blob: 1280f2e51e83e031197fda2fff26c961dee7b26a [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/third_party/quiche/src/quic/core/quic_framer.h"
#include <cstddef>
#include <cstdint>
#include <memory>
#include <string>
#include "net/third_party/quiche/src/quic/core/crypto/crypto_framer.h"
#include "net/third_party/quiche/src/quic/core/crypto/crypto_handshake.h"
#include "net/third_party/quiche/src/quic/core/crypto/crypto_handshake_message.h"
#include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h"
#include "net/third_party/quiche/src/quic/core/crypto/crypto_utils.h"
#include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h"
#include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h"
#include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h"
#include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h"
#include "net/third_party/quiche/src/quic/core/crypto/quic_random.h"
#include "net/third_party/quiche/src/quic/core/quic_connection_id.h"
#include "net/third_party/quiche/src/quic/core/quic_constants.h"
#include "net/third_party/quiche/src/quic/core/quic_data_reader.h"
#include "net/third_party/quiche/src/quic/core/quic_data_writer.h"
#include "net/third_party/quiche/src/quic/core/quic_error_codes.h"
#include "net/third_party/quiche/src/quic/core/quic_socket_address_coder.h"
#include "net/third_party/quiche/src/quic/core/quic_stream_frame_data_producer.h"
#include "net/third_party/quiche/src/quic/core/quic_types.h"
#include "net/third_party/quiche/src/quic/core/quic_utils.h"
#include "net/third_party/quiche/src/quic/core/quic_versions.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_aligned.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_arraysize.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_client_stats.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_fallthrough.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_flags.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_logging.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_stack_trace.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_text_utils.h"
namespace quic {
namespace {
#define ENDPOINT \
(perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ")
// How much to shift the timestamp in the IETF Ack frame.
// TODO(fkastenholz) when we get real IETF QUIC, need to get
// the currect shift from the transport parameters.
const int kIetfAckTimestampShift = 3;
// Number of bits the packet number length bits are shifted from the right
// edge of the header.
const uint8_t kPublicHeaderSequenceNumberShift = 4;
// There are two interpretations for the Frame Type byte in the QUIC protocol,
// resulting in two Frame Types: Special Frame Types and Regular Frame Types.
//
// Regular Frame Types use the Frame Type byte simply. Currently defined
// Regular Frame Types are:
// Padding : 0b 00000000 (0x00)
// ResetStream : 0b 00000001 (0x01)
// ConnectionClose : 0b 00000010 (0x02)
// GoAway : 0b 00000011 (0x03)
// WindowUpdate : 0b 00000100 (0x04)
// Blocked : 0b 00000101 (0x05)
//
// Special Frame Types encode both a Frame Type and corresponding flags
// all in the Frame Type byte. Currently defined Special Frame Types
// are:
// Stream : 0b 1xxxxxxx
// Ack : 0b 01xxxxxx
//
// Semantics of the flag bits above (the x bits) depends on the frame type.
// Masks to determine if the frame type is a special use
// and for specific special frame types.
const uint8_t kQuicFrameTypeBrokenMask = 0xE0; // 0b 11100000
const uint8_t kQuicFrameTypeSpecialMask = 0xC0; // 0b 11000000
const uint8_t kQuicFrameTypeStreamMask = 0x80;
const uint8_t kQuicFrameTypeAckMask = 0x40;
static_assert(kQuicFrameTypeSpecialMask ==
(kQuicFrameTypeStreamMask | kQuicFrameTypeAckMask),
"Invalid kQuicFrameTypeSpecialMask");
// The stream type format is 1FDOOOSS, where
// F is the fin bit.
// D is the data length bit (0 or 2 bytes).
// OO/OOO are the size of the offset.
// SS is the size of the stream ID.
// Note that the stream encoding can not be determined by inspection. It can
// be determined only by knowing the QUIC Version.
// Stream frame relative shifts and masks for interpreting the stream flags.
// StreamID may be 1, 2, 3, or 4 bytes.
const uint8_t kQuicStreamIdShift = 2;
const uint8_t kQuicStreamIDLengthMask = 0x03;
// Offset may be 0, 2, 4, or 8 bytes.
const uint8_t kQuicStreamShift = 3;
const uint8_t kQuicStreamOffsetMask = 0x07;
// Data length may be 0 or 2 bytes.
const uint8_t kQuicStreamDataLengthShift = 1;
const uint8_t kQuicStreamDataLengthMask = 0x01;
// Fin bit may be set or not.
const uint8_t kQuicStreamFinShift = 1;
const uint8_t kQuicStreamFinMask = 0x01;
// The format is 01M0LLOO, where
// M if set, there are multiple ack blocks in the frame.
// LL is the size of the largest ack field.
// OO is the size of the ack blocks offset field.
// packet number size shift used in AckFrames.
const uint8_t kQuicSequenceNumberLengthNumBits = 2;
const uint8_t kActBlockLengthOffset = 0;
const uint8_t kLargestAckedOffset = 2;
// Acks may have only one ack block.
const uint8_t kQuicHasMultipleAckBlocksOffset = 5;
// Timestamps are 4 bytes followed by 2 bytes.
const uint8_t kQuicNumTimestampsLength = 1;
const uint8_t kQuicFirstTimestampLength = 4;
const uint8_t kQuicTimestampLength = 2;
// Gaps between packet numbers are 1 byte.
const uint8_t kQuicTimestampPacketNumberGapLength = 1;
// Maximum length of encoded error strings.
const int kMaxErrorStringLength = 256;
const uint8_t kConnectionIdLengthAdjustment = 3;
const uint8_t kDestinationConnectionIdLengthMask = 0xF0;
const uint8_t kSourceConnectionIdLengthMask = 0x0F;
// Returns the absolute value of the difference between |a| and |b|.
uint64_t Delta(uint64_t a, uint64_t b) {
// Since these are unsigned numbers, we can't just return abs(a - b)
if (a < b) {
return b - a;
}
return a - b;
}
uint64_t ClosestTo(uint64_t target, uint64_t a, uint64_t b) {
return (Delta(target, a) < Delta(target, b)) ? a : b;
}
uint64_t PacketNumberIntervalLength(
const QuicInterval<QuicPacketNumber>& interval) {
if (interval.Empty()) {
return 0u;
}
return interval.max() - interval.min();
}
QuicPacketNumberLength ReadSequenceNumberLength(uint8_t flags) {
switch (flags & PACKET_FLAGS_8BYTE_PACKET) {
case PACKET_FLAGS_8BYTE_PACKET:
return PACKET_6BYTE_PACKET_NUMBER;
case PACKET_FLAGS_4BYTE_PACKET:
return PACKET_4BYTE_PACKET_NUMBER;
case PACKET_FLAGS_2BYTE_PACKET:
return PACKET_2BYTE_PACKET_NUMBER;
case PACKET_FLAGS_1BYTE_PACKET:
return PACKET_1BYTE_PACKET_NUMBER;
default:
QUIC_BUG << "Unreachable case statement.";
return PACKET_6BYTE_PACKET_NUMBER;
}
}
QuicPacketNumberLength ReadAckPacketNumberLength(
QuicTransportVersion /*version*/,
uint8_t flags) {
switch (flags & PACKET_FLAGS_8BYTE_PACKET) {
case PACKET_FLAGS_8BYTE_PACKET:
return PACKET_6BYTE_PACKET_NUMBER;
case PACKET_FLAGS_4BYTE_PACKET:
return PACKET_4BYTE_PACKET_NUMBER;
case PACKET_FLAGS_2BYTE_PACKET:
return PACKET_2BYTE_PACKET_NUMBER;
case PACKET_FLAGS_1BYTE_PACKET:
return PACKET_1BYTE_PACKET_NUMBER;
default:
QUIC_BUG << "Unreachable case statement.";
return PACKET_6BYTE_PACKET_NUMBER;
}
}
uint8_t PacketNumberLengthToOnWireValue(
QuicTransportVersion version,
QuicPacketNumberLength packet_number_length) {
if (version > QUIC_VERSION_44) {
return packet_number_length - 1;
}
switch (packet_number_length) {
case PACKET_1BYTE_PACKET_NUMBER:
return 0;
case PACKET_2BYTE_PACKET_NUMBER:
return 1;
case PACKET_4BYTE_PACKET_NUMBER:
return 2;
default:
QUIC_BUG << "Invalid packet number length.";
return 0;
}
}
bool GetShortHeaderPacketNumberLength(
QuicTransportVersion version,
uint8_t type,
bool infer_packet_header_type_from_version,
QuicPacketNumberLength* packet_number_length) {
DCHECK(!(type & FLAGS_LONG_HEADER));
const bool two_bits_packet_number_length =
infer_packet_header_type_from_version ? version > QUIC_VERSION_44
: (type & FLAGS_FIXED_BIT);
if (two_bits_packet_number_length) {
*packet_number_length =
static_cast<QuicPacketNumberLength>((type & 0x03) + 1);
return true;
}
switch (type & 0x07) {
case 0:
*packet_number_length = PACKET_1BYTE_PACKET_NUMBER;
break;
case 1:
*packet_number_length = PACKET_2BYTE_PACKET_NUMBER;
break;
case 2:
*packet_number_length = PACKET_4BYTE_PACKET_NUMBER;
break;
default:
*packet_number_length = PACKET_6BYTE_PACKET_NUMBER;
return false;
}
return true;
}
uint8_t LongHeaderTypeToOnWireValue(QuicTransportVersion version,
QuicLongHeaderType type) {
switch (type) {
case INITIAL:
return version > QUIC_VERSION_44 ? 0 : 0x7F;
case ZERO_RTT_PROTECTED:
return version > QUIC_VERSION_44 ? 1 << 4 : 0x7C;
case HANDSHAKE:
return version > QUIC_VERSION_44 ? 2 << 4 : 0x7D;
case RETRY:
return version > QUIC_VERSION_44 ? 3 << 4 : 0x7E;
case VERSION_NEGOTIATION:
return 0xF0; // Value does not matter
default:
QUIC_BUG << "Invalid long header type: " << type;
return 0xFF;
}
}
bool GetLongHeaderType(QuicTransportVersion version,
uint8_t type,
QuicLongHeaderType* long_header_type) {
DCHECK((type & FLAGS_LONG_HEADER) && version != QUIC_VERSION_UNSUPPORTED);
if (version > QUIC_VERSION_44) {
switch ((type & 0x30) >> 4) {
case 0:
*long_header_type = INITIAL;
break;
case 1:
*long_header_type = ZERO_RTT_PROTECTED;
break;
case 2:
*long_header_type = HANDSHAKE;
break;
case 3:
*long_header_type = RETRY;
break;
default:
QUIC_BUG << "Unreachable statement";
*long_header_type = INVALID_PACKET_TYPE;
return false;
}
return true;
}
switch (type & 0x7F) {
case 0x7F:
*long_header_type = INITIAL;
break;
case 0x7C:
*long_header_type = ZERO_RTT_PROTECTED;
break;
case 0x7D:
*long_header_type = HANDSHAKE;
break;
case 0x7E:
*long_header_type = RETRY;
break;
default:
// Invalid packet header type. Whether a packet is version negotiation is
// determined by the version field.
*long_header_type = INVALID_PACKET_TYPE;
return false;
}
return true;
}
QuicPacketNumberLength GetLongHeaderPacketNumberLength(
QuicTransportVersion version,
uint8_t type) {
if (version > QUIC_VERSION_44) {
return static_cast<QuicPacketNumberLength>((type & 0x03) + 1);
}
return PACKET_4BYTE_PACKET_NUMBER;
}
// Used to get packet number space before packet gets decrypted.
PacketNumberSpace GetPacketNumberSpace(const QuicPacketHeader& header) {
switch (header.form) {
case GOOGLE_QUIC_PACKET:
QUIC_BUG << "Try to get packet number space of Google QUIC packet";
break;
case IETF_QUIC_SHORT_HEADER_PACKET:
return APPLICATION_DATA;
case IETF_QUIC_LONG_HEADER_PACKET:
switch (header.long_packet_type) {
case INITIAL:
return INITIAL_DATA;
case HANDSHAKE:
return HANDSHAKE_DATA;
case ZERO_RTT_PROTECTED:
return APPLICATION_DATA;
case VERSION_NEGOTIATION:
case RETRY:
case INVALID_PACKET_TYPE:
QUIC_BUG << "Try to get packet number space of long header type: "
<< QuicUtils::QuicLongHeaderTypetoString(
header.long_packet_type);
break;
}
}
return NUM_PACKET_NUMBER_SPACES;
}
EncryptionLevel GetEncryptionLevel(const QuicPacketHeader& header) {
switch (header.form) {
case GOOGLE_QUIC_PACKET:
QUIC_BUG << "Cannot determine EncryptionLevel from Google QUIC header";
break;
case IETF_QUIC_SHORT_HEADER_PACKET:
return ENCRYPTION_FORWARD_SECURE;
case IETF_QUIC_LONG_HEADER_PACKET:
switch (header.long_packet_type) {
case INITIAL:
return ENCRYPTION_INITIAL;
case HANDSHAKE:
return ENCRYPTION_HANDSHAKE;
case ZERO_RTT_PROTECTED:
return ENCRYPTION_ZERO_RTT;
case VERSION_NEGOTIATION:
case RETRY:
case INVALID_PACKET_TYPE:
QUIC_BUG << "No encryption used with type "
<< QuicUtils::QuicLongHeaderTypetoString(
header.long_packet_type);
}
}
return NUM_ENCRYPTION_LEVELS;
}
QuicStringPiece TruncateErrorString(QuicStringPiece error) {
if (error.length() <= kMaxErrorStringLength) {
return error;
}
return QuicStringPiece(error.data(), kMaxErrorStringLength);
}
size_t TruncatedErrorStringSize(const QuicStringPiece& error) {
if (error.length() < kMaxErrorStringLength) {
return error.length();
}
return kMaxErrorStringLength;
}
uint8_t GetConnectionIdLengthValue(QuicConnectionIdLength length) {
if (length == 0) {
return 0;
}
return static_cast<uint8_t>(length - kConnectionIdLengthAdjustment);
}
bool IsValidPacketNumberLength(QuicPacketNumberLength packet_number_length) {
size_t length = packet_number_length;
return length == 1 || length == 2 || length == 4 || length == 6 ||
length == 8;
}
bool IsValidFullPacketNumber(uint64_t full_packet_number,
QuicTransportVersion version) {
return full_packet_number > 0 || version == QUIC_VERSION_99;
}
bool AppendIetfConnectionIds(bool version_flag,
QuicConnectionId destination_connection_id,
QuicConnectionId source_connection_id,
QuicDataWriter* writer) {
if (!version_flag) {
return writer->WriteConnectionId(destination_connection_id);
}
// Compute connection ID length byte.
uint8_t dcil = GetConnectionIdLengthValue(
static_cast<QuicConnectionIdLength>(destination_connection_id.length()));
uint8_t scil = GetConnectionIdLengthValue(
static_cast<QuicConnectionIdLength>(source_connection_id.length()));
uint8_t connection_id_length = dcil << 4 | scil;
return writer->WriteUInt8(connection_id_length) &&
writer->WriteConnectionId(destination_connection_id) &&
writer->WriteConnectionId(source_connection_id);
}
enum class DroppedPacketReason {
// General errors
INVALID_PUBLIC_HEADER,
VERSION_MISMATCH,
// Version negotiation packet errors
INVALID_VERSION_NEGOTIATION_PACKET,
// Public reset packet errors, pre-v44
INVALID_PUBLIC_RESET_PACKET,
// Data packet errors
INVALID_PACKET_NUMBER,
INVALID_DIVERSIFICATION_NONCE,
DECRYPTION_FAILURE,
NUM_REASONS,
};
void RecordDroppedPacketReason(DroppedPacketReason reason) {
QUIC_CLIENT_HISTOGRAM_ENUM("QuicDroppedPacketReason", reason,
DroppedPacketReason::NUM_REASONS,
"The reason a packet was not processed. Recorded "
"each time such a packet is dropped");
}
PacketHeaderFormat GetIetfPacketHeaderFormat(uint8_t type_byte) {
return type_byte & FLAGS_LONG_HEADER ? IETF_QUIC_LONG_HEADER_PACKET
: IETF_QUIC_SHORT_HEADER_PACKET;
}
} // namespace
QuicFramer::QuicFramer(const ParsedQuicVersionVector& supported_versions,
QuicTime creation_time,
Perspective perspective,
uint8_t expected_server_connection_id_length)
: visitor_(nullptr),
error_(QUIC_NO_ERROR),
last_serialized_server_connection_id_(EmptyQuicConnectionId()),
last_serialized_client_connection_id_(EmptyQuicConnectionId()),
version_(PROTOCOL_UNSUPPORTED, QUIC_VERSION_UNSUPPORTED),
supported_versions_(supported_versions),
decrypter_level_(ENCRYPTION_INITIAL),
alternative_decrypter_level_(NUM_ENCRYPTION_LEVELS),
alternative_decrypter_latch_(false),
perspective_(perspective),
validate_flags_(true),
process_timestamps_(false),
creation_time_(creation_time),
last_timestamp_(QuicTime::Delta::Zero()),
first_sending_packet_number_(FirstSendingPacketNumber()),
data_producer_(nullptr),
infer_packet_header_type_from_version_(perspective ==
Perspective::IS_CLIENT),
expected_server_connection_id_length_(
expected_server_connection_id_length),
expected_client_connection_id_length_(0),
supports_multiple_packet_number_spaces_(false),
last_written_packet_number_length_(0) {
DCHECK(!supported_versions.empty());
version_ = supported_versions_[0];
decrypter_[ENCRYPTION_INITIAL] = QuicMakeUnique<NullDecrypter>(perspective);
encrypter_[ENCRYPTION_INITIAL] = QuicMakeUnique<NullEncrypter>(perspective);
}
QuicFramer::~QuicFramer() {}
// static
size_t QuicFramer::GetMinStreamFrameSize(QuicTransportVersion version,
QuicStreamId stream_id,
QuicStreamOffset offset,
bool last_frame_in_packet,
QuicPacketLength data_length) {
if (VersionHasIetfQuicFrames(version)) {
return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_id) +
(last_frame_in_packet
? 0
: QuicDataWriter::GetVarInt62Len(data_length)) +
(offset != 0 ? QuicDataWriter::GetVarInt62Len(offset) : 0);
}
return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
GetStreamOffsetSize(version, offset) +
(last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize);
}
// static
size_t QuicFramer::GetMinCryptoFrameSize(QuicStreamOffset offset,
QuicPacketLength data_length) {
return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(offset) +
QuicDataWriter::GetVarInt62Len(data_length);
}
// static
size_t QuicFramer::GetMessageFrameSize(QuicTransportVersion version,
bool last_frame_in_packet,
QuicByteCount length) {
QUIC_BUG_IF(!VersionSupportsMessageFrames(version))
<< "Try to serialize MESSAGE frame in " << version;
return kQuicFrameTypeSize +
(last_frame_in_packet ? 0 : QuicDataWriter::GetVarInt62Len(length)) +
length;
}
// static
size_t QuicFramer::GetMinAckFrameSize(
QuicTransportVersion version,
QuicPacketNumberLength largest_observed_length) {
if (VersionHasIetfQuicFrames(version)) {
// The minimal ack frame consists of the following four fields: Largest
// Acknowledged, ACK Delay, ACK Block Count, and First ACK Block. Minimum
// size of each is 1 byte.
return kQuicFrameTypeSize + 4;
}
size_t min_size = kQuicFrameTypeSize + largest_observed_length +
kQuicDeltaTimeLargestObservedSize;
return min_size + kQuicNumTimestampsSize;
}
// static
size_t QuicFramer::GetStopWaitingFrameSize(
QuicTransportVersion /*version*/,
QuicPacketNumberLength packet_number_length) {
size_t min_size = kQuicFrameTypeSize + packet_number_length;
return min_size;
}
// static
size_t QuicFramer::GetRstStreamFrameSize(QuicTransportVersion version,
const QuicRstStreamFrame& frame) {
if (VersionHasIetfQuicFrames(version)) {
return QuicDataWriter::GetVarInt62Len(frame.stream_id) +
QuicDataWriter::GetVarInt62Len(frame.byte_offset) +
kQuicFrameTypeSize +
QuicDataWriter::GetVarInt62Len(frame.ietf_error_code);
}
return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize +
kQuicErrorCodeSize;
}
// static
size_t QuicFramer::GetConnectionCloseFrameSize(
QuicTransportVersion version,
const QuicConnectionCloseFrame& frame) {
if (!VersionHasIetfQuicFrames(version)) {
// Not IETF QUIC, return Google QUIC CONNECTION CLOSE frame size.
return kQuicFrameTypeSize + kQuicErrorCodeSize +
kQuicErrorDetailsLengthSize +
TruncatedErrorStringSize(frame.error_details);
}
// TODO(fkastenholz): For complete support of IETF QUIC CONNECTION_CLOSE,
// check if the frame is a Transport close and if the frame's
// extracted_error_code is not QUIC_IETF_GQUIC_ERROR_MISSING. If so,
// extend the error string to include " QuicErrorCode: #"
const size_t truncated_error_string_size =
TruncatedErrorStringSize(frame.error_details);
uint64_t close_code = 0;
if (frame.close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) {
close_code = static_cast<uint64_t>(frame.transport_error_code);
} else if (frame.close_type == IETF_QUIC_APPLICATION_CONNECTION_CLOSE) {
close_code = static_cast<uint64_t>(frame.application_error_code);
}
const size_t frame_size =
truncated_error_string_size +
QuicDataWriter::GetVarInt62Len(truncated_error_string_size) +
kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(close_code);
if (frame.close_type == IETF_QUIC_APPLICATION_CONNECTION_CLOSE) {
return frame_size;
}
// frame includes the transport_close_frame_type, so include its length.
return frame_size +
QuicDataWriter::GetVarInt62Len(frame.transport_close_frame_type);
}
// static
size_t QuicFramer::GetMinGoAwayFrameSize() {
return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
kQuicMaxStreamIdSize;
}
// static
size_t QuicFramer::GetWindowUpdateFrameSize(
QuicTransportVersion version,
const QuicWindowUpdateFrame& frame) {
if (!VersionHasIetfQuicFrames(version)) {
return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
}
if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) {
// Frame would be a MAX DATA frame, which has only a Maximum Data field.
return kQuicFrameTypeSize +
QuicDataWriter::GetVarInt62Len(frame.byte_offset);
}
// Frame would be MAX STREAM DATA, has Maximum Stream Data and Stream ID
// fields.
return kQuicFrameTypeSize +
QuicDataWriter::GetVarInt62Len(frame.byte_offset) +
QuicDataWriter::GetVarInt62Len(frame.stream_id);
}
// static
size_t QuicFramer::GetMaxStreamsFrameSize(QuicTransportVersion version,
const QuicMaxStreamsFrame& frame) {
if (!VersionHasIetfQuicFrames(version)) {
QUIC_BUG << "In version " << version
<< ", which does not support IETF Frames, and tried to serialize "
"MaxStreams Frame.";
}
return kQuicFrameTypeSize +
QuicDataWriter::GetVarInt62Len(frame.stream_count);
}
// static
size_t QuicFramer::GetStreamsBlockedFrameSize(
QuicTransportVersion version,
const QuicStreamsBlockedFrame& frame) {
if (!VersionHasIetfQuicFrames(version)) {
QUIC_BUG << "In version " << version
<< ", which does not support IETF frames, and tried to serialize "
"StreamsBlocked Frame.";
}
return kQuicFrameTypeSize +
QuicDataWriter::GetVarInt62Len(frame.stream_count);
}
// static
size_t QuicFramer::GetBlockedFrameSize(QuicTransportVersion version,
const QuicBlockedFrame& frame) {
if (!VersionHasIetfQuicFrames(version)) {
return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
}
if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) {
// return size of IETF QUIC Blocked frame
return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset);
}
// return size of IETF QUIC Stream Blocked frame.
return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset) +
QuicDataWriter::GetVarInt62Len(frame.stream_id);
}
// static
size_t QuicFramer::GetStopSendingFrameSize(const QuicStopSendingFrame& frame) {
return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.stream_id) +
QuicDataWriter::GetVarInt62Len(frame.application_error_code);
}
// static
size_t QuicFramer::GetPathChallengeFrameSize(
const QuicPathChallengeFrame& frame) {
return kQuicFrameTypeSize + sizeof(frame.data_buffer);
}
// static
size_t QuicFramer::GetPathResponseFrameSize(
const QuicPathResponseFrame& frame) {
return kQuicFrameTypeSize + sizeof(frame.data_buffer);
}
// static
size_t QuicFramer::GetRetransmittableControlFrameSize(
QuicTransportVersion version,
const QuicFrame& frame) {
switch (frame.type) {
case PING_FRAME:
// Ping has no payload.
return kQuicFrameTypeSize;
case RST_STREAM_FRAME:
return GetRstStreamFrameSize(version, *frame.rst_stream_frame);
case CONNECTION_CLOSE_FRAME:
return GetConnectionCloseFrameSize(version,
*frame.connection_close_frame);
case GOAWAY_FRAME:
return GetMinGoAwayFrameSize() +
TruncatedErrorStringSize(frame.goaway_frame->reason_phrase);
case WINDOW_UPDATE_FRAME:
// For IETF QUIC, this could be either a MAX DATA or MAX STREAM DATA.
