing::PrintToStringParamName()); | 
 |  | 
 | // These two tests ensure that the QuicErrorCode mapping works correctly. | 
 | // Both tests expect to see a Google QUIC close if not running IETF QUIC. | 
 | // If running IETF QUIC, the first will generate a transport connection | 
 | // close, the second an application connection close. | 
 | // The connection close codes for the two tests are manually chosen; | 
 | // they are expected to always map to transport- and application- | 
 | // closes, respectively. If that changes, new codes should be chosen. | 
 | TEST_P(QuicConnectionTest, CloseErrorCodeTestTransport) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   connection_.CloseConnection( | 
 |       IETF_QUIC_PROTOCOL_VIOLATION, "Should be transport close", | 
 |       ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION); | 
 | } | 
 |  | 
 | // Test that the IETF QUIC Error code mapping function works | 
 | // properly for application connection close codes. | 
 | TEST_P(QuicConnectionTest, CloseErrorCodeTestApplication) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   connection_.CloseConnection( | 
 |       QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE, | 
 |       "Should be application close", | 
 |       ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SelfAddressChangeAtClient) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
 |   } | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |   // Cause change in self_address. | 
 |   QuicIpAddress host; | 
 |   host.FromString("1.1.1.1"); | 
 |   QuicSocketAddress self_address(host, 123); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
 |   } | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SelfAddressChangeAtServer) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |  | 
 |   EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
 |   } | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |   // Cause change in self_address. | 
 |   QuicIpAddress host; | 
 |   host.FromString("1.1.1.1"); | 
 |   QuicSocketAddress self_address(host, 123); | 
 |   EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
 |   EXPECT_CALL(visitor_, AllowSelfAddressChange()).WillOnce(Return(false)); | 
 |   if (GetQuicReloadableFlag(quic_drop_packets_with_changed_server_address)) { | 
 |     ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address, | 
 |                                     kPeerAddress, ENCRYPTION_INITIAL); | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |     EXPECT_EQ(1u, connection_.GetStats().packets_dropped); | 
 |     return; | 
 |   } | 
 |   if (version().handshake_protocol == PROTOCOL_TLS1_3) { | 
 |     EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   EXPECT_QUIC_PEER_BUG( | 
 |       ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address, | 
 |                                       kPeerAddress, ENCRYPTION_INITIAL), | 
 |       "Self address migration is not supported at the server"); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_ERROR_MIGRATING_ADDRESS); | 
 |   EXPECT_EQ(1u, connection_.GetStats().packets_dropped); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AllowSelfAddressChangeToMappedIpv4AddressAtServer) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |  | 
 |   EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3); | 
 |   } | 
 |   QuicIpAddress host; | 
 |   host.FromString("1.1.1.1"); | 
 |   QuicSocketAddress self_address1(host, 443); | 
 |   connection_.SetSelfAddress(self_address1); | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address1, | 
 |                                   kPeerAddress, ENCRYPTION_INITIAL); | 
 |   // Cause self_address change to mapped Ipv4 address. | 
 |   QuicIpAddress host2; | 
 |   host2.FromString( | 
 |       absl::StrCat("::ffff:", connection_.self_address().host().ToString())); | 
 |   QuicSocketAddress self_address2(host2, connection_.self_address().port()); | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address2, | 
 |                                   kPeerAddress, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   // self_address change back to Ipv4 address. | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address1, | 
 |                                   kPeerAddress, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientAddressChangeAndPacketReordered) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |  | 
 |   // Clear direct_peer_address. | 
 |   QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
 |   // Clear effective_peer_address, it is the same as direct_peer_address for | 
 |   // this test. | 
 |   QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
 |                                               QuicSocketAddress()); | 
 |  | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), | 
 |                         /*port=*/23456); | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
 |                                   kNewPeerAddress, ENCRYPTION_INITIAL); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   // Decrease packet number to simulate out-of-order packets. | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4); | 
 |   // This is an old packet, do not migrate. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PeerPortChangeAtServer) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   // Prevent packets from being coalesced. | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   if (version().SupportsAntiAmplificationLimit()) { | 
 |     QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   } | 
 |  | 
 |   // Clear direct_peer_address. | 
 |   QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
 |   // Clear effective_peer_address, it is the same as direct_peer_address for | 
 |   // this test. | 
 |   QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
 |                                               QuicSocketAddress()); | 
 |   EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
 |  | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt(); | 
 |   rtt_stats->set_initial_rtt(default_init_rtt * 2); | 
 |   EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt()); | 
 |  | 
 |   QuicSentPacketManagerPeer::SetConsecutiveRtoCount(manager_, 1); | 
 |   EXPECT_EQ(1u, manager_->GetConsecutiveRtoCount()); | 
 |   QuicSentPacketManagerPeer::SetConsecutiveTlpCount(manager_, 2); | 
 |   EXPECT_EQ(2u, manager_->GetConsecutiveTlpCount()); | 
 |  | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
 |       .WillOnce(Invoke( | 
 |           [=]() { EXPECT_EQ(kPeerAddress, connection_.peer_address()); })) | 
 |       .WillOnce(Invoke( | 
 |           [=]() { EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); })); | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(frame1_)); | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   // Process another packet with a different peer address on server side will | 
 |   // start connection migration. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
 |   QuicFrames frames2; | 
 |   frames2.push_back(QuicFrame(frame2_)); | 
 |   ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |   // PORT_CHANGE shouldn't state change in sent packet manager. | 
 |   EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt()); | 
 |   EXPECT_EQ(1u, manager_->GetConsecutiveRtoCount()); | 
 |   EXPECT_EQ(2u, manager_->GetConsecutiveTlpCount()); | 
 |   EXPECT_EQ(manager_->GetSendAlgorithm(), send_algorithm_); | 
 |   if (connection_.validate_client_address()) { | 
 |     EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type()); | 
 |     EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PeerIpAddressChangeAtServer) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (!connection_.validate_client_address()) { | 
 |     return; | 
 |   } | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   // Discard INITIAL key. | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   // Prevent packets from being coalesced. | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   connection_.OnHandshakeComplete(); | 
 |  | 
 |   // Enable 5 RTO | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k5RTO); | 
 |   config.SetInitialReceivedConnectionOptions(connection_options); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   QuicConfigPeer::SetReceivedOriginalConnectionId(&config, | 
 |                                                   connection_.connection_id()); | 
 |   QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config, | 
 |                                                        QuicConnectionId()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   // Clear direct_peer_address. | 
 |   QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
 |   // Clear effective_peer_address, it is the same as direct_peer_address for | 
 |   // this test. | 
 |   QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
 |                                               QuicSocketAddress()); | 
 |   EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
 |  | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
 |       .WillOnce(Invoke( | 
 |           [=]() { EXPECT_EQ(kPeerAddress, connection_.peer_address()); })) | 
 |       .WillOnce(Invoke( | 
 |           [=]() { EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); })); | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(frame1_)); | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   // Send some data to make connection has packets in flight. | 
 |   connection_.SendStreamData3(); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_TRUE(connection_.BlackholeDetectionInProgress()); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Process another packet with a different peer address on server side will | 
 |   // start connection migration. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1); | 
 |   // IETF QUIC send algorithm should be changed to a different object, so no | 
 |   // OnPacketSent() called on the old send algorithm. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA)) | 
 |       .Times(0); | 
 |   // Do not propagate OnCanWrite() to session notifier. | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).Times(AtLeast(1u)); | 
 |  | 
 |   QuicFrames frames2; | 
 |   frames2.push_back(QuicFrame(frame2_)); | 
 |   ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |   EXPECT_EQ(IPV6_TO_IPV4_CHANGE, | 
 |             connection_.active_effective_peer_migration_type()); | 
 |   EXPECT_FALSE(connection_.BlackholeDetectionInProgress()); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 |   EXPECT_FALSE(writer_->path_challenge_frames().empty()); | 
 |   QuicPathFrameBuffer payload = | 
 |       writer_->path_challenge_frames().front().data_buffer; | 
 |   EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(), | 
 |             send_algorithm_); | 
 |   // Switch to use the mock send algorithm. | 
 |   send_algorithm_ = new StrictMock<MockSendAlgorithm>(); | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
 |   EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) | 
 |       .WillRepeatedly(Return(kDefaultTCPMSS)); | 
 |   EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) | 
 |       .Times(AnyNumber()) | 
 |       .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
 |   EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber()); | 
 |   connection_.SetSendAlgorithm(send_algorithm_); | 
 |  | 
 |   // PATH_CHALLENGE is expanded upto the max packet size which may exceeds the | 
 |   // anti-amplification limit. | 
 |   EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |   EXPECT_EQ(1u, | 
 |             connection_.GetStats().num_reverse_path_validtion_upon_migration); | 
 |  | 
 |   // Verify server is throttled by anti-amplification limit. | 
 |   connection_.SendCryptoDataWithString("foo", 0); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Receiving an ACK to the packet sent after changing peer address doesn't | 
 |   // finish migration validation. | 
 |   QuicAckFrame ack_frame = InitAckFrame(2); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   ProcessFramePacketWithAddresses(QuicFrame(&ack_frame), kSelfAddress, | 
 |                                   kNewPeerAddress, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |   EXPECT_EQ(IPV6_TO_IPV4_CHANGE, | 
 |             connection_.active_effective_peer_migration_type()); | 
 |  | 
 |   // Receiving PATH_RESPONSE should lift the anti-amplification limit. | 
 |   QuicFrames frames3; | 
 |   frames3.push_back(QuicFrame(new QuicPathResponseFrame(99, payload))); | 
 |   EXPECT_CALL(visitor_, MaybeSendAddressToken()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(testing::AtLeast(1u)); | 
 |   ProcessFramesPacketWithAddresses(frames3, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type()); | 
 |  | 
 |   // Verify the anti-amplification limit is lifted by sending a packet larger | 
 |   // than the anti-amplification limit. | 
 |   connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0); | 
 |   EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PeerIpAddressChangeAtServerWithMissingConnectionId) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
 |  | 
 |   QuicConnectionId client_cid0 = TestConnectionId(1); | 
 |   QuicConnectionId client_cid1 = TestConnectionId(3); | 
 |   QuicConnectionId server_cid1; | 
 |   SetClientConnectionId(client_cid0); | 
 |   connection_.CreateConnectionIdManager(); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   // Prevent packets from being coalesced. | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |  | 
 |   // Sends new server CID to client. | 
 |   EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)) | 
 |       .WillOnce( | 
 |           Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; })); | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)); | 
 |   connection_.OnHandshakeComplete(); | 
 |  | 
 |   // Clear direct_peer_address. | 
 |   QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
 |   // Clear effective_peer_address, it is the same as direct_peer_address for | 
 |   // this test. | 
 |   QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
 |                                               QuicSocketAddress()); | 
 |   EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
 |  | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2); | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(frame1_)); | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   // Send some data to make connection has packets in flight. | 
 |   connection_.SendStreamData3(); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |  | 
 |   // Process another packet with a different peer address on server side will | 
 |   // start connection migration. | 
 |   peer_creator_.SetServerConnectionId(server_cid1); | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1); | 
 |   // Do not propagate OnCanWrite() to session notifier. | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).Times(AtLeast(1u)); | 
 |  | 
 |   QuicFrames frames2; | 
 |   frames2.push_back(QuicFrame(frame2_)); | 
 |   ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   // Writing path response & reverse path challenge is blocked due to missing | 
 |   // client connection ID, i.e., packets_write_attempts is unchanged. | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |  | 
 |   // Receives new client CID from client would unblock write. | 
 |   QuicNewConnectionIdFrame new_cid_frame; | 
 |   new_cid_frame.connection_id = client_cid1; | 
 |   new_cid_frame.sequence_number = 1u; | 
 |   new_cid_frame.retire_prior_to = 0u; | 
 |   connection_.OnNewConnectionIdFrame(new_cid_frame); | 
 |   connection_.SendStreamData3(); | 
 |  | 
 |   EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, EffectivePeerAddressChangeAtServer) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
 |   if (version().SupportsAntiAmplificationLimit()) { | 
 |     QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   } | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   // Discard INITIAL key. | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |  | 
 |   // Clear direct_peer_address. | 
 |   QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
 |   // Clear effective_peer_address, it is different from direct_peer_address for | 
 |   // this test. | 
 |   QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
 |                                               QuicSocketAddress()); | 
 |   const QuicSocketAddress kEffectivePeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/43210); | 
 |   connection_.ReturnEffectivePeerAddressForNextPacket(kEffectivePeerAddress); | 
 |  | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kEffectivePeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   // Process another packet with the same direct peer address and different | 
 |   // effective peer address on server side will start connection migration. | 
 |   const QuicSocketAddress kNewEffectivePeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/54321); | 
 |   connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress); | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address()); | 
 |   if (connection_.validate_client_address()) { | 
 |     EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type()); | 
 |     EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration); | 
 |   } | 
 |  | 
 |   // Process another packet with a different direct peer address and the same | 
 |   // effective peer address on server side will not start connection migration. | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
 |   connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress); | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |  | 
 |   if (!connection_.validate_client_address()) { | 
 |     // ack_frame is used to complete the migration started by the last packet, | 
 |     // we need to make sure a new migration does not start after the previous | 
 |     // one is completed. | 
 |     QuicAckFrame ack_frame = InitAckFrame(1); | 
 |     EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |     ProcessFramePacketWithAddresses(QuicFrame(&ack_frame), kSelfAddress, | 
 |                                     kNewPeerAddress, ENCRYPTION_FORWARD_SECURE); | 
 |     EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |     EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address()); | 
 |     EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type()); | 
 |   } | 
 |  | 
 |   // Process another packet with different direct peer address and different | 
 |   // effective peer address on server side will start connection migration. | 
 |   const QuicSocketAddress kNewerEffectivePeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/65432); | 
 |   const QuicSocketAddress kFinalPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/34567); | 
 |   connection_.ReturnEffectivePeerAddressForNextPacket( | 
 |       kNewerEffectivePeerAddress); | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
 |                                   kFinalPeerAddress, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kFinalPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewerEffectivePeerAddress, connection_.effective_peer_address()); | 
 |   if (connection_.validate_client_address()) { | 
 |     EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type()); | 
 |     EXPECT_EQ(send_algorithm_, | 
 |               connection_.sent_packet_manager().GetSendAlgorithm()); | 
 |     EXPECT_EQ(2u, connection_.GetStats().num_validated_peer_migration); | 
 |   } | 
 |  | 
 |   // While the previous migration is ongoing, process another packet with the | 
 |   // same direct peer address and different effective peer address on server | 
 |   // side will start a new connection migration. | 
 |   const QuicSocketAddress kNewestEffectivePeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/65430); | 
 |   connection_.ReturnEffectivePeerAddressForNextPacket( | 
 |       kNewestEffectivePeerAddress); | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1); | 
 |   if (!connection_.validate_client_address()) { | 
 |     EXPECT_CALL(*send_algorithm_, OnConnectionMigration()).Times(1); | 
 |   } | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
 |                                   kFinalPeerAddress, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kFinalPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewestEffectivePeerAddress, connection_.effective_peer_address()); | 
 |   EXPECT_EQ(IPV6_TO_IPV4_CHANGE, | 
 |             connection_.active_effective_peer_migration_type()); | 
 |   if (connection_.validate_client_address()) { | 
 |     EXPECT_NE(send_algorithm_, | 
 |               connection_.sent_packet_manager().GetSendAlgorithm()); | 
 |     EXPECT_EQ(kFinalPeerAddress, writer_->last_write_peer_address()); | 
 |     EXPECT_FALSE(writer_->path_challenge_frames().empty()); | 
 |     EXPECT_EQ(0u, connection_.GetStats() | 
 |                       .num_peer_migration_while_validating_default_path); | 
 |     EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |   } | 
 | } | 
 |  | 
 | // Regression test for b/200020764. | 
 | TEST_P(QuicConnectionTest, ConnectionMigrationWithPendingPaddingBytes) { | 
 |   // TODO(haoyuewang) Move these test setup code to a common member function. | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   connection_.CreateConnectionIdManager(); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   QuicConnectionPeer::SetPeerAddress(&connection_, kPeerAddress); | 
 |   QuicConnectionPeer::SetEffectivePeerAddress(&connection_, kPeerAddress); | 
 |   QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |  | 
 |   // Sends new server CID to client. | 
 |   QuicConnectionId new_cid; | 
 |   EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)) | 
 |       .WillOnce(Invoke([&](const QuicConnectionId& cid) { new_cid = cid; })); | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)); | 
 |   // Discard INITIAL key. | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |  | 
 |   auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_); | 
 |   packet_creator->FlushCurrentPacket(); | 
 |   packet_creator->AddPendingPadding(50u); | 
 |   const QuicSocketAddress kPeerAddress3 = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/56789); | 
 |   auto ack_frame = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
 |   ProcessFramesPacketWithAddresses({QuicFrame(&ack_frame)}, kSelfAddress, | 
 |                                    kPeerAddress3, ENCRYPTION_FORWARD_SECURE); | 
 |   if (GetQuicReloadableFlag( | 
 |           quic_flush_pending_frames_and_padding_bytes_on_migration)) { | 
 |     // Any pending frames/padding should be flushed before default_path_ is | 
 |     // temporarily reset. | 
 |     ASSERT_EQ(connection_.self_address_on_default_path_while_sending_packet() | 
 |                   .host() | 
 |                   .address_family(), | 
 |               IpAddressFamily::IP_V6); | 
 |   } else { | 
 |     ASSERT_EQ(connection_.self_address_on_default_path_while_sending_packet() | 
 |                   .host() | 
 |                   .address_family(), | 
 |               IpAddressFamily::IP_UNSPEC); | 
 |   } | 
 | } | 
 |  | 
 | // Regression test for b/196208556. | 
 | TEST_P(QuicConnectionTest, | 
 |        ReversePathValidationResponseReceivedFromUnexpectedPeerAddress) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   connection_.CreateConnectionIdManager(); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   QuicConnectionPeer::SetPeerAddress(&connection_, kPeerAddress); | 
 |   QuicConnectionPeer::SetEffectivePeerAddress(&connection_, kPeerAddress); | 
 |   QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   // Sends new server CID to client. | 
 |   QuicConnectionId new_cid; | 
 |   EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)) | 
 |       .WillOnce(Invoke([&](const QuicConnectionId& cid) { new_cid = cid; })); | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)); | 
 |   // Discard INITIAL key. | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |  | 
 |   // Process a non-probing packet to migrate to path 2 and kick off reverse path | 
 |   // validation. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1); | 
 |   const QuicSocketAddress kPeerAddress2 = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456); | 
 |   peer_creator_.SetServerConnectionId(new_cid); | 
 |   ProcessFramesPacketWithAddresses({QuicFrame(QuicPingFrame())}, kSelfAddress, | 
 |                                    kPeerAddress2, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_FALSE(writer_->path_challenge_frames().empty()); | 
 |   QuicPathFrameBuffer reverse_path_challenge_payload = | 
 |       writer_->path_challenge_frames().front().data_buffer; | 
 |  | 
 |   // Receiveds a packet from path 3 with PATH_RESPONSE frame intended to | 
 |   // validate path 2 and a non-probing frame. | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     const QuicSocketAddress kPeerAddress3 = | 
 |         QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/56789); | 
 |     auto ack_frame = InitAckFrame(1); | 
 |     EXPECT_CALL(visitor_, OnConnectionMigration(IPV4_TO_IPV6_CHANGE)).Times(1); | 
 |     EXPECT_CALL(visitor_, MaybeSendAddressToken()).WillOnce(Invoke([this]() { | 
 |       connection_.SendControlFrame( | 
 |           QuicFrame(new QuicNewTokenFrame(1, "new_token"))); | 
 |       return true; | 
 |     })); | 
 |     ProcessFramesPacketWithAddresses({QuicFrame(new QuicPathResponseFrame( | 
 |                                           0, reverse_path_challenge_payload)), | 
 |                                       QuicFrame(&ack_frame)}, | 
 |                                      kSelfAddress, kPeerAddress3, | 
 |                                      ENCRYPTION_FORWARD_SECURE); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReversePathValidationFailureAtServer) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
 |   SetClientConnectionId(TestConnectionId(1)); | 
 |   connection_.CreateConnectionIdManager(); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   // Discard INITIAL key. | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   // Prevent packets from being coalesced. | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |  | 
 |   QuicConnectionId client_cid0 = connection_.client_connection_id(); | 
 |   QuicConnectionId client_cid1 = TestConnectionId(2); | 
 |   QuicConnectionId server_cid0 = connection_.connection_id(); | 
 |   QuicConnectionId server_cid1; | 
 |   // Sends new server CID to client. | 
 |   EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)) | 
 |       .WillOnce( | 
 |           Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; })); | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)); | 
 |   connection_.OnHandshakeComplete(); | 
 |   // Receives new client CID from client. | 
 |   QuicNewConnectionIdFrame new_cid_frame; | 
 |   new_cid_frame.connection_id = client_cid1; | 
 |   new_cid_frame.sequence_number = 1u; | 
 |   new_cid_frame.retire_prior_to = 0u; | 
 |   connection_.OnNewConnectionIdFrame(new_cid_frame); | 
 |   auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_); | 
 |   ASSERT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0); | 
 |   ASSERT_EQ(packet_creator->GetSourceConnectionId(), server_cid0); | 
 |  | 
 |   // Clear direct_peer_address. | 
 |   QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
 |   // Clear effective_peer_address, it is the same as direct_peer_address for | 
 |   // this test. | 
 |   QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
 |                                               QuicSocketAddress()); | 
 |   EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
 |  | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
 |       .WillOnce(Invoke( | 
 |           [=]() { EXPECT_EQ(kPeerAddress, connection_.peer_address()); })) | 
 |       .WillOnce(Invoke( | 
 |           [=]() { EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); })); | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(frame1_)); | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   // Process another packet with a different peer address on server side will | 
 |   // start connection migration. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1); | 
 |   // IETF QUIC send algorithm should be changed to a different object, so no | 
 |   // OnPacketSent() called on the old send algorithm. | 
 |   EXPECT_CALL(*send_algorithm_, OnConnectionMigration()).Times(0); | 
 |  | 
 |   QuicFrames frames2; | 
 |   frames2.push_back(QuicFrame(frame2_)); | 
 |   QuicPaddingFrame padding; | 
 |   frames2.push_back(QuicFrame(padding)); | 
 |   peer_creator_.SetServerConnectionId(server_cid1); | 
 |   ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |   EXPECT_EQ(IPV6_TO_IPV4_CHANGE, | 
 |             connection_.active_effective_peer_migration_type()); | 
 |   EXPECT_LT(0u, writer_->packets_write_attempts()); | 
 |   EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |   EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(), | 
 |             send_algorithm_); | 
 |   EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |   const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_); | 
 |   const auto* alternative_path = | 
 |       QuicConnectionPeer::GetAlternativePath(&connection_); | 
 |   EXPECT_EQ(default_path->client_connection_id, client_cid1); | 
 |   EXPECT_EQ(default_path->server_connection_id, server_cid1); | 
 |   EXPECT_EQ(alternative_path->client_connection_id, client_cid0); | 
 |   EXPECT_EQ(alternative_path->server_connection_id, server_cid0); | 
 |   EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid1); | 
 |   EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid1); | 
 |  | 
 |   for (size_t i = 0; i < QuicPathValidator::kMaxRetryTimes; ++i) { | 
 |     clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs)); | 
 |     static_cast<TestAlarmFactory::TestAlarm*>( | 
 |         QuicPathValidatorPeer::retry_timer( | 
 |             QuicConnectionPeer::path_validator(&connection_))) | 
 |         ->Fire(); | 
 |   } | 
 |   EXPECT_EQ(IPV6_TO_IPV4_CHANGE, | 
 |             connection_.active_effective_peer_migration_type()); | 
 |  | 
 |   // Make sure anti-amplification limit is not reached. | 
 |   ProcessFramesPacketWithAddresses( | 
 |       {QuicFrame(QuicPingFrame()), QuicFrame(QuicPaddingFrame())}, kSelfAddress, | 
 |       kNewPeerAddress, ENCRYPTION_FORWARD_SECURE); | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Advance the time so that the reverse path validation times out. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs)); | 
 |   static_cast<TestAlarmFactory::TestAlarm*>( | 
 |       QuicPathValidatorPeer::retry_timer( | 
 |           QuicConnectionPeer::path_validator(&connection_))) | 
 |       ->Fire(); | 
 |   EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |   EXPECT_EQ(connection_.sent_packet_manager().GetSendAlgorithm(), | 
 |             send_algorithm_); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Verify that default_path_ is reverted and alternative_path_ is cleared. | 
 |   EXPECT_EQ(default_path->client_connection_id, client_cid0); | 
 |   EXPECT_EQ(default_path->server_connection_id, server_cid0); | 
 |   EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty()); | 
 |   EXPECT_FALSE(alternative_path->stateless_reset_token.has_value()); | 
 |   auto* retire_peer_issued_cid_alarm = | 
 |       connection_.GetRetirePeerIssuedConnectionIdAlarm(); | 
 |   ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet()); | 
 |   EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/1u)); | 
 |   retire_peer_issued_cid_alarm->Fire(); | 
 |   EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0); | 
 |   EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid0); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReceivePathProbeWithNoAddressChangeAtServer) { | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |   EXPECT_CALL(visitor_, OnPacketReceived(_, _, false)).Times(0); | 
 |  | 
 |   // Process a padded PING packet with no peer address change on server side | 
 |   // will be ignored. But a PATH CHALLENGE packet with no peer address change | 
 |   // will be considered as path probing. | 
 |   std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
 |  | 
 |   std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
 |       QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
 |                           probing_packet->encrypted_length), | 
 |       clock_.Now())); | 
 |  | 
 |   uint64_t num_probing_received = | 
 |       connection_.GetStats().num_connectivity_probing_received; | 
 |   ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received); | 
 |  | 
 |   EXPECT_EQ( | 
 |       num_probing_received + (GetParam().version.HasIetfQuicFrames() ? 1u : 0u), | 
 |       connection_.GetStats().num_connectivity_probing_received); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 | } | 
 |  | 
 | // Regression test for b/150161358. | 
 | TEST_P(QuicConnectionTest, BufferedMtuPacketTooBig) { | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); | 
 |   writer_->SetWriteBlocked(); | 
 |  | 
 |   // Send a MTU packet while blocked. It should be buffered. | 
 |   connection_.SendMtuDiscoveryPacket(kMaxOutgoingPacketSize); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |  | 
 |   writer_->AlwaysGetPacketTooLarge(); | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WriteOutOfOrderQueuedPackets) { | 
 |   // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. | 
 |   if (!IsDefaultTestConfiguration()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   set_perspective(Perspective::IS_CLIENT); | 
 |  | 
 |   BlockOnNextWrite(); | 
 |  | 
 |   QuicStreamId stream_id = 2; | 
 |   connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN); | 
 |  | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   connection_.SendConnectivityProbingPacket(writer_.get(), | 
 |                                             connection_.peer_address()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
 |   connection_.OnCanWrite(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DiscardQueuedPacketsAfterConnectionClose) { | 
 |   // Regression test for b/74073386. | 
 |   { | 
 |     InSequence seq; | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .Times(AtLeast(1)); | 
 |     EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(AtLeast(1)); | 
 |   } | 
 |  | 
 |   set_perspective(Perspective::IS_CLIENT); | 
 |  | 
 |   writer_->SimulateNextPacketTooLarge(); | 
 |  | 
 |   // This packet write should fail, which should cause the connection to close | 
 |   // after sending a connection close packet, then the failed packet should be | 
 |   // queued. | 
 |   connection_.SendStreamDataWithString(/*id=*/2, "foo", 0, NO_FIN); | 
 |  | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   // No need to buffer packets. | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.GetStats().packets_discarded); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_EQ(0u, connection_.GetStats().packets_discarded); | 
 | } | 
 |  | 
 | class TestQuicPathValidationContext : public QuicPathValidationContext { | 
 |  public: | 
 |   TestQuicPathValidationContext(const QuicSocketAddress& self_address, | 
 |                                 const QuicSocketAddress& peer_address, | 
 |  | 
 |                                 QuicPacketWriter* writer) | 
 |       : QuicPathValidationContext(self_address, peer_address), | 
 |         writer_(writer) {} | 
 |  | 
 |   QuicPacketWriter* WriterToUse() override { return writer_; } | 
 |  | 
 |  private: | 
 |   QuicPacketWriter* writer_; | 
 | }; | 
 |  | 
 | class TestValidationResultDelegate : public QuicPathValidator::ResultDelegate { | 
 |  public: | 
 |   TestValidationResultDelegate(QuicConnection* connection, | 
 |                                const QuicSocketAddress& expected_self_address, | 
 |                                const QuicSocketAddress& expected_peer_address, | 
 |                                bool* success) | 
 |       : QuicPathValidator::ResultDelegate(), | 
 |         connection_(connection), | 
 |         expected_self_address_(expected_self_address), | 
 |         expected_peer_address_(expected_peer_address), | 
 |         success_(success) {} | 
 |   void OnPathValidationSuccess( | 
 |       std::unique_ptr<QuicPathValidationContext> context) override { | 
 |     EXPECT_EQ(expected_self_address_, context->self_address()); | 
 |     EXPECT_EQ(expected_peer_address_, context->peer_address()); | 
 |     *success_ = true; | 
 |   } | 
 |  | 
 |   void OnPathValidationFailure( | 
 |       std::unique_ptr<QuicPathValidationContext> context) override { | 
 |     EXPECT_EQ(expected_self_address_, context->self_address()); | 
 |     EXPECT_EQ(expected_peer_address_, context->peer_address()); | 
 |     if (connection_->perspective() == Perspective::IS_CLIENT) { | 
 |       connection_->OnPathValidationFailureAtClient(); | 
 |     } | 
 |     *success_ = false; | 
 |   } | 
 |  | 
 |  private: | 
 |   QuicConnection* connection_; | 
 |   QuicSocketAddress expected_self_address_; | 
 |   QuicSocketAddress expected_peer_address_; | 
 |   bool* success_; | 
 | }; | 
 |  | 
 | // Receive a path probe request at the server side, i.e., | 
 | // in non-IETF version: receive a padded PING packet with a peer addess change; | 
 | // in IETF version: receive a packet contains PATH CHALLENGE with peer address | 
 | // change. | 
 | TEST_P(QuicConnectionTest, ReceivePathProbingAtServer) { | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |   QuicPathFrameBuffer payload; | 
 |   if (!GetParam().version.HasIetfQuicFrames()) { | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
 |         .Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0); | 
 |     if (connection_.validate_client_address()) { | 
 |       EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |           .Times(AtLeast(1u)) | 
 |           .WillOnce(Invoke([&]() { | 
 |             EXPECT_EQ(1u, writer_->path_challenge_frames().size()); | 
 |             EXPECT_EQ(1u, writer_->path_response_frames().size()); | 
 |             payload = writer_->path_challenge_frames().front().data_buffer; | 
 |           })); | 
 |     } | 
 |   } | 
 |   // Process a probing packet from a new peer address on server side | 
 |   // is effectively receiving a connectivity probing. | 
 |   const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(), | 
 |                                           /*port=*/23456); | 
 |  | 
 |   std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
 |   std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
 |       QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
 |                           probing_packet->encrypted_length), | 
 |       clock_.Now())); | 
 |   uint64_t num_probing_received = | 
 |       connection_.GetStats().num_connectivity_probing_received; | 
 |   ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received); | 
 |  | 
 |   EXPECT_EQ(num_probing_received + 1, | 
 |             connection_.GetStats().num_connectivity_probing_received); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |   if (GetParam().version.HasIetfQuicFrames() && | 
 |       connection_.use_path_validator() && | 
 |       GetQuicReloadableFlag(quic_count_bytes_on_alternative_path_seperately)) { | 
 |     QuicByteCount bytes_sent = | 
 |         QuicConnectionPeer::BytesSentOnAlternativePath(&connection_); | 
 |     EXPECT_LT(0u, bytes_sent); | 
 |     EXPECT_EQ(received->length(), | 
 |               QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_)); | 
 |  | 
 |     // Receiving one more probing packet should update the bytes count. | 
 |     probing_packet = ConstructProbingPacket(); | 
 |     received.reset(ConstructReceivedPacket( | 
 |         QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
 |                             probing_packet->encrypted_length), | 
 |         clock_.Now())); | 
 |     ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received); | 
 |  | 
 |     EXPECT_EQ(num_probing_received + 2, | 
 |               connection_.GetStats().num_connectivity_probing_received); | 
 |     EXPECT_EQ(2 * bytes_sent, | 
 |               QuicConnectionPeer::BytesSentOnAlternativePath(&connection_)); | 
 |     EXPECT_EQ(2 * received->length(), | 
 |               QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_)); | 
 |  | 
 |     bool success = false; | 
 |     if (!connection_.validate_client_address()) { | 
 |       EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |           .Times(AtLeast(1u)) | 
 |           .WillOnce(Invoke([&]() { | 
 |             EXPECT_EQ(1u, writer_->path_challenge_frames().size()); | 
 |             payload = writer_->path_challenge_frames().front().data_buffer; | 
 |           })); | 
 |  | 
 |       connection_.ValidatePath( | 
 |           std::make_unique<TestQuicPathValidationContext>( | 
 |               connection_.self_address(), kNewPeerAddress, writer_.get()), | 
 |           std::make_unique<TestValidationResultDelegate>( | 
 |               &connection_, connection_.self_address(), kNewPeerAddress, | 
 |               &success)); | 
 |     } | 
 |     EXPECT_EQ((connection_.validate_client_address() ? 2 : 3) * bytes_sent, | 
 |               QuicConnectionPeer::BytesSentOnAlternativePath(&connection_)); | 
 |     QuicFrames frames; | 
 |     frames.push_back(QuicFrame(new QuicPathResponseFrame(99, payload))); | 
 |     ProcessFramesPacketWithAddresses(frames, connection_.self_address(), | 
 |                                      kNewPeerAddress, | 
 |                                      ENCRYPTION_FORWARD_SECURE); | 
 |     EXPECT_LT(2 * received->length(), | 
 |               QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_)); | 
 |     if (connection_.validate_client_address()) { | 
 |       EXPECT_TRUE(QuicConnectionPeer::IsAlternativePathValidated(&connection_)); | 
 |     } | 
 |     // Receiving another probing packet from a newer address with a different | 
 |     // port shouldn't trigger another reverse path validation. | 
 |     QuicSocketAddress kNewerPeerAddress(QuicIpAddress::Loopback4(), | 
 |                                         /*port=*/34567); | 
 |     probing_packet = ConstructProbingPacket(); | 
 |     received.reset(ConstructReceivedPacket( | 
 |         QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
 |                             probing_packet->encrypted_length), | 
 |         clock_.Now())); | 
 |     ProcessReceivedPacket(kSelfAddress, kNewerPeerAddress, *received); | 
 |     EXPECT_FALSE(connection_.HasPendingPathValidation()); | 
 |     EXPECT_EQ(connection_.validate_client_address(), | 
 |               QuicConnectionPeer::IsAlternativePathValidated(&connection_)); | 
 |   } | 
 |  | 
 |   // Process another packet with the old peer address on server side will not | 
 |   // start peer migration. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 | } | 
 |  | 
 | // Receive a padded PING packet with a port change on server side. | 
 | TEST_P(QuicConnectionTest, ReceivePaddedPingWithPortChangeAtServer) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
 |   if (version().SupportsAntiAmplificationLimit()) { | 
 |     QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   } | 
 |  | 
 |   // Clear direct_peer_address. | 
 |   QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
 |   // Clear effective_peer_address, it is the same as direct_peer_address for | 
 |   // this test. | 
 |   QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
 |                                               QuicSocketAddress()); | 
 |   EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
 |  | 
 |   if (GetParam().version.UsesCryptoFrames()) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   if (GetParam().version.HasIetfQuicFrames()) { | 
 |     // In IETF version, a padded PING packet with port change is not taken as | 
 |     // connectivity probe. | 
 |     EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |         .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |     EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
 |     EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0); | 
 |   } else { | 
 |     // In non-IETF version, process a padded PING packet from a new peer | 
 |     // address on server side is effectively receiving a connectivity probing. | 
 |     EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
 |         .Times(1); | 
 |   } | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
 |  | 
 |   QuicFrames frames; | 
 |   // Write a PING frame, which has no data payload. | 
 |   QuicPingFrame ping_frame; | 
 |   frames.push_back(QuicFrame(ping_frame)); | 
 |  | 
 |   // Add padding to the rest of the packet. | 
 |   QuicPaddingFrame padding_frame; | 
 |   frames.push_back(QuicFrame(padding_frame)); | 
 |  | 
 |   uint64_t num_probing_received = | 
 |       connection_.GetStats().num_connectivity_probing_received; | 
 |  | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_INITIAL); | 
 |  | 
 |   if (GetParam().version.HasIetfQuicFrames()) { | 
 |     // Padded PING with port changen is not considered as connectivity probe but | 
 |     // a PORT CHANGE. | 
 |     EXPECT_EQ(num_probing_received, | 
 |               connection_.GetStats().num_connectivity_probing_received); | 
 |     EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |     EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |   } else { | 
 |     EXPECT_EQ(num_probing_received + 1, | 
 |               connection_.GetStats().num_connectivity_probing_received); | 
 |     EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |     EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |   } | 
 |  | 
 |   if (GetParam().version.HasIetfQuicFrames()) { | 
 |     EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
 |   } | 
 |   // Process another packet with the old peer address on server side. gQUIC | 
 |   // shouldn't regard this as a peer migration. | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReceiveReorderedPathProbingAtServer) { | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |  | 
 |   // Decrease packet number to simulate out-of-order packets. | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |   if (!GetParam().version.HasIetfQuicFrames()) { | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
 |         .Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0); | 
 |   } | 
 |  | 
 |   // Process a padded PING packet from a new peer address on server side | 
 |   // is effectively receiving a connectivity probing, even if a newer packet has | 
 |   // been received before this one. | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
 |  | 
 |   std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
 |   std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
 |       QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
 |                           probing_packet->encrypted_length), | 
 |       clock_.Now())); | 
 |  | 
 |   uint64_t num_probing_received = | 
 |       connection_.GetStats().num_connectivity_probing_received; | 
 |   ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received); | 
 |  | 
 |   EXPECT_EQ(num_probing_received + 1, | 
 |             connection_.GetStats().num_connectivity_probing_received); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, MigrateAfterProbingAtServer) { | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |   if (!GetParam().version.HasIetfQuicFrames()) { | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
 |         .Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0); | 
 |   } | 
 |  | 
 |   // Process a padded PING packet from a new peer address on server side | 
 |   // is effectively receiving a connectivity probing. | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
 |  | 
 |   std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
 |   std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
 |       QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
 |                           probing_packet->encrypted_length), | 
 |       clock_.Now())); | 
 |   ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   // Process another non-probing packet with the new peer address on server | 
 |   // side will start peer migration. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
 |  | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
 |                                   kNewPeerAddress, ENCRYPTION_INITIAL); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReceiveConnectivityProbingPacketAtClient) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |  | 
 |   // Client takes all padded PING packet as speculative connectivity | 
 |   // probing packet, and reports to visitor. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |  | 
 |   std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
 |   std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
 |       QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
 |                           probing_packet->encrypted_length), | 
 |       clock_.Now())); | 
 |   uint64_t num_probing_received = | 
 |       connection_.GetStats().num_connectivity_probing_received; | 
 |   ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received); | 
 |  | 
 |   EXPECT_EQ( | 
 |       num_probing_received + (GetParam().version.HasIetfQuicFrames() ? 1u : 0u), | 
 |       connection_.GetStats().num_connectivity_probing_received); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReceiveConnectivityProbingResponseAtClient) { | 
 |   // TODO(b/150095484): add test coverage for IETF to verify that client takes | 
 |   // PATH RESPONSE with peer address change as correct validation on the new | 
 |   // path. | 
 |   if (GetParam().version.HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |  | 
 |   // Process a padded PING packet with a different self address on client side | 
 |   // is effectively receiving a connectivity probing. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |   if (!GetParam().version.HasIetfQuicFrames()) { | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
 |         .Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0); | 
 |   } | 
 |  | 
 |   const QuicSocketAddress kNewSelfAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
 |  | 
 |   std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
 |   std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
 |       QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
 |                           probing_packet->encrypted_length), | 
 |       clock_.Now())); | 
 |   uint64_t num_probing_received = | 
 |       connection_.GetStats().num_connectivity_probing_received; | 
 |   ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received); | 
 |  | 
 |   EXPECT_EQ(num_probing_received + 1, | 
 |             connection_.GetStats().num_connectivity_probing_received); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PeerAddressChangeAtClient) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   set_perspective(Perspective::IS_CLIENT); | 
 |   EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
 |  | 
 |   // Clear direct_peer_address. | 
 |   QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
 |   // Clear effective_peer_address, it is the same as direct_peer_address for | 
 |   // this test. | 
 |   QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
 |                                               QuicSocketAddress()); | 
 |   EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
 |  | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   // Process another packet with a different peer address on client side will | 
 |   // only update peer address. | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
 |                                   kNewPeerAddress, ENCRYPTION_INITIAL); | 
 |   if (connection_.version().HasIetfQuicFrames()) { | 
 |     // IETF QUIC disallows server initiated address change. | 
 |     EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |     EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |   } else { | 
 |     EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |     EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, MaxPacketSize) { | 
 |   EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
 |   EXPECT_EQ(1250u, connection_.max_packet_length()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PeerLowersMaxPacketSize) { | 
 |   EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
 |  | 
 |   // SetFromConfig is always called after construction from InitializeSession. | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   constexpr uint32_t kTestMaxPacketSize = 1233u; | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetReceivedMaxPacketSize(&config, kTestMaxPacketSize); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   EXPECT_EQ(kTestMaxPacketSize, connection_.max_packet_length()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PeerCannotRaiseMaxPacketSize) { | 
 |   EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
 |  | 
 |   // SetFromConfig is always called after construction from InitializeSession. | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   constexpr uint32_t kTestMaxPacketSize = 1450u; | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetReceivedMaxPacketSize(&config, kTestMaxPacketSize); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) { | 
 |   TestConnection connection(TestConnectionId(), kSelfAddress, kPeerAddress, | 
 |                             helper_.get(), alarm_factory_.get(), writer_.get(), | 
 |                             Perspective::IS_SERVER, version()); | 
 |   EXPECT_EQ(Perspective::IS_SERVER, connection.perspective()); | 
 |   EXPECT_EQ(1000u, connection.max_packet_length()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LowerServerResponseMtuTest) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   connection_.SetMaxPacketLength(1000); | 
 |   EXPECT_EQ(1000u, connection_.max_packet_length()); | 
 |  | 
 |   SetQuicFlag(FLAGS_quic_use_lower_server_response_mtu_for_test, true); | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(::testing::AtMost(1)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(::testing::AtMost(1)); | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |   EXPECT_EQ(1250u, connection_.max_packet_length()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   connection_.SetMaxPacketLength(1000); | 
 |  | 
 |   QuicPacketHeader header; | 
 |   header.destination_connection_id = connection_id_; | 
 |   header.version_flag = true; | 
 |   header.packet_number = QuicPacketNumber(12); | 
 |  | 
 |   if (QuicVersionHasLongHeaderLengths( | 
 |           peer_framer_.version().transport_version)) { | 
 |     header.long_packet_type = INITIAL; | 
 |     header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1; | 
 |     header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2; | 
 |   } | 
 |  | 
 |   QuicFrames frames; | 
 |   QuicPaddingFrame padding; | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     frames.push_back(QuicFrame(&crypto_frame_)); | 
 |   } else { | 
 |     frames.push_back(QuicFrame(frame1_)); | 
 |   } | 
 |   frames.push_back(QuicFrame(padding)); | 
 |   std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
 |   char buffer[kMaxOutgoingPacketSize]; | 
 |   size_t encrypted_length = | 
 |       peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12), | 
 |                                   *packet, buffer, kMaxOutgoingPacketSize); | 
 |   EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length); | 
 |  | 
 |   framer_.set_version(version()); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   } | 
 |   connection_.ProcessUdpPacket( | 
 |       kSelfAddress, kPeerAddress, | 
 |       QuicReceivedPacket(buffer, encrypted_length, clock_.ApproximateNow(), | 
 |                          false)); | 
 |  | 
 |   EXPECT_EQ(kMaxOutgoingPacketSize, connection_.max_packet_length()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSizeWhileWriterLimited) { | 
 |   const QuicByteCount lower_max_packet_size = 1240; | 
 |   writer_->set_max_packet_size(lower_max_packet_size); | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   connection_.SetMaxPacketLength(1000); | 
 |   EXPECT_EQ(1000u, connection_.max_packet_length()); | 
 |  | 
 |   QuicPacketHeader header; | 
 |   header.destination_connection_id = connection_id_; | 
 |   header.version_flag = true; | 
 |   header.packet_number = QuicPacketNumber(12); | 
 |  | 
 |   if (QuicVersionHasLongHeaderLengths( | 
 |           peer_framer_.version().transport_version)) { | 
 |     header.long_packet_type = INITIAL; | 
 |     header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1; | 
 |     header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2; | 
 |   } | 
 |  | 
 |   QuicFrames frames; | 
 |   QuicPaddingFrame padding; | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     frames.push_back(QuicFrame(&crypto_frame_)); | 
 |   } else { | 
 |     frames.push_back(QuicFrame(frame1_)); | 
 |   } | 
 |   frames.push_back(QuicFrame(padding)); | 
 |   std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
 |   char buffer[kMaxOutgoingPacketSize]; | 
 |   size_t encrypted_length = | 
 |       peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12), | 
 |                                   *packet, buffer, kMaxOutgoingPacketSize); | 
 |   EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length); | 
 |  | 
 |   framer_.set_version(version()); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   } | 
 |   connection_.ProcessUdpPacket( | 
 |       kSelfAddress, kPeerAddress, | 
 |       QuicReceivedPacket(buffer, encrypted_length, clock_.ApproximateNow(), | 
 |                          false)); | 
 |  | 
 |   // Here, the limit imposed by the writer is lower than the size of the packet | 
 |   // received, so the writer max packet size is used. | 
 |   EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriter) { | 
 |   const QuicByteCount lower_max_packet_size = 1240; | 
 |   writer_->set_max_packet_size(lower_max_packet_size); | 
 |  | 
 |   static_assert(lower_max_packet_size < kDefaultMaxPacketSize, | 
 |                 "Default maximum packet size is too low"); | 
 |   connection_.SetMaxPacketLength(kDefaultMaxPacketSize); | 
 |  | 
 |   EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriterForNewConnection) { | 
 |   const QuicConnectionId connection_id = TestConnectionId(17); | 
 |   const QuicByteCount lower_max_packet_size = 1240; | 
 |   writer_->set_max_packet_size(lower_max_packet_size); | 
 |   TestConnection connection(connection_id, kSelfAddress, kPeerAddress, | 
 |                             helper_.get(), alarm_factory_.get(), writer_.get(), | 
 |                             Perspective::IS_CLIENT, version()); | 
 |   EXPECT_EQ(Perspective::IS_CLIENT, connection.perspective()); | 
 |   EXPECT_EQ(lower_max_packet_size, connection.max_packet_length()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PacketsInOrder) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(1); | 
 |   EXPECT_EQ(QuicPacketNumber(1u), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
 |  | 
 |   ProcessPacket(2); | 
 |   EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
 |  | 
 |   ProcessPacket(3); | 
 |   EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PacketsOutOfOrder) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(3); | 
 |   EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_TRUE(IsMissing(2)); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |  | 
 |   ProcessPacket(2); | 
 |   EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_FALSE(IsMissing(2)); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |  | 
 |   ProcessPacket(1); | 
 |   EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_FALSE(IsMissing(2)); | 
 |   EXPECT_FALSE(IsMissing(1)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DuplicatePacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(3); | 
 |   EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_TRUE(IsMissing(2)); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |  | 
 |   // Send packet 3 again, but do not set the expectation that | 
 |   // the visitor OnStreamFrame() will be called. | 
 |   ProcessDataPacket(3); | 
 |   EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_TRUE(IsMissing(2)); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(3); | 
 |   EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_TRUE(IsMissing(2)); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |  | 
 |   ProcessPacket(2); | 
 |   EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |  | 
 |   ProcessPacket(5); | 
 |   EXPECT_EQ(QuicPacketNumber(5u), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |   EXPECT_TRUE(IsMissing(4)); | 
 |  | 
 |   // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a | 
 |   // packet the peer will not retransmit.  It indicates this by sending 'least | 
 |   // awaiting' is 4.  The connection should then realize 1 will not be | 
 |   // retransmitted, and will remove it from the missing list. | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   ProcessAckPacket(6, &frame); | 
 |  | 
 |   // Force an ack to be sent. | 
 |   SendAckPacketToPeer(); | 
 |   EXPECT_TRUE(IsMissing(4)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) { | 
 |   // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. | 
 |   if (!IsDefaultTestConfiguration() || | 
 |       VersionHasIetfQuicFrames(version().transport_version)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Process an unencrypted packet from the non-crypto stream. | 
 |   frame1_.stream_id = 3; | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_QUIC_PEER_BUG(ProcessDataPacketAtLevel(1, false, ENCRYPTION_INITIAL), | 
 |                        ""); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_UNENCRYPTED_STREAM_DATA); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(3); | 
 |   // Should not cause an ack. | 
 |   EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |  | 
 |   ProcessPacket(2); | 
 |   // Should ack immediately, since this fills the last hole. | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |  | 
 |   ProcessPacket(1); | 
 |   // Should ack immediately, since this fills the last hole. | 
 |   EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 |  | 
 |   ProcessPacket(4); | 
 |   // Should not cause an ack. | 
 |   EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); | 
 |   SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); | 
 |   EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 |  | 
 |   QuicAckFrame ack1 = InitAckFrame(1); | 
 |   QuicAckFrame ack2 = InitAckFrame(2); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()).Times(1); | 
 |   } | 
 |   ProcessAckPacket(2, &ack2); | 
 |   // Should ack immediately since we have missing packets. | 
 |   EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 |  | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()).Times(0); | 
 |   } | 
 |   ProcessAckPacket(1, &ack1); | 
 |   // Should not ack an ack filling a missing packet. | 
 |   EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   QuicPacketNumber original, second; | 
 |  | 
 |   QuicByteCount packet_size = | 
 |       SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original);  // 1st packet. | 
 |   SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second);        // 2nd packet. | 
 |  | 
 |   QuicAckFrame frame = InitAckFrame({{second, second + 1}}); | 
 |   // First nack triggers early retransmit. | 
 |   LostPacketVector lost_packets; | 
 |   lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
 |                       Return(LossDetectionInterface::DetectionStats()))); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicPacketNumber retransmission; | 
 |   // Packet 1 is short header for IETF QUIC because the encryption level | 
 |   // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, | 
 |                            GetParam().version.HasIetfInvariantHeader() | 
 |                                ? packet_size | 
 |                                : packet_size - kQuicVersionSize, | 
 |                            _)) | 
 |       .WillOnce(SaveArg<2>(&retransmission)); | 
 |  | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   QuicAckFrame frame2 = ConstructAckFrame(retransmission, original); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   ProcessAckPacket(&frame2); | 
 |  | 
 |   // Now if the peer sends an ack which still reports the retransmitted packet | 
 |   // as missing, that will bundle an ack with data after two acks in a row | 
 |   // indicate the high water mark needs to be raised. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); | 
 |   connection_.SendStreamDataWithString(3, "foo", 6, NO_FIN); | 
 |   // No ack sent. | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |  | 
 |   // No more packet loss for the rest of the test. | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |   ProcessAckPacket(&frame2); | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); | 
 |   connection_.SendStreamDataWithString(3, "foofoofoo", 9, NO_FIN); | 
 |   // Ack bundled. | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Do not ACK acks. | 
 |     EXPECT_EQ(1u, writer_->frame_count()); | 
 |   } else { | 
 |     EXPECT_EQ(3u, writer_->frame_count()); | 
 |   } | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_TRUE(writer_->ack_frames().empty()); | 
 |   } else { | 
 |     EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   } | 
 |  | 
 |   // But an ack with no missing packets will not send an ack. | 
 |   AckPacket(original, &frame2); | 
 |   ProcessAckPacket(&frame2); | 
 |   ProcessAckPacket(&frame2); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckFrequencyUpdatedFromAckFrequencyFrame) { | 
 |   if (!GetParam().version.HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   connection_.set_can_receive_ack_frequency_frame(); | 
 |  | 
 |   // Expect 13 acks, every 3rd packet including the first packet with | 
 |   // AckFrequencyFrame. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(13); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   QuicAckFrequencyFrame ack_frequency_frame; | 
 |   ack_frequency_frame.packet_tolerance = 3; | 
 |   ProcessFramePacketAtLevel(1, QuicFrame(&ack_frequency_frame), | 
 |                             ENCRYPTION_FORWARD_SECURE); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(38); | 
 |   // Receives packets 2 - 39. | 