// GetWindowUpdateFrameSize figures this out and returns the correct
// length.
return GetWindowUpdateFrameSize(version, *frame.window_update_frame);
case BLOCKED_FRAME:
return GetBlockedFrameSize(version, *frame.blocked_frame);
case NEW_CONNECTION_ID_FRAME:
return GetNewConnectionIdFrameSize(*frame.new_connection_id_frame);
case RETIRE_CONNECTION_ID_FRAME:
return GetRetireConnectionIdFrameSize(*frame.retire_connection_id_frame);
case NEW_TOKEN_FRAME:
return GetNewTokenFrameSize(*frame.new_token_frame);
case MAX_STREAMS_FRAME:
return GetMaxStreamsFrameSize(version, frame.max_streams_frame);
case STREAMS_BLOCKED_FRAME:
return GetStreamsBlockedFrameSize(version, frame.streams_blocked_frame);
case PATH_RESPONSE_FRAME:
return GetPathResponseFrameSize(*frame.path_response_frame);
case PATH_CHALLENGE_FRAME:
return GetPathChallengeFrameSize(*frame.path_challenge_frame);
case STOP_SENDING_FRAME:
return GetStopSendingFrameSize(*frame.stop_sending_frame);
case STREAM_FRAME:
case ACK_FRAME:
case STOP_WAITING_FRAME:
case MTU_DISCOVERY_FRAME:
case PADDING_FRAME:
case MESSAGE_FRAME:
case CRYPTO_FRAME:
case NUM_FRAME_TYPES:
DCHECK(false);
return 0;
}
// Not reachable, but some Chrome compilers can't figure that out. *sigh*
DCHECK(false);
return 0;
}
// static
size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
// Sizes are 1 through 4 bytes.
for (int i = 1; i <= 4; ++i) {
stream_id >>= 8;
if (stream_id == 0) {
return i;
}
}
QUIC_BUG << "Failed to determine StreamIDSize.";
return 4;
}
// static
size_t QuicFramer::GetStreamOffsetSize(QuicTransportVersion /*version*/,
QuicStreamOffset offset) {
// 0 is a special case.
if (offset == 0) {
return 0;
}
// 2 through 8 are the remaining sizes.
offset >>= 8;
for (int i = 2; i <= 8; ++i) {
offset >>= 8;
if (offset == 0) {
return i;
}
}
QUIC_BUG << "Failed to determine StreamOffsetSize.";
return 8;
}
// static
size_t QuicFramer::GetNewConnectionIdFrameSize(
const QuicNewConnectionIdFrame& frame) {
return kQuicFrameTypeSize +
QuicDataWriter::GetVarInt62Len(frame.sequence_number) +
QuicDataWriter::GetVarInt62Len(frame.retire_prior_to) +
kConnectionIdLengthSize + frame.connection_id.length() +
sizeof(frame.stateless_reset_token);
}
// static
size_t QuicFramer::GetRetireConnectionIdFrameSize(
const QuicRetireConnectionIdFrame& frame) {
return kQuicFrameTypeSize +
QuicDataWriter::GetVarInt62Len(frame.sequence_number);
}
// static
size_t QuicFramer::GetNewTokenFrameSize(const QuicNewTokenFrame& frame) {
return kQuicFrameTypeSize +
QuicDataWriter::GetVarInt62Len(frame.token.length()) +
frame.token.length();
}
// TODO(nharper): Change this method to take a ParsedQuicVersion.
bool QuicFramer::IsSupportedTransportVersion(
const QuicTransportVersion version) const {
for (ParsedQuicVersion supported_version : supported_versions_) {
if (version == supported_version.transport_version) {
return true;
}
}
return false;
}
bool QuicFramer::IsSupportedVersion(const ParsedQuicVersion version) const {
for (const ParsedQuicVersion& supported_version : supported_versions_) {
if (version == supported_version) {
return true;
}
}
return false;
}
size_t QuicFramer::GetSerializedFrameLength(
const QuicFrame& frame,
size_t free_bytes,
bool first_frame,
bool last_frame,
QuicPacketNumberLength packet_number_length) {
// Prevent a rare crash reported in b/19458523.
if (frame.type == ACK_FRAME && frame.ack_frame == nullptr) {
QUIC_BUG << "Cannot compute the length of a null ack frame. free_bytes:"
<< free_bytes << " first_frame:" << first_frame
<< " last_frame:" << last_frame
<< " seq num length:" << packet_number_length;
set_error(QUIC_INTERNAL_ERROR);
visitor_->OnError(this);
return 0;
}
if (frame.type == PADDING_FRAME) {
if (frame.padding_frame.num_padding_bytes == -1) {
// Full padding to the end of the packet.
return free_bytes;
} else {
// Lite padding.
return free_bytes <
static_cast<size_t>(frame.padding_frame.num_padding_bytes)
? free_bytes
: frame.padding_frame.num_padding_bytes;
}
}
size_t frame_len =
ComputeFrameLength(frame, last_frame, packet_number_length);
if (frame_len <= free_bytes) {
// Frame fits within packet. Note that acks may be truncated.
return frame_len;
}
// Only truncate the first frame in a packet, so if subsequent ones go
// over, stop including more frames.
if (!first_frame) {
return 0;
}
bool can_truncate =
frame.type == ACK_FRAME &&
free_bytes >= GetMinAckFrameSize(version_.transport_version,
PACKET_6BYTE_PACKET_NUMBER);
if (can_truncate) {
// Truncate the frame so the packet will not exceed kMaxOutgoingPacketSize.
// Note that we may not use every byte of the writer in this case.
QUIC_DLOG(INFO) << ENDPOINT
<< "Truncating large frame, free bytes: " << free_bytes;
return free_bytes;
}
return 0;
}
QuicFramer::AckFrameInfo::AckFrameInfo()
: max_block_length(0), first_block_length(0), num_ack_blocks(0) {}
QuicFramer::AckFrameInfo::AckFrameInfo(const AckFrameInfo& other) = default;
QuicFramer::AckFrameInfo::~AckFrameInfo() {}
bool QuicFramer::WriteIetfLongHeaderLength(const QuicPacketHeader& header,
QuicDataWriter* writer,
size_t length_field_offset,
EncryptionLevel level) {
if (!QuicVersionHasLongHeaderLengths(transport_version()) ||
!header.version_flag || length_field_offset == 0) {
return true;
}
if (writer->length() < length_field_offset ||
writer->length() - length_field_offset <
kQuicDefaultLongHeaderLengthLength) {
set_detailed_error("Invalid length_field_offset.");
QUIC_BUG << "Invalid length_field_offset.";
return false;
}
size_t length_to_write = writer->length() - length_field_offset -
kQuicDefaultLongHeaderLengthLength;
// Add length of auth tag.
length_to_write = GetCiphertextSize(level, length_to_write);
QuicDataWriter length_writer(writer->length() - length_field_offset,
writer->data() + length_field_offset);
if (!length_writer.WriteVarInt62(length_to_write,
kQuicDefaultLongHeaderLengthLength)) {
set_detailed_error("Failed to overwrite long header length.");
QUIC_BUG << "Failed to overwrite long header length.";
return false;
}
return true;
}
size_t QuicFramer::BuildDataPacket(const QuicPacketHeader& header,
const QuicFrames& frames,
char* buffer,
size_t packet_length,
EncryptionLevel level) {
QuicDataWriter writer(packet_length, buffer);
size_t length_field_offset = 0;
if (!AppendPacketHeader(header, &writer, &length_field_offset)) {
QUIC_BUG << "AppendPacketHeader failed";
return 0;
}
if (VersionHasIetfQuicFrames(transport_version())) {
if (AppendIetfFrames(frames, &writer) == 0) {
return 0;
}
if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset,
level)) {
return 0;
}
return writer.length();
}
// TODO(dschinazi) if we enable long header lengths before v99, we need to
// add support for fixing up lengths in QuicFramer::BuildDataPacket.
DCHECK(!QuicVersionHasLongHeaderLengths(transport_version()));
size_t i = 0;
for (const QuicFrame& frame : frames) {
// Determine if we should write stream frame length in header.
const bool last_frame_in_packet = i == frames.size() - 1;
if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) {
QUIC_BUG << "AppendTypeByte failed";
return 0;
}
switch (frame.type) {
case PADDING_FRAME:
if (!AppendPaddingFrame(frame.padding_frame, &writer)) {
QUIC_BUG << "AppendPaddingFrame of "
<< frame.padding_frame.num_padding_bytes << " failed";
return 0;
}
break;
case STREAM_FRAME:
if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet,
&writer)) {
QUIC_BUG << "AppendStreamFrame failed";
return 0;
}
break;
case ACK_FRAME:
if (!AppendAckFrameAndTypeByte(*frame.ack_frame, &writer)) {
QUIC_BUG << "AppendAckFrameAndTypeByte failed: " << detailed_error_;
return 0;
}
break;
case STOP_WAITING_FRAME:
if (!AppendStopWaitingFrame(header, frame.stop_waiting_frame,
&writer)) {
QUIC_BUG << "AppendStopWaitingFrame failed";
return 0;
}
break;
case MTU_DISCOVERY_FRAME:
// MTU discovery frames are serialized as ping frames.
QUIC_FALLTHROUGH_INTENDED;
case PING_FRAME:
// Ping has no payload.
break;
case RST_STREAM_FRAME:
if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
QUIC_BUG << "AppendRstStreamFrame failed";
return 0;
}
break;
case CONNECTION_CLOSE_FRAME:
if (!AppendConnectionCloseFrame(*frame.connection_close_frame,
&writer)) {
QUIC_BUG << "AppendConnectionCloseFrame failed";
return 0;
}
break;
case GOAWAY_FRAME:
if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
QUIC_BUG << "AppendGoAwayFrame failed";
return 0;
}
break;
case WINDOW_UPDATE_FRAME:
if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
QUIC_BUG << "AppendWindowUpdateFrame failed";
return 0;
}
break;
case BLOCKED_FRAME:
if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
QUIC_BUG << "AppendBlockedFrame failed";
return 0;
}
break;
case NEW_CONNECTION_ID_FRAME:
set_detailed_error(
"Attempt to append NEW_CONNECTION_ID frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case RETIRE_CONNECTION_ID_FRAME:
set_detailed_error(
"Attempt to append RETIRE_CONNECTION_ID frame and not in IETF "
"QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case NEW_TOKEN_FRAME:
set_detailed_error(
"Attempt to append NEW_TOKEN_ID frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case MAX_STREAMS_FRAME:
set_detailed_error(
"Attempt to append MAX_STREAMS frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case STREAMS_BLOCKED_FRAME:
set_detailed_error(
"Attempt to append STREAMS_BLOCKED frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case PATH_RESPONSE_FRAME:
set_detailed_error(
"Attempt to append PATH_RESPONSE frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case PATH_CHALLENGE_FRAME:
set_detailed_error(
"Attempt to append PATH_CHALLENGE frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case STOP_SENDING_FRAME:
set_detailed_error(
"Attempt to append STOP_SENDING frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case MESSAGE_FRAME:
if (!AppendMessageFrameAndTypeByte(*frame.message_frame,
last_frame_in_packet, &writer)) {
QUIC_BUG << "AppendMessageFrame failed";
return 0;
}
break;
case CRYPTO_FRAME:
if (!QuicVersionUsesCryptoFrames(version_.transport_version)) {
set_detailed_error(
"Attempt to append CRYPTO frame in version prior to 47.");
return RaiseError(QUIC_INTERNAL_ERROR);
}
if (!AppendCryptoFrame(*frame.crypto_frame, &writer)) {
QUIC_BUG << "AppendCryptoFrame failed";
return 0;
}
break;
default:
RaiseError(QUIC_INVALID_FRAME_DATA);
QUIC_BUG << "QUIC_INVALID_FRAME_DATA";
return 0;
}
++i;
}
return writer.length();
}
size_t QuicFramer::AppendIetfFrames(const QuicFrames& frames,
QuicDataWriter* writer) {
size_t i = 0;
for (const QuicFrame& frame : frames) {
// Determine if we should write stream frame length in header.
const bool last_frame_in_packet = i == frames.size() - 1;
if (!AppendIetfTypeByte(frame, last_frame_in_packet, writer)) {
QUIC_BUG << "AppendIetfTypeByte failed: " << detailed_error();
return 0;
}
switch (frame.type) {
case PADDING_FRAME:
if (!AppendPaddingFrame(frame.padding_frame, writer)) {
QUIC_BUG << "AppendPaddingFrame of "
<< frame.padding_frame.num_padding_bytes
<< " failed: " << detailed_error();
return 0;
}
break;
case STREAM_FRAME:
if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet,
writer)) {
QUIC_BUG << "AppendStreamFrame failed: " << detailed_error();
return 0;
}
break;
case ACK_FRAME:
if (!AppendIetfAckFrameAndTypeByte(*frame.ack_frame, writer)) {
QUIC_BUG << "AppendIetfAckFrameAndTypeByte failed: "
<< detailed_error();
return 0;
}
break;
case STOP_WAITING_FRAME:
set_detailed_error(
"Attempt to append STOP WAITING frame in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case MTU_DISCOVERY_FRAME:
// MTU discovery frames are serialized as ping frames.
QUIC_FALLTHROUGH_INTENDED;
case PING_FRAME:
// Ping has no payload.
break;
case RST_STREAM_FRAME:
if (!AppendRstStreamFrame(*frame.rst_stream_frame, writer)) {
QUIC_BUG << "AppendRstStreamFrame failed: " << detailed_error();
return 0;
}
break;
case CONNECTION_CLOSE_FRAME:
if (!AppendIetfConnectionCloseFrame(*frame.connection_close_frame,
writer)) {
QUIC_BUG << "AppendIetfConnectionCloseFrame failed: "
<< detailed_error();
return 0;
}
break;
case GOAWAY_FRAME:
set_detailed_error("Attempt to append GOAWAY frame in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case WINDOW_UPDATE_FRAME:
// Depending on whether there is a stream ID or not, will be either a
// MAX STREAM DATA frame or a MAX DATA frame.
if (frame.window_update_frame->stream_id ==
QuicUtils::GetInvalidStreamId(transport_version())) {
if (!AppendMaxDataFrame(*frame.window_update_frame, writer)) {
QUIC_BUG << "AppendMaxDataFrame failed: " << detailed_error();
return 0;
}
} else {
if (!AppendMaxStreamDataFrame(*frame.window_update_frame, writer)) {
QUIC_BUG << "AppendMaxStreamDataFrame failed: " << detailed_error();
return 0;
}
}
break;
case BLOCKED_FRAME:
if (!AppendBlockedFrame(*frame.blocked_frame, writer)) {
QUIC_BUG << "AppendBlockedFrame failed: " << detailed_error();
return 0;
}
break;
case MAX_STREAMS_FRAME:
if (!AppendMaxStreamsFrame(frame.max_streams_frame, writer)) {
QUIC_BUG << "AppendMaxStreamsFrame failed" << detailed_error();
return 0;
}
break;
case STREAMS_BLOCKED_FRAME:
if (!AppendStreamsBlockedFrame(frame.streams_blocked_frame, writer)) {
QUIC_BUG << "AppendStreamsBlockedFrame failed" << detailed_error();
return 0;
}
break;
case NEW_CONNECTION_ID_FRAME:
if (!AppendNewConnectionIdFrame(*frame.new_connection_id_frame,
writer)) {
QUIC_BUG << "AppendNewConnectionIdFrame failed: " << detailed_error();
return 0;
}
break;
case RETIRE_CONNECTION_ID_FRAME:
if (!AppendRetireConnectionIdFrame(*frame.retire_connection_id_frame,
writer)) {
QUIC_BUG << "AppendRetireConnectionIdFrame failed: "
<< detailed_error();
return 0;
}
break;
case NEW_TOKEN_FRAME:
if (!AppendNewTokenFrame(*frame.new_token_frame, writer)) {
QUIC_BUG << "AppendNewTokenFrame failed: " << detailed_error();
return 0;
}
break;
case STOP_SENDING_FRAME:
if (!AppendStopSendingFrame(*frame.stop_sending_frame, writer)) {
QUIC_BUG << "AppendStopSendingFrame failed: " << detailed_error();
return 0;
}
break;
case PATH_CHALLENGE_FRAME:
if (!AppendPathChallengeFrame(*frame.path_challenge_frame, writer)) {
QUIC_BUG << "AppendPathChallengeFrame failed: " << detailed_error();
return 0;
}
break;
case PATH_RESPONSE_FRAME:
if (!AppendPathResponseFrame(*frame.path_response_frame, writer)) {
QUIC_BUG << "AppendPathResponseFrame failed: " << detailed_error();
return 0;
}
break;
case MESSAGE_FRAME:
if (!AppendMessageFrameAndTypeByte(*frame.message_frame,
last_frame_in_packet, writer)) {
QUIC_BUG << "AppendMessageFrame failed: " << detailed_error();
return 0;
}
break;
case CRYPTO_FRAME:
if (!AppendCryptoFrame(*frame.crypto_frame, writer)) {
QUIC_BUG << "AppendCryptoFrame failed: " << detailed_error();
return 0;
}
break;
default:
RaiseError(QUIC_INVALID_FRAME_DATA);
set_detailed_error("Tried to append unknown frame type.");
QUIC_BUG << "QUIC_INVALID_FRAME_DATA";
return 0;
}
++i;
}
return writer->length();
}
size_t QuicFramer::BuildConnectivityProbingPacket(
const QuicPacketHeader& header,
char* buffer,
size_t packet_length,
EncryptionLevel level) {
QuicFrames frames;
// Write a PING frame, which has no data payload.
QuicPingFrame ping_frame;
frames.push_back(QuicFrame(ping_frame));
// Add padding to the rest of the packet.
QuicPaddingFrame padding_frame;
frames.push_back(QuicFrame(padding_frame));
return BuildDataPacket(header, frames, buffer, packet_length, level);
}
size_t QuicFramer::BuildPaddedPathChallengePacket(
const QuicPacketHeader& header,
char* buffer,
size_t packet_length,
QuicPathFrameBuffer* payload,
QuicRandom* randomizer,
EncryptionLevel level) {
if (!VersionHasIetfQuicFrames(version_.transport_version)) {
QUIC_BUG << "Attempt to build a PATH_CHALLENGE Connectivity Probing "
"packet and not doing IETF QUIC";
return 0;
}
QuicFrames frames;
// Write a PATH_CHALLENGE frame, which has a random 8-byte payload
randomizer->RandBytes(payload->data(), payload->size());
QuicPathChallengeFrame path_challenge_frame(0, *payload);
frames.push_back(QuicFrame(&path_challenge_frame));
// Add padding to the rest of the packet in order to assess Path MTU
// characteristics.
QuicPaddingFrame padding_frame;
frames.push_back(QuicFrame(padding_frame));
return BuildDataPacket(header, frames, buffer, packet_length, level);
}
size_t QuicFramer::BuildPathResponsePacket(
const QuicPacketHeader& header,
char* buffer,
size_t packet_length,
const QuicDeque<QuicPathFrameBuffer>& payloads,
const bool is_padded,
EncryptionLevel level) {
if (payloads.empty()) {
QUIC_BUG
<< "Attempt to generate connectivity response with no request payloads";
return 0;
}
if (!VersionHasIetfQuicFrames(version_.transport_version)) {
QUIC_BUG << "Attempt to build a PATH_RESPONSE Connectivity Probing "
"packet and not doing IETF QUIC";
return 0;
}
std::vector<std::unique_ptr<QuicPathResponseFrame>> path_response_frames;
for (const QuicPathFrameBuffer& payload : payloads) {
// Note that the control frame ID can be 0 since this is not retransmitted.
path_response_frames.push_back(
QuicMakeUnique<QuicPathResponseFrame>(0, payload));
}
QuicFrames frames;
for (const std::unique_ptr<QuicPathResponseFrame>& path_response_frame :
path_response_frames) {
frames.push_back(QuicFrame(path_response_frame.get()));
}
if (is_padded) {
// Add padding to the rest of the packet in order to assess Path MTU
// characteristics.
QuicPaddingFrame padding_frame;
frames.push_back(QuicFrame(padding_frame));
}
return BuildDataPacket(header, frames, buffer, packet_length, level);
}
// static
std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildPublicResetPacket(
const QuicPublicResetPacket& packet) {
CryptoHandshakeMessage reset;
reset.set_tag(kPRST);
reset.SetValue(kRNON, packet.nonce_proof);
if (packet.client_address.host().address_family() !=
IpAddressFamily::IP_UNSPEC) {
// packet.client_address is non-empty.
QuicSocketAddressCoder address_coder(packet.client_address);
std::string serialized_address = address_coder.Encode();
if (serialized_address.empty()) {
return nullptr;
}
reset.SetStringPiece(kCADR, serialized_address);
}
if (!packet.endpoint_id.empty()) {
reset.SetStringPiece(kEPID, packet.endpoint_id);
}
const QuicData& reset_serialized = reset.GetSerialized();
size_t len = kPublicFlagsSize + packet.connection_id.length() +
reset_serialized.length();
std::unique_ptr<char[]> buffer(new char[len]);
QuicDataWriter writer(len, buffer.get());
uint8_t flags = static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_RST |
PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
// This hack makes post-v33 public reset packet look like pre-v33 packets.
flags |= static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD);
if (!writer.WriteUInt8(flags)) {
return nullptr;
}
if (!writer.WriteConnectionId(packet.connection_id)) {
return nullptr;
}
if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
return nullptr;
}
return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
}
// static
std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildIetfStatelessResetPacket(
QuicConnectionId /*connection_id*/,
QuicUint128 stateless_reset_token) {
QUIC_DVLOG(1) << "Building IETF stateless reset packet.";
size_t len = kPacketHeaderTypeSize + kMinRandomBytesLengthInStatelessReset +
sizeof(stateless_reset_token);
std::unique_ptr<char[]> buffer(new char[len]);
QuicDataWriter writer(len, buffer.get());
uint8_t type = 0;
type |= FLAGS_FIXED_BIT;
type |= FLAGS_SHORT_HEADER_RESERVED_1;
type |= FLAGS_SHORT_HEADER_RESERVED_2;
type |= PacketNumberLengthToOnWireValue(QUIC_VERSION_UNSUPPORTED,
PACKET_1BYTE_PACKET_NUMBER);
// Append type byte.
if (!writer.WriteUInt8(type)) {
return nullptr;
}
// Append random bytes.
if (!writer.WriteRandomBytes(QuicRandom::GetInstance(),
kMinRandomBytesLengthInStatelessReset)) {
return nullptr;
}
// Append stateless reset token.
if (!writer.WriteBytes(&stateless_reset_token,
sizeof(stateless_reset_token))) {
return nullptr;
}
return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
}
// static
std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildVersionNegotiationPacket(
QuicConnectionId server_connection_id,
QuicConnectionId client_connection_id,
bool ietf_quic,
const ParsedQuicVersionVector& versions) {
ParsedQuicVersionVector wire_versions = versions;
if (!GetQuicReloadableFlag(quic_version_negotiation_grease)) {
if (wire_versions.empty()) {
wire_versions = {QuicVersionReservedForNegotiation()};
}
} else {
// Add a version reserved for negotiation as suggested by the
// "Using Reserved Versions" section of draft-ietf-quic-transport.
QUIC_RELOADABLE_FLAG_COUNT_N(quic_version_negotiation_grease, 1, 2);
if (wire_versions.empty()) {
// Ensure that version negotiation packets we send have at least two
// versions. This guarantees that, under all circumstances, all QUIC
// packets we send are at least 14 bytes long.
wire_versions = {QuicVersionReservedForNegotiation(),
QuicVersionReservedForNegotiation()};
} else {
// This is not uniformely distributed but is acceptable since no security
// depends on this randomness.
size_t version_index = 0;
const bool disable_randomness =
GetQuicFlag(FLAGS_quic_disable_version_negotiation_grease_randomness);
if (!disable_randomness) {
version_index = QuicRandom::GetInstance()->RandUint64() %
(wire_versions.size() + 1);
}
wire_versions.insert(wire_versions.begin() + version_index,
QuicVersionReservedForNegotiation());
}
}
if (ietf_quic) {
return BuildIetfVersionNegotiationPacket(
server_connection_id, client_connection_id, wire_versions);
}
// The GQUIC encoding does not support encoding client connection IDs.
DCHECK(client_connection_id.IsEmpty());
DCHECK(!wire_versions.empty());
size_t len = kPublicFlagsSize + server_connection_id.length() +
wire_versions.size() * kQuicVersionSize;
std::unique_ptr<char[]> buffer(new char[len]);
QuicDataWriter writer(len, buffer.get());
uint8_t flags = static_cast<uint8_t>(
PACKET_PUBLIC_FLAGS_VERSION | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID |
// TODO(rch): Remove this QUIC_VERSION_32 is retired.
PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD);
if (!writer.WriteUInt8(flags)) {
return nullptr;
}
if (!writer.WriteConnectionId(server_connection_id)) {
return nullptr;
}
for (const ParsedQuicVersion& version : wire_versions) {
if (!writer.WriteUInt32(CreateQuicVersionLabel(version))) {
return nullptr;
}
}
return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
}
// static
std::unique_ptr<QuicEncryptedPacket>
QuicFramer::BuildIetfVersionNegotiationPacket(
QuicConnectionId server_connection_id,
QuicConnectionId client_connection_id,
const ParsedQuicVersionVector& versions) {
QUIC_DVLOG(1) << "Building IETF version negotiation packet: "
<< ParsedQuicVersionVectorToString(versions);
DCHECK(client_connection_id.IsEmpty() ||
GetQuicRestartFlag(quic_do_not_override_connection_id));
DCHECK(!versions.empty());
size_t len = kPacketHeaderTypeSize + kConnectionIdLengthSize +
client_connection_id.length() + server_connection_id.length() +
(versions.size() + 1) * kQuicVersionSize;
std::unique_ptr<char[]> buffer(new char[len]);
QuicDataWriter writer(len, buffer.get());
// TODO(fayang): Randomly select a value for the type.
uint8_t type = static_cast<uint8_t>(FLAGS_LONG_HEADER | FLAGS_FIXED_BIT);
if (!writer.WriteUInt8(type)) {
return nullptr;
}
if (!writer.WriteUInt32(0)) {
return nullptr;
}
if (!AppendIetfConnectionIds(true, client_connection_id, server_connection_id,
&writer)) {
return nullptr;
}
for (const ParsedQuicVersion& version : versions) {
if (!writer.WriteUInt32(CreateQuicVersionLabel(version))) {
return nullptr;
}
}
return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true);
}
bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
QuicDataReader reader(packet.data(), packet.length());
bool packet_has_ietf_packet_header = false;
if (infer_packet_header_type_from_version_) {
packet_has_ietf_packet_header =
VersionHasIetfInvariantHeader(version_.transport_version);
} else if (!reader.IsDoneReading()) {
uint8_t type = reader.PeekByte();
packet_has_ietf_packet_header = QuicUtils::IsIetfPacketHeader(type);
}
if (packet_has_ietf_packet_header) {
QUIC_DVLOG(1) << ENDPOINT << "Processing IETF QUIC packet.";
}
visitor_->OnPacket();
QuicPacketHeader header;
if (!ProcessPublicHeader(&reader, packet_has_ietf_packet_header, &header)) {
DCHECK_NE("", detailed_error_);
QUIC_DVLOG(1) << ENDPOINT << "Unable to process public header. Error: "
<< detailed_error_;
DCHECK_NE("", detailed_error_);
RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_HEADER);
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
if (!visitor_->OnUnauthenticatedPublicHeader(header)) {
// The visitor suppresses further processing of the packet.
return true;
}
if (IsVersionNegotiation(header, packet_has_ietf_packet_header)) {
if (perspective_ == Perspective::IS_CLIENT) {
QUIC_DVLOG(1) << "Client received version negotiation packet";
return ProcessVersionNegotiationPacket(&reader, header);
} else {
QUIC_DLOG(ERROR) << "Server received version negotiation packet";
set_detailed_error("Server received version negotiation packet.");
return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
}
}
if (header.version_flag && header.version != version_) {
if (perspective_ == Perspective::IS_SERVER) {
if (!visitor_->OnProtocolVersionMismatch(header.version)) {
RecordDroppedPacketReason(DroppedPacketReason::VERSION_MISMATCH);
return true;
}
} else {
// A client received a packet of a different version but that packet is
// not a version negotiation packet. It is therefore invalid and dropped.
QUIC_DLOG(ERROR) << "Client received unexpected version "
<< ParsedQuicVersionToString(header.version)
<< " instead of " << ParsedQuicVersionToString(version_);
set_detailed_error("Client received unexpected version.");
return RaiseError(QUIC_INVALID_VERSION);
}
}
bool rv;
if (header.long_packet_type == RETRY) {
rv = ProcessRetryPacket(&reader, header);
} else if (header.reset_flag) {
rv = ProcessPublicResetPacket(&reader, header);
} else if (packet.length() <= kMaxIncomingPacketSize) {
// The optimized decryption algorithm implementations run faster when
// operating on aligned memory.
QUIC_CACHELINE_ALIGNED char buffer[kMaxIncomingPacketSize];
if (packet_has_ietf_packet_header) {
rv = ProcessIetfDataPacket(&reader, &header, packet, buffer,
QUIC_ARRAYSIZE(buffer));
} else {
rv = ProcessDataPacket(&reader, &header, packet, buffer,
QUIC_ARRAYSIZE(buffer));
}
} else {
std::unique_ptr<char[]> large_buffer(new char[packet.length()]);
if (packet_has_ietf_packet_header) {
rv = ProcessIetfDataPacket(&reader, &header, packet, large_buffer.get(),
packet.length());
} else {
rv = ProcessDataPacket(&reader, &header, packet, large_buffer.get(),
packet.length());
}
QUIC_BUG_IF(rv) << "QUIC should never successfully process packets larger"
<< "than kMaxIncomingPacketSize. packet size:"
<< packet.length();
}
return rv;
}
bool QuicFramer::ProcessVersionNegotiationPacket(
QuicDataReader* reader,
const QuicPacketHeader& header) {
DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
QuicVersionNegotiationPacket packet(
GetServerConnectionIdAsRecipient(header, perspective_));
// Try reading at least once to raise error if the packet is invalid.
do {
QuicVersionLabel version_label;
if (!ProcessVersionLabel(reader, &version_label)) {
set_detailed_error("Unable to read supported version in negotiation.");
RecordDroppedPacketReason(
DroppedPacketReason::INVALID_VERSION_NEGOTIATION_PACKET);
return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
}
ParsedQuicVersion parsed_version = ParseQuicVersionLabel(version_label);
if (parsed_version != UnsupportedQuicVersion()) {
packet.versions.push_back(parsed_version);
}
} while (!reader->IsDoneReading());
QUIC_DLOG(INFO) << ENDPOINT << "parsed version negotiation: "
<< ParsedQuicVersionVectorToString(packet.versions);
visitor_->OnVersionNegotiationPacket(packet);
return true;
}
bool QuicFramer::ProcessRetryPacket(QuicDataReader* reader,
const QuicPacketHeader& header) {
DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
// Parse Original Destination Connection ID Length.
uint8_t odcil = header.type_byte & 0xf;
if (odcil != 0) {
odcil += kConnectionIdLengthAdjustment;
}
// Parse Original Destination Connection ID.
QuicConnectionId original_destination_connection_id;
if (!reader->ReadConnectionId(&original_destination_connection_id, odcil)) {
set_detailed_error("Unable to read Original Destination ConnectionId.");
return false;
}
QuicStringPiece retry_token = reader->ReadRemainingPayload();
visitor_->OnRetryPacket(original_destination_connection_id,
header.source_connection_id, retry_token);
return true;
}
bool QuicFramer::MaybeProcessIetfInitialRetryToken(
QuicDataReader* encrypted_reader,
QuicPacketHeader* header) {
if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) ||
header->form != IETF_QUIC_LONG_HEADER_PACKET ||
header->long_packet_type != INITIAL) {
return true;
}
uint64_t retry_token_length = 0;
header->retry_token_length_length = encrypted_reader->PeekVarInt62Length();
if (!encrypted_reader->ReadVarInt62(&retry_token_length)) {
set_detailed_error("Unable to read INITIAL retry token length.");
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
header->retry_token = encrypted_reader->PeekRemainingPayload();
// Safety check to avoid spending ressources if malformed.
// At this point header->retry_token contains the rest of the packet
// so its length() is the amount of data remaining in the packet.
if (retry_token_length > header->retry_token.length()) {
set_detailed_error("INITIAL token length longer than packet.");
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
// Resize retry_token to make it only contain the retry token.
header->retry_token.remove_suffix(header->retry_token.length() -
retry_token_length);
// Advance encrypted_reader by retry_token_length.
uint8_t wasted_byte;
for (uint64_t i = 0; i < retry_token_length; ++i) {
if (!encrypted_reader->ReadUInt8(&wasted_byte)) {
set_detailed_error("Unable to read INITIAL retry token.");
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
}
return true;
}
// Seeks the current packet to check for a coalesced packet at the end.
// If the IETF length field only spans part of the outer packet,
// then there is a coalesced packet after this one.
void QuicFramer::MaybeProcessCoalescedPacket(
const QuicDataReader& encrypted_reader,
uint64_t remaining_bytes_length,
const QuicPacketHeader& header) {
if (header.remaining_packet_length >= remaining_bytes_length) {
// There is no coalesced packet.
return;
}
QuicStringPiece remaining_data = encrypted_reader.PeekRemainingPayload();
DCHECK_EQ(remaining_data.length(), remaining_bytes_length);
const char* coalesced_data =
remaining_data.data() + header.remaining_packet_length;
uint64_t coalesced_data_length =
remaining_bytes_length - header.remaining_packet_length;
QuicDataReader coalesced_reader(coalesced_data, coalesced_data_length);
QuicPacketHeader coalesced_header;
if (!ProcessIetfPacketHeader(&coalesced_reader, &coalesced_header)) {
QUIC_PEER_BUG << ENDPOINT
<< "Failed to parse received coalesced header of length "
<< coalesced_data_length << ": "
<< QuicTextUtils::HexEncode(coalesced_data,
coalesced_data_length)
<< " previous header was " << header;
return;
}
if (coalesced_header.destination_connection_id !=
header.destination_connection_id ||
(coalesced_header.form != IETF_QUIC_SHORT_HEADER_PACKET &&
coalesced_header.version != header.version)) {
QUIC_PEER_BUG << ENDPOINT << "Received mismatched coalesced header "
<< coalesced_header << " previous header was " << header;
return;
}
QuicEncryptedPacket coalesced_packet(coalesced_data, coalesced_data_length,
/*owns_buffer=*/false);
visitor_->OnCoalescedPacket(coalesced_packet);
}
bool QuicFramer::MaybeProcessIetfLength(QuicDataReader* encrypted_reader,
QuicPacketHeader* header) {
if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) ||
header->form != IETF_QUIC_LONG_HEADER_PACKET ||
(header->long_packet_type != INITIAL &&
header->long_packet_type != HANDSHAKE &&
header->long_packet_type != ZERO_RTT_PROTECTED)) {
return true;
}
header->length_length = encrypted_reader->PeekVarInt62Length();
if (!encrypted_reader->ReadVarInt62(&header->remaining_packet_length)) {
set_detailed_error("Unable to read long header payload length.");
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
uint64_t remaining_bytes_length = encrypted_reader->BytesRemaining();
if (header->remaining_packet_length > remaining_bytes_length) {
set_detailed_error("Long header payload length longer than packet.");
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
MaybeProcessCoalescedPacket(*encrypted_reader, remaining_bytes_length,
*header);
if (!encrypted_reader->TruncateRemaining(header->remaining_packet_length)) {
set_detailed_error("Length TruncateRemaining failed.");
QUIC_BUG << "Length TruncateRemaining failed.";
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
return true;
}
bool QuicFramer::ProcessIetfDataPacket(QuicDataReader* encrypted_reader,
QuicPacketHeader* header,
const QuicEncryptedPacket& packet,
char* decrypted_buffer,
size_t buffer_length) {
DCHECK_NE(GOOGLE_QUIC_PACKET, header->form);
DCHECK(!header->has_possible_stateless_reset_token);
header->retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0;
header->retry_token = QuicStringPiece();
header->length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0;
header->remaining_packet_length = 0;
if (header->form == IETF_QUIC_SHORT_HEADER_PACKET &&
perspective_ == Perspective::IS_CLIENT) {
// Peek possible stateless reset token. Will only be used on decryption
// failure.
QuicStringPiece remaining = encrypted_reader->PeekRemainingPayload();
if (remaining.length() >= sizeof(header->possible_stateless_reset_token)) {
header->has_possible_stateless_reset_token = true;
memcpy(&header->possible_stateless_reset_token,
&remaining.data()[remaining.length() -
sizeof(header->possible_stateless_reset_token)],
sizeof(header->possible_stateless_reset_token));
}
}
if (!MaybeProcessIetfInitialRetryToken(encrypted_reader, header)) {
return false;
}
if (!MaybeProcessIetfLength(encrypted_reader, header)) {
return false;
}
QuicStringPiece associated_data;
std::vector<char> ad_storage;
if (header->form == IETF_QUIC_SHORT_HEADER_PACKET ||
header->long_packet_type != VERSION_NEGOTIATION) {
DCHECK(header->form == IETF_QUIC_SHORT_HEADER_PACKET ||
header->long_packet_type == INITIAL ||
header->long_packet_type == HANDSHAKE ||
header->long_packet_type == ZERO_RTT_PROTECTED);
// Process packet number.
QuicPacketNumber base_packet_number;
if (supports_multiple_packet_number_spaces_) {
PacketNumberSpace pn_space = GetPacketNumberSpace(*header);
if (pn_space == NUM_PACKET_NUMBER_SPACES) {
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
base_packet_number = largest_decrypted_packet_numbers_[pn_space];
} else {
base_packet_number = largest_packet_number_;
}
uint64_t full_packet_number;
bool hp_removal_failed = false;
if (version_.HasHeaderProtection()) {
if (!RemoveHeaderProtection(encrypted_reader, packet, header,
&full_packet_number, &ad_storage)) {
hp_removal_failed = true;
}
associated_data = QuicStringPiece(ad_storage.data(), ad_storage.size());
} else if (!ProcessAndCalculatePacketNumber(
encrypted_reader, header->packet_number_length,
base_packet_number, &full_packet_number)) {
set_detailed_error("Unable to read packet number.");
RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
if (hp_removal_failed ||
!IsValidFullPacketNumber(full_packet_number, transport_version())) {
if (IsIetfStatelessResetPacket(*header)) {
// This is a stateless reset packet.
QuicIetfStatelessResetPacket packet(
*header, header->possible_stateless_reset_token);
visitor_->OnAuthenticatedIetfStatelessResetPacket(packet);
return true;
}
if (hp_removal_failed) {
set_detailed_error("Unable to decrypt header protection.");
return RaiseError(QUIC_DECRYPTION_FAILURE);
}
RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
set_detailed_error("packet numbers cannot be 0.");
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
header->packet_number = QuicPacketNumber(full_packet_number);
}
// A nonce should only present in SHLO from the server to the client when
// using QUIC crypto.
if (header->form == IETF_QUIC_LONG_HEADER_PACKET &&
header->long_packet_type == ZERO_RTT_PROTECTED &&
perspective_ == Perspective::IS_CLIENT &&
version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) {
if (!encrypted_reader->ReadBytes(
reinterpret_cast<uint8_t*>(last_nonce_.data()),
last_nonce_.size())) {
set_detailed_error("Unable to read nonce.");
RecordDroppedPacketReason(
DroppedPacketReason::INVALID_DIVERSIFICATION_NONCE);
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
header->nonce = &last_nonce_;
} else {
header->nonce = nullptr;
}
if (!visitor_->OnUnauthenticatedHeader(*header)) {
set_detailed_error(
"Visitor asked to stop processing of unauthenticated header.");
return false;
}
QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload();
if (!version_.HasHeaderProtection()) {
associated_data = GetAssociatedDataFromEncryptedPacket(
version_.transport_version, packet,
GetIncludedDestinationConnectionIdLength(*header),
GetIncludedSourceConnectionIdLength(*header), header->version_flag,
header->nonce != nullptr, header->packet_number_length,
header->retry_token_length_length, header->retry_token.length(),
header->length_length);
}
size_t decrypted_length = 0;
EncryptionLevel decrypted_level;
if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer,
buffer_length, &decrypted_length, &decrypted_level)) {
if (IsIetfStatelessResetPacket(*header)) {
// This is a stateless reset packet.
QuicIetfStatelessResetPacket packet(
*header, header->possible_stateless_reset_token);
visitor_->OnAuthenticatedIetfStatelessResetPacket(packet);
return true;
}
set_detailed_error("Unable to decrypt payload.");
RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE);
return RaiseError(QUIC_DECRYPTION_FAILURE);
}
QuicDataReader reader(decrypted_buffer, decrypted_length);
// Update the largest packet number after we have decrypted the packet
// so we are confident is not attacker controlled.
if (supports_multiple_packet_number_spaces_) {
largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace(
decrypted_level)]
.UpdateMax(header->packet_number);
} else {
largest_packet_number_.UpdateMax(header->packet_number);
}
if (!visitor_->OnPacketHeader(*header)) {
RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
// The visitor suppresses further processing of the packet.
return true;
}
if (packet.length() > kMaxIncomingPacketSize) {
set_detailed_error("Packet too large.");
return RaiseError(QUIC_PACKET_TOO_LARGE);
}
// Handle the payload.
if (VersionHasIetfQuicFrames(version_.transport_version)) {
if (!ProcessIetfFrameData(&reader, *header)) {
DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessIetfFrameData sets the error.
DCHECK_NE("", detailed_error_);
QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: "
<< detailed_error_;
return false;
}
} else {
if (!ProcessFrameData(&reader, *header)) {
DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
DCHECK_NE("", detailed_error_);
QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: "
<< detailed_error_;
return false;
}
}
visitor_->OnPacketComplete();
return true;
}
bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader,
QuicPacketHeader* header,
const QuicEncryptedPacket& packet,
char* decrypted_buffer,
size_t buffer_length) {
if (!ProcessUnauthenticatedHeader(encrypted_reader, header)) {
DCHECK_NE("", detailed_error_);
QUIC_DVLOG(1)
<< ENDPOINT
<< "Unable to process packet header. Stopping parsing. Error: "
<< detailed_error_;
RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER);
return false;
}
QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload();
QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket(
version_.transport_version, packet,
GetIncludedDestinationConnectionIdLength(*header),
GetIncludedSourceConnectionIdLength(*header), header->version_flag,
header->nonce != nullptr, header->packet_number_length,
header->retry_token_length_length, header->retry_token.length(),
header->length_length);
size_t decrypted_length = 0;
EncryptionLevel decrypted_level;
if (!DecryptPayload(encrypted, associated_data, *header, decrypted_buffer,
buffer_length, &decrypted_length, &decrypted_level)) {
RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE);
set_detailed_error("Unable to decrypt payload.");
return RaiseError(QUIC_DECRYPTION_FAILURE);
}
QuicDataReader reader(decrypted_buffer, decrypted_length);
// Update the largest packet number after we have decrypted the packet
// so we are confident is not attacker controlled.
if (supports_multiple_packet_number_spaces_) {
largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace(
decrypted_level)]
.UpdateMax(header->packet_number);
} else {
largest_packet_number_.UpdateMax(header->packet_number);
}
if (!visitor_->OnPacketHeader(*header)) {
// The visitor suppresses further processing of the packet.
return true;
}
if (packet.length() > kMaxIncomingPacketSize) {
set_detailed_error("Packet too large.");
return RaiseError(QUIC_PACKET_TOO_LARGE);
}
// Handle the payload.
if (!ProcessFrameData(&reader, *header)) {
DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
DCHECK_NE("", detailed_error_);
QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: "
<< detailed_error_;
return false;
}
visitor_->OnPacketComplete();
return true;
}
bool QuicFramer::ProcessPublicResetPacket(QuicDataReader* reader,
const QuicPacketHeader& header) {
QuicPublicResetPacket packet(
GetServerConnectionIdAsRecipient(header, perspective_));
std::unique_ptr<CryptoHandshakeMessage> reset(
CryptoFramer::ParseMessage(reader->ReadRemainingPayload()));
if (!reset.get()) {
set_detailed_error("Unable to read reset message.");
RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET);
return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
}
if (reset->tag() != kPRST) {
set_detailed_error("Incorrect message tag.");
RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET);
return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
}
if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
set_detailed_error("Unable to read nonce proof.");
RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET);
return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
}
// TODO(satyamshekhar): validate nonce to protect against DoS.