 |   for (size_t i = 2; i <= 39; ++i) { | 
 |     ProcessDataPacket(i); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckDecimationReducesAcks) { | 
 |   const size_t kMinRttMs = 40; | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
 |  | 
 |   // Start ack decimation from 10th packet. | 
 |   connection_.set_min_received_before_ack_decimation(10); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(30); | 
 |  | 
 |   // Expect 6 acks: 5 acks between packets 1-10, and ack at 20. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6); | 
 |   // Receives packets 1 - 29. | 
 |   for (size_t i = 1; i <= 29; ++i) { | 
 |     ProcessDataPacket(i); | 
 |   } | 
 |  | 
 |   // We now receive the 30th packet, and so we send an ack. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessDataPacket(30); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckNeedsRetransmittableFrames) { | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(99); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19); | 
 |   // Receives packets 1 - 39. | 
 |   for (size_t i = 1; i <= 39; ++i) { | 
 |     ProcessDataPacket(i); | 
 |   } | 
 |   // Receiving Packet 40 causes 20th ack to send. Session is informed and adds | 
 |   // WINDOW_UPDATE. | 
 |   EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()) | 
 |       .WillOnce(Invoke([this]() { | 
 |         connection_.SendControlFrame(QuicFrame(QuicWindowUpdateFrame(1, 0, 0))); | 
 |       })); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   EXPECT_EQ(0u, writer_->window_update_frames().size()); | 
 |   ProcessDataPacket(40); | 
 |   EXPECT_EQ(1u, writer_->window_update_frames().size()); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(9); | 
 |   // Receives packets 41 - 59. | 
 |   for (size_t i = 41; i <= 59; ++i) { | 
 |     ProcessDataPacket(i); | 
 |   } | 
 |   // Send a packet containing stream frame. | 
 |   SendStreamDataToPeer( | 
 |       QuicUtils::GetFirstBidirectionalStreamId( | 
 |           connection_.version().transport_version, Perspective::IS_CLIENT), | 
 |       "bar", 0, NO_FIN, nullptr); | 
 |  | 
 |   // Session will not be informed until receiving another 20 packets. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19); | 
 |   for (size_t i = 60; i <= 98; ++i) { | 
 |     ProcessDataPacket(i); | 
 |     EXPECT_EQ(0u, writer_->window_update_frames().size()); | 
 |   } | 
 |   // Session does not add a retransmittable frame. | 
 |   EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()) | 
 |       .WillOnce(Invoke([this]() { | 
 |         connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); | 
 |       })); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   EXPECT_EQ(0u, writer_->ping_frames().size()); | 
 |   ProcessDataPacket(99); | 
 |   EXPECT_EQ(0u, writer_->window_update_frames().size()); | 
 |   // A ping frame will be added. | 
 |   EXPECT_EQ(1u, writer_->ping_frames().size()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckNeedsRetransmittableFramesAfterPto) { | 
 |   // Disable TLP so the RTO fires immediately. | 
 |   connection_.SetMaxTailLossProbes(0); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(kEACK); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   connection_.OnHandshakeComplete(); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(10); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(4); | 
 |   // Receive packets 1 - 9. | 
 |   for (size_t i = 1; i <= 9; ++i) { | 
 |     ProcessDataPacket(i); | 
 |   } | 
 |  | 
 |   // Send a ping and fire the retransmission alarm. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   SendPing(); | 
 |   QuicTime retransmission_time = | 
 |       connection_.GetRetransmissionAlarm()->deadline(); | 
 |   clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   ASSERT_TRUE(manager_->GetConsecutiveRtoCount() > 0 || | 
 |               manager_->GetConsecutivePtoCount() > 0); | 
 |  | 
 |   // Process a packet, which requests a retransmittable frame be bundled | 
 |   // with the ACK. | 
 |   EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()) | 
 |       .WillOnce(Invoke([this]() { | 
 |         connection_.SendControlFrame(QuicFrame(QuicWindowUpdateFrame(1, 0, 0))); | 
 |       })); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessDataPacket(11); | 
 |   EXPECT_EQ(1u, writer_->window_update_frames().size()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LeastUnackedLower) { | 
 |   if (GetParam().version.HasIetfInvariantHeader()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); | 
 |   SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); | 
 |   SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr); | 
 |  | 
 |   // Start out saying the least unacked is 2. | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); | 
 |   ProcessStopWaitingPacket(InitStopWaitingFrame(2)); | 
 |  | 
 |   // Change it to 1, but lower the packet number to fake out-of-order packets. | 
 |   // This should be fine. | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1); | 
 |   // The scheduler will not process out of order acks, but all packet processing | 
 |   // causes the connection to try to write. | 
 |   if (!GetParam().no_stop_waiting) { | 
 |     EXPECT_CALL(visitor_, OnCanWrite()); | 
 |   } | 
 |   ProcessStopWaitingPacket(InitStopWaitingFrame(1)); | 
 |  | 
 |   // Now claim it's one, but set the ordering so it was sent "after" the first | 
 |   // one.  This should cause a connection error. | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 7); | 
 |   if (!GetParam().no_stop_waiting) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .Times(AtLeast(1)); | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |         .Times(AtLeast(1)); | 
 |   } | 
 |   ProcessStopWaitingPacket(InitStopWaitingFrame(1)); | 
 |   if (!GetParam().no_stop_waiting) { | 
 |     TestConnectionCloseQuicErrorCode(QUIC_INVALID_STOP_WAITING_DATA); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TooManySentPackets) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   QuicPacketCount max_tracked_packets = 50; | 
 |   QuicConnectionPeer::SetMaxTrackedPackets(&connection_, max_tracked_packets); | 
 |  | 
 |   const int num_packets = max_tracked_packets + 5; | 
 |  | 
 |   for (int i = 0; i < num_packets; ++i) { | 
 |     SendStreamDataToPeer(1, "foo", 3 * i, NO_FIN, nullptr); | 
 |   } | 
 |  | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |  | 
 |   ProcessFramePacket(QuicFrame(QuicPingFrame())); | 
 |  | 
 |   TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LargestObservedLower) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); | 
 |   SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); | 
 |   SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |  | 
 |   // Start out saying the largest observed is 2. | 
 |   QuicAckFrame frame1 = InitAckFrame(1); | 
 |   QuicAckFrame frame2 = InitAckFrame(2); | 
 |   ProcessAckPacket(&frame2); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnCanWrite()); | 
 |   ProcessAckPacket(&frame1); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckUnsentData) { | 
 |   // Ack a packet which has not been sent. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).Times(0); | 
 |   ProcessAckPacket(&frame); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BasicSending) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   const QuicConnectionStats& stats = connection_.GetStats(); | 
 |   EXPECT_FALSE(stats.first_decrypted_packet.IsInitialized()); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacket(1); | 
 |   EXPECT_EQ(QuicPacketNumber(1), stats.first_decrypted_packet); | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2); | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);  // Packet 1 | 
 |   EXPECT_EQ(QuicPacketNumber(1u), last_packet); | 
 |   SendAckPacketToPeer();  // Packet 2 | 
 |  | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Expect no stop waiting frame is sent. | 
 |     EXPECT_FALSE(least_unacked().IsInitialized()); | 
 |   } else { | 
 |     EXPECT_EQ(QuicPacketNumber(1u), least_unacked()); | 
 |   } | 
 |  | 
 |   SendAckPacketToPeer();  // Packet 3 | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Expect no stop waiting frame is sent. | 
 |     EXPECT_FALSE(least_unacked().IsInitialized()); | 
 |   } else { | 
 |     EXPECT_EQ(QuicPacketNumber(1u), least_unacked()); | 
 |   } | 
 |  | 
 |   SendStreamDataToPeer(1, "bar", 3, NO_FIN, &last_packet);  // Packet 4 | 
 |   EXPECT_EQ(QuicPacketNumber(4u), last_packet); | 
 |   SendAckPacketToPeer();  // Packet 5 | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Expect no stop waiting frame is sent. | 
 |     EXPECT_FALSE(least_unacked().IsInitialized()); | 
 |   } else { | 
 |     EXPECT_EQ(QuicPacketNumber(1u), least_unacked()); | 
 |   } | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |  | 
 |   // Peer acks up to packet 3. | 
 |   QuicAckFrame frame = InitAckFrame(3); | 
 |   ProcessAckPacket(&frame); | 
 |   SendAckPacketToPeer();  // Packet 6 | 
 |  | 
 |   // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of | 
 |   // ack for 4. | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Expect no stop waiting frame is sent. | 
 |     EXPECT_FALSE(least_unacked().IsInitialized()); | 
 |   } else { | 
 |     EXPECT_EQ(QuicPacketNumber(4u), least_unacked()); | 
 |   } | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |  | 
 |   // Peer acks up to packet 4, the last packet. | 
 |   QuicAckFrame frame2 = InitAckFrame(6); | 
 |   ProcessAckPacket(&frame2);  // Acks don't instigate acks. | 
 |  | 
 |   // Verify that we did not send an ack. | 
 |   EXPECT_EQ(QuicPacketNumber(6u), writer_->header().packet_number); | 
 |  | 
 |   // So the last ack has not changed. | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Expect no stop waiting frame is sent. | 
 |     EXPECT_FALSE(least_unacked().IsInitialized()); | 
 |   } else { | 
 |     EXPECT_EQ(QuicPacketNumber(4u), least_unacked()); | 
 |   } | 
 |  | 
 |   // If we force an ack, we shouldn't change our retransmit state. | 
 |   SendAckPacketToPeer();  // Packet 7 | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Expect no stop waiting frame is sent. | 
 |     EXPECT_FALSE(least_unacked().IsInitialized()); | 
 |   } else { | 
 |     EXPECT_EQ(QuicPacketNumber(7u), least_unacked()); | 
 |   } | 
 |  | 
 |   // But if we send more data it should. | 
 |   SendStreamDataToPeer(1, "eep", 6, NO_FIN, &last_packet);  // Packet 8 | 
 |   EXPECT_EQ(QuicPacketNumber(8u), last_packet); | 
 |   SendAckPacketToPeer();  // Packet 9 | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Expect no stop waiting frame is sent. | 
 |     EXPECT_FALSE(least_unacked().IsInitialized()); | 
 |   } else { | 
 |     EXPECT_EQ(QuicPacketNumber(7u), least_unacked()); | 
 |   } | 
 |   EXPECT_EQ(QuicPacketNumber(1), stats.first_decrypted_packet); | 
 | } | 
 |  | 
 | // QuicConnection should record the packet sent-time prior to sending the | 
 | // packet. | 
 | TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) { | 
 |   // We're using a MockClock for the tests, so we have complete control over the | 
 |   // time. | 
 |   // Our recorded timestamp for the last packet sent time will be passed in to | 
 |   // the send_algorithm.  Make sure that it is set to the correct value. | 
 |   QuicTime actual_recorded_send_time = QuicTime::Zero(); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<0>(&actual_recorded_send_time)); | 
 |  | 
 |   // First send without any pause and check the result. | 
 |   QuicTime expected_recorded_send_time = clock_.Now(); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
 |   EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) | 
 |       << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() | 
 |       << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue(); | 
 |  | 
 |   // Now pause during the write, and check the results. | 
 |   actual_recorded_send_time = QuicTime::Zero(); | 
 |   const QuicTime::Delta write_pause_time_delta = | 
 |       QuicTime::Delta::FromMilliseconds(5000); | 
 |   SetWritePauseTimeDelta(write_pause_time_delta); | 
 |   expected_recorded_send_time = clock_.Now(); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<0>(&actual_recorded_send_time)); | 
 |   connection_.SendStreamDataWithString(2, "baz", 0, NO_FIN); | 
 |   EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) | 
 |       << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() | 
 |       << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePacking) { | 
 |   // Send two stream frames in 1 packet by queueing them. | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     connection_.SendStreamData3(); | 
 |     connection_.SendStreamData5(); | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   } | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure it's an ack and two stream frames from | 
 |   // two different streams. | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_EQ(2u, writer_->frame_count()); | 
 |     EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
 |   } else { | 
 |     EXPECT_EQ(2u, writer_->frame_count()); | 
 |     EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
 |   } | 
 |  | 
 |   EXPECT_TRUE(writer_->ack_frames().empty()); | 
 |  | 
 |   ASSERT_EQ(2u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), | 
 |             writer_->stream_frames()[0]->stream_id); | 
 |   EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()), | 
 |             writer_->stream_frames()[1]->stream_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) { | 
 |   // Send two stream frames (one non-crypto, then one crypto) in 2 packets by | 
 |   // queueing them. | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     connection_.SendStreamData3(); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |     connection_.SendCryptoStreamData(); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   } | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure it contains a crypto stream frame. | 
 |   EXPECT_LE(2u, writer_->frame_count()); | 
 |   ASSERT_LE(1u, writer_->padding_frames().size()); | 
 |   if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     ASSERT_EQ(1u, writer_->stream_frames().size()); | 
 |     EXPECT_EQ(QuicUtils::GetCryptoStreamId(connection_.transport_version()), | 
 |               writer_->stream_frames()[0]->stream_id); | 
 |   } else { | 
 |     EXPECT_LE(1u, writer_->crypto_frames().size()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) { | 
 |   // Send two stream frames (one crypto, then one non-crypto) in 2 packets by | 
 |   // queueing them. | 
 |   { | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     connection_.SendCryptoStreamData(); | 
 |     connection_.SendStreamData3(); | 
 |   } | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure it's the stream frame from stream 3. | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   ASSERT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), | 
 |             writer_->stream_frames()[0]->stream_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePackingAckResponse) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   // Process a data packet to queue up a pending ack. | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   } | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |  | 
 |   QuicPacketNumber last_packet; | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     connection_.SendCryptoDataWithString("foo", 0); | 
 |   } else { | 
 |     SendStreamDataToPeer( | 
 |         QuicUtils::GetCryptoStreamId(connection_.transport_version()), "foo", 0, | 
 |         NO_FIN, &last_packet); | 
 |   } | 
 |   // Verify ack is bundled with outging packet. | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnCanWrite()) | 
 |       .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs( | 
 |                           &connection_, &TestConnection::SendStreamData3)), | 
 |                       IgnoreResult(InvokeWithoutArgs( | 
 |                           &connection_, &TestConnection::SendStreamData5)))); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |  | 
 |   // Process a data packet to cause the visitor's OnCanWrite to be invoked. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(0x01)); | 
 |   SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x01)); | 
 |   ProcessDataPacket(2); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure it's an ack and two stream frames from | 
 |   // two different streams. | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_EQ(3u, writer_->frame_count()); | 
 |     EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
 |   } else { | 
 |     EXPECT_EQ(4u, writer_->frame_count()); | 
 |     EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   } | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   ASSERT_EQ(2u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), | 
 |             writer_->stream_frames()[0]->stream_id); | 
 |   EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()), | 
 |             writer_->stream_frames()[1]->stream_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePackingSendv) { | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |  | 
 |   QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( | 
 |       connection_.transport_version(), Perspective::IS_CLIENT); | 
 |   connection_.SaveAndSendStreamData(stream_id, "ABCDEF", 0, NO_FIN); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure multiple iovector blocks have | 
 |   // been packed into a single stream frame from one stream. | 
 |   EXPECT_EQ(1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(0u, writer_->padding_frames().size()); | 
 |   QuicStreamFrame* frame = writer_->stream_frames()[0].get(); | 
 |   EXPECT_EQ(stream_id, frame->stream_id); | 
 |   EXPECT_EQ("ABCDEF", | 
 |             absl::string_view(frame->data_buffer, frame->data_length)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePackingSendvQueued) { | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |  | 
 |   BlockOnNextWrite(); | 
 |   QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( | 
 |       connection_.transport_version(), Perspective::IS_CLIENT); | 
 |   connection_.SaveAndSendStreamData(stream_id, "ABCDEF", 0, NO_FIN); | 
 |  | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |   EXPECT_TRUE(connection_.HasQueuedData()); | 
 |  | 
 |   // Unblock the writes and actually send. | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Parse the last packet and ensure it's one stream frame from one stream. | 
 |   EXPECT_EQ(1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(0u, writer_->padding_frames().size()); | 
 |   QuicStreamFrame* frame = writer_->stream_frames()[0].get(); | 
 |   EXPECT_EQ(stream_id, frame->stream_id); | 
 |   EXPECT_EQ("ABCDEF", | 
 |             absl::string_view(frame->data_buffer, frame->data_length)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendingZeroBytes) { | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   // Send a zero byte write with a fin using writev. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( | 
 |       connection_.transport_version(), Perspective::IS_CLIENT); | 
 |   connection_.SaveAndSendStreamData(stream_id, {}, 0, FIN); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Padding frames are added by v99 to ensure a minimum packet size. | 
 |   size_t extra_padding_frames = 0; | 
 |   if (GetParam().version.HasHeaderProtection()) { | 
 |     extra_padding_frames = 1; | 
 |   } | 
 |  | 
 |   // Parse the last packet and ensure it's one stream frame from one stream. | 
 |   EXPECT_EQ(1u + extra_padding_frames, writer_->frame_count()); | 
 |   EXPECT_EQ(extra_padding_frames, writer_->padding_frames().size()); | 
 |   ASSERT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(stream_id, writer_->stream_frames()[0]->stream_id); | 
 |   EXPECT_TRUE(writer_->stream_frames()[0]->fin); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LargeSendWithPendingAck) { | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   // Set the ack alarm by processing a ping frame. | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Processs a PING frame. | 
 |   ProcessFramePacket(QuicFrame(QuicPingFrame())); | 
 |   // Ensure that this has caused the ACK alarm to be set. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   // Send data and ensure the ack is bundled. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(9); | 
 |   const std::string data(10000, '?'); | 
 |   QuicConsumedData consumed = connection_.SaveAndSendStreamData( | 
 |       GetNthClientInitiatedStreamId(0, connection_.transport_version()), data, | 
 |       0, FIN); | 
 |   EXPECT_EQ(data.length(), consumed.bytes_consumed); | 
 |   EXPECT_TRUE(consumed.fin_consumed); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure it's one stream frame with a fin. | 
 |   EXPECT_EQ(1u, writer_->frame_count()); | 
 |   ASSERT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(GetNthClientInitiatedStreamId(0, connection_.transport_version()), | 
 |             writer_->stream_frames()[0]->stream_id); | 
 |   EXPECT_TRUE(writer_->stream_frames()[0]->fin); | 
 |   // Ensure the ack alarm was cancelled when the ack was sent. | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, OnCanWrite) { | 
 |   // Visitor's OnCanWrite will send data, but will have more pending writes. | 
 |   EXPECT_CALL(visitor_, OnCanWrite()) | 
 |       .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs( | 
 |                           &connection_, &TestConnection::SendStreamData3)), | 
 |                       IgnoreResult(InvokeWithoutArgs( | 
 |                           &connection_, &TestConnection::SendStreamData5)))); | 
 |   { | 
 |     InSequence seq; | 
 |     EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true)); | 
 |     EXPECT_CALL(visitor_, WillingAndAbleToWrite()) | 
 |         .WillRepeatedly(Return(false)); | 
 |   } | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)) | 
 |       .WillRepeatedly(testing::Return(true)); | 
 |  | 
 |   connection_.OnCanWrite(); | 
 |  | 
 |   // Parse the last packet and ensure it's the two stream frames from | 
 |   // two different streams. | 
 |   EXPECT_EQ(2u, writer_->frame_count()); | 
 |   EXPECT_EQ(2u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), | 
 |             writer_->stream_frames()[0]->stream_id); | 
 |   EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()), | 
 |             writer_->stream_frames()[1]->stream_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmitOnNack) { | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(3, "foos", 3, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(3, "fooos", 7, NO_FIN, &last_packet); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Don't lose a packet on an ack, and nothing is retransmitted. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame ack_one = InitAckFrame(1); | 
 |   ProcessAckPacket(&ack_one); | 
 |  | 
 |   // Lose a packet and ensure it triggers retransmission. | 
 |   QuicAckFrame nack_two = ConstructAckFrame(3, 2); | 
 |   LostPacketVector lost_packets; | 
 |   lost_packets.push_back( | 
 |       LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
 |                       Return(LossDetectionInterface::DetectionStats()))); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   EXPECT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_)); | 
 |   ProcessAckPacket(&nack_two); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DoNotSendQueuedPacketForResetStream) { | 
 |   // Block the connection to queue the packet. | 
 |   BlockOnNextWrite(); | 
 |  | 
 |   QuicStreamId stream_id = 2; | 
 |   connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN); | 
 |  | 
 |   // Now that there is a queued packet, reset the stream. | 
 |   SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
 |  | 
 |   // Unblock the connection and verify that only the RST_STREAM is sent. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendQueuedPacketForQuicRstStreamNoError) { | 
 |   // Block the connection to queue the packet. | 
 |   BlockOnNextWrite(); | 
 |  | 
 |   QuicStreamId stream_id = 2; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN); | 
 |  | 
 |   // Now that there is a queued packet, reset the stream. | 
 |   SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3); | 
 |  | 
 |   // Unblock the connection and verify that the RST_STREAM is sent and the data | 
 |   // packet is sent. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnNack) { | 
 |   QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12); | 
 |  | 
 |   // Lose a packet and ensure it does not trigger retransmission. | 
 |   QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   ProcessAckPacket(&nack_two); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnNack) { | 
 |   QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12); | 
 |  | 
 |   // Lose a packet, ensure it triggers retransmission. | 
 |   QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   LostPacketVector lost_packets; | 
 |   lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
 |                       Return(LossDetectionInterface::DetectionStats()))); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   ProcessAckPacket(&nack_two); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnRTO) { | 
 |   QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
 |  | 
 |   // Fire the RTO and verify that the RST_STREAM is resent, not stream data. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
 |   EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); | 
 | } | 
 |  | 
 | // Ensure that if the only data in flight is non-retransmittable, the | 
 | // retransmission alarm is not set. | 
 | TEST_P(QuicConnectionTest, CancelRetransmissionAlarmAfterResetStream) { | 
 |   QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_data_packet; | 
 |   SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet); | 
 |  | 
 |   // Cancel the stream. | 
 |   const QuicPacketNumber rst_packet = last_data_packet + 1; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, rst_packet, _, _)).Times(1); | 
 |   SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
 |  | 
 |   // Ack the RST_STREAM frame (since it's retransmittable), but not the data | 
 |   // packet, which is no longer retransmittable since the stream was cancelled. | 
 |   QuicAckFrame nack_stream_data = | 
 |       ConstructAckFrame(rst_packet, last_data_packet); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   ProcessAckPacket(&nack_stream_data); | 
 |  | 
 |   // Ensure that the data is still in flight, but the retransmission alarm is no | 
 |   // longer set. | 
 |   EXPECT_GT(manager_->GetBytesInFlight(), 0u); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnRTO) { | 
 |   connection_.SetMaxTailLossProbes(0); | 
 |  | 
 |   QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3); | 
 |  | 
 |   // Fire the RTO and verify that the RST_STREAM is resent, the stream data | 
 |   // is sent. | 
 |   const size_t num_retransmissions = connection_.PtoEnabled() ? 1 : 2; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(AtLeast(num_retransmissions)); | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   if (num_retransmissions == 2) { | 
 |     ASSERT_EQ(1u, writer_->rst_stream_frames().size()); | 
 |     EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DoNotSendPendingRetransmissionForResetStream) { | 
 |   QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN); | 
 |  | 
 |   // Lose a packet which will trigger a pending retransmission. | 
 |   QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12); | 
 |  | 
 |   // Unblock the connection and verify that the RST_STREAM is sent but not the | 
 |   // second data packet nor a retransmit. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   ASSERT_EQ(1u, writer_->rst_stream_frames().size()); | 
 |   EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendPendingRetransmissionForQuicRstStreamNoError) { | 
 |   QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN); | 
 |  | 
 |   // Lose a packet which will trigger a pending retransmission. | 
 |   QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   LostPacketVector lost_packets; | 
 |   lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
 |                       Return(LossDetectionInterface::DetectionStats()))); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12); | 
 |  | 
 |   // Unblock the connection and verify that the RST_STREAM is sent and the | 
 |   // second data packet or a retransmit is sent. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2)); | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   // The RST_STREAM_FRAME is sent after queued packets and pending | 
 |   // retransmission. | 
 |   connection_.SendControlFrame(QuicFrame( | 
 |       new QuicRstStreamFrame(1, stream_id, QUIC_STREAM_NO_ERROR, 14))); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmitAckedPacket) { | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);    // Packet 1 | 
 |   SendStreamDataToPeer(1, "foos", 3, NO_FIN, &last_packet);   // Packet 2 | 
 |   SendStreamDataToPeer(1, "fooos", 7, NO_FIN, &last_packet);  // Packet 3 | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Instigate a loss with an ack. | 
 |   QuicAckFrame nack_two = ConstructAckFrame(3, 2); | 
 |   // The first nack should trigger a fast retransmission, but we'll be | 
 |   // write blocked, so the packet will be queued. | 
 |   BlockOnNextWrite(); | 
 |  | 
 |   LostPacketVector lost_packets; | 
 |   lost_packets.push_back( | 
 |       LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
 |                       Return(LossDetectionInterface::DetectionStats()))); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _)) | 
 |       .Times(1); | 
 |   ProcessAckPacket(&nack_two); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Now, ack the previous transmission. | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(false, _, _, _, _)); | 
 |   QuicAckFrame ack_all = InitAckFrame(3); | 
 |   ProcessAckPacket(&ack_all); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _)) | 
 |       .Times(0); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   // We do not store retransmittable frames of this retransmission. | 
 |   EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, 4)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   QuicPacketNumber original, second; | 
 |  | 
 |   QuicByteCount packet_size = | 
 |       SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original);  // 1st packet. | 
 |   SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second);        // 2nd packet. | 
 |  | 
 |   QuicAckFrame frame = InitAckFrame({{second, second + 1}}); | 
 |   // The first nack should retransmit the largest observed packet. | 
 |   LostPacketVector lost_packets; | 
 |   lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
 |                       Return(LossDetectionInterface::DetectionStats()))); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   // Packet 1 is short header for IETF QUIC because the encryption level | 
 |   // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, | 
 |                            GetParam().version.HasIetfInvariantHeader() | 
 |                                ? packet_size | 
 |                                : packet_size - kQuicVersionSize, | 
 |                            _)); | 
 |   ProcessAckPacket(&frame); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   connection_.SetMaxTailLossProbes(0); | 
 |  | 
 |   for (int i = 0; i < 10; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendStreamDataWithString(3, "foo", i * 3, NO_FIN); | 
 |   } | 
 |  | 
 |   // Block the writer and ensure they're queued. | 
 |   BlockOnNextWrite(); | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_TRUE(connection_.HasQueuedData()); | 
 |  | 
 |   // Unblock the writer. | 
 |   writer_->SetWritable(); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( | 
 |       2 * DefaultRetransmissionTime().ToMicroseconds())); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   connection_.OnCanWrite(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WriteBlockedBufferedThenSent) { | 
 |   BlockOnNextWrite(); | 
 |   writer_->set_is_write_blocked_data_buffered(true); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WriteBlockedThenSent) { | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   BlockOnNextWrite(); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // The second packet should also be queued, in order to ensure packets are | 
 |   // never sent out of order. | 
 |   writer_->SetWritable(); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
 |   EXPECT_EQ(2u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Now both are sent in order when we unblock. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   BlockOnNextWrite(); | 
 |   writer_->set_is_write_blocked_data_buffered(true); | 
 |   // Simulate the retransmission alarm firing. | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // Ack the sent packet before the callback returns, which happens in | 
 |   // rare circumstances with write blocked sockets. | 
 |   QuicAckFrame ack = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   uint64_t retransmission = connection_.PtoEnabled() ? 3 : 2; | 
 |   EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, | 
 |                                                             retransmission)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) { | 
 |   // Block the connection. | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |  | 
 |   // Set the send alarm. Fire the alarm and ensure it doesn't attempt to write. | 
 |   connection_.GetSendAlarm()->Set(clock_.ApproximateNow()); | 
 |   connection_.GetSendAlarm()->Fire(); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoSendAlarmAfterProcessPacketWhenWriteBlocked) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Block the connection. | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   // Process packet number 1. Can not call ProcessPacket or ProcessDataPacket | 
 |   // here, because they will fire the alarm after QuicConnection::ProcessPacket | 
 |   // is returned. | 
 |   const uint64_t received_packet_num = 1; | 
 |   const bool has_stop_waiting = false; | 
 |   const EncryptionLevel level = ENCRYPTION_FORWARD_SECURE; | 
 |   std::unique_ptr<QuicPacket> packet( | 
 |       ConstructDataPacket(received_packet_num, has_stop_waiting, level)); | 
 |   char buffer[kMaxOutgoingPacketSize]; | 
 |   size_t encrypted_length = | 
 |       peer_framer_.EncryptPayload(level, QuicPacketNumber(received_packet_num), | 
 |                                   *packet, buffer, kMaxOutgoingPacketSize); | 
 |   connection_.ProcessUdpPacket( | 
 |       kSelfAddress, kPeerAddress, | 
 |       QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
 |  | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |   EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AddToWriteBlockedListIfWriterBlockedWhenProcessing) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); | 
 |  | 
 |   // Simulate the case where a shared writer gets blocked by another connection. | 
 |   writer_->SetWriteBlocked(); | 
 |  | 
 |   // Process an ACK, make sure the connection calls visitor_->OnWriteBlocked(). | 
 |   QuicAckFrame ack1 = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); | 
 |   ProcessAckPacket(1, &ack1); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DoNotAddToWriteBlockedListAfterDisconnect) { | 
 |   writer_->SetBatchMode(true); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   // Have to explicitly grab the OnConnectionClosed frame and check | 
 |   // its parameters because this is a silent connection close and the | 
 |   // frame is not also transmitted to the peer. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0); | 
 |  | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", | 
 |                                 ConnectionCloseBehavior::SILENT_CLOSE); | 
 |  | 
 |     EXPECT_FALSE(connection_.connected()); | 
 |     writer_->SetWriteBlocked(); | 
 |   } | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_PEER_GOING_AWAY)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AddToWriteBlockedListIfBlockedOnFlushPackets) { | 
 |   writer_->SetBatchMode(true); | 
 |   writer_->BlockOnNextFlush(); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     // flusher's destructor will call connection_.FlushPackets, which should add | 
 |     // the connection to the write blocked list. | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   int offset = 0; | 
 |   // Send packets 1 to 15. | 
 |   for (int i = 0; i < 15; ++i) { | 
 |     SendStreamDataToPeer(1, "foo", offset, NO_FIN, nullptr); | 
 |     offset += 3; | 
 |   } | 
 |  | 
 |   // Ack 15, nack 1-14. | 
 |  | 
 |   QuicAckFrame nack = | 
 |       InitAckFrame({{QuicPacketNumber(15), QuicPacketNumber(16)}}); | 
 |  | 
 |   // 14 packets have been NACK'd and lost. | 
 |   LostPacketVector lost_packets; | 
 |   for (int i = 1; i < 15; ++i) { | 
 |     lost_packets.push_back( | 
 |         LostPacket(QuicPacketNumber(i), kMaxOutgoingPacketSize)); | 
 |   } | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
 |                       Return(LossDetectionInterface::DetectionStats()))); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessAckPacket(&nack); | 
 | } | 
 |  | 
 | // Test sending multiple acks from the connection to the session. | 
 | TEST_P(QuicConnectionTest, MultipleAcks) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacket(1); | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2); | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);  // Packet 1 | 
 |   EXPECT_EQ(QuicPacketNumber(1u), last_packet); | 
 |   SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet);  // Packet 2 | 
 |   EXPECT_EQ(QuicPacketNumber(2u), last_packet); | 
 |   SendAckPacketToPeer();                                    // Packet 3 | 
 |   SendStreamDataToPeer(5, "foo", 0, NO_FIN, &last_packet);  // Packet 4 | 
 |   EXPECT_EQ(QuicPacketNumber(4u), last_packet); | 
 |   SendStreamDataToPeer(1, "foo", 3, NO_FIN, &last_packet);  // Packet 5 | 
 |   EXPECT_EQ(QuicPacketNumber(5u), last_packet); | 
 |   SendStreamDataToPeer(3, "foo", 3, NO_FIN, &last_packet);  // Packet 6 | 
 |   EXPECT_EQ(QuicPacketNumber(6u), last_packet); | 
 |  | 
 |   // Client will ack packets 1, 2, [!3], 4, 5. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame1 = ConstructAckFrame(5, 3); | 
 |   ProcessAckPacket(&frame1); | 
 |  | 
 |   // Now the client implicitly acks 3, and explicitly acks 6. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame2 = InitAckFrame(6); | 
 |   ProcessAckPacket(&frame2); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DontLatchUnackedPacket) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacket(1); | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2); | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);  // Packet 1; | 
 |   // From now on, we send acks, so the send algorithm won't mark them pending. | 
 |   SendAckPacketToPeer();  // Packet 2 | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   // Verify that our internal state has least-unacked as 2, because we're still | 
 |   // waiting for a potential ack for 2. | 
 |  | 
 |   EXPECT_EQ(QuicPacketNumber(2u), stop_waiting()->least_unacked); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   frame = InitAckFrame(2); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked); | 
 |  | 
 |   // When we send an ack, we make sure our least-unacked makes sense.  In this | 
 |   // case since we're not waiting on an ack for 2 and all packets are acked, we | 
 |   // set it to 3. | 
 |   SendAckPacketToPeer();  // Packet 3 | 
 |   // Least_unacked remains at 3 until another ack is received. | 
 |   EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked); | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Expect no stop waiting frame is sent. | 
 |     EXPECT_FALSE(least_unacked().IsInitialized()); | 
 |   } else { | 
 |     // Check that the outgoing ack had its packet number as least_unacked. | 
 |     EXPECT_EQ(QuicPacketNumber(3u), least_unacked()); | 
 |   } | 
 |  | 
 |   // Ack the ack, which updates the rtt and raises the least unacked. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   frame = InitAckFrame(3); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);  // Packet 4 | 
 |   EXPECT_EQ(QuicPacketNumber(4u), stop_waiting()->least_unacked); | 
 |   SendAckPacketToPeer();  // Packet 5 | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Expect no stop waiting frame is sent. | 
 |     EXPECT_FALSE(least_unacked().IsInitialized()); | 
 |   } else { | 
 |     EXPECT_EQ(QuicPacketNumber(4u), least_unacked()); | 
 |   } | 
 |  | 
 |   // Send two data packets at the end, and ensure if the last one is acked, | 
 |   // the least unacked is raised above the ack packets. | 
 |   SendStreamDataToPeer(1, "bar", 6, NO_FIN, nullptr);  // Packet 6 | 
 |   SendStreamDataToPeer(1, "bar", 9, NO_FIN, nullptr);  // Packet 7 | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   frame = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(5)}, | 
 |                         {QuicPacketNumber(7), QuicPacketNumber(8)}}); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   EXPECT_EQ(QuicPacketNumber(6u), stop_waiting()->least_unacked); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TLP) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   connection_.SetMaxTailLossProbes(1); | 
 |  | 
 |   SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); | 
 |   EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); | 
 |   QuicTime retransmission_time = | 
 |       connection_.GetRetransmissionAlarm()->deadline(); | 
 |   EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
 |  | 
 |   EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number); | 
 |   // Simulate the retransmission alarm firing and sending a tlp, | 
 |   // so send algorithm's OnRetransmissionTimeout is not called. | 
 |   clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
 |   const QuicPacketNumber retransmission( | 
 |       connection_.SupportsMultiplePacketNumberSpaces() ? 3 : 2); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, retransmission, _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(retransmission, writer_->header().packet_number); | 
 |   // We do not raise the high water mark yet. | 
 |   EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RTO) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   connection_.SetMaxTailLossProbes(0); | 
 |  | 
 |   QuicTime default_retransmission_time = | 
 |       clock_.ApproximateNow() + DefaultRetransmissionTime(); | 
 |   SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); | 
 |   EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); | 
 |  | 
 |   EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number); | 
 |   EXPECT_EQ(default_retransmission_time, | 
 |             connection_.GetRetransmissionAlarm()->deadline()); | 
 |   // Simulate the retransmission alarm firing. | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number); | 
 |   // We do not raise the high water mark yet. | 
 |   EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); | 
 | } | 
 |  | 
 | // Regression test of b/133771183. | 
 | TEST_P(QuicConnectionTest, RtoWithNoDataToRetransmit) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   connection_.SetMaxTailLossProbes(0); | 
 |  | 
 |   SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); | 
 |   // Connection is cwnd limited. | 
 |   CongestionBlockWrites(); | 
 |   // Stream gets reset. | 
 |   SendRstStream(3, QUIC_ERROR_PROCESSING_STREAM, 3); | 
 |   // Simulate the retransmission alarm firing. | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   // RTO fires, but there is no packet to be RTOed. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(40); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(20); | 
 |   EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false)); | 
 |   EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(1); | 
 |   // Receives packets 1 - 40. | 
 |   for (size_t i = 1; i <= 40; ++i) { | 
 |     ProcessDataPacket(i); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendHandshakeMessages) { | 
 |   use_tagging_decrypter(); | 
 |   // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at | 
 |   // the end of the packet. We can test this to check which encrypter was used. | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |  | 
 |   // Attempt to send a handshake message and have the socket block. | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendCryptoDataWithString("foo", 0); | 
 |   // The packet should be serialized, but not queued. | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Switch to the new encrypter. | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   // Now become writeable and flush the packets. | 
 |   writer_->SetWritable(); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Verify that the handshake packet went out at the null encryption. | 
 |   EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        DropRetransmitsForNullEncryptedPacketAfterForwardSecure) { | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SendCryptoStreamData(); | 
 |  | 
 |   // Simulate the retransmission alarm firing and the socket blocking. | 
 |   BlockOnNextWrite(); | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Go forward secure. | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   notifier_.NeuterUnencryptedData(); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   connection_.OnHandshakeComplete(); | 
 |  | 
 |   EXPECT_EQ(QuicTime::Zero(), connection_.GetRetransmissionAlarm()->deadline()); | 
 |   // Unblock the socket and ensure that no packets are sent. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) { | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |  | 
 |   connection_.SendCryptoDataWithString("foo", 0); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   SendStreamDataToPeer(2, "bar", 0, NO_FIN, nullptr); | 
 |   EXPECT_FALSE(notifier_.HasLostStreamData()); | 
 |   connection_.MarkZeroRttPacketsForRetransmission(0); | 
 |   EXPECT_TRUE(notifier_.HasLostStreamData()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   // SetFromConfig is always called after construction from InitializeSession. | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   const uint8_t tag = 0x07; | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(tag)); | 
 |  | 
 |   // Process an encrypted packet which can not yet be decrypted which should | 
 |   // result in the packet being buffered. | 
 |   ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   // Transition to the new encryption state and process another encrypted packet | 
 |   // which should result in the original packet being processed. | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(tag)); | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(tag)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2); | 
 |   ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   // Finally, process a third packet and note that we do not reprocess the | 
 |   // buffered packet. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TestRetransmitOrder) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   connection_.SetMaxTailLossProbes(0); | 
 |  | 
 |   QuicByteCount first_packet_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<3>(&first_packet_size)); | 
 |  | 
 |   connection_.SendStreamDataWithString(3, "first_packet", 0, NO_FIN); | 
 |   QuicByteCount second_packet_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<3>(&second_packet_size)); | 
 |   connection_.SendStreamDataWithString(3, "second_packet", 12, NO_FIN); | 
 |   EXPECT_NE(first_packet_size, second_packet_size); | 
 |   // Advance the clock by huge time to make sure packets will be retransmitted. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); | 
 |   { | 
 |     InSequence s; | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); | 
 |   } | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // Advance again and expect the packets to be sent again in the same order. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20)); | 
 |   { | 
 |     InSequence s; | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); | 
 |   } | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, Buffer100NonDecryptablePacketsThenKeyChange) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   // SetFromConfig is always called after construction from InitializeSession. | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   config.set_max_undecryptable_packets(100); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   const uint8_t tag = 0x07; | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(tag)); | 
 |  | 
 |   // Process an encrypted packet which can not yet be decrypted which should | 
 |   // result in the packet being buffered. | 
 |   for (uint64_t i = 1; i <= 100; ++i) { | 
 |     ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |   } | 
 |  | 
 |   // Transition to the new encryption state and process another encrypted packet | 
 |   // which should result in the original packets being processed. | 
 |   EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(tag)); | 
 |   EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(tag)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(100); | 
 |   connection_.GetProcessUndecryptablePacketsAlarm()->Fire(); | 
 |  | 
 |   // Finally, process a third packet and note that we do not reprocess the | 
 |   // buffered packet. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(102, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) { | 
 |   BlockOnNextWrite(); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Test that RTO is started once we write to the socket. | 
 |   writer_->SetWritable(); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   connection_.SetMaxTailLossProbes(0); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN); | 
 |   connection_.SendStreamDataWithString(3, "bar", 0, NO_FIN); | 
 |   QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm(); | 
 |   EXPECT_TRUE(retransmission_alarm->IsSet()); | 
 |   EXPECT_EQ(DefaultRetransmissionTime(), | 
 |             retransmission_alarm->deadline() - clock_.Now()); | 
 |  | 
 |   // Advance the time right before the RTO, then receive an ack for the first | 
 |   // packet to delay the RTO. | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame ack = InitAckFrame(1); | 
 |   ProcessAckPacket(&ack); | 
 |   // Now we have an RTT sample of DefaultRetransmissionTime(500ms), | 
 |   // so the RTO has increased to 2 * SRTT. | 
 |   EXPECT_TRUE(retransmission_alarm->IsSet()); | 
 |   EXPECT_EQ(retransmission_alarm->deadline() - clock_.Now(), | 
 |             2 * DefaultRetransmissionTime()); | 
 |  | 
 |   // Move forward past the original RTO and ensure the RTO is still pending. | 
 |   clock_.AdvanceTime(2 * DefaultRetransmissionTime()); | 
 |  | 
 |   // Ensure the second packet gets retransmitted when it finally fires. | 
 |   EXPECT_TRUE(retransmission_alarm->IsSet()); | 
 |   EXPECT_EQ(retransmission_alarm->deadline(), clock_.ApproximateNow()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   // Manually cancel the alarm to simulate a real test. | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // The new retransmitted packet number should set the RTO to a larger value | 
 |   // than previously. | 
 |   EXPECT_TRUE(retransmission_alarm->IsSet()); | 
 |   QuicTime next_rto_time = retransmission_alarm->deadline(); | 
 |   QuicTime expected_rto_time = | 
 |       connection_.sent_packet_manager().GetRetransmissionTime(); | 
 |   EXPECT_EQ(next_rto_time, expected_rto_time); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TestQueued) { | 
 |   connection_.SetMaxTailLossProbes(0); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Unblock the writes and actually send. | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, InitialTimeout) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |  | 
 |   // SetFromConfig sets the initial timeouts before negotiation. | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |   // Subtract a second from the idle timeout on the client side. | 
 |   QuicTime default_timeout = | 
 |       clock_.ApproximateNow() + | 
 |       QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
 |   EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   // Simulate the timeout alarm firing. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1)); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |  | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, IdleTimeoutAfterFirstSentPacket) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   QuicTime initial_ddl = | 
 |       clock_.ApproximateNow() + | 
 |       QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
 |   EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   // Advance the time and send the first packet to the peer. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20)); | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); | 
 |   EXPECT_EQ(QuicPacketNumber(1u), last_packet); | 
 |   // This will be the updated deadline for the connection to idle time out. | 
 |   QuicTime new_ddl = clock_.ApproximateNow() + | 
 |                      QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
 |  | 
 |   // Simulate the timeout alarm firing, the connection should not be closed as | 
 |   // a new packet has been sent. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
 |   QuicTime::Delta delay = initial_ddl - clock_.ApproximateNow(); | 
 |   clock_.AdvanceTime(delay); | 
 |   // Verify the timeout alarm deadline is updated. | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_EQ(new_ddl, connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // Simulate the timeout alarm firing again, the connection now should be | 
 |   // closed. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   clock_.AdvanceTime(new_ddl - clock_.ApproximateNow()); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |  | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, IdleTimeoutAfterSendTwoPackets) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   QuicTime initial_ddl = | 
 |       clock_.ApproximateNow() + | 
 |       QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
 |   EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   // Immediately send the first packet, this is a rare case but test code will | 
 |   // hit this issue often as MockClock used for tests doesn't move with code | 
 |   // execution until manually adjusted. | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); | 
 |   EXPECT_EQ(QuicPacketNumber(1u), last_packet); | 
 |  | 
 |   // Advance the time and send the second packet to the peer. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20)); | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); | 
 |   EXPECT_EQ(QuicPacketNumber(2u), last_packet); | 
 |  | 
 |   // Simulate the timeout alarm firing, the connection will be closed. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   clock_.AdvanceTime(initial_ddl - clock_.ApproximateNow()); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |  | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, HandshakeTimeout) { | 
 |   // Use a shorter handshake timeout than idle timeout for this test. | 
 |   const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5); | 
 |   connection_.SetNetworkTimeouts(timeout, timeout); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
 |  | 
 |   QuicTime handshake_timeout = | 
 |       clock_.ApproximateNow() + timeout - QuicTime::Delta::FromSeconds(1); | 
 |   EXPECT_EQ(handshake_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   // Send and ack new data 3 seconds later to lengthen the idle timeout. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(0, connection_.transport_version()), | 
 |       "GET /", 0, FIN, nullptr); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3)); | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(2)); | 
 |  | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   // Simulate the timeout alarm firing. | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |  | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_HANDSHAKE_TIMEOUT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PingAfterSend) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(true)); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |  | 
 |   // Advance to 5ms, and send a packet to the peer, which will set | 
 |   // the ping alarm. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(0, connection_.transport_version()), | 
 |       "GET /", 0, FIN, nullptr); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(QuicTime::Delta::FromSeconds(15), | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Now recevie an ACK of the previous packet, which will move the | 
 |   // ping alarm forward. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   // The ping timer is set slightly less than 15 seconds in the future, because | 
 |   // of the 1s ping timer alarm granularity. | 
 |   EXPECT_EQ( | 
 |       QuicTime::Delta::FromSeconds(15) - QuicTime::Delta::FromMilliseconds(5), | 
 |       connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   writer_->Reset(); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15)); | 
 |   connection_.GetPingAlarm()->Fire(); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   ASSERT_EQ(1u, writer_->ping_frames().size()); | 
 |   writer_->Reset(); | 
 |  | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(false)); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   SendAckPacketToPeer(); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReducedPingTimeout) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(true)); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |  | 
 |   // Use a reduced ping timeout for this connection. | 
 |   connection_.set_ping_timeout(QuicTime::Delta::FromSeconds(10)); | 
 |  | 
 |   // Advance to 5ms, and send a packet to the peer, which will set | 
 |   // the ping alarm. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(0, connection_.transport_version()), | 
 |       "GET /", 0, FIN, nullptr); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(QuicTime::Delta::FromSeconds(10), | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Now recevie an ACK of the previous packet, which will move the | 
 |   // ping alarm forward. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   // The ping timer is set slightly less than 10 seconds in the future, because | 
 |   // of the 1s ping timer alarm granularity. | 
 |   EXPECT_EQ( | 
 |       QuicTime::Delta::FromSeconds(10) - QuicTime::Delta::FromMilliseconds(5), | 
 |       connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   writer_->Reset(); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); | 
 |   connection_.GetPingAlarm()->Fire(); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   ASSERT_EQ(1u, writer_->ping_frames().size()); | 
 |   writer_->Reset(); | 
 |  | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(false)); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   SendAckPacketToPeer(); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 | } | 
 |  | 
 | // Tests whether sending an MTU discovery packet to peer successfully causes the | 
 | // maximum packet size to increase. | 
 | TEST_P(QuicConnectionTest, SendMtuDiscoveryPacket) { | 
 |   MtuDiscoveryTestInit(); | 
 |  | 
 |   // Send an MTU probe. | 
 |   const size_t new_mtu = kDefaultMaxPacketSize + 100; | 
 |   QuicByteCount mtu_probe_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<3>(&mtu_probe_size)); | 
 |   connection_.SendMtuDiscoveryPacket(new_mtu); | 
 |   EXPECT_EQ(new_mtu, mtu_probe_size); | 
 |   EXPECT_EQ(QuicPacketNumber(1u), creator_->packet_number()); | 
 |  | 
 |   // Send more than MTU worth of data.  No acknowledgement was received so far, | 
 |   // so the MTU should be at its old value. | 
 |   const std::string data(kDefaultMaxPacketSize + 1, '.'); | 
 |   QuicByteCount size_before_mtu_change; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(2) | 
 |       .WillOnce(SaveArg<3>(&size_before_mtu_change)) | 
 |       .WillOnce(Return()); | 
 |   connection_.SendStreamDataWithString(3, data, 0, FIN); | 
 |   EXPECT_EQ(QuicPacketNumber(3u), creator_->packet_number()); | 
 |   EXPECT_EQ(kDefaultMaxPacketSize, size_before_mtu_change); | 
 |  | 
 |   // Acknowledge all packets so far. | 
 |   QuicAckFrame probe_ack = InitAckFrame(3); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   ProcessAckPacket(&probe_ack); | 
 |   EXPECT_EQ(new_mtu, connection_.max_packet_length()); | 
 |  | 
 |   // Send the same data again.  Check that it fits into a single packet now. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamDataWithString(3, data, 0, FIN); | 
 |   EXPECT_EQ(QuicPacketNumber(4u), creator_->packet_number()); | 
 | } | 
 |  | 
 | // Verifies that when a MTU probe packet is sent and buffered in a batch writer, | 
 | // the writer is flushed immediately. | 
 | TEST_P(QuicConnectionTest, BatchWriterFlushedAfterMtuDiscoveryPacket) { | 
 |   writer_->SetBatchMode(true); | 
 |   MtuDiscoveryTestInit(); | 
 |  | 
 |   // Send an MTU probe. | 
 |   const size_t target_mtu = kDefaultMaxPacketSize + 100; | 
 |   QuicByteCount mtu_probe_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<3>(&mtu_probe_size)); | 
 |   const uint32_t prior_flush_attempts = writer_->flush_attempts(); | 
 |   connection_.SendMtuDiscoveryPacket(target_mtu); | 
 |   EXPECT_EQ(target_mtu, mtu_probe_size); | 
 |   EXPECT_EQ(writer_->flush_attempts(), prior_flush_attempts + 1); | 
 | } | 
 |  | 
 | // Tests whether MTU discovery does not happen when it is not explicitly enabled | 
 | // by the connection options. | 
 | TEST_P(QuicConnectionTest, MtuDiscoveryDisabled) { | 
 |   MtuDiscoveryTestInit(); | 
 |  | 
 |   const QuicPacketCount packets_between_probes_base = 10; | 
 |   set_packets_between_probes_base(packets_between_probes_base); | 
 |  | 
 |   const QuicPacketCount number_of_packets = packets_between_probes_base * 2; | 
 |   for (QuicPacketCount i = 0; i < number_of_packets; i++) { | 
 |     SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
 |     EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |     EXPECT_EQ(0u, connection_.mtu_probe_count()); | 
 |   } | 
 | } | 
 |  | 
 | // Tests whether MTU discovery works when all probes are acknowledged on the | 
 | // first try. | 
 | TEST_P(QuicConnectionTest, MtuDiscoveryEnabled) { | 
 |   MtuDiscoveryTestInit(); | 
 |  | 
 |   const QuicPacketCount packets_between_probes_base = 5; | 
 |   set_packets_between_probes_base(packets_between_probes_base); | 
 |  | 
 |   connection_.EnablePathMtuDiscovery(send_algorithm_); | 
 |  | 
 |   // Send enough packets so that the next one triggers path MTU discovery. | 
 |   for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
 |     SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
 |     ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   } | 
 |  | 
 |   // Trigger the probe. | 
 |   SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
 |                        nullptr); | 
 |   ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   QuicByteCount probe_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<3>(&probe_size)); | 
 |   connection_.GetMtuDiscoveryAlarm()->Fire(); | 
 |  | 
 |   EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), | 
 |                                   kMtuDiscoveryTargetPacketSizeHigh)); | 
 |  | 
 |   const QuicPacketNumber probe_packet_number = | 
 |       FirstSendingPacketNumber() + packets_between_probes_base; | 
 |   ASSERT_EQ(probe_packet_number, creator_->packet_number()); | 
 |  | 
 |   // Acknowledge all packets sent so far. | 
 |   QuicAckFrame probe_ack = InitAckFrame(probe_packet_number); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |   ProcessAckPacket(&probe_ack); | 
 |   EXPECT_EQ(probe_size, connection_.max_packet_length()); | 
 |   EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
 |  | 
 |   EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
 |  | 
 |   QuicStreamOffset stream_offset = packets_between_probes_base; | 
 |   QuicByteCount last_probe_size = 0; | 
 |   for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts; | 
 |        ++num_probes) { | 
 |     // Send just enough packets without triggering the next probe. | 
 |     for (QuicPacketCount i = 0; | 
 |          i < (packets_between_probes_base << num_probes) - 1; ++i) { | 
 |       SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); | 
 |       ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |     } | 
 |  | 
 |     // Trigger the next probe. | 
 |     SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr); | 
 |     ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |     QuicByteCount new_probe_size; | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .WillOnce(SaveArg<3>(&new_probe_size)); | 
 |     connection_.GetMtuDiscoveryAlarm()->Fire(); | 
 |     EXPECT_THAT(new_probe_size, | 
 |                 InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh)); | 
 |     EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count()); | 
 |  | 
 |     // Acknowledge all packets sent so far. | 
 |     QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number()); | 
 |     ProcessAckPacket(&probe_ack); | 
 |     EXPECT_EQ(new_probe_size, connection_.max_packet_length()); | 
 |     EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
 |  | 
 |     last_probe_size = probe_size; | 
 |     probe_size = new_probe_size; | 
 |   } | 
 |  | 
 |   // The last probe size should be equal to the target. | 
 |   EXPECT_EQ(probe_size, kMtuDiscoveryTargetPacketSizeHigh); | 
 |  | 
 |   writer_->SetShouldWriteFail(); | 
 |  | 
 |   // Ignore PACKET_WRITE_ERROR once. | 
 |   SendStreamDataToPeer(3, "(", stream_offset++, NO_FIN, nullptr); | 
 |   EXPECT_EQ(last_probe_size, connection_.max_packet_length()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   // Close connection on another PACKET_WRITE_ERROR. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   SendStreamDataToPeer(3, ")", stream_offset++, NO_FIN, nullptr); | 
 |   EXPECT_EQ(last_probe_size, connection_.max_packet_length()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_PACKET_WRITE_ERROR)); | 
 | } | 
 |  | 
 | // After a successful MTU probe, one and only one write error should be ignored | 