QuicStringPiece address;
if (reset->GetStringPiece(kCADR, &address)) {
QuicSocketAddressCoder address_coder;
if (address_coder.Decode(address.data(), address.length())) {
packet.client_address =
QuicSocketAddress(address_coder.ip(), address_coder.port());
}
}
QuicStringPiece endpoint_id;
if (perspective_ == Perspective::IS_CLIENT &&
reset->GetStringPiece(kEPID, &endpoint_id)) {
packet.endpoint_id = std::string(endpoint_id);
packet.endpoint_id += '\0';
}
visitor_->OnPublicResetPacket(packet);
return true;
}
bool QuicFramer::IsIetfStatelessResetPacket(
const QuicPacketHeader& header) const {
QUIC_BUG_IF(header.has_possible_stateless_reset_token &&
perspective_ != Perspective::IS_CLIENT)
<< "has_possible_stateless_reset_token can only be true at client side.";
return header.form == IETF_QUIC_SHORT_HEADER_PACKET &&
header.has_possible_stateless_reset_token &&
visitor_->IsValidStatelessResetToken(
header.possible_stateless_reset_token);
}
bool QuicFramer::HasEncrypterOfEncryptionLevel(EncryptionLevel level) const {
return encrypter_[level] != nullptr;
}
bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
QuicDataWriter* writer,
size_t* length_field_offset) {
if (VersionHasIetfInvariantHeader(transport_version())) {
return AppendIetfPacketHeader(header, writer, length_field_offset);
}
QUIC_DVLOG(1) << ENDPOINT << "Appending header: " << header;
uint8_t public_flags = 0;
if (header.reset_flag) {
public_flags |= PACKET_PUBLIC_FLAGS_RST;
}
if (header.version_flag) {
public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
}
public_flags |= GetPacketNumberFlags(header.packet_number_length)
<< kPublicHeaderSequenceNumberShift;
if (header.nonce != nullptr) {
DCHECK_EQ(Perspective::IS_SERVER, perspective_);
public_flags |= PACKET_PUBLIC_FLAGS_NONCE;
}
QuicConnectionId server_connection_id =
GetServerConnectionIdAsSender(header, perspective_);
QuicConnectionIdIncluded server_connection_id_included =
GetServerConnectionIdIncludedAsSender(header, perspective_);
DCHECK_EQ(CONNECTION_ID_ABSENT,
GetClientConnectionIdIncludedAsSender(header, perspective_))
<< ENDPOINT << ParsedQuicVersionToString(version_)
<< " invalid header: " << header;
switch (server_connection_id_included) {
case CONNECTION_ID_ABSENT:
if (!writer->WriteUInt8(public_flags |
PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
return false;
}
break;
case CONNECTION_ID_PRESENT:
QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion(
server_connection_id, transport_version()))
<< "AppendPacketHeader: attempted to use connection ID "
<< server_connection_id << " which is invalid with version "
<< QuicVersionToString(transport_version());
public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID;
if (perspective_ == Perspective::IS_CLIENT) {
public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD;
}
if (!writer->WriteUInt8(public_flags) ||
!writer->WriteConnectionId(server_connection_id)) {
return false;
}
break;
}
last_serialized_server_connection_id_ = server_connection_id;
if (header.version_flag) {
DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
QuicVersionLabel version_label = CreateQuicVersionLabel(version_);
if (!writer->WriteUInt32(version_label)) {
return false;
}
QUIC_DVLOG(1) << ENDPOINT << "label = '"
<< QuicVersionLabelToString(version_label) << "'";
}
if (header.nonce != nullptr &&
!writer->WriteBytes(header.nonce, kDiversificationNonceSize)) {
return false;
}
if (!AppendPacketNumber(header.packet_number_length, header.packet_number,
writer)) {
return false;
}
return true;
}
bool QuicFramer::AppendIetfHeaderTypeByte(const QuicPacketHeader& header,
QuicDataWriter* writer) {
uint8_t type = 0;
if (transport_version() > QUIC_VERSION_44) {
if (header.version_flag) {
type = static_cast<uint8_t>(
FLAGS_LONG_HEADER | FLAGS_FIXED_BIT |
LongHeaderTypeToOnWireValue(transport_version(),
header.long_packet_type) |
PacketNumberLengthToOnWireValue(transport_version(),
header.packet_number_length));
} else {
type = static_cast<uint8_t>(
FLAGS_FIXED_BIT |
PacketNumberLengthToOnWireValue(transport_version(),
header.packet_number_length));
}
return writer->WriteUInt8(type);
}
if (header.version_flag) {
type = static_cast<uint8_t>(
FLAGS_LONG_HEADER | LongHeaderTypeToOnWireValue(
transport_version(), header.long_packet_type));
DCHECK_EQ(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length);
} else {
type |= FLAGS_SHORT_HEADER_RESERVED_1;
type |= FLAGS_SHORT_HEADER_RESERVED_2;
DCHECK_GE(PACKET_4BYTE_PACKET_NUMBER, header.packet_number_length);
type |= PacketNumberLengthToOnWireValue(transport_version(),
header.packet_number_length);
}
return writer->WriteUInt8(type);
}
bool QuicFramer::AppendIetfPacketHeader(const QuicPacketHeader& header,
QuicDataWriter* writer,
size_t* length_field_offset) {
QUIC_DVLOG(1) << ENDPOINT << "Appending IETF header: " << header;
QuicConnectionId server_connection_id =
GetServerConnectionIdAsSender(header, perspective_);
QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion(server_connection_id,
transport_version()))
<< "AppendIetfPacketHeader: attempted to use connection ID "
<< server_connection_id << " which is invalid with version "
<< QuicVersionToString(transport_version());
if (!AppendIetfHeaderTypeByte(header, writer)) {
return false;
}
if (header.version_flag) {
// Append version for long header.
QuicVersionLabel version_label = CreateQuicVersionLabel(version_);
if (!writer->WriteUInt32(version_label)) {
return false;
}
}
// Append connection ID.
if (!AppendIetfConnectionIds(
header.version_flag,
header.destination_connection_id_included != CONNECTION_ID_ABSENT
? header.destination_connection_id
: EmptyQuicConnectionId(),
header.source_connection_id_included != CONNECTION_ID_ABSENT
? header.source_connection_id
: EmptyQuicConnectionId(),
writer)) {
return false;
}
last_serialized_server_connection_id_ = server_connection_id;
if (version_.SupportsClientConnectionIds()) {
last_serialized_client_connection_id_ =
GetClientConnectionIdAsSender(header, perspective_);
}
if (QuicVersionHasLongHeaderLengths(transport_version()) &&
header.version_flag) {
if (header.long_packet_type == INITIAL) {
DCHECK_NE(VARIABLE_LENGTH_INTEGER_LENGTH_0,
header.retry_token_length_length)
<< ENDPOINT << ParsedQuicVersionToString(version_)
<< " bad retry token length length in header: " << header;
// Write retry token length.
if (!writer->WriteVarInt62(header.retry_token.length(),
header.retry_token_length_length)) {
return false;
}
// Write retry token.
if (!header.retry_token.empty() &&
!writer->WriteStringPiece(header.retry_token)) {
return false;
}
}
if (length_field_offset != nullptr) {
*length_field_offset = writer->length();
}
// Add fake length to reserve two bytes to add length in later.
writer->WriteVarInt62(256);
} else if (length_field_offset != nullptr) {
*length_field_offset = 0;
}
// Append packet number.
if (!AppendPacketNumber(header.packet_number_length, header.packet_number,
writer)) {
return false;
}
last_written_packet_number_length_ = header.packet_number_length;
if (!header.version_flag) {
return true;
}
if (header.nonce != nullptr) {
DCHECK(header.version_flag);
DCHECK_EQ(ZERO_RTT_PROTECTED, header.long_packet_type);
DCHECK_EQ(Perspective::IS_SERVER, perspective_);
if (!writer->WriteBytes(header.nonce, kDiversificationNonceSize)) {
return false;
}
}
return true;
}
const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
uint32_t time_delta_us) {
// The new time_delta might have wrapped to the next epoch, or it
// might have reverse wrapped to the previous epoch, or it might
// remain in the same epoch. Select the time closest to the previous
// time.
//
// epoch_delta is the delta between epochs. A delta is 4 bytes of
// microseconds.
const uint64_t epoch_delta = UINT64_C(1) << 32;
uint64_t epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
// Wrapping is safe here because a wrapped value will not be ClosestTo below.
uint64_t prev_epoch = epoch - epoch_delta;
uint64_t next_epoch = epoch + epoch_delta;
uint64_t time = ClosestTo(
last_timestamp_.ToMicroseconds(), epoch + time_delta_us,
ClosestTo(last_timestamp_.ToMicroseconds(), prev_epoch + time_delta_us,
next_epoch + time_delta_us));
return QuicTime::Delta::FromMicroseconds(time);
}
uint64_t QuicFramer::CalculatePacketNumberFromWire(
QuicPacketNumberLength packet_number_length,
QuicPacketNumber base_packet_number,
uint64_t packet_number) const {
// The new packet number might have wrapped to the next epoch, or
// it might have reverse wrapped to the previous epoch, or it might
// remain in the same epoch. Select the packet number closest to the
// next expected packet number, the previous packet number plus 1.
// epoch_delta is the delta between epochs the packet number was serialized
// with, so the correct value is likely the same epoch as the last sequence
// number or an adjacent epoch.
if (!base_packet_number.IsInitialized()) {
return packet_number;
}
const uint64_t epoch_delta = UINT64_C(1) << (8 * packet_number_length);
uint64_t next_packet_number = base_packet_number.ToUint64() + 1;
uint64_t epoch = base_packet_number.ToUint64() & ~(epoch_delta - 1);
uint64_t prev_epoch = epoch - epoch_delta;
uint64_t next_epoch = epoch + epoch_delta;
return ClosestTo(next_packet_number, epoch + packet_number,
ClosestTo(next_packet_number, prev_epoch + packet_number,
next_epoch + packet_number));
}
bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader,
bool packet_has_ietf_packet_header,
QuicPacketHeader* header) {
if (packet_has_ietf_packet_header) {
return ProcessIetfPacketHeader(reader, header);
}
uint8_t public_flags;
if (!reader->ReadBytes(&public_flags, 1)) {
set_detailed_error("Unable to read public flags.");
return false;
}
header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
header->version_flag = (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
if (validate_flags_ && !header->version_flag &&
public_flags > PACKET_PUBLIC_FLAGS_MAX) {
set_detailed_error("Illegal public flags value.");
return false;
}
if (header->reset_flag && header->version_flag) {
set_detailed_error("Got version flag in reset packet");
return false;
}
QuicConnectionId* header_connection_id = &header->destination_connection_id;
QuicConnectionIdIncluded* header_connection_id_included =
&header->destination_connection_id_included;
if (perspective_ == Perspective::IS_CLIENT &&
GetQuicRestartFlag(quic_do_not_override_connection_id)) {
header_connection_id = &header->source_connection_id;
header_connection_id_included = &header->source_connection_id_included;
}
switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
if (!reader->ReadConnectionId(header_connection_id,
kQuicDefaultConnectionIdLength)) {
set_detailed_error("Unable to read ConnectionId.");
return false;
}
*header_connection_id_included = CONNECTION_ID_PRESENT;
break;
case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
*header_connection_id_included = CONNECTION_ID_ABSENT;
*header_connection_id = last_serialized_server_connection_id_;
break;
}
header->packet_number_length = ReadSequenceNumberLength(
public_flags >> kPublicHeaderSequenceNumberShift);
// Read the version only if the packet is from the client.
// version flag from the server means version negotiation packet.
if (header->version_flag && perspective_ == Perspective::IS_SERVER) {
QuicVersionLabel version_label;
if (!ProcessVersionLabel(reader, &version_label)) {
set_detailed_error("Unable to read protocol version.");
return false;
}
// If the version from the new packet is the same as the version of this
// framer, then the public flags should be set to something we understand.
// If not, this raises an error.
ParsedQuicVersion version = ParseQuicVersionLabel(version_label);
if (version == version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
set_detailed_error("Illegal public flags value.");
return false;
}
header->version = version;
}
// A nonce should only be present in packets from the server to the client,
// which are neither version negotiation nor public reset packets.
if (public_flags & PACKET_PUBLIC_FLAGS_NONCE &&
!(public_flags & PACKET_PUBLIC_FLAGS_VERSION) &&
!(public_flags & PACKET_PUBLIC_FLAGS_RST) &&
// The nonce flag from a client is ignored and is assumed to be an older
// client indicating an eight-byte connection ID.
perspective_ == Perspective::IS_CLIENT) {
if (!reader->ReadBytes(reinterpret_cast<uint8_t*>(last_nonce_.data()),
last_nonce_.size())) {
set_detailed_error("Unable to read nonce.");
return false;
}
header->nonce = &last_nonce_;
} else {
header->nonce = nullptr;
}
return true;
}
// static
QuicPacketNumberLength QuicFramer::GetMinPacketNumberLength(
QuicTransportVersion /*version*/,
QuicPacketNumber packet_number) {
DCHECK(packet_number.IsInitialized());
if (packet_number < QuicPacketNumber(1 << (PACKET_1BYTE_PACKET_NUMBER * 8))) {
return PACKET_1BYTE_PACKET_NUMBER;
} else if (packet_number <
QuicPacketNumber(1 << (PACKET_2BYTE_PACKET_NUMBER * 8))) {
return PACKET_2BYTE_PACKET_NUMBER;
} else if (packet_number <
QuicPacketNumber(UINT64_C(1)
<< (PACKET_4BYTE_PACKET_NUMBER * 8))) {
return PACKET_4BYTE_PACKET_NUMBER;
} else {
return PACKET_6BYTE_PACKET_NUMBER;
}
}
// static
uint8_t QuicFramer::GetPacketNumberFlags(
QuicPacketNumberLength packet_number_length) {
switch (packet_number_length) {
case PACKET_1BYTE_PACKET_NUMBER:
return PACKET_FLAGS_1BYTE_PACKET;
case PACKET_2BYTE_PACKET_NUMBER:
return PACKET_FLAGS_2BYTE_PACKET;
case PACKET_4BYTE_PACKET_NUMBER:
return PACKET_FLAGS_4BYTE_PACKET;
case PACKET_6BYTE_PACKET_NUMBER:
case PACKET_8BYTE_PACKET_NUMBER:
return PACKET_FLAGS_8BYTE_PACKET;
default:
QUIC_BUG << "Unreachable case statement.";
return PACKET_FLAGS_8BYTE_PACKET;
}
}
// static
QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
const QuicAckFrame& frame) {
AckFrameInfo new_ack_info;
if (frame.packets.Empty()) {
return new_ack_info;
}
// The first block is the last interval. It isn't encoded with the gap-length
// encoding, so skip it.
new_ack_info.first_block_length = frame.packets.LastIntervalLength();
auto itr = frame.packets.rbegin();
QuicPacketNumber previous_start = itr->min();
new_ack_info.max_block_length = PacketNumberIntervalLength(*itr);
++itr;
// Don't do any more work after getting information for 256 ACK blocks; any
// more can't be encoded anyway.
for (; itr != frame.packets.rend() &&
new_ack_info.num_ack_blocks < std::numeric_limits<uint8_t>::max();
previous_start = itr->min(), ++itr) {
const auto& interval = *itr;
const QuicPacketCount total_gap = previous_start - interval.max();
new_ack_info.num_ack_blocks +=
(total_gap + std::numeric_limits<uint8_t>::max() - 1) /
std::numeric_limits<uint8_t>::max();
new_ack_info.max_block_length = std::max(
new_ack_info.max_block_length, PacketNumberIntervalLength(interval));
}
return new_ack_info;
}
bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader,
QuicPacketHeader* header) {
QuicPacketNumber base_packet_number;
if (supports_multiple_packet_number_spaces_) {
PacketNumberSpace pn_space = GetPacketNumberSpace(*header);
if (pn_space == NUM_PACKET_NUMBER_SPACES) {
set_detailed_error("Unable to determine packet number space.");
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
base_packet_number = largest_decrypted_packet_numbers_[pn_space];
} else {
base_packet_number = largest_packet_number_;
}
uint64_t full_packet_number;
if (!ProcessAndCalculatePacketNumber(
encrypted_reader, header->packet_number_length, base_packet_number,
&full_packet_number)) {
set_detailed_error("Unable to read packet number.");
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
if (!IsValidFullPacketNumber(full_packet_number, transport_version())) {
set_detailed_error("packet numbers cannot be 0.");
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
header->packet_number = QuicPacketNumber(full_packet_number);
if (!visitor_->OnUnauthenticatedHeader(*header)) {
set_detailed_error(
"Visitor asked to stop processing of unauthenticated header.");
return false;
}
// The function we are in is called because the framer believes that it is
// processing a packet that uses the non-IETF (i.e. Google QUIC) packet header
// type. Usually, the framer makes that decision based on the framer's
// version, but when the framer is used with Perspective::IS_SERVER, then
// before version negotiation is complete (specifically, before
// InferPacketHeaderTypeFromVersion is called), this decision is made based on
// the type byte of the packet.
//
// If the framer's version KnowsWhichDecrypterToUse, then that version expects
// to use the IETF packet header type. If that's the case and we're in this
// function, then the packet received is invalid: the framer was expecting an
// IETF packet header and didn't get one.
if (version().KnowsWhichDecrypterToUse()) {
set_detailed_error("Invalid public header type for expected version.");
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
return true;
}
bool QuicFramer::ProcessIetfHeaderTypeByte(QuicDataReader* reader,
QuicPacketHeader* header) {
uint8_t type;
if (!reader->ReadBytes(&type, 1)) {
set_detailed_error("Unable to read type.");
return false;
}
header->type_byte = type;
// Determine whether this is a long or short header.
header->form = GetIetfPacketHeaderFormat(type);
if (header->form == IETF_QUIC_LONG_HEADER_PACKET) {
// Version is always present in long headers.
header->version_flag = true;
// In versions that do not support client connection IDs, we mark the
// corresponding connection ID as absent.
header->destination_connection_id_included =
(perspective_ == Perspective::IS_SERVER ||
version_.SupportsClientConnectionIds())
? CONNECTION_ID_PRESENT
: CONNECTION_ID_ABSENT;
header->source_connection_id_included =
(perspective_ == Perspective::IS_CLIENT ||
version_.SupportsClientConnectionIds())
? CONNECTION_ID_PRESENT
: CONNECTION_ID_ABSENT;
// Read version tag.
QuicVersionLabel version_label;
if (!ProcessVersionLabel(reader, &version_label)) {
set_detailed_error("Unable to read protocol version.");
return false;
}
if (!version_label) {
// Version label is 0 indicating this is a version negotiation packet.
header->long_packet_type = VERSION_NEGOTIATION;
} else {
header->version = ParseQuicVersionLabel(version_label);
if (header->version.transport_version != QUIC_VERSION_UNSUPPORTED) {
if (header->version.transport_version > QUIC_VERSION_44 &&
!(type & FLAGS_FIXED_BIT)) {
set_detailed_error("Fixed bit is 0 in long header.");
return false;
}
if (!GetLongHeaderType(header->version.transport_version, type,
&header->long_packet_type)) {
set_detailed_error("Illegal long header type value.");
return false;
}
if (header->long_packet_type == RETRY) {
if (!version().SupportsRetry()) {
set_detailed_error("RETRY not supported in this version.");
return false;
}
if (perspective_ == Perspective::IS_SERVER) {
set_detailed_error("Client-initiated RETRY is invalid.");
return false;
}
} else if (!header->version.HasHeaderProtection()) {
header->packet_number_length = GetLongHeaderPacketNumberLength(
header->version.transport_version, type);
}
}
}
QUIC_DVLOG(1) << ENDPOINT << "Received IETF long header: "
<< QuicUtils::QuicLongHeaderTypetoString(
header->long_packet_type);
return true;
}
QUIC_DVLOG(1) << ENDPOINT << "Received IETF short header";
// Version is not present in short headers.
header->version_flag = false;
// In versions that do not support client connection IDs, the client will not
// receive destination connection IDs.
header->destination_connection_id_included =
(perspective_ == Perspective::IS_SERVER ||
version_.SupportsClientConnectionIds())
? CONNECTION_ID_PRESENT
: CONNECTION_ID_ABSENT;
header->source_connection_id_included = CONNECTION_ID_ABSENT;
if (infer_packet_header_type_from_version_ &&
transport_version() > QUIC_VERSION_44 && !(type & FLAGS_FIXED_BIT)) {
set_detailed_error("Fixed bit is 0 in short header.");
return false;
}
if (!header->version.HasHeaderProtection() &&
!GetShortHeaderPacketNumberLength(transport_version(), type,
infer_packet_header_type_from_version_,
&header->packet_number_length)) {
set_detailed_error("Illegal short header type value.");
return false;
}
QUIC_DVLOG(1) << "packet_number_length = " << header->packet_number_length;
return true;
}
// static
bool QuicFramer::ProcessVersionLabel(QuicDataReader* reader,
QuicVersionLabel* version_label) {
if (!reader->ReadUInt32(version_label)) {
return false;
}
return true;
}
// static
bool QuicFramer::ProcessAndValidateIetfConnectionIdLength(
QuicDataReader* reader,
ParsedQuicVersion version,
Perspective perspective,
bool should_update_expected_server_connection_id_length,
uint8_t* expected_server_connection_id_length,
uint8_t* destination_connection_id_length,
uint8_t* source_connection_id_length,
std::string* detailed_error) {
uint8_t connection_id_lengths_byte;
if (!reader->ReadBytes(&connection_id_lengths_byte, 1)) {
*detailed_error = "Unable to read ConnectionId length.";
return false;
}
uint8_t dcil =
(connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4;
if (dcil != 0) {
dcil += kConnectionIdLengthAdjustment;
}
uint8_t scil = connection_id_lengths_byte & kSourceConnectionIdLengthMask;
if (scil != 0) {
scil += kConnectionIdLengthAdjustment;
}
if (should_update_expected_server_connection_id_length) {
uint8_t server_connection_id_length =
perspective == Perspective::IS_SERVER ? dcil : scil;
if (*expected_server_connection_id_length != server_connection_id_length) {
QUIC_DVLOG(1) << "Updating expected_server_connection_id_length: "
<< static_cast<int>(*expected_server_connection_id_length)
<< " -> " << static_cast<int>(server_connection_id_length);
*expected_server_connection_id_length = server_connection_id_length;
}
}
if (!should_update_expected_server_connection_id_length &&
(dcil != *destination_connection_id_length ||
scil != *source_connection_id_length) &&
!QuicUtils::VariableLengthConnectionIdAllowedForVersion(
version.transport_version)) {
// TODO(dschinazi): use the framer's version once the
// OnProtocolVersionMismatch call is moved to before this is run.
QUIC_DVLOG(1) << "dcil: " << static_cast<uint32_t>(dcil)
<< ", scil: " << static_cast<uint32_t>(scil);
*detailed_error = "Invalid ConnectionId length.";
return false;
}
*destination_connection_id_length = dcil;
*source_connection_id_length = scil;
return true;
}
bool QuicFramer::ProcessIetfPacketHeader(QuicDataReader* reader,
QuicPacketHeader* header) {
if (!ProcessIetfHeaderTypeByte(reader, header)) {
return false;
}
uint8_t destination_connection_id_length =
header->destination_connection_id_included == CONNECTION_ID_PRESENT
? (perspective_ == Perspective::IS_SERVER
? expected_server_connection_id_length_
: expected_client_connection_id_length_)
: 0;
uint8_t source_connection_id_length =
header->source_connection_id_included == CONNECTION_ID_PRESENT
? (perspective_ == Perspective::IS_CLIENT
? expected_server_connection_id_length_
: expected_client_connection_id_length_)
: 0;
if (header->form == IETF_QUIC_LONG_HEADER_PACKET) {
if (!ProcessAndValidateIetfConnectionIdLength(
reader, header->version, perspective_,
/*should_update_expected_server_connection_id_length=*/false,
&expected_server_connection_id_length_,
&destination_connection_id_length, &source_connection_id_length,
&detailed_error_)) {
return false;
}
}
DCHECK_LE(destination_connection_id_length, kQuicMaxConnectionIdLength);
DCHECK_LE(source_connection_id_length, kQuicMaxConnectionIdLength);
// Read connection ID.
if (!reader->ReadConnectionId(&header->destination_connection_id,
destination_connection_id_length)) {
set_detailed_error("Unable to read Destination ConnectionId.");
return false;
}
if (!reader->ReadConnectionId(&header->source_connection_id,
source_connection_id_length)) {
set_detailed_error("Unable to read Source ConnectionId.");
return false;
}
if (!GetQuicRestartFlag(quic_do_not_override_connection_id)) {
if (header->source_connection_id_included == CONNECTION_ID_PRESENT) {
DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
DCHECK_EQ(IETF_QUIC_LONG_HEADER_PACKET, header->form);
if (!header->destination_connection_id.IsEmpty()) {
set_detailed_error("Client connection ID not supported yet.");
return false;
}
// Set destination connection ID to source connection ID.
header->destination_connection_id = header->source_connection_id;
} else if (header->destination_connection_id_included ==
CONNECTION_ID_ABSENT) {
header->destination_connection_id = last_serialized_server_connection_id_;
}
} else {
QUIC_RESTART_FLAG_COUNT_N(quic_do_not_override_connection_id, 5, 7);
if (header->source_connection_id_included == CONNECTION_ID_ABSENT) {
if (!header->source_connection_id.IsEmpty()) {
DCHECK(!version_.SupportsClientConnectionIds());
set_detailed_error(
"Client connection ID not supported in this version.");
return false;
}
if (perspective_ == Perspective::IS_CLIENT) {
header->source_connection_id = last_serialized_server_connection_id_;
} else {
header->source_connection_id = last_serialized_client_connection_id_;
}
}
}
return true;
}
bool QuicFramer::ProcessAndCalculatePacketNumber(
QuicDataReader* reader,
QuicPacketNumberLength packet_number_length,
QuicPacketNumber base_packet_number,
uint64_t* packet_number) {
uint64_t wire_packet_number;
if (!reader->ReadBytesToUInt64(packet_number_length, &wire_packet_number)) {
return false;
}
// TODO(ianswett): Explore the usefulness of trying multiple packet numbers
// in case the first guess is incorrect.