 | // if it happened in QuicConnection::FlushPacket. | 
 | TEST_P(QuicConnectionTest, | 
 |        MtuDiscoveryIgnoreOneWriteErrorInFlushAfterSuccessfulProbes) { | 
 |   MtuDiscoveryTestInit(); | 
 |   writer_->SetBatchMode(true); | 
 |  | 
 |   const QuicPacketCount packets_between_probes_base = 5; | 
 |   set_packets_between_probes_base(packets_between_probes_base); | 
 |  | 
 |   connection_.EnablePathMtuDiscovery(send_algorithm_); | 
 |  | 
 |   const QuicByteCount original_max_packet_length = | 
 |       connection_.max_packet_length(); | 
 |   // Send enough packets so that the next one triggers path MTU discovery. | 
 |   for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
 |     SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
 |     ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   } | 
 |  | 
 |   // Trigger the probe. | 
 |   SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
 |                        nullptr); | 
 |   ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   QuicByteCount probe_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<3>(&probe_size)); | 
 |   connection_.GetMtuDiscoveryAlarm()->Fire(); | 
 |  | 
 |   EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), | 
 |                                   kMtuDiscoveryTargetPacketSizeHigh)); | 
 |  | 
 |   const QuicPacketNumber probe_packet_number = | 
 |       FirstSendingPacketNumber() + packets_between_probes_base; | 
 |   ASSERT_EQ(probe_packet_number, creator_->packet_number()); | 
 |  | 
 |   // Acknowledge all packets sent so far. | 
 |   QuicAckFrame probe_ack = InitAckFrame(probe_packet_number); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |   ProcessAckPacket(&probe_ack); | 
 |   EXPECT_EQ(probe_size, connection_.max_packet_length()); | 
 |   EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
 |  | 
 |   EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
 |  | 
 |   writer_->SetShouldWriteFail(); | 
 |  | 
 |   // Ignore PACKET_WRITE_ERROR once. | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     // flusher's destructor will call connection_.FlushPackets, which should | 
 |     // get a WRITE_STATUS_ERROR from the writer and ignore it. | 
 |   } | 
 |   EXPECT_EQ(original_max_packet_length, connection_.max_packet_length()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   // Close connection on another PACKET_WRITE_ERROR. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     // flusher's destructor will call connection_.FlushPackets, which should | 
 |     // get a WRITE_STATUS_ERROR from the writer and ignore it. | 
 |   } | 
 |   EXPECT_EQ(original_max_packet_length, connection_.max_packet_length()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_PACKET_WRITE_ERROR)); | 
 | } | 
 |  | 
 | // Simulate the case where the first attempt to send a probe is write blocked, | 
 | // and after unblock, the second attempt returns a MSG_TOO_BIG error. | 
 | TEST_P(QuicConnectionTest, MtuDiscoveryWriteBlocked) { | 
 |   MtuDiscoveryTestInit(); | 
 |  | 
 |   const QuicPacketCount packets_between_probes_base = 5; | 
 |   set_packets_between_probes_base(packets_between_probes_base); | 
 |  | 
 |   connection_.EnablePathMtuDiscovery(send_algorithm_); | 
 |  | 
 |   // Send enough packets so that the next one triggers path MTU discovery. | 
 |   for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
 |     SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
 |     ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   } | 
 |  | 
 |   QuicByteCount original_max_packet_length = connection_.max_packet_length(); | 
 |  | 
 |   // Trigger the probe. | 
 |   SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
 |                        nullptr); | 
 |   ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   BlockOnNextWrite(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   connection_.GetMtuDiscoveryAlarm()->Fire(); | 
 |   EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |   ASSERT_TRUE(connection_.connected()); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   SimulateNextPacketTooLarge(); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_EQ(original_max_packet_length, connection_.max_packet_length()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 | } | 
 |  | 
 | // Tests whether MTU discovery works correctly when the probes never get | 
 | // acknowledged. | 
 | TEST_P(QuicConnectionTest, MtuDiscoveryFailed) { | 
 |   MtuDiscoveryTestInit(); | 
 |  | 
 |   // Lower the number of probes between packets in order to make the test go | 
 |   // much faster. | 
 |   const QuicPacketCount packets_between_probes_base = 5; | 
 |   set_packets_between_probes_base(packets_between_probes_base); | 
 |  | 
 |   connection_.EnablePathMtuDiscovery(send_algorithm_); | 
 |  | 
 |   const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100); | 
 |  | 
 |   EXPECT_EQ(packets_between_probes_base, | 
 |             QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_)); | 
 |  | 
 |   // This tests sends more packets than strictly necessary to make sure that if | 
 |   // the connection was to send more discovery packets than needed, those would | 
 |   // get caught as well. | 
 |   const QuicPacketCount number_of_packets = | 
 |       packets_between_probes_base * (1 << (kMtuDiscoveryAttempts + 1)); | 
 |   std::vector<QuicPacketNumber> mtu_discovery_packets; | 
 |   // Called on many acks. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |   for (QuicPacketCount i = 0; i < number_of_packets; i++) { | 
 |     SendStreamDataToPeer(3, "!", i, NO_FIN, nullptr); | 
 |     clock_.AdvanceTime(rtt); | 
 |  | 
 |     // Receive an ACK, which marks all data packets as received, and all MTU | 
 |     // discovery packets as missing. | 
 |  | 
 |     QuicAckFrame ack; | 
 |  | 
 |     if (!mtu_discovery_packets.empty()) { | 
 |       QuicPacketNumber min_packet = *min_element(mtu_discovery_packets.begin(), | 
 |                                                  mtu_discovery_packets.end()); | 
 |       QuicPacketNumber max_packet = *max_element(mtu_discovery_packets.begin(), | 
 |                                                  mtu_discovery_packets.end()); | 
 |       ack.packets.AddRange(QuicPacketNumber(1), min_packet); | 
 |       ack.packets.AddRange(QuicPacketNumber(max_packet + 1), | 
 |                            creator_->packet_number() + 1); | 
 |       ack.largest_acked = creator_->packet_number(); | 
 |  | 
 |     } else { | 
 |       ack.packets.AddRange(QuicPacketNumber(1), creator_->packet_number() + 1); | 
 |       ack.largest_acked = creator_->packet_number(); | 
 |     } | 
 |  | 
 |     ProcessAckPacket(&ack); | 
 |  | 
 |     // Trigger MTU probe if it would be scheduled now. | 
 |     if (!connection_.GetMtuDiscoveryAlarm()->IsSet()) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Fire the alarm.  The alarm should cause a packet to be sent. | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |     connection_.GetMtuDiscoveryAlarm()->Fire(); | 
 |     // Record the packet number of the MTU discovery packet in order to | 
 |     // mark it as NACK'd. | 
 |     mtu_discovery_packets.push_back(creator_->packet_number()); | 
 |   } | 
 |  | 
 |   // Ensure the number of packets between probes grows exponentially by checking | 
 |   // it against the closed-form expression for the packet number. | 
 |   ASSERT_EQ(kMtuDiscoveryAttempts, mtu_discovery_packets.size()); | 
 |   for (uint64_t i = 0; i < kMtuDiscoveryAttempts; i++) { | 
 |     // 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1 | 
 |     const QuicPacketCount packets_between_probes = | 
 |         packets_between_probes_base * ((1 << (i + 1)) - 1); | 
 |     EXPECT_EQ(QuicPacketNumber(packets_between_probes + (i + 1)), | 
 |               mtu_discovery_packets[i]); | 
 |   } | 
 |  | 
 |   EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length()); | 
 |   EXPECT_EQ(kMtuDiscoveryAttempts, connection_.mtu_probe_count()); | 
 | } | 
 |  | 
 | // Probe 3 times, the first one succeeds, then fails, then succeeds again. | 
 | TEST_P(QuicConnectionTest, MtuDiscoverySecondProbeFailed) { | 
 |   MtuDiscoveryTestInit(); | 
 |  | 
 |   const QuicPacketCount packets_between_probes_base = 5; | 
 |   set_packets_between_probes_base(packets_between_probes_base); | 
 |  | 
 |   connection_.EnablePathMtuDiscovery(send_algorithm_); | 
 |  | 
 |   // Send enough packets so that the next one triggers path MTU discovery. | 
 |   QuicStreamOffset stream_offset = 0; | 
 |   for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
 |     SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); | 
 |     ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   } | 
 |  | 
 |   // Trigger the probe. | 
 |   SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
 |                        nullptr); | 
 |   ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   QuicByteCount probe_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<3>(&probe_size)); | 
 |   connection_.GetMtuDiscoveryAlarm()->Fire(); | 
 |   EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), | 
 |                                   kMtuDiscoveryTargetPacketSizeHigh)); | 
 |  | 
 |   const QuicPacketNumber probe_packet_number = | 
 |       FirstSendingPacketNumber() + packets_between_probes_base; | 
 |   ASSERT_EQ(probe_packet_number, creator_->packet_number()); | 
 |  | 
 |   // Acknowledge all packets sent so far. | 
 |   QuicAckFrame first_ack = InitAckFrame(probe_packet_number); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |   ProcessAckPacket(&first_ack); | 
 |   EXPECT_EQ(probe_size, connection_.max_packet_length()); | 
 |   EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
 |  | 
 |   EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
 |  | 
 |   // Send just enough packets without triggering the second probe. | 
 |   for (QuicPacketCount i = 0; i < (packets_between_probes_base << 1) - 1; ++i) { | 
 |     SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); | 
 |     ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   } | 
 |  | 
 |   // Trigger the second probe. | 
 |   SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr); | 
 |   ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   QuicByteCount second_probe_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<3>(&second_probe_size)); | 
 |   connection_.GetMtuDiscoveryAlarm()->Fire(); | 
 |   EXPECT_THAT(second_probe_size, | 
 |               InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh)); | 
 |   EXPECT_EQ(2u, connection_.mtu_probe_count()); | 
 |  | 
 |   // Acknowledge all packets sent so far, except the second probe. | 
 |   QuicPacketNumber second_probe_packet_number = creator_->packet_number(); | 
 |   QuicAckFrame second_ack = InitAckFrame(second_probe_packet_number - 1); | 
 |   ProcessAckPacket(&first_ack); | 
 |   EXPECT_EQ(probe_size, connection_.max_packet_length()); | 
 |  | 
 |   // Send just enough packets without triggering the third probe. | 
 |   for (QuicPacketCount i = 0; i < (packets_between_probes_base << 2) - 1; ++i) { | 
 |     SendStreamDataToPeer(3, "@", stream_offset++, NO_FIN, nullptr); | 
 |     ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   } | 
 |  | 
 |   // Trigger the third probe. | 
 |   SendStreamDataToPeer(3, "#", stream_offset++, NO_FIN, nullptr); | 
 |   ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   QuicByteCount third_probe_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<3>(&third_probe_size)); | 
 |   connection_.GetMtuDiscoveryAlarm()->Fire(); | 
 |   EXPECT_THAT(third_probe_size, InRange(probe_size, second_probe_size)); | 
 |   EXPECT_EQ(3u, connection_.mtu_probe_count()); | 
 |  | 
 |   // Acknowledge all packets sent so far, except the second probe. | 
 |   QuicAckFrame third_ack = | 
 |       ConstructAckFrame(creator_->packet_number(), second_probe_packet_number); | 
 |   ProcessAckPacket(&third_ack); | 
 |   EXPECT_EQ(third_probe_size, connection_.max_packet_length()); | 
 |  | 
 |   SendStreamDataToPeer(3, "$", stream_offset++, NO_FIN, nullptr); | 
 |   EXPECT_TRUE(connection_.PathMtuReductionDetectionInProgress()); | 
 |  | 
 |   if (connection_.PathDegradingDetectionInProgress() && | 
 |       QuicConnectionPeer::GetPathDegradingDeadline(&connection_) < | 
 |           QuicConnectionPeer::GetPathMtuReductionDetectionDeadline( | 
 |               &connection_)) { | 
 |     // Fire path degrading alarm first. | 
 |     connection_.PathDegradingTimeout(); | 
 |   } | 
 |  | 
 |   // Verify the max packet size has not reduced. | 
 |   EXPECT_EQ(third_probe_size, connection_.max_packet_length()); | 
 |  | 
 |   // Fire alarm to get path mtu reduction callback called. | 
 |   EXPECT_TRUE(connection_.PathMtuReductionDetectionInProgress()); | 
 |   connection_.GetBlackholeDetectorAlarm()->Fire(); | 
 |  | 
 |   // Verify the max packet size has reduced to the previous value. | 
 |   EXPECT_EQ(probe_size, connection_.max_packet_length()); | 
 | } | 
 |  | 
 | // Tests whether MTU discovery works when the writer has a limit on how large a | 
 | // packet can be. | 
 | TEST_P(QuicConnectionTest, MtuDiscoveryWriterLimited) { | 
 |   MtuDiscoveryTestInit(); | 
 |  | 
 |   const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1; | 
 |   writer_->set_max_packet_size(mtu_limit); | 
 |  | 
 |   const QuicPacketCount packets_between_probes_base = 5; | 
 |   set_packets_between_probes_base(packets_between_probes_base); | 
 |  | 
 |   connection_.EnablePathMtuDiscovery(send_algorithm_); | 
 |  | 
 |   // Send enough packets so that the next one triggers path MTU discovery. | 
 |   for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
 |     SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
 |     ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   } | 
 |  | 
 |   // Trigger the probe. | 
 |   SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
 |                        nullptr); | 
 |   ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   QuicByteCount probe_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(SaveArg<3>(&probe_size)); | 
 |   connection_.GetMtuDiscoveryAlarm()->Fire(); | 
 |  | 
 |   EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), mtu_limit)); | 
 |  | 
 |   const QuicPacketNumber probe_sequence_number = | 
 |       FirstSendingPacketNumber() + packets_between_probes_base; | 
 |   ASSERT_EQ(probe_sequence_number, creator_->packet_number()); | 
 |  | 
 |   // Acknowledge all packets sent so far. | 
 |   QuicAckFrame probe_ack = InitAckFrame(probe_sequence_number); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |   ProcessAckPacket(&probe_ack); | 
 |   EXPECT_EQ(probe_size, connection_.max_packet_length()); | 
 |   EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
 |  | 
 |   EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
 |  | 
 |   QuicStreamOffset stream_offset = packets_between_probes_base; | 
 |   for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts; | 
 |        ++num_probes) { | 
 |     // Send just enough packets without triggering the next probe. | 
 |     for (QuicPacketCount i = 0; | 
 |          i < (packets_between_probes_base << num_probes) - 1; ++i) { | 
 |       SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); | 
 |       ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |     } | 
 |  | 
 |     // Trigger the next probe. | 
 |     SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr); | 
 |     ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |     QuicByteCount new_probe_size; | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .WillOnce(SaveArg<3>(&new_probe_size)); | 
 |     connection_.GetMtuDiscoveryAlarm()->Fire(); | 
 |     EXPECT_THAT(new_probe_size, InRange(probe_size, mtu_limit)); | 
 |     EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count()); | 
 |  | 
 |     // Acknowledge all packets sent so far. | 
 |     QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number()); | 
 |     ProcessAckPacket(&probe_ack); | 
 |     EXPECT_EQ(new_probe_size, connection_.max_packet_length()); | 
 |     EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
 |  | 
 |     probe_size = new_probe_size; | 
 |   } | 
 |  | 
 |   // The last probe size should be equal to the target. | 
 |   EXPECT_EQ(probe_size, mtu_limit); | 
 | } | 
 |  | 
 | // Tests whether MTU discovery works when the writer returns an error despite | 
 | // advertising higher packet length. | 
 | TEST_P(QuicConnectionTest, MtuDiscoveryWriterFailed) { | 
 |   MtuDiscoveryTestInit(); | 
 |  | 
 |   const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1; | 
 |   const QuicByteCount initial_mtu = connection_.max_packet_length(); | 
 |   EXPECT_LT(initial_mtu, mtu_limit); | 
 |   writer_->set_max_packet_size(mtu_limit); | 
 |  | 
 |   const QuicPacketCount packets_between_probes_base = 5; | 
 |   set_packets_between_probes_base(packets_between_probes_base); | 
 |  | 
 |   connection_.EnablePathMtuDiscovery(send_algorithm_); | 
 |  | 
 |   // Send enough packets so that the next one triggers path MTU discovery. | 
 |   for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
 |     SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
 |     ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   } | 
 |  | 
 |   // Trigger the probe. | 
 |   SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
 |                        nullptr); | 
 |   ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   writer_->SimulateNextPacketTooLarge(); | 
 |   connection_.GetMtuDiscoveryAlarm()->Fire(); | 
 |   ASSERT_TRUE(connection_.connected()); | 
 |  | 
 |   // Send more data. | 
 |   QuicPacketNumber probe_number = creator_->packet_number(); | 
 |   QuicPacketCount extra_packets = packets_between_probes_base * 3; | 
 |   for (QuicPacketCount i = 0; i < extra_packets; i++) { | 
 |     connection_.EnsureWritableAndSendStreamData5(); | 
 |     ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   } | 
 |  | 
 |   // Acknowledge all packets sent so far, except for the lost probe. | 
 |   QuicAckFrame probe_ack = | 
 |       ConstructAckFrame(creator_->packet_number(), probe_number); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   ProcessAckPacket(&probe_ack); | 
 |   EXPECT_EQ(initial_mtu, connection_.max_packet_length()); | 
 |  | 
 |   // Send more packets, and ensure that none of them sets the alarm. | 
 |   for (QuicPacketCount i = 0; i < 4 * packets_between_probes_base; i++) { | 
 |     connection_.EnsureWritableAndSendStreamData5(); | 
 |     ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   } | 
 |  | 
 |   EXPECT_EQ(initial_mtu, connection_.max_packet_length()); | 
 |   EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoMtuDiscoveryAfterConnectionClosed) { | 
 |   MtuDiscoveryTestInit(); | 
 |  | 
 |   const QuicPacketCount packets_between_probes_base = 10; | 
 |   set_packets_between_probes_base(packets_between_probes_base); | 
 |  | 
 |   connection_.EnablePathMtuDiscovery(send_algorithm_); | 
 |  | 
 |   // Send enough packets so that the next one triggers path MTU discovery. | 
 |   for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
 |     SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
 |     ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |   } | 
 |  | 
 |   SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
 |                        nullptr); | 
 |   EXPECT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", | 
 |                               ConnectionCloseBehavior::SILENT_CLOSE); | 
 |   EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TimeoutAfterSendDuringHandshake) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   const QuicTime::Delta initial_idle_timeout = | 
 |       QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
 |   const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
 |   QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; | 
 |  | 
 |   // When we send a packet, the timeout will change to 5ms + | 
 |   // kInitialIdleTimeoutSecs. | 
 |   clock_.AdvanceTime(five_ms); | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   EXPECT_EQ(default_timeout + five_ms, | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // Now send more data. This will not move the timeout because | 
 |   // no data has been received since the previous write. | 
 |   clock_.AdvanceTime(five_ms); | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       3, FIN, nullptr); | 
 |   EXPECT_EQ(default_timeout + five_ms, | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // The original alarm will fire.  We should not time out because we had a | 
 |   // network event at t=5ms.  The alarm will reregister. | 
 |   clock_.AdvanceTime(initial_idle_timeout - five_ms - five_ms); | 
 |   EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_EQ(default_timeout + five_ms, | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // This time, we should time out. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   clock_.AdvanceTime(five_ms); | 
 |   EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TimeoutAfterRetransmission) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   const QuicTime start_time = clock_.Now(); | 
 |   const QuicTime::Delta initial_idle_timeout = | 
 |       QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
 |   QuicTime default_timeout = clock_.Now() + initial_idle_timeout; | 
 |  | 
 |   connection_.SetMaxTailLossProbes(0); | 
 |   const QuicTime default_retransmission_time = | 
 |       start_time + DefaultRetransmissionTime(); | 
 |  | 
 |   ASSERT_LT(default_retransmission_time, default_timeout); | 
 |  | 
 |   // When we send a packet, the timeout will change to 5 ms + | 
 |   // kInitialIdleTimeoutSecs (but it will not reschedule the alarm). | 
 |   const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
 |   const QuicTime send_time = start_time + five_ms; | 
 |   clock_.AdvanceTime(five_ms); | 
 |   ASSERT_EQ(send_time, clock_.Now()); | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   EXPECT_EQ(default_timeout + five_ms, | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // Move forward 5 ms and receive a packet, which will move the timeout | 
 |   // forward 5 ms more (but will not reschedule the alarm). | 
 |   const QuicTime receive_time = send_time + five_ms; | 
 |   clock_.AdvanceTime(receive_time - clock_.Now()); | 
 |   ASSERT_EQ(receive_time, clock_.Now()); | 
 |   ProcessPacket(1); | 
 |  | 
 |   // Now move forward to the retransmission time and retransmit the | 
 |   // packet, which should move the timeout forward again (but will not | 
 |   // reschedule the alarm). | 
 |   EXPECT_EQ(default_retransmission_time + five_ms, | 
 |             connection_.GetRetransmissionAlarm()->deadline()); | 
 |   // Simulate the retransmission alarm firing. | 
 |   const QuicTime rto_time = send_time + DefaultRetransmissionTime(); | 
 |   const QuicTime final_timeout = rto_time + initial_idle_timeout; | 
 |   clock_.AdvanceTime(rto_time - clock_.Now()); | 
 |   ASSERT_EQ(rto_time, clock_.Now()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // Advance to the original timeout and fire the alarm. The connection should | 
 |   // timeout, and the alarm should be registered based on the time of the | 
 |   // retransmission. | 
 |   clock_.AdvanceTime(default_timeout - clock_.Now()); | 
 |   ASSERT_EQ(default_timeout.ToDebuggingValue(), | 
 |             clock_.Now().ToDebuggingValue()); | 
 |   EXPECT_EQ(default_timeout, clock_.Now()); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   ASSERT_EQ(final_timeout.ToDebuggingValue(), | 
 |             connection_.GetTimeoutAlarm()->deadline().ToDebuggingValue()); | 
 |  | 
 |   // This time, we should time out. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   clock_.AdvanceTime(final_timeout - clock_.Now()); | 
 |   EXPECT_EQ(connection_.GetTimeoutAlarm()->deadline(), clock_.Now()); | 
 |   EXPECT_EQ(final_timeout, clock_.Now()); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TimeoutAfterSendAfterHandshake) { | 
 |   // When the idle timeout fires, verify that by default we do not send any | 
 |   // connection close packets. | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |  | 
 |   // Create a handshake message that also enables silent close. | 
 |   CryptoHandshakeMessage msg; | 
 |   std::string error_details; | 
 |   QuicConfig client_config; | 
 |   client_config.SetInitialStreamFlowControlWindowToSend( | 
 |       kInitialStreamFlowControlWindowForTest); | 
 |   client_config.SetInitialSessionFlowControlWindowToSend( | 
 |       kInitialSessionFlowControlWindowForTest); | 
 |   client_config.SetIdleNetworkTimeout( | 
 |       QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs)); | 
 |   client_config.ToHandshakeMessage(&msg, connection_.transport_version()); | 
 |   const QuicErrorCode error = | 
 |       config.ProcessPeerHello(msg, CLIENT, &error_details); | 
 |   EXPECT_THAT(error, IsQuicNoError()); | 
 |  | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   const QuicTime::Delta default_idle_timeout = | 
 |       QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1); | 
 |   const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
 |   QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout; | 
 |  | 
 |   // When we send a packet, the timeout will change to 5ms + | 
 |   // kInitialIdleTimeoutSecs. | 
 |   clock_.AdvanceTime(five_ms); | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   EXPECT_EQ(default_timeout + five_ms, | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // Now send more data. This will not move the timeout because | 
 |   // no data has been received since the previous write. | 
 |   clock_.AdvanceTime(five_ms); | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       3, FIN, nullptr); | 
 |   EXPECT_EQ(default_timeout + five_ms, | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // The original alarm will fire.  We should not time out because we had a | 
 |   // network event at t=5ms.  The alarm will reregister. | 
 |   clock_.AdvanceTime(default_idle_timeout - five_ms - five_ms); | 
 |   EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_EQ(default_timeout + five_ms, | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // This time, we should time out. | 
 |   // This results in a SILENT_CLOSE, so the writer will not be invoked | 
 |   // and will not save the frame. Grab the frame from OnConnectionClosed | 
 |   // directly. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |  | 
 |   clock_.AdvanceTime(five_ms); | 
 |   EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_NETWORK_IDLE_TIMEOUT)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseAndTLP) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   // Same test as above, but sending TLPs causes a connection close to be sent. | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |  | 
 |   // Create a handshake message that also enables silent close. | 
 |   CryptoHandshakeMessage msg; | 
 |   std::string error_details; | 
 |   QuicConfig client_config; | 
 |   client_config.SetInitialStreamFlowControlWindowToSend( | 
 |       kInitialStreamFlowControlWindowForTest); | 
 |   client_config.SetInitialSessionFlowControlWindowToSend( | 
 |       kInitialSessionFlowControlWindowForTest); | 
 |   client_config.SetIdleNetworkTimeout( | 
 |       QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs)); | 
 |   client_config.ToHandshakeMessage(&msg, connection_.transport_version()); | 
 |   const QuicErrorCode error = | 
 |       config.ProcessPeerHello(msg, CLIENT, &error_details); | 
 |   EXPECT_THAT(error, IsQuicNoError()); | 
 |  | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   const QuicTime::Delta default_idle_timeout = | 
 |       QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1); | 
 |   const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
 |   QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout; | 
 |  | 
 |   // When we send a packet, the timeout will change to 5ms + | 
 |   // kInitialIdleTimeoutSecs. | 
 |   clock_.AdvanceTime(five_ms); | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   EXPECT_EQ(default_timeout + five_ms, | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // Retransmit the packet via tail loss probe. | 
 |   clock_.AdvanceTime(connection_.GetRetransmissionAlarm()->deadline() - | 
 |                      clock_.Now()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // This time, we should time out and send a connection close due to the TLP. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() - | 
 |                      clock_.ApproximateNow() + five_ms); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseWithOpenStreams) { | 
 |   // Same test as above, but having open streams causes a connection close | 
 |   // to be sent. | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |  | 
 |   // Create a handshake message that also enables silent close. | 
 |   CryptoHandshakeMessage msg; | 
 |   std::string error_details; | 
 |   QuicConfig client_config; | 
 |   client_config.SetInitialStreamFlowControlWindowToSend( | 
 |       kInitialStreamFlowControlWindowForTest); | 
 |   client_config.SetInitialSessionFlowControlWindowToSend( | 
 |       kInitialSessionFlowControlWindowForTest); | 
 |   client_config.SetIdleNetworkTimeout( | 
 |       QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs)); | 
 |   client_config.ToHandshakeMessage(&msg, connection_.transport_version()); | 
 |   const QuicErrorCode error = | 
 |       config.ProcessPeerHello(msg, CLIENT, &error_details); | 
 |   EXPECT_THAT(error, IsQuicNoError()); | 
 |  | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   const QuicTime::Delta default_idle_timeout = | 
 |       QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1); | 
 |   const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
 |   QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout; | 
 |  | 
 |   // When we send a packet, the timeout will change to 5ms + | 
 |   // kInitialIdleTimeoutSecs. | 
 |   clock_.AdvanceTime(five_ms); | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   EXPECT_EQ(default_timeout + five_ms, | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // Indicate streams are still open. | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(true)); | 
 |   if (GetQuicReloadableFlag(quic_add_stream_info_to_idle_close_detail)) { | 
 |     EXPECT_CALL(visitor_, GetStreamsInfoForLogging()).WillOnce(Return("")); | 
 |   } | 
 |  | 
 |   // This time, we should time out and send a connection close due to the TLP. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() - | 
 |                      clock_.ApproximateNow() + five_ms); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TimeoutAfterReceive) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   const QuicTime::Delta initial_idle_timeout = | 
 |       QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
 |   const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
 |   QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; | 
 |  | 
 |   connection_.SendStreamDataWithString( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, NO_FIN); | 
 |   connection_.SendStreamDataWithString( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       3, NO_FIN); | 
 |  | 
 |   EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
 |   clock_.AdvanceTime(five_ms); | 
 |  | 
 |   // When we receive a packet, the timeout will change to 5ms + | 
 |   // kInitialIdleTimeoutSecs. | 
 |   QuicAckFrame ack = InitAckFrame(2); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   // The original alarm will fire.  We should not time out because we had a | 
 |   // network event at t=5ms.  The alarm will reregister. | 
 |   clock_.AdvanceTime(initial_idle_timeout - five_ms); | 
 |   EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_EQ(default_timeout + five_ms, | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // This time, we should time out. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   clock_.AdvanceTime(five_ms); | 
 |   EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TimeoutAfterReceiveNotSendWhenUnacked) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   const QuicTime::Delta initial_idle_timeout = | 
 |       QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
 |   connection_.SetNetworkTimeouts( | 
 |       QuicTime::Delta::Infinite(), | 
 |       initial_idle_timeout + QuicTime::Delta::FromSeconds(1)); | 
 |   const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
 |   QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   connection_.SendStreamDataWithString( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, NO_FIN); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   connection_.SendStreamDataWithString( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       3, NO_FIN); | 
 |  | 
 |   EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   clock_.AdvanceTime(five_ms); | 
 |  | 
 |   // When we receive a packet, the timeout will change to 5ms + | 
 |   // kInitialIdleTimeoutSecs. | 
 |   QuicAckFrame ack = InitAckFrame(2); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   // The original alarm will fire.  We should not time out because we had a | 
 |   // network event at t=5ms.  The alarm will reregister. | 
 |   clock_.AdvanceTime(initial_idle_timeout - five_ms); | 
 |   EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_EQ(default_timeout + five_ms, | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // Now, send packets while advancing the time and verify that the connection | 
 |   // eventually times out. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
 |   for (int i = 0; i < 100 && connection_.connected(); ++i) { | 
 |     QUIC_LOG(INFO) << "sending data packet"; | 
 |     connection_.SendStreamDataWithString( | 
 |         GetNthClientInitiatedStreamId(1, connection_.transport_version()), | 
 |         "foo", 0, NO_FIN); | 
 |     connection_.GetTimeoutAlarm()->Fire(); | 
 |     clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
 |   } | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TimeoutAfter5ClientRTOs) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   connection_.SetMaxTailLossProbes(2); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k5RTO); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |         .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |   } | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   // Send stream data. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |  | 
 |   // Fire the retransmission alarm 6 times, twice for TLP and 4 times for RTO. | 
 |   for (int i = 0; i < 6; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |     connection_.GetRetransmissionAlarm()->Fire(); | 
 |     EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnPathDegrading()); | 
 |   connection_.PathDegradingTimeout(); | 
 |  | 
 |   EXPECT_EQ(2u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); | 
 |   EXPECT_EQ(4u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); | 
 |   // This time, we should time out. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   ASSERT_TRUE(connection_.BlackholeDetectionInProgress()); | 
 |   connection_.GetBlackholeDetectorAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendScheduler) { | 
 |   // Test that if we send a packet without delay, it is not queued. | 
 |   QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT); | 
 |   std::unique_ptr<QuicPacket> packet = | 
 |       ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL); | 
 |   QuicPacketCreatorPeer::SetPacketNumber(creator_, 1); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet), | 
 |                          HAS_RETRANSMITTABLE_DATA, false, false); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FailToSendFirstPacket) { | 
 |   // Test that the connection does not crash when it fails to send the first | 
 |   // packet at which point self_address_ might be uninitialized. | 
 |   QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1); | 
 |   std::unique_ptr<QuicPacket> packet = | 
 |       ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL); | 
 |   QuicPacketCreatorPeer::SetPacketNumber(creator_, 1); | 
 |   writer_->SetShouldWriteFail(); | 
 |   connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet), | 
 |                          HAS_RETRANSMITTABLE_DATA, false, false); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) { | 
 |   QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT); | 
 |   std::unique_ptr<QuicPacket> packet = | 
 |       ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL); | 
 |   QuicPacketCreatorPeer::SetPacketNumber(creator_, 1); | 
 |   BlockOnNextWrite(); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _)) | 
 |       .Times(0); | 
 |   connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet), | 
 |                          HAS_RETRANSMITTABLE_DATA, false, false); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) { | 
 |   // Queue the first packet. | 
 |   size_t payload_length = connection_.max_packet_length(); | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(testing::Return(false)); | 
 |   const std::string payload(payload_length, 'a'); | 
 |   QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId( | 
 |       connection_.version().transport_version, Perspective::IS_CLIENT)); | 
 |   EXPECT_EQ(0u, connection_ | 
 |                     .SendStreamDataWithString(first_bidi_stream_id, payload, 0, | 
 |                                               NO_FIN) | 
 |                     .bytes_consumed); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendingThreePackets) { | 
 |   // Make the payload twice the size of the packet, so 3 packets are written. | 
 |   size_t total_payload_length = 2 * connection_.max_packet_length(); | 
 |   const std::string payload(total_payload_length, 'a'); | 
 |   QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId( | 
 |       connection_.version().transport_version, Perspective::IS_CLIENT)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); | 
 |   EXPECT_EQ(payload.size(), connection_ | 
 |                                 .SendStreamDataWithString(first_bidi_stream_id, | 
 |                                                           payload, 0, NO_FIN) | 
 |                                 .bytes_consumed); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (!GetParam().version.HasIetfInvariantHeader()) { | 
 |     // For IETF QUIC, encryption level will be switched to FORWARD_SECURE in | 
 |     // SendStreamDataWithString. | 
 |     QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   } | 
 |   // Set up a larger payload than will fit in one packet. | 
 |   const std::string payload(connection_.max_packet_length(), 'a'); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber()); | 
 |  | 
 |   // Now send some packets with no truncation. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   EXPECT_EQ(payload.size(), | 
 |             connection_.SendStreamDataWithString(3, payload, 0, NO_FIN) | 
 |                 .bytes_consumed); | 
 |   // Track the size of the second packet here.  The overhead will be the largest | 
 |   // we see in this test, due to the non-truncated connection id. | 
 |   size_t non_truncated_packet_size = writer_->last_packet_size(); | 
 |  | 
 |   // Change to a 0 byte connection id. | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   EXPECT_EQ(payload.size(), | 
 |             connection_.SendStreamDataWithString(3, payload, 1350, NO_FIN) | 
 |                 .bytes_consumed); | 
 |   if (connection_.version().HasIetfInvariantHeader()) { | 
 |     // Short header packets sent from server omit connection ID already, and | 
 |     // stream offset size increases from 0 to 2. | 
 |     EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() - 2); | 
 |   } else { | 
 |     // Just like above, we save 8 bytes on payload, and 8 on truncation. -2 | 
 |     // because stream offset size is 2 instead of 0. | 
 |     EXPECT_EQ(non_truncated_packet_size, | 
 |               writer_->last_packet_size() + 8 * 2 - 2); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAck) { | 
 |   QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   const uint8_t tag = 0x07; | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(tag)); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(tag)); | 
 |   // Process a packet from the non-crypto stream. | 
 |   frame1_.stream_id = 3; | 
 |  | 
 |   // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
 |   // instead of ENCRYPTION_INITIAL. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   // Check if delayed ack timer is running for the expected interval. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
 |   // Simulate delayed ack alarm firing. | 
 |   clock_.AdvanceTime(DefaultDelayedAckTime()); | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |   // Check that ack is sent and that delayed ack alarm is reset. | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |     EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
 |   } else { | 
 |     EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
 |     EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   } | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAckDecimation) { | 
 |   EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
 |  | 
 |   const size_t kMinRttMs = 40; | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   // The ack time should be based on min_rtt/4, since it's less than the | 
 |   // default delayed ack time. | 
 |   QuicTime ack_time = clock_.ApproximateNow() + | 
 |                       QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   const uint8_t tag = 0x07; | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(tag)); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(tag)); | 
 |   // Process a packet from the non-crypto stream. | 
 |   frame1_.stream_id = 3; | 
 |  | 
 |   // Process all the initial packets in order so there aren't missing packets. | 
 |   uint64_t kFirstDecimatedPacket = 101; | 
 |   for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |     ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |   } | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
 |   // instead of ENCRYPTION_INITIAL. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, | 
 |                            ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   // Check if delayed ack timer is running for the expected interval. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
 |  | 
 |   // The 10th received packet causes an ack to be sent. | 
 |   for (int i = 0; i < 9; ++i) { | 
 |     EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |     ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, | 
 |                              ENCRYPTION_ZERO_RTT); | 
 |   } | 
 |   // Check that ack is sent and that delayed ack alarm is reset. | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |     EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
 |   } else { | 
 |     EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
 |     EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   } | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAckDecimationUnlimitedAggregation) { | 
 |   EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   // No limit on the number of packets received before sending an ack. | 
 |   connection_options.push_back(kAKDU); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   const size_t kMinRttMs = 40; | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   // The ack time should be based on min_rtt/4, since it's less than the | 
 |   // default delayed ack time. | 
 |   QuicTime ack_time = clock_.ApproximateNow() + | 
 |                       QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   const uint8_t tag = 0x07; | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(tag)); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(tag)); | 
 |   // Process a packet from the non-crypto stream. | 
 |   frame1_.stream_id = 3; | 
 |  | 
 |   // Process all the initial packets in order so there aren't missing packets. | 
 |   uint64_t kFirstDecimatedPacket = 101; | 
 |   for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |     ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |   } | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
 |   // instead of ENCRYPTION_INITIAL. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, | 
 |                            ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   // Check if delayed ack timer is running for the expected interval. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
 |  | 
 |   // 18 packets will not cause an ack to be sent.  19 will because when | 
 |   // stop waiting frames are in use, we ack every 20 packets no matter what. | 
 |   for (int i = 0; i < 18; ++i) { | 
 |     EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |     ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, | 
 |                              ENCRYPTION_ZERO_RTT); | 
 |   } | 
 |   // The delayed ack timer should still be set to the expected deadline. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAckDecimationEighthRtt) { | 
 |   EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
 |   QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125); | 
 |  | 
 |   const size_t kMinRttMs = 40; | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   // The ack time should be based on min_rtt/8, since it's less than the | 
 |   // default delayed ack time. | 
 |   QuicTime ack_time = clock_.ApproximateNow() + | 
 |                       QuicTime::Delta::FromMilliseconds(kMinRttMs / 8); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   const uint8_t tag = 0x07; | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(tag)); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(tag)); | 
 |   // Process a packet from the non-crypto stream. | 
 |   frame1_.stream_id = 3; | 
 |  | 
 |   // Process all the initial packets in order so there aren't missing packets. | 
 |   uint64_t kFirstDecimatedPacket = 101; | 
 |   for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |     ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |   } | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
 |   // instead of ENCRYPTION_INITIAL. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, | 
 |                            ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   // Check if delayed ack timer is running for the expected interval. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
 |  | 
 |   // The 10th received packet causes an ack to be sent. | 
 |   for (int i = 0; i < 9; ++i) { | 
 |     EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |     ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, | 
 |                              ENCRYPTION_ZERO_RTT); | 
 |   } | 
 |   // Check that ack is sent and that delayed ack alarm is reset. | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |     EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
 |   } else { | 
 |     EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
 |     EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   } | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessPacket(1); | 
 |   // Check that ack is sent and that delayed ack alarm is set. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); | 
 |   EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
 |  | 
 |   // Completing the handshake as the server does nothing. | 
 |   QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
 |  | 
 |   // Complete the handshake as the client decreases the delayed ack time to 0ms. | 
 |   QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_CLIENT); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     EXPECT_EQ(clock_.ApproximateNow() + DefaultDelayedAckTime(), | 
 |               connection_.GetAckAlarm()->deadline()); | 
 |   } else { | 
 |     EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessPacket(1); | 
 |   ProcessPacket(2); | 
 |   // Check that ack is sent and that delayed ack alarm is reset. | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |     EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
 |   } else { | 
 |     EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
 |     EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   } | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoAckOnOldNacks) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   ProcessPacket(2); | 
 |   size_t frames_per_ack = GetParam().no_stop_waiting ? 1 : 2; | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessPacket(3); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   writer_->Reset(); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   ProcessPacket(4); | 
 |   EXPECT_EQ(0u, writer_->frame_count()); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessPacket(5); | 
 |   padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   writer_->Reset(); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   // Now only set the timer on the 6th packet, instead of sending another ack. | 
 |   ProcessPacket(6); | 
 |   padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count, writer_->frame_count()); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(0x01)); | 
 |   SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x01)); | 
 |   ProcessDataPacket(1); | 
 |   connection_.SendStreamDataWithString( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, NO_FIN); | 
 |   // Check that ack is bundled with outgoing data and that delayed ack | 
 |   // alarm is reset. | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_EQ(2u, writer_->frame_count()); | 
 |     EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
 |   } else { | 
 |     EXPECT_EQ(3u, writer_->frame_count()); | 
 |     EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   } | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   } | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |   connection_.SendCryptoDataWithString("foo", 0); | 
 |   // Check that ack is bundled with outgoing crypto data. | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_EQ(3u, writer_->frame_count()); | 
 |     EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
 |   } else { | 
 |     EXPECT_EQ(4u, writer_->frame_count()); | 
 |     EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   } | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessPacket(1); | 
 |   BlockOnNextWrite(); | 
 |   writer_->set_is_write_blocked_data_buffered(true); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   } | 
 |   connection_.SendCryptoDataWithString("foo", 0); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |   connection_.SendCryptoDataWithString("bar", 3); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     // CRYPTO frames are not flushed when writer is blocked. | 
 |     EXPECT_FALSE(connection_.HasQueuedData()); | 
 |   } else { | 
 |     EXPECT_TRUE(connection_.HasQueuedData()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()) | 
 |       .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
 |           &connection_, &TestConnection::SendCryptoStreamData))); | 
 |   // Process a packet from the crypto stream, which is frame1_'s default. | 
 |   // Receiving the CHLO as packet 2 first will cause the connection to | 
 |   // immediately send an ack, due to the packet gap. | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   } | 
 |   ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); | 
 |   // Check that ack is sent and that delayed ack alarm is reset. | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_EQ(3u, writer_->frame_count()); | 
 |     EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
 |   } else { | 
 |     EXPECT_EQ(4u, writer_->frame_count()); | 
 |     EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   } | 
 |   if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   } else { | 
 |     EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
 |   } | 
 |   EXPECT_EQ(1u, writer_->padding_frames().size()); | 
 |   ASSERT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front())); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BundleAckForSecondCHLOTwoPacketReject) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |  | 
 |   // Process two packets from the crypto stream, which is frame1_'s default, | 
 |   // simulating a 2 packet reject. | 
 |   { | 
 |     if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |       EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
 |     } else { | 
 |       EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |     } | 
 |     ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |     // Send the new CHLO when the REJ is processed. | 
 |     if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |       EXPECT_CALL(visitor_, OnCryptoFrame(_)) | 
 |           .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
 |               &connection_, &TestConnection::SendCryptoStreamData))); | 
 |     } else { | 
 |       EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
 |           .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
 |               &connection_, &TestConnection::SendCryptoStreamData))); | 
 |     } | 
 |     ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); | 
 |   } | 
 |   // Check that ack is sent and that delayed ack alarm is reset. | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_EQ(3u, writer_->frame_count()); | 
 |     EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
 |   } else { | 
 |     EXPECT_EQ(4u, writer_->frame_count()); | 
 |     EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   } | 
 |   if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   } else { | 
 |     EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
 |   } | 
 |   EXPECT_EQ(1u, writer_->padding_frames().size()); | 
 |   ASSERT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front())); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   connection_.SendStreamDataWithString( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, NO_FIN); | 
 |   connection_.SendStreamDataWithString( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       3, NO_FIN); | 
 |   // Ack the second packet, which will retransmit the first packet. | 
 |   QuicAckFrame ack = ConstructAckFrame(2, 1); | 
 |   LostPacketVector lost_packets; | 
 |   lost_packets.push_back( | 
 |       LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
 |                       Return(LossDetectionInterface::DetectionStats()))); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   ProcessAckPacket(&ack); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   writer_->Reset(); | 
 |  | 
 |   // Now ack the retransmission, which will both raise the high water mark | 
 |   // and see if there is more data to send. | 
 |   ack = ConstructAckFrame(3, 1); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   // Check that no packet is sent and the ack alarm isn't set. | 
 |   EXPECT_EQ(0u, writer_->frame_count()); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   writer_->Reset(); | 
 |  | 
 |   // Send the same ack, but send both data and an ack together. | 
 |   ack = ConstructAckFrame(3, 1); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()) | 
 |       .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
 |           &connection_, &TestConnection::EnsureWritableAndSendStreamData5))); | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   // Check that ack is bundled with outgoing data and the delayed ack | 
 |   // alarm is reset. | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Do not ACK acks. | 
 |     EXPECT_EQ(1u, writer_->frame_count()); | 
 |   } else { | 
 |     EXPECT_EQ(3u, writer_->frame_count()); | 
 |     EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   } | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_TRUE(writer_->ack_frames().empty()); | 
 |   } else { | 
 |     EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |     EXPECT_EQ(QuicPacketNumber(3u), | 
 |               LargestAcked(writer_->ack_frames().front())); | 
 |   } | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoAckSentForClose) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessPacket(1); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   ProcessClosePacket(2); | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_PEER_GOING_AWAY)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendWhenDisconnected) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", | 
 |                               ConnectionCloseBehavior::SILENT_CLOSE); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)); | 
 |   EXPECT_EQ(DISCARD, connection_.GetSerializedPacketFate( | 
 |                          /*is_mtu_discovery=*/false, ENCRYPTION_INITIAL)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendConnectivityProbingWhenDisconnected) { | 
 |   // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. | 
 |   if (!IsDefaultTestConfiguration()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", | 
 |                               ConnectionCloseBehavior::SILENT_CLOSE); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) | 
 |       .Times(0); | 
 |  | 
 |   EXPECT_QUIC_BUG(connection_.SendConnectivityProbingPacket( | 
 |                       writer_.get(), connection_.peer_address()), | 
 |                   "Not sending connectivity probing packet as connection is " | 
 |                   "disconnected."); | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_PEER_GOING_AWAY)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WriteBlockedAfterClientSendsConnectivityProbe) { | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   TestPacketWriter probing_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   // Block next write so that sending connectivity probe will encounter a | 
 |   // blocked write when send a connectivity probe to the peer. | 
 |   probing_writer.BlockOnNextWrite(); | 
 |   // Connection will not be marked as write blocked as connectivity probe only | 
 |   // affects the probing_writer which is not the default. | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) | 
 |       .Times(1); | 
 |   connection_.SendConnectivityProbingPacket(&probing_writer, | 
 |                                             connection_.peer_address()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WriterBlockedAfterServerSendsConnectivityProbe) { | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |   if (version().SupportsAntiAmplificationLimit()) { | 
 |     QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   } | 
 |  | 
 |   // Block next write so that sending connectivity probe will encounter a | 
 |   // blocked write when send a connectivity probe to the peer. | 
 |   writer_->BlockOnNextWrite(); | 
 |   // Connection will be marked as write blocked as server uses the default | 
 |   // writer to send connectivity probes. | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) | 
 |       .Times(1); | 
 |   if (VersionHasIetfQuicFrames(GetParam().version.transport_version)) { | 
 |     QuicPathFrameBuffer payload{ | 
 |         {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}}; | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     connection_.SendPathChallenge( | 
 |         payload, connection_.self_address(), connection_.peer_address(), | 
 |         connection_.effective_peer_address(), writer_.get()); | 
 |   } else { | 
 |     connection_.SendConnectivityProbingPacket(writer_.get(), | 
 |                                               connection_.peer_address()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WriterErrorWhenClientSendsConnectivityProbe) { | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   TestPacketWriter probing_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   probing_writer.SetShouldWriteFail(); | 
 |  | 
 |   // Connection should not be closed if a connectivity probe is failed to be | 
 |   // sent. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) | 
 |       .Times(0); | 
 |   connection_.SendConnectivityProbingPacket(&probing_writer, | 
 |                                             connection_.peer_address()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WriterErrorWhenServerSendsConnectivityProbe) { | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |  | 
 |   writer_->SetShouldWriteFail(); | 
 |   // Connection should not be closed if a connectivity probe is failed to be | 
 |   // sent. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) | 
 |       .Times(0); | 
 |   connection_.SendConnectivityProbingPacket(writer_.get(), | 
 |                                             connection_.peer_address()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PublicReset) { | 
 |   if (GetParam().version.HasIetfInvariantHeader()) { | 
 |     return; | 
 |   } | 
 |   QuicPublicResetPacket header; | 
 |   // Public reset packet in only built by server. | 
 |   header.connection_id = connection_id_; | 
 |   std::unique_ptr<QuicEncryptedPacket> packet( | 
 |       framer_.BuildPublicResetPacket(header)); | 
 |   std::unique_ptr<QuicReceivedPacket> received( | 
 |       ConstructReceivedPacket(*packet, QuicTime::Zero())); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_PUBLIC_RESET)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, IetfStatelessReset) { | 
 |   if (!GetParam().version.HasIetfInvariantHeader()) { | 
 |     return; | 
 |   } | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetReceivedStatelessResetToken(&config, | 
 |                                                  kTestStatelessResetToken); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   std::unique_ptr<QuicEncryptedPacket> packet( | 
 |       QuicFramer::BuildIetfStatelessResetPacket(connection_id_, | 
 |                                                 /*received_packet_length=*/100, | 
 |                                                 kTestStatelessResetToken)); | 
 |   std::unique_ptr<QuicReceivedPacket> received( | 
 |       ConstructReceivedPacket(*packet, QuicTime::Zero())); | 
 |   if (!connection_.use_path_validator()) { | 
 |     EXPECT_CALL(visitor_, ValidateStatelessReset(_, _)).WillOnce(Return(true)); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_PUBLIC_RESET)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, GoAway) { | 
 |   if (VersionHasIetfQuicFrames(GetParam().version.transport_version)) { | 
 |     // GoAway is not available in version 99. | 
 |     return; | 
 |   } | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   QuicGoAwayFrame* goaway = new QuicGoAwayFrame(); | 
 |   goaway->last_good_stream_id = 1; | 
 |   goaway->error_code = QUIC_PEER_GOING_AWAY; | 
 |   goaway->reason_phrase = "Going away."; | 
 |   EXPECT_CALL(visitor_, OnGoAway(_)); | 
 |   ProcessGoAwayPacket(goaway); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WindowUpdate) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   QuicWindowUpdateFrame window_update; | 
 |   window_update.stream_id = 3; | 
 |   window_update.max_data = 1234; | 
 |   EXPECT_CALL(visitor_, OnWindowUpdateFrame(_)); | 
 |   ProcessFramePacket(QuicFrame(window_update)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, Blocked) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   QuicBlockedFrame blocked; | 
 |   blocked.stream_id = 3; | 
 |   EXPECT_CALL(visitor_, OnBlockedFrame(_)); | 
 |   ProcessFramePacket(QuicFrame(blocked)); | 
 |   EXPECT_EQ(1u, connection_.GetStats().blocked_frames_received); | 
 |   EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ZeroBytePacket) { | 
 |   // Don't close the connection for zero byte packets. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
 |   QuicReceivedPacket encrypted(nullptr, 0, QuicTime::Zero()); | 
 |   connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, encrypted); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) { | 
 |   if (GetParam().version.HasIetfInvariantHeader()) { | 
 |     return; | 
 |   } | 
 |   // Set the packet number of the ack packet to be least unacked (4). | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 3); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessStopWaitingPacket(InitStopWaitingFrame(4)); | 
 |   EXPECT_FALSE(connection_.ack_frame().packets.Empty()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) { | 
 |   // All supported versions except the one the connection supports. | 
 |   ParsedQuicVersionVector versions; | 
 |   for (auto version : AllSupportedVersions()) { | 
 |     if (version != connection_.version()) { | 
 |       versions.push_back(version); | 
 |     } | 
 |   } | 
 |  | 
 |   // Send a version negotiation packet. | 
 |   std::unique_ptr<QuicEncryptedPacket> encrypted( | 
 |       QuicFramer::BuildVersionNegotiationPacket( | 
 |           connection_id_, EmptyQuicConnectionId(), | 
 |           connection_.version().HasIetfInvariantHeader(), | 
 |           connection_.version().HasLengthPrefixedConnectionIds(), versions)); | 
 |   std::unique_ptr<QuicReceivedPacket> received( | 
 |       ConstructReceivedPacket(*encrypted, QuicTime::Zero())); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   // Verify no connection close packet gets sent. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_INVALID_VERSION)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiationWithConnectionClose) { | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(kINVC); | 
 |   config.SetClientConnectionOptions(connection_options); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   // All supported versions except the one the connection supports. | 
 |   ParsedQuicVersionVector versions; | 
 |   for (auto version : AllSupportedVersions()) { | 
 |     if (version != connection_.version()) { | 
 |       versions.push_back(version); | 
 |     } | 
 |   } | 
 |  | 
 |   // Send a version negotiation packet. | 
 |   std::unique_ptr<QuicEncryptedPacket> encrypted( | 
 |       QuicFramer::BuildVersionNegotiationPacket( | 
 |           connection_id_, EmptyQuicConnectionId(), | 
 |           connection_.version().HasIetfInvariantHeader(), | 
 |           connection_.version().HasLengthPrefixedConnectionIds(), versions)); | 
 |   std::unique_ptr<QuicReceivedPacket> received( | 
 |       ConstructReceivedPacket(*encrypted, QuicTime::Zero())); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   // Verify connection close packet gets sent. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1u)); | 
 |   connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_INVALID_VERSION)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BadVersionNegotiation) { | 
 |   // Send a version negotiation packet with the version the client started with. | 
 |   // It should be rejected. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   std::unique_ptr<QuicEncryptedPacket> encrypted( | 
 |       QuicFramer::BuildVersionNegotiationPacket( | 
 |           connection_id_, EmptyQuicConnectionId(), | 
 |           connection_.version().HasIetfInvariantHeader(), | 
 |           connection_.version().HasLengthPrefixedConnectionIds(), | 
 |           AllSupportedVersions())); | 
 |   std::unique_ptr<QuicReceivedPacket> received( | 
 |       ConstructReceivedPacket(*encrypted, QuicTime::Zero())); | 
 |   connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CheckSendStats) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   connection_.SetMaxTailLossProbes(0); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   connection_.SendStreamDataWithString(3, "first", 0, NO_FIN); | 
 |   size_t first_packet_size = writer_->last_packet_size(); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   connection_.SendStreamDataWithString(5, "second", 0, NO_FIN); | 
 |   size_t second_packet_size = writer_->last_packet_size(); | 
 |  | 
 |   // 2 retransmissions due to rto, 1 due to explicit nack. | 
 |   EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); | 
 |  | 
 |   // Retransmit due to RTO. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // Retransmit due to explicit nacks. | 
 |   QuicAckFrame nack_three = | 
 |       InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}, | 
 |                     {QuicPacketNumber(4), QuicPacketNumber(5)}}); | 
 |  | 
 |   LostPacketVector lost_packets; | 
 |   lost_packets.push_back( | 
 |       LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize)); | 
 |   lost_packets.push_back( | 
 |       LostPacket(QuicPacketNumber(3), kMaxOutgoingPacketSize)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
 |                       Return(LossDetectionInterface::DetectionStats()))); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessAckPacket(&nack_three); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) | 
 |       .WillOnce(Return(QuicBandwidth::Zero())); | 
 |  | 
 |   const QuicConnectionStats& stats = connection_.GetStats(); | 
 |   // For IETF QUIC, version is not included as the encryption level switches to | 
 |   // FORWARD_SECURE in SendStreamDataWithString. | 
 |   size_t save_on_version = | 
 |       GetParam().version.HasIetfInvariantHeader() ? 0 : kQuicVersionSize; | 
 |   EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - save_on_version, | 
 |             stats.bytes_sent); | 
 |   EXPECT_EQ(5u, stats.packets_sent); | 
 |   EXPECT_EQ(2 * first_packet_size + second_packet_size - save_on_version, | 
 |             stats.bytes_retransmitted); | 
 |   EXPECT_EQ(3u, stats.packets_retransmitted); | 
 |   EXPECT_EQ(1u, stats.rto_count); | 
 |   EXPECT_EQ(kDefaultMaxPacketSize, stats.egress_mtu); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) { | 
 |   // Construct a packet with stream frame and connection close frame. | 
 |   QuicPacketHeader header; | 
 |   if (peer_framer_.perspective() == Perspective::IS_SERVER) { | 
 |     header.source_connection_id = connection_id_; | 
 |     header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
 |     if (!peer_framer_.version().HasIetfInvariantHeader()) { | 
 |       header.source_connection_id_included = CONNECTION_ID_PRESENT; | 
 |     } | 
 |   } else { | 
 |     header.destination_connection_id = connection_id_; | 
 |     if (peer_framer_.version().HasIetfInvariantHeader()) { | 
 |       header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
 |     } | 
 |   } | 
 |   header.packet_number = QuicPacketNumber(1); | 
 |   header.version_flag = false; | 
 |  | 
 |   QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY; | 
 |   // This QuicConnectionCloseFrame will default to being for a Google QUIC | 
 |   // close. If doing IETF QUIC then set fields appropriately for CC/T or CC/A, | 
 |   // depending on the mapping. | 
 |   QuicConnectionCloseFrame qccf(peer_framer_.transport_version(), | 
 |                                 kQuicErrorCode, NO_IETF_QUIC_ERROR, "", | 
 |                                 /*transport_close_frame_type=*/0); | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(frame1_)); | 
 |   frames.push_back(QuicFrame(&qccf)); | 
 |   std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
 |   EXPECT_TRUE(nullptr != packet); | 
 |   char buffer[kMaxOutgoingPacketSize]; | 
 |   size_t encrypted_length = peer_framer_.EncryptPayload( | 
 |       ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer, | 
 |       kMaxOutgoingPacketSize); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   connection_.ProcessUdpPacket( | 
 |       kSelfAddress, kPeerAddress, | 
 |       QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_PEER_GOING_AWAY)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SelectMutualVersion) { | 
 |   connection_.SetSupportedVersions(AllSupportedVersions()); | 
 |   // Set the connection to speak the lowest quic version. | 
 |   connection_.set_version(QuicVersionMin()); | 
 |   EXPECT_EQ(QuicVersionMin(), connection_.version()); | 
 |  | 
 |   // Pass in available versions which includes a higher mutually supported | 
 |   // version.  The higher mutually supported version should be selected. | 
 |   ParsedQuicVersionVector supported_versions = AllSupportedVersions(); | 
 |   EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions)); | 
 |   EXPECT_EQ(QuicVersionMax(), connection_.version()); | 
 |  | 
 |   // Expect that the lowest version is selected. | 
 |   // Ensure the lowest supported version is less than the max, unless they're | 
 |   // the same. | 
 |   ParsedQuicVersionVector lowest_version_vector; | 
 |   lowest_version_vector.push_back(QuicVersionMin()); | 
 |   EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector)); | 
 |   EXPECT_EQ(QuicVersionMin(), connection_.version()); | 
 |  | 
 |   // Shouldn't be able to find a mutually supported version. | 
 |   ParsedQuicVersionVector unsupported_version; | 
 |   unsupported_version.push_back(UnsupportedQuicVersion()); | 
 |   EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) { | 
 |   EXPECT_FALSE(writer_->IsWriteBlocked()); | 
 |  | 
 |   // Send a packet. | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |  | 
 |   TriggerConnectionClose(); | 
 |   EXPECT_LE(2u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) { | 
 |   BlockOnNextWrite(); | 
 |   TriggerConnectionClose(); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) { | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |   TriggerConnectionClose(); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, OnPacketSentDebugVisitor) { | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   MockQuicConnectionDebugVisitor debug_visitor; | 
 |   connection_.set_debug_visitor(&debug_visitor); | 
 |  | 
 |   EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
 |  | 
 |   EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1); | 
 |   connection_.SendConnectivityProbingPacket(writer_.get(), | 
 |                                             connection_.peer_address()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) { | 
 |   QuicPacketHeader header; | 
 |   header.packet_number = QuicPacketNumber(1); | 
 |   if (GetParam().version.HasIetfInvariantHeader()) { | 
 |     header.form = IETF_QUIC_LONG_HEADER_PACKET; | 
 |   } | 
 |  | 
 |   MockQuicConnectionDebugVisitor debug_visitor; | 
 |   connection_.set_debug_visitor(&debug_visitor); | 
 |   EXPECT_CALL(debug_visitor, OnPacketHeader(Ref(header), _, _)).Times(1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(1); | 
 |   EXPECT_CALL(debug_visitor, OnSuccessfulVersionNegotiation(_)).Times(1); | 
 |   connection_.OnPacketHeader(header); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, Pacing) { | 
 |   TestConnection server(connection_id_, kPeerAddress, kSelfAddress, | 
 |                         helper_.get(), alarm_factory_.get(), writer_.get(), | 
 |                         Perspective::IS_SERVER, version()); | 
 |   TestConnection client(connection_id_, kSelfAddress, kPeerAddress, | 
 |                         helper_.get(), alarm_factory_.get(), writer_.get(), | 
 |                         Perspective::IS_CLIENT, version()); | 
 |   EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing( | 
 |       static_cast<const QuicSentPacketManager*>( | 
 |           &client.sent_packet_manager()))); | 
 |   EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing( | 
 |       static_cast<const QuicSentPacketManager*>( | 
 |           &server.sent_packet_manager()))); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WindowUpdateInstigateAcks) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Send a WINDOW_UPDATE frame. | 
 |   QuicWindowUpdateFrame window_update; | 
 |   window_update.stream_id = 3; | 
 |   window_update.max_data = 1234; | 
 |   EXPECT_CALL(visitor_, OnWindowUpdateFrame(_)); | 
 |   ProcessFramePacket(QuicFrame(window_update)); | 
 |  | 
 |   // Ensure that this has caused the ACK alarm to be set. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BlockedFrameInstigateAcks) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Send a BLOCKED frame. | 
 |   QuicBlockedFrame blocked; | 
 |   blocked.stream_id = 3; | 
 |   EXPECT_CALL(visitor_, OnBlockedFrame(_)); | 
 |   ProcessFramePacket(QuicFrame(blocked)); | 
 |  | 
 |   // Ensure that this has caused the ACK alarm to be set. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReevaluateTimeUntilSendOnAck) { | 
 |   // Enable pacing. | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   // Send two packets.  One packet is not sufficient because if it gets acked, | 
 |   // there will be no packets in flight after that and the pacer will always | 
 |   // allow the next packet in that situation. | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
 |   connection_.SendStreamDataWithString( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, NO_FIN); | 
 |   connection_.SendStreamDataWithString( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "bar", | 
 |       3, NO_FIN); | 
 |   connection_.OnCanWrite(); | 
 |  | 
 |   // Schedule the next packet for a few milliseconds in future. | 
 |   QuicSentPacketManagerPeer::DisablePacerBursts(manager_); | 
 |   QuicTime scheduled_pacing_time = | 
 |       clock_.Now() + QuicTime::Delta::FromMilliseconds(5); | 
 |   QuicSentPacketManagerPeer::SetNextPacedPacketTime(manager_, | 
 |                                                     scheduled_pacing_time); | 
 |  | 
 |   // Send a packet and have it be blocked by congestion control. | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(false)); | 
 |   connection_.SendStreamDataWithString( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "baz", | 
 |       6, NO_FIN); | 
 |   EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
 |  | 
 |   // Process an ack and the send alarm will be set to the new 5ms delay. | 
 |   QuicAckFrame ack = InitAckFrame(1); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
 |   ProcessAckPacket(&ack); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_TRUE(connection_.GetSendAlarm()->IsSet()); | 
 |   EXPECT_EQ(scheduled_pacing_time, connection_.GetSendAlarm()->deadline()); | 
 |   writer_->Reset(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendAcksImmediately) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacket(1); | 
 |   CongestionBlockWrites(); | 
 |   SendAckPacketToPeer(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendPingImmediately) { | 
 |   MockQuicConnectionDebugVisitor debug_visitor; | 
 |   connection_.set_debug_visitor(&debug_visitor); | 
 |  | 
 |   CongestionBlockWrites(); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1); | 
 |   EXPECT_CALL(debug_visitor, OnPingSent()).Times(1); | 
 |   connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendBlockedImmediately) { | 
 |   MockQuicConnectionDebugVisitor debug_visitor; | 
 |   connection_.set_debug_visitor(&debug_visitor); | 
 |  | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1); | 
 |   EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); | 
 |   connection_.SendControlFrame(QuicFrame(QuicBlockedFrame(1, 3))); | 
 |   EXPECT_EQ(1u, connection_.GetStats().blocked_frames_sent); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FailedToSendBlockedFrames) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   MockQuicConnectionDebugVisitor debug_visitor; | 
 |   connection_.set_debug_visitor(&debug_visitor); | 
 |   QuicBlockedFrame blocked(1, 3); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(0); | 
 |   EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); | 
 |   connection_.SendControlFrame(QuicFrame(blocked)); | 
 |   EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendingUnencryptedStreamDataFails) { | 
 |   // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. | 
 |   if (!IsDefaultTestConfiguration()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   EXPECT_QUIC_BUG(connection_.SaveAndSendStreamData(3, {}, 0, FIN), | 
 |                   "Cannot send stream data with level: ENCRYPTION_INITIAL"); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SetRetransmissionAlarmForCryptoPacket) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendCryptoStreamData(); | 
 |  | 
 |   // Verify retransmission timer is correctly set after crypto packet has been | 
 |   // sent. | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   QuicTime retransmission_time = | 
 |       QuicConnectionPeer::GetSentPacketManager(&connection_) | 
 |           ->GetRetransmissionTime(); | 
 |   EXPECT_NE(retransmission_time, clock_.ApproximateNow()); | 
 |   EXPECT_EQ(retransmission_time, | 
 |             connection_.GetRetransmissionAlarm()->deadline()); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 | } | 
 |  | 
 | // Includes regression test for b/69979024. | 
 | TEST_P(QuicConnectionTest, PathDegradingDetectionForNonCryptoPackets) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |  | 
 |   const char data[] = "data"; | 
 |   size_t data_size = strlen(data); | 
 |   QuicStreamOffset offset = 0; | 
 |  | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     // Send a packet. Now there's a retransmittable packet on the wire, so the | 
 |     // path degrading detection should be set. | 
 |     connection_.SendStreamDataWithString( | 
 |         GetNthClientInitiatedStreamId(1, connection_.transport_version()), data, | 
 |         offset, NO_FIN); | 
 |     offset += data_size; | 
 |     EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |     // Check the deadline of the path degrading detection. | 
 |     QuicTime::Delta delay = | 
 |         QuicConnectionPeer::GetSentPacketManager(&connection_) | 
 |             ->GetPathDegradingDelay(); | 
 |     EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
 |                          clock_.ApproximateNow()); | 
 |  | 
 |     // Send a second packet. The path degrading detection's deadline should | 
 |     // remain the same. | 
 |     // Regression test for b/69979024. | 
 |     clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |     QuicTime prev_deadline = | 
 |         connection_.GetBlackholeDetectorAlarm()->deadline(); | 
 |     connection_.SendStreamDataWithString( | 
 |         GetNthClientInitiatedStreamId(1, connection_.transport_version()), data, | 
 |         offset, NO_FIN); | 
 |     offset += data_size; | 
 |     EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |     EXPECT_EQ(prev_deadline, | 
 |               connection_.GetBlackholeDetectorAlarm()->deadline()); | 
 |  | 
 |     // Now receive an ACK of the first packet. This should advance the path | 
 |     // degrading detection's deadline since forward progress has been made. | 
 |     clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |     if (i == 0) { | 
 |       EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |     } | 
 |     EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |     QuicAckFrame frame = InitAckFrame( | 
 |         {{QuicPacketNumber(1u + 2u * i), QuicPacketNumber(2u + 2u * i)}}); | 
 |     ProcessAckPacket(&frame); | 
 |     EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |     // Check the deadline of the path degrading detection. | 
 |     delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
 |                 ->GetPathDegradingDelay(); | 
 |     EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
 |                          clock_.ApproximateNow()); | 
 |  | 
 |     if (i == 0) { | 
 |       // Now receive an ACK of the second packet. Since there are no more | 
 |       // retransmittable packets on the wire, this should cancel the path | 
 |       // degrading detection. | 
 |       clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |       EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |       frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
 |       ProcessAckPacket(&frame); | 
 |       EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |     } else { | 
 |       // Advance time to the path degrading alarm's deadline and simulate | 
 |       // firing the alarm. | 
 |       clock_.AdvanceTime(delay); | 
 |       EXPECT_CALL(visitor_, OnPathDegrading()); | 
 |       connection_.PathDegradingTimeout(); | 
 |       EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |     } | 
 |   } | 
 |   EXPECT_TRUE(connection_.IsPathDegrading()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmittableOnWireSetsPingAlarm) { | 
 |   const QuicTime::Delta retransmittable_on_wire_timeout = | 
 |       QuicTime::Delta::FromMilliseconds(50); | 
 |   connection_.set_initial_retransmittable_on_wire_timeout( | 
 |       retransmittable_on_wire_timeout); | 
 |  | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(true)); | 
 |  | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |  | 
 |   const char data[] = "data"; | 
 |   size_t data_size = strlen(data); | 
 |   QuicStreamOffset offset = 0; | 
 |  | 
 |   // Send a packet. | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |   // Now there's a retransmittable packet on the wire, so the path degrading | 
 |   // alarm should be set. | 
 |   // The retransmittable-on-wire alarm should not be set. | 
 |   EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |   QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
 |                               ->GetPathDegradingDelay(); | 
 |   EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
 |                        clock_.ApproximateNow()); | 
 |   ASSERT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
 |   // The ping alarm is set for the ping timeout, not the shorter | 
 |   // retransmittable_on_wire_timeout. | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs); | 
 |   EXPECT_EQ(ping_delay, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Now receive an ACK of the packet. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame = | 
 |       InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   // No more retransmittable packets on the wire, so the path degrading alarm | 
 |   // should be cancelled, and the ping alarm should be set to the | 
 |   // retransmittable_on_wire_timeout. | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(retransmittable_on_wire_timeout, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Simulate firing the ping alarm and sending a PING. | 
 |   clock_.AdvanceTime(retransmittable_on_wire_timeout); | 
 |   connection_.GetPingAlarm()->Fire(); | 
 |  | 
 |   // Now there's a retransmittable packet (PING) on the wire, so the path | 
 |   // degrading alarm should be set. | 
 |   EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |   delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
 |               ->GetPathDegradingDelay(); | 
 |   EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
 |                        clock_.ApproximateNow()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ServerRetransmittableOnWire) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   SetQuicReloadableFlag(quic_enable_server_on_wire_ping, true); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(kSRWP); | 
 |   config.SetInitialReceivedConnectionOptions(connection_options); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(true)); | 
 |  | 
 |   ProcessPacket(1); | 
 |  | 
 |   ASSERT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   QuicTime::Delta ping_delay = QuicTime::Delta::FromMilliseconds(200); | 
 |   EXPECT_EQ(ping_delay, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); | 
 |   connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN); | 
 |   // Verify PING alarm gets cancelled. | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |  | 
 |   // Now receive an ACK of the packet. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame = | 
 |       InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); | 
 |   ProcessAckPacket(2, &frame); | 
 |   // Verify PING alarm gets scheduled. | 
 |   ASSERT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(ping_delay, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 | } | 
 |  | 
 | // This test verifies that the connection marks path as degrading and does not | 
 | // spin timer to detect path degrading when a new packet is sent on the | 
 | // degraded path. | 
 | TEST_P(QuicConnectionTest, NoPathDegradingDetectionIfPathIsDegrading) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |  | 
 |   const char data[] = "data"; | 
 |   size_t data_size = strlen(data); | 
 |   QuicStreamOffset offset = 0; | 
 |  | 
 |   // Send the first packet. Now there's a retransmittable packet on the wire, so | 
 |   // the path degrading alarm should be set. | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |   EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |   // Check the deadline of the path degrading detection. | 
 |   QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
 |                               ->GetPathDegradingDelay(); | 
 |   EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
 |                        clock_.ApproximateNow()); | 
 |  | 
 |   // Send a second packet. The path degrading detection's deadline should remain | 
 |   // the same. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   QuicTime prev_deadline = connection_.GetBlackholeDetectorAlarm()->deadline(); | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |   EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_EQ(prev_deadline, connection_.GetBlackholeDetectorAlarm()->deadline()); | 
 |  | 
 |   // Now receive an ACK of the first packet. This should advance the path | 
 |   // degrading detection's deadline since forward progress has been made. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame = | 
 |       InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |   // Check the deadline of the path degrading alarm. | 
 |   delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
 |               ->GetPathDegradingDelay(); | 
 |   EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
 |                        clock_.ApproximateNow()); | 
 |  | 
 |   // Advance time to the path degrading detection's deadline and simulate | 
 |   // firing the path degrading detection. This path will be considered as | 
 |   // degrading. | 
 |   clock_.AdvanceTime(delay); | 
 |   EXPECT_CALL(visitor_, OnPathDegrading()).Times(1); | 
 |   connection_.PathDegradingTimeout(); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_TRUE(connection_.IsPathDegrading()); | 
 |  | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |   // Send a third packet. The path degrading detection is no longer set but path | 
 |   // should still be marked as degrading. | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_TRUE(connection_.IsPathDegrading()); | 
 | } | 
 |  | 
 | // This test verifies that the connection unmarks path as degrarding and spins | 
 | // the timer to detect future path degrading when forward progress is made | 
 | // after path has been marked degrading. | 
 | TEST_P(QuicConnectionTest, UnmarkPathDegradingOnForwardProgress) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |  | 
 |   const char data[] = "data"; | 
 |   size_t data_size = strlen(data); | 
 |   QuicStreamOffset offset = 0; | 
 |  | 
 |   // Send the first packet. Now there's a retransmittable packet on the wire, so | 
 |   // the path degrading alarm should be set. | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |   EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |   // Check the deadline of the path degrading alarm. | 
 |   QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
 |                               ->GetPathDegradingDelay(); | 
 |   EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
 |                        clock_.ApproximateNow()); | 
 |  | 
 |   // Send a second packet. The path degrading alarm's deadline should remain | 
 |   // the same. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   QuicTime prev_deadline = connection_.GetBlackholeDetectorAlarm()->deadline(); | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |   EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_EQ(prev_deadline, connection_.GetBlackholeDetectorAlarm()->deadline()); | 
 |  | 
 |   // Now receive an ACK of the first packet. This should advance the path | 
 |   // degrading alarm's deadline since forward progress has been made. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame = | 
 |       InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |   // Check the deadline of the path degrading alarm. | 
 |   delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
 |               ->GetPathDegradingDelay(); | 
 |   EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
 |                        clock_.ApproximateNow()); | 
 |  | 
 |   // Advance time to the path degrading alarm's deadline and simulate | 
 |   // firing the alarm. | 
 |   clock_.AdvanceTime(delay); | 
 |   EXPECT_CALL(visitor_, OnPathDegrading()).Times(1); | 
 |   connection_.PathDegradingTimeout(); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_TRUE(connection_.IsPathDegrading()); | 
 |  | 
 |   // Send a third packet. The path degrading alarm is no longer set but path | 
 |   // should still be marked as degrading. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_TRUE(connection_.IsPathDegrading()); | 
 |  | 
 |   // Now receive an ACK of the second packet. This should unmark the path as | 
 |   // degrading. And will set a timer to detect new path degrading. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading()).Times(1); | 
 |   frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |   EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoPathDegradingOnServer) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |  | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |  | 
 |   // Send data. | 
 |   const char data[] = "data"; | 
 |   connection_.SendStreamDataWithString(1, data, 0, NO_FIN); | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |  | 
 |   // Ack data. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame = | 
 |       InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoPathDegradingAfterSendingAck) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacket(1); | 
 |   SendAckPacketToPeer(); | 
 |   EXPECT_FALSE(connection_.sent_packet_manager().unacked_packets().empty()); | 
 |   EXPECT_FALSE(connection_.sent_packet_manager().HasInFlightPackets()); | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, MultipleCallsToCloseConnection) { | 
 |   // Verifies that multiple calls to CloseConnection do not | 
 |   // result in multiple attempts to close the connection - it will be marked as | 
 |   // disconnected after the first call. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1); | 
 |   connection_.CloseConnection(QUIC_NO_ERROR, "no reason", | 
 |                               ConnectionCloseBehavior::SILENT_CLOSE); | 
 |   connection_.CloseConnection(QUIC_NO_ERROR, "no reason", | 
 |                               ConnectionCloseBehavior::SILENT_CLOSE); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ServerReceivesChloOnNonCryptoStream) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |  | 
 |   CryptoHandshakeMessage message; | 
 |   CryptoFramer framer; | 
 |   message.set_tag(kCHLO); | 
 |   std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message); | 
 |   frame1_.stream_id = 10; | 
 |   frame1_.data_buffer = data->data(); | 
 |   frame1_.data_length = data->length(); | 
 |  | 
 |   if (version().handshake_protocol == PROTOCOL_TLS1_3) { | 
 |     EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   ForceProcessFramePacket(QuicFrame(frame1_)); | 
 |   if (VersionHasIetfQuicFrames(version().transport_version)) { | 
 |     // INITIAL packet should not contain STREAM frame. | 
 |     TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION); | 
 |   } else { | 
 |     TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientReceivesRejOnNonCryptoStream) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   CryptoHandshakeMessage message; | 
 |   CryptoFramer framer; | 
 |   message.set_tag(kREJ); | 
 |   std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message); | 
 |   frame1_.stream_id = 10; | 
 |   frame1_.data_buffer = data->data(); | 
 |   frame1_.data_length = data->length(); | 
 |  | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   ForceProcessFramePacket(QuicFrame(frame1_)); | 
 |   if (VersionHasIetfQuicFrames(version().transport_version)) { | 
 |     // INITIAL packet should not contain STREAM frame. | 
 |     TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION); | 
 |   } else { | 
 |     TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CloseConnectionOnPacketTooLarge) { | 
 |   SimulateNextPacketTooLarge(); | 
 |   // A connection close packet is sent | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .Times(1); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AlwaysGetPacketTooLarge) { | 
 |   // Test even we always get packet too large, we do not infinitely try to send | 
 |   // close packet. | 
 |   AlwaysGetPacketTooLarge(); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .Times(1); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CloseConnectionOnQueuedWriteError) { | 
 |   // Regression test for crbug.com/979507. | 
 |   // | 
 |   // If we get a write error when writing queued packets, we should attempt to | 
 |   // send a connection close packet, but if sending that fails, it shouldn't get | 
 |   // queued. | 
 |  | 
 |   // Queue a packet to write. | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Configure writer to always fail. | 
 |   AlwaysGetPacketTooLarge(); | 
 |  | 
 |   // Expect that we attempt to close the connection exactly once. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .Times(1); | 
 |  | 
 |   // Unblock the writes and actually send. | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |  | 
 |   TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); | 
 | } | 
 |  | 
 | // Verify that if connection has no outstanding data, it notifies the send | 
 | // algorithm after the write. | 
 | TEST_P(QuicConnectionTest, SendDataAndBecomeApplicationLimited) { | 
 |   EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1); | 
 |   { | 
 |     InSequence seq; | 
 |     EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |     EXPECT_CALL(visitor_, WillingAndAbleToWrite()) | 
 |         .WillRepeatedly(Return(false)); | 
 |   } | 
 |  | 
 |   connection_.SendStreamData3(); | 
 | } | 
 |  | 
 | // Verify that the connection does not become app-limited if there is | 
 | // outstanding data to send after the write. | 
 | TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedIfMoreDataAvailable) { | 
 |   EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0); | 
 |   { | 
 |     InSequence seq; | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |     EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); | 
 |   } | 
 |  | 
 |   connection_.SendStreamData3(); | 
 | } | 
 |  | 
 | // Verify that the connection does not become app-limited after blocked write | 
 | // even if there is outstanding data to send after the write. | 
 | TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedDueToWriteBlock) { | 
 |   EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0); | 
 |   EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); | 
 |   BlockOnNextWrite(); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamData3(); | 
 |  | 
 |   // Now unblock the writer, become congestion control blocked, | 
 |   // and ensure we become app-limited after writing. | 
 |   writer_->SetWritable(); | 
 |   CongestionBlockWrites(); | 
 |   EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1); | 
 |   connection_.OnCanWrite(); | 
 | } | 
 |  | 
 | // Test the mode in which the link is filled up with probing retransmissions if | 
 | // the connection becomes application-limited. | 
 | TEST_P(QuicConnectionTest, SendDataWhenApplicationLimited) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket()) | 
 |       .WillRepeatedly(Return(true)); | 
 |   { | 
 |     InSequence seq; | 
 |     EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |     EXPECT_CALL(visitor_, WillingAndAbleToWrite()) | 
 |         .WillRepeatedly(Return(false)); | 
 |   } | 
 |   EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] { | 
 |     return connection_.sent_packet_manager().MaybeRetransmitOldestPacket( | 
 |         PROBING_RETRANSMISSION); | 
 |   }); | 
 |   // Fix congestion window to be 20,000 bytes. | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(Ge(20000u))) | 
 |       .WillRepeatedly(Return(false)); | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(Lt(20000u))) | 
 |       .WillRepeatedly(Return(true)); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0); | 
 |   ASSERT_EQ(0u, connection_.GetStats().packets_sent); | 
 |   connection_.set_fill_up_link_during_probing(true); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   connection_.OnHandshakeComplete(); | 
 |   connection_.SendStreamData3(); | 
 |  | 
 |   // We expect a lot of packets from a 20 kbyte window. | 
 |   EXPECT_GT(connection_.GetStats().packets_sent, 10u); | 
 |   // Ensure that the packets are padded. | 
 |   QuicByteCount average_packet_size = | 
 |       connection_.GetStats().bytes_sent / connection_.GetStats().packets_sent; | 
 |   EXPECT_GT(average_packet_size, 1000u); | 
 |  | 
 |   // Acknowledge all packets sent, except for the last one. | 
 |   QuicAckFrame ack = InitAckFrame( | 
 |       connection_.sent_packet_manager().GetLargestSentPacket() - 1); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |  | 
 |   // Ensure that since we no longer have retransmittable bytes in flight, this | 
 |   // will not cause any responses to be sent. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1); | 
 |   ProcessAckPacket(&ack); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DoNotForceSendingAckOnPacketTooLarge) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   // Send an ack by simulating delayed ack alarm firing. | 
 |   ProcessPacket(1); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |   // Simulate data packet causes write error. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   SimulateNextPacketTooLarge(); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
 |   EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
 |   // Ack frame is not bundled in connection close packet. | 
 |   EXPECT_TRUE(writer_->ack_frames().empty()); | 
 |   if (writer_->padding_frames().empty()) { | 
 |     EXPECT_EQ(1u, writer_->frame_count()); | 
 |   } else { | 
 |     EXPECT_EQ(2u, writer_->frame_count()); | 
 |   } | 
 |  | 
 |   TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CloseConnectionAllLevels) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR; | 
 |   connection_.CloseConnection( | 
 |       kQuicErrorCode, "Some random error message", | 
 |       ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
 |  | 
 |   EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_)); | 
 |  | 
 |   TestConnectionCloseQuicErrorCode(kQuicErrorCode); | 
 |   EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
 |  | 
 |   if (!connection_.version().CanSendCoalescedPackets()) { | 
 |     // Each connection close packet should be sent in distinct UDP packets. | 
 |     EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_), | 
 |               writer_->connection_close_packets()); | 
 |     EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_), | 
 |               writer_->packets_write_attempts()); | 
 |     return; | 
 |   } | 
 |  | 
 |   // A single UDP packet should be sent with multiple connection close packets | 
 |   // coalesced together. | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |  | 
 |   // Only the first packet has been processed yet. | 
 |   EXPECT_EQ(1u, writer_->connection_close_packets()); | 
 |  | 
 |   // ProcessPacket resets the visitor and frees the coalesced packet. | 
 |   ASSERT_TRUE(writer_->coalesced_packet() != nullptr); | 
 |   auto packet = writer_->coalesced_packet()->Clone(); | 
 |   writer_->framer()->ProcessPacket(*packet); | 
 |   EXPECT_EQ(1u, writer_->connection_close_packets()); | 
 |   ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CloseConnectionOneLevel) { | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR; | 
 |   connection_.CloseConnection( | 
 |       kQuicErrorCode, "Some random error message", | 
 |       ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
 |  | 
 |   EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_)); | 
 |  | 
 |   TestConnectionCloseQuicErrorCode(kQuicErrorCode); | 
 |   EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->connection_close_packets()); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DoNotPadServerInitialConnectionClose) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |  | 
 |   if (version().handshake_protocol == PROTOCOL_TLS1_3) { | 
 |     EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR; | 
 |   connection_.CloseConnection( | 
 |       kQuicErrorCode, "Some random error message", | 
 |       ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
 |  | 
 |   EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_)); | 
 |  | 
 |   TestConnectionCloseQuicErrorCode(kQuicErrorCode); | 
 |   EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
 |   EXPECT_TRUE(writer_->padding_frames().empty()); | 
 |   EXPECT_EQ(ENCRYPTION_INITIAL, writer_->framer()->last_decrypted_level()); | 
 | } | 
 |  | 
 | // Regression test for b/63620844. | 
 | TEST_P(QuicConnectionTest, FailedToWriteHandshakePacket) { | 
 |   SimulateNextPacketTooLarge(); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .Times(1); | 
 |  | 
 |   connection_.SendCryptoStreamData(); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, MaxPacingRate) { | 
 |   EXPECT_EQ(0, connection_.MaxPacingRate().ToBytesPerSecond()); | 
 |   connection_.SetMaxPacingRate(QuicBandwidth::FromBytesPerSecond(100)); | 
 |   EXPECT_EQ(100, connection_.MaxPacingRate().ToBytesPerSecond()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientAlwaysSendConnectionId) { | 
 |   EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
 |   EXPECT_EQ(CONNECTION_ID_PRESENT, | 
 |             writer_->last_packet_header().destination_connection_id_included); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamDataWithString(3, "bar", 3, NO_FIN); | 
 |   // Verify connection id is still sent in the packet. | 
 |   EXPECT_EQ(CONNECTION_ID_PRESENT, | 
 |             writer_->last_packet_header().destination_connection_id_included); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendProbingRetransmissions) { | 
 |   MockQuicConnectionDebugVisitor debug_visitor; | 
 |   connection_.set_debug_visitor(&debug_visitor); | 
 |  | 
 |   const QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(stream_id, "bar", 3, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(stream_id, "test", 6, NO_FIN, &last_packet); | 
 |  | 
 |   const QuicByteCount old_bytes_in_flight = | 
 |       connection_.sent_packet_manager().GetBytesInFlight(); | 
 |  | 
 |   // Allow 9 probing retransmissions to be sent. | 
 |   { | 
 |     InSequence seq; | 
 |     EXPECT_CALL(*send_algorithm_, CanSend(_)) | 
 |         .Times(9 * 2) | 
 |         .WillRepeatedly(Return(true)); | 
 |     EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); | 
 |   } | 
 |   // Expect them retransmitted in cyclic order (foo, bar, test, foo, bar...). | 
 |   QuicPacketCount sent_count = 0; | 
 |  | 
 |   EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)) | 
 |       .WillRepeatedly(Invoke( | 
 |           [this, &sent_count](QuicPacketNumber, QuicPacketLength, bool, | 
 |                               TransmissionType, EncryptionLevel, | 
 |                               const QuicFrames&, const QuicFrames&, QuicTime) { | 
 |             ASSERT_EQ(1u, writer_->stream_frames().size()); | 
 |             if (connection_.version().CanSendCoalescedPackets()) { | 
 |               // There is a delay of sending coalesced packet, so (6, 0, 3, 6, | 
 |               // 0...). | 
 |               EXPECT_EQ(3 * ((sent_count + 2) % 3), | 
 |                         writer_->stream_frames()[0]->offset); | 
 |             } else { | 
 |               // Identify the frames by stream offset (0, 3, 6, 0, 3...). | 
 |               EXPECT_EQ(3 * (sent_count % 3), | 
 |                         writer_->stream_frames()[0]->offset); | 
 |             } | 
 |             sent_count++; | 
 |           })); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket()) | 
 |       .WillRepeatedly(Return(true)); | 
 |   EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] { | 
 |     return connection_.sent_packet_manager().MaybeRetransmitOldestPacket( | 
 |         PROBING_RETRANSMISSION); | 
 |   }); | 
 |  | 
 |   connection_.SendProbingRetransmissions(); | 
 |  | 
 |   // Ensure that the in-flight has increased. | 
 |   const QuicByteCount new_bytes_in_flight = | 
 |       connection_.sent_packet_manager().GetBytesInFlight(); | 
 |   EXPECT_GT(new_bytes_in_flight, old_bytes_in_flight); | 
 | } | 
 |  | 
 | // Ensure that SendProbingRetransmissions() does not retransmit anything when | 
 | // there are no outstanding packets. | 
 | TEST_P(QuicConnectionTest, | 
 |        SendProbingRetransmissionsFailsWhenNothingToRetransmit) { | 
 |   ASSERT_TRUE(connection_.sent_packet_manager().unacked_packets().empty()); | 
 |  | 
 |   MockQuicConnectionDebugVisitor debug_visitor; | 
 |   connection_.set_debug_visitor(&debug_visitor); | 
 |   EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(0); | 
 |   EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket()) | 
 |       .WillRepeatedly(Return(true)); | 
 |   EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] { | 
 |     return connection_.sent_packet_manager().MaybeRetransmitOldestPacket( | 
 |         PROBING_RETRANSMISSION); | 
 |   }); | 
 |  | 
 |   connection_.SendProbingRetransmissions(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PingAfterLastRetransmittablePacketAcked) { | 
 |   const QuicTime::Delta retransmittable_on_wire_timeout = | 
 |       QuicTime::Delta::FromMilliseconds(50); | 
 |   connection_.set_initial_retransmittable_on_wire_timeout( | 
 |       retransmittable_on_wire_timeout); | 
 |  | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(true)); | 
 |  | 
 |   const char data[] = "data"; | 
 |   size_t data_size = strlen(data); | 
 |   QuicStreamOffset offset = 0; | 
 |  | 
 |   // Advance 5ms, send a retransmittable packet to the peer. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |   EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
 |   // The ping alarm is set for the ping timeout, not the shorter | 
 |   // retransmittable_on_wire_timeout. | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs); | 
 |   EXPECT_EQ(ping_delay, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Advance 5ms, send a second retransmittable packet to the peer. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |  | 
 |   // Now receive an ACK of the first packet. This should not set the | 
 |   // retransmittable-on-wire alarm since packet 2 is still on the wire. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame = | 
 |       InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
 |   // The ping alarm is set for the ping timeout, not the shorter | 
 |   // retransmittable_on_wire_timeout. | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   // The ping alarm has a 1 second granularity, and the clock has been advanced | 
 |   // 10ms since it was originally set. | 
 |   EXPECT_EQ(ping_delay - QuicTime::Delta::FromMilliseconds(10), | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Now receive an ACK of the second packet. This should set the | 
 |   // retransmittable-on-wire alarm now that no retransmittable packets are on | 
 |   // the wire. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(retransmittable_on_wire_timeout, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Now receive a duplicate ACK of the second packet. This should not update | 
 |   // the ping alarm. | 
 |   QuicTime prev_deadline = connection_.GetPingAlarm()->deadline(); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline()); | 
 |  | 
 |   // Now receive a non-ACK packet.  This should not update the ping alarm. | 
 |   prev_deadline = connection_.GetPingAlarm()->deadline(); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   ProcessPacket(4); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline()); | 
 |  | 
 |   // Simulate the alarm firing and check that a PING is sent. | 
 |   connection_.GetPingAlarm()->Fire(); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   if (GetParam().no_stop_waiting) { | 
 |     EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
 |   } else { | 
 |     EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count()); | 
 |   } | 
 |   ASSERT_EQ(1u, writer_->ping_frames().size()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoPingIfRetransmittablePacketSent) { | 
 |   const QuicTime::Delta retransmittable_on_wire_timeout = | 
 |       QuicTime::Delta::FromMilliseconds(50); | 
 |   connection_.set_initial_retransmittable_on_wire_timeout( | 
 |       retransmittable_on_wire_timeout); | 
 |  | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(true)); | 
 |  | 
 |   const char data[] = "data"; | 
 |   size_t data_size = strlen(data); | 
 |   QuicStreamOffset offset = 0; | 
 |  | 
 |   // Advance 5ms, send a retransmittable packet to the peer. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |   EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
 |   // The ping alarm is set for the ping timeout, not the shorter | 
 |   // retransmittable_on_wire_timeout. | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs); | 
 |   EXPECT_EQ(ping_delay, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Now receive an ACK of the first packet. This should set the | 
 |   // retransmittable-on-wire alarm now that no retransmittable packets are on | 
 |   // the wire. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame = | 
 |       InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(retransmittable_on_wire_timeout, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Before the alarm fires, send another retransmittable packet. This should | 
 |   // cancel the retransmittable-on-wire alarm since now there's a | 
 |   // retransmittable packet on the wire. | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |  | 
 |   // Now receive an ACK of the second packet. This should set the | 
 |   // retransmittable-on-wire alarm now that no retransmittable packets are on | 
 |   // the wire. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(retransmittable_on_wire_timeout, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Simulate the alarm firing and check that a PING is sent. | 
 |   writer_->Reset(); | 
 |   connection_.GetPingAlarm()->Fire(); | 
 |   size_t padding_frame_count = writer_->padding_frames().size(); | 
 |   if (GetParam().no_stop_waiting) { | 
 |     // Do not ACK acks. | 
 |     EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
 |   } else { | 
 |     EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count()); | 
 |   } | 
 |   ASSERT_EQ(1u, writer_->ping_frames().size()); | 
 | } | 
 |  | 
 | // When there is no stream data received but are open streams, send the | 
 | // first few consecutive pings with aggressive retransmittable-on-wire | 
 | // timeout. Exponentially back off the retransmittable-on-wire ping timeout | 
 | // afterwards until it exceeds the default ping timeout. | 
 | TEST_P(QuicConnectionTest, BackOffRetransmittableOnWireTimeout) { | 
 |   int max_aggressive_retransmittable_on_wire_ping_count = 5; | 
 |   SetQuicFlag(FLAGS_quic_max_aggressive_retransmittable_on_wire_ping_count, | 
 |               max_aggressive_retransmittable_on_wire_ping_count); | 
 |   const QuicTime::Delta initial_retransmittable_on_wire_timeout = | 
 |       QuicTime::Delta::FromMilliseconds(200); | 
 |   connection_.set_initial_retransmittable_on_wire_timeout( | 
 |       initial_retransmittable_on_wire_timeout); | 
 |  | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(true)); | 
 |  | 
 |   const char data[] = "data"; | 
 |   // Advance 5ms, send a retransmittable data packet to the peer. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   connection_.SendStreamDataWithString(1, data, 0, NO_FIN); | 
 |   EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
 |   // The ping alarm is set for the ping timeout, not the shorter | 
 |   // retransmittable_on_wire_timeout. | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(connection_.ping_timeout(), | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |  | 
 |   // Verify that the first few consecutive retransmittable on wire pings are | 
 |   // sent with aggressive timeout. | 
 |   for (int i = 0; i <= max_aggressive_retransmittable_on_wire_ping_count; i++) { | 
 |     // Receive an ACK of the previous packet. This should set the ping alarm | 
 |     // with the initial retransmittable-on-wire timeout. | 
 |     clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |     QuicPacketNumber ack_num = creator_->packet_number(); | 
 |     QuicAckFrame frame = InitAckFrame( | 
 |         {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
 |     ProcessAckPacket(&frame); | 
 |     EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |     EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
 |               connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |     // Simulate the alarm firing and check that a PING is sent. | 
 |     writer_->Reset(); | 
 |     clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); | 
 |     connection_.GetPingAlarm()->Fire(); | 
 |   } | 
 |  | 
 |   QuicTime::Delta retransmittable_on_wire_timeout = | 
 |       initial_retransmittable_on_wire_timeout; | 
 |  | 
 |   // Verify subsequent pings are sent with timeout that is exponentially backed | 
 |   // off. | 
 |   while (retransmittable_on_wire_timeout * 2 < connection_.ping_timeout()) { | 
 |     // Receive an ACK for the previous PING. This should set the | 
 |     // ping alarm with backed off retransmittable-on-wire timeout. | 
 |     retransmittable_on_wire_timeout = retransmittable_on_wire_timeout * 2; | 
 |     clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |     QuicPacketNumber ack_num = creator_->packet_number(); | 
 |     QuicAckFrame frame = InitAckFrame( | 
 |         {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
 |     ProcessAckPacket(&frame); | 
 |     EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |     EXPECT_EQ(retransmittable_on_wire_timeout, | 
 |               connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |     // Simulate the alarm firing and check that a PING is sent. | 
 |     writer_->Reset(); | 
 |     clock_.AdvanceTime(retransmittable_on_wire_timeout); | 
 |     connection_.GetPingAlarm()->Fire(); | 
 |   } | 
 |  | 
 |   // The ping alarm is set with default ping timeout. | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(connection_.ping_timeout(), | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Receive an ACK for the previous PING. The ping alarm is set with an | 
 |   // earlier deadline. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   QuicPacketNumber ack_num = creator_->packet_number(); | 
 |   QuicAckFrame frame = InitAckFrame( | 
 |       {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(connection_.ping_timeout() - QuicTime::Delta::FromMilliseconds(5), | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 | } | 
 |  | 
 | // This test verify that the count of consecutive aggressive pings is reset | 
 | // when new data is received. And it also verifies the connection resets | 
 | // the exponential back-off of the retransmittable-on-wire ping timeout | 
 | // after receiving new stream data. | 
 | TEST_P(QuicConnectionTest, ResetBackOffRetransmitableOnWireTimeout) { | 
 |   int max_aggressive_retransmittable_on_wire_ping_count = 3; | 
 |   SetQuicFlag(FLAGS_quic_max_aggressive_retransmittable_on_wire_ping_count, 3); | 
 |   const QuicTime::Delta initial_retransmittable_on_wire_timeout = | 
 |       QuicTime::Delta::FromMilliseconds(200); | 
 |   connection_.set_initial_retransmittable_on_wire_timeout( | 
 |       initial_retransmittable_on_wire_timeout); | 
 |  | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(true)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |  | 
 |   const char data[] = "data"; | 
 |   // Advance 5ms, send a retransmittable data packet to the peer. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   connection_.SendStreamDataWithString(1, data, 0, NO_FIN); | 
 |   EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
 |   // The ping alarm is set for the ping timeout, not the shorter | 
 |   // retransmittable_on_wire_timeout. | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(connection_.ping_timeout(), | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Receive an ACK of the first packet. This should set the ping alarm with | 
 |   // initial retransmittable-on-wire timeout since there is no retransmittable | 
 |   // packet on the wire. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   QuicAckFrame frame = | 
 |       InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Simulate the alarm firing and check that a PING is sent. | 
 |   writer_->Reset(); | 
 |   clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); | 
 |   connection_.GetPingAlarm()->Fire(); | 
 |  | 
 |   // Receive an ACK for the previous PING. Ping alarm will be set with | 
 |   // aggressive timeout. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   QuicPacketNumber ack_num = creator_->packet_number(); | 
 |   frame = InitAckFrame( | 
 |       {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Process a data packet. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacket(peer_creator_.packet_number() + 1); | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, | 
 |                                          peer_creator_.packet_number() + 1); | 
 |   EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Verify the count of consecutive aggressive pings is reset. | 
 |   for (int i = 0; i < max_aggressive_retransmittable_on_wire_ping_count; i++) { | 
 |     // Receive an ACK of the previous packet. This should set the ping alarm | 
 |     // with the initial retransmittable-on-wire timeout. | 
 |     QuicPacketNumber ack_num = creator_->packet_number(); | 
 |     QuicAckFrame frame = InitAckFrame( | 
 |         {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
 |     ProcessAckPacket(&frame); | 
 |     EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |     EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
 |               connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |     // Simulate the alarm firing and check that a PING is sent. | 
 |     writer_->Reset(); | 
 |     clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); | 
 |     connection_.GetPingAlarm()->Fire(); | 
 |     // Advance 5ms to receive next packet. | 
 |     clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   } | 
 |  | 
 |   // Receive another ACK for the previous PING. This should set the | 
 |   // ping alarm with backed off retransmittable-on-wire timeout. | 
 |   ack_num = creator_->packet_number(); | 
 |   frame = InitAckFrame( | 
 |       {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(initial_retransmittable_on_wire_timeout * 2, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   writer_->Reset(); | 
 |   clock_.AdvanceTime(2 * initial_retransmittable_on_wire_timeout); | 
 |   connection_.GetPingAlarm()->Fire(); | 
 |  | 
 |   // Process another data packet and a new ACK packet. The ping alarm is set | 
 |   // with aggressive ping timeout again. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   ProcessDataPacket(peer_creator_.packet_number() + 1); | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, | 
 |                                          peer_creator_.packet_number() + 1); | 
 |   ack_num = creator_->packet_number(); | 
 |   frame = InitAckFrame( | 
 |       {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 | } | 
 |  | 
 | // Make sure that we never send more retransmissible on the wire pings than | 
 | // the limit in FLAGS_quic_max_retransmittable_on_wire_ping_count. | 
 | TEST_P(QuicConnectionTest, RetransmittableOnWirePingLimit) { | 
 |   static constexpr int kMaxRetransmittableOnWirePingCount = 3; | 
 |   SetQuicFlag(FLAGS_quic_max_retransmittable_on_wire_ping_count, | 
 |               kMaxRetransmittableOnWirePingCount); | 
 |   static constexpr QuicTime::Delta initial_retransmittable_on_wire_timeout = | 
 |       QuicTime::Delta::FromMilliseconds(200); | 
 |   static constexpr QuicTime::Delta short_delay = | 
 |       QuicTime::Delta::FromMilliseconds(5); | 
 |   ASSERT_LT(short_delay * 10, initial_retransmittable_on_wire_timeout); | 
 |   connection_.set_initial_retransmittable_on_wire_timeout( | 
 |       initial_retransmittable_on_wire_timeout); | 
 |  | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(true)); | 
 |  | 
 |   const char data[] = "data"; | 
 |   // Advance 5ms, send a retransmittable data packet to the peer. | 
 |   clock_.AdvanceTime(short_delay); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   connection_.SendStreamDataWithString(1, data, 0, NO_FIN); | 
 |   EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
 |   // The ping alarm is set for the ping timeout, not the shorter | 
 |   // retransmittable_on_wire_timeout. | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(connection_.ping_timeout(), | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |  | 
 |   // Verify that the first few consecutive retransmittable on wire pings are | 
 |   // sent with aggressive timeout. | 
 |   for (int i = 0; i <= kMaxRetransmittableOnWirePingCount; i++) { | 
 |     // Receive an ACK of the previous packet. This should set the ping alarm | 
 |     // with the initial retransmittable-on-wire timeout. | 
 |     clock_.AdvanceTime(short_delay); | 
 |     QuicPacketNumber ack_num = creator_->packet_number(); | 
 |     QuicAckFrame frame = InitAckFrame( | 
 |         {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
 |     ProcessAckPacket(&frame); | 
 |     EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |     EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
 |               connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |     // Simulate the alarm firing and check that a PING is sent. | 
 |     writer_->Reset(); | 
 |     clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); | 
 |     connection_.GetPingAlarm()->Fire(); | 
 |   } | 
 |  | 
 |   // Receive an ACK of the previous packet. This should set the ping alarm | 
 |   // but this time with the default ping timeout. | 
 |   QuicPacketNumber ack_num = creator_->packet_number(); | 
 |   QuicAckFrame frame = InitAckFrame( | 
 |       {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(connection_.ping_timeout(), | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ValidStatelessResetToken) { | 
 |   const StatelessResetToken kTestToken{0, 1, 0, 1, 0, 1, 0, 1, | 
 |                                        0, 1, 0, 1, 0, 1, 0, 1}; | 
 |   const StatelessResetToken kWrongTestToken{0, 1, 0, 1, 0, 1, 0, 1, | 
 |                                             0, 1, 0, 1, 0, 1, 0, 2}; | 
 |   QuicConfig config; | 
 |   // No token has been received. | 
 |   EXPECT_FALSE(connection_.IsValidStatelessResetToken(kTestToken)); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(2); | 
 |   // Token is different from received token. | 
 |   QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_FALSE(connection_.IsValidStatelessResetToken(kWrongTestToken)); | 
 |  | 
 |   QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_TRUE(connection_.IsValidStatelessResetToken(kTestToken)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WriteBlockedWithInvalidAck) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
 |   BlockOnNextWrite(); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamDataWithString(5, "foo", 0, FIN); | 
 |   // This causes connection to be closed because packet 1 has not been sent yet. | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   ProcessAckPacket(1, &frame); | 
 |   EXPECT_EQ(0, connection_close_frame_count_); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendMessage) { | 
 |   if (!VersionSupportsMessageFrames(connection_.transport_version())) { | 
 |     return; | 
 |   } | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfig config; | 
 |     QuicConfigPeer::SetReceivedMaxDatagramFrameSize( | 
 |         &config, kMaxAcceptedDatagramFrameSize); | 
 |     EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |     connection_.SetFromConfig(config); | 
 |   } | 
 |   std::string message(connection_.GetCurrentLargestMessagePayload() * 2, 'a'); | 
 |   quiche::QuicheMemSlice slice; | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     connection_.SendStreamData3(); | 
 |     // Send a message which cannot fit into current open packet, and 2 packets | 
 |     // get sent, one contains stream frame, and the other only contains the | 
 |     // message frame. | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |     slice = MemSliceFromString(absl::string_view( | 
 |         message.data(), connection_.GetCurrentLargestMessagePayload())); | 
 |     EXPECT_EQ(MESSAGE_STATUS_SUCCESS, | 
 |               connection_.SendMessage(1, absl::MakeSpan(&slice, 1), false)); | 
 |   } | 
 |   // Fail to send a message if connection is congestion control blocked. | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); | 
 |   slice = MemSliceFromString("message"); | 
 |   EXPECT_EQ(MESSAGE_STATUS_BLOCKED, | 
 |             connection_.SendMessage(2, absl::MakeSpan(&slice, 1), false)); | 
 |  | 
 |   // Always fail to send a message which cannot fit into one packet. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   slice = MemSliceFromString(absl::string_view( | 
 |       message.data(), connection_.GetCurrentLargestMessagePayload() + 1)); | 
 |   EXPECT_EQ(MESSAGE_STATUS_TOO_LARGE, | 
 |             connection_.SendMessage(3, absl::MakeSpan(&slice, 1), false)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, GetCurrentLargestMessagePayload) { | 
 |   if (!connection_.version().SupportsMessageFrames()) { | 
 |     return; | 
 |   } | 
 |   // Force use of this encrypter to simplify test expectations by making sure | 
 |   // that the encryption overhead is constant across versions. | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x00)); | 
 |   QuicPacketLength expected_largest_payload = 1219; | 
 |   if (connection_.version().SendsVariableLengthPacketNumberInLongHeader()) { | 
 |     expected_largest_payload += 3; | 
 |   } | 
 |   if (connection_.version().HasLongHeaderLengths()) { | 
 |     expected_largest_payload -= 2; | 
 |   } | 
 |   if (connection_.version().HasLengthPrefixedConnectionIds()) { | 
 |     expected_largest_payload -= 1; | 
 |   } | 
 |   if (connection_.version().UsesTls()) { | 
 |     // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake. | 
 |     EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), 0); | 
 |     QuicConfig config; | 
 |     QuicConfigPeer::SetReceivedMaxDatagramFrameSize( | 
 |         &config, kMaxAcceptedDatagramFrameSize); | 
 |     EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |     connection_.SetFromConfig(config); | 
 |     // Verify the value post-handshake. | 
 |     EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), | 
 |               expected_largest_payload); | 
 |   } else { | 
 |     EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), | 
 |               expected_largest_payload); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, GetGuaranteedLargestMessagePayload) { | 
 |   if (!connection_.version().SupportsMessageFrames()) { | 
 |     return; | 
 |   } | 
 |   // Force use of this encrypter to simplify test expectations by making sure | 
 |   // that the encryption overhead is constant across versions. | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x00)); | 
 |   QuicPacketLength expected_largest_payload = 1219; | 
 |   if (connection_.version().HasLongHeaderLengths()) { | 
 |     expected_largest_payload -= 2; | 
 |   } | 
 |   if (connection_.version().HasLengthPrefixedConnectionIds()) { | 
 |     expected_largest_payload -= 1; | 
 |   } | 
 |   if (connection_.version().UsesTls()) { | 
 |     // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake. | 
 |     EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), 0); | 
 |     QuicConfig config; | 
 |     QuicConfigPeer::SetReceivedMaxDatagramFrameSize( | 
 |         &config, kMaxAcceptedDatagramFrameSize); | 
 |     EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |     connection_.SetFromConfig(config); | 
 |     // Verify the value post-handshake. | 
 |     EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), | 
 |               expected_largest_payload); | 
 |   } else { | 
 |     EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), | 
 |               expected_largest_payload); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LimitedLargestMessagePayload) { | 
 |   if (!connection_.version().SupportsMessageFrames() || | 