*packet_number = CalculatePacketNumberFromWire(
packet_number_length, base_packet_number, wire_packet_number);
return true;
}
bool QuicFramer::ProcessFrameData(QuicDataReader* reader,
const QuicPacketHeader& header) {
DCHECK(!VersionHasIetfQuicFrames(version_.transport_version))
<< "IETF QUIC Framing negotiated but attempting to process frames as "
"non-IETF QUIC.";
if (reader->IsDoneReading()) {
set_detailed_error("Packet has no frames.");
return RaiseError(QUIC_MISSING_PAYLOAD);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing packet with header " << header;
while (!reader->IsDoneReading()) {
uint8_t frame_type;
if (!reader->ReadBytes(&frame_type, 1)) {
set_detailed_error("Unable to read frame type.");
return RaiseError(QUIC_INVALID_FRAME_DATA);
}
const uint8_t special_mask = transport_version() <= QUIC_VERSION_44
? kQuicFrameTypeBrokenMask
: kQuicFrameTypeSpecialMask;
if (frame_type & special_mask) {
// Stream Frame
if (frame_type & kQuicFrameTypeStreamMask) {
QuicStreamFrame frame;
if (!ProcessStreamFrame(reader, frame_type, &frame)) {
return RaiseError(QUIC_INVALID_STREAM_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing stream frame " << frame;
if (!visitor_->OnStreamFrame(frame)) {
QUIC_DVLOG(1) << ENDPOINT
<< "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
continue;
}
// Ack Frame
if (frame_type & kQuicFrameTypeAckMask) {
if (!ProcessAckFrame(reader, frame_type)) {
return RaiseError(QUIC_INVALID_ACK_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing ACK frame";
continue;
}
// This was a special frame type that did not match any
// of the known ones. Error.
set_detailed_error("Illegal frame type.");
QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: "
<< static_cast<int>(frame_type);
return RaiseError(QUIC_INVALID_FRAME_DATA);
}
switch (frame_type) {
case PADDING_FRAME: {
QuicPaddingFrame frame;
ProcessPaddingFrame(reader, &frame);
QUIC_DVLOG(2) << ENDPOINT << "Processing padding frame " << frame;
if (!visitor_->OnPaddingFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
continue;
}
case RST_STREAM_FRAME: {
QuicRstStreamFrame frame;
if (!ProcessRstStreamFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing reset stream frame " << frame;
if (!visitor_->OnRstStreamFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
continue;
}
case CONNECTION_CLOSE_FRAME: {
QuicConnectionCloseFrame frame;
if (!ProcessConnectionCloseFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing connection close frame "
<< frame;
if (!visitor_->OnConnectionCloseFrame(frame)) {
QUIC_DVLOG(1) << ENDPOINT
<< "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
continue;
}
case GOAWAY_FRAME: {
QuicGoAwayFrame goaway_frame;
if (!ProcessGoAwayFrame(reader, &goaway_frame)) {
return RaiseError(QUIC_INVALID_GOAWAY_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing go away frame "
<< goaway_frame;
if (!visitor_->OnGoAwayFrame(goaway_frame)) {
QUIC_DVLOG(1) << ENDPOINT
<< "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
continue;
}
case WINDOW_UPDATE_FRAME: {
QuicWindowUpdateFrame window_update_frame;
if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) {
return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing window update frame "
<< window_update_frame;
if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
QUIC_DVLOG(1) << ENDPOINT
<< "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
continue;
}
case BLOCKED_FRAME: {
QuicBlockedFrame blocked_frame;
if (!ProcessBlockedFrame(reader, &blocked_frame)) {
return RaiseError(QUIC_INVALID_BLOCKED_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing blocked frame "
<< blocked_frame;
if (!visitor_->OnBlockedFrame(blocked_frame)) {
QUIC_DVLOG(1) << ENDPOINT
<< "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
continue;
}
case STOP_WAITING_FRAME: {
if (GetQuicReloadableFlag(quic_do_not_accept_stop_waiting) &&
version_.transport_version >= QUIC_VERSION_44) {
QUIC_RELOADABLE_FLAG_COUNT(quic_do_not_accept_stop_waiting);
set_detailed_error("STOP WAITING not supported in version 44+.");
return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
}
QuicStopWaitingFrame stop_waiting_frame;
if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) {
return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing stop waiting frame "
<< stop_waiting_frame;
if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
QUIC_DVLOG(1) << ENDPOINT
<< "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
continue;
}
case PING_FRAME: {
// Ping has no payload.
QuicPingFrame ping_frame;
if (!visitor_->OnPingFrame(ping_frame)) {
QUIC_DVLOG(1) << ENDPOINT
<< "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
QUIC_DVLOG(2) << ENDPOINT << "Processing ping frame " << ping_frame;
continue;
}
case IETF_EXTENSION_MESSAGE_NO_LENGTH:
QUIC_FALLTHROUGH_INTENDED;
case IETF_EXTENSION_MESSAGE: {
QuicMessageFrame message_frame;
if (!ProcessMessageFrame(reader,
frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH,
&message_frame)) {
return RaiseError(QUIC_INVALID_MESSAGE_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing message frame "
<< message_frame;
if (!visitor_->OnMessageFrame(message_frame)) {
QUIC_DVLOG(1) << ENDPOINT
<< "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case CRYPTO_FRAME: {
if (!QuicVersionUsesCryptoFrames(version_.transport_version)) {
set_detailed_error("Illegal frame type.");
return RaiseError(QUIC_INVALID_FRAME_DATA);
}
QuicCryptoFrame frame;
if (!ProcessCryptoFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_FRAME_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing crypto frame " << frame;
if (!visitor_->OnCryptoFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
default:
set_detailed_error("Illegal frame type.");
QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: "
<< static_cast<int>(frame_type);
return RaiseError(QUIC_INVALID_FRAME_DATA);
}
}
return true;
}
bool QuicFramer::ProcessIetfFrameData(QuicDataReader* reader,
const QuicPacketHeader& header) {
DCHECK(VersionHasIetfQuicFrames(version_.transport_version))
<< "Attempt to process frames as IETF frames but version ("
<< version_.transport_version << ") does not support IETF Framing.";
if (reader->IsDoneReading()) {
set_detailed_error("Packet has no frames.");
return RaiseError(QUIC_MISSING_PAYLOAD);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF packet with header " << header;
while (!reader->IsDoneReading()) {
uint64_t frame_type;
// Will be the number of bytes into which frame_type was encoded.
size_t encoded_bytes = reader->BytesRemaining();
if (!reader->ReadVarInt62(&frame_type)) {
set_detailed_error("Unable to read frame type.");
return RaiseError(QUIC_INVALID_FRAME_DATA);
}
// Is now the number of bytes into which the frame type was encoded.
encoded_bytes -= reader->BytesRemaining();
// Check that the frame type is minimally encoded.
if (encoded_bytes !=
static_cast<size_t>(QuicDataWriter::GetVarInt62Len(frame_type))) {
// The frame type was not minimally encoded.
set_detailed_error("Frame type not minimally encoded.");
return RaiseError(IETF_QUIC_PROTOCOL_VIOLATION);
}
if (IS_IETF_STREAM_FRAME(frame_type)) {
QuicStreamFrame frame;
if (!ProcessIetfStreamFrame(reader, frame_type, &frame)) {
return RaiseError(QUIC_INVALID_STREAM_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stream frame " << frame;
if (!visitor_->OnStreamFrame(frame)) {
QUIC_DVLOG(1) << ENDPOINT
<< "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
} else {
switch (frame_type) {
case IETF_PADDING: {
QuicPaddingFrame frame;
ProcessPaddingFrame(reader, &frame);
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF padding frame "
<< frame;
if (!visitor_->OnPaddingFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_RST_STREAM: {
QuicRstStreamFrame frame;
if (!ProcessIetfResetStreamFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF reset stream frame "
<< frame;
if (!visitor_->OnRstStreamFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_APPLICATION_CLOSE:
case IETF_CONNECTION_CLOSE: {
QuicConnectionCloseFrame frame;
if (!ProcessIetfConnectionCloseFrame(
reader,
(frame_type == IETF_CONNECTION_CLOSE)
? IETF_QUIC_TRANSPORT_CONNECTION_CLOSE
: IETF_QUIC_APPLICATION_CONNECTION_CLOSE,
&frame)) {
return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF connection close frame "
<< frame;
if (!visitor_->OnConnectionCloseFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_MAX_DATA: {
QuicWindowUpdateFrame frame;
if (!ProcessMaxDataFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_MAX_DATA_FRAME_DATA);
}
// TODO(fkastenholz): Or should we create a new visitor function,
// OnMaxDataFrame()?
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max data frame "
<< frame;
if (!visitor_->OnWindowUpdateFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_MAX_STREAM_DATA: {
QuicWindowUpdateFrame frame;
if (!ProcessMaxStreamDataFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_MAX_STREAM_DATA_FRAME_DATA);
}
// TODO(fkastenholz): Or should we create a new visitor function,
// OnMaxStreamDataFrame()?
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max stream data frame "
<< frame;
if (!visitor_->OnWindowUpdateFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_MAX_STREAMS_BIDIRECTIONAL:
case IETF_MAX_STREAMS_UNIDIRECTIONAL: {
QuicMaxStreamsFrame frame;
if (!ProcessMaxStreamsFrame(reader, &frame, frame_type)) {
return RaiseError(QUIC_MAX_STREAMS_DATA);
}
QUIC_CODE_COUNT_N(quic_max_streams_received, 1, 2);
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max streams frame "
<< frame;
if (!visitor_->OnMaxStreamsFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_PING: {
// Ping has no payload.
QuicPingFrame ping_frame;
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF ping frame "
<< ping_frame;
if (!visitor_->OnPingFrame(ping_frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_BLOCKED: {
QuicBlockedFrame frame;
if (!ProcessIetfBlockedFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_BLOCKED_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF blocked frame "
<< frame;
if (!visitor_->OnBlockedFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_STREAM_BLOCKED: {
QuicBlockedFrame frame;
if (!ProcessStreamBlockedFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_STREAM_BLOCKED_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stream blocked frame "
<< frame;
if (!visitor_->OnBlockedFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_STREAMS_BLOCKED_UNIDIRECTIONAL:
case IETF_STREAMS_BLOCKED_BIDIRECTIONAL: {
QuicStreamsBlockedFrame frame;
if (!ProcessStreamsBlockedFrame(reader, &frame, frame_type)) {
return RaiseError(QUIC_STREAMS_BLOCKED_DATA);
}
QUIC_CODE_COUNT_N(quic_streams_blocked_received, 1, 2);
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF streams blocked frame "
<< frame;
if (!visitor_->OnStreamsBlockedFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_NEW_CONNECTION_ID: {
QuicNewConnectionIdFrame frame;
if (!ProcessNewConnectionIdFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_NEW_CONNECTION_ID_DATA);
}
QUIC_DVLOG(2) << ENDPOINT
<< "Processing IETF new connection ID frame " << frame;
if (!visitor_->OnNewConnectionIdFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_RETIRE_CONNECTION_ID: {
QuicRetireConnectionIdFrame frame;
if (!ProcessRetireConnectionIdFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_RETIRE_CONNECTION_ID_DATA);
}
QUIC_DVLOG(2) << ENDPOINT
<< "Processing IETF retire connection ID frame "
<< frame;
if (!visitor_->OnRetireConnectionIdFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_NEW_TOKEN: {
QuicNewTokenFrame frame;
if (!ProcessNewTokenFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_NEW_TOKEN);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF new token frame "
<< frame;
if (!visitor_->OnNewTokenFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_STOP_SENDING: {
QuicStopSendingFrame frame;
if (!ProcessStopSendingFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_STOP_SENDING_FRAME_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stop sending frame "
<< frame;
if (!visitor_->OnStopSendingFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_ACK_ECN:
case IETF_ACK: {
QuicAckFrame frame;
if (!ProcessIetfAckFrame(reader, frame_type, &frame)) {
return RaiseError(QUIC_INVALID_ACK_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF ACK frame " << frame;
break;
}
case IETF_PATH_CHALLENGE: {
QuicPathChallengeFrame frame;
if (!ProcessPathChallengeFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_PATH_CHALLENGE_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF path challenge frame "
<< frame;
if (!visitor_->OnPathChallengeFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_PATH_RESPONSE: {
QuicPathResponseFrame frame;
if (!ProcessPathResponseFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_PATH_RESPONSE_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF path response frame "
<< frame;
if (!visitor_->OnPathResponseFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_EXTENSION_MESSAGE_NO_LENGTH:
QUIC_FALLTHROUGH_INTENDED;
case IETF_EXTENSION_MESSAGE: {
QuicMessageFrame message_frame;
if (!ProcessMessageFrame(
reader, frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH,
&message_frame)) {
return RaiseError(QUIC_INVALID_MESSAGE_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF message frame "
<< message_frame;
if (!visitor_->OnMessageFrame(message_frame)) {
QUIC_DVLOG(1) << ENDPOINT
<< "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
case IETF_CRYPTO: {
QuicCryptoFrame frame;
if (!ProcessCryptoFrame(reader, &frame)) {
return RaiseError(QUIC_INVALID_FRAME_DATA);
}
QUIC_DVLOG(2) << ENDPOINT << "Processing IETF crypto frame " << frame;
if (!visitor_->OnCryptoFrame(frame)) {
QUIC_DVLOG(1) << "Visitor asked to stop further processing.";
// Returning true since there was no parsing error.
return true;
}
break;
}
default:
set_detailed_error("Illegal frame type.");
QUIC_DLOG(WARNING)
<< ENDPOINT
<< "Illegal frame type: " << static_cast<int>(frame_type);
return RaiseError(QUIC_INVALID_FRAME_DATA);
}
}
}
return true;
}
namespace {
// Create a mask that sets the last |num_bits| to 1 and the rest to 0.
inline uint8_t GetMaskFromNumBits(uint8_t num_bits) {
return (1u << num_bits) - 1;
}
// Extract |num_bits| from |flags| offset by |offset|.
uint8_t ExtractBits(uint8_t flags, uint8_t num_bits, uint8_t offset) {
return (flags >> offset) & GetMaskFromNumBits(num_bits);
}
// Extract the bit at position |offset| from |flags| as a bool.
bool ExtractBit(uint8_t flags, uint8_t offset) {
return ((flags >> offset) & GetMaskFromNumBits(1)) != 0;
}
// Set |num_bits|, offset by |offset| to |val| in |flags|.
void SetBits(uint8_t* flags, uint8_t val, uint8_t num_bits, uint8_t offset) {
DCHECK_LE(val, GetMaskFromNumBits(num_bits));
*flags |= val << offset;
}
// Set the bit at position |offset| to |val| in |flags|.
void SetBit(uint8_t* flags, bool val, uint8_t offset) {
SetBits(flags, val ? 1 : 0, 1, offset);
}
} // namespace
bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader,
uint8_t frame_type,
QuicStreamFrame* frame) {
uint8_t stream_flags = frame_type;
uint8_t stream_id_length = 0;
uint8_t offset_length = 4;
bool has_data_length = true;
stream_flags &= ~kQuicFrameTypeStreamMask;
// Read from right to left: StreamID, Offset, Data Length, Fin.
stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
stream_flags >>= kQuicStreamIdShift;
offset_length = (stream_flags & kQuicStreamOffsetMask);
// There is no encoding for 1 byte, only 0 and 2 through 8.
if (offset_length > 0) {
offset_length += 1;
}
stream_flags >>= kQuicStreamShift;
has_data_length =
(stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
stream_flags >>= kQuicStreamDataLengthShift;
frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
uint64_t stream_id;
if (!reader->ReadBytesToUInt64(stream_id_length, &stream_id)) {
set_detailed_error("Unable to read stream_id.");
return false;
}
frame->stream_id = static_cast<QuicStreamId>(stream_id);
if (!reader->ReadBytesToUInt64(offset_length, &frame->offset)) {
set_detailed_error("Unable to read offset.");
return false;
}
// TODO(ianswett): Don't use QuicStringPiece as an intermediary.
QuicStringPiece data;
if (has_data_length) {
if (!reader->ReadStringPiece16(&data)) {
set_detailed_error("Unable to read frame data.");
return false;
}
} else {
if (!reader->ReadStringPiece(&data, reader->BytesRemaining())) {
set_detailed_error("Unable to read frame data.");
return false;
}
}
frame->data_buffer = data.data();
frame->data_length = static_cast<uint16_t>(data.length());
return true;
}
bool QuicFramer::ProcessIetfStreamFrame(QuicDataReader* reader,
uint8_t frame_type,
QuicStreamFrame* frame) {
// Read stream id from the frame. It's always present.
if (!reader->ReadVarIntU32(&frame->stream_id)) {
set_detailed_error("Unable to read stream_id.");
return false;
}
// If we have a data offset, read it. If not, set to 0.
if (frame_type & IETF_STREAM_FRAME_OFF_BIT) {
if (!reader->ReadVarInt62(&frame->offset)) {
set_detailed_error("Unable to read stream data offset.");
return false;
}
} else {
// no offset in the frame, ensure it's 0 in the Frame.
frame->offset = 0;
}
// If we have a data length, read it. If not, set to 0.
if (frame_type & IETF_STREAM_FRAME_LEN_BIT) {
QuicIetfStreamDataLength length;
if (!reader->ReadVarInt62(&length)) {
set_detailed_error("Unable to read stream data length.");
return false;
}
if (length > 0xffff) {
set_detailed_error("Stream data length is too large.");
return false;
}
frame->data_length = length;
} else {
// no length in the frame, it is the number of bytes remaining in the
// packet.
frame->data_length = reader->BytesRemaining();
}
if (frame_type & IETF_STREAM_FRAME_FIN_BIT) {
frame->fin = true;
} else {
frame->fin = false;
}
// TODO(ianswett): Don't use QuicStringPiece as an intermediary.
QuicStringPiece data;
if (!reader->ReadStringPiece(&data, frame->data_length)) {
set_detailed_error("Unable to read frame data.");
return false;
}
frame->data_buffer = data.data();
frame->data_length = static_cast<QuicIetfStreamDataLength>(data.length());
return true;
}
bool QuicFramer::ProcessCryptoFrame(QuicDataReader* reader,
QuicCryptoFrame* frame) {
if (!reader->ReadVarInt62(&frame->offset)) {
set_detailed_error("Unable to read crypto data offset.");
return false;
}
uint64_t len;
if (!reader->ReadVarInt62(&len) ||
len > std::numeric_limits<QuicPacketLength>::max()) {
set_detailed_error("Invalid data length.");
return false;
}
frame->data_length = len;
// TODO(ianswett): Don't use QuicStringPiece as an intermediary.
QuicStringPiece data;
if (!reader->ReadStringPiece(&data, frame->data_length)) {
set_detailed_error("Unable to read frame data.");
return false;
}
frame->data_buffer = data.data();
return true;
}
bool QuicFramer::ProcessAckFrame(QuicDataReader* reader, uint8_t frame_type) {
const bool has_ack_blocks =
ExtractBit(frame_type, kQuicHasMultipleAckBlocksOffset);
uint8_t num_ack_blocks = 0;
uint8_t num_received_packets = 0;
// Determine the two lengths from the frame type: largest acked length,
// ack block length.
const QuicPacketNumberLength ack_block_length = ReadAckPacketNumberLength(
version_.transport_version,
ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits,
kActBlockLengthOffset));
const QuicPacketNumberLength largest_acked_length = ReadAckPacketNumberLength(
version_.transport_version,
ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits,
kLargestAckedOffset));
uint64_t largest_acked;
if (!reader->ReadBytesToUInt64(largest_acked_length, &largest_acked)) {
set_detailed_error("Unable to read largest acked.");
return false;
}
if (largest_acked < first_sending_packet_number_.ToUint64()) {
// Connection always sends packet starting from kFirstSendingPacketNumber >
// 0, peer has observed an unsent packet.
set_detailed_error("Largest acked is 0.");
return false;
}
uint64_t ack_delay_time_us;
if (!reader->ReadUFloat16(&ack_delay_time_us)) {
set_detailed_error("Unable to read ack delay time.");
return false;
}
if (!visitor_->OnAckFrameStart(
QuicPacketNumber(largest_acked),
ack_delay_time_us == kUFloat16MaxValue
? QuicTime::Delta::Infinite()
: QuicTime::Delta::FromMicroseconds(ack_delay_time_us))) {
// The visitor suppresses further processing of the packet. Although this is
// not a parsing error, returns false as this is in middle of processing an
// ack frame,
set_detailed_error("Visitor suppresses further processing of ack frame.");
return false;
}
if (has_ack_blocks && !reader->ReadUInt8(&num_ack_blocks)) {
set_detailed_error("Unable to read num of ack blocks.");
return false;
}
uint64_t first_block_length;
if (!reader->ReadBytesToUInt64(ack_block_length, &first_block_length)) {
set_detailed_error("Unable to read first ack block length.");
return false;
}
if (first_block_length == 0) {
set_detailed_error("First block length is zero.");
return false;
}
bool first_ack_block_underflow = first_block_length > largest_acked + 1;
if (first_block_length + first_sending_packet_number_.ToUint64() >
largest_acked + 1) {
first_ack_block_underflow = true;
}
if (first_ack_block_underflow) {
set_detailed_error(QuicStrCat("Underflow with first ack block length ",
first_block_length, " largest acked is ",
largest_acked, ".")