 |       !connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |   constexpr QuicPacketLength kFrameSizeLimit = 1000; | 
 |   constexpr QuicPacketLength kPayloadSizeLimit = | 
 |       kFrameSizeLimit - kQuicFrameTypeSize; | 
 |   // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake. | 
 |   EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), 0); | 
 |   EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), 0); | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetReceivedMaxDatagramFrameSize(&config, kFrameSizeLimit); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   // Verify the value post-handshake. | 
 |   EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), kPayloadSizeLimit); | 
 |   EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), | 
 |             kPayloadSizeLimit); | 
 | } | 
 |  | 
 | // Test to check that the path challenge/path response logic works | 
 | // correctly. This test is only for version-99 | 
 | TEST_P(QuicConnectionTest, ServerResponseToPathChallenge) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |   QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   // First check if the server can send probing packet. | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |  | 
 |   // Create and send the probe request (PATH_CHALLENGE frame). | 
 |   // SendConnectivityProbingPacket ends up calling | 
 |   // TestPacketWriter::WritePacket() which in turns receives and parses the | 
 |   // packet by calling framer_.ProcessPacket() -- which in turn calls | 
 |   // SimpleQuicFramer::OnPathChallengeFrame(). SimpleQuicFramer saves | 
 |   // the packet in writer_->path_challenge_frames() | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendConnectivityProbingPacket(writer_.get(), | 
 |                                             connection_.peer_address()); | 
 |   // Save the random contents of the challenge for later comparison to the | 
 |   // response. | 
 |   ASSERT_GE(writer_->path_challenge_frames().size(), 1u); | 
 |   QuicPathFrameBuffer challenge_data = | 
 |       writer_->path_challenge_frames().front().data_buffer; | 
 |  | 
 |   // Normally, QuicConnection::OnPathChallengeFrame and OnPaddingFrame would be | 
 |   // called and it will perform actions to ensure that the rest of the protocol | 
 |   // is performed. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   EXPECT_TRUE(connection_.OnPathChallengeFrame( | 
 |       writer_->path_challenge_frames().front())); | 
 |   EXPECT_TRUE(connection_.OnPaddingFrame(writer_->padding_frames().front())); | 
 |   creator_->FlushCurrentPacket(); | 
 |  | 
 |   // The final check is to ensure that the random data in the response matches | 
 |   // the random data from the challenge. | 
 |   EXPECT_EQ(1u, writer_->path_response_frames().size()); | 
 |   EXPECT_EQ(0, memcmp(&challenge_data, | 
 |                       &(writer_->path_response_frames().front().data_buffer), | 
 |                       sizeof(challenge_data))); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientResponseToPathChallengeOnDefaulSocket) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   // First check if the client can send probing packet. | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |  | 
 |   // Create and send the probe request (PATH_CHALLENGE frame). | 
 |   // SendConnectivityProbingPacket ends up calling | 
 |   // TestPacketWriter::WritePacket() which in turns receives and parses the | 
 |   // packet by calling framer_.ProcessPacket() -- which in turn calls | 
 |   // SimpleQuicFramer::OnPathChallengeFrame(). SimpleQuicFramer saves | 
 |   // the packet in writer_->path_challenge_frames() | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendConnectivityProbingPacket(writer_.get(), | 
 |                                             connection_.peer_address()); | 
 |   // Save the random contents of the challenge for later validation against the | 
 |   // response. | 
 |   ASSERT_GE(writer_->path_challenge_frames().size(), 1u); | 
 |   QuicPathFrameBuffer challenge_data = | 
 |       writer_->path_challenge_frames().front().data_buffer; | 
 |  | 
 |   // Normally, QuicConnection::OnPathChallengeFrame would be | 
 |   // called and it will perform actions to ensure that the rest of the protocol | 
 |   // is performed. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   EXPECT_TRUE(connection_.OnPathChallengeFrame( | 
 |       writer_->path_challenge_frames().front())); | 
 |   EXPECT_TRUE(connection_.OnPaddingFrame(writer_->padding_frames().front())); | 
 |   creator_->FlushCurrentPacket(); | 
 |  | 
 |   // The final check is to ensure that the random data in the response matches | 
 |   // the random data from the challenge. | 
 |   EXPECT_EQ(1u, writer_->path_response_frames().size()); | 
 |   EXPECT_EQ(0, memcmp(&challenge_data, | 
 |                       &(writer_->path_response_frames().front().data_buffer), | 
 |                       sizeof(challenge_data))); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientResponseToPathChallengeOnAlternativeSocket) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.use_path_validator()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |  | 
 |   QuicSocketAddress kNewSelfAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(AtLeast(1u)) | 
 |       .WillOnce(Invoke([&]() { | 
 |         EXPECT_EQ(1u, new_writer.packets_write_attempts()); | 
 |         EXPECT_EQ(1u, new_writer.path_challenge_frames().size()); | 
 |         EXPECT_EQ(1u, new_writer.padding_frames().size()); | 
 |         EXPECT_EQ(kNewSelfAddress.host(), | 
 |                   new_writer.last_write_source_address()); | 
 |       })); | 
 |   bool success = false; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kNewSelfAddress, connection_.peer_address(), &new_writer), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kNewSelfAddress, connection_.peer_address(), &success)); | 
 |  | 
 |   // Receiving a PATH_CHALLENGE on the alternative path. Response to this | 
 |   // PATH_CHALLENGE should be sent via the alternative writer. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(AtLeast(1u)) | 
 |       .WillOnce(Invoke([&]() { | 
 |         EXPECT_EQ(2u, new_writer.packets_write_attempts()); | 
 |         EXPECT_EQ(1u, new_writer.path_response_frames().size()); | 
 |         EXPECT_EQ(1u, new_writer.padding_frames().size()); | 
 |         EXPECT_EQ(kNewSelfAddress.host(), | 
 |                   new_writer.last_write_source_address()); | 
 |       })); | 
 |   std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
 |   std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
 |       QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
 |                           probing_packet->encrypted_length), | 
 |       clock_.Now())); | 
 |   ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received); | 
 |  | 
 |   QuicSocketAddress kNewerSelfAddress(QuicIpAddress::Loopback6(), | 
 |                                       /*port=*/34567); | 
 |   // Receiving a PATH_CHALLENGE on an unknown socket should be ignored. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u); | 
 |   ProcessReceivedPacket(kNewerSelfAddress, kPeerAddress, *received); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        RestartPathDegradingDetectionAfterMigrationWithProbe) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |  | 
 |   // Send data and verify the path degrading detection is set. | 
 |   const char data[] = "data"; | 
 |   size_t data_size = strlen(data); | 
 |   QuicStreamOffset offset = 0; | 
 |   connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
 |   offset += data_size; | 
 |  | 
 |   // Verify the path degrading detection is in progress. | 
 |   EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |   QuicTime ddl = connection_.GetBlackholeDetectorAlarm()->deadline(); | 
 |  | 
 |   // Simulate the firing of path degrading. | 
 |   clock_.AdvanceTime(ddl - clock_.ApproximateNow()); | 
 |   EXPECT_CALL(visitor_, OnPathDegrading()).Times(1); | 
 |   connection_.PathDegradingTimeout(); | 
 |   EXPECT_TRUE(connection_.IsPathDegrading()); | 
 |   EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |  | 
 |   if (!GetParam().version.HasIetfQuicFrames()) { | 
 |     // Simulate path degrading handling by sending a probe on an alternet path. | 
 |     clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |     TestPacketWriter probing_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |     connection_.SendConnectivityProbingPacket(&probing_writer, | 
 |                                               connection_.peer_address()); | 
 |     // Verify that path degrading detection is not reset. | 
 |     EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
 |  | 
 |     // Simulate successful path degrading handling by receiving probe response. | 
 |     clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20)); | 
 |  | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
 |         .Times(1); | 
 |     const QuicSocketAddress kNewSelfAddress = | 
 |         QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
 |  | 
 |     std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
 |     std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
 |         QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
 |                             probing_packet->encrypted_length), | 
 |         clock_.Now())); | 
 |     uint64_t num_probing_received = | 
 |         connection_.GetStats().num_connectivity_probing_received; | 
 |     ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received); | 
 |  | 
 |     EXPECT_EQ(num_probing_received + 1, | 
 |               connection_.GetStats().num_connectivity_probing_received); | 
 |     EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |     EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |     EXPECT_TRUE(connection_.IsPathDegrading()); | 
 |   } | 
 |  | 
 |   // Verify new path degrading detection is activated. | 
 |   EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading()).Times(1); | 
 |   connection_.OnSuccessfulMigration(/*is_port_change*/ true); | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |   EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientsResetCwndAfterConnectionMigration) { | 
 |   if (!GetParam().version.HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   EXPECT_EQ(kSelfAddress, connection_.self_address()); | 
 |  | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt(); | 
 |   rtt_stats->set_initial_rtt(default_init_rtt * 2); | 
 |   EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt()); | 
 |  | 
 |   QuicSentPacketManagerPeer::SetConsecutiveRtoCount(manager_, 1); | 
 |   EXPECT_EQ(1u, manager_->GetConsecutiveRtoCount()); | 
 |   QuicSentPacketManagerPeer::SetConsecutiveTlpCount(manager_, 2); | 
 |   EXPECT_EQ(2u, manager_->GetConsecutiveTlpCount()); | 
 |   const SendAlgorithmInterface* send_algorithm = manager_->GetSendAlgorithm(); | 
 |  | 
 |   // Migrate to a new address with different IP. | 
 |   const QuicSocketAddress kNewSelfAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456); | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   connection_.MigratePath(kNewSelfAddress, connection_.peer_address(), | 
 |                           &new_writer, false); | 
 |   EXPECT_EQ(default_init_rtt, manager_->GetRttStats()->initial_rtt()); | 
 |   EXPECT_EQ(0u, manager_->GetConsecutiveRtoCount()); | 
 |   EXPECT_EQ(0u, manager_->GetConsecutiveTlpCount()); | 
 |   EXPECT_NE(send_algorithm, manager_->GetSendAlgorithm()); | 
 | } | 
 |  | 
 | // Regression test for b/110259444 | 
 | TEST_P(QuicConnectionTest, DoNotScheduleSpuriousAckAlarm) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); | 
 |   writer_->SetWriteBlocked(); | 
 |  | 
 |   ProcessPacket(1); | 
 |   // Verify ack alarm is set. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   // Fire the ack alarm, verify no packet is sent because the writer is blocked. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessPacket(2); | 
 |   // Verify ack alarm is not set. | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DisablePacingOffloadConnectionOptions) { | 
 |   EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_)); | 
 |   writer_->set_supports_release_time(true); | 
 |   QuicConfig config; | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_TRUE(QuicConnectionPeer::SupportsReleaseTime(&connection_)); | 
 |  | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(kNPCO); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   // Verify pacing offload is disabled. | 
 |   EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_)); | 
 | } | 
 |  | 
 | // Regression test for b/110259444 | 
 | // Get a path response without having issued a path challenge... | 
 | TEST_P(QuicConnectionTest, OrphanPathResponse) { | 
 |   QuicPathFrameBuffer data = {{0, 1, 2, 3, 4, 5, 6, 7}}; | 
 |  | 
 |   QuicPathResponseFrame frame(99, data); | 
 |   EXPECT_TRUE(connection_.OnPathResponseFrame(frame)); | 
 |   // If PATH_RESPONSE was accepted (payload matches the payload saved | 
 |   // in QuicConnection::transmitted_connectivity_probe_payload_) then | 
 |   // current_packet_content_ would be set to FIRST_FRAME_IS_PING. | 
 |   // Since this PATH_RESPONSE does not match, current_packet_content_ | 
 |   // must not be FIRST_FRAME_IS_PING. | 
 |   EXPECT_NE(QuicConnection::FIRST_FRAME_IS_PING, | 
 |             QuicConnectionPeer::GetCurrentPacketContent(&connection_)); | 
 | } | 
 |  | 
 | // Regression test for b/120791670 | 
 | TEST_P(QuicConnectionTest, StopProcessingGQuicPacketInIetfQuicConnection) { | 
 |   // This test mimics a problematic scenario where a QUIC connection using a | 
 |   // modern version received a Q043 packet and processed it incorrectly. | 
 |   // We can remove this test once Q043 is deprecated. | 
 |   if (!version().HasIetfInvariantHeader()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   } | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |  | 
 |   // Let connection process a Google QUIC packet. | 
 |   peer_framer_.set_version_for_tests(ParsedQuicVersion::Q043()); | 
 |   std::unique_ptr<QuicPacket> packet( | 
 |       ConstructDataPacket(2, !kHasStopWaiting, ENCRYPTION_INITIAL)); | 
 |   char buffer[kMaxOutgoingPacketSize]; | 
 |   size_t encrypted_length = | 
 |       peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(2), | 
 |                                   *packet, buffer, kMaxOutgoingPacketSize); | 
 |   // Make sure no stream frame is processed. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(0); | 
 |   connection_.ProcessUdpPacket( | 
 |       kSelfAddress, kPeerAddress, | 
 |       QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
 |  | 
 |   EXPECT_EQ(2u, connection_.GetStats().packets_received); | 
 |   EXPECT_EQ(1u, connection_.GetStats().packets_processed); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AcceptPacketNumberZero) { | 
 |   if (!VersionHasIetfQuicFrames(version().transport_version)) { | 
 |     return; | 
 |   } | 
 |   // Set first_sending_packet_number to be 0 to allow successfully processing | 
 |   // acks which ack packet number 0. | 
 |   QuicFramerPeer::SetFirstSendingPacketNumber(writer_->framer()->framer(), 0); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(0); | 
 |   EXPECT_EQ(QuicPacketNumber(0), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
 |  | 
 |   ProcessPacket(1); | 
 |   EXPECT_EQ(QuicPacketNumber(1), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
 |  | 
 |   ProcessPacket(2); | 
 |   EXPECT_EQ(QuicPacketNumber(2), LargestAcked(connection_.ack_frame())); | 
 |   EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicSending) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |  | 
 |   connection_.SendCryptoStreamData(); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   QuicAckFrame frame1 = InitAckFrame(1); | 
 |   // Received ACK for packet 1. | 
 |   ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(4); | 
 |   connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0, | 
 |                                          NO_FIN); | 
 |   connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4, | 
 |                                          NO_FIN); | 
 |   connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data", | 
 |                                          8, NO_FIN); | 
 |   connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data", | 
 |                                          12, FIN); | 
 |   // Received ACK for packets 2, 4, 5. | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   QuicAckFrame frame2 = | 
 |       InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}, | 
 |                     {QuicPacketNumber(4), QuicPacketNumber(6)}}); | 
 |   // Make sure although the same packet number is used, but they are in | 
 |   // different packet number spaces. | 
 |   ProcessFramePacketAtLevel(30, QuicFrame(&frame2), ENCRYPTION_FORWARD_SECURE); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PeerAcksPacketsInWrongPacketNumberSpace) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |  | 
 |   connection_.SendCryptoStreamData(); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   QuicAckFrame frame1 = InitAckFrame(1); | 
 |   // Received ACK for packet 1. | 
 |   ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0, | 
 |                                          NO_FIN); | 
 |   connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4, | 
 |                                          NO_FIN); | 
 |  | 
 |   // Received ACK for packets 2 and 3 in wrong packet number space. | 
 |   QuicAckFrame invalid_ack = | 
 |       InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(4)}}); | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   ProcessFramePacketAtLevel(300, QuicFrame(&invalid_ack), ENCRYPTION_INITIAL); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicReceiving) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |   // Receives packet 1000 in initial data. | 
 |   ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |   SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   // Receives packet 1000 in application data. | 
 |   ProcessDataPacketAtLevel(1000, false, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data", | 
 |                                          0, NO_FIN); | 
 |   // Verify application data ACK gets bundled with outgoing data. | 
 |   EXPECT_EQ(2u, writer_->frame_count()); | 
 |   // Make sure ACK alarm is still set because initial data is not ACKed. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   // Receive packet 1001 in application data. | 
 |   ProcessDataPacketAtLevel(1001, false, ENCRYPTION_FORWARD_SECURE); | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   // Simulates ACK alarm fires and verify two ACKs are flushed. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |   // Receives more packets in application data. | 
 |   ProcessDataPacketAtLevel(1002, false, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   // Verify zero rtt and forward secure packets get acked in the same packet. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessDataPacket(1003); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CancelAckAlarmOnWriteBlocked) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |   // Receives packet 1000 in initial data. | 
 |   ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   // Receives packet 1000 in application data. | 
 |   ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   writer_->SetWriteBlocked(); | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AnyNumber()); | 
 |   // Simulates ACK alarm fires and verify no ACK is flushed because of write | 
 |   // blocked. | 
 |   clock_.AdvanceTime(DefaultDelayedAckTime()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |   // Verify ACK alarm is not set. | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   // Verify 2 ACKs are sent when connection gets unblocked. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | // Make sure a packet received with the right client connection ID is processed. | 
 | TEST_P(QuicConnectionTest, ValidClientConnectionId) { | 
 |   if (!framer_.version().SupportsClientConnectionIds()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   SetClientConnectionId(TestConnectionId(0x33)); | 
 |   QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE); | 
 |   header.destination_connection_id = TestConnectionId(0x33); | 
 |   header.destination_connection_id_included = CONNECTION_ID_PRESENT; | 
 |   header.source_connection_id_included = CONNECTION_ID_ABSENT; | 
 |   QuicFrames frames; | 
 |   QuicPingFrame ping_frame; | 
 |   QuicPaddingFrame padding_frame; | 
 |   frames.push_back(QuicFrame(ping_frame)); | 
 |   frames.push_back(QuicFrame(padding_frame)); | 
 |   std::unique_ptr<QuicPacket> packet = | 
 |       BuildUnsizedDataPacket(&peer_framer_, header, frames); | 
 |   char buffer[kMaxOutgoingPacketSize]; | 
 |   size_t encrypted_length = peer_framer_.EncryptPayload( | 
 |       ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer, | 
 |       kMaxOutgoingPacketSize); | 
 |   QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(), | 
 |                                      false); | 
 |   EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
 |   ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet); | 
 |   EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
 | } | 
 |  | 
 | // Make sure a packet received with a different client connection ID is dropped. | 
 | TEST_P(QuicConnectionTest, InvalidClientConnectionId) { | 
 |   if (!framer_.version().SupportsClientConnectionIds()) { | 
 |     return; | 
 |   } | 
 |   SetClientConnectionId(TestConnectionId(0x33)); | 
 |   QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE); | 
 |   header.destination_connection_id = TestConnectionId(0xbad); | 
 |   header.destination_connection_id_included = CONNECTION_ID_PRESENT; | 
 |   header.source_connection_id_included = CONNECTION_ID_ABSENT; | 
 |   QuicFrames frames; | 
 |   QuicPingFrame ping_frame; | 
 |   QuicPaddingFrame padding_frame; | 
 |   frames.push_back(QuicFrame(ping_frame)); | 
 |   frames.push_back(QuicFrame(padding_frame)); | 
 |   std::unique_ptr<QuicPacket> packet = | 
 |       BuildUnsizedDataPacket(&peer_framer_, header, frames); | 
 |   char buffer[kMaxOutgoingPacketSize]; | 
 |   size_t encrypted_length = peer_framer_.EncryptPayload( | 
 |       ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer, | 
 |       kMaxOutgoingPacketSize); | 
 |   QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(), | 
 |                                      false); | 
 |   EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
 |   ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet); | 
 |   EXPECT_EQ(1u, connection_.GetStats().packets_dropped); | 
 | } | 
 |  | 
 | // Make sure the first packet received with a different client connection ID on | 
 | // the server is processed and it changes the client connection ID. | 
 | TEST_P(QuicConnectionTest, UpdateClientConnectionIdFromFirstPacket) { | 
 |   if (!framer_.version().SupportsClientConnectionIds()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_INITIAL); | 
 |   header.source_connection_id = TestConnectionId(0x33); | 
 |   header.source_connection_id_included = CONNECTION_ID_PRESENT; | 
 |   QuicFrames frames; | 
 |   QuicPingFrame ping_frame; | 
 |   QuicPaddingFrame padding_frame; | 
 |   frames.push_back(QuicFrame(ping_frame)); | 
 |   frames.push_back(QuicFrame(padding_frame)); | 
 |   std::unique_ptr<QuicPacket> packet = | 
 |       BuildUnsizedDataPacket(&peer_framer_, header, frames); | 
 |   char buffer[kMaxOutgoingPacketSize]; | 
 |   size_t encrypted_length = | 
 |       peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(1), | 
 |                                   *packet, buffer, kMaxOutgoingPacketSize); | 
 |   QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(), | 
 |                                      false); | 
 |   EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
 |   ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet); | 
 |   EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
 |   EXPECT_EQ(TestConnectionId(0x33), connection_.client_connection_id()); | 
 | } | 
 | void QuicConnectionTest::TestReplaceConnectionIdFromInitial() { | 
 |   if (!framer_.version().AllowsVariableLengthConnectionIds()) { | 
 |     return; | 
 |   } | 
 |   // We start with a known connection ID. | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
 |   EXPECT_NE(TestConnectionId(0x33), connection_.connection_id()); | 
 |   // Receiving an initial can replace the connection ID once. | 
 |   { | 
 |     QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_INITIAL); | 
 |     header.source_connection_id = TestConnectionId(0x33); | 
 |     header.source_connection_id_included = CONNECTION_ID_PRESENT; | 
 |     QuicFrames frames; | 
 |     QuicPingFrame ping_frame; | 
 |     QuicPaddingFrame padding_frame; | 
 |     frames.push_back(QuicFrame(ping_frame)); | 
 |     frames.push_back(QuicFrame(padding_frame)); | 
 |     std::unique_ptr<QuicPacket> packet = | 
 |         BuildUnsizedDataPacket(&peer_framer_, header, frames); | 
 |     char buffer[kMaxOutgoingPacketSize]; | 
 |     size_t encrypted_length = | 
 |         peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(1), | 
 |                                     *packet, buffer, kMaxOutgoingPacketSize); | 
 |     QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(), | 
 |                                        false); | 
 |     ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet); | 
 |   } | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
 |   EXPECT_EQ(TestConnectionId(0x33), connection_.connection_id()); | 
 |   // Trying to replace the connection ID a second time drops the packet. | 
 |   { | 
 |     QuicPacketHeader header = ConstructPacketHeader(2, ENCRYPTION_INITIAL); | 
 |     header.source_connection_id = TestConnectionId(0x66); | 
 |     header.source_connection_id_included = CONNECTION_ID_PRESENT; | 
 |     QuicFrames frames; | 
 |     QuicPingFrame ping_frame; | 
 |     QuicPaddingFrame padding_frame; | 
 |     frames.push_back(QuicFrame(ping_frame)); | 
 |     frames.push_back(QuicFrame(padding_frame)); | 
 |     std::unique_ptr<QuicPacket> packet = | 
 |         BuildUnsizedDataPacket(&peer_framer_, header, frames); | 
 |     char buffer[kMaxOutgoingPacketSize]; | 
 |     size_t encrypted_length = | 
 |         peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(2), | 
 |                                     *packet, buffer, kMaxOutgoingPacketSize); | 
 |     QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(), | 
 |                                        false); | 
 |     ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet); | 
 |   } | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_EQ(1u, connection_.GetStats().packets_dropped); | 
 |   EXPECT_EQ(TestConnectionId(0x33), connection_.connection_id()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReplaceServerConnectionIdFromInitial) { | 
 |   TestReplaceConnectionIdFromInitial(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReplaceServerConnectionIdFromRetryAndInitial) { | 
 |   // First make the connection process a RETRY and replace the server connection | 
 |   // ID a first time. | 
 |   TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
 |                           /*missing_original_id_in_config=*/false, | 
 |                           /*wrong_original_id_in_config=*/false, | 
 |                           /*missing_retry_id_in_config=*/false, | 
 |                           /*wrong_retry_id_in_config=*/false); | 
 |   // Reset the test framer to use the right connection ID. | 
 |   peer_framer_.SetInitialObfuscators(connection_.connection_id()); | 
 |   // Now process an INITIAL and replace the server connection ID a second time. | 
 |   TestReplaceConnectionIdFromInitial(); | 
 | } | 
 |  | 
 | // Regression test for b/134416344. | 
 | TEST_P(QuicConnectionTest, CheckConnectedBeforeFlush) { | 
 |   // This test mimics a scenario where a connection processes 2 packets and the | 
 |   // 2nd packet contains connection close frame. When the 2nd flusher goes out | 
 |   // of scope, a delayed ACK is pending, and ACK alarm should not be scheduled | 
 |   // because connection is disconnected. | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
 |   const QuicErrorCode kErrorCode = QUIC_INTERNAL_ERROR; | 
 |   std::unique_ptr<QuicConnectionCloseFrame> connection_close_frame( | 
 |       new QuicConnectionCloseFrame(connection_.transport_version(), kErrorCode, | 
 |                                    NO_IETF_QUIC_ERROR, "", | 
 |                                    /*transport_close_frame_type=*/0)); | 
 |  | 
 |   // Received 2 packets. | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   ProcessFramePacketWithAddresses(QuicFrame(connection_close_frame.release()), | 
 |                                   kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |   // Verify ack alarm is not set. | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | // Verify that a packet containing three coalesced packets is parsed correctly. | 
 | TEST_P(QuicConnectionTest, CoalescedPacket) { | 
 |   if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) { | 
 |     // Coalesced packets can only be encoded using long header lengths. | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3); | 
 |   } | 
 |  | 
 |   uint64_t packet_numbers[3] = {1, 2, 3}; | 
 |   EncryptionLevel encryption_levels[3] = { | 
 |       ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE}; | 
 |   char buffer[kMaxOutgoingPacketSize] = {}; | 
 |   size_t total_encrypted_length = 0; | 
 |   for (int i = 0; i < 3; i++) { | 
 |     QuicPacketHeader header = | 
 |         ConstructPacketHeader(packet_numbers[i], encryption_levels[i]); | 
 |     QuicFrames frames; | 
 |     if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |       frames.push_back(QuicFrame(&crypto_frame_)); | 
 |     } else { | 
 |       frames.push_back(QuicFrame(frame1_)); | 
 |     } | 
 |     std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames); | 
 |     peer_creator_.set_encryption_level(encryption_levels[i]); | 
 |     size_t encrypted_length = peer_framer_.EncryptPayload( | 
 |         encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet, | 
 |         buffer + total_encrypted_length, | 
 |         sizeof(buffer) - total_encrypted_length); | 
 |     EXPECT_GT(encrypted_length, 0u); | 
 |     total_encrypted_length += encrypted_length; | 
 |   } | 
 |   connection_.ProcessUdpPacket( | 
 |       kSelfAddress, kPeerAddress, | 
 |       QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false)); | 
 |   if (connection_.GetSendAlarm()->IsSet()) { | 
 |     connection_.GetSendAlarm()->Fire(); | 
 |   } | 
 |  | 
 |   EXPECT_TRUE(connection_.connected()); | 
 | } | 
 |  | 
 | // Regression test for crbug.com/992831. | 
 | TEST_P(QuicConnectionTest, CoalescedPacketThatSavesFrames) { | 
 |   if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) { | 
 |     // Coalesced packets can only be encoded using long header lengths. | 
 |     return; | 
 |   } | 
 |   if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     // TODO(b/129151114) Enable this test with multiple packet number spaces. | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)) | 
 |         .Times(3) | 
 |         .WillRepeatedly([this](const QuicCryptoFrame& /*frame*/) { | 
 |           // QuicFrame takes ownership of the QuicBlockedFrame. | 
 |           connection_.SendControlFrame(QuicFrame(QuicBlockedFrame(1, 3))); | 
 |         }); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
 |         .Times(3) | 
 |         .WillRepeatedly([this](const QuicStreamFrame& /*frame*/) { | 
 |           // QuicFrame takes ownership of the QuicBlockedFrame. | 
 |           connection_.SendControlFrame(QuicFrame(QuicBlockedFrame(1, 3))); | 
 |         }); | 
 |   } | 
 |  | 
 |   uint64_t packet_numbers[3] = {1, 2, 3}; | 
 |   EncryptionLevel encryption_levels[3] = { | 
 |       ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE}; | 
 |   char buffer[kMaxOutgoingPacketSize] = {}; | 
 |   size_t total_encrypted_length = 0; | 
 |   for (int i = 0; i < 3; i++) { | 
 |     QuicPacketHeader header = | 
 |         ConstructPacketHeader(packet_numbers[i], encryption_levels[i]); | 
 |     QuicFrames frames; | 
 |     if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |       frames.push_back(QuicFrame(&crypto_frame_)); | 
 |     } else { | 
 |       frames.push_back(QuicFrame(frame1_)); | 
 |     } | 
 |     std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames); | 
 |     peer_creator_.set_encryption_level(encryption_levels[i]); | 
 |     size_t encrypted_length = peer_framer_.EncryptPayload( | 
 |         encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet, | 
 |         buffer + total_encrypted_length, | 
 |         sizeof(buffer) - total_encrypted_length); | 
 |     EXPECT_GT(encrypted_length, 0u); | 
 |     total_encrypted_length += encrypted_length; | 
 |   } | 
 |   connection_.ProcessUdpPacket( | 
 |       kSelfAddress, kPeerAddress, | 
 |       QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false)); | 
 |   if (connection_.GetSendAlarm()->IsSet()) { | 
 |     connection_.GetSendAlarm()->Fire(); | 
 |   } | 
 |  | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   SendAckPacketToPeer(); | 
 | } | 
 |  | 
 | // Regresstion test for b/138962304. | 
 | TEST_P(QuicConnectionTest, RtoAndWriteBlocked) { | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_data_packet; | 
 |   SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Writer gets blocked. | 
 |   writer_->SetWriteBlocked(); | 
 |  | 
 |   // Cancel the stream. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); | 
 |   EXPECT_CALL(visitor_, WillingAndAbleToWrite()) | 
 |       .WillRepeatedly( | 
 |           Invoke(¬ifier_, &SimpleSessionNotifier::WillingToWrite)); | 
 |   SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
 |  | 
 |   // Retransmission timer fires in RTO mode. | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   // Verify no packets get flushed when writer is blocked. | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | // Regresstion test for b/138962304. | 
 | TEST_P(QuicConnectionTest, TlpAndWriteBlocked) { | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   connection_.SetMaxTailLossProbes(1); | 
 |  | 
 |   QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_data_packet; | 
 |   SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet); | 
 |   SendStreamDataToPeer(4, "foo", 0, NO_FIN, &last_data_packet); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Writer gets blocked. | 
 |   writer_->SetWriteBlocked(); | 
 |  | 
 |   // Cancel stream 2. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); | 
 |   SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   // Retransmission timer fires in TLP mode. | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   // Verify one packets is forced flushed when writer is blocked. | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | // Regresstion test for b/139375344. | 
 | TEST_P(QuicConnectionTest, RtoForcesSendingPing) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   connection_.SetMaxTailLossProbes(2); | 
 |   EXPECT_EQ(0u, connection_.GetStats().tlp_count); | 
 |   EXPECT_EQ(0u, connection_.GetStats().rto_count); | 
 |  | 
 |   SendStreamDataToPeer(2, "foo", 0, NO_FIN, nullptr); | 
 |   QuicTime retransmission_time = | 
 |       connection_.GetRetransmissionAlarm()->deadline(); | 
 |   EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
 |   // TLP fires. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _)); | 
 |   clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(1u, connection_.GetStats().tlp_count); | 
 |   EXPECT_EQ(0u, connection_.GetStats().rto_count); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Packet 1 gets acked. | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   ProcessAckPacket(1, &frame); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   retransmission_time = connection_.GetRetransmissionAlarm()->deadline(); | 
 |  | 
 |   // RTO fires, verify a PING packet gets sent because there is no data to send. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _)); | 
 |   clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(1u, connection_.GetStats().tlp_count); | 
 |   EXPECT_EQ(1u, connection_.GetStats().rto_count); | 
 |   EXPECT_EQ(1u, writer_->ping_frames().size()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ProbeTimeout) { | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k2PTO); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Reset stream. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
 |  | 
 |   // Fire the PTO and verify only the RST_STREAM is resent, not stream data. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(0u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CloseConnectionAfter6ClientPTOs) { | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k1PTO); | 
 |   connection_options.push_back(k6PTO); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |         .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   } | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Send stream data. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |  | 
 |   // Fire the retransmission alarm 5 times. | 
 |   for (int i = 0; i < 5; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.GetRetransmissionAlarm()->Fire(); | 
 |     EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnPathDegrading()); | 
 |   connection_.PathDegradingTimeout(); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); | 
 |   EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); | 
 |   EXPECT_EQ(5u, connection_.sent_packet_manager().GetConsecutivePtoCount()); | 
 |   // Closes connection on 6th PTO. | 
 |   // May send multiple connecction close packets with multiple PN spaces. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   ASSERT_TRUE(connection_.BlackholeDetectionInProgress()); | 
 |   connection_.GetBlackholeDetectorAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CloseConnectionAfter7ClientPTOs) { | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k2PTO); | 
 |   connection_options.push_back(k7PTO); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |         .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   } | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Send stream data. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |  | 
 |   // Fire the retransmission alarm 6 times. | 
 |   for (int i = 0; i < 6; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |     connection_.GetRetransmissionAlarm()->Fire(); | 
 |     EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnPathDegrading()); | 
 |   connection_.PathDegradingTimeout(); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); | 
 |   EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); | 
 |   EXPECT_EQ(6u, connection_.sent_packet_manager().GetConsecutivePtoCount()); | 
 |   // Closes connection on 7th PTO. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   ASSERT_TRUE(connection_.BlackholeDetectionInProgress()); | 
 |   connection_.GetBlackholeDetectorAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CloseConnectionAfter8ClientPTOs) { | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k2PTO); | 
 |   connection_options.push_back(k8PTO); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |         .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   } | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Send stream data. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |  | 
 |   // Fire the retransmission alarm 7 times. | 
 |   for (int i = 0; i < 7; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |     connection_.GetRetransmissionAlarm()->Fire(); | 
 |     EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnPathDegrading()); | 
 |   connection_.PathDegradingTimeout(); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); | 
 |   EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); | 
 |   EXPECT_EQ(7u, connection_.sent_packet_manager().GetConsecutivePtoCount()); | 
 |   // Closes connection on 8th PTO. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
 |   ASSERT_TRUE(connection_.BlackholeDetectionInProgress()); | 
 |   connection_.GetBlackholeDetectorAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DeprecateHandshakeMode) { | 
 |   if (!connection_.version().SupportsAntiAmplificationLimit()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Send CHLO. | 
 |   connection_.SendCryptoStreamData(); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   QuicAckFrame frame1 = InitAckFrame(1); | 
 |   // Received ACK for packet 1. | 
 |   ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL); | 
 |  | 
 |   // Verify retransmission alarm is still set because handshake is not | 
 |   // confirmed although there is nothing in flight. | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_EQ(0u, connection_.GetStats().pto_count); | 
 |   EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count); | 
 |  | 
 |   // PTO fires, verify a PING packet gets sent because there is no data to send. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(1u, connection_.GetStats().pto_count); | 
 |   EXPECT_EQ(1u, connection_.GetStats().crypto_retransmit_count); | 
 |   EXPECT_EQ(1u, writer_->ping_frames().size()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AntiAmplificationLimit) { | 
 |   if (!connection_.version().SupportsAntiAmplificationLimit()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |  | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   // Verify no data can be sent at the beginning because bytes received is 0. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.SendCryptoDataWithString("foo", 0); | 
 |   EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)); | 
 |   EXPECT_FALSE(connection_.CanWrite(NO_RETRANSMITTABLE_DATA)); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Receives packet 1. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |  | 
 |   const size_t anti_amplification_factor = | 
 |       GetQuicFlag(FLAGS_quic_anti_amplification_factor); | 
 |   // Verify now packets can be sent. | 
 |   for (size_t i = 1; i < anti_amplification_factor; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendCryptoDataWithString("foo", i * 3); | 
 |     // Verify retransmission alarm is not set if throttled by anti-amplification | 
 |     // limit. | 
 |     EXPECT_EQ(i != anti_amplification_factor - 1, | 
 |               connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   } | 
 |   // Verify server is throttled by anti-amplification limit. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3); | 
 |  | 
 |   // Receives packet 2. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); | 
 |   // Verify more packets can be sent. | 
 |   for (size_t i = anti_amplification_factor + 1; | 
 |        i < anti_amplification_factor * 2; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendCryptoDataWithString("foo", i * 3); | 
 |   } | 
 |   // Verify server is throttled by anti-amplification limit. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.SendCryptoDataWithString("foo", | 
 |                                        2 * anti_amplification_factor * 3); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessPacket(3); | 
 |   // Verify anti-amplification limit is gone after address validation. | 
 |   for (size_t i = 0; i < 100; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, 3AntiAmplificationLimit) { | 
 |   if (!connection_.version().SupportsAntiAmplificationLimit()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |  | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k3AFF); | 
 |   config.SetInitialReceivedConnectionOptions(connection_options); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config, | 
 |                                                          QuicConnectionId()); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   // Verify no data can be sent at the beginning because bytes received is 0. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.SendCryptoDataWithString("foo", 0); | 
 |   EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)); | 
 |   EXPECT_FALSE(connection_.CanWrite(NO_RETRANSMITTABLE_DATA)); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Receives packet 1. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |  | 
 |   const size_t anti_amplification_factor = 3; | 
 |   // Verify now packets can be sent. | 
 |   for (size_t i = 1; i < anti_amplification_factor; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendCryptoDataWithString("foo", i * 3); | 
 |     // Verify retransmission alarm is not set if throttled by anti-amplification | 
 |     // limit. | 
 |     EXPECT_EQ(i != anti_amplification_factor - 1, | 
 |               connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   } | 
 |   // Verify server is throttled by anti-amplification limit. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3); | 
 |  | 
 |   // Receives packet 2. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); | 
 |   // Verify more packets can be sent. | 
 |   for (size_t i = anti_amplification_factor + 1; | 
 |        i < anti_amplification_factor * 2; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendCryptoDataWithString("foo", i * 3); | 
 |   } | 
 |   // Verify server is throttled by anti-amplification limit. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.SendCryptoDataWithString("foo", | 
 |                                        2 * anti_amplification_factor * 3); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessPacket(3); | 
 |   // Verify anti-amplification limit is gone after address validation. | 
 |   for (size_t i = 0; i < 100; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, 10AntiAmplificationLimit) { | 
 |   if (!connection_.version().SupportsAntiAmplificationLimit()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |  | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k10AF); | 
 |   config.SetInitialReceivedConnectionOptions(connection_options); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config, | 
 |                                                          QuicConnectionId()); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   // Verify no data can be sent at the beginning because bytes received is 0. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.SendCryptoDataWithString("foo", 0); | 
 |   EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)); | 
 |   EXPECT_FALSE(connection_.CanWrite(NO_RETRANSMITTABLE_DATA)); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Receives packet 1. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |  | 
 |   const size_t anti_amplification_factor = 10; | 
 |   // Verify now packets can be sent. | 
 |   for (size_t i = 1; i < anti_amplification_factor; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendCryptoDataWithString("foo", i * 3); | 
 |     // Verify retransmission alarm is not set if throttled by anti-amplification | 
 |     // limit. | 
 |     EXPECT_EQ(i != anti_amplification_factor - 1, | 
 |               connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   } | 
 |   // Verify server is throttled by anti-amplification limit. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3); | 
 |  | 
 |   // Receives packet 2. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); | 
 |   // Verify more packets can be sent. | 
 |   for (size_t i = anti_amplification_factor + 1; | 
 |        i < anti_amplification_factor * 2; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendCryptoDataWithString("foo", i * 3); | 
 |   } | 
 |   // Verify server is throttled by anti-amplification limit. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.SendCryptoDataWithString("foo", | 
 |                                        2 * anti_amplification_factor * 3); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessPacket(3); | 
 |   // Verify anti-amplification limit is gone after address validation. | 
 |   for (size_t i = 0; i < 100; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckPendingWithAmplificationLimited) { | 
 |   if (!connection_.version().SupportsAntiAmplificationLimit()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber()); | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   // Receives packet 1. | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   // Send response in different encryption level and cause amplification factor | 
 |   // throttled. | 
 |   size_t i = 0; | 
 |   while (connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)) { | 
 |     connection_.SendCryptoDataWithString(std::string(1024, 'a'), i * 1024, | 
 |                                          ENCRYPTION_HANDSHAKE); | 
 |     ++i; | 
 |   } | 
 |   // Verify ACK is still pending. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   // Fire ACK alarm and verify ACK cannot be sent due to amplification factor. | 
 |   clock_.AdvanceTime(connection_.GetAckAlarm()->deadline() - clock_.Now()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |   // Verify ACK alarm is cancelled. | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |  | 
 |   // Receives packet 2 and verify ACK gets flushed. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ConnectionCloseFrameType) { | 
 |   if (!VersionHasIetfQuicFrames(version().transport_version)) { | 
 |     // Test relevent only for IETF QUIC. | 
 |     return; | 
 |   } | 
 |   const QuicErrorCode kQuicErrorCode = IETF_QUIC_PROTOCOL_VIOLATION; | 
 |   // Use the (unknown) frame type of 9999 to avoid triggering any logic | 
 |   // which might be associated with the processing of a known frame type. | 
 |   const uint64_t kTransportCloseFrameType = 9999u; | 
 |   QuicFramerPeer::set_current_received_frame_type( | 
 |       QuicConnectionPeer::GetFramer(&connection_), kTransportCloseFrameType); | 
 |   // Do a transport connection close | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   connection_.CloseConnection( | 
 |       kQuicErrorCode, "Some random error message", | 
 |       ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
 |   const std::vector<QuicConnectionCloseFrame>& connection_close_frames = | 
 |       writer_->connection_close_frames(); | 
 |   ASSERT_EQ(1u, connection_close_frames.size()); | 
 |   EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE, | 
 |             connection_close_frames[0].close_type); | 
 |   EXPECT_EQ(kQuicErrorCode, connection_close_frames[0].quic_error_code); | 
 |   EXPECT_EQ(kTransportCloseFrameType, | 
 |             connection_close_frames[0].transport_close_frame_type); | 
 | } | 
 |  | 
 | // Regression test for b/137401387 and b/138962304. | 
 | TEST_P(QuicConnectionTest, RtoPacketAsTwo) { | 
 |   if (connection_.PtoEnabled()) { | 
 |     return; | 
 |   } | 
 |   connection_.SetMaxTailLossProbes(1); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   std::string stream_data(3000, 's'); | 
 |   // Send packets 1 - 66 and exhaust cwnd. | 
 |   for (size_t i = 0; i < 22; ++i) { | 
 |     // 3 packets for each stream, the first 2 are guaranteed to be full packets. | 
 |     SendStreamDataToPeer(i + 2, stream_data, 0, FIN, nullptr); | 
 |   } | 
 |   CongestionBlockWrites(); | 
 |  | 
 |   // Fires TLP. Please note, this tail loss probe has 1 byte less stream data | 
 |   // compared to packet 1 because packet number length increases. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(67), _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   // Fires RTO. Please note, although packets 2 and 3 *should* be RTOed, but | 
 |   // packet 2 gets RTOed to two packets because packet number length increases. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(68), _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(69), _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   // Resets all streams except 2 and ack packets 1 and 2. Now, packet 3 is the | 
 |   // only one containing retransmittable frames. | 
 |   for (size_t i = 1; i < 22; ++i) { | 
 |     notifier_.OnStreamReset(i + 2, QUIC_STREAM_CANCELLED); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   QuicAckFrame frame = | 
 |       InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(3)}}); | 
 |   ProcessAckPacket(1, &frame); | 
 |   CongestionUnblockWrites(); | 
 |  | 
 |   // Fires TLP, verify a PING gets sent because packet 3 is marked | 
 |   // RTO_RETRANSMITTED. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(70), _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PtoSkipsPacketNumber) { | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k1PTO); | 
 |   connection_options.push_back(kPTOS); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   QuicStreamId stream_id = 2; | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet); | 
 |   SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet); | 
 |   EXPECT_EQ(QuicPacketNumber(2), last_packet); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Fire PTO and verify the PTO retransmission skips one packet number. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(QuicPacketNumber(4), writer_->last_packet_header().packet_number); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendCoalescedPackets) { | 
 |   if (!connection_.version().CanSendCoalescedPackets()) { | 
 |     return; | 
 |   } | 
 |   MockQuicConnectionDebugVisitor debug_visitor; | 
 |   connection_.set_debug_visitor(&debug_visitor); | 
 |   EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(3); | 
 |   EXPECT_CALL(debug_visitor, OnCoalescedPacketSent(_, _)).Times(1); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     use_tagging_decrypter(); | 
 |     connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                              std::make_unique<TaggingEncrypter>(0x01)); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |     connection_.SendCryptoDataWithString("foo", 0); | 
 |     // Verify this packet is on hold. | 
 |     EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |  | 
 |     connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                              std::make_unique<TaggingEncrypter>(0x02)); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |     connection_.SendCryptoDataWithString("bar", 3); | 
 |     EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |  | 
 |     connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                              std::make_unique<TaggingEncrypter>(0x03)); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     SendStreamDataToPeer(2, "baz", 3, NO_FIN, nullptr); | 
 |   } | 
 |   // Verify all 3 packets are coalesced in the same UDP datagram. | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); | 
 |   // Verify the packet is padded to full. | 
 |   EXPECT_EQ(connection_.max_packet_length(), writer_->last_packet_size()); | 
 |  | 
 |   // Verify packet process. | 
 |   EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
 |   EXPECT_EQ(0u, writer_->stream_frames().size()); | 
 |   // Verify there is coalesced packet. | 
 |   EXPECT_NE(nullptr, writer_->coalesced_packet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FailToCoalescePacket) { | 
 |   // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. | 
 |   if (!IsDefaultTestConfiguration() || | 
 |       !connection_.version().CanSendCoalescedPackets()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()); | 
 |  | 
 |   if (GetQuicReloadableFlag( | 
 |           quic_close_connection_if_fail_to_serialzie_coalesced_packet2)) { | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |         .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   } | 
 |  | 
 |   ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_INITIAL); | 
 |   auto test_body = [&] { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                              std::make_unique<TaggingEncrypter>(0x01)); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |     connection_.SendCryptoDataWithString("foo", 0); | 
 |     // Verify this packet is on hold. | 
 |     EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |  | 
 |     connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                              std::make_unique<TaggingEncrypter>(0x02)); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |     connection_.SendCryptoDataWithString("bar", 3); | 
 |     EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |  | 
 |     connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                              std::make_unique<TaggingEncrypter>(0x03)); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     SendStreamDataToPeer(2, "baz", 3, NO_FIN, nullptr); | 
 |  | 
 |     creator_->Flush(); | 
 |  | 
 |     auto& coalesced_packet = | 
 |         QuicConnectionPeer::GetCoalescedPacket(&connection_); | 
 |     QuicPacketLength coalesced_packet_max_length = | 
 |         coalesced_packet.max_packet_length(); | 
 |     QuicCoalescedPacketPeer::SetMaxPacketLength(coalesced_packet, | 
 |                                                 coalesced_packet.length()); | 
 |  | 
 |     // Make the coalescer's FORWARD_SECURE packet longer. | 
 |     *QuicCoalescedPacketPeer::GetMutableEncryptedBuffer( | 
 |         coalesced_packet, ENCRYPTION_FORWARD_SECURE) += "!!! TEST !!!"; | 
 |  | 
 |     QUIC_LOG(INFO) << "Reduced coalesced_packet_max_length from " | 
 |                    << coalesced_packet_max_length << " to " | 
 |                    << coalesced_packet.max_packet_length() | 
 |                    << ", coalesced_packet.length:" << coalesced_packet.length() | 
 |                    << ", coalesced_packet.packet_lengths:" | 
 |                    << absl::StrJoin(coalesced_packet.packet_lengths(), ":"); | 
 |   }; | 
 |  | 
 |   EXPECT_QUIC_BUG(test_body(), "SerializeCoalescedPacket failed."); | 
 |  | 
 |   if (GetQuicReloadableFlag( | 
 |           quic_close_connection_if_fail_to_serialzie_coalesced_packet2)) { | 
 |     EXPECT_FALSE(connection_.connected()); | 
 |     EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |                 IsError(QUIC_FAILED_TO_SERIALIZE_PACKET)); | 
 |     EXPECT_EQ(saved_connection_close_frame_.error_details, | 
 |               "Failed to serialize coalesced packet."); | 
 |   } else { | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LegacyVersionEncapsulation) { | 
 |   connection_.EnableLegacyVersionEncapsulation("test.example.org"); | 
 |  | 
 |   MockQuicConnectionDebugVisitor debug_visitor; | 
 |   connection_.set_debug_visitor(&debug_visitor); | 
 |   EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1); | 
 |  | 
 |   // Our TestPacketWriter normally parses the sent packet using the version | 
 |   // from the connection, so here we need to tell it to use the encapsulation | 
 |   // version, and reset the initial decrypter for that version. | 
 |   writer_->framer()->SetSupportedVersions( | 
 |       SupportedVersions(LegacyVersionForEncapsulation())); | 
 |   writer_->framer()->framer()->SetInitialObfuscators( | 
 |       connection_.connection_id()); | 
 |  | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     connection_.SendCryptoDataWithString("TEST_CRYPTO_DATA", /*offset=*/0); | 
 |   } | 
 |  | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   // Verify that the packet is fully padded. | 
 |   EXPECT_EQ(connection_.max_packet_length(), writer_->last_packet_size()); | 
 |  | 
 |   // Check that the connection stats show Legacy Version Encapsulation was used. | 
 |   EXPECT_GT(connection_.GetStats().sent_legacy_version_encapsulated_packets, | 
 |             0u); | 
 |  | 
 |   // Verify that the sent packet was in fact encapsulated, and check header. | 
 |   const QuicPacketHeader& encapsulated_header = writer_->last_packet_header(); | 
 |   EXPECT_TRUE(encapsulated_header.version_flag); | 
 |   EXPECT_EQ(encapsulated_header.version, LegacyVersionForEncapsulation()); | 
 |   EXPECT_EQ(encapsulated_header.destination_connection_id, | 
 |             connection_.connection_id()); | 
 |  | 
 |   // Encapsulated packet should contain a stream frame for the crypto stream, | 
 |   // optionally padding, and nothing else. | 
 |   EXPECT_EQ(0u, writer_->crypto_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(writer_->frame_count(), writer_->framer()->padding_frames().size() + | 
 |                                         writer_->stream_frames().size()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientReceivedHandshakeDone) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnHandshakeDoneReceived()); | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(QuicHandshakeDoneFrame())); | 
 |   frames.push_back(QuicFrame(QuicPaddingFrame(-1))); | 
 |   ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ServerReceivedHandshakeDone) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   EXPECT_CALL(visitor_, OnHandshakeDoneReceived()).Times(0); | 
 |   if (version().handshake_protocol == PROTOCOL_TLS1_3) { | 
 |     EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(QuicHandshakeDoneFrame())); | 
 |   frames.push_back(QuicFrame(QuicPaddingFrame(-1))); | 
 |   ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(1, connection_close_frame_count_); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(IETF_QUIC_PROTOCOL_VIOLATION)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, MultiplePacketNumberSpacePto) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   use_tagging_decrypter(); | 
 |   // Send handshake packet. | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
 |  | 
 |   // Send application data. | 
 |   connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data", | 
 |                                          0, NO_FIN); | 
 |   EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
 |   QuicTime retransmission_time = | 
 |       connection_.GetRetransmissionAlarm()->deadline(); | 
 |   EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
 |  | 
 |   // Retransmit handshake data. | 
 |   clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   // Verify 1-RTT packet gets coalesced with handshake retransmission. | 
 |   EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
 |  | 
 |   // Send application data. | 
 |   connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data", | 
 |                                          4, NO_FIN); | 
 |   EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
 |   retransmission_time = connection_.GetRetransmissionAlarm()->deadline(); | 
 |   EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
 |  | 
 |   // Retransmit handshake data again. | 
 |   clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(9), _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(8), _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   // Verify 1-RTT packet gets coalesced with handshake retransmission. | 
 |   EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
 |  | 
 |   // Discard handshake key. | 
 |   connection_.OnHandshakeComplete(); | 
 |   retransmission_time = connection_.GetRetransmissionAlarm()->deadline(); | 
 |   EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
 |  | 
 |   // Retransmit application data. | 
 |   clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(11), _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
 | } | 
 |  | 
 | void QuicConnectionTest::TestClientRetryHandling( | 
 |     bool invalid_retry_tag, bool missing_original_id_in_config, | 
 |     bool wrong_original_id_in_config, bool missing_retry_id_in_config, | 
 |     bool wrong_retry_id_in_config) { | 
 |   if (invalid_retry_tag) { | 
 |     ASSERT_FALSE(missing_original_id_in_config); | 
 |     ASSERT_FALSE(wrong_original_id_in_config); | 
 |     ASSERT_FALSE(missing_retry_id_in_config); | 
 |     ASSERT_FALSE(wrong_retry_id_in_config); | 
 |   } else { | 
 |     ASSERT_FALSE(missing_original_id_in_config && wrong_original_id_in_config); | 
 |     ASSERT_FALSE(missing_retry_id_in_config && wrong_retry_id_in_config); | 
 |   } | 
 |   if (!version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // These values come from draft-ietf-quic-v2 Appendix A.4. | 
 |   uint8_t retry_packet_rfcv2[] = { | 
 |       0xcf, 0x70, 0x9a, 0x50, 0xc4, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a, | 
 |       0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x1d, 0xc7, 0x11, 0x30, | 
 |       0xcd, 0x1e, 0xd3, 0x9d, 0x6e, 0xfc, 0xee, 0x5c, 0x85, 0x80, 0x65, 0x01}; | 
 |   // These values come from RFC9001 Appendix A.4. | 
 |   uint8_t retry_packet_rfcv1[] = { | 
 |       0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a, | 
 |       0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x04, 0xa2, 0x65, 0xba, | 
 |       0x2e, 0xff, 0x4d, 0x82, 0x90, 0x58, 0xfb, 0x3f, 0x0f, 0x24, 0x96, 0xba}; | 
 |   uint8_t retry_packet29[] = { | 
 |       0xff, 0xff, 0x00, 0x00, 0x1d, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a, | 
 |       0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0xd1, 0x69, 0x26, 0xd8, | 
 |       0x1f, 0x6f, 0x9c, 0xa2, 0x95, 0x3a, 0x8a, 0xa4, 0x57, 0x5e, 0x1e, 0x49}; | 
 |  | 
 |   uint8_t* retry_packet; | 
 |   size_t retry_packet_length; | 
 |   if (version() == ParsedQuicVersion::V2Draft01()) { | 
 |     retry_packet = retry_packet_rfcv2; | 
 |     retry_packet_length = ABSL_ARRAYSIZE(retry_packet_rfcv2); | 
 |   } else if (version() == ParsedQuicVersion::RFCv1()) { | 
 |     retry_packet = retry_packet_rfcv1; | 
 |     retry_packet_length = ABSL_ARRAYSIZE(retry_packet_rfcv1); | 
 |   } else if (version() == ParsedQuicVersion::Draft29()) { | 
 |     retry_packet = retry_packet29; | 
 |     retry_packet_length = ABSL_ARRAYSIZE(retry_packet29); | 
 |   } else { | 
 |     // TODO(dschinazi) generate retry packets for all versions once we have | 
 |     // server-side support for generating these programmatically. | 
 |     return; | 
 |   } | 
 |  | 
 |   uint8_t original_connection_id_bytes[] = {0x83, 0x94, 0xc8, 0xf0, | 
 |                                             0x3e, 0x51, 0x57, 0x08}; | 
 |   uint8_t new_connection_id_bytes[] = {0xf0, 0x67, 0xa5, 0x50, | 
 |                                        0x2a, 0x42, 0x62, 0xb5}; | 
 |   uint8_t retry_token_bytes[] = {0x74, 0x6f, 0x6b, 0x65, 0x6e}; | 
 |  | 
 |   QuicConnectionId original_connection_id( | 
 |       reinterpret_cast<char*>(original_connection_id_bytes), | 
 |       ABSL_ARRAYSIZE(original_connection_id_bytes)); | 
 |   QuicConnectionId new_connection_id( | 
 |       reinterpret_cast<char*>(new_connection_id_bytes), | 
 |       ABSL_ARRAYSIZE(new_connection_id_bytes)); | 
 |  | 
 |   std::string retry_token(reinterpret_cast<char*>(retry_token_bytes), | 
 |                           ABSL_ARRAYSIZE(retry_token_bytes)); | 
 |  | 
 |   if (invalid_retry_tag) { | 
 |     // Flip the last bit of the retry packet to prevent the integrity tag | 
 |     // from validating correctly. | 
 |     retry_packet[retry_packet_length - 1] ^= 1; | 
 |   } | 
 |  | 
 |   QuicConnectionId config_original_connection_id = original_connection_id; | 
 |   if (wrong_original_id_in_config) { | 
 |     // Flip the first bit of the connection ID. | 
 |     ASSERT_FALSE(config_original_connection_id.IsEmpty()); | 
 |     config_original_connection_id.mutable_data()[0] ^= 0x80; | 
 |   } | 
 |   QuicConnectionId config_retry_source_connection_id = new_connection_id; | 
 |   if (wrong_retry_id_in_config) { | 
 |     // Flip the first bit of the connection ID. | 
 |     ASSERT_FALSE(config_retry_source_connection_id.IsEmpty()); | 
 |     config_retry_source_connection_id.mutable_data()[0] ^= 0x80; | 
 |   } | 
 |  | 
 |   // Make sure the connection uses the connection ID from the test vectors, | 
 |   QuicConnectionPeer::SetServerConnectionId(&connection_, | 
 |                                             original_connection_id); | 
 |   // Make sure our fake framer has the new post-retry INITIAL keys so that any | 
 |   // retransmission triggered by retry can be decrypted. | 
 |   writer_->framer()->framer()->SetInitialObfuscators(new_connection_id); | 
 |  | 
 |   // Process the RETRY packet. | 
 |   connection_.ProcessUdpPacket( | 
 |       kSelfAddress, kPeerAddress, | 
 |       QuicReceivedPacket(reinterpret_cast<char*>(retry_packet), | 
 |                          retry_packet_length, clock_.Now())); | 
 |  | 
 |   if (invalid_retry_tag) { | 
 |     // Make sure we refuse to process a RETRY with invalid tag. | 
 |     EXPECT_FALSE(connection_.GetStats().retry_packet_processed); | 
 |     EXPECT_EQ(connection_.connection_id(), original_connection_id); | 
 |     EXPECT_TRUE(QuicPacketCreatorPeer::GetRetryToken( | 
 |                     QuicConnectionPeer::GetPacketCreator(&connection_)) | 
 |                     .empty()); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Make sure we correctly parsed the RETRY. | 
 |   EXPECT_TRUE(connection_.GetStats().retry_packet_processed); | 
 |   EXPECT_EQ(connection_.connection_id(), new_connection_id); | 
 |   EXPECT_EQ(QuicPacketCreatorPeer::GetRetryToken( | 
 |                 QuicConnectionPeer::GetPacketCreator(&connection_)), | 
 |             retry_token); | 
 |  | 
 |   // Test validating the original_connection_id from the config. | 
 |   QuicConfig received_config; | 
 |   QuicConfigPeer::SetNegotiated(&received_config, true); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &received_config, connection_.connection_id()); | 
 |     if (!missing_retry_id_in_config) { | 
 |       QuicConfigPeer::SetReceivedRetrySourceConnectionId( | 
 |           &received_config, config_retry_source_connection_id); | 
 |     } | 
 |   } | 
 |   if (!missing_original_id_in_config) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &received_config, config_original_connection_id); | 
 |   } | 
 |  | 
 |   if (missing_original_id_in_config || wrong_original_id_in_config || | 
 |       missing_retry_id_in_config || wrong_retry_id_in_config) { | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |         .Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |         .Times(0); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber()); | 
 |   connection_.SetFromConfig(received_config); | 
 |   if (missing_original_id_in_config || wrong_original_id_in_config || | 
 |       missing_retry_id_in_config || wrong_retry_id_in_config) { | 
 |     ASSERT_FALSE(connection_.connected()); | 
 |     TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION); | 
 |   } else { | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientParsesRetry) { | 
 |   TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
 |                           /*missing_original_id_in_config=*/false, | 
 |                           /*wrong_original_id_in_config=*/false, | 
 |                           /*missing_retry_id_in_config=*/false, | 
 |                           /*wrong_retry_id_in_config=*/false); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientParsesRetryInvalidTag) { | 
 |   TestClientRetryHandling(/*invalid_retry_tag=*/true, | 
 |                           /*missing_original_id_in_config=*/false, | 
 |                           /*wrong_original_id_in_config=*/false, | 
 |                           /*missing_retry_id_in_config=*/false, | 
 |                           /*wrong_retry_id_in_config=*/false); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientParsesRetryMissingOriginalId) { | 
 |   TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
 |                           /*missing_original_id_in_config=*/true, | 
 |                           /*wrong_original_id_in_config=*/false, | 
 |                           /*missing_retry_id_in_config=*/false, | 
 |                           /*wrong_retry_id_in_config=*/false); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientParsesRetryWrongOriginalId) { | 
 |   TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
 |                           /*missing_original_id_in_config=*/false, | 
 |                           /*wrong_original_id_in_config=*/true, | 
 |                           /*missing_retry_id_in_config=*/false, | 
 |                           /*wrong_retry_id_in_config=*/false); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientParsesRetryMissingRetryId) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     // Versions that do not authenticate connection IDs never send the | 
 |     // retry_source_connection_id transport parameter. | 
 |     return; | 
 |   } | 
 |   TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
 |                           /*missing_original_id_in_config=*/false, | 
 |                           /*wrong_original_id_in_config=*/false, | 
 |                           /*missing_retry_id_in_config=*/true, | 
 |                           /*wrong_retry_id_in_config=*/false); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientParsesRetryWrongRetryId) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     // Versions that do not authenticate connection IDs never send the | 
 |     // retry_source_connection_id transport parameter. | 
 |     return; | 
 |   } | 
 |   TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
 |                           /*missing_original_id_in_config=*/false, | 
 |                           /*wrong_original_id_in_config=*/false, | 
 |                           /*missing_retry_id_in_config=*/false, | 
 |                           /*wrong_retry_id_in_config=*/true); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientRetransmitsInitialPacketsOnRetry) { | 
 |   if (!connection_.version().HasIetfQuicFrames()) { | 
 |     // TestClientRetryHandling() currently only supports IETF draft versions. | 
 |     return; | 
 |   } | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |  | 
 |   connection_.SendCryptoStreamData(); | 
 |  | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
 |                           /*missing_original_id_in_config=*/false, | 
 |                           /*wrong_original_id_in_config=*/false, | 
 |                           /*missing_retry_id_in_config=*/false, | 
 |                           /*wrong_retry_id_in_config=*/false); | 
 |  | 
 |   // Verify that initial data is retransmitted immediately after receiving | 
 |   // RETRY. | 
 |   if (GetParam().ack_response == AckResponse::kImmediate) { | 
 |     EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 |     EXPECT_EQ(1u, writer_->framer()->crypto_frames().size()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoInitialPacketsRetransmissionOnInvalidRetry) { | 
 |   if (!connection_.version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |  | 
 |   connection_.SendCryptoStreamData(); | 
 |  | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   TestClientRetryHandling(/*invalid_retry_tag=*/true, | 
 |                           /*missing_original_id_in_config=*/false, | 
 |                           /*wrong_original_id_in_config=*/false, | 
 |                           /*missing_retry_id_in_config=*/false, | 
 |                           /*wrong_retry_id_in_config=*/false); | 
 |  | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientReceivesOriginalConnectionIdWithoutRetry) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     // QUIC+TLS is required to transmit connection ID transport parameters. | 
 |     return; | 
 |   } | 
 |   if (connection_.version().UsesTls()) { | 
 |     // Versions that authenticate connection IDs always send the | 
 |     // original_destination_connection_id transport parameter. | 
 |     return; | 
 |   } | 
 |   // Make sure that receiving the original_destination_connection_id transport | 
 |   // parameter fails the handshake when no RETRY packet was received before it. | 
 |   QuicConfig received_config; | 
 |   QuicConfigPeer::SetNegotiated(&received_config, true); | 
 |   QuicConfigPeer::SetReceivedOriginalConnectionId(&received_config, | 
 |                                                   TestConnectionId(0x12345)); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .Times(1); | 
 |   connection_.SetFromConfig(received_config); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientReceivesRetrySourceConnectionIdWithoutRetry) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     // Versions that do not authenticate connection IDs never send the | 
 |     // retry_source_connection_id transport parameter. | 
 |     return; | 
 |   } | 
 |   // Make sure that receiving the retry_source_connection_id transport parameter | 
 |   // fails the handshake when no RETRY packet was received before it. | 
 |   QuicConfig received_config; | 
 |   QuicConfigPeer::SetNegotiated(&received_config, true); | 
 |   QuicConfigPeer::SetReceivedRetrySourceConnectionId(&received_config, | 
 |                                                      TestConnectionId(0x12345)); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .Times(1); | 
 |   connection_.SetFromConfig(received_config); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION); | 
 | } | 
 |  | 
 | // Regression test for http://crbug/1047977 | 
 | TEST_P(QuicConnectionTest, MaxStreamsFrameCausesConnectionClose) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.transport_version())) { | 
 |     return; | 
 |   } | 
 |   // Received frame causes connection close. | 
 |   EXPECT_CALL(visitor_, OnMaxStreamsFrame(_)) | 
 |       .WillOnce(InvokeWithoutArgs([this]() { | 
 |         EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |         connection_.CloseConnection( | 
 |             QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES, "error", | 
 |             ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
 |         return true; | 
 |       })); | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(QuicMaxStreamsFrame())); | 
 |   frames.push_back(QuicFrame(QuicPaddingFrame(-1))); | 
 |   ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, StreamsBlockedFrameCausesConnectionClose) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.transport_version())) { | 
 |     return; | 
 |   } | 
 |   // Received frame causes connection close. | 
 |   EXPECT_CALL(visitor_, OnStreamsBlockedFrame(_)) | 
 |       .WillOnce(InvokeWithoutArgs([this]() { | 
 |         EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |         connection_.CloseConnection( | 
 |             QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES, "error", | 
 |             ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
 |         return true; | 
 |       })); | 
 |   QuicFrames frames; | 
 |   frames.push_back( | 
 |       QuicFrame(QuicStreamsBlockedFrame(kInvalidControlFrameId, 10, false))); | 
 |   frames.push_back(QuicFrame(QuicPaddingFrame(-1))); | 
 |   ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        BundleAckWithConnectionCloseMultiplePacketNumberSpace) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   // Receives packet 1000 in initial data. | 
 |   ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
 |   // Receives packet 2000 in application data. | 
 |   ProcessDataPacketAtLevel(2000, false, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR; | 
 |   connection_.CloseConnection( | 
 |       kQuicErrorCode, "Some random error message", | 
 |       ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
 |  | 
 |   EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_)); | 
 |  | 
 |   TestConnectionCloseQuicErrorCode(kQuicErrorCode); | 
 |   EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
 |   // Verify ack is bundled. | 
 |   EXPECT_EQ(1u, writer_->ack_frames().size()); | 
 |  | 
 |   if (!connection_.version().CanSendCoalescedPackets()) { | 
 |     // Each connection close packet should be sent in distinct UDP packets. | 
 |     EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_), | 
 |               writer_->connection_close_packets()); | 
 |     EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_), | 
 |               writer_->packets_write_attempts()); | 
 |     return; | 
 |   } | 
 |  | 
 |   // A single UDP packet should be sent with multiple connection close packets | 
 |   // coalesced together. | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |  | 
 |   // Only the first packet has been processed yet. | 
 |   EXPECT_EQ(1u, writer_->connection_close_packets()); | 
 |  | 
 |   // ProcessPacket resets the visitor and frees the coalesced packet. | 
 |   ASSERT_TRUE(writer_->coalesced_packet() != nullptr); | 
 |   auto packet = writer_->coalesced_packet()->Clone(); | 
 |   writer_->framer()->ProcessPacket(*packet); | 
 |   EXPECT_EQ(1u, writer_->connection_close_packets()); | 
 |   EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
 |   // Verify ack is bundled. | 
 |   EXPECT_EQ(1u, writer_->ack_frames().size()); | 
 |   ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
 | } | 
 |  | 
 | // Regression test for b/151220135. | 
 | TEST_P(QuicConnectionTest, SendPingWhenSkipPacketNumberForPto) { | 
 |   if (!VersionSupportsMessageFrames(connection_.transport_version())) { | 
 |     return; | 
 |   } | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(kPTOS); | 
 |   connection_options.push_back(k1PTO); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedMaxDatagramFrameSize( | 
 |         &config, kMaxAcceptedDatagramFrameSize); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   EXPECT_EQ(MESSAGE_STATUS_SUCCESS, SendMessage("message")); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // PTO fires, verify a PING packet gets sent because there is no data to | 
 |   // send. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(1u, connection_.GetStats().pto_count); | 
 |   EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count); | 
 |   EXPECT_EQ(1u, writer_->ping_frames().size()); | 
 | } | 
 |  | 
 | // Regression test for b/155757133 | 
 | TEST_P(QuicConnectionTest, DonotChangeQueuedAcks) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   const size_t kMinRttMs = 40; | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   // Discard INITIAL key. | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |  | 
 |   ProcessPacket(2); | 
 |   ProcessPacket(3); | 
 |   ProcessPacket(4); | 
 |   // Process a packet containing stream frame followed by ACK of packets 1. | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(QuicStreamFrame( | 
 |       QuicUtils::GetFirstBidirectionalStreamId( | 
 |           connection_.version().transport_version, Perspective::IS_CLIENT), | 
 |       false, 0u, absl::string_view()))); | 
 |   QuicAckFrame ack_frame = InitAckFrame(1); | 
 |   frames.push_back(QuicFrame(&ack_frame)); | 
 |   // Receiving stream frame causes something to send. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([this]() { | 
 |     connection_.SendControlFrame(QuicFrame(QuicWindowUpdateFrame(1, 0, 0))); | 
 |     // Verify now the queued ACK contains packet number 2. | 
 |     EXPECT_TRUE(QuicPacketCreatorPeer::QueuedFrames( | 
 |                     QuicConnectionPeer::GetPacketCreator(&connection_))[0] | 
 |                     .ack_frame->packets.Contains(QuicPacketNumber(2))); | 
 |   })); | 
 |   ProcessFramesPacketAtLevel(9, frames, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_TRUE(writer_->ack_frames()[0].packets.Contains(QuicPacketNumber(2))); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DonotExtendIdleTimeOnUndecryptablePackets) { | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |   // Subtract a second from the idle timeout on the client side. | 
 |   QuicTime initial_deadline = | 
 |       clock_.ApproximateNow() + | 
 |       QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
 |   EXPECT_EQ(initial_deadline, connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // Received an undecryptable packet. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
 |   const uint8_t tag = 0x07; | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(tag)); | 
 |   ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |   // Verify deadline does not get extended. | 
 |   EXPECT_EQ(initial_deadline, connection_.GetTimeoutAlarm()->deadline()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1); | 
 |   QuicTime::Delta delay = initial_deadline - clock_.ApproximateNow(); | 
 |   clock_.AdvanceTime(delay); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   // Verify connection gets closed. | 
 |   EXPECT_FALSE(connection_.connected()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BundleAckWithImmediateResponse) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([this]() { | 
 |     notifier_.WriteOrBufferWindowUpate(0, 0); | 
 |   })); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   ProcessDataPacket(1); | 
 |   // Verify ACK is bundled with WINDOW_UPDATE. | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_FALSE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckAlarmFiresEarly) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |   // Receives packet 1000 in initial data. | 
 |   ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   // Receives packet 1000 in application data. | 
 |   ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   // Verify ACK deadline does not change. | 
 |   EXPECT_EQ(clock_.ApproximateNow() + kAlarmGranularity, | 
 |             connection_.GetAckAlarm()->deadline()); | 
 |  | 
 |   // Ack alarm fires early. | 
 |   // Verify the earliest ACK is flushed. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   EXPECT_EQ(clock_.ApproximateNow() + DefaultDelayedAckTime(), | 
 |             connection_.GetAckAlarm()->deadline()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientOnlyBlackholeDetectionClient) { | 
 |   if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     return; | 
 |   } | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(kCBHD); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |   EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
 |   // Send stream data. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   // Verify blackhole detection is in progress. | 
 |   EXPECT_TRUE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientOnlyBlackholeDetectionServer) { | 
 |   if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   if (version().SupportsAntiAmplificationLimit()) { | 
 |     QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   } | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(kCBHD); | 
 |   config.SetInitialReceivedConnectionOptions(connection_options); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |   EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
 |   // Send stream data. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   // Verify blackhole detection is disabled. | 
 |   EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, 2RtoBlackholeDetection) { | 
 |   if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     return; | 
 |   } | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k2RTO); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   const size_t kMinRttMs = 40; | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |   EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
 |   // Send stream data. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   // Verify blackhole delay is expected. | 
 |   EXPECT_EQ(clock_.Now() + | 
 |                 connection_.sent_packet_manager().GetNetworkBlackholeDelay(2), | 
 |             QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, 3RtoBlackholeDetection) { | 
 |   if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     return; | 
 |   } | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k3RTO); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   const size_t kMinRttMs = 40; | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |   EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
 |   // Send stream data. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   // Verify blackhole delay is expected. | 
 |   EXPECT_EQ(clock_.Now() + | 
 |                 connection_.sent_packet_manager().GetNetworkBlackholeDelay(3), | 
 |             QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, 4RtoBlackholeDetection) { | 
 |   if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     return; | 
 |   } | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k4RTO); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   const size_t kMinRttMs = 40; | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |   EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
 |   // Send stream data. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   // Verify blackhole delay is expected. | 
 |   EXPECT_EQ(clock_.Now() + | 
 |                 connection_.sent_packet_manager().GetNetworkBlackholeDelay(4), | 
 |             QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, 6RtoBlackholeDetection) { | 
 |   if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     return; | 
 |   } | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k6RTO); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   const size_t kMinRttMs = 40; | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |   EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
 |   // Send stream data. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   // Verify blackhole delay is expected. | 
 |   EXPECT_EQ(clock_.Now() + | 
 |                 connection_.sent_packet_manager().GetNetworkBlackholeDelay(6), | 
 |             QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_)); | 
 | } | 
 |  | 
 | // Regresstion test for b/158491591. | 
 | TEST_P(QuicConnectionTest, MadeForwardProgressOnDiscardingKeys) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   use_tagging_decrypter(); | 
 |   // Send handshake packet. | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |   QuicConfig config; | 
 |   QuicTagVector connection_options; | 
 |   connection_options.push_back(k5RTO); | 
 |   config.SetConnectionOptionsToSend(connection_options); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |         .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |   } | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_TRUE(connection_.BlackholeDetectionInProgress()); | 
 |   // Discard handshake keys. | 
 |   connection_.OnHandshakeComplete(); | 
 |   if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     // Verify blackhole detection stops. | 
 |     EXPECT_FALSE(connection_.BlackholeDetectionInProgress()); | 
 |   } else { | 
 |     // Problematic: although there is nothing in flight, blackhole detection is | 
 |     // still in progress. | 
 |     EXPECT_TRUE(connection_.BlackholeDetectionInProgress()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ProcessUndecryptablePacketsBasedOnEncryptionLevel) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   // SetFromConfig is always called after construction from InitializeSession. | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber()); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE); | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                             std::make_unique<TaggingEncrypter>(0x01)); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |  | 
 |   for (uint64_t i = 1; i <= 3; ++i) { | 
 |     ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_HANDSHAKE); | 
 |   } | 
 |   ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |   for (uint64_t j = 5; j <= 7; ++j) { | 
 |     ProcessDataPacketAtLevel(j, !kHasStopWaiting, ENCRYPTION_HANDSHAKE); | 
 |   } | 
 |   EXPECT_EQ(7u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
 |   EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x01)); | 
 |   EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   // Verify all ENCRYPTION_HANDSHAKE packets get processed. | 
 |   if (!VersionHasIetfQuicFrames(version().transport_version)) { | 
 |     EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(6); | 
 |   } | 
 |   connection_.GetProcessUndecryptablePacketsAlarm()->Fire(); | 
 |   EXPECT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
 |  | 
 |   SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   // Verify the 1-RTT packet gets processed. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   connection_.GetProcessUndecryptablePacketsAlarm()->Fire(); | 
 |   EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ServerBundlesInitialDataWithInitialAck) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |   // Receives packet 1000 in initial data. | 
 |   ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL); | 
 |   QuicTime expected_pto_time = | 
 |       connection_.sent_packet_manager().GetRetransmissionTime(); | 
 |  | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
 |   // Verify PTO time does not change. | 
 |   EXPECT_EQ(expected_pto_time, | 
 |             connection_.sent_packet_manager().GetRetransmissionTime()); | 
 |  | 
 |   // Receives packet 1001 in initial data. | 
 |   ProcessCryptoPacketAtLevel(1001, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   // Receives packet 1002 in initial data. | 
 |   ProcessCryptoPacketAtLevel(1002, ENCRYPTION_INITIAL); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   // Verify CRYPTO frame is bundled with INITIAL ACK. | 
 |   EXPECT_FALSE(writer_->crypto_frames().empty()); | 
 |   // Verify PTO time changes. | 
 |   EXPECT_NE(expected_pto_time, | 
 |             connection_.sent_packet_manager().GetRetransmissionTime()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientBundlesHandshakeDataWithHandshakeAck) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |   // Receives packet 1000 in handshake data. | 
 |   ProcessCryptoPacketAtLevel(1000, ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
 |  | 
 |   // Receives packet 1001 in handshake data. | 
 |   ProcessCryptoPacketAtLevel(1001, ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   // Receives packet 1002 in handshake data. | 
 |   ProcessCryptoPacketAtLevel(1002, ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   // Verify CRYPTO frame is bundled with HANDSHAKE ACK. | 
 |   EXPECT_FALSE(writer_->crypto_frames().empty()); | 
 | } | 
 |  | 
 | // Regresstion test for b/156232673. | 
 | TEST_P(QuicConnectionTest, CoalescePacketOfLowerEncryptionLevel) { | 
 |   if (!connection_.version().CanSendCoalescedPackets()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     use_tagging_decrypter(); | 
 |     connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                              std::make_unique<TaggingEncrypter>(0x01)); | 
 |     connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                              std::make_unique<TaggingEncrypter>(0x02)); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     SendStreamDataToPeer(2, std::string(1286, 'a'), 0, NO_FIN, nullptr); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |     // Try to coalesce a HANDSHAKE packet after 1-RTT packet. | 
 |     // Verify soft max packet length gets resumed and handshake packet gets | 
 |     // successfully sent. | 
 |     connection_.SendCryptoDataWithString("a", 0, ENCRYPTION_HANDSHAKE); | 
 |   } | 
 | } | 
 |  | 
 | // Regression test for b/160790422. | 
 | TEST_P(QuicConnectionTest, ServerRetransmitsHandshakeDataEarly) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |   // Receives packet 1000 in initial data. | 
 |   ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   // Send INITIAL 1. | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL); | 
 |   QuicTime expected_pto_time = | 
 |       connection_.sent_packet_manager().GetRetransmissionTime(); | 
 |  | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |   // Send HANDSHAKE 2 and 3. | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
 |   connection_.SendCryptoDataWithString("bar", 3, ENCRYPTION_HANDSHAKE); | 
 |   // Verify PTO time does not change. | 
 |   EXPECT_EQ(expected_pto_time, | 
 |             connection_.sent_packet_manager().GetRetransmissionTime()); | 
 |  | 
 |   // Receives ACK for HANDSHAKE 2. | 
 |   QuicFrames frames; | 
 |   auto ack_frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
 |   frames.push_back(QuicFrame(&ack_frame)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   ProcessFramesPacketAtLevel(30, frames, ENCRYPTION_HANDSHAKE); | 
 |   // Discard INITIAL key. | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   // Receives PING from peer. | 
 |   frames.clear(); | 
 |   frames.push_back(QuicFrame(QuicPingFrame())); | 
 |   frames.push_back(QuicFrame(QuicPaddingFrame(3))); | 
 |   ProcessFramesPacketAtLevel(31, frames, ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_EQ(clock_.Now() + kAlarmGranularity, | 
 |             connection_.GetAckAlarm()->deadline()); | 
 |   // Fire ACK alarm. | 
 |   clock_.AdvanceTime(kAlarmGranularity); | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   // Verify handshake data gets retransmitted early. | 
 |   EXPECT_FALSE(writer_->crypto_frames().empty()); | 
 | } | 
 |  | 
 | // Regression test for b/161228202 | 
 | TEST_P(QuicConnectionTest, InflatedRttSample) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   // 30ms RTT. | 
 |   const QuicTime::Delta kTestRTT = QuicTime::Delta::FromMilliseconds(30); | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   use_tagging_decrypter(); | 
 |   // Receives packet 1000 in initial data. | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   // Send INITIAL 1. | 
 |   std::string initial_crypto_data(512, 'a'); | 
 |   connection_.SendCryptoDataWithString(initial_crypto_data, 0, | 
 |                                        ENCRYPTION_INITIAL); | 
 |   ASSERT_TRUE(connection_.sent_packet_manager() | 
 |                   .GetRetransmissionTime() | 
 |                   .IsInitialized()); | 
 |   QuicTime::Delta pto_timeout = | 
 |       connection_.sent_packet_manager().GetRetransmissionTime() - clock_.Now(); | 
 |   // Send Handshake 2. | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |   std::string handshake_crypto_data(1024, 'a'); | 
 |   connection_.SendCryptoDataWithString(handshake_crypto_data, 0, | 
 |                                        ENCRYPTION_HANDSHAKE); | 
 |  | 
 |   // INITIAL 1 gets lost and PTO fires. | 
 |   clock_.AdvanceTime(pto_timeout); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   clock_.AdvanceTime(kTestRTT); | 
 |   // Assume retransmitted INITIAL gets received. | 
 |   QuicFrames frames; | 
 |   auto ack_frame = InitAckFrame({{QuicPacketNumber(4), QuicPacketNumber(5)}}); | 
 |   frames.push_back(QuicFrame(&ack_frame)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |   ProcessFramesPacketAtLevel(1001, frames, ENCRYPTION_INITIAL); | 
 |   EXPECT_EQ(kTestRTT, rtt_stats->latest_rtt()); | 
 |   // Because retransmitted INITIAL gets received so HANDSHAKE 2 gets processed. | 
 |   frames.clear(); | 
 |   // HANDSHAKE 5 is also processed. | 
 |   QuicAckFrame ack_frame2 = | 
 |       InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}, | 
 |                     {QuicPacketNumber(5), QuicPacketNumber(6)}}); | 
 |   ack_frame2.ack_delay_time = QuicTime::Delta::Zero(); | 
 |   frames.push_back(QuicFrame(&ack_frame2)); | 
 |   ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_HANDSHAKE); | 
 |   // Verify RTT inflation gets mitigated. | 
 |   EXPECT_EQ(rtt_stats->latest_rtt(), kTestRTT); | 
 | } | 
 |  | 
 | // Regression test for b/161228202 | 
 | TEST_P(QuicConnectionTest, CoalscingPacketCausesInfiniteLoop) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   use_tagging_decrypter(); | 
 |   // Receives packet 1000 in initial data. | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |  | 
 |   // Set anti amplification factor to 2, such that RetransmitDataOfSpaceIfAny | 
 |   // makes no forward progress and causes infinite loop. | 
 |   SetQuicFlag(FLAGS_quic_anti_amplification_factor, 2); | 
 |  | 
 |   ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   // Send INITIAL 1. | 
 |   std::string initial_crypto_data(512, 'a'); | 
 |   connection_.SendCryptoDataWithString(initial_crypto_data, 0, | 
 |                                        ENCRYPTION_INITIAL); | 
 |   ASSERT_TRUE(connection_.sent_packet_manager() | 
 |                   .GetRetransmissionTime() | 
 |                   .IsInitialized()); | 
 |   QuicTime::Delta pto_timeout = | 
 |       connection_.sent_packet_manager().GetRetransmissionTime() - clock_.Now(); | 
 |   // Send Handshake 2. | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   // Verify HANDSHAKE packet is coalesced with INITIAL retransmission. | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |   std::string handshake_crypto_data(1024, 'a'); | 
 |   connection_.SendCryptoDataWithString(handshake_crypto_data, 0, | 
 |                                        ENCRYPTION_HANDSHAKE); | 
 |  | 
 |   // INITIAL 1 gets lost and PTO fires. | 
 |   clock_.AdvanceTime(pto_timeout); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientAckDelayForAsyncPacketProcessing) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   // SetFromConfig is always called after construction from InitializeSession. | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() { | 
 |     connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |     connection_.NeuterUnencryptedPackets(); | 
 |   })); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                             std::make_unique<TaggingEncrypter>(0x01)); | 
 |   EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
 |  | 
 |   // Received undecryptable HANDSHAKE 2. | 
 |   ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_HANDSHAKE); | 
 |   ASSERT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
 |   // Received INITIAL 4 (which is retransmission of INITIAL 1) after 100ms. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100)); | 
 |   ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_INITIAL); | 
 |   // Generate HANDSHAKE key. | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x01)); | 
 |   EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   // Verify HANDSHAKE packet gets processed. | 
 |   if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   } else { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   } | 
 |   connection_.GetProcessUndecryptablePacketsAlarm()->Fire(); | 
 |   if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) { | 
 |     // Verify immediate ACK has been sent out when flush went out of scope. | 
 |     ASSERT_FALSE(connection_.HasPendingAcks()); | 
 |   } else { | 
 |     ASSERT_TRUE(connection_.HasPendingAcks()); | 
 |     // Send ACKs. | 
 |     clock_.AdvanceTime(connection_.GetAckAlarm()->deadline() - clock_.Now()); | 
 |     connection_.GetAckAlarm()->Fire(); | 
 |   } | 
 |   ASSERT_FALSE(writer_->ack_frames().empty()); | 
 |   if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) { | 
 |     // Verify the ack_delay_time in the sent HANDSHAKE ACK frame is 100ms. | 
 |     EXPECT_EQ(QuicTime::Delta::FromMilliseconds(100), | 
 |               writer_->ack_frames()[0].ack_delay_time); | 
 |     ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
 |     return; | 
 |   } | 
 |   // Verify the ack_delay_time in the INITIAL ACK frame is 1ms. | 
 |   EXPECT_EQ(QuicTime::Delta::FromMilliseconds(1), | 
 |             writer_->ack_frames()[0].ack_delay_time); | 
 |   // Process the coalesced HANDSHAKE packet. | 
 |   ASSERT_TRUE(writer_->coalesced_packet() != nullptr); | 
 |   auto packet = writer_->coalesced_packet()->Clone(); | 
 |   writer_->framer()->ProcessPacket(*packet); | 
 |   ASSERT_FALSE(writer_->ack_frames().empty()); | 
 |   // Verify the ack_delay_time in the HANDSHAKE ACK frame includes the | 
 |   // buffering time. | 
 |   EXPECT_EQ(QuicTime::Delta::FromMilliseconds(101), | 
 |             writer_->ack_frames()[0].ack_delay_time); | 
 |   ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TestingLiveness) { | 
 |   const size_t kMinRttMs = 40; | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |  | 
 |   CryptoHandshakeMessage msg; | 
 |   std::string error_details; | 
 |   QuicConfig client_config; | 
 |   client_config.SetInitialStreamFlowControlWindowToSend( | 
 |       kInitialStreamFlowControlWindowForTest); | 
 |   client_config.SetInitialSessionFlowControlWindowToSend( | 
 |       kInitialSessionFlowControlWindowForTest); | 
 |   client_config.SetIdleNetworkTimeout(QuicTime::Delta::FromSeconds(30)); | 
 |   client_config.ToHandshakeMessage(&msg, connection_.transport_version()); | 
 |   const QuicErrorCode error = | 
 |       config.ProcessPeerHello(msg, CLIENT, &error_details); | 
 |   EXPECT_THAT(error, IsQuicNoError()); | 
 |  | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |  | 
 |   connection_.SetFromConfig(config); | 
 |   connection_.OnHandshakeComplete(); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   ASSERT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.MaybeTestLiveness()); | 
 |  | 
 |   QuicTime deadline = connection_.GetTimeoutAlarm()->deadline(); | 
 |   QuicTime::Delta timeout = deadline - clock_.ApproximateNow(); | 
 |   // Advance time to near the idle timeout. | 
 |   clock_.AdvanceTime(timeout - QuicTime::Delta::FromMilliseconds(1)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   EXPECT_TRUE(connection_.MaybeTestLiveness()); | 
 |   // Verify idle deadline does not change. | 
 |   EXPECT_EQ(deadline, connection_.GetTimeoutAlarm()->deadline()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SilentIdleTimeout) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   if (version().SupportsAntiAmplificationLimit()) { | 
 |     QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   } | 
 |  | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config, | 
 |                                                          QuicConnectionId()); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |  | 
 |   if (version().handshake_protocol == PROTOCOL_TLS1_3) { | 
 |     EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   // Verify the connection close packets get serialized and added to | 
 |   // termination packets list. | 
 |   EXPECT_NE(nullptr, | 
 |             QuicConnectionPeer::GetConnectionClosePacket(&connection_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DonotSendPing) { | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(true)); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(0, connection_.transport_version()), | 
 |       "GET /", 0, FIN, nullptr); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_EQ(QuicTime::Delta::FromSeconds(15), | 
 |             connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   // Now recevie an ACK and response of the previous packet, which will move the | 
 |   // ping alarm forward. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   QuicFrames frames; | 
 |   QuicAckFrame ack_frame = InitAckFrame(1); | 
 |   frames.push_back(QuicFrame(&ack_frame)); | 
 |   frames.push_back(QuicFrame(QuicStreamFrame( | 
 |       GetNthClientInitiatedStreamId(0, connection_.transport_version()), true, | 
 |       0u, absl::string_view()))); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   // The ping timer is set slightly less than 15 seconds in the future, because | 
 |   // of the 1s ping timer alarm granularity. | 
 |   EXPECT_EQ( | 
 |       QuicTime::Delta::FromSeconds(15) - QuicTime::Delta::FromMilliseconds(5), | 
 |       connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
 |  | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15)); | 
 |   // Suppose now ShouldKeepConnectionAlive returns false. | 
 |   EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
 |       .WillRepeatedly(Return(false)); | 
 |   // Verify PING does not get sent. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   connection_.GetPingAlarm()->Fire(); | 
 | } | 
 |  | 
 | // Regression test for b/159698337 | 
 | TEST_P(QuicConnectionTest, DuplicateAckCausesLostPackets) { | 
 |   if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     return; | 
 |   } | 
 |   // Finish handshake. | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   notifier_.NeuterUnencryptedData(); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |  | 
 |   std::string data(1200, 'a'); | 
 |   // Send data packets 1 - 5. | 
 |   for (size_t i = 0; i < 5; ++i) { | 
 |     SendStreamDataToPeer( | 
 |         GetNthClientInitiatedStreamId(1, connection_.transport_version()), data, | 
 |         i * 1200, i == 4 ? FIN : NO_FIN, nullptr); | 
 |   } | 
 |   ASSERT_TRUE(connection_.BlackholeDetectionInProgress()); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)).Times(3); | 
 |  | 
 |   // ACK packet 5 and 1 and 2 are detected lost. | 
 |   QuicAckFrame frame = | 
 |       InitAckFrame({{QuicPacketNumber(5), QuicPacketNumber(6)}}); | 
 |   LostPacketVector lost_packets; | 
 |   lost_packets.push_back( | 
 |       LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize)); | 
 |   lost_packets.push_back( | 
 |       LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .Times(AnyNumber()) | 
 |       .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
 |                       Return(LossDetectionInterface::DetectionStats()))); | 
 |   ProcessAckPacket(1, &frame); | 
 |   EXPECT_TRUE(connection_.BlackholeDetectionInProgress()); | 
 |   QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm(); | 
 |   EXPECT_TRUE(retransmission_alarm->IsSet()); | 
 |  | 
 |   // ACK packet 1 - 5 and 7. | 
 |   QuicAckFrame frame2 = | 
 |       InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(6)}, | 
 |                     {QuicPacketNumber(7), QuicPacketNumber(8)}}); | 
 |   ProcessAckPacket(2, &frame2); | 
 |   EXPECT_TRUE(connection_.BlackholeDetectionInProgress()); | 
 |  | 
 |   // ACK packet 7 again and assume packet 6 is detected lost. | 
 |   QuicAckFrame frame3 = | 
 |       InitAckFrame({{QuicPacketNumber(7), QuicPacketNumber(8)}}); | 
 |   lost_packets.clear(); | 
 |   lost_packets.push_back( | 
 |       LostPacket(QuicPacketNumber(6), kMaxOutgoingPacketSize)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
 |       .Times(AnyNumber()) | 
 |       .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
 |                       Return(LossDetectionInterface::DetectionStats()))); | 
 |   ProcessAckPacket(3, &frame3); | 
 |   // Make sure loss detection is cancelled even there is no new acked packets. | 
 |   EXPECT_FALSE(connection_.BlackholeDetectionInProgress()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ShorterIdleTimeoutOnSentPackets) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   config.SetClientConnectionOptions(QuicTagVector{kFIDT}); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |         .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |   } | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   ASSERT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   // Send a packet close to timeout. | 
 |   QuicTime::Delta timeout = | 
 |       connection_.GetTimeoutAlarm()->deadline() - clock_.Now(); | 
 |   clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(1)); | 
 |   // Send stream data. | 
 |   SendStreamDataToPeer( | 
 |       GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
 |       0, FIN, nullptr); | 
 |   // Verify this sent packet does not extend idle timeout since 1s is > PTO | 
 |   // delay. | 
 |   ASSERT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_EQ(QuicTime::Delta::FromSeconds(1), | 
 |             connection_.GetTimeoutAlarm()->deadline() - clock_.Now()); | 
 |  | 
 |   // Received an ACK 100ms later. | 
 |   clock_.AdvanceTime(timeout - QuicTime::Delta::FromMilliseconds(100)); | 
 |   QuicAckFrame ack = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   ProcessAckPacket(1, &ack); | 
 |   // Verify idle timeout gets extended. | 
 |   EXPECT_EQ(clock_.Now() + timeout, connection_.GetTimeoutAlarm()->deadline()); | 
 | } | 
 |  | 
 | // Regression test for b/166255274 | 
 | TEST_P(QuicConnectionTest, | 
 |        ReserializeInitialPacketInCoalescerAfterDiscardingInitialKey) { | 
 |   if (!connection_.version().CanSendCoalescedPackets()) { | 
 |     return; | 
 |   } | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() { | 
 |     connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |     connection_.NeuterUnencryptedPackets(); | 
 |   })); | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
 |     // Verify the packet is on hold. | 
 |     EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |     // Flush pending ACKs. | 
 |     connection_.GetAckAlarm()->Fire(); | 
 |   } | 
 |   EXPECT_FALSE(connection_.packet_creator().HasPendingFrames()); | 
 |   // The ACK frame is deleted along with initial_packet_ in coalescer. Sending | 
 |   // connection close would cause this (released) ACK frame be serialized (and | 
 |   // crashes). | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(1000, false, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PathValidationOnNewSocketSuccess) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.use_path_validator()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345); | 
 |   EXPECT_NE(kNewSelfAddress, connection_.self_address()); | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(AtLeast(1u)) | 
 |       .WillOnce(Invoke([&]() { | 
 |         EXPECT_EQ(1u, new_writer.packets_write_attempts()); | 
 |         EXPECT_EQ(1u, new_writer.path_challenge_frames().size()); | 
 |         EXPECT_EQ(1u, new_writer.padding_frames().size()); | 
 |         EXPECT_EQ(kNewSelfAddress.host(), | 
 |                   new_writer.last_write_source_address()); | 
 |       })); | 
 |   bool success = false; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kNewSelfAddress, connection_.peer_address(), &new_writer), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kNewSelfAddress, connection_.peer_address(), &success)); | 
 |   EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |  | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(new QuicPathResponseFrame( | 
 |       99, new_writer.path_challenge_frames().front().data_buffer))); | 
 |   ProcessFramesPacketWithAddresses(frames, kNewSelfAddress, kPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_TRUE(success); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NewPathValidationCancelsPreviousOne) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.use_path_validator()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345); | 
 |   EXPECT_NE(kNewSelfAddress, connection_.self_address()); | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(AtLeast(1u)) | 
 |       .WillOnce(Invoke([&]() { | 
 |         EXPECT_EQ(1u, new_writer.packets_write_attempts()); | 
 |         EXPECT_EQ(1u, new_writer.path_challenge_frames().size()); | 
 |         EXPECT_EQ(1u, new_writer.padding_frames().size()); | 
 |         EXPECT_EQ(kNewSelfAddress.host(), | 
 |                   new_writer.last_write_source_address()); | 
 |       })); | 
 |   bool success = true; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kNewSelfAddress, connection_.peer_address(), &new_writer), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kNewSelfAddress, connection_.peer_address(), &success)); | 
 |   EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |  | 
 |   // Start another path validation request. | 
 |   const QuicSocketAddress kNewSelfAddress2(QuicIpAddress::Any4(), 12346); | 
 |   EXPECT_NE(kNewSelfAddress2, connection_.self_address()); | 
 |   TestPacketWriter new_writer2(version(), &clock_, Perspective::IS_CLIENT); | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .Times(AtLeast(1u)) | 
 |         .WillOnce(Invoke([&]() { | 
 |           EXPECT_EQ(1u, new_writer2.packets_write_attempts()); | 
 |           EXPECT_EQ(1u, new_writer2.path_challenge_frames().size()); | 
 |           EXPECT_EQ(1u, new_writer2.padding_frames().size()); | 
 |           EXPECT_EQ(kNewSelfAddress2.host(), | 
 |                     new_writer2.last_write_source_address()); | 
 |         })); | 
 |   } | 
 |   bool success2 = false; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kNewSelfAddress2, connection_.peer_address(), &new_writer2), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kNewSelfAddress2, connection_.peer_address(), | 
 |           &success2)); | 
 |   EXPECT_FALSE(success); | 
 |   if (connection_.connection_migration_use_new_cid()) { | 
 |     // There is no pening path validation as there is no available connection | 
 |     // ID. | 
 |     EXPECT_FALSE(connection_.HasPendingPathValidation()); | 
 |   } else { | 
 |     EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |   } | 
 | } | 
 |  | 
 | // Regression test for b/182571515. | 
 | TEST_P(QuicConnectionTest, PathValidationRetry) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.use_path_validator()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(2u) | 
 |       .WillRepeatedly(Invoke([&]() { | 
 |         EXPECT_EQ(1u, writer_->path_challenge_frames().size()); | 
 |         EXPECT_EQ(1u, writer_->padding_frames().size()); | 
 |       })); | 
 |   bool success = true; | 
 |   connection_.ValidatePath(std::make_unique<TestQuicPathValidationContext>( | 
 |                                connection_.self_address(), | 
 |                                connection_.peer_address(), writer_.get()), | 
 |                            std::make_unique<TestValidationResultDelegate>( | 
 |                                &connection_, connection_.self_address(), | 
 |                                connection_.peer_address(), &success)); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |  | 
 |   // Retry after time out. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs)); | 
 |   static_cast<test::MockRandom*>(helper_->GetRandomGenerator())->ChangeValue(); | 
 |   static_cast<TestAlarmFactory::TestAlarm*>( | 
 |       QuicPathValidatorPeer::retry_timer( | 
 |           QuicConnectionPeer::path_validator(&connection_))) | 
 |       ->Fire(); | 
 |   EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PathValidationReceivesStatelessReset) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.use_path_validator()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetReceivedStatelessResetToken(&config, | 
 |                                                  kTestStatelessResetToken); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345); | 
 |   EXPECT_NE(kNewSelfAddress, connection_.self_address()); | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(AtLeast(1u)) | 
 |       .WillOnce(Invoke([&]() { | 
 |         EXPECT_EQ(1u, new_writer.packets_write_attempts()); | 
 |         EXPECT_EQ(1u, new_writer.path_challenge_frames().size()); | 
 |         EXPECT_EQ(1u, new_writer.padding_frames().size()); | 
 |         EXPECT_EQ(kNewSelfAddress.host(), | 
 |                   new_writer.last_write_source_address()); | 
 |       })); | 
 |   bool success = true; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kNewSelfAddress, connection_.peer_address(), &new_writer), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kNewSelfAddress, connection_.peer_address(), &success)); | 
 |   EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |   EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |  | 
 |   std::unique_ptr<QuicEncryptedPacket> packet( | 
 |       QuicFramer::BuildIetfStatelessResetPacket(connection_id_, | 
 |                                                 /*received_packet_length=*/100, | 
 |                                                 kTestStatelessResetToken)); | 
 |   std::unique_ptr<QuicReceivedPacket> received( | 
 |       ConstructReceivedPacket(*packet, QuicTime::Zero())); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
 |   connection_.ProcessUdpPacket(kNewSelfAddress, kPeerAddress, *received); | 
 |   EXPECT_FALSE(connection_.HasPendingPathValidation()); | 
 |   EXPECT_FALSE(success); | 
 | } | 
 |  | 
 | // Tests that PATH_CHALLENGE is dropped if it is sent via a blocked alternative | 
 | // writer. | 
 | TEST_P(QuicConnectionTest, SendPathChallengeUsingBlockedNewSocket) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345); | 
 |   EXPECT_NE(kNewSelfAddress, connection_.self_address()); | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   new_writer.BlockOnNextWrite(); | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(AtLeast(1)) | 
 |       .WillOnce(Invoke([&]() { | 
 |         // Even though the socket is blocked, the PATH_CHALLENGE should still be | 
 |         // treated as sent. | 
 |         EXPECT_EQ(1u, new_writer.packets_write_attempts()); | 
 |         EXPECT_EQ(1u, new_writer.path_challenge_frames().size()); | 
 |         EXPECT_EQ(1u, new_writer.padding_frames().size()); | 
 |         EXPECT_EQ(kNewSelfAddress.host(), | 
 |                   new_writer.last_write_source_address()); | 
 |       })); | 
 |   bool success = false; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kNewSelfAddress, connection_.peer_address(), &new_writer), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kNewSelfAddress, connection_.peer_address(), &success)); | 
 |   EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |  | 
 |   new_writer.SetWritable(); | 
 |   // Write event on the default socket shouldn't make any difference. | 
 |   connection_.OnCanWrite(); | 
 |   // A NEW_CONNECTION_ID frame is received in PathProbeTestInit and OnCanWrite | 
 |   // will write a acking packet. | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_EQ(1u, new_writer.packets_write_attempts()); | 
 | } | 
 |  | 
 | //  Tests that PATH_CHALLENGE is dropped if it is sent via the default writer | 
 | //  and the writer is blocked. | 
 | TEST_P(QuicConnectionTest, SendPathChallengeUsingBlockedDefaultSocket) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.use_path_validator()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |   const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Any4(), 12345); | 
 |   writer_->BlockOnNextWrite(); | 
 |   // 1st time is after writer returns WRITE_STATUS_BLOCKED. 2nd time is in | 
 |   // ShouldGeneratePacket(). | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(2)); | 
 |   QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7}; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(AtLeast(1u)) | 
 |       .WillOnce(Invoke([&]() { | 
 |         // This packet isn't sent actually, instead it is buffered in the | 
 |         // connection. | 
 |         EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |         if (connection_.validate_client_address()) { | 
 |           EXPECT_EQ(1u, writer_->path_response_frames().size()); | 
 |           EXPECT_EQ(0, | 
 |                     memcmp(&path_challenge_payload, | 
 |                            &writer_->path_response_frames().front().data_buffer, | 
 |                            sizeof(path_challenge_payload))); | 
 |         } | 
 |         EXPECT_EQ(1u, writer_->path_challenge_frames().size()); | 
 |         EXPECT_EQ(1u, writer_->padding_frames().size()); | 
 |         EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address()); | 
 |       })) | 
 |       .WillRepeatedly(Invoke([&]() { | 
 |         // Only one PATH_CHALLENGE should be sent out. | 
 |         EXPECT_EQ(0u, writer_->path_challenge_frames().size()); | 
 |       })); | 
 |   bool success = false; | 
 |   if (connection_.validate_client_address()) { | 
 |     // Receiving a PATH_CHALLENGE from the new peer address should trigger | 
 |     // address validation. | 
 |     QuicFrames frames; | 
 |     frames.push_back( | 
 |         QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload))); | 
 |     ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress, | 
 |                                      ENCRYPTION_FORWARD_SECURE); | 
 |   } else { | 
 |     // Manually start to validate the new peer address. | 
 |     connection_.ValidatePath( | 
 |         std::make_unique<TestQuicPathValidationContext>( | 
 |             connection_.self_address(), kNewPeerAddress, writer_.get()), | 
 |         std::make_unique<TestValidationResultDelegate>( | 
 |             &connection_, connection_.self_address(), kNewPeerAddress, | 
 |             &success)); | 
 |   } | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |  | 
 |   // Try again with the new socket blocked from the beginning. The 2nd | 
 |   // PATH_CHALLENGE shouldn't be serialized, but be dropped. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs)); | 
 |   static_cast<test::MockRandom*>(helper_->GetRandomGenerator())->ChangeValue(); | 
 |   static_cast<TestAlarmFactory::TestAlarm*>( | 
 |       QuicPathValidatorPeer::retry_timer( | 
 |           QuicConnectionPeer::path_validator(&connection_))) | 
 |       ->Fire(); | 
 |  | 
 |   // No more write attempt should be made. | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   // OnCanWrite() should actually write out the 1st PATH_CHALLENGE packet | 
 |   // buffered earlier, thus incrementing the write counter. It may also send | 
 |   // ACKs to previously received packets. | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_LE(2u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | // Tests that write error on the alternate socket should be ignored. | 
 | TEST_P(QuicConnectionTest, SendPathChallengeFailOnNewSocket) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.use_path_validator()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345); | 
 |   EXPECT_NE(kNewSelfAddress, connection_.self_address()); | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   new_writer.SetShouldWriteFail(); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .Times(0); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u); | 
 |  | 
 |   bool success = false; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kNewSelfAddress, connection_.peer_address(), &new_writer), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kNewSelfAddress, connection_.peer_address(), &success)); | 
 |   EXPECT_EQ(1u, new_writer.packets_write_attempts()); | 
 |   EXPECT_EQ(1u, new_writer.path_challenge_frames().size()); | 
 |   EXPECT_EQ(1u, new_writer.padding_frames().size()); | 
 |   EXPECT_EQ(kNewSelfAddress.host(), new_writer.last_write_source_address()); | 
 |  | 
 |   EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |   //  Regardless of the write error, the connection should still be connected. | 
 |   EXPECT_TRUE(connection_.connected()); | 
 | } | 
 |  | 
 | // Tests that write error while sending PATH_CHALLANGE from the default socket | 
 | // should close the connection. | 
 | TEST_P(QuicConnectionTest, SendPathChallengeFailOnDefaultPath) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.use_path_validator()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |  | 
 |   writer_->SetShouldWriteFail(); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce( | 
 |           Invoke([](QuicConnectionCloseFrame frame, ConnectionCloseSource) { | 
 |             EXPECT_EQ(QUIC_PACKET_WRITE_ERROR, frame.quic_error_code); | 
 |           })); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u); | 
 |   { | 
 |     // Add a flusher to force flush, otherwise the frames will remain in the | 
 |     // packet creator. | 
 |     bool success = false; | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     connection_.ValidatePath(std::make_unique<TestQuicPathValidationContext>( | 
 |                                  connection_.self_address(), | 
 |                                  connection_.peer_address(), writer_.get()), | 
 |                              std::make_unique<TestValidationResultDelegate>( | 
 |                                  &connection_, connection_.self_address(), | 
 |                                  connection_.peer_address(), &success)); | 
 |   } | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_EQ(1u, writer_->path_challenge_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->padding_frames().size()); | 
 |   EXPECT_EQ(connection_.peer_address(), writer_->last_write_peer_address()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   // Closing connection should abandon ongoing path validation. | 
 |   EXPECT_FALSE(connection_.HasPendingPathValidation()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendPathChallengeFailOnAlternativePeerAddress) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.use_path_validator()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |  | 
 |   writer_->SetShouldWriteFail(); | 
 |   const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Any4(), 12345); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce( | 
 |           Invoke([](QuicConnectionCloseFrame frame, ConnectionCloseSource) { | 
 |             EXPECT_EQ(QUIC_PACKET_WRITE_ERROR, frame.quic_error_code); | 
 |           })); | 
 |   // Sending PATH_CHALLENGE to trigger a flush write which will fail and close | 
 |   // the connection. | 
 |   bool success = false; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           connection_.self_address(), kNewPeerAddress, writer_.get()), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, connection_.self_address(), kNewPeerAddress, &success)); | 
 |  | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_FALSE(connection_.HasPendingPathValidation()); | 
 |   EXPECT_EQ(1u, writer_->path_challenge_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->padding_frames().size()); | 
 |   EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        SendPathChallengeFailPacketTooBigOnAlternativePeerAddress) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.use_path_validator()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   // Make sure there is no outstanding ACK_FRAME to write. | 
 |   connection_.OnCanWrite(); | 
 |   uint32_t num_packets_write_attempts = writer_->packets_write_attempts(); | 
 |  | 
 |   writer_->SetShouldWriteFail(); | 
 |   writer_->SetWriteError(QUIC_EMSGSIZE); | 
 |   const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Any4(), 12345); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .Times(0u); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u); | 
 |   // Sending PATH_CHALLENGE to trigger a flush write which will fail with | 
 |   // MSG_TOO_BIG. | 
 |   bool success = false; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           connection_.self_address(), kNewPeerAddress, writer_.get()), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, connection_.self_address(), kNewPeerAddress, &success)); | 
 |   EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |   // Connection shouldn't be closed. | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_EQ(++num_packets_write_attempts, writer_->packets_write_attempts()); | 
 |   EXPECT_EQ(1u, writer_->path_challenge_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->padding_frames().size()); | 
 |   EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address()); | 
 | } | 
 |  | 
 | // Check that if there are two PATH_CHALLENGE frames in the packet, the latter | 
 | // one is ignored. | 
 | TEST_P(QuicConnectionTest, ReceiveMultiplePathChallenge) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |  | 
 |   QuicPathFrameBuffer path_frame_buffer1{0, 1, 2, 3, 4, 5, 6, 7}; | 
 |   QuicPathFrameBuffer path_frame_buffer2{8, 9, 10, 11, 12, 13, 14, 15}; | 
 |   QuicFrames frames; | 
 |   frames.push_back( | 
 |       QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer1))); | 
 |   frames.push_back( | 
 |       QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer2))); | 
 |   const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback6(), | 
 |                                           /*port=*/23456); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
 |  | 
 |   // Expect 2 packets to be sent: the first are padded PATH_RESPONSE(s) to the | 
 |   // alternative peer address. The 2nd is a ACK-only packet to the original | 
 |   // peer address. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(2) | 
 |       .WillOnce(Invoke([=]() { | 
 |         EXPECT_EQ(1u, writer_->path_response_frames().size()); | 
 |         // The final check is to ensure that the random data in the response | 
 |         // matches the random data from the challenge. | 
 |         EXPECT_EQ(0, | 
 |                   memcmp(path_frame_buffer1.data(), | 
 |                          &(writer_->path_response_frames().front().data_buffer), | 
 |                          sizeof(path_frame_buffer1))); | 
 |         EXPECT_EQ(1u, writer_->padding_frames().size()); | 
 |         EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address()); | 
 |       })) | 
 |       .WillOnce(Invoke([=]() { | 
 |         // The last write of ACK-only packet should still use the old peer | 
 |         // address. | 
 |         EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address()); | 
 |       })); | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReceiveStreamFrameBeforePathChallenge) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |  | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(frame1_)); | 
 |   QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7}; | 
 |   frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer))); | 
 |   const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(), | 
 |                                           /*port=*/23456); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)); | 