.c_str());
return false;
}
uint64_t first_received = largest_acked + 1 - first_block_length;
if (!visitor_->OnAckRange(QuicPacketNumber(first_received),
QuicPacketNumber(largest_acked + 1))) {
// The visitor suppresses further processing of the packet. Although
// this is not a parsing error, returns false as this is in middle
// of processing an ack frame,
set_detailed_error("Visitor suppresses further processing of ack frame.");
return false;
}
if (num_ack_blocks > 0) {
for (size_t i = 0; i < num_ack_blocks; ++i) {
uint8_t gap = 0;
if (!reader->ReadUInt8(&gap)) {
set_detailed_error("Unable to read gap to next ack block.");
return false;
}
uint64_t current_block_length;
if (!reader->ReadBytesToUInt64(ack_block_length, &current_block_length)) {
set_detailed_error("Unable to ack block length.");
return false;
}
bool ack_block_underflow = first_received < gap + current_block_length;
if (first_received < gap + current_block_length +
first_sending_packet_number_.ToUint64()) {
ack_block_underflow = true;
}
if (ack_block_underflow) {
set_detailed_error(
QuicStrCat("Underflow with ack block length ", current_block_length,
", end of block is ", first_received - gap, ".")
.c_str());
return false;
}
first_received -= (gap + current_block_length);
if (current_block_length > 0) {
if (!visitor_->OnAckRange(
QuicPacketNumber(first_received),
QuicPacketNumber(first_received) + current_block_length)) {
// The visitor suppresses further processing of the packet. Although
// this is not a parsing error, returns false as this is in middle
// of processing an ack frame,
set_detailed_error(
"Visitor suppresses further processing of ack frame.");
return false;
}
}
}
}
if (!reader->ReadUInt8(&num_received_packets)) {
set_detailed_error("Unable to read num received packets.");
return false;
}
if (!ProcessTimestampsInAckFrame(num_received_packets,
QuicPacketNumber(largest_acked), reader)) {
return false;
}
// Done processing the ACK frame.
return visitor_->OnAckFrameEnd(QuicPacketNumber(first_received));
}
bool QuicFramer::ProcessTimestampsInAckFrame(uint8_t num_received_packets,
QuicPacketNumber largest_acked,
QuicDataReader* reader) {
if (num_received_packets == 0) {
return true;
}
uint8_t delta_from_largest_observed;
if (!reader->ReadUInt8(&delta_from_largest_observed)) {
set_detailed_error("Unable to read sequence delta in received packets.");
return false;
}
if (largest_acked.ToUint64() <= delta_from_largest_observed) {
set_detailed_error(QuicStrCat("delta_from_largest_observed too high: ",
delta_from_largest_observed,
", largest_acked: ", largest_acked.ToUint64())
.c_str());
return false;
}
// Time delta from the framer creation.
uint32_t time_delta_us;
if (!reader->ReadUInt32(&time_delta_us)) {
set_detailed_error("Unable to read time delta in received packets.");
return false;
}
QuicPacketNumber seq_num = largest_acked - delta_from_largest_observed;
if (process_timestamps_) {
last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_);
}
for (uint8_t i = 1; i < num_received_packets; ++i) {
if (!reader->ReadUInt8(&delta_from_largest_observed)) {
set_detailed_error("Unable to read sequence delta in received packets.");
return false;
}
if (largest_acked.ToUint64() <= delta_from_largest_observed) {
set_detailed_error(
QuicStrCat("delta_from_largest_observed too high: ",
delta_from_largest_observed,
", largest_acked: ", largest_acked.ToUint64())
.c_str());
return false;
}
seq_num = largest_acked - delta_from_largest_observed;
// Time delta from the previous timestamp.
uint64_t incremental_time_delta_us;
if (!reader->ReadUFloat16(&incremental_time_delta_us)) {
set_detailed_error(
"Unable to read incremental time delta in received packets.");
return false;
}
if (process_timestamps_) {
last_timestamp_ = last_timestamp_ + QuicTime::Delta::FromMicroseconds(
incremental_time_delta_us);
visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_);
}
}
return true;
}
bool QuicFramer::ProcessIetfAckFrame(QuicDataReader* reader,
uint64_t frame_type,
QuicAckFrame* ack_frame) {
uint64_t largest_acked;
if (!reader->ReadVarInt62(&largest_acked)) {
set_detailed_error("Unable to read largest acked.");
return false;
}
if (largest_acked < first_sending_packet_number_.ToUint64()) {
// Connection always sends packet starting from kFirstSendingPacketNumber >
// 0, peer has observed an unsent packet.
set_detailed_error("Largest acked is 0.");
return false;
}
ack_frame->largest_acked = static_cast<QuicPacketNumber>(largest_acked);
uint64_t ack_delay_time_in_us;
if (!reader->ReadVarInt62(&ack_delay_time_in_us)) {
set_detailed_error("Unable to read ack delay time.");
return false;
}
// TODO(fkastenholz) when we get real IETF QUIC, need to get
// the currect shift from the transport parameters.
if (ack_delay_time_in_us == kVarInt62MaxValue) {
ack_frame->ack_delay_time = QuicTime::Delta::Infinite();
} else {
ack_delay_time_in_us = (ack_delay_time_in_us << kIetfAckTimestampShift);
ack_frame->ack_delay_time =
QuicTime::Delta::FromMicroseconds(ack_delay_time_in_us);
}
if (frame_type == IETF_ACK_ECN) {
ack_frame->ecn_counters_populated = true;
if (!reader->ReadVarInt62(&ack_frame->ect_0_count)) {
set_detailed_error("Unable to read ack ect_0_count.");
return false;
}
if (!reader->ReadVarInt62(&ack_frame->ect_1_count)) {
set_detailed_error("Unable to read ack ect_1_count.");
return false;
}
if (!reader->ReadVarInt62(&ack_frame->ecn_ce_count)) {
set_detailed_error("Unable to read ack ecn_ce_count.");
return false;
}
} else {
ack_frame->ecn_counters_populated = false;
ack_frame->ect_0_count = 0;
ack_frame->ect_1_count = 0;
ack_frame->ecn_ce_count = 0;
}
if (!visitor_->OnAckFrameStart(QuicPacketNumber(largest_acked),
ack_frame->ack_delay_time)) {
// The visitor suppresses further processing of the packet. Although this is
// not a parsing error, returns false as this is in middle of processing an
// ACK frame.
set_detailed_error("Visitor suppresses further processing of ACK frame.");
return false;
}
// Get number of ACK blocks from the packet.
uint64_t ack_block_count;
if (!reader->ReadVarInt62(&ack_block_count)) {
set_detailed_error("Unable to read ack block count.");
return false;
}
// There always is a first ACK block, which is the (number of packets being
// acked)-1, up to and including the packet at largest_acked. Therefore if the
// value is 0, then only largest is acked. If it is 1, then largest-1,
// largest] are acked, etc
uint64_t ack_block_value;
if (!reader->ReadVarInt62(&ack_block_value)) {
set_detailed_error("Unable to read first ack block length.");
return false;
}
// Calculate the packets being acked in the first block.
// +1 because AddRange implementation requires [low,high)
uint64_t block_high = largest_acked + 1;
uint64_t block_low = largest_acked - ack_block_value;
// ack_block_value is the number of packets preceding the
// largest_acked packet which are in the block being acked. Thus,
// its maximum value is largest_acked-1. Test this, reporting an
// error if the value is wrong.
if (ack_block_value + first_sending_packet_number_.ToUint64() >
largest_acked) {
set_detailed_error(QuicStrCat("Underflow with first ack block length ",
ack_block_value + 1, " largest acked is ",
largest_acked, ".")
.c_str());
return false;
}
if (!visitor_->OnAckRange(QuicPacketNumber(block_low),
QuicPacketNumber(block_high))) {
// The visitor suppresses further processing of the packet. Although
// this is not a parsing error, returns false as this is in middle
// of processing an ACK frame.
set_detailed_error("Visitor suppresses further processing of ACK frame.");
return false;
}
while (ack_block_count != 0) {
uint64_t gap_block_value;
// Get the sizes of the gap and ack blocks,
if (!reader->ReadVarInt62(&gap_block_value)) {
set_detailed_error("Unable to read gap block value.");
return false;
}
// It's an error if the gap is larger than the space from packet
// number 0 to the start of the block that's just been acked, PLUS
// there must be space for at least 1 packet to be acked. For
// example, if block_low is 10 and gap_block_value is 9, it means
// the gap block is 10 packets long, leaving no room for a packet
// to be acked. Thus, gap_block_value+2 can not be larger than
// block_low.
// The test is written this way to detect wrap-arounds.
if ((gap_block_value + 2) > block_low) {
set_detailed_error(
QuicStrCat("Underflow with gap block length ", gap_block_value + 1,
" previous ack block start is ", block_low, ".")
.c_str());
return false;
}
// Adjust block_high to be the top of the next ack block.
// There is a gap of |gap_block_value| packets between the bottom
// of ack block N and top of block N+1. Note that gap_block_value
// is he size of the gap minus 1 (per the QUIC protocol), and
// block_high is the packet number of the first packet of the gap
// (per the implementation of OnAckRange/AddAckRange, below).
block_high = block_low - 1 - gap_block_value;
if (!reader->ReadVarInt62(&ack_block_value)) {
set_detailed_error("Unable to read ack block value.");
return false;
}
if (ack_block_value + first_sending_packet_number_.ToUint64() >
(block_high - 1)) {
set_detailed_error(
QuicStrCat("Underflow with ack block length ", ack_block_value + 1,
" latest ack block end is ", block_high - 1, ".")
.c_str());
return false;
}
// Calculate the low end of the new nth ack block. The +1 is
// because the encoded value is the blocksize-1.
block_low = block_high - 1 - ack_block_value;
if (!visitor_->OnAckRange(QuicPacketNumber(block_low),
QuicPacketNumber(block_high))) {
// The visitor suppresses further processing of the packet. Although
// this is not a parsing error, returns false as this is in middle
// of processing an ACK frame.
set_detailed_error("Visitor suppresses further processing of ACK frame.");
return false;
}
// Another one done.
ack_block_count--;
}
return visitor_->OnAckFrameEnd(QuicPacketNumber(block_low));
}
bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader,
const QuicPacketHeader& header,
QuicStopWaitingFrame* stop_waiting) {
uint64_t least_unacked_delta;
if (!reader->ReadBytesToUInt64(header.packet_number_length,
&least_unacked_delta)) {
set_detailed_error("Unable to read least unacked delta.");
return false;
}
if (header.packet_number.ToUint64() <= least_unacked_delta) {
set_detailed_error("Invalid unacked delta.");
return false;
}
stop_waiting->least_unacked = header.packet_number - least_unacked_delta;
return true;
}
bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader,
QuicRstStreamFrame* frame) {
if (!reader->ReadUInt32(&frame->stream_id)) {
set_detailed_error("Unable to read stream_id.");
return false;
}
if (!reader->ReadUInt64(&frame->byte_offset)) {
set_detailed_error("Unable to read rst stream sent byte offset.");
return false;
}
uint32_t error_code;
if (!reader->ReadUInt32(&error_code)) {
set_detailed_error("Unable to read rst stream error code.");
return false;
}
if (error_code >= QUIC_STREAM_LAST_ERROR) {
// Ignore invalid stream error code if any.
error_code = QUIC_STREAM_LAST_ERROR;
}
frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
return true;
}
bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader,
QuicConnectionCloseFrame* frame) {
uint32_t error_code;
frame->close_type = GOOGLE_QUIC_CONNECTION_CLOSE;
if (!reader->ReadUInt32(&error_code)) {
set_detailed_error("Unable to read connection close error code.");
return false;
}
if (error_code >= QUIC_LAST_ERROR) {
// Ignore invalid QUIC error code if any.
error_code = QUIC_LAST_ERROR;
}
frame->quic_error_code = static_cast<QuicErrorCode>(error_code);
QuicStringPiece error_details;
if (!reader->ReadStringPiece16(&error_details)) {
set_detailed_error("Unable to read connection close error details.");
return false;
}
frame->error_details = std::string(error_details);
return true;
}
bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader,
QuicGoAwayFrame* frame) {
uint32_t error_code;
if (!reader->ReadUInt32(&error_code)) {
set_detailed_error("Unable to read go away error code.");
return false;
}
if (error_code >= QUIC_LAST_ERROR) {
// Ignore invalid QUIC error code if any.
error_code = QUIC_LAST_ERROR;
}
frame->error_code = static_cast<QuicErrorCode>(error_code);
uint32_t stream_id;
if (!reader->ReadUInt32(&stream_id)) {
set_detailed_error("Unable to read last good stream id.");
return false;
}
frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
QuicStringPiece reason_phrase;
if (!reader->ReadStringPiece16(&reason_phrase)) {
set_detailed_error("Unable to read goaway reason.");
return false;
}
frame->reason_phrase = std::string(reason_phrase);
return true;
}
bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader,
QuicWindowUpdateFrame* frame) {
if (!reader->ReadUInt32(&frame->stream_id)) {
set_detailed_error("Unable to read stream_id.");
return false;
}
if (!reader->ReadUInt64(&frame->byte_offset)) {
set_detailed_error("Unable to read window byte_offset.");
return false;
}
return true;
}
bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader,
QuicBlockedFrame* frame) {
DCHECK(!VersionHasIetfQuicFrames(version_.transport_version))
<< "Attempt to process non-IETF QUIC frames in an IETF QUIC version.";
if (!reader->ReadUInt32(&frame->stream_id)) {
set_detailed_error("Unable to read stream_id.");
return false;
}
return true;
}
void QuicFramer::ProcessPaddingFrame(QuicDataReader* reader,
QuicPaddingFrame* frame) {
// Type byte has been read.
frame->num_padding_bytes = 1;
uint8_t next_byte;
while (!reader->IsDoneReading() && reader->PeekByte() == 0x00) {
reader->ReadBytes(&next_byte, 1);
DCHECK_EQ(0x00, next_byte);
++frame->num_padding_bytes;
}
}
bool QuicFramer::ProcessMessageFrame(QuicDataReader* reader,
bool no_message_length,
QuicMessageFrame* frame) {
if (no_message_length) {
QuicStringPiece remaining(reader->ReadRemainingPayload());
frame->data = remaining.data();
frame->message_length = remaining.length();
return true;
}
uint64_t message_length;
if (!reader->ReadVarInt62(&message_length)) {
set_detailed_error("Unable to read message length");
return false;
}
QuicStringPiece message_piece;
if (!reader->ReadStringPiece(&message_piece, message_length)) {
set_detailed_error("Unable to read message data");
return false;
}
frame->data = message_piece.data();
frame->message_length = message_length;
return true;
}
// static
QuicStringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
QuicTransportVersion version,
const QuicEncryptedPacket& encrypted,
QuicConnectionIdLength destination_connection_id_length,
QuicConnectionIdLength source_connection_id_length,
bool includes_version,
bool includes_diversification_nonce,
QuicPacketNumberLength packet_number_length,
QuicVariableLengthIntegerLength retry_token_length_length,
uint64_t retry_token_length,
QuicVariableLengthIntegerLength length_length) {
// TODO(ianswett): This is identical to QuicData::AssociatedData.
return QuicStringPiece(
encrypted.data(),
GetStartOfEncryptedData(version, destination_connection_id_length,
source_connection_id_length, includes_version,
includes_diversification_nonce,
packet_number_length, retry_token_length_length,
retry_token_length, length_length));
}
void QuicFramer::SetDecrypter(EncryptionLevel level,
std::unique_ptr<QuicDecrypter> decrypter) {
DCHECK_EQ(alternative_decrypter_level_, NUM_ENCRYPTION_LEVELS);
DCHECK_GE(level, decrypter_level_);
DCHECK(!version_.KnowsWhichDecrypterToUse());
decrypter_[decrypter_level_] = nullptr;
decrypter_[level] = std::move(decrypter);
decrypter_level_ = level;
}
void QuicFramer::SetAlternativeDecrypter(
EncryptionLevel level,
std::unique_ptr<QuicDecrypter> decrypter,
bool latch_once_used) {
DCHECK_NE(level, decrypter_level_);
DCHECK(!version_.KnowsWhichDecrypterToUse());
if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) {
decrypter_[alternative_decrypter_level_] = nullptr;
}
decrypter_[level] = std::move(decrypter);
alternative_decrypter_level_ = level;
alternative_decrypter_latch_ = latch_once_used;
}
void QuicFramer::InstallDecrypter(EncryptionLevel level,
std::unique_ptr<QuicDecrypter> decrypter) {
DCHECK(version_.KnowsWhichDecrypterToUse());
decrypter_[level] = std::move(decrypter);
}
void QuicFramer::RemoveDecrypter(EncryptionLevel level) {
DCHECK(version_.KnowsWhichDecrypterToUse());
decrypter_[level] = nullptr;
}
const QuicDecrypter* QuicFramer::GetDecrypter(EncryptionLevel level) const {
DCHECK(version_.KnowsWhichDecrypterToUse());
return decrypter_[level].get();
}
const QuicDecrypter* QuicFramer::decrypter() const {
return decrypter_[decrypter_level_].get();
}
const QuicDecrypter* QuicFramer::alternative_decrypter() const {
if (alternative_decrypter_level_ == NUM_ENCRYPTION_LEVELS) {
return nullptr;
}
return decrypter_[alternative_decrypter_level_].get();
}
void QuicFramer::SetEncrypter(EncryptionLevel level,
std::unique_ptr<QuicEncrypter> encrypter) {
DCHECK_GE(level, 0);
DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
encrypter_[level] = std::move(encrypter);
}
size_t QuicFramer::EncryptInPlace(EncryptionLevel level,
QuicPacketNumber packet_number,
size_t ad_len,
size_t total_len,
size_t buffer_len,
char* buffer) {
DCHECK(packet_number.IsInitialized());
if (encrypter_[level] == nullptr) {
QUIC_BUG << ENDPOINT
<< "Attempted to encrypt in place without encrypter at level "
<< QuicUtils::EncryptionLevelToString(level);
RaiseError(QUIC_ENCRYPTION_FAILURE);
return 0;
}
size_t output_length = 0;
if (!encrypter_[level]->EncryptPacket(
packet_number.ToUint64(),
QuicStringPiece(buffer, ad_len), // Associated data
QuicStringPiece(buffer + ad_len, total_len - ad_len), // Plaintext
buffer + ad_len, // Destination buffer
&output_length, buffer_len - ad_len)) {
RaiseError(QUIC_ENCRYPTION_FAILURE);
return 0;
}
if (version_.HasHeaderProtection() &&
!ApplyHeaderProtection(level, buffer, ad_len + output_length, ad_len)) {
QUIC_DLOG(ERROR) << "Applying header protection failed.";
RaiseError(QUIC_ENCRYPTION_FAILURE);
return 0;
}
return ad_len + output_length;
}
namespace {
const size_t kHPSampleLen = 16;
constexpr bool IsLongHeader(uint8_t type_byte) {
return (type_byte & FLAGS_LONG_HEADER) != 0;
}
} // namespace
bool QuicFramer::ApplyHeaderProtection(EncryptionLevel level,
char* buffer,
size_t buffer_len,
size_t ad_len) {
QuicDataReader buffer_reader(buffer, buffer_len);
QuicDataWriter buffer_writer(buffer_len, buffer);
// The sample starts 4 bytes after the start of the packet number.
if (ad_len < last_written_packet_number_length_) {
return false;
}
size_t pn_offset = ad_len - last_written_packet_number_length_;
// Sample the ciphertext and generate the mask to use for header protection.
size_t sample_offset = pn_offset + 4;
QuicDataReader sample_reader(buffer, buffer_len);
QuicStringPiece sample;
if (!sample_reader.Seek(sample_offset) ||
!sample_reader.ReadStringPiece(&sample, kHPSampleLen)) {
QUIC_BUG << "Not enough bytes to sample: sample_offset " << sample_offset
<< ", sample len: " << kHPSampleLen
<< ", buffer len: " << buffer_len;
return false;
}
std::string mask = encrypter_[level]->GenerateHeaderProtectionMask(sample);
if (mask.empty()) {
QUIC_BUG << "Unable to generate header protection mask.";
return false;
}
QuicDataReader mask_reader(mask.data(), mask.size());
// Apply the mask to the 4 or 5 least significant bits of the first byte.
uint8_t bitmask = 0x1f;
uint8_t type_byte;
if (!buffer_reader.ReadUInt8(&type_byte)) {
return false;
}
QuicLongHeaderType header_type;
if (IsLongHeader(type_byte)) {
bitmask = 0x0f;
if (!GetLongHeaderType(version_.transport_version, type_byte,
&header_type)) {
return false;
}
}
uint8_t mask_byte;
if (!mask_reader.ReadUInt8(&mask_byte) ||
!buffer_writer.WriteUInt8(type_byte ^ (mask_byte & bitmask))) {
return false;
}
// Adjust |pn_offset| to account for the diversification nonce.
if (IsLongHeader(type_byte) && header_type == ZERO_RTT_PROTECTED &&
perspective_ == Perspective::IS_SERVER &&
version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) {
if (pn_offset <= kDiversificationNonceSize) {
QUIC_BUG << "Expected diversification nonce, but not enough bytes";
return false;
}
pn_offset -= kDiversificationNonceSize;
}
// Advance the reader and writer to the packet number. Both the reader and
// writer have each read/written one byte.
if (!buffer_writer.Seek(pn_offset - 1) ||
!buffer_reader.Seek(pn_offset - 1)) {
return false;
}
// Apply the rest of the mask to the packet number.
for (size_t i = 0; i < last_written_packet_number_length_; ++i) {
uint8_t buffer_byte;
uint8_t mask_byte;
if (!mask_reader.ReadUInt8(&mask_byte) ||
!buffer_reader.ReadUInt8(&buffer_byte) ||
!buffer_writer.WriteUInt8(buffer_byte ^ mask_byte)) {
return false;
}
}
return true;
}
bool QuicFramer::RemoveHeaderProtection(QuicDataReader* reader,
const QuicEncryptedPacket& packet,
QuicPacketHeader* header,
uint64_t* full_packet_number,
std::vector<char>* associated_data) {
EncryptionLevel expected_decryption_level = GetEncryptionLevel(*header);
QuicDecrypter* decrypter = decrypter_[expected_decryption_level].get();
if (decrypter == nullptr) {
QUIC_DVLOG(1)
<< "No decrypter available for removing header protection at level "
<< expected_decryption_level;
return false;
}
bool has_diversification_nonce =
header->form == IETF_QUIC_LONG_HEADER_PACKET &&
header->long_packet_type == ZERO_RTT_PROTECTED &&
perspective_ == Perspective::IS_CLIENT &&
version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO;
// Read a sample from the ciphertext and compute the mask to use for header
// protection.
QuicStringPiece remaining_packet = reader->PeekRemainingPayload();
QuicDataReader sample_reader(remaining_packet);
// The sample starts 4 bytes after the start of the packet number.
QuicStringPiece pn;
if (!sample_reader.ReadStringPiece(&pn, 4)) {
QUIC_DVLOG(1) << "Not enough data to sample";
return false;
}
if (has_diversification_nonce) {
// In Google QUIC, the diversification nonce comes between the packet number
// and the sample.
if (!sample_reader.Seek(kDiversificationNonceSize)) {
QUIC_DVLOG(1) << "No diversification nonce to skip over";
return false;
}
}
std::string mask = decrypter->GenerateHeaderProtectionMask(&sample_reader);
QuicDataReader mask_reader(mask.data(), mask.size());
if (mask.empty()) {
QUIC_DVLOG(1) << "Failed to compute mask";
return false;
}
// Unmask the rest of the type byte.
uint8_t bitmask = 0x1f;
if (IsLongHeader(header->type_byte)) {
bitmask = 0x0f;
}
uint8_t mask_byte;
if (!mask_reader.ReadUInt8(&mask_byte)) {
QUIC_DVLOG(1) << "No first byte to read from mask";
return false;
}
header->type_byte ^= (mask_byte & bitmask);
// Compute the packet number length.
header->packet_number_length =
static_cast<QuicPacketNumberLength>((header->type_byte & 0x03) + 1);
char pn_buffer[IETF_MAX_PACKET_NUMBER_LENGTH] = {};
QuicDataWriter pn_writer(QUIC_ARRAYSIZE(pn_buffer), pn_buffer);
// Read the (protected) packet number from the reader and unmask the packet
// number.
for (size_t i = 0; i < header->packet_number_length; ++i) {
uint8_t protected_pn_byte, mask_byte;
if (!mask_reader.ReadUInt8(&mask_byte) ||
!reader->ReadUInt8(&protected_pn_byte) ||
!pn_writer.WriteUInt8(protected_pn_byte ^ mask_byte)) {
QUIC_DVLOG(1) << "Failed to unmask packet number";
return false;
}
}
QuicDataReader packet_number_reader(pn_writer.data(), pn_writer.length());
QuicPacketNumber base_packet_number;
if (supports_multiple_packet_number_spaces_) {
PacketNumberSpace pn_space = GetPacketNumberSpace(*header);
if (pn_space == NUM_PACKET_NUMBER_SPACES) {
return false;
}
base_packet_number = largest_decrypted_packet_numbers_[pn_space];
} else {
base_packet_number = largest_packet_number_;
}
if (!ProcessAndCalculatePacketNumber(
&packet_number_reader, header->packet_number_length,
base_packet_number, full_packet_number)) {
return false;
}
// Get the associated data, and apply the same unmasking operations to it.