 |   EXPECT_CALL(*send_algorithm_, OnConnectionMigration()) | 
 |       .Times(connection_.validate_client_address() ? 0u : 1u); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
 |       .WillOnce(Invoke([=](const QuicStreamFrame& frame) { | 
 |         // Send some data on the stream. The STREAM_FRAME should be built into | 
 |         // one packet together with the latter PATH_RESPONSE and PATH_CHALLENGE. | 
 |         const std::string data{"response body"}; | 
 |         connection_.producer()->SaveStreamData(frame.stream_id, data); | 
 |         return notifier_.WriteOrBufferData(frame.stream_id, data.length(), | 
 |                                            NO_FIN); | 
 |       })); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(connection_.validate_client_address() ? 0u : 1u); | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |  | 
 |   // Verify that this packet contains a STREAM_FRAME and a | 
 |   // PATH_RESPONSE_FRAME. | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->path_response_frames().size()); | 
 |   EXPECT_EQ(connection_.validate_client_address() ? 1u : 0u, | 
 |             writer_->path_challenge_frames().size()); | 
 |   // The final check is to ensure that the random data in the response | 
 |   // matches the random data from the challenge. | 
 |   EXPECT_EQ(0, memcmp(path_frame_buffer.data(), | 
 |                       &(writer_->path_response_frames().front().data_buffer), | 
 |                       sizeof(path_frame_buffer))); | 
 |   EXPECT_EQ(connection_.validate_client_address() ? 1u : 0u, | 
 |             writer_->path_challenge_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->padding_frames().size()); | 
 |   EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address()); | 
 |   if (connection_.validate_client_address()) { | 
 |     EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReceiveStreamFrameFollowingPathChallenge) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |  | 
 |   QuicFrames frames; | 
 |   QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7}; | 
 |   frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer))); | 
 |   // PATH_RESPONSE should be flushed out before the rest packet is parsed. | 
 |   frames.push_back(QuicFrame(frame1_)); | 
 |   const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(), | 
 |                                           /*port=*/23456); | 
 |   QuicByteCount received_packet_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(AtLeast(1u)) | 
 |       .WillOnce(Invoke([=, &received_packet_size]() { | 
 |         // Verify that this packet contains a PATH_RESPONSE_FRAME. | 
 |         EXPECT_EQ(0u, writer_->stream_frames().size()); | 
 |         EXPECT_EQ(1u, writer_->path_response_frames().size()); | 
 |         // The final check is to ensure that the random data in the response | 
 |         // matches the random data from the challenge. | 
 |         EXPECT_EQ(0, | 
 |                   memcmp(path_frame_buffer.data(), | 
 |                          &(writer_->path_response_frames().front().data_buffer), | 
 |                          sizeof(path_frame_buffer))); | 
 |         EXPECT_EQ(connection_.validate_client_address() ? 1u : 0u, | 
 |                   writer_->path_challenge_frames().size()); | 
 |         EXPECT_EQ(1u, writer_->padding_frames().size()); | 
 |         EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address()); | 
 |         received_packet_size = | 
 |             QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_); | 
 |       })); | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)); | 
 |   EXPECT_CALL(*send_algorithm_, OnConnectionMigration()) | 
 |       .Times(connection_.validate_client_address() ? 0u : 1u); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
 |       .WillOnce(Invoke([=](const QuicStreamFrame& frame) { | 
 |         // Send some data on the stream. The STREAM_FRAME should be built into a | 
 |         // new packet but throttled by anti-amplifciation limit. | 
 |         const std::string data{"response body"}; | 
 |         connection_.producer()->SaveStreamData(frame.stream_id, data); | 
 |         return notifier_.WriteOrBufferData(frame.stream_id, data.length(), | 
 |                                            NO_FIN); | 
 |       })); | 
 |  | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   if (!connection_.validate_client_address()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |   EXPECT_EQ(0u, | 
 |             QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_)); | 
 |   EXPECT_EQ( | 
 |       received_packet_size, | 
 |       QuicConnectionPeer::BytesReceivedBeforeAddressValidation(&connection_)); | 
 | } | 
 |  | 
 | // Tests that a PATH_CHALLENGE is received in between other frames in an out of | 
 | // order packet. | 
 | TEST_P(QuicConnectionTest, PathChallengeWithDataInOutOfOrderPacket) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |  | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(frame1_)); | 
 |   QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7}; | 
 |   frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer))); | 
 |   frames.push_back(QuicFrame(frame2_)); | 
 |   const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback6(), | 
 |                                           /*port=*/23456); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0u); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
 |       .Times(2) | 
 |       .WillRepeatedly(Invoke([=](const QuicStreamFrame& frame) { | 
 |         // Send some data on the stream. The STREAM_FRAME should be built into | 
 |         // one packet together with the latter PATH_RESPONSE. | 
 |         const std::string data{"response body"}; | 
 |         connection_.producer()->SaveStreamData(frame.stream_id, data); | 
 |         return notifier_.WriteOrBufferData(frame.stream_id, data.length(), | 
 |                                            NO_FIN); | 
 |       })); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(Invoke([=]() { | 
 |         // Verify that this packet contains a STREAM_FRAME and is sent to the | 
 |         // original peer address. | 
 |         EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |         // No connection migration should happen because the packet is received | 
 |         // out of order. | 
 |         EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address()); | 
 |       })) | 
 |       .WillOnce(Invoke([=]() { | 
 |         EXPECT_EQ(1u, writer_->path_response_frames().size()); | 
 |         // The final check is to ensure that the random data in the response | 
 |         // matches the random data from the challenge. | 
 |         EXPECT_EQ(0, | 
 |                   memcmp(path_frame_buffer.data(), | 
 |                          &(writer_->path_response_frames().front().data_buffer), | 
 |                          sizeof(path_frame_buffer))); | 
 |         EXPECT_EQ(1u, writer_->padding_frames().size()); | 
 |         // PATH_RESPONSE should be sent in another packet to a different peer | 
 |         // address. | 
 |         EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address()); | 
 |       })) | 
 |       .WillOnce(Invoke([=]() { | 
 |         // Verify that this packet contains a STREAM_FRAME and is sent to the | 
 |         // original peer address. | 
 |         EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |         // No connection migration should happen because the packet is received | 
 |         // out of order. | 
 |         EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address()); | 
 |       })); | 
 |   // Lower the packet number so that receiving this packet shouldn't trigger | 
 |   // peer migration. | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1); | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 | } | 
 |  | 
 | // Tests that a PATH_CHALLENGE is cached if its PATH_RESPONSE can't be sent. | 
 | TEST_P(QuicConnectionTest, FailToWritePathResponse) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |  | 
 |   QuicFrames frames; | 
 |   QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7}; | 
 |   frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer))); | 
 |   const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback6(), | 
 |                                           /*port=*/23456); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0u); | 
 |   // Lower the packet number so that receiving this packet shouldn't trigger | 
 |   // peer migration. | 
 |   QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1); | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); | 
 |   writer_->SetWriteBlocked(); | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 | } | 
 |  | 
 | // Regression test for b/168101557. | 
 | TEST_P(QuicConnectionTest, HandshakeDataDoesNotGetPtoed) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   // Send INITIAL 1. | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   // Send HANDSHAKE packets. | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x03)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   // Send half RTT packet. | 
 |   connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN); | 
 |  | 
 |   // Receives HANDSHAKE 1. | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_HANDSHAKE); | 
 |   // Discard INITIAL key. | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   // Verify there is pending ACK. | 
 |   ASSERT_TRUE(connection_.HasPendingAcks()); | 
 |   // Set the send alarm. | 
 |   connection_.GetSendAlarm()->Set(clock_.ApproximateNow()); | 
 |  | 
 |   // Fire ACK alarm. | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |   // Verify 1-RTT packet is coalesced with handshake packet. | 
 |   EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); | 
 |   connection_.GetSendAlarm()->Fire(); | 
 |  | 
 |   ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   // Verify a handshake packet gets PTOed and 1-RTT packet gets coalesced. | 
 |   EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); | 
 | } | 
 |  | 
 | // Regression test for b/168294218. | 
 | TEST_P(QuicConnectionTest, CoalescerHandlesInitialKeyDiscard) { | 
 |   if (!connection_.version().CanSendCoalescedPackets()) { | 
 |     return; | 
 |   } | 
 |   SetQuicReloadableFlag(quic_discard_initial_packet_with_key_dropped, true); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() { | 
 |     connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |     connection_.NeuterUnencryptedPackets(); | 
 |   })); | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.GetStats().packets_discarded); | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     use_tagging_decrypter(); | 
 |     ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
 |     clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); | 
 |     connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                              std::make_unique<TaggingEncrypter>(0x01)); | 
 |     connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                              std::make_unique<TaggingEncrypter>(0x02)); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |     connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0); | 
 |     // Verify this packet is on hold. | 
 |     EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
 |   } | 
 |   EXPECT_TRUE(connection_.connected()); | 
 | } | 
 |  | 
 | // Regresstion test for b/168294218 | 
 | TEST_P(QuicConnectionTest, ZeroRttRejectionAndMissingInitialKeys) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   // Not defer send in response to packet. | 
 |   connection_.set_defer_send_in_response_to_packets(false); | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() { | 
 |     connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |     connection_.NeuterUnencryptedPackets(); | 
 |   })); | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)) | 
 |       .WillRepeatedly(Invoke([=](const QuicCryptoFrame& frame) { | 
 |         if (frame.level == ENCRYPTION_HANDSHAKE) { | 
 |           // 0-RTT gets rejected. | 
 |           connection_.MarkZeroRttPacketsForRetransmission(0); | 
 |           // Send Crypto data. | 
 |           connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                                    std::make_unique<TaggingEncrypter>(0x03)); | 
 |           connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |           connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
 |           connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                                    std::make_unique<TaggingEncrypter>(0x04)); | 
 |           connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |           // Advance INITIAL ack delay to trigger initial ACK to be sent AFTER | 
 |           // the retransmission of rejected 0-RTT packets while the HANDSHAKE | 
 |           // packet is still in the coalescer, such that the INITIAL key gets | 
 |           // dropped between SendAllPendingAcks and actually send the ack frame, | 
 |           // bummer. | 
 |           clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); | 
 |         } | 
 |       })); | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL); | 
 |   // Send 0-RTT packet. | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |   connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN); | 
 |  | 
 |   QuicAckFrame frame1 = InitAckFrame(1); | 
 |   // Received ACK for packet 1. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Fire retransmission alarm. | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   QuicFrames frames1; | 
 |   frames1.push_back(QuicFrame(&crypto_frame_)); | 
 |   QuicFrames frames2; | 
 |   QuicCryptoFrame crypto_frame(ENCRYPTION_HANDSHAKE, 0, | 
 |                                absl::string_view(data1)); | 
 |   frames2.push_back(QuicFrame(&crypto_frame)); | 
 |   ProcessCoalescedPacket( | 
 |       {{2, frames1, ENCRYPTION_INITIAL}, {3, frames2, ENCRYPTION_HANDSHAKE}}); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, OnZeroRttPacketAcked) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |   MockQuicConnectionDebugVisitor debug_visitor; | 
 |   connection_.set_debug_visitor(&debug_visitor); | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SendCryptoStreamData(); | 
 |   // Send 0-RTT packet. | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |   connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN); | 
 |   connection_.SendStreamDataWithString(4, "bar", 0, NO_FIN); | 
 |   // Received ACK for packet 1, HANDSHAKE packet and 1-RTT ACK. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |   QuicFrames frames1; | 
 |   QuicAckFrame ack_frame1 = InitAckFrame(1); | 
 |   frames1.push_back(QuicFrame(&ack_frame1)); | 
 |  | 
 |   QuicFrames frames2; | 
 |   QuicCryptoFrame crypto_frame(ENCRYPTION_HANDSHAKE, 0, | 
 |                                absl::string_view(data1)); | 
 |   frames2.push_back(QuicFrame(&crypto_frame)); | 
 |   EXPECT_CALL(debug_visitor, OnZeroRttPacketAcked()).Times(0); | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
 |   ProcessCoalescedPacket( | 
 |       {{1, frames1, ENCRYPTION_INITIAL}, {2, frames2, ENCRYPTION_HANDSHAKE}}); | 
 |  | 
 |   QuicFrames frames3; | 
 |   QuicAckFrame ack_frame2 = | 
 |       InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
 |   frames3.push_back(QuicFrame(&ack_frame2)); | 
 |   EXPECT_CALL(debug_visitor, OnZeroRttPacketAcked()).Times(1); | 
 |   ProcessCoalescedPacket({{3, frames3, ENCRYPTION_FORWARD_SECURE}}); | 
 |  | 
 |   QuicFrames frames4; | 
 |   QuicAckFrame ack_frame3 = | 
 |       InitAckFrame({{QuicPacketNumber(3), QuicPacketNumber(4)}}); | 
 |   frames4.push_back(QuicFrame(&ack_frame3)); | 
 |   EXPECT_CALL(debug_visitor, OnZeroRttPacketAcked()).Times(0); | 
 |   ProcessCoalescedPacket({{4, frames4, ENCRYPTION_FORWARD_SECURE}}); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, InitiateKeyUpdate) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   TransportParameters params; | 
 |   QuicConfig config; | 
 |   std::string error_details; | 
 |   EXPECT_THAT(config.ProcessTransportParameters( | 
 |                   params, /* is_resumption = */ false, &error_details), | 
 |               IsQuicNoError()); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   EXPECT_FALSE(connection_.IsKeyUpdateAllowed()); | 
 |  | 
 |   MockFramerVisitor peer_framer_visitor_; | 
 |   peer_framer_.set_visitor(&peer_framer_visitor_); | 
 |  | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x01)); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   connection_.OnHandshakeComplete(); | 
 |  | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(0x01)); | 
 |  | 
 |   // Key update should still not be allowed, since no packet has been acked | 
 |   // from the current key phase. | 
 |   EXPECT_FALSE(connection_.IsKeyUpdateAllowed()); | 
 |   EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked()); | 
 |  | 
 |   // Send packet 1. | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); | 
 |   EXPECT_EQ(QuicPacketNumber(1u), last_packet); | 
 |  | 
 |   // Key update should still not be allowed, even though a packet was sent in | 
 |   // the current key phase it hasn't been acked yet. | 
 |   EXPECT_FALSE(connection_.IsKeyUpdateAllowed()); | 
 |   EXPECT_TRUE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked()); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet()); | 
 |   // Receive ack for packet 1. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame1 = InitAckFrame(1); | 
 |   ProcessAckPacket(&frame1); | 
 |  | 
 |   // OnDecryptedFirstPacketInKeyPhase is called even on the first key phase, | 
 |   // so discard_previous_keys_alarm_ should be set now. | 
 |   EXPECT_TRUE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked()); | 
 |  | 
 |   // Key update should now be allowed. | 
 |   EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter()) | 
 |       .WillOnce( | 
 |           []() { return std::make_unique<StrictTaggingDecrypter>(0x02); }); | 
 |   EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() { | 
 |     return std::make_unique<TaggingEncrypter>(0x02); | 
 |   }); | 
 |   EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests)); | 
 |   EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests)); | 
 |   // discard_previous_keys_alarm_ should not be set until a packet from the new | 
 |   // key phase has been received. (The alarm that was set above should be | 
 |   // cleared if it hasn't fired before the next key update happened.) | 
 |   EXPECT_FALSE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked()); | 
 |  | 
 |   // Pretend that peer accepts the key update. | 
 |   EXPECT_CALL(peer_framer_visitor_, | 
 |               AdvanceKeysAndCreateCurrentOneRttDecrypter()) | 
 |       .WillOnce( | 
 |           []() { return std::make_unique<StrictTaggingDecrypter>(0x02); }); | 
 |   EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter()) | 
 |       .WillOnce([]() { return std::make_unique<TaggingEncrypter>(0x02); }); | 
 |   peer_framer_.SetKeyUpdateSupportForConnection(true); | 
 |   peer_framer_.DoKeyUpdate(KeyUpdateReason::kRemote); | 
 |  | 
 |   // Another key update should not be allowed yet. | 
 |   EXPECT_FALSE(connection_.IsKeyUpdateAllowed()); | 
 |  | 
 |   // Send packet 2. | 
 |   SendStreamDataToPeer(2, "bar", 0, NO_FIN, &last_packet); | 
 |   EXPECT_EQ(QuicPacketNumber(2u), last_packet); | 
 |   EXPECT_TRUE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked()); | 
 |   // Receive ack for packet 2. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame2 = InitAckFrame(2); | 
 |   ProcessAckPacket(&frame2); | 
 |   EXPECT_TRUE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked()); | 
 |  | 
 |   // Key update should be allowed again now that a packet has been acked from | 
 |   // the current key phase. | 
 |   EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter()) | 
 |       .WillOnce( | 
 |           []() { return std::make_unique<StrictTaggingDecrypter>(0x03); }); | 
 |   EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() { | 
 |     return std::make_unique<TaggingEncrypter>(0x03); | 
 |   }); | 
 |   EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests)); | 
 |   EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests)); | 
 |  | 
 |   // Pretend that peer accepts the key update. | 
 |   EXPECT_CALL(peer_framer_visitor_, | 
 |               AdvanceKeysAndCreateCurrentOneRttDecrypter()) | 
 |       .WillOnce( | 
 |           []() { return std::make_unique<StrictTaggingDecrypter>(0x03); }); | 
 |   EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter()) | 
 |       .WillOnce([]() { return std::make_unique<TaggingEncrypter>(0x03); }); | 
 |   peer_framer_.DoKeyUpdate(KeyUpdateReason::kRemote); | 
 |  | 
 |   // Another key update should not be allowed yet. | 
 |   EXPECT_FALSE(connection_.IsKeyUpdateAllowed()); | 
 |  | 
 |   // Send packet 3. | 
 |   SendStreamDataToPeer(3, "baz", 0, NO_FIN, &last_packet); | 
 |   EXPECT_EQ(QuicPacketNumber(3u), last_packet); | 
 |  | 
 |   // Another key update should not be allowed yet. | 
 |   EXPECT_FALSE(connection_.IsKeyUpdateAllowed()); | 
 |   EXPECT_TRUE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked()); | 
 |  | 
 |   // Receive ack for packet 3. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame3 = InitAckFrame(3); | 
 |   ProcessAckPacket(&frame3); | 
 |   EXPECT_TRUE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked()); | 
 |  | 
 |   // Key update should be allowed now. | 
 |   EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter()) | 
 |       .WillOnce( | 
 |           []() { return std::make_unique<StrictTaggingDecrypter>(0x04); }); | 
 |   EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() { | 
 |     return std::make_unique<TaggingEncrypter>(0x04); | 
 |   }); | 
 |   EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests)); | 
 |   EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests)); | 
 |   EXPECT_FALSE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, InitiateKeyUpdateApproachingConfidentialityLimit) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   SetQuicFlag(FLAGS_quic_key_update_confidentiality_limit, 3U); | 
 |  | 
 |   std::string error_details; | 
 |   TransportParameters params; | 
 |   // Key update is enabled. | 
 |   QuicConfig config; | 
 |   EXPECT_THAT(config.ProcessTransportParameters( | 
 |                   params, /* is_resumption = */ false, &error_details), | 
 |               IsQuicNoError()); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   MockFramerVisitor peer_framer_visitor_; | 
 |   peer_framer_.set_visitor(&peer_framer_visitor_); | 
 |  | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   uint8_t current_tag = 0x01; | 
 |  | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(current_tag)); | 
 |   SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                std::make_unique<StrictTaggingDecrypter>(current_tag)); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   connection_.OnHandshakeComplete(); | 
 |  | 
 |   peer_framer_.SetKeyUpdateSupportForConnection(true); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(current_tag)); | 
 |  | 
 |   const QuicConnectionStats& stats = connection_.GetStats(); | 
 |  | 
 |   for (int packet_num = 1; packet_num <= 8; ++packet_num) { | 
 |     if (packet_num == 3 || packet_num == 6) { | 
 |       current_tag++; | 
 |       EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter()) | 
 |           .WillOnce([current_tag]() { | 
 |             return std::make_unique<StrictTaggingDecrypter>(current_tag); | 
 |           }); | 
 |       EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()) | 
 |           .WillOnce([current_tag]() { | 
 |             return std::make_unique<TaggingEncrypter>(current_tag); | 
 |           }); | 
 |       EXPECT_CALL(visitor_, | 
 |                   OnKeyUpdate(KeyUpdateReason::kLocalKeyUpdateLimitOverride)); | 
 |     } | 
 |     // Send packet. | 
 |     QuicPacketNumber last_packet; | 
 |     SendStreamDataToPeer(packet_num, "foo", 0, NO_FIN, &last_packet); | 
 |     EXPECT_EQ(QuicPacketNumber(packet_num), last_packet); | 
 |     if (packet_num >= 6) { | 
 |       EXPECT_EQ(2U, stats.key_update_count); | 
 |     } else if (packet_num >= 3) { | 
 |       EXPECT_EQ(1U, stats.key_update_count); | 
 |     } else { | 
 |       EXPECT_EQ(0U, stats.key_update_count); | 
 |     } | 
 |  | 
 |     if (packet_num == 4 || packet_num == 7) { | 
 |       // Pretend that peer accepts the key update. | 
 |       EXPECT_CALL(peer_framer_visitor_, | 
 |                   AdvanceKeysAndCreateCurrentOneRttDecrypter()) | 
 |           .WillOnce([current_tag]() { | 
 |             return std::make_unique<StrictTaggingDecrypter>(current_tag); | 
 |           }); | 
 |       EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter()) | 
 |           .WillOnce([current_tag]() { | 
 |             return std::make_unique<TaggingEncrypter>(current_tag); | 
 |           }); | 
 |       peer_framer_.DoKeyUpdate(KeyUpdateReason::kRemote); | 
 |     } | 
 |     // Receive ack for packet. | 
 |     EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |     QuicAckFrame frame1 = InitAckFrame(packet_num); | 
 |     ProcessAckPacket(&frame1); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        CloseConnectionOnConfidentialityLimitKeyUpdateNotAllowed) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Set key update confidentiality limit to 1 packet. | 
 |   SetQuicFlag(FLAGS_quic_key_update_confidentiality_limit, 1U); | 
 |   // Use confidentiality limit for connection close of 3 packets. | 
 |   constexpr size_t kConfidentialityLimit = 3U; | 
 |  | 
 |   std::string error_details; | 
 |   TransportParameters params; | 
 |   // Key update is enabled. | 
 |   QuicConfig config; | 
 |   EXPECT_THAT(config.ProcessTransportParameters( | 
 |                   params, /* is_resumption = */ false, &error_details), | 
 |               IsQuicNoError()); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   connection_.SetEncrypter( | 
 |       ENCRYPTION_FORWARD_SECURE, | 
 |       std::make_unique<NullEncrypterWithConfidentialityLimit>( | 
 |           Perspective::IS_CLIENT, kConfidentialityLimit)); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   connection_.OnHandshakeComplete(); | 
 |  | 
 |   QuicPacketNumber last_packet; | 
 |   // Send 3 packets without receiving acks for any of them. Key update will not | 
 |   // be allowed, so the confidentiality limit should be reached, forcing the | 
 |   // connection to be closed. | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   SendStreamDataToPeer(2, "foo", 0, NO_FIN, &last_packet); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   const QuicConnectionStats& stats = connection_.GetStats(); | 
 |   EXPECT_EQ(0U, stats.key_update_count); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CloseConnectionOnIntegrityLimitDuringHandshake) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   constexpr uint8_t correct_tag = 0x01; | 
 |   constexpr uint8_t wrong_tag = 0xFE; | 
 |   constexpr QuicPacketCount kIntegrityLimit = 3; | 
 |  | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>( | 
 |                    correct_tag, kIntegrityLimit)); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(correct_tag)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                             std::make_unique<TaggingEncrypter>(wrong_tag)); | 
 |   for (uint64_t i = 1; i <= kIntegrityLimit; ++i) { | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |     if (i == kIntegrityLimit) { | 
 |       EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |       EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber()); | 
 |     } | 
 |     ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_HANDSHAKE); | 
 |     EXPECT_EQ( | 
 |         i, connection_.GetStats().num_failed_authentication_packets_received); | 
 |   } | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CloseConnectionOnIntegrityLimitAfterHandshake) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   constexpr uint8_t correct_tag = 0x01; | 
 |   constexpr uint8_t wrong_tag = 0xFE; | 
 |   constexpr QuicPacketCount kIntegrityLimit = 3; | 
 |  | 
 |   use_tagging_decrypter(); | 
 |   SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>( | 
 |                    correct_tag, kIntegrityLimit)); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(correct_tag)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   connection_.OnHandshakeComplete(); | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(wrong_tag)); | 
 |   for (uint64_t i = 1; i <= kIntegrityLimit; ++i) { | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |     if (i == kIntegrityLimit) { | 
 |       EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |     } | 
 |     ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |     EXPECT_EQ( | 
 |         i, connection_.GetStats().num_failed_authentication_packets_received); | 
 |   } | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        CloseConnectionOnIntegrityLimitAcrossEncryptionLevels) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   constexpr uint8_t correct_tag = 0x01; | 
 |   constexpr uint8_t wrong_tag = 0xFE; | 
 |   constexpr QuicPacketCount kIntegrityLimit = 4; | 
 |  | 
 |   use_tagging_decrypter(); | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>( | 
 |                    correct_tag, kIntegrityLimit)); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(correct_tag)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                             std::make_unique<TaggingEncrypter>(wrong_tag)); | 
 |   for (uint64_t i = 1; i <= 2; ++i) { | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |     ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_HANDSHAKE); | 
 |     EXPECT_EQ( | 
 |         i, connection_.GetStats().num_failed_authentication_packets_received); | 
 |   } | 
 |  | 
 |   SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>( | 
 |                    correct_tag, kIntegrityLimit)); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(correct_tag)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   connection_.OnHandshakeComplete(); | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.RemoveEncrypter(ENCRYPTION_HANDSHAKE); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(wrong_tag)); | 
 |   for (uint64_t i = 3; i <= kIntegrityLimit; ++i) { | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |     if (i == kIntegrityLimit) { | 
 |       EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |     } | 
 |     ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |     EXPECT_EQ( | 
 |         i, connection_.GetStats().num_failed_authentication_packets_received); | 
 |   } | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, IntegrityLimitDoesNotApplyWithoutDecryptionKey) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   constexpr uint8_t correct_tag = 0x01; | 
 |   constexpr uint8_t wrong_tag = 0xFE; | 
 |   constexpr QuicPacketCount kIntegrityLimit = 3; | 
 |  | 
 |   use_tagging_decrypter(); | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>( | 
 |                    correct_tag, kIntegrityLimit)); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(correct_tag)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE); | 
 |  | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(wrong_tag)); | 
 |   for (uint64_t i = 1; i <= kIntegrityLimit * 2; ++i) { | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |     ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |     EXPECT_EQ( | 
 |         0u, connection_.GetStats().num_failed_authentication_packets_received); | 
 |   } | 
 |   EXPECT_TRUE(connection_.connected()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CloseConnectionOnIntegrityLimitAcrossKeyPhases) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   constexpr QuicPacketCount kIntegrityLimit = 4; | 
 |  | 
 |   TransportParameters params; | 
 |   QuicConfig config; | 
 |   std::string error_details; | 
 |   EXPECT_THAT(config.ProcessTransportParameters( | 
 |                   params, /* is_resumption = */ false, &error_details), | 
 |               IsQuicNoError()); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   if (connection_.version().UsesTls()) { | 
 |     QuicConfigPeer::SetReceivedOriginalConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |     QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |         &config, connection_.connection_id()); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   MockFramerVisitor peer_framer_visitor_; | 
 |   peer_framer_.set_visitor(&peer_framer_visitor_); | 
 |  | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>( | 
 |                    0x01, kIntegrityLimit)); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   connection_.OnHandshakeComplete(); | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |  | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(0xFF)); | 
 |   for (uint64_t i = 1; i <= 2; ++i) { | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |     ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |     EXPECT_EQ( | 
 |         i, connection_.GetStats().num_failed_authentication_packets_received); | 
 |   } | 
 |  | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(0x01)); | 
 |   // Send packet 1. | 
 |   QuicPacketNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); | 
 |   EXPECT_EQ(QuicPacketNumber(1u), last_packet); | 
 |   // Receive ack for packet 1. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame1 = InitAckFrame(1); | 
 |   ProcessAckPacket(&frame1); | 
 |   // Key update should now be allowed, initiate it. | 
 |   EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter()) | 
 |       .WillOnce([kIntegrityLimit]() { | 
 |         return std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>( | 
 |             0x02, kIntegrityLimit); | 
 |       }); | 
 |   EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() { | 
 |     return std::make_unique<TaggingEncrypter>(0x02); | 
 |   }); | 
 |   EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests)); | 
 |   EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests)); | 
 |  | 
 |   // Pretend that peer accepts the key update. | 
 |   EXPECT_CALL(peer_framer_visitor_, | 
 |               AdvanceKeysAndCreateCurrentOneRttDecrypter()) | 
 |       .WillOnce( | 
 |           []() { return std::make_unique<StrictTaggingDecrypter>(0x02); }); | 
 |   EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter()) | 
 |       .WillOnce([]() { return std::make_unique<TaggingEncrypter>(0x02); }); | 
 |   peer_framer_.SetKeyUpdateSupportForConnection(true); | 
 |   peer_framer_.DoKeyUpdate(KeyUpdateReason::kLocalForTests); | 
 |  | 
 |   // Send packet 2. | 
 |   SendStreamDataToPeer(2, "bar", 0, NO_FIN, &last_packet); | 
 |   EXPECT_EQ(QuicPacketNumber(2u), last_packet); | 
 |   // Receive ack for packet 2. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
 |   QuicAckFrame frame2 = InitAckFrame(2); | 
 |   ProcessAckPacket(&frame2); | 
 |  | 
 |   EXPECT_EQ(2u, | 
 |             connection_.GetStats().num_failed_authentication_packets_received); | 
 |  | 
 |   // Do two more undecryptable packets. Integrity limit should be reached. | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(0xFF)); | 
 |   for (uint64_t i = 3; i <= kIntegrityLimit; ++i) { | 
 |     EXPECT_TRUE(connection_.connected()); | 
 |     if (i == kIntegrityLimit) { | 
 |       EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |     } | 
 |     ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |     EXPECT_EQ( | 
 |         i, connection_.GetStats().num_failed_authentication_packets_received); | 
 |   } | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendAckFrequencyFrame) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   SetQuicReloadableFlag(quic_can_send_ack_frequency, true); | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
 |  | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetReceivedMinAckDelayMs(&config, /*min_ack_delay_ms=*/1); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); | 
 |  | 
 |   connection_.OnHandshakeComplete(); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   QuicPacketCreatorPeer::SetPacketNumber(creator_, 99); | 
 |   // Send packet 100 | 
 |   SendStreamDataToPeer(/*id=*/1, "foo", /*offset=*/0, NO_FIN, nullptr); | 
 |  | 
 |   QuicAckFrequencyFrame captured_frame; | 
 |   EXPECT_CALL(visitor_, SendAckFrequency(_)) | 
 |       .WillOnce(Invoke([&captured_frame](const QuicAckFrequencyFrame& frame) { | 
 |         captured_frame = frame; | 
 |       })); | 
 |   // Send packet 101. | 
 |   SendStreamDataToPeer(/*id=*/1, "bar", /*offset=*/3, NO_FIN, nullptr); | 
 |  | 
 |   EXPECT_EQ(captured_frame.packet_tolerance, 10u); | 
 |   EXPECT_EQ(captured_frame.max_ack_delay, | 
 |             QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs)); | 
 |  | 
 |   // Sending packet 102 does not trigger sending another AckFrequencyFrame. | 
 |   SendStreamDataToPeer(/*id=*/1, "baz", /*offset=*/6, NO_FIN, nullptr); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendAckFrequencyFrameUponHandshakeCompletion) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   SetQuicReloadableFlag(quic_can_send_ack_frequency, true); | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)) | 
 |       .Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
 |  | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetReceivedMinAckDelayMs(&config, /*min_ack_delay_ms=*/1); | 
 |   QuicTagVector quic_tag_vector; | 
 |   // Enable sending AckFrequency upon handshake completion. | 
 |   quic_tag_vector.push_back(kAFF2); | 
 |   QuicConfigPeer::SetReceivedConnectionOptions(&config, quic_tag_vector); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); | 
 |  | 
 |   QuicAckFrequencyFrame captured_frame; | 
 |   EXPECT_CALL(visitor_, SendAckFrequency(_)) | 
 |       .WillOnce(Invoke([&captured_frame](const QuicAckFrequencyFrame& frame) { | 
 |         captured_frame = frame; | 
 |       })); | 
 |  | 
 |   connection_.OnHandshakeComplete(); | 
 |  | 
 |   EXPECT_EQ(captured_frame.packet_tolerance, 2u); | 
 |   EXPECT_EQ(captured_frame.max_ack_delay, | 
 |             QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FastRecoveryOfLostServerHello) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   connection_.SendCryptoStreamData(); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20)); | 
 |  | 
 |   // Assume ServerHello gets lost. | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |   ProcessCryptoPacketAtLevel(2, ENCRYPTION_HANDSHAKE); | 
 |   ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   // Shorten PTO for fast recovery from lost ServerHello. | 
 |   EXPECT_EQ(clock_.ApproximateNow() + kAlarmGranularity, | 
 |             connection_.GetRetransmissionAlarm()->deadline()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ServerHelloGetsReordered) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)) | 
 |       .WillRepeatedly(Invoke([=](const QuicCryptoFrame& frame) { | 
 |         if (frame.level == ENCRYPTION_INITIAL) { | 
 |           // Install handshake read keys. | 
 |           SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                        std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |           connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                                    std::make_unique<TaggingEncrypter>(0x02)); | 
 |           connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |         } | 
 |       })); | 
 |  | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   connection_.SendCryptoStreamData(); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20)); | 
 |  | 
 |   // Assume ServerHello gets reordered. | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |   ProcessCryptoPacketAtLevel(2, ENCRYPTION_HANDSHAKE); | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |   // Verify fast recovery is not enabled. | 
 |   EXPECT_EQ(connection_.sent_packet_manager().GetRetransmissionTime(), | 
 |             connection_.GetRetransmissionAlarm()->deadline()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, MigratePath) { | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .Times(testing::AtMost(2)) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |   EXPECT_CALL(visitor_, OnPathDegrading()); | 
 |   connection_.OnPathDegradingDetected(); | 
 |   const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345); | 
 |   EXPECT_NE(kNewSelfAddress, connection_.self_address()); | 
 |  | 
 |   // Buffer a packet. | 
 |   EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); | 
 |   writer_->SetWriteBlocked(); | 
 |   connection_.SendMtuDiscoveryPacket(kMaxOutgoingPacketSize); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |  | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading()); | 
 |   connection_.MigratePath(kNewSelfAddress, connection_.peer_address(), | 
 |                           &new_writer, /*owns_writer=*/false); | 
 |  | 
 |   EXPECT_EQ(kNewSelfAddress, connection_.self_address()); | 
 |   EXPECT_EQ(&new_writer, QuicConnectionPeer::GetWriter(&connection_)); | 
 |   EXPECT_FALSE(connection_.IsPathDegrading()); | 
 |   // Buffered packet on the old path should be discarded. | 
 |   if (connection_.connection_migration_use_new_cid()) { | 
 |     EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   } else { | 
 |     EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, MigrateToNewPathDuringProbing) { | 
 |   if (!VersionHasIetfQuicFrames(connection_.version().transport_version) || | 
 |       !connection_.use_path_validator()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |   const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345); | 
 |   EXPECT_NE(kNewSelfAddress, connection_.self_address()); | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   bool success = false; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kNewSelfAddress, connection_.peer_address(), &new_writer), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kNewSelfAddress, connection_.peer_address(), &success)); | 
 |   EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |   EXPECT_TRUE(QuicConnectionPeer::IsAlternativePath( | 
 |       &connection_, kNewSelfAddress, connection_.peer_address())); | 
 |  | 
 |   connection_.MigratePath(kNewSelfAddress, connection_.peer_address(), | 
 |                           &new_writer, /*owns_writer=*/false); | 
 |   EXPECT_EQ(kNewSelfAddress, connection_.self_address()); | 
 |   EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |   EXPECT_FALSE(QuicConnectionPeer::IsAlternativePath( | 
 |       &connection_, kNewSelfAddress, connection_.peer_address())); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SingleAckInPacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() { | 
 |     connection_.SendStreamData3(); | 
 |     connection_.CloseConnection( | 
 |         QUIC_INTERNAL_ERROR, "error", | 
 |         ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
 |   })); | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(frame1_)); | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   ASSERT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_EQ(1u, writer_->ack_frames().size()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        ServerReceivedZeroRttPacketAfterOneRttPacketWithRetainedKey) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<NullDecrypter>(Perspective::IS_SERVER)); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   // Finish handshake. | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   notifier_.NeuterUnencryptedData(); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_TRUE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet()); | 
 |  | 
 |   // 0-RTT packet received out of order should be decoded since the decrypter | 
 |   // is temporarily retained. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |   EXPECT_EQ( | 
 |       0u, | 
 |       connection_.GetStats() | 
 |           .num_tls_server_zero_rtt_packets_received_after_discarding_decrypter); | 
 |  | 
 |   // Simulate the timeout for discarding 0-RTT keys passing. | 
 |   connection_.GetDiscardZeroRttDecryptionKeysAlarm()->Fire(); | 
 |  | 
 |   // Another 0-RTT packet received now should not be decoded. | 
 |   EXPECT_FALSE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet()); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(0); | 
 |   ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |   EXPECT_EQ( | 
 |       1u, | 
 |       connection_.GetStats() | 
 |           .num_tls_server_zero_rtt_packets_received_after_discarding_decrypter); | 
 |  | 
 |   // The |discard_zero_rtt_decryption_keys_alarm_| should only be set on the | 
 |   // first 1-RTT packet received. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(5, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_FALSE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NewTokenFrameInstigateAcks) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   QuicNewTokenFrame* new_token = new QuicNewTokenFrame(); | 
 |   EXPECT_CALL(visitor_, OnNewTokenReceived(_)); | 
 |   ProcessFramePacket(QuicFrame(new_token)); | 
 |  | 
 |   // Ensure that this has caused the ACK alarm to be set. | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ServerClosesConnectionOnNewTokenFrame) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicNewTokenFrame* new_token = new QuicNewTokenFrame(); | 
 |   EXPECT_CALL(visitor_, OnNewTokenReceived(_)).Times(0); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   ProcessFramePacket(QuicFrame(new_token)); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, OverrideRetryTokenWithRetryPacket) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   std::string address_token = "TestAddressToken"; | 
 |   connection_.SetSourceAddressTokenToSend(address_token); | 
 |   EXPECT_EQ(QuicPacketCreatorPeer::GetRetryToken( | 
 |                 QuicConnectionPeer::GetPacketCreator(&connection_)), | 
 |             address_token); | 
 |   // Passes valid retry and verify token gets overridden. | 
 |   TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
 |                           /*missing_original_id_in_config=*/false, | 
 |                           /*wrong_original_id_in_config=*/false, | 
 |                           /*missing_retry_id_in_config=*/false, | 
 |                           /*wrong_retry_id_in_config=*/false); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DonotOverrideRetryTokenWithAddressToken) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   // Passes valid retry and verify token gets overridden. | 
 |   TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
 |                           /*missing_original_id_in_config=*/false, | 
 |                           /*wrong_original_id_in_config=*/false, | 
 |                           /*missing_retry_id_in_config=*/false, | 
 |                           /*wrong_retry_id_in_config=*/false); | 
 |   std::string retry_token = QuicPacketCreatorPeer::GetRetryToken( | 
 |       QuicConnectionPeer::GetPacketCreator(&connection_)); | 
 |  | 
 |   std::string address_token = "TestAddressToken"; | 
 |   connection_.SetSourceAddressTokenToSend(address_token); | 
 |   EXPECT_EQ(QuicPacketCreatorPeer::GetRetryToken( | 
 |                 QuicConnectionPeer::GetPacketCreator(&connection_)), | 
 |             retry_token); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        ServerReceivedZeroRttWithHigherPacketNumberThanOneRtt) { | 
 |   if (!connection_.version().UsesTls()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // The code that checks for this error piggybacks on some book-keeping state | 
 |   // kept for key update, so enable key update for the test. | 
 |   std::string error_details; | 
 |   TransportParameters params; | 
 |   QuicConfig config; | 
 |   EXPECT_THAT(config.ProcessTransportParameters( | 
 |                   params, /* is_resumption = */ false, &error_details), | 
 |               IsQuicNoError()); | 
 |   QuicConfigPeer::SetNegotiated(&config, true); | 
 |   QuicConfigPeer::SetReceivedOriginalConnectionId(&config, | 
 |                                                   connection_.connection_id()); | 
 |   QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
 |       &config, connection_.connection_id()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<NullDecrypter>(Perspective::IS_SERVER)); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   // Finish handshake. | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   notifier_.NeuterUnencryptedData(); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |  | 
 |   // Decrypt a 1-RTT packet. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_TRUE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet()); | 
 |  | 
 |   // 0-RTT packet with higher packet number than a 1-RTT packet is invalid and | 
 |   // should cause the connection to be closed. | 
 |   EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   TestConnectionCloseQuicErrorCode( | 
 |       QUIC_INVALID_0RTT_PACKET_NUMBER_OUT_OF_ORDER); | 
 | } | 
 |  | 
 | // Regression test for b/177312785 | 
 | TEST_P(QuicConnectionTest, PeerMigrateBeforeHandshakeConfirm) { | 
 |   if (!VersionHasIetfQuicFrames(version().transport_version)) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_START)); | 
 |  | 
 |   // Clear direct_peer_address. | 
 |   QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
 |   // Clear effective_peer_address, it is the same as direct_peer_address for | 
 |   // this test. | 
 |   QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
 |                                               QuicSocketAddress()); | 
 |   EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
 |  | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress, | 
 |                                   ENCRYPTION_INITIAL); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |  | 
 |   // Process another packet with a different peer address on server side will | 
 |   // close connection. | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0u); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)).Times(0); | 
 |   ProcessFramePacketWithAddresses(QuicFrame(&frame), kSelfAddress, | 
 |                                   kNewPeerAddress, ENCRYPTION_INITIAL); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 | } | 
 |  | 
 | // Regresstion test for b/175685916 | 
 | TEST_P(QuicConnectionTest, TryToFlushAckWithAckQueued) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   SetQuicReloadableFlag(quic_can_send_ack_frequency, true); | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |  | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetReceivedMinAckDelayMs(&config, /*min_ack_delay_ms=*/1); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   connection_.SetFromConfig(config); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   connection_.OnHandshakeComplete(); | 
 |   QuicPacketCreatorPeer::SetPacketNumber(creator_, 200); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |   // Sending ACK_FREQUENCY bundles ACK. QuicConnectionPeer::SendPing | 
 |   // will try to bundle ACK but there is no pending ACK. | 
 |   EXPECT_CALL(visitor_, SendAckFrequency(_)) | 
 |       .WillOnce(Invoke(¬ifier_, | 
 |                        &SimpleSessionNotifier::WriteOrBufferAckFrequency)); | 
 |   QuicConnectionPeer::SendPing(&connection_); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PathChallengeBeforePeerIpAddressChangeAtServer) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |   SetClientConnectionId(TestConnectionId(1)); | 
 |   connection_.CreateConnectionIdManager(); | 
 |  | 
 |   QuicConnectionId server_cid0 = connection_.connection_id(); | 
 |   QuicConnectionId client_cid0 = connection_.client_connection_id(); | 
 |   QuicConnectionId client_cid1 = TestConnectionId(2); | 
 |   QuicConnectionId server_cid1; | 
 |   // Sends new server CID to client. | 
 |   EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)) | 
 |       .WillOnce( | 
 |           Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; })); | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)); | 
 |   connection_.MaybeSendConnectionIdToClient(); | 
 |   // Receives new client CID from client. | 
 |   QuicNewConnectionIdFrame new_cid_frame; | 
 |   new_cid_frame.connection_id = client_cid1; | 
 |   new_cid_frame.sequence_number = 1u; | 
 |   new_cid_frame.retire_prior_to = 0u; | 
 |   connection_.OnNewConnectionIdFrame(new_cid_frame); | 
 |   auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_); | 
 |   ASSERT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0); | 
 |   ASSERT_EQ(packet_creator->GetSourceConnectionId(), server_cid0); | 
 |  | 
 |   peer_creator_.SetServerConnectionId(server_cid1); | 
 |   const QuicSocketAddress kNewPeerAddress = | 
 |       QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456); | 
 |   QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7}; | 
 |   QuicFrames frames1; | 
 |   frames1.push_back( | 
 |       QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload))); | 
 |   QuicPathFrameBuffer payload; | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA)) | 
 |       .Times(AtLeast(1)) | 
 |       .WillOnce(Invoke([&]() { | 
 |         EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address()); | 
 |         EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |         EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |         EXPECT_FALSE(writer_->path_response_frames().empty()); | 
 |         EXPECT_FALSE(writer_->path_challenge_frames().empty()); | 
 |         payload = writer_->path_challenge_frames().front().data_buffer; | 
 |       })); | 
 |   ProcessFramesPacketWithAddresses(frames1, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |   EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |   const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_); | 
 |   const auto* alternative_path = | 
 |       QuicConnectionPeer::GetAlternativePath(&connection_); | 
 |   EXPECT_EQ(default_path->client_connection_id, client_cid0); | 
 |   EXPECT_EQ(default_path->server_connection_id, server_cid0); | 
 |   EXPECT_EQ(alternative_path->client_connection_id, client_cid1); | 
 |   EXPECT_EQ(alternative_path->server_connection_id, server_cid1); | 
 |   EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0); | 
 |   EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid0); | 
 |  | 
 |   // Process another packet with a different peer address on server side will | 
 |   // start connection migration. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() { | 
 |     EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   })); | 
 |   // IETF QUIC send algorithm should be changed to a different object, so no | 
 |   // OnPacketSent() called on the old send algorithm. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA)) | 
 |       .Times(0); | 
 |   QuicFrames frames2; | 
 |   frames2.push_back(QuicFrame(frame2_)); | 
 |   ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |   EXPECT_EQ(IPV6_TO_IPV4_CHANGE, | 
 |             connection_.active_effective_peer_migration_type()); | 
 |   EXPECT_TRUE(writer_->path_challenge_frames().empty()); | 
 |   EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(), | 
 |             send_algorithm_); | 
 |   // Switch to use the mock send algorithm. | 
 |   send_algorithm_ = new StrictMock<MockSendAlgorithm>(); | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
 |   EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) | 
 |       .WillRepeatedly(Return(kDefaultTCPMSS)); | 
 |   EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) | 
 |       .Times(AnyNumber()) | 
 |       .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
 |   EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber()); | 
 |   connection_.SetSendAlgorithm(send_algorithm_); | 
 |   EXPECT_EQ(default_path->client_connection_id, client_cid1); | 
 |   EXPECT_EQ(default_path->server_connection_id, server_cid1); | 
 |   // The previous default path is kept as alternative path before reverse path | 
 |   // validation finishes. | 
 |   EXPECT_EQ(alternative_path->client_connection_id, client_cid0); | 
 |   EXPECT_EQ(alternative_path->server_connection_id, server_cid0); | 
 |   EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid1); | 
 |   EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid1); | 
 |  | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |   EXPECT_EQ(IPV6_TO_IPV4_CHANGE, | 
 |             connection_.active_effective_peer_migration_type()); | 
 |   EXPECT_EQ(1u, connection_.GetStats() | 
 |                     .num_peer_migration_to_proactively_validated_address); | 
 |  | 
 |   // The PATH_CHALLENGE and PATH_RESPONSE is expanded upto the max packet size | 
 |   // which may exceeds the anti-amplification limit. Verify server is throttled | 
 |   // by anti-amplification limit. | 
 |   connection_.SendCryptoDataWithString("foo", 0); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Receiving PATH_RESPONSE should lift the anti-amplification limit. | 
 |   QuicFrames frames3; | 
 |   frames3.push_back(QuicFrame(new QuicPathResponseFrame(99, payload))); | 
 |   EXPECT_CALL(visitor_, MaybeSendAddressToken()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(testing::AtLeast(1u)); | 
 |   ProcessFramesPacketWithAddresses(frames3, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type()); | 
 |   // Verify that alternative_path_ is cleared and the peer CID is retired. | 
 |   EXPECT_TRUE(alternative_path->client_connection_id.IsEmpty()); | 
 |   EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty()); | 
 |   EXPECT_FALSE(alternative_path->stateless_reset_token.has_value()); | 
 |   auto* retire_peer_issued_cid_alarm = | 
 |       connection_.GetRetirePeerIssuedConnectionIdAlarm(); | 
 |   ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet()); | 
 |   EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u)); | 
 |   retire_peer_issued_cid_alarm->Fire(); | 
 |  | 
 |   // Verify the anti-amplification limit is lifted by sending a packet larger | 
 |   // than the anti-amplification limit. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   EXPECT_CALL(*send_algorithm_, PacingRate(_)) | 
 |       .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
 |   connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0); | 
 |   EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        PathValidationSucceedsBeforePeerIpAddressChangeAtServer) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |   connection_.CreateConnectionIdManager(); | 
 |  | 
 |   QuicConnectionId server_cid0 = connection_.connection_id(); | 
 |   QuicConnectionId server_cid1; | 
 |   // Sends new server CID to client. | 
 |   EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)) | 
 |       .WillOnce( | 
 |           Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; })); | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)); | 
 |   connection_.MaybeSendConnectionIdToClient(); | 
 |   auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_); | 
 |   ASSERT_EQ(packet_creator->GetSourceConnectionId(), server_cid0); | 
 |  | 
 |   // Receive probing packet with new peer address. | 
 |   peer_creator_.SetServerConnectionId(server_cid1); | 
 |   const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(), | 
 |                                           /*port=*/23456); | 
 |   QuicPathFrameBuffer payload; | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA)) | 
 |       .WillOnce(Invoke([&]() { | 
 |         EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address()); | 
 |         EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
 |         EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
 |         EXPECT_FALSE(writer_->path_response_frames().empty()); | 
 |         EXPECT_FALSE(writer_->path_challenge_frames().empty()); | 
 |         payload = writer_->path_challenge_frames().front().data_buffer; | 
 |       })) | 
 |       .WillRepeatedly(Invoke([&]() { | 
 |         // Only start reverse path validation once. | 
 |         EXPECT_TRUE(writer_->path_challenge_frames().empty()); | 
 |       })); | 
 |   QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7}; | 
 |   QuicFrames frames1; | 
 |   frames1.push_back( | 
 |       QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload))); | 
 |   ProcessFramesPacketWithAddresses(frames1, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |   const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_); | 
 |   const auto* alternative_path = | 
 |       QuicConnectionPeer::GetAlternativePath(&connection_); | 
 |   EXPECT_EQ(default_path->server_connection_id, server_cid0); | 
 |   EXPECT_EQ(alternative_path->server_connection_id, server_cid1); | 
 |   EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid0); | 
 |  | 
 |   // Receive PATH_RESPONSE should mark the new peer address validated. | 
 |   QuicFrames frames3; | 
 |   frames3.push_back(QuicFrame(new QuicPathResponseFrame(99, payload))); | 
 |   ProcessFramesPacketWithAddresses(frames3, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |  | 
 |   // Process another packet with a newer peer address with the same port will | 
 |   // start connection migration. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1); | 
 |   // IETF QUIC send algorithm should be changed to a different object, so no | 
 |   // OnPacketSent() called on the old send algorithm. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA)) | 
 |       .Times(0); | 
 |   const QuicSocketAddress kNewerPeerAddress(QuicIpAddress::Loopback4(), | 
 |                                             /*port=*/34567); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() { | 
 |     EXPECT_EQ(kNewerPeerAddress, connection_.peer_address()); | 
 |   })); | 
 |   EXPECT_CALL(visitor_, MaybeSendAddressToken()); | 
 |   QuicFrames frames2; | 
 |   frames2.push_back(QuicFrame(frame2_)); | 
 |   ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewerPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kNewerPeerAddress, connection_.peer_address()); | 
 |   EXPECT_EQ(kNewerPeerAddress, connection_.effective_peer_address()); | 
 |   // Since the newer address has the same IP as the previously validated probing | 
 |   // address. The peer migration becomes validated immediately. | 
 |   EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type()); | 
 |   EXPECT_EQ(kNewerPeerAddress, writer_->last_write_peer_address()); | 
 |   EXPECT_EQ(1u, connection_.GetStats() | 
 |                     .num_peer_migration_to_proactively_validated_address); | 
 |   EXPECT_FALSE(connection_.HasPendingPathValidation()); | 
 |   EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(), | 
 |             send_algorithm_); | 
 |  | 
 |   EXPECT_EQ(default_path->server_connection_id, server_cid1); | 
 |   EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid1); | 
 |   // Verify that alternative_path_ is cleared. | 
 |   EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty()); | 
 |   EXPECT_FALSE(alternative_path->stateless_reset_token.has_value()); | 
 |  | 
 |   // Switch to use the mock send algorithm. | 
 |   send_algorithm_ = new StrictMock<MockSendAlgorithm>(); | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
 |   EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) | 
 |       .WillRepeatedly(Return(kDefaultTCPMSS)); | 
 |   EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) | 
 |       .Times(AnyNumber()) | 
 |       .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
 |   EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber()); | 
 |   connection_.SetSendAlgorithm(send_algorithm_); | 
 |  | 
 |   // Verify the server is not throttled by the anti-amplification limit by | 
 |   // sending a packet larger than the anti-amplification limit. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0); | 
 |   EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        ProbedOnAnotherPathAfterPeerIpAddressChangeAtServer) { | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |   if (!connection_.validate_client_address()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(), | 
 |                                           /*port=*/23456); | 
 |  | 
 |   // Process a packet with a new peer address will start connection migration. | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1); | 
 |   // IETF QUIC send algorithm should be changed to a different object, so no | 
 |   // OnPacketSent() called on the old send algorithm. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA)) | 
 |       .Times(0); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() { | 
 |     EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   })); | 
 |   QuicFrames frames2; | 
 |   frames2.push_back(QuicFrame(frame2_)); | 
 |   ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_TRUE(QuicConnectionPeer::IsAlternativePathValidated(&connection_)); | 
 |   EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 |  | 
 |   // Switch to use the mock send algorithm. | 
 |   send_algorithm_ = new StrictMock<MockSendAlgorithm>(); | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
 |   EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) | 
 |       .WillRepeatedly(Return(kDefaultTCPMSS)); | 
 |   EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) | 
 |       .Times(AnyNumber()) | 
 |       .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
 |   EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); | 
 |   EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber()); | 
 |   connection_.SetSendAlgorithm(send_algorithm_); | 
 |  | 
 |   // Receive probing packet with a newer peer address shouldn't override the | 
 |   // on-going path validation. | 
 |   const QuicSocketAddress kNewerPeerAddress(QuicIpAddress::Loopback4(), | 
 |                                             /*port=*/34567); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(Invoke([&]() { | 
 |         EXPECT_EQ(kNewerPeerAddress, writer_->last_write_peer_address()); | 
 |         EXPECT_FALSE(writer_->path_response_frames().empty()); | 
 |         EXPECT_TRUE(writer_->path_challenge_frames().empty()); | 
 |       })); | 
 |   QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7}; | 
 |   QuicFrames frames1; | 
 |   frames1.push_back( | 
 |       QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload))); | 
 |   ProcessFramesPacketWithAddresses(frames1, kSelfAddress, kNewerPeerAddress, | 
 |                                    ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
 |   EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
 |   EXPECT_TRUE(QuicConnectionPeer::IsAlternativePathValidated(&connection_)); | 
 |   EXPECT_TRUE(connection_.HasPendingPathValidation()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        PathValidationFailedOnClientDueToLackOfServerConnectionId) { | 
 |   if (!GetQuicReloadableFlag( | 
 |           quic_remove_connection_migration_connection_option)) { | 
 |     QuicConfig config; | 
 |     EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |     connection_.SetFromConfig(config); | 
 |     config.SetConnectionOptionsToSend({kRVCM}); | 
 |   } | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT, | 
 |                     /*receive_new_server_connection_id=*/false); | 
 |  | 
 |   const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Loopback4(), | 
 |                                           /*port=*/34567); | 
 |  | 
 |   bool success; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kNewSelfAddress, connection_.peer_address(), writer_.get()), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kNewSelfAddress, connection_.peer_address(), &success)); | 
 |  | 
 |   EXPECT_FALSE(success); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        PathValidationFailedOnClientDueToLackOfClientConnectionIdTheSecondTime) { | 
 |   if (!GetQuicReloadableFlag( | 
 |           quic_remove_connection_migration_connection_option)) { | 
 |     QuicConfig config; | 
 |     config.SetConnectionOptionsToSend({kRVCM}); | 
 |     EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |     connection_.SetFromConfig(config); | 
 |   } | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT, | 
 |                     /*receive_new_server_connection_id=*/false); | 
 |   SetClientConnectionId(TestConnectionId(1)); | 
 |  | 
 |   // Make sure server connection ID is available for the 1st validation. | 
 |   QuicConnectionId server_cid0 = connection_.connection_id(); | 
 |   QuicConnectionId server_cid1 = TestConnectionId(2); | 
 |   QuicConnectionId server_cid2 = TestConnectionId(4); | 
 |   QuicConnectionId client_cid1; | 
 |   QuicNewConnectionIdFrame frame1; | 
 |   frame1.connection_id = server_cid1; | 
 |   frame1.sequence_number = 1u; | 
 |   frame1.retire_prior_to = 0u; | 
 |   frame1.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame1.connection_id); | 
 |   connection_.OnNewConnectionIdFrame(frame1); | 
 |   const auto* packet_creator = | 
 |       QuicConnectionPeer::GetPacketCreator(&connection_); | 
 |   ASSERT_EQ(packet_creator->GetDestinationConnectionId(), server_cid0); | 
 |  | 
 |   // Client will issue a new client connection ID to server. | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)) | 
 |       .WillOnce(Invoke([&](const QuicNewConnectionIdFrame& frame) { | 
 |         client_cid1 = frame.connection_id; | 
 |       })); | 
 |  | 
 |   const QuicSocketAddress kSelfAddress1(QuicIpAddress::Any4(), 12345); | 
 |   ASSERT_NE(kSelfAddress1, connection_.self_address()); | 
 |   bool success1; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kSelfAddress1, connection_.peer_address(), writer_.get()), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kSelfAddress1, connection_.peer_address(), &success1)); | 
 |  | 
 |   // Migrate upon 1st validation success. | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   ASSERT_TRUE(connection_.MigratePath(kSelfAddress1, connection_.peer_address(), | 
 |                                       &new_writer, /*owns_writer=*/false)); | 
 |   QuicConnectionPeer::RetirePeerIssuedConnectionIdsNoLongerOnPath(&connection_); | 
 |   const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_); | 
 |   EXPECT_EQ(default_path->client_connection_id, client_cid1); | 
 |   EXPECT_EQ(default_path->server_connection_id, server_cid1); | 
 |   EXPECT_EQ(default_path->stateless_reset_token, frame1.stateless_reset_token); | 
 |   const auto* alternative_path = | 
 |       QuicConnectionPeer::GetAlternativePath(&connection_); | 
 |   EXPECT_TRUE(alternative_path->client_connection_id.IsEmpty()); | 
 |   EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty()); | 
 |   EXPECT_FALSE(alternative_path->stateless_reset_token.has_value()); | 
 |   ASSERT_EQ(packet_creator->GetDestinationConnectionId(), server_cid1); | 
 |  | 
 |   // Client will retire server connection ID on old default_path. | 
 |   auto* retire_peer_issued_cid_alarm = | 
 |       connection_.GetRetirePeerIssuedConnectionIdAlarm(); | 
 |   ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet()); | 
 |   EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u)); | 
 |   retire_peer_issued_cid_alarm->Fire(); | 
 |  | 
 |   // Another server connection ID is available to client. | 
 |   QuicNewConnectionIdFrame frame2; | 
 |   frame2.connection_id = server_cid2; | 
 |   frame2.sequence_number = 2u; | 
 |   frame2.retire_prior_to = 1u; | 
 |   frame2.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame2.connection_id); | 
 |   connection_.OnNewConnectionIdFrame(frame2); | 
 |  | 
 |   const QuicSocketAddress kSelfAddress2(QuicIpAddress::Loopback4(), | 
 |                                         /*port=*/45678); | 
 |   bool success2; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kSelfAddress2, connection_.peer_address(), writer_.get()), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kSelfAddress2, connection_.peer_address(), &success2)); | 
 |   // Since server does not retire any client connection ID yet, 2nd validation | 
 |   // would fail due to lack of client connection ID. | 
 |   EXPECT_FALSE(success2); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ServerConnectionIdRetiredUponPathValidationFailure) { | 
 |   if (!GetQuicReloadableFlag( | 
 |           quic_remove_connection_migration_connection_option)) { | 
 |     QuicConfig config; | 
 |     config.SetConnectionOptionsToSend({kRVCM}); | 
 |     EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |     connection_.SetFromConfig(config); | 
 |   } | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT); | 
 |  | 
 |   // Make sure server connection ID is available for validation. | 
 |   QuicNewConnectionIdFrame frame; | 
 |   frame.connection_id = TestConnectionId(2); | 
 |   frame.sequence_number = 1u; | 
 |   frame.retire_prior_to = 0u; | 
 |   frame.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |   connection_.OnNewConnectionIdFrame(frame); | 
 |  | 
 |   const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Loopback4(), | 
 |                                           /*port=*/34567); | 
 |   bool success; | 
 |   connection_.ValidatePath( | 
 |       std::make_unique<TestQuicPathValidationContext>( | 
 |           kNewSelfAddress, connection_.peer_address(), writer_.get()), | 
 |       std::make_unique<TestValidationResultDelegate>( | 
 |           &connection_, kNewSelfAddress, connection_.peer_address(), &success)); | 
 |  | 
 |   auto* path_validator = QuicConnectionPeer::path_validator(&connection_); | 
 |   path_validator->CancelPathValidation(); | 
 |   QuicConnectionPeer::RetirePeerIssuedConnectionIdsNoLongerOnPath(&connection_); | 
 |   EXPECT_FALSE(success); | 
 |   const auto* alternative_path = | 
 |       QuicConnectionPeer::GetAlternativePath(&connection_); | 
 |   EXPECT_TRUE(alternative_path->client_connection_id.IsEmpty()); | 
 |   EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty()); | 
 |   EXPECT_FALSE(alternative_path->stateless_reset_token.has_value()); | 
 |  | 
 |   // Client will retire server connection ID on alternative_path. | 
 |   auto* retire_peer_issued_cid_alarm = | 
 |       connection_.GetRetirePeerIssuedConnectionIdAlarm(); | 
 |   ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet()); | 
 |   EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/1u)); | 
 |   retire_peer_issued_cid_alarm->Fire(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        MigratePathDirectlyFailedDueToLackOfServerConnectionId) { | 
 |   if (!GetQuicReloadableFlag( | 
 |           quic_remove_connection_migration_connection_option)) { | 
 |     QuicConfig config; | 
 |     config.SetConnectionOptionsToSend({kRVCM}); | 
 |     EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |     connection_.SetFromConfig(config); | 
 |   } | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT, | 
 |                     /*receive_new_server_connection_id=*/false); | 
 |   const QuicSocketAddress kSelfAddress1(QuicIpAddress::Any4(), 12345); | 
 |   ASSERT_NE(kSelfAddress1, connection_.self_address()); | 
 |  | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   ASSERT_FALSE(connection_.MigratePath(kSelfAddress1, | 
 |                                        connection_.peer_address(), &new_writer, | 
 |                                        /*owns_writer=*/false)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        MigratePathDirectlyFailedDueToLackOfClientConnectionIdTheSecondTime) { | 
 |   if (!GetQuicReloadableFlag( | 
 |           quic_remove_connection_migration_connection_option)) { | 
 |     QuicConfig config; | 
 |     config.SetConnectionOptionsToSend({kRVCM}); | 
 |     EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |     connection_.SetFromConfig(config); | 
 |   } | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_CLIENT, | 
 |                     /*receive_new_server_connection_id=*/false); | 
 |   SetClientConnectionId(TestConnectionId(1)); | 
 |  | 
 |   // Make sure server connection ID is available for the 1st migration. | 
 |   QuicNewConnectionIdFrame frame1; | 
 |   frame1.connection_id = TestConnectionId(2); | 
 |   frame1.sequence_number = 1u; | 
 |   frame1.retire_prior_to = 0u; | 
 |   frame1.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame1.connection_id); | 
 |   connection_.OnNewConnectionIdFrame(frame1); | 
 |  | 
 |   // Client will issue a new client connection ID to server. | 
 |   QuicConnectionId new_client_connection_id; | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)) | 
 |       .WillOnce(Invoke([&](const QuicNewConnectionIdFrame& frame) { | 
 |         new_client_connection_id = frame.connection_id; | 
 |       })); | 
 |  | 
 |   // 1st migration is successful. | 
 |   const QuicSocketAddress kSelfAddress1(QuicIpAddress::Any4(), 12345); | 
 |   ASSERT_NE(kSelfAddress1, connection_.self_address()); | 
 |   TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT); | 
 |   ASSERT_TRUE(connection_.MigratePath(kSelfAddress1, connection_.peer_address(), | 
 |                                       &new_writer, | 
 |                                       /*owns_writer=*/false)); | 
 |   QuicConnectionPeer::RetirePeerIssuedConnectionIdsNoLongerOnPath(&connection_); | 
 |   const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_); | 
 |   EXPECT_EQ(default_path->client_connection_id, new_client_connection_id); | 
 |   EXPECT_EQ(default_path->server_connection_id, frame1.connection_id); | 
 |   EXPECT_EQ(default_path->stateless_reset_token, frame1.stateless_reset_token); | 
 |  | 
 |   // Client will retire server connection ID on old default_path. | 
 |   auto* retire_peer_issued_cid_alarm = | 
 |       connection_.GetRetirePeerIssuedConnectionIdAlarm(); | 
 |   ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet()); | 
 |   EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u)); | 
 |   retire_peer_issued_cid_alarm->Fire(); | 
 |  | 
 |   // Another server connection ID is available to client. | 
 |   QuicNewConnectionIdFrame frame2; | 
 |   frame2.connection_id = TestConnectionId(4); | 
 |   frame2.sequence_number = 2u; | 
 |   frame2.retire_prior_to = 1u; | 
 |   frame2.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame2.connection_id); | 
 |   connection_.OnNewConnectionIdFrame(frame2); | 
 |  | 
 |   // Since server does not retire any client connection ID yet, 2nd migration | 
 |   // would fail due to lack of client connection ID. | 
 |   const QuicSocketAddress kSelfAddress2(QuicIpAddress::Loopback4(), | 
 |                                         /*port=*/45678); | 
 |   auto new_writer2 = std::make_unique<TestPacketWriter>(version(), &clock_, | 
 |                                                         Perspective::IS_CLIENT); | 
 |   ASSERT_FALSE(connection_.MigratePath( | 
 |       kSelfAddress2, connection_.peer_address(), new_writer2.release(), | 
 |       /*owns_writer=*/true)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        CloseConnectionAfterReceiveNewConnectionIdFromPeerUsingEmptyCID) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   ASSERT_TRUE(connection_.client_connection_id().IsEmpty()); | 
 |  | 
 |   EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   QuicNewConnectionIdFrame frame; | 
 |   frame.sequence_number = 1u; | 
 |   frame.connection_id = TestConnectionId(1); | 
 |   frame.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |   frame.retire_prior_to = 0u; | 
 |  | 
 |   EXPECT_FALSE(connection_.OnNewConnectionIdFrame(frame)); | 
 |  | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(IETF_QUIC_PROTOCOL_VIOLATION)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NewConnectionIdFrameResultsInError) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   connection_.CreateConnectionIdManager(); | 
 |   ASSERT_FALSE(connection_.connection_id().IsEmpty()); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   QuicNewConnectionIdFrame frame; | 
 |   frame.sequence_number = 1u; | 
 |   frame.connection_id = connection_id_;  // Reuses connection ID casuing error. | 
 |   frame.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |   frame.retire_prior_to = 0u; | 
 |  | 
 |   EXPECT_FALSE(connection_.OnNewConnectionIdFrame(frame)); | 
 |  | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(IETF_QUIC_PROTOCOL_VIOLATION)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        ClientRetirePeerIssuedConnectionIdTriggeredByNewConnectionIdFrame) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   connection_.CreateConnectionIdManager(); | 
 |  | 
 |   QuicNewConnectionIdFrame frame; | 
 |   frame.sequence_number = 1u; | 
 |   frame.connection_id = TestConnectionId(1); | 
 |   frame.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |   frame.retire_prior_to = 0u; | 
 |  | 
 |   EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame)); | 
 |   auto* retire_peer_issued_cid_alarm = | 
 |       connection_.GetRetirePeerIssuedConnectionIdAlarm(); | 
 |   ASSERT_FALSE(retire_peer_issued_cid_alarm->IsSet()); | 
 |  | 
 |   frame.sequence_number = 2u; | 
 |   frame.connection_id = TestConnectionId(2); | 
 |   frame.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |   frame.retire_prior_to = 1u;  // CID associated with #1 will be retired. | 
 |  | 
 |   EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame)); | 
 |   ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet()); | 
 |   EXPECT_EQ(connection_.connection_id(), connection_id_); | 
 |  | 
 |   EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u)); | 
 |   retire_peer_issued_cid_alarm->Fire(); | 
 |   EXPECT_EQ(connection_.connection_id(), TestConnectionId(2)); | 
 |   EXPECT_EQ(connection_.packet_creator().GetDestinationConnectionId(), | 
 |             TestConnectionId(2)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        ServerRetirePeerIssuedConnectionIdTriggeredByNewConnectionIdFrame) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   SetClientConnectionId(TestConnectionId(0)); | 
 |  | 
 |   QuicNewConnectionIdFrame frame; | 
 |   frame.sequence_number = 1u; | 
 |   frame.connection_id = TestConnectionId(1); | 
 |   frame.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |   frame.retire_prior_to = 0u; | 
 |  | 
 |   EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame)); | 
 |   auto* retire_peer_issued_cid_alarm = | 
 |       connection_.GetRetirePeerIssuedConnectionIdAlarm(); | 
 |   ASSERT_FALSE(retire_peer_issued_cid_alarm->IsSet()); | 
 |  | 
 |   frame.sequence_number = 2u; | 
 |   frame.connection_id = TestConnectionId(2); | 
 |   frame.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |   frame.retire_prior_to = 1u;  // CID associated with #1 will be retired. | 
 |  | 
 |   EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame)); | 
 |   ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet()); | 
 |   EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(0)); | 
 |  | 
 |   EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u)); | 
 |   retire_peer_issued_cid_alarm->Fire(); | 
 |   EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(2)); | 
 |   EXPECT_EQ(connection_.packet_creator().GetDestinationConnectionId(), | 
 |             TestConnectionId(2)); | 
 | } | 
 |  | 
 | TEST_P( | 
 |     QuicConnectionTest, | 
 |     ReplacePeerIssuedConnectionIdOnBothPathsTriggeredByNewConnectionIdFrame) { | 
 |   if (!version().HasIetfQuicFrames() || !connection_.use_path_validator() || | 
 |       !connection_.count_bytes_on_alternative_path_separately()) { | 
 |     return; | 
 |   } | 
 |   PathProbeTestInit(Perspective::IS_SERVER); | 
 |   SetClientConnectionId(TestConnectionId(0)); | 
 |  | 
 |   // Populate alternative_path_ with probing packet. | 
 |   std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
 |  | 
 |   std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
 |       QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
 |                           probing_packet->encrypted_length), | 
 |       clock_.Now())); | 
 |   QuicIpAddress new_host; | 
 |   new_host.FromString("1.1.1.1"); | 
 |   ProcessReceivedPacket(kSelfAddress, | 
 |                         QuicSocketAddress(new_host, /*port=*/23456), *received); | 
 |  | 
 |   EXPECT_EQ( | 
 |       TestConnectionId(0), | 
 |       QuicConnectionPeer::GetClientConnectionIdOnAlternativePath(&connection_)); | 
 |  | 
 |   QuicNewConnectionIdFrame frame; | 
 |   frame.sequence_number = 1u; | 
 |   frame.connection_id = TestConnectionId(1); | 
 |   frame.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |   frame.retire_prior_to = 0u; | 
 |  | 
 |   EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame)); | 
 |   auto* retire_peer_issued_cid_alarm = | 
 |       connection_.GetRetirePeerIssuedConnectionIdAlarm(); | 
 |   ASSERT_FALSE(retire_peer_issued_cid_alarm->IsSet()); | 
 |  | 
 |   frame.sequence_number = 2u; | 
 |   frame.connection_id = TestConnectionId(2); | 
 |   frame.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |   frame.retire_prior_to = 1u;  // CID associated with #1 will be retired. | 
 |  | 
 |   EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame)); | 
 |   ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet()); | 
 |   EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(0)); | 
 |  | 
 |   EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u)); | 
 |   retire_peer_issued_cid_alarm->Fire(); | 
 |   EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(2)); | 
 |   EXPECT_EQ(connection_.packet_creator().GetDestinationConnectionId(), | 
 |             TestConnectionId(2)); | 
 |   // Clean up alternative path connection ID. | 
 |   EXPECT_EQ( | 
 |       TestConnectionId(2), | 
 |       QuicConnectionPeer::GetClientConnectionIdOnAlternativePath(&connection_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        CloseConnectionAfterReceiveRetireConnectionIdWhenNoCIDIssued) { | 
 |   if (!version().HasIetfQuicFrames() || | 
 |       !connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |  | 
 |   EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   QuicRetireConnectionIdFrame frame; | 
 |   frame.sequence_number = 1u; | 
 |  | 
 |   EXPECT_FALSE(connection_.OnRetireConnectionIdFrame(frame)); | 
 |  | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(IETF_QUIC_PROTOCOL_VIOLATION)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetireConnectionIdFrameResultsInError) { | 
 |   if (!version().HasIetfQuicFrames() || | 
 |       !connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   connection_.CreateConnectionIdManager(); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)); | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)); | 
 |   connection_.MaybeSendConnectionIdToClient(); | 
 |  | 
 |   EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
 |       .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
 |   QuicRetireConnectionIdFrame frame; | 
 |   frame.sequence_number = 2u;  // The corresponding ID is never issued. | 
 |  | 
 |   EXPECT_FALSE(connection_.OnRetireConnectionIdFrame(frame)); | 
 |  | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
 |               IsError(IETF_QUIC_PROTOCOL_VIOLATION)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        ServerRetireSelfIssuedConnectionIdWithoutSendingNewConnectionIdBefore) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   connection_.CreateConnectionIdManager(); | 
 |  | 
 |   auto* retire_self_issued_cid_alarm = | 
 |       connection_.GetRetireSelfIssuedConnectionIdAlarm(); | 
 |   ASSERT_FALSE(retire_self_issued_cid_alarm->IsSet()); | 
 |  | 
 |   QuicConnectionId cid0 = connection_id_; | 
 |   QuicRetireConnectionIdFrame frame; | 
 |   frame.sequence_number = 0u; | 
 |   if (connection_.connection_migration_use_new_cid()) { | 
 |     EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)).Times(2); | 
 |     EXPECT_CALL(visitor_, SendNewConnectionId(_)).Times(2); | 
 |   } | 
 |   EXPECT_TRUE(connection_.OnRetireConnectionIdFrame(frame)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ServerRetireSelfIssuedConnectionId) { | 
 |   if (!GetQuicReloadableFlag( | 
 |           quic_remove_connection_migration_connection_option)) { | 
 |     QuicConfig config; | 
 |     config.SetConnectionOptionsToSend({kRVCM}); | 
 |     EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |     connection_.SetFromConfig(config); | 
 |   } | 
 |   if (!connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   connection_.CreateConnectionIdManager(); | 
 |   QuicConnectionId recorded_cid; | 
 |   auto cid_recorder = [&recorded_cid](const QuicConnectionId& cid) { | 
 |     recorded_cid = cid; | 
 |   }; | 
 |   QuicConnectionId cid0 = connection_id_; | 
 |   QuicConnectionId cid1; | 
 |   QuicConnectionId cid2; | 
 |   EXPECT_EQ(connection_.connection_id(), cid0); | 
 |   EXPECT_EQ(connection_.GetOneActiveServerConnectionId(), cid0); | 
 |  | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)) | 
 |       .WillOnce(Invoke(cid_recorder)); | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)); | 
 |   connection_.MaybeSendConnectionIdToClient(); | 
 |   cid1 = recorded_cid; | 
 |  | 
 |   auto* retire_self_issued_cid_alarm = | 
 |       connection_.GetRetireSelfIssuedConnectionIdAlarm(); | 
 |   ASSERT_FALSE(retire_self_issued_cid_alarm->IsSet()); | 
 |  | 
 |   // Generate three packets with different connection IDs that will arrive out | 
 |   // of order (2, 1, 3) later. | 
 |   char buffers[3][kMaxOutgoingPacketSize]; | 
 |   // Destination connection ID of packet1 is cid0. | 
 |   auto packet1 = | 
 |       ConstructPacket({QuicFrame(QuicPingFrame())}, ENCRYPTION_FORWARD_SECURE, | 
 |                       buffers[0], kMaxOutgoingPacketSize); | 
 |   peer_creator_.SetServerConnectionId(cid1); | 
 |   auto retire_cid_frame = std::make_unique<QuicRetireConnectionIdFrame>(); | 
 |   retire_cid_frame->sequence_number = 0u; | 
 |   // Destination connection ID of packet2 is cid1. | 
 |   auto packet2 = ConstructPacket({QuicFrame(retire_cid_frame.release())}, | 
 |                                  ENCRYPTION_FORWARD_SECURE, buffers[1], | 
 |                                  kMaxOutgoingPacketSize); | 
 |   // Destination connection ID of packet3 is cid1. | 
 |   auto packet3 = | 
 |       ConstructPacket({QuicFrame(QuicPingFrame())}, ENCRYPTION_FORWARD_SECURE, | 
 |                       buffers[2], kMaxOutgoingPacketSize); | 
 |  | 
 |   // Packet2 with RetireConnectionId frame trigers sending NewConnectionId | 
 |   // immediately. | 
 |   EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)) | 
 |       .WillOnce(Invoke(cid_recorder)); | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)); | 
 |   peer_creator_.SetServerConnectionId(cid1); | 
 |   connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *packet2); | 
 |   cid2 = recorded_cid; | 
 |   // cid0 is not retired immediately. | 
 |   EXPECT_THAT(connection_.GetActiveServerConnectionIds(), | 
 |               ElementsAre(cid0, cid1, cid2)); | 
 |   ASSERT_TRUE(retire_self_issued_cid_alarm->IsSet()); | 
 |   EXPECT_EQ(connection_.connection_id(), cid1); | 
 |   EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid0 || | 
 |               connection_.GetOneActiveServerConnectionId() == cid1 || | 
 |               connection_.GetOneActiveServerConnectionId() == cid2); | 
 |  | 
 |   // Packet1 updates the connection ID on the default path but not the active | 
 |   // connection ID. | 
 |   connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *packet1); | 
 |   EXPECT_EQ(connection_.connection_id(), cid0); | 
 |   EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid0 || | 
 |               connection_.GetOneActiveServerConnectionId() == cid1 || | 
 |               connection_.GetOneActiveServerConnectionId() == cid2); | 
 |  | 
 |   // cid0 is retired when the retire CID alarm fires. | 
 |   EXPECT_CALL(visitor_, OnServerConnectionIdRetired(cid0)); | 
 |   retire_self_issued_cid_alarm->Fire(); | 
 |   EXPECT_THAT(connection_.GetActiveServerConnectionIds(), | 
 |               ElementsAre(cid1, cid2)); | 
 |   EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid1 || | 
 |               connection_.GetOneActiveServerConnectionId() == cid2); | 
 |  | 
 |   // Packet3 updates the connection ID on the default path. | 
 |   connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *packet3); | 
 |   EXPECT_EQ(connection_.connection_id(), cid1); | 
 |   EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid1 || | 
 |               connection_.GetOneActiveServerConnectionId() == cid2); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PatchMissingClientConnectionIdOntoAlternativePath) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   connection_.CreateConnectionIdManager(); | 
 |   connection_.set_client_connection_id(TestConnectionId(1)); | 
 |  | 
 |   // Set up the state after path probing. | 
 |   const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_); | 
 |   auto* alternative_path = QuicConnectionPeer::GetAlternativePath(&connection_); | 
 |   QuicIpAddress new_host; | 
 |   new_host.FromString("12.12.12.12"); | 
 |   alternative_path->self_address = default_path->self_address; | 
 |   alternative_path->peer_address = QuicSocketAddress(new_host, 12345); | 
 |   alternative_path->server_connection_id = TestConnectionId(3); | 
 |   ASSERT_TRUE(alternative_path->client_connection_id.IsEmpty()); | 
 |   ASSERT_FALSE(alternative_path->stateless_reset_token.has_value()); | 
 |  | 
 |   QuicNewConnectionIdFrame frame; | 
 |   frame.sequence_number = 1u; | 
 |   frame.connection_id = TestConnectionId(5); | 
 |   frame.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |   frame.retire_prior_to = 0u; | 
 |   // New ID is patched onto the alternative path when the needed | 
 |   // NEW_CONNECTION_ID frame is received after PATH_CHALLENGE frame. | 
 |   connection_.OnNewConnectionIdFrame(frame); | 
 |  | 
 |   ASSERT_EQ(alternative_path->client_connection_id, frame.connection_id); | 
 |   ASSERT_EQ(alternative_path->stateless_reset_token, | 
 |             frame.stateless_reset_token); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PatchMissingClientConnectionIdOntoDefaultPath) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   connection_.CreateConnectionIdManager(); | 
 |   connection_.set_client_connection_id(TestConnectionId(1)); | 
 |  | 
 |   // Set up the state after peer migration without probing. | 
 |   auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_); | 
 |   auto* alternative_path = QuicConnectionPeer::GetAlternativePath(&connection_); | 
 |   auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_); | 
 |   *alternative_path = std::move(*default_path); | 
 |   QuicIpAddress new_host; | 
 |   new_host.FromString("12.12.12.12"); | 
 |   default_path->self_address = default_path->self_address; | 
 |   default_path->peer_address = QuicSocketAddress(new_host, 12345); | 
 |   default_path->server_connection_id = TestConnectionId(3); | 
 |   packet_creator->SetDefaultPeerAddress(default_path->peer_address); | 
 |   packet_creator->SetServerConnectionId(default_path->server_connection_id); | 
 |   packet_creator->SetClientConnectionId(default_path->client_connection_id); | 
 |  | 
 |   ASSERT_FALSE(default_path->validated); | 
 |   ASSERT_TRUE(default_path->client_connection_id.IsEmpty()); | 
 |   ASSERT_FALSE(default_path->stateless_reset_token.has_value()); | 
 |  | 
 |   QuicNewConnectionIdFrame frame; | 
 |   frame.sequence_number = 1u; | 
 |   frame.connection_id = TestConnectionId(5); | 
 |   frame.stateless_reset_token = | 
 |       QuicUtils::GenerateStatelessResetToken(frame.connection_id); | 
 |   frame.retire_prior_to = 0u; | 
 |   // New ID is patched onto the default path when the needed | 
 |   // NEW_CONNECTION_ID frame is received after PATH_CHALLENGE frame. | 
 |   connection_.OnNewConnectionIdFrame(frame); | 
 |  | 
 |   ASSERT_EQ(default_path->client_connection_id, frame.connection_id); | 
 |   ASSERT_EQ(default_path->stateless_reset_token, frame.stateless_reset_token); | 
 |   ASSERT_EQ(packet_creator->GetDestinationConnectionId(), frame.connection_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ShouldGeneratePacketBlockedByMissingConnectionId) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   connection_.set_client_connection_id(TestConnectionId(1)); | 
 |   connection_.CreateConnectionIdManager(); | 
 |   if (version().SupportsAntiAmplificationLimit()) { | 
 |     QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   } | 
 |  | 
 |   ASSERT_TRUE( | 
 |       connection_.ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, NOT_HANDSHAKE)); | 
 |  | 
 |   QuicPacketCreator* packet_creator = | 
 |       QuicConnectionPeer::GetPacketCreator(&connection_); | 
 |   QuicIpAddress peer_host1; | 
 |   peer_host1.FromString("12.12.12.12"); | 
 |   QuicSocketAddress peer_address1(peer_host1, 1235); | 
 |  | 
 |   { | 
 |     // No connection ID is available as context is created without any. | 
 |     QuicPacketCreator::ScopedPeerAddressContext context( | 
 |         packet_creator, peer_address1, EmptyQuicConnectionId(), | 
 |         EmptyQuicConnectionId(), | 
 |         /*update_connection_id=*/true); | 
 |     ASSERT_FALSE(connection_.ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, | 
 |                                                   NOT_HANDSHAKE)); | 
 |   } | 
 |   ASSERT_TRUE( | 
 |       connection_.ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, NOT_HANDSHAKE)); | 
 | } | 
 |  | 
 | // Regression test for b/182571515 | 
 | TEST_P(QuicConnectionTest, LostDataThenGetAcknowledged) { | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (!connection_.validate_client_address()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
 |   if (version().SupportsAntiAmplificationLimit()) { | 
 |     QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   } | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   // Discard INITIAL key. | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
 |  | 
 |   QuicPacketNumber last_packet; | 
 |   // Send packets 1 to 4. | 
 |   SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet);  // Packet 1 | 
 |   SendStreamDataToPeer(3, "foo", 3, NO_FIN, &last_packet);  // Packet 2 | 
 |   SendStreamDataToPeer(3, "foo", 6, NO_FIN, &last_packet);  // Packet 3 | 
 |   SendStreamDataToPeer(3, "foo", 9, NO_FIN, &last_packet);  // Packet 4 | 
 |  | 
 |   // Process a PING packet to set peer address. | 
 |   ProcessFramePacket(QuicFrame(QuicPingFrame())); | 
 |  | 
 |   // Process a packet containing a STREAM_FRAME and an ACK with changed peer | 
 |   // address. | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(frame1_)); | 
 |   QuicAckFrame ack = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(5)}}); | 
 |   frames.push_back(QuicFrame(&ack)); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionMigration(_)).Times(1); | 
 |  | 
 |   // Invoke OnCanWrite. | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
 |       .WillOnce( | 
 |           InvokeWithoutArgs(¬ifier_, &SimpleSessionNotifier::OnCanWrite)); | 
 |   QuicIpAddress ip_address; | 
 |   ASSERT_TRUE(ip_address.FromString("127.0.52.223")); | 
 |   EXPECT_QUIC_BUG(ProcessFramesPacketWithAddresses( | 
 |                       frames, kSelfAddress, QuicSocketAddress(ip_address, 1000), | 
 |                       ENCRYPTION_FORWARD_SECURE), | 
 |                   "Try to write mid packet processing"); | 
 |   EXPECT_EQ(1u, writer_->path_challenge_frames().size()); | 
 |   // Verify stream frame will not be retransmitted. | 
 |   EXPECT_TRUE(writer_->stream_frames().empty()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PtoSendStreamData) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
 |     EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   } | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   // Send INITIAL 1. | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   // Send HANDSHAKE packets. | 
 |   EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |   connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x03)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |  | 
 |   // Send half RTT packet with congestion control blocked. | 
 |   EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(false)); | 
 |   connection_.SendStreamDataWithString(2, std::string(1500, 'a'), 0, NO_FIN); | 
 |  | 
 |   ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   // Verify INITIAL and HANDSHAKE get retransmitted. | 
 |   EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendingZeroRttPacketsDoesNotPostponePTO) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   // Send CHLO. | 
 |   connection_.SendCryptoStreamData(); | 
 |   ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   // Install 0-RTT keys. | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   // CHLO gets acknowledged after 10ms. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); | 
 |   QuicAckFrame frame1 = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL); | 
 |   // Verify PTO is still armed since address validation is not finished yet. | 
 |   ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   QuicTime pto_deadline = connection_.GetRetransmissionAlarm()->deadline(); | 
 |  | 
 |   // Send 0-RTT packet. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |   connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN); | 
 |   ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   // PTO deadline should be unchanged. | 
 |   EXPECT_EQ(pto_deadline, connection_.GetRetransmissionAlarm()->deadline()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, QueueingUndecryptablePacketsDoesntPostponePTO) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   config.set_max_undecryptable_packets(3); | 
 |   connection_.SetFromConfig(config); | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE); | 
 |   // Send CHLO. | 
 |   connection_.SendCryptoStreamData(); | 
 |  | 
 |   // Send 0-RTT packet. | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |   connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN); | 
 |  | 
 |   // CHLO gets acknowledged after 10ms. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); | 
 |   QuicAckFrame frame1 = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL); | 
 |   // Verify PTO is still armed since address validation is not finished yet. | 
 |   ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   QuicTime pto_deadline = connection_.GetRetransmissionAlarm()->deadline(); | 
 |  | 
 |   // Receive an undecryptable packets. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(0xFF)); | 
 |   ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |   // Verify PTO deadline is sooner. | 
 |   EXPECT_GT(pto_deadline, connection_.GetRetransmissionAlarm()->deadline()); | 
 |   pto_deadline = connection_.GetRetransmissionAlarm()->deadline(); | 
 |  | 
 |   // PTO fires. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   clock_.AdvanceTime(pto_deadline - clock_.ApproximateNow()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   // Verify PTO is still armed since address validation is not finished yet. | 
 |   ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   pto_deadline = connection_.GetRetransmissionAlarm()->deadline(); | 
 |  | 
 |   // Verify PTO deadline does not change. | 
 |   ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
 |   EXPECT_EQ(pto_deadline, connection_.GetRetransmissionAlarm()->deadline()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, QueueUndecryptableHandshakePackets) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   config.set_max_undecryptable_packets(3); | 
 |   connection_.SetFromConfig(config); | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   connection_.RemoveDecrypter(ENCRYPTION_HANDSHAKE); | 
 |   // Send CHLO. | 
 |   connection_.SendCryptoStreamData(); | 
 |  | 
 |   // Send 0-RTT packet. | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |   connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN); | 
 |   EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
 |  | 
 |   // Receive an undecryptable handshake packet. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                             std::make_unique<TaggingEncrypter>(0xFF)); | 
 |   ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_HANDSHAKE); | 
 |   // Verify this handshake packet gets queued. | 
 |   EXPECT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PingNotSentAt0RTTLevelWhenInitialAvailable) { | 
 |   if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
 |     return; | 
 |   } | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   // Send CHLO. | 
 |   connection_.SendCryptoStreamData(); | 
 |   // Send 0-RTT packet. | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |   connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN); | 
 |  | 
 |   // CHLO gets acknowledged after 10ms. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); | 
 |   QuicAckFrame frame1 = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL); | 
 |   // Verify PTO is still armed since address validation is not finished yet. | 
 |   ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   QuicTime pto_deadline = connection_.GetRetransmissionAlarm()->deadline(); | 
 |  | 
 |   // PTO fires. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   clock_.AdvanceTime(pto_deadline - clock_.ApproximateNow()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   // Verify the PING gets sent in ENCRYPTION_INITIAL. | 
 |   EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckElicitingFrames) { | 
 |   if (!GetQuicReloadableFlag( | 
 |           quic_remove_connection_migration_connection_option)) { | 
 |     QuicConfig config; | 
 |     config.SetConnectionOptionsToSend({kRVCM}); | 
 |     EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |     connection_.SetFromConfig(config); | 
 |   } | 
 |   if (!version().HasIetfQuicFrames() || | 
 |       !connection_.connection_migration_use_new_cid()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(visitor_, SendNewConnectionId(_)).Times(2); | 
 |   EXPECT_CALL(visitor_, OnRstStream(_)); | 
 |   EXPECT_CALL(visitor_, OnWindowUpdateFrame(_)); | 
 |   EXPECT_CALL(visitor_, OnBlockedFrame(_)); | 
 |   EXPECT_CALL(visitor_, OnHandshakeDoneReceived()); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   EXPECT_CALL(visitor_, OnMaxStreamsFrame(_)); | 
 |   EXPECT_CALL(visitor_, OnStreamsBlockedFrame(_)); | 
 |   EXPECT_CALL(visitor_, OnStopSendingFrame(_)); | 
 |   EXPECT_CALL(visitor_, OnMessageReceived("")); | 
 |   EXPECT_CALL(visitor_, OnNewTokenReceived("")); | 
 |  | 
 |   SetClientConnectionId(TestConnectionId(12)); | 
 |   connection_.CreateConnectionIdManager(); | 
 |   QuicConnectionPeer::GetSelfIssuedConnectionIdManager(&connection_) | 
 |       ->MaybeSendNewConnectionIds(); | 
 |   connection_.set_can_receive_ack_frequency_frame(); | 
 |  | 
 |   QuicAckFrame ack_frame = InitAckFrame(1); | 
 |   QuicRstStreamFrame rst_stream_frame; | 
 |   QuicWindowUpdateFrame window_update_frame; | 
 |   QuicPathChallengeFrame path_challenge_frame; | 
 |   QuicNewConnectionIdFrame new_connection_id_frame; | 
 |   QuicRetireConnectionIdFrame retire_connection_id_frame; | 
 |   retire_connection_id_frame.sequence_number = 1u; | 
 |   QuicStopSendingFrame stop_sending_frame; | 
 |   QuicPathResponseFrame path_response_frame; | 
 |   QuicMessageFrame message_frame; | 
 |   QuicNewTokenFrame new_token_frame; | 
 |   QuicAckFrequencyFrame ack_frequency_frame; | 
 |   QuicBlockedFrame blocked_frame; | 
 |   size_t packet_number = 1; | 
 |  | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |  | 
 |   for (uint8_t i = 0; i < NUM_FRAME_TYPES; ++i) { | 
 |     QuicFrameType frame_type = static_cast<QuicFrameType>(i); | 
 |     bool skipped = false; | 
 |     QuicFrame frame; | 
 |     QuicFrames frames; | 
 |     // Add some padding to fullfill the min size requirement of header | 
 |     // protection. | 
 |     frames.push_back(QuicFrame(QuicPaddingFrame(10))); | 
 |     switch (frame_type) { | 
 |       case PADDING_FRAME: | 
 |         frame = QuicFrame(QuicPaddingFrame(10)); | 
 |         break; | 
 |       case MTU_DISCOVERY_FRAME: | 
 |         frame = QuicFrame(QuicMtuDiscoveryFrame()); | 
 |         break; | 
 |       case PING_FRAME: | 
 |         frame = QuicFrame(QuicPingFrame()); | 
 |         break; | 
 |       case MAX_STREAMS_FRAME: | 
 |         frame = QuicFrame(QuicMaxStreamsFrame()); | 
 |         break; | 
 |       case STOP_WAITING_FRAME: | 
 |         // Not supported. | 
 |         skipped = true; | 
 |         break; | 
 |       case STREAMS_BLOCKED_FRAME: | 
 |         frame = QuicFrame(QuicStreamsBlockedFrame()); | 
 |         break; | 
 |       case STREAM_FRAME: | 
 |         frame = QuicFrame(QuicStreamFrame()); | 
 |         break; | 
 |       case HANDSHAKE_DONE_FRAME: | 
 |         frame = QuicFrame(QuicHandshakeDoneFrame()); | 
 |         break; | 
 |       case ACK_FRAME: | 
 |         frame = QuicFrame(&ack_frame); | 
 |         break; | 
 |       case RST_STREAM_FRAME: | 
 |         frame = QuicFrame(&rst_stream_frame); | 
 |         break; | 
 |       case CONNECTION_CLOSE_FRAME: | 
 |         // Do not test connection close. | 
 |         skipped = true; | 
 |         break; | 
 |       case GOAWAY_FRAME: | 
 |         // Does not exist in IETF QUIC. | 
 |         skipped = true; | 
 |         break; | 
 |       case BLOCKED_FRAME: | 
 |         frame = QuicFrame(blocked_frame); | 
 |         break; | 
 |       case WINDOW_UPDATE_FRAME: | 
 |         frame = QuicFrame(window_update_frame); | 
 |         break; | 
 |       case PATH_CHALLENGE_FRAME: | 
 |         frame = QuicFrame(&path_challenge_frame); | 
 |         break; | 
 |       case STOP_SENDING_FRAME: | 
 |         frame = QuicFrame(&stop_sending_frame); | 
 |         break; | 
 |       case NEW_CONNECTION_ID_FRAME: | 
 |         frame = QuicFrame(&new_connection_id_frame); | 
 |         break; | 
 |       case RETIRE_CONNECTION_ID_FRAME: | 
 |         frame = QuicFrame(&retire_connection_id_frame); | 
 |         break; | 
 |       case PATH_RESPONSE_FRAME: | 
 |         frame = QuicFrame(&path_response_frame); | 
 |         break; | 
 |       case MESSAGE_FRAME: | 
 |         frame = QuicFrame(&message_frame); | 
 |         break; | 
 |       case CRYPTO_FRAME: | 
 |         // CRYPTO_FRAME is ack eliciting is covered by other tests. | 
 |         skipped = true; | 
 |         break; | 
 |       case NEW_TOKEN_FRAME: | 
 |         frame = QuicFrame(&new_token_frame); | 
 |         break; | 
 |       case ACK_FREQUENCY_FRAME: | 
 |         frame = QuicFrame(&ack_frequency_frame); | 
 |         break; | 
 |       case NUM_FRAME_TYPES: | 
 |         skipped = true; | 
 |         break; | 
 |     } | 
 |     if (skipped) { | 
 |       continue; | 
 |     } | 
 |     ASSERT_EQ(frame_type, frame.type); | 
 |     frames.push_back(frame); | 
 |     EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |     // Process frame. | 
 |     ProcessFramesPacketAtLevel(packet_number++, frames, | 
 |                                ENCRYPTION_FORWARD_SECURE); | 
 |     if (QuicUtils::IsAckElicitingFrame(frame_type)) { | 
 |       ASSERT_TRUE(connection_.HasPendingAcks()) << frame; | 
 |       // Flush ACK. | 
 |       clock_.AdvanceTime(DefaultDelayedAckTime()); | 
 |       connection_.GetAckAlarm()->Fire(); | 
 |     } | 
 |     EXPECT_FALSE(connection_.HasPendingAcks()); | 
 |     ASSERT_TRUE(connection_.connected()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReceivedChloAndAck) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   QuicFrames frames; | 
 |   QuicAckFrame ack_frame = InitAckFrame(1); | 
 |   frames.push_back(MakeCryptoFrame()); | 
 |   frames.push_back(QuicFrame(&ack_frame)); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)) | 
 |       .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
 |           &connection_, &TestConnection::SendCryptoStreamData))); | 
 |   EXPECT_CALL(visitor_, BeforeConnectionCloseSent()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress, | 
 |                                    ENCRYPTION_INITIAL); | 
 | } | 
 |  | 
 | // Regression test for b/201643321. | 
 | TEST_P(QuicConnectionTest, FailedToRetransmitShlo) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |   // Received INITIAL 1. | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x03)); | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x04)); | 
 |   // Received ENCRYPTION_ZERO_RTT 1. | 
 |   ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     // Send INITIAL 1. | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |     connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL); | 
 |     // Send HANDSHAKE 2. | 
 |     EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |     connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     // Send half RTT data to exhaust amplification credit. | 
 |     connection_.SendStreamDataWithString(0, std::string(100 * 1024, 'a'), 0, | 
 |                                          NO_FIN); | 
 |   } | 
 |   // Received INITIAL 2. | 
 |   ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); | 
 |   ASSERT_TRUE(connection_.HasPendingAcks()); | 
 |   // Verify ACK delay is 1ms. | 
 |   EXPECT_EQ(clock_.Now() + kAlarmGranularity, | 
 |             connection_.GetAckAlarm()->deadline()); | 
 |   // ACK is not throttled by amplification limit, and SHLO is bundled. Also | 
 |   // HANDSHAKE + 1RTT packets get coalesced. | 
 |   if (GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); | 
 |   } else { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   } | 
 |   // ACK alarm fires. | 
 |   clock_.AdvanceTime(kAlarmGranularity); | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |   if (GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) { | 
 |     // Verify 1-RTT packet is coalesced. | 
 |     EXPECT_EQ(0x04040404u, writer_->final_bytes_of_last_packet()); | 
 |   } else { | 
 |     // Verify HANDSHAKE packet is coalesced with INITIAL ACK + SHLO. | 
 |     EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); | 
 |   } | 
 |   // Only the first packet in the coalesced packet has been processed, | 
 |   // verify SHLO is bundled with INITIAL ACK. | 
 |   EXPECT_EQ(1u, writer_->ack_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
 |   // Process the coalesced HANDSHAKE packet. | 
 |   ASSERT_TRUE(writer_->coalesced_packet() != nullptr); | 
 |   auto packet = writer_->coalesced_packet()->Clone(); | 
 |   writer_->framer()->ProcessPacket(*packet); | 
 |   EXPECT_EQ(0u, writer_->ack_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
 |   if (GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) { | 
 |     // Process the coalesced 1-RTT packet. | 
 |     ASSERT_TRUE(writer_->coalesced_packet() != nullptr); | 
 |     packet = writer_->coalesced_packet()->Clone(); | 
 |     writer_->framer()->ProcessPacket(*packet); | 
 |     EXPECT_EQ(0u, writer_->crypto_frames().size()); | 
 |     EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   } else { | 
 |     ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
 |   } | 
 |  | 
 |   // Received INITIAL 3. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
 |   ProcessCryptoPacketAtLevel(3, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 | } | 
 |  | 
 | // Regression test for b/216133388. | 
 | TEST_P(QuicConnectionTest, FailedToConsumeCryptoData) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |   // Received INITIAL 1. | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |   EXPECT_TRUE(connection_.HasPendingAcks()); | 
 |  | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x03)); | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x03)); | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x04)); | 
 |   // Received ENCRYPTION_ZERO_RTT 1. | 
 |   ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     // Send INITIAL 1. | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |     connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL); | 
 |     // Send HANDSHAKE 2. | 
 |     EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |     connection_.SendCryptoDataWithString(std::string(200, 'a'), 0, | 
 |                                          ENCRYPTION_HANDSHAKE); | 
 |     // Send 1-RTT 3. | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     connection_.SendStreamDataWithString(0, std::string(40, 'a'), 0, NO_FIN); | 
 |   } | 
 |   // Received HANDSHAKE Ping, hence discard INITIAL keys. | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                             std::make_unique<TaggingEncrypter>(0x03)); | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_HANDSHAKE); | 
 |   clock_.AdvanceTime(kAlarmGranularity); | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     // Sending this 1-RTT data would leave the coalescer only have space to | 
 |     // accommodate the HANDSHAKE ACK. The crypto data cannot be bundled with the | 
 |     // ACK. | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     connection_.SendStreamDataWithString(0, std::string(1395, 'a'), 40, NO_FIN); | 
 |   } | 
 |   // Verify retransmission alarm is armed. | 
 |   ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   const QuicTime retransmission_time = | 
 |       connection_.GetRetransmissionAlarm()->deadline(); | 
 |   clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   if (GetQuicRestartFlag(quic_set_packet_state_if_all_data_retransmitted)) { | 
 |     // Verify the retransmission is a coalesced packet with HANDSHAKE 2 and | 
 |     // 1-RTT 3. | 
 |     EXPECT_EQ(0x04040404u, writer_->final_bytes_of_last_packet()); | 
 |     // Only the first packet in the coalesced packet has been processed. | 
 |     EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
 |     // Process the coalesced 1-RTT packet. | 
 |     ASSERT_TRUE(writer_->coalesced_packet() != nullptr); | 
 |     auto packet = writer_->coalesced_packet()->Clone(); | 
 |     writer_->framer()->ProcessPacket(*packet); | 
 |     EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |     ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
 |   } else { | 
 |     // Although packet 2 has not been retransmitted, it has been marked PTOed | 
 |     // and a HANDHSAKE PING gets retransmitted. | 
 |     EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); | 
 |     EXPECT_EQ(1u, writer_->ping_frames().size()); | 
 |     EXPECT_TRUE(writer_->stream_frames().empty()); | 
 |     ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
 |   } | 
 |   // Verify retransmission alarm is still armed. | 
 |   ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        RTTSampleDoesNotIncludeQueuingDelayWithPostponedAckProcessing) { | 
 |   // An endpoint might postpone the processing of ACK when the corresponding | 
 |   // decryption key is not available. This test makes sure the RTT sample does | 
 |   // not include the queuing delay. | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   config.set_max_undecryptable_packets(3); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   // 30ms RTT. | 
 |   const QuicTime::Delta kTestRTT = QuicTime::Delta::FromMilliseconds(30); | 
 |   RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
 |   rtt_stats->UpdateRtt(kTestRTT, QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   // Send 0-RTT packet. | 
 |   connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE); | 
 |   connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                            std::make_unique<TaggingEncrypter>(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
 |   connection_.SendStreamDataWithString(0, std::string(10, 'a'), 0, FIN); | 
 |  | 
 |   // Receives 1-RTT ACK for 0-RTT packet after RTT + ack_delay. | 
 |   clock_.AdvanceTime( | 
 |       kTestRTT + QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs)); | 
 |   EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(0x01)); | 
 |   QuicAckFrame ack_frame = InitAckFrame(1); | 
 |   // Peer reported ACK delay. | 
 |   ack_frame.ack_delay_time = | 
 |       QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs); | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(&ack_frame)); | 
 |   QuicPacketHeader header = | 
 |       ConstructPacketHeader(30, ENCRYPTION_FORWARD_SECURE); | 
 |   std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
 |  | 
 |   char buffer[kMaxOutgoingPacketSize]; | 
 |   size_t encrypted_length = peer_framer_.EncryptPayload( | 
 |       ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(30), *packet, buffer, | 
 |       kMaxOutgoingPacketSize); | 
 |   connection_.ProcessUdpPacket( | 
 |       kSelfAddress, kPeerAddress, | 
 |       QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
 |   if (connection_.GetSendAlarm()->IsSet()) { | 
 |     connection_.GetSendAlarm()->Fire(); | 
 |   } | 
 |   ASSERT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
 |  | 
 |   // Assume 1-RTT decrypter is available after 10ms. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); | 
 |   EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
 |   SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x01)); | 
 |   ASSERT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
 |   connection_.GetProcessUndecryptablePacketsAlarm()->Fire(); | 
 |   // Verify RTT sample does not include queueing delay. | 
 |   EXPECT_EQ(rtt_stats->latest_rtt(), kTestRTT); | 
 | } | 
 |  | 
 | // Regression test for b/112480134. | 
 | TEST_P(QuicConnectionTest, NoExtraPaddingInReserializedInitial) { | 
 |   // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. | 
 |   if (!IsDefaultTestConfiguration() || | 
 |       !connection_.version().CanSendCoalescedPackets()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   MockQuicConnectionDebugVisitor debug_visitor; | 
 |   connection_.set_debug_visitor(&debug_visitor); | 
 |  | 
 |   uint64_t debug_visitor_sent_count = 0; | 
 |   EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)) | 
 |       .WillRepeatedly([&]() { debug_visitor_sent_count++; }); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   // Received INITIAL 1. | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |  | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x03)); | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x03)); | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x04)); | 
 |  | 
 |   // Received ENCRYPTION_ZERO_RTT 2. | 
 |   ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     // Send INITIAL 1. | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |     connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL); | 
 |     // Send HANDSHAKE 2. | 
 |     EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |     connection_.SendCryptoDataWithString(std::string(200, 'a'), 0, | 
 |                                          ENCRYPTION_HANDSHAKE); | 
 |     // Send 1-RTT 3. | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     connection_.SendStreamDataWithString(0, std::string(400, 'b'), 0, NO_FIN); | 
 |   } | 
 |  | 
 |   // Arrange the stream data to be sent in response to ENCRYPTION_INITIAL 3. | 
 |   const std::string data4(1000, '4');  // Data to send in stream id 4 | 
 |   const std::string data8(3000, '8');  // Data to send in stream id 8 | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).WillOnce([&]() { | 
 |     connection_.producer()->SaveStreamData(4, data4); | 
 |     connection_.producer()->SaveStreamData(8, data8); | 
 |  | 
 |     notifier_.WriteOrBufferData(4, data4.size(), FIN_AND_PADDING); | 
 |  | 
 |     // This should trigger FlushCoalescedPacket. | 
 |     notifier_.WriteOrBufferData(8, data8.size(), FIN); | 
 |   }); | 
 |  | 
 |   QuicByteCount pending_padding_after_serialize_2nd_1rtt_packet = 0; | 
 |   QuicPacketCount num_1rtt_packets_serialized = 0; | 
 |   EXPECT_CALL(connection_, OnSerializedPacket(_)) | 
 |       .WillRepeatedly([&](SerializedPacket packet) { | 
 |         if (packet.encryption_level == ENCRYPTION_FORWARD_SECURE) { | 
 |           num_1rtt_packets_serialized++; | 
 |           if (num_1rtt_packets_serialized == 2) { | 
 |             pending_padding_after_serialize_2nd_1rtt_packet = | 
 |                 connection_.packet_creator().pending_padding_bytes(); | 
 |           } | 
 |         } | 
 |         connection_.QuicConnection::OnSerializedPacket(std::move(packet)); | 
 |       }); | 
 |  | 
 |   // Server receives INITIAL 3, this will serialzie FS 7 (stream 4, stream 8), | 
 |   // which will trigger a flush of a coalesced packet consists of INITIAL 4, | 
 |   // HS 5 and FS 6 (stream 4). | 
 |   if (GetQuicReloadableFlag( | 
 |           quic_close_connection_if_fail_to_serialzie_coalesced_packet2)) { | 
 |     // Expect no QUIC_BUG. | 
 |     ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_INITIAL); | 
 |     EXPECT_EQ( | 
 |         debug_visitor_sent_count, | 
 |         connection_.sent_packet_manager().GetLargestSentPacket().ToUint64()); | 
 |   } else { | 
 |     // Expect QUIC_BUG due to extra padding. | 
 |     EXPECT_QUIC_BUG( | 
 |         { ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_INITIAL); }, | 
 |         "Reserialize initial packet in coalescer has unexpected size"); | 
 |     EXPECT_EQ( | 
 |         debug_visitor_sent_count + 1, | 
 |         connection_.sent_packet_manager().GetLargestSentPacket().ToUint64()); | 
 |   } | 
 |  | 
 |   // The error only happens if after serializing the second 1RTT packet(pkt #7), | 
 |   // the pending padding bytes is non zero. | 
 |   EXPECT_GT(pending_padding_after_serialize_2nd_1rtt_packet, 0u); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReportedAckDelayIncludesQueuingDelay) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
 |   QuicConfig config; | 
 |   config.set_max_undecryptable_packets(3); | 
 |   connection_.SetFromConfig(config); | 
 |  | 
 |   // Receive 1-RTT ack-eliciting packet while keys are not available. | 
 |   connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE); | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                             std::make_unique<TaggingEncrypter>(0x01)); | 
 |   QuicFrames frames; | 
 |   frames.push_back(QuicFrame(QuicPingFrame())); | 
 |   frames.push_back(QuicFrame(QuicPaddingFrame(100))); | 
 |   QuicPacketHeader header = | 
 |       ConstructPacketHeader(30, ENCRYPTION_FORWARD_SECURE); | 
 |   std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
 |  | 
 |   char buffer[kMaxOutgoingPacketSize]; | 
 |   size_t encrypted_length = peer_framer_.EncryptPayload( | 
 |       ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(30), *packet, buffer, | 
 |       kMaxOutgoingPacketSize); | 
 |   EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
 |   const QuicTime packet_receipt_time = clock_.Now(); | 
 |   connection_.ProcessUdpPacket( | 
 |       kSelfAddress, kPeerAddress, | 
 |       QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
 |   if (connection_.GetSendAlarm()->IsSet()) { | 
 |     connection_.GetSendAlarm()->Fire(); | 
 |   } | 
 |   ASSERT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
 |   // 1-RTT keys become available after 10ms. | 
 |   const QuicTime::Delta kQueuingDelay = QuicTime::Delta::FromMilliseconds(10); | 
 |   clock_.AdvanceTime(kQueuingDelay); | 
 |   EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x01)); | 
 |   ASSERT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
 |  | 
 |   connection_.GetProcessUndecryptablePacketsAlarm()->Fire(); | 
 |   ASSERT_TRUE(connection_.HasPendingAcks()); | 
 |   if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) { | 
 |     EXPECT_EQ(packet_receipt_time + DefaultDelayedAckTime(), | 
 |               connection_.GetAckAlarm()->deadline()); | 
 |     clock_.AdvanceTime(packet_receipt_time + DefaultDelayedAckTime() - | 
 |                        clock_.Now()); | 
 |   } else { | 
 |     EXPECT_EQ(clock_.Now() + DefaultDelayedAckTime(), | 
 |               connection_.GetAckAlarm()->deadline()); | 
 |     clock_.AdvanceTime(DefaultDelayedAckTime()); | 
 |   } | 
 |   // Fire ACK alarm. | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |   ASSERT_EQ(1u, writer_->ack_frames().size()); | 
 |   if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) { | 
 |     // Verify ACK delay time does not include queuing delay. | 
 |     EXPECT_EQ(DefaultDelayedAckTime(), writer_->ack_frames()[0].ack_delay_time); | 
 |   } else { | 
 |     // Verify ACK delay time = queuing delay + ack delay | 
 |     EXPECT_EQ(DefaultDelayedAckTime() + kQueuingDelay, | 
 |               writer_->ack_frames()[0].ack_delay_time); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CoalesceOneRTTPacketWithInitialAndHandshakePackets) { | 
 |   if (!version().HasIetfQuicFrames()) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
 |   EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   // Received INITIAL 1. | 
 |   ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
 |  | 
 |   peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
 |                             std::make_unique<TaggingEncrypter>(0x02)); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
 |                            std::make_unique<TaggingEncrypter>(0x01)); | 
 |   connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
 |                            std::make_unique<TaggingEncrypter>(0x03)); | 
 |   SetDecrypter(ENCRYPTION_HANDSHAKE, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x03)); | 
 |   SetDecrypter(ENCRYPTION_ZERO_RTT, | 
 |                std::make_unique<StrictTaggingDecrypter>(0x02)); | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            std::make_unique<TaggingEncrypter>(0x04)); | 
 |  | 
 |   // Received ENCRYPTION_ZERO_RTT 2. | 
 |   ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
 |  | 
 |   { | 
 |     QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
 |     // Send INITIAL 1. | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |     connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL); | 
 |     // Send HANDSHAKE 2. | 
 |     EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
 |     connection_.SendCryptoDataWithString(std::string(200, 'a'), 0, | 
 |                                          ENCRYPTION_HANDSHAKE); | 
 |     // Send 1-RTT data. | 
 |     connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |     connection_.SendStreamDataWithString(0, std::string(2000, 'b'), 0, FIN); | 
 |   } | 
 |   // Verify coalesced packet [INITIAL 1 + HANDSHAKE 2 + part of 1-RTT data] + | 
 |   // rest of 1-RTT data get sent. | 
 |   EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 |  | 
 |   // Received ENCRYPTION_INITIAL 3. | 
 |   ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_INITIAL); | 
 |  | 
 |   // Verify a coalesced packet gets sent. | 
 |   EXPECT_EQ(3u, writer_->packets_write_attempts()); | 
 |  | 
 |   // Only the first INITIAL packet has been processed yet. | 
 |   EXPECT_EQ(1u, writer_->ack_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
 |  | 
 |   // Process HANDSHAKE packet. | 
 |   ASSERT_TRUE(writer_->coalesced_packet() != nullptr); | 
 |   auto packet = writer_->coalesced_packet()->Clone(); | 
 |   writer_->framer()->ProcessPacket(*packet); | 
 |   EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
 |   if (!GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) { | 
 |     ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
 |     return; | 
 |   } | 
 |   // Process 1-RTT packet. | 
 |   ASSERT_TRUE(writer_->coalesced_packet() != nullptr); | 
 |   packet = writer_->coalesced_packet()->Clone(); | 
 |   writer_->framer()->ProcessPacket(*packet); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 | } | 
 |  | 
 | // Regression test for b/180103273 | 
 | TEST_P(QuicConnectionTest, SendMultipleConnectionCloses) { | 
 |   if (!version().HasIetfQuicFrames() || | 
 |       !GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
 |     return; | 
 |   } | 
 |   set_perspective(Perspective::IS_SERVER); | 
 |   // Finish handshake. | 
 |   QuicConnectionPeer::SetAddressValidated(&connection_); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   notifier_.NeuterUnencryptedData(); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |   connection_.OnHandshakeComplete(); | 
 |   connection_.RemoveEncrypter(ENCRYPTION_INITIAL); | 
 |   connection_.RemoveEncrypter(ENCRYPTION_HANDSHAKE); | 
 |   EXPECT_CALL(visitor_, GetHandshakeState()) | 
 |       .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); | 
 |   ASSERT_TRUE(connection_.BlackholeDetectionInProgress()); | 
 |   // Verify BeforeConnectionCloseSent gets called twice while OnConnectionClosed | 
 |   // is called once. | 
 |   EXPECT_CALL(visitor_, BeforeConnectionCloseSent()).Times(2); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
 |   // Send connection close w/o closing connection. | 
 |   QuicConnectionPeer::SendConnectionClosePacket( | 
 |       &connection_, INTERNAL_ERROR, QUIC_INTERNAL_ERROR, "internal error"); | 
 |   // Fire blackhole detection alarm. | 
 |   EXPECT_QUIC_BUG(connection_.GetBlackholeDetectorAlarm()->Fire(), | 
 |                   "Already sent connection close"); | 
 | } | 
 |  | 
 | }  // namespace | 
 | }  // namespace test | 
 | }  // namespace quic |