QuicStringPiece ad = GetAssociatedDataFromEncryptedPacket(
version_.transport_version, packet,
GetIncludedDestinationConnectionIdLength(*header),
GetIncludedSourceConnectionIdLength(*header), header->version_flag,
has_diversification_nonce, header->packet_number_length,
header->retry_token_length_length, header->retry_token.length(),
header->length_length);
*associated_data = std::vector<char>(ad.begin(), ad.end());
QuicDataWriter ad_writer(associated_data->size(), associated_data->data());
// Apply the unmasked type byte and packet number to |associated_data|.
if (!ad_writer.WriteUInt8(header->type_byte)) {
return false;
}
// Put the packet number at the end of the AD, or if there's a diversification
// nonce, before that (which is at the end of the AD).
size_t seek_len = ad_writer.remaining() - header->packet_number_length;
if (has_diversification_nonce) {
seek_len -= kDiversificationNonceSize;
}
if (!ad_writer.Seek(seek_len) ||
!ad_writer.WriteBytes(pn_writer.data(), pn_writer.length())) {
QUIC_DVLOG(1) << "Failed to apply unmasking operations to AD";
return false;
}
return true;
}
size_t QuicFramer::EncryptPayload(EncryptionLevel level,
QuicPacketNumber packet_number,
const QuicPacket& packet,
char* buffer,
size_t buffer_len) {
DCHECK(packet_number.IsInitialized());
if (encrypter_[level] == nullptr) {
QUIC_BUG << ENDPOINT << "Attempted to encrypt without encrypter at level "
<< QuicUtils::EncryptionLevelToString(level);
RaiseError(QUIC_ENCRYPTION_FAILURE);
return 0;
}
QuicStringPiece associated_data =
packet.AssociatedData(version_.transport_version);
// Copy in the header, because the encrypter only populates the encrypted
// plaintext content.
const size_t ad_len = associated_data.length();
memmove(buffer, associated_data.data(), ad_len);
// Encrypt the plaintext into the buffer.
size_t output_length = 0;
if (!encrypter_[level]->EncryptPacket(
packet_number.ToUint64(), associated_data,
packet.Plaintext(version_.transport_version), buffer + ad_len,
&output_length, buffer_len - ad_len)) {
RaiseError(QUIC_ENCRYPTION_FAILURE);
return 0;
}
if (version_.HasHeaderProtection() &&
!ApplyHeaderProtection(level, buffer, ad_len + output_length, ad_len)) {
QUIC_DLOG(ERROR) << "Applying header protection failed.";
RaiseError(QUIC_ENCRYPTION_FAILURE);
return 0;
}
return ad_len + output_length;
}
size_t QuicFramer::GetCiphertextSize(EncryptionLevel level,
size_t plaintext_size) const {
return encrypter_[level]->GetCiphertextSize(plaintext_size);
}
size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
// In order to keep the code simple, we don't have the current encryption
// level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
size_t min_plaintext_size = ciphertext_size;
for (int i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; i++) {
if (encrypter_[i] != nullptr) {
size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
if (size < min_plaintext_size) {
min_plaintext_size = size;
}
}
}
return min_plaintext_size;
}
bool QuicFramer::DecryptPayload(QuicStringPiece encrypted,
QuicStringPiece associated_data,
const QuicPacketHeader& header,
char* decrypted_buffer,
size_t buffer_length,
size_t* decrypted_length,
EncryptionLevel* decrypted_level) {
if (!EncryptionLevelIsValid(decrypter_level_)) {
QUIC_BUG << "Attempted to decrypt with bad decrypter_level_";
return false;
}
EncryptionLevel level = decrypter_level_;
QuicDecrypter* decrypter = decrypter_[level].get();
QuicDecrypter* alternative_decrypter = nullptr;
if (version().KnowsWhichDecrypterToUse()) {
if (header.form == GOOGLE_QUIC_PACKET) {
QUIC_BUG << "Attempted to decrypt GOOGLE_QUIC_PACKET with a version that "
"knows which decrypter to use";
return false;
}
level = GetEncryptionLevel(header);
if (!EncryptionLevelIsValid(level)) {
QUIC_BUG << "Attempted to decrypt with bad level";
return false;
}
decrypter = decrypter_[level].get();
if (decrypter == nullptr) {
return false;
}
if (level == ENCRYPTION_ZERO_RTT &&
perspective_ == Perspective::IS_CLIENT && header.nonce != nullptr) {
decrypter->SetDiversificationNonce(*header.nonce);
}
} else if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) {
if (!EncryptionLevelIsValid(alternative_decrypter_level_)) {
QUIC_BUG << "Attempted to decrypt with bad alternative_decrypter_level_";
return false;
}
alternative_decrypter = decrypter_[alternative_decrypter_level_].get();
}
if (decrypter == nullptr) {
QUIC_BUG << "Attempting to decrypt without decrypter, encryption level:"
<< level << " version:" << version();
return false;
}
bool success = decrypter->DecryptPacket(
header.packet_number.ToUint64(), associated_data, encrypted,
decrypted_buffer, decrypted_length, buffer_length);
if (success) {
visitor_->OnDecryptedPacket(level);
*decrypted_level = level;
} else if (alternative_decrypter != nullptr) {
if (header.nonce != nullptr) {
DCHECK_EQ(perspective_, Perspective::IS_CLIENT);
alternative_decrypter->SetDiversificationNonce(*header.nonce);
}
bool try_alternative_decryption = true;
if (alternative_decrypter_level_ == ENCRYPTION_ZERO_RTT) {
if (perspective_ == Perspective::IS_CLIENT) {
if (header.nonce == nullptr) {
// Can not use INITIAL decryption without a diversification nonce.
try_alternative_decryption = false;
}
} else {
DCHECK(header.nonce == nullptr);
}
}
if (try_alternative_decryption) {
success = alternative_decrypter->DecryptPacket(
header.packet_number.ToUint64(), associated_data, encrypted,
decrypted_buffer, decrypted_length, buffer_length);
}
if (success) {
visitor_->OnDecryptedPacket(alternative_decrypter_level_);
*decrypted_level = decrypter_level_;
if (alternative_decrypter_latch_) {
if (!EncryptionLevelIsValid(alternative_decrypter_level_)) {
QUIC_BUG << "Attempted to latch alternate decrypter with bad "
"alternative_decrypter_level_";
return false;
}
// Switch to the alternative decrypter and latch so that we cannot
// switch back.
decrypter_level_ = alternative_decrypter_level_;
alternative_decrypter_level_ = NUM_ENCRYPTION_LEVELS;
} else {
// Switch the alternative decrypter so that we use it first next time.
EncryptionLevel level = alternative_decrypter_level_;
alternative_decrypter_level_ = decrypter_level_;
decrypter_level_ = level;
}
}
}
if (!success) {
QUIC_DVLOG(1) << ENDPOINT << "DecryptPacket failed for: " << header;
return false;
}
return true;
}
size_t QuicFramer::GetIetfAckFrameSize(const QuicAckFrame& frame) {
// Type byte, largest_acked, and delay_time are straight-forward.
size_t ack_frame_size = kQuicFrameTypeSize;
QuicPacketNumber largest_acked = LargestAcked(frame);
ack_frame_size += QuicDataWriter::GetVarInt62Len(largest_acked.ToUint64());
uint64_t ack_delay_time_us;
ack_delay_time_us = frame.ack_delay_time.ToMicroseconds();
ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift;
ack_frame_size += QuicDataWriter::GetVarInt62Len(ack_delay_time_us);
// If |ecn_counters_populated| is true and any of the ecn counters is non-0
// then the ecn counters are included...
if (frame.ecn_counters_populated &&
(frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) {
ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_0_count);
ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_1_count);
ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count);
}
// The rest (ack_block_count, first_ack_block, and additional ack
// blocks, if any) depends:
uint64_t ack_block_count = frame.packets.NumIntervals();
if (ack_block_count == 0) {
// If the QuicAckFrame has no Intervals, then it is interpreted
// as an ack of a single packet at QuicAckFrame.largest_acked.
// The resulting ack will consist of only the frame's
// largest_ack & first_ack_block fields. The first ack block will be 0
// (indicating a single packet) and the ack block_count will be 0.
// Each 0 takes 1 byte when VarInt62 encoded.
ack_frame_size += 2;
return ack_frame_size;
}
auto itr = frame.packets.rbegin();
QuicPacketNumber ack_block_largest = largest_acked;
QuicPacketNumber ack_block_smallest;
if ((itr->max() - 1) == largest_acked) {
// If largest_acked + 1 is equal to the Max() of the first Interval
// in the QuicAckFrame then the first Interval is the first ack block of the
// frame; remaining Intervals are additional ack blocks. The QuicAckFrame's
// first Interval is encoded in the frame's largest_acked/first_ack_block,
// the remaining Intervals are encoded in additional ack blocks in the
// frame, and the packet's ack_block_count is the number of QuicAckFrame
// Intervals - 1.
ack_block_smallest = itr->min();
itr++;
ack_block_count--;
} else {
// If QuicAckFrame.largest_acked is NOT equal to the Max() of
// the first Interval then it is interpreted as acking a single
// packet at QuicAckFrame.largest_acked, with additional
// Intervals indicating additional ack blocks. The encoding is
// a) The packet's largest_acked is the QuicAckFrame's largest
// acked,
// b) the first ack block size is 0,
// c) The packet's ack_block_count is the number of QuicAckFrame
// Intervals, and
// d) The QuicAckFrame Intervals are encoded in additional ack
// blocks in the packet.
ack_block_smallest = largest_acked;
}
size_t ack_block_count_size = QuicDataWriter::GetVarInt62Len(ack_block_count);
ack_frame_size += ack_block_count_size;
uint64_t first_ack_block = ack_block_largest - ack_block_smallest;
size_t first_ack_block_size = QuicDataWriter::GetVarInt62Len(first_ack_block);
ack_frame_size += first_ack_block_size;
// Account for the remaining Intervals, if any.
while (ack_block_count != 0) {
uint64_t gap_size = ack_block_smallest - itr->max();
// Decrement per the protocol specification
size_t size_of_gap_size = QuicDataWriter::GetVarInt62Len(gap_size - 1);
ack_frame_size += size_of_gap_size;
uint64_t block_size = itr->max() - itr->min();
// Decrement per the protocol specification
size_t size_of_block_size = QuicDataWriter::GetVarInt62Len(block_size - 1);
ack_frame_size += size_of_block_size;
ack_block_smallest = itr->min();
itr++;
ack_block_count--;
}
return ack_frame_size;
}
size_t QuicFramer::GetAckFrameSize(
const QuicAckFrame& ack,
QuicPacketNumberLength /*packet_number_length*/) {
DCHECK(!ack.packets.Empty());
size_t ack_size = 0;
if (VersionHasIetfQuicFrames(version_.transport_version)) {
return GetIetfAckFrameSize(ack);
}
AckFrameInfo ack_info = GetAckFrameInfo(ack);
QuicPacketNumberLength largest_acked_length =
GetMinPacketNumberLength(version_.transport_version, LargestAcked(ack));
QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength(
version_.transport_version, QuicPacketNumber(ack_info.max_block_length));
ack_size =
GetMinAckFrameSize(version_.transport_version, largest_acked_length);
// First ack block length.
ack_size += ack_block_length;
if (ack_info.num_ack_blocks != 0) {
ack_size += kNumberOfAckBlocksSize;
ack_size += std::min(ack_info.num_ack_blocks, kMaxAckBlocks) *
(ack_block_length + PACKET_1BYTE_PACKET_NUMBER);
}
// Include timestamps.
if (process_timestamps_) {
ack_size += GetAckFrameTimeStampSize(ack);
}
return ack_size;
}
size_t QuicFramer::GetAckFrameTimeStampSize(const QuicAckFrame& ack) {
if (ack.received_packet_times.empty()) {
return 0;
}
return kQuicNumTimestampsLength + kQuicFirstTimestampLength +
(kQuicTimestampLength + kQuicTimestampPacketNumberGapLength) *
(ack.received_packet_times.size() - 1);
}
size_t QuicFramer::ComputeFrameLength(
const QuicFrame& frame,
bool last_frame_in_packet,
QuicPacketNumberLength packet_number_length) {
switch (frame.type) {
case STREAM_FRAME:
return GetMinStreamFrameSize(
version_.transport_version, frame.stream_frame.stream_id,
frame.stream_frame.offset, last_frame_in_packet,
frame.stream_frame.data_length) +
frame.stream_frame.data_length;
case CRYPTO_FRAME:
return GetMinCryptoFrameSize(frame.crypto_frame->offset,
frame.crypto_frame->data_length) +
frame.crypto_frame->data_length;
case ACK_FRAME: {
return GetAckFrameSize(*frame.ack_frame, packet_number_length);
}
case STOP_WAITING_FRAME:
return GetStopWaitingFrameSize(version_.transport_version,
packet_number_length);
case MTU_DISCOVERY_FRAME:
// MTU discovery frames are serialized as ping frames.
return kQuicFrameTypeSize;
case MESSAGE_FRAME:
return GetMessageFrameSize(version_.transport_version,
last_frame_in_packet,
frame.message_frame->message_length);
case PADDING_FRAME:
DCHECK(false);
return 0;
default:
return GetRetransmittableControlFrameSize(version_.transport_version,
frame);
}
}
bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
bool last_frame_in_packet,
QuicDataWriter* writer) {
if (VersionHasIetfQuicFrames(version_.transport_version)) {
return AppendIetfTypeByte(frame, last_frame_in_packet, writer);
}
uint8_t type_byte = 0;
switch (frame.type) {
case STREAM_FRAME:
type_byte =
GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet);
break;
case ACK_FRAME:
return true;
case MTU_DISCOVERY_FRAME:
type_byte = static_cast<uint8_t>(PING_FRAME);
break;
case NEW_CONNECTION_ID_FRAME:
set_detailed_error(
"Attempt to append NEW_CONNECTION_ID frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case RETIRE_CONNECTION_ID_FRAME:
set_detailed_error(
"Attempt to append RETIRE_CONNECTION_ID frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case NEW_TOKEN_FRAME:
set_detailed_error(
"Attempt to append NEW_TOKEN frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case MAX_STREAMS_FRAME:
set_detailed_error(
"Attempt to append MAX_STREAMS frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case STREAMS_BLOCKED_FRAME:
set_detailed_error(
"Attempt to append STREAMS_BLOCKED frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case PATH_RESPONSE_FRAME:
set_detailed_error(
"Attempt to append PATH_RESPONSE frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case PATH_CHALLENGE_FRAME:
set_detailed_error(
"Attempt to append PATH_CHALLENGE frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case STOP_SENDING_FRAME:
set_detailed_error(
"Attempt to append STOP_SENDING frame and not in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case MESSAGE_FRAME:
return true;
default:
type_byte = static_cast<uint8_t>(frame.type);
break;
}
return writer->WriteUInt8(type_byte);
}
bool QuicFramer::AppendIetfTypeByte(const QuicFrame& frame,
bool last_frame_in_packet,
QuicDataWriter* writer) {
uint8_t type_byte = 0;
switch (frame.type) {
case PADDING_FRAME:
type_byte = IETF_PADDING;
break;
case RST_STREAM_FRAME:
type_byte = IETF_RST_STREAM;
break;
case CONNECTION_CLOSE_FRAME:
switch (frame.connection_close_frame->close_type) {
case IETF_QUIC_APPLICATION_CONNECTION_CLOSE:
type_byte = IETF_APPLICATION_CLOSE;
break;
case IETF_QUIC_TRANSPORT_CONNECTION_CLOSE:
type_byte = IETF_CONNECTION_CLOSE;
break;
default:
set_detailed_error("Invalid QuicConnectionCloseFrame type.");
return RaiseError(QUIC_INTERNAL_ERROR);
}
break;
case GOAWAY_FRAME:
set_detailed_error(
"Attempt to create non-IETF QUIC GOAWAY frame in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case WINDOW_UPDATE_FRAME:
// Depending on whether there is a stream ID or not, will be either a
// MAX_STREAM_DATA frame or a MAX_DATA frame.
if (frame.window_update_frame->stream_id ==
QuicUtils::GetInvalidStreamId(transport_version())) {
type_byte = IETF_MAX_DATA;
} else {
type_byte = IETF_MAX_STREAM_DATA;
}
break;
case BLOCKED_FRAME:
if (frame.blocked_frame->stream_id ==
QuicUtils::GetInvalidStreamId(transport_version())) {
type_byte = IETF_BLOCKED;
} else {
type_byte = IETF_STREAM_BLOCKED;
}
break;
case STOP_WAITING_FRAME:
set_detailed_error(
"Attempt to append type byte of STOP WAITING frame in IETF QUIC.");
return RaiseError(QUIC_INTERNAL_ERROR);
case PING_FRAME:
type_byte = IETF_PING;
break;
case STREAM_FRAME:
type_byte =
GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet);
break;
case ACK_FRAME:
// Do nothing here, AppendIetfAckFrameAndTypeByte() will put the type byte
// in the buffer.
return true;
case MTU_DISCOVERY_FRAME:
// The path MTU discovery frame is encoded as a PING frame on the wire.
type_byte = IETF_PING;
break;
case NEW_CONNECTION_ID_FRAME:
type_byte = IETF_NEW_CONNECTION_ID;
break;
case RETIRE_CONNECTION_ID_FRAME:
type_byte = IETF_RETIRE_CONNECTION_ID;
break;
case NEW_TOKEN_FRAME:
type_byte = IETF_NEW_TOKEN;
break;
case MAX_STREAMS_FRAME:
if (frame.max_streams_frame.unidirectional) {
type_byte = IETF_MAX_STREAMS_UNIDIRECTIONAL;
} else {
type_byte = IETF_MAX_STREAMS_BIDIRECTIONAL;
}
break;
case STREAMS_BLOCKED_FRAME:
if (frame.streams_blocked_frame.unidirectional) {
type_byte = IETF_STREAMS_BLOCKED_UNIDIRECTIONAL;
} else {
type_byte = IETF_STREAMS_BLOCKED_BIDIRECTIONAL;
}
break;
case PATH_RESPONSE_FRAME:
type_byte = IETF_PATH_RESPONSE;
break;
case PATH_CHALLENGE_FRAME:
type_byte = IETF_PATH_CHALLENGE;
break;
case STOP_SENDING_FRAME:
type_byte = IETF_STOP_SENDING;
break;
case MESSAGE_FRAME:
return true;
case CRYPTO_FRAME:
type_byte = IETF_CRYPTO;
break;
default:
QUIC_BUG << "Attempt to generate a frame type for an unsupported value: "
<< frame.type;
return false;
}
return writer->WriteUInt8(type_byte);
}
// static
bool QuicFramer::AppendPacketNumber(QuicPacketNumberLength packet_number_length,
QuicPacketNumber packet_number,
QuicDataWriter* writer) {
DCHECK(packet_number.IsInitialized());
if (!IsValidPacketNumberLength(packet_number_length)) {
QUIC_BUG << "Invalid packet_number_length: " << packet_number_length;
return false;
}
return writer->WriteBytesToUInt64(packet_number_length,
packet_number.ToUint64());
}
// static
bool QuicFramer::AppendStreamId(size_t stream_id_length,
QuicStreamId stream_id,
QuicDataWriter* writer) {
if (stream_id_length == 0 || stream_id_length > 4) {
QUIC_BUG << "Invalid stream_id_length: " << stream_id_length;
return false;
}
return writer->WriteBytesToUInt64(stream_id_length, stream_id);
}
// static
bool QuicFramer::AppendStreamOffset(size_t offset_length,
QuicStreamOffset offset,
QuicDataWriter* writer) {
if (offset_length == 1 || offset_length > 8) {
QUIC_BUG << "Invalid stream_offset_length: " << offset_length;
return false;
}
return writer->WriteBytesToUInt64(offset_length, offset);
}
// static
bool QuicFramer::AppendAckBlock(uint8_t gap,
QuicPacketNumberLength length_length,
uint64_t length,
QuicDataWriter* writer) {
if (length == 0) {
if (!IsValidPacketNumberLength(length_length)) {
QUIC_BUG << "Invalid packet_number_length: " << length_length;
return false;
}
return writer->WriteUInt8(gap) &&
writer->WriteBytesToUInt64(length_length, length);
}
return writer->WriteUInt8(gap) &&
AppendPacketNumber(length_length, QuicPacketNumber(length), writer);
}
bool QuicFramer::AppendStreamFrame(const QuicStreamFrame& frame,
bool no_stream_frame_length,
QuicDataWriter* writer) {
if (VersionHasIetfQuicFrames(version_.transport_version)) {
return AppendIetfStreamFrame(frame, no_stream_frame_length, writer);
}
if (!AppendStreamId(GetStreamIdSize(frame.stream_id), frame.stream_id,
writer)) {
QUIC_BUG << "Writing stream id size failed.";
return false;
}
if (!AppendStreamOffset(
GetStreamOffsetSize(version_.transport_version, frame.offset),
frame.offset, writer)) {
QUIC_BUG << "Writing offset size failed.";
return false;
}
if (!no_stream_frame_length) {
static_assert(
std::numeric_limits<decltype(frame.data_length)>::max() <=
std::numeric_limits<uint16_t>::max(),
"If frame.data_length can hold more than a uint16_t than we need to "
"check that frame.data_length <= std::numeric_limits<uint16_t>::max()");
if (!writer->WriteUInt16(static_cast<uint16_t>(frame.data_length))) {
QUIC_BUG << "Writing stream frame length failed";
return false;
}
}
if (data_producer_ != nullptr) {
DCHECK_EQ(nullptr, frame.data_buffer);
if (frame.data_length == 0) {
return true;
}
if (data_producer_->WriteStreamData(frame.stream_id, frame.offset,
frame.data_length,
writer) != WRITE_SUCCESS) {
QUIC_BUG << "Writing frame data failed.";
return false;
}
return true;
}
if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) {
QUIC_BUG << "Writing frame data failed.";
return false;
}
return true;
}
bool QuicFramer::AppendNewTokenFrame(const QuicNewTokenFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.token.length()))) {
set_detailed_error("Writing token length failed.");
return false;
}
if (!writer->WriteBytes(frame.token.data(), frame.token.length())) {
set_detailed_error("Writing token buffer failed.");
return false;
}
return true;
}
bool QuicFramer::ProcessNewTokenFrame(QuicDataReader* reader,
QuicNewTokenFrame* frame) {
uint64_t length;
if (!reader->ReadVarInt62(&length)) {
set_detailed_error("Unable to read new token length.");
return false;
}
if (length > kMaxNewTokenTokenLength) {
set_detailed_error("Token length larger than maximum.");
return false;
}
// TODO(ianswett): Don't use QuicStringPiece as an intermediary.
QuicStringPiece data;
if (!reader->ReadStringPiece(&data, length)) {
set_detailed_error("Unable to read new token data.");
return false;
}
frame->token = std::string(data);
return true;
}
// Add a new ietf-format stream frame.
// Bits controlling whether there is a frame-length and frame-offset
// are in the QuicStreamFrame.
bool QuicFramer::AppendIetfStreamFrame(const QuicStreamFrame& frame,
bool last_frame_in_packet,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) {
set_detailed_error("Writing stream id failed.");
return false;
}
if (frame.offset != 0) {
if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) {
set_detailed_error("Writing data offset failed.");
return false;
}
}
if (!last_frame_in_packet) {
if (!writer->WriteVarInt62(frame.data_length)) {
set_detailed_error("Writing data length failed.");
return false;
}
}
if (frame.data_length == 0) {
return true;
}
if (data_producer_ == nullptr) {
if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) {
set_detailed_error("Writing frame data failed.");
return false;
}
} else {
DCHECK_EQ(nullptr, frame.data_buffer);
if (data_producer_->WriteStreamData(frame.stream_id, frame.offset,
frame.data_length,
writer) != WRITE_SUCCESS) {
set_detailed_error("Writing frame data failed.");
return false;
}
}
return true;
}
bool QuicFramer::AppendCryptoFrame(const QuicCryptoFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) {
set_detailed_error("Writing data offset failed.");
return false;
}
if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.data_length))) {
set_detailed_error("Writing data length failed.");
return false;
}
if (data_producer_ == nullptr) {
if (frame.data_buffer == nullptr ||
!writer->WriteBytes(frame.data_buffer, frame.data_length)) {
set_detailed_error("Writing frame data failed.");
return false;
}
} else {
DCHECK_EQ(nullptr, frame.data_buffer);
if (!data_producer_->WriteCryptoData(frame.level, frame.offset,
frame.data_length, writer)) {
return false;
}
}
return true;
}
void QuicFramer::set_version(const ParsedQuicVersion version) {
DCHECK(IsSupportedVersion(version)) << ParsedQuicVersionToString(version);
version_ = version;
}
bool QuicFramer::AppendAckFrameAndTypeByte(const QuicAckFrame& frame,
QuicDataWriter* writer) {
if (VersionHasIetfQuicFrames(transport_version())) {
return AppendIetfAckFrameAndTypeByte(frame, writer);
}
const AckFrameInfo new_ack_info = GetAckFrameInfo(frame);
QuicPacketNumber largest_acked = LargestAcked(frame);
QuicPacketNumberLength largest_acked_length =
GetMinPacketNumberLength(version_.transport_version, largest_acked);
QuicPacketNumberLength ack_block_length =
GetMinPacketNumberLength(version_.transport_version,
QuicPacketNumber(new_ack_info.max_block_length));
// Calculate available bytes for timestamps and ack blocks.
int32_t available_timestamp_and_ack_block_bytes =
writer->capacity() - writer->length() - ack_block_length -
GetMinAckFrameSize(version_.transport_version, largest_acked_length) -
(new_ack_info.num_ack_blocks != 0 ? kNumberOfAckBlocksSize : 0);
DCHECK_LE(0, available_timestamp_and_ack_block_bytes);
// Write out the type byte by setting the low order bits and doing shifts
// to make room for the next bit flags to be set.
// Whether there are multiple ack blocks.
uint8_t type_byte = 0;
SetBit(&type_byte, new_ack_info.num_ack_blocks != 0,
kQuicHasMultipleAckBlocksOffset);
SetBits(&type_byte, GetPacketNumberFlags(largest_acked_length),
kQuicSequenceNumberLengthNumBits, kLargestAckedOffset);
SetBits(&type_byte, GetPacketNumberFlags(ack_block_length),
kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset);
type_byte |= kQuicFrameTypeAckMask;
if (!writer->WriteUInt8(type_byte)) {
return false;
}
size_t max_num_ack_blocks = available_timestamp_and_ack_block_bytes /
(ack_block_length + PACKET_1BYTE_PACKET_NUMBER);
// Number of ack blocks.
size_t num_ack_blocks =
std::min(new_ack_info.num_ack_blocks, max_num_ack_blocks);
if (num_ack_blocks > std::numeric_limits<uint8_t>::max()) {
num_ack_blocks = std::numeric_limits<uint8_t>::max();
}
// Largest acked.
if (!AppendPacketNumber(largest_acked_length, largest_acked, writer)) {
return false;
}
// Largest acked delta time.
uint64_t ack_delay_time_us = kUFloat16MaxValue;
if (!frame.ack_delay_time.IsInfinite()) {
DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds());
ack_delay_time_us = frame.ack_delay_time.ToMicroseconds();
}
if (!writer->WriteUFloat16(ack_delay_time_us)) {
return false;
}
if (num_ack_blocks > 0) {
if (!writer->WriteBytes(&num_ack_blocks, 1)) {
return false;
}
}
// First ack block length.
if (!AppendPacketNumber(ack_block_length,
QuicPacketNumber(new_ack_info.first_block_length),
writer)) {
return false;
}
// Ack blocks.
if (num_ack_blocks > 0) {
size_t num_ack_blocks_written = 0;
// Append, in descending order from the largest ACKed packet, a series of
// ACK blocks that represents the successfully acknoweldged packets. Each
// appended gap/block length represents a descending delta from the previous
// block. i.e.:
// |--- length ---|--- gap ---|--- length ---|--- gap ---|--- largest ---|
// For gaps larger than can be represented by a single encoded gap, a 0
// length gap of the maximum is used, i.e.:
// |--- length ---|--- gap ---|- 0 -|--- gap ---|--- largest ---|
auto itr = frame.packets.rbegin();
QuicPacketNumber previous_start = itr->min();
++itr;
for (;
itr != frame.packets.rend() && num_ack_blocks_written < num_ack_blocks;
previous_start = itr->min(), ++itr) {
const auto& interval = *itr;
const uint64_t total_gap = previous_start - interval.max();
const size_t num_encoded_gaps =
(total_gap + std::numeric_limits<uint8_t>::max() - 1) /
std::numeric_limits<uint8_t>::max();
// Append empty ACK blocks because the gap is longer than a single gap.
for (size_t i = 1;
i < num_encoded_gaps && num_ack_blocks_written < num_ack_blocks;
++i) {
if (!AppendAckBlock(std::numeric_limits<uint8_t>::max(),
ack_block_length, 0, writer)) {
return false;
}
++num_ack_blocks_written;
}
if (num_ack_blocks_written >= num_ack_blocks) {
if (QUIC_PREDICT_FALSE(num_ack_blocks_written != num_ack_blocks)) {
QUIC_BUG << "Wrote " << num_ack_blocks_written
<< ", expected to write " << num_ack_blocks;
}
break;
}
const uint8_t last_gap =
total_gap -
(num_encoded_gaps - 1) * std::numeric_limits<uint8_t>::max();
// Append the final ACK block with a non-empty size.
if (!AppendAckBlock(last_gap, ack_block_length,
PacketNumberIntervalLength(interval), writer)) {
return false;
}
++num_ack_blocks_written;
}
DCHECK_EQ(num_ack_blocks, num_ack_blocks_written);
}
// Timestamps.
// If we don't process timestamps or if we don't have enough available space
// to append all the timestamps, don't append any of them.
if (process_timestamps_ && writer->capacity() - writer->length() >=
GetAckFrameTimeStampSize(frame)) {
if (!AppendTimestampsToAckFrame(frame, writer)) {
return false;
}
} else {
uint8_t num_received_packets = 0;
if (!writer->WriteBytes(&num_received_packets, 1)) {
return false;
}
}
return true;
}
bool QuicFramer::AppendTimestampsToAckFrame(const QuicAckFrame& frame,
QuicDataWriter* writer) {
DCHECK_GE(std::numeric_limits<uint8_t>::max(),
frame.received_packet_times.size());
// num_received_packets is only 1 byte.
if (frame.received_packet_times.size() >
std::numeric_limits<uint8_t>::max()) {
return false;
}
uint8_t num_received_packets = frame.received_packet_times.size();
if (!writer->WriteBytes(&num_received_packets, 1)) {
return false;
}
if (num_received_packets == 0) {
return true;
}
auto it = frame.received_packet_times.begin();
QuicPacketNumber packet_number = it->first;
uint64_t delta_from_largest_observed = LargestAcked(frame) - packet_number;
DCHECK_GE(std::numeric_limits<uint8_t>::max(), delta_from_largest_observed);
if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) {
return false;
}
if (!writer->WriteUInt8(delta_from_largest_observed)) {
return false;
}
// Use the lowest 4 bytes of the time delta from the creation_time_.
const uint64_t time_epoch_delta_us = UINT64_C(1) << 32;
uint32_t time_delta_us =
static_cast<uint32_t>((it->second - creation_time_).ToMicroseconds() &
(time_epoch_delta_us - 1));
if (!writer->WriteUInt32(time_delta_us)) {
return false;
}
QuicTime prev_time = it->second;
for (++it; it != frame.received_packet_times.end(); ++it) {
packet_number = it->first;
delta_from_largest_observed = LargestAcked(frame) - packet_number;
if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) {
return false;
}
if (!writer->WriteUInt8(delta_from_largest_observed)) {
return false;
}
uint64_t frame_time_delta_us = (it->second - prev_time).ToMicroseconds();
prev_time = it->second;
if (!writer->WriteUFloat16(frame_time_delta_us)) {
return false;
}
}
return true;
}
bool QuicFramer::AppendStopWaitingFrame(const QuicPacketHeader& header,
const QuicStopWaitingFrame& frame,
QuicDataWriter* writer) {
DCHECK(!VersionHasIetfInvariantHeader(version_.transport_version));
DCHECK(frame.least_unacked.IsInitialized() &&
header.packet_number >= frame.least_unacked);
const uint64_t least_unacked_delta =
header.packet_number - frame.least_unacked;
const uint64_t length_shift = header.packet_number_length * 8;
if (least_unacked_delta >> length_shift > 0) {
QUIC_BUG << "packet_number_length " << header.packet_number_length
<< " is too small for least_unacked_delta: " << least_unacked_delta
<< " packet_number:" << header.packet_number
<< " least_unacked:" << frame.least_unacked
<< " version:" << version_.transport_version;
return false;
}
if (least_unacked_delta == 0) {
return writer->WriteBytesToUInt64(header.packet_number_length,
least_unacked_delta);
}
if (!AppendPacketNumber(header.packet_number_length,
QuicPacketNumber(least_unacked_delta), writer)) {
QUIC_BUG << " seq failed: " << header.packet_number_length;
return false;
}
return true;
}
int QuicFramer::CalculateIetfAckBlockCount(const QuicAckFrame& frame,
QuicDataWriter* /*writer*/,
size_t available_space) {
// Number of blocks requested in the frame
uint64_t ack_block_count = frame.packets.NumIntervals();
auto itr = frame.packets.rbegin();
int actual_block_count = 1;
uint64_t block_length = itr->max() - itr->min();
size_t encoded_size = QuicDataWriter::GetVarInt62Len(block_length);
if (encoded_size > available_space) {
return 0;
}
available_space -= encoded_size;
QuicPacketNumber previous_ack_end = itr->min();
ack_block_count--;
while (ack_block_count) {
// Each block is a gap followed by another ACK. Calculate each value,
// determine the encoded lengths, and check against the available space.
itr++;
size_t gap = previous_ack_end - itr->max() - 1;
encoded_size = QuicDataWriter::GetVarInt62Len(gap);
// Add the ACK block.
block_length = itr->max() - itr->min();
encoded_size += QuicDataWriter::GetVarInt62Len(block_length);
if (encoded_size > available_space) {
// No room for this block, so what we've
// done up to now is all that can be done.
return actual_block_count;
}
available_space -= encoded_size;
actual_block_count++;
previous_ack_end = itr->min();
ack_block_count--;
}
// Ran through the whole thing! We can do all blocks.
return actual_block_count;
}
bool QuicFramer::AppendIetfAckFrameAndTypeByte(const QuicAckFrame& frame,
QuicDataWriter* writer) {
// Assume frame is an IETF_ACK frame. If |ecn_counters_populated| is true and
// any of the ECN counters is non-0 then turn it into an IETF_ACK+ECN frame.
uint8_t type = IETF_ACK;
if (frame.ecn_counters_populated &&
(frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) {
type = IETF_ACK_ECN;
}
if (!writer->WriteUInt8(type)) {
set_detailed_error("No room for frame-type");
return false;
}
QuicPacketNumber largest_acked = LargestAcked(frame);
if (!writer->WriteVarInt62(largest_acked.ToUint64())) {
set_detailed_error("No room for largest-acked in ack frame");
return false;
}
uint64_t ack_delay_time_us = kVarInt62MaxValue;
if (!frame.ack_delay_time.IsInfinite()) {
DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds());
ack_delay_time_us = frame.ack_delay_time.ToMicroseconds();
// TODO(fkastenholz): Use the shift from TLS transport parameters.
ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift;
}
if (!writer->WriteVarInt62(ack_delay_time_us)) {
set_detailed_error("No room for ack-delay in ack frame");
return false;
}
if (type == IETF_ACK_ECN) {
// Encode the ACK ECN fields
if (!writer->WriteVarInt62(frame.ect_0_count)) {
set_detailed_error("No room for ect_0_count in ack frame");
return false;
}
if (!writer->WriteVarInt62(frame.ect_1_count)) {
set_detailed_error("No room for ect_1_count in ack frame");
return false;
}
if (!writer->WriteVarInt62(frame.ecn_ce_count)) {
set_detailed_error("No room for ecn_ce_count in ack frame");
return false;
}
}
uint64_t ack_block_count = frame.packets.NumIntervals();
if (ack_block_count == 0) {
// If the QuicAckFrame has no Intervals, then it is interpreted
// as an ack of a single packet at QuicAckFrame.largest_acked.
// The resulting ack will consist of only the frame's
// largest_ack & first_ack_block fields. The first ack block will be 0
// (indicating a single packet) and the ack block_count will be 0.
if (!writer->WriteVarInt62(0)) {
set_detailed_error("No room for ack block count in ack frame");
return false;
}
// size of the first block is 1 packet
if (!writer->WriteVarInt62(0)) {
set_detailed_error("No room for first ack block in ack frame");
return false;
}
return true;
}
// Case 2 or 3
auto itr = frame.packets.rbegin();
QuicPacketNumber ack_block_largest(largest_acked);
QuicPacketNumber ack_block_smallest;
if ((itr->max() - 1) == QuicPacketNumber(largest_acked)) {
// If largest_acked + 1 is equal to the Max() of the first Interval
// in the QuicAckFrame then the first Interval is the first ack block of the
// frame; remaining Intervals are additional ack blocks. The QuicAckFrame's
// first Interval is encoded in the frame's largest_acked/first_ack_block,
// the remaining Intervals are encoded in additional ack blocks in the
// frame, and the packet's ack_block_count is the number of QuicAckFrame
// Intervals - 1.
ack_block_smallest = itr->min();
itr++;
ack_block_count--;
} else {
// If QuicAckFrame.largest_acked is NOT equal to the Max() of
// the first Interval then it is interpreted as acking a single
// packet at QuicAckFrame.largest_acked, with additional
// Intervals indicating additional ack blocks. The encoding is
// a) The packet's largest_acked is the QuicAckFrame's largest
// acked,
// b) the first ack block size is 0,
// c) The packet's ack_block_count is the number of QuicAckFrame
// Intervals, and
// d) The QuicAckFrame Intervals are encoded in additional ack
// blocks in the packet.
ack_block_smallest = largest_acked;
}
if (!writer->WriteVarInt62(ack_block_count)) {
set_detailed_error("No room for ack block count in ack frame");
return false;
}
uint64_t first_ack_block = ack_block_largest - ack_block_smallest;
if (!writer->WriteVarInt62(first_ack_block)) {
set_detailed_error("No room for first ack block in ack frame");
return false;
}
// For the remaining QuicAckFrame Intervals, if any
while (ack_block_count != 0) {
uint64_t gap_size = ack_block_smallest - itr->max();
if (!writer->WriteVarInt62(gap_size - 1)) {
set_detailed_error("No room for gap block in ack frame");
return false;
}
uint64_t block_size = itr->max() - itr->min();
if (!writer->WriteVarInt62(block_size - 1)) {
set_detailed_error("No room for nth ack block in ack frame");
return false;
}
ack_block_smallest = itr->min();
itr++;
ack_block_count--;
}
return true;
}
bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame,
QuicDataWriter* writer) {
if (VersionHasIetfQuicFrames(version_.transport_version)) {
return AppendIetfResetStreamFrame(frame, writer);
}
if (!writer->WriteUInt32(frame.stream_id)) {
return false;
}
if (!writer->WriteUInt64(frame.byte_offset)) {
return false;
}
uint32_t error_code = static_cast<uint32_t>(frame.error_code);
if (!writer->WriteUInt32(error_code)) {
return false;
}
return true;
}
bool QuicFramer::AppendConnectionCloseFrame(
const QuicConnectionCloseFrame& frame,
QuicDataWriter* writer) {
if (VersionHasIetfQuicFrames(version_.transport_version)) {
return AppendIetfConnectionCloseFrame(frame, writer);
}
uint32_t error_code = static_cast<uint32_t>(frame.quic_error_code);
if (!writer->WriteUInt32(error_code)) {
return false;
}
if (!writer->WriteStringPiece16(TruncateErrorString(frame.error_details))) {
return false;
}
return true;
}
bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
QuicDataWriter* writer) {
uint32_t error_code = static_cast<uint32_t>(frame.error_code);
if (!writer->WriteUInt32(error_code)) {
return false;
}
uint32_t stream_id = static_cast<uint32_t>(frame.last_good_stream_id);
if (!writer->WriteUInt32(stream_id)) {
return false;
}
if (!writer->WriteStringPiece16(TruncateErrorString(frame.reason_phrase))) {
return false;
}
return true;
}
bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
QuicDataWriter* writer) {
uint32_t stream_id = static_cast<uint32_t>(frame.stream_id);
if (!writer->WriteUInt32(stream_id)) {
return false;
}
if (!writer->WriteUInt64(frame.byte_offset)) {
return false;
}
return true;
}
bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
QuicDataWriter* writer) {
if (VersionHasIetfQuicFrames(version_.transport_version)) {
if (frame.stream_id == QuicUtils::GetInvalidStreamId(transport_version())) {
return AppendIetfBlockedFrame(frame, writer);
}
return AppendStreamBlockedFrame(frame, writer);
}
uint32_t stream_id = static_cast<uint32_t>(frame.stream_id);
if (!writer->WriteUInt32(stream_id)) {
return false;
}
return true;
}
bool QuicFramer::AppendPaddingFrame(const QuicPaddingFrame& frame,
QuicDataWriter* writer) {
if (frame.num_padding_bytes == 0) {
return false;
}
if (frame.num_padding_bytes < 0) {
QUIC_BUG_IF(frame.num_padding_bytes != -1);
writer->WritePadding();
return true;
}
// Please note, num_padding_bytes includes type byte which has been written.
return writer->WritePaddingBytes(frame.num_padding_bytes - 1);
}
bool QuicFramer::AppendMessageFrameAndTypeByte(const QuicMessageFrame& frame,
bool last_frame_in_packet,
QuicDataWriter* writer) {
uint8_t type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH
: IETF_EXTENSION_MESSAGE;
if (!writer->WriteUInt8(type_byte)) {
return false;
}
if (!last_frame_in_packet && !writer->WriteVarInt62(frame.message_length)) {
return false;
}
for (const auto& slice : frame.message_data) {
if (!writer->WriteBytes(slice.data(), slice.length())) {
return false;
}
}
return true;
}
bool QuicFramer::RaiseError(QuicErrorCode error) {
QUIC_DLOG(INFO) << ENDPOINT << "Error: " << QuicErrorCodeToString(error)
<< " detail: " << detailed_error_;
set_error(error);
if (visitor_) {
visitor_->OnError(this);
}
return false;
}
bool QuicFramer::IsVersionNegotiation(
const QuicPacketHeader& header,
bool packet_has_ietf_packet_header) const {
if (!packet_has_ietf_packet_header &&
perspective_ == Perspective::IS_CLIENT) {
return header.version_flag;
}
if (header.form == IETF_QUIC_SHORT_HEADER_PACKET) {
return false;
}
return header.long_packet_type == VERSION_NEGOTIATION;
}
bool QuicFramer::AppendIetfConnectionCloseFrame(
const QuicConnectionCloseFrame& frame,
QuicDataWriter* writer) {
if (frame.close_type != IETF_QUIC_TRANSPORT_CONNECTION_CLOSE &&
frame.close_type != IETF_QUIC_APPLICATION_CONNECTION_CLOSE) {
QUIC_BUG << "Invalid close_type for writing IETF CONNECTION CLOSE.";
set_detailed_error("Invalid close_type for writing IETF CONNECTION CLOSE.");
return false;
}
uint64_t close_code = 0;
if (frame.close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) {
close_code = static_cast<uint64_t>(frame.transport_error_code);
} else if (frame.close_type == IETF_QUIC_APPLICATION_CONNECTION_CLOSE) {
close_code = static_cast<uint64_t>(frame.application_error_code);
}
if (!writer->WriteVarInt62(close_code)) {
set_detailed_error("Can not write connection close frame error code");
return false;
}
if (frame.close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) {
// Write the frame-type of the frame causing the error only
// if it's a CONNECTION_CLOSE/Transport.
if (!writer->WriteVarInt62(frame.transport_close_frame_type)) {
set_detailed_error("Writing frame type failed.");
return false;
}
}
// TODO(fkastenholz): For full IETF CONNECTION CLOSE support,
// if this is a Transport CONNECTION_CLOSE and the extended
// error is not QUIC_IETF_GQUIC_ERROR_MISSING then append the extended
// "QuicErrorCode: #" string to the phrase.
if (!writer->WriteStringPieceVarInt62(
TruncateErrorString(frame.error_details))) {
set_detailed_error("Can not write connection close phrase");
return false;
}
return true;
}
bool QuicFramer::ProcessIetfConnectionCloseFrame(
QuicDataReader* reader,
QuicConnectionCloseType type,
QuicConnectionCloseFrame* frame) {
frame->close_type = type;
uint64_t error_code;
if (!reader->ReadVarInt62(&error_code)) {
set_detailed_error("Unable to read connection close error code.");
return false;
}
if (frame->close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) {
if (error_code > 0xffff) {
frame->transport_error_code =
static_cast<QuicIetfTransportErrorCodes>(0xffff);
QUIC_DLOG(ERROR) << "Transport error code " << error_code << " > 0xffff";
} else {
frame->transport_error_code =
static_cast<QuicIetfTransportErrorCodes>(error_code);
}
} else if (frame->close_type == IETF_QUIC_APPLICATION_CONNECTION_CLOSE) {
if (error_code > 0xffff) {
frame->application_error_code = 0xffff;
QUIC_DLOG(ERROR) << "Application error code " << error_code
<< " > 0xffff";
} else {
frame->application_error_code = static_cast<uint16_t>(error_code);
}
}
if (type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) {
// The frame-type of the frame causing the error is present only
// if it's a CONNECTION_CLOSE/Transport.
if (!reader->ReadVarInt62(&frame->transport_close_frame_type)) {
set_detailed_error("Unable to read connection close frame type.");
return false;
}
}
uint64_t phrase_length;
if (!reader->ReadVarInt62(&phrase_length)) {
set_detailed_error("Unable to read connection close error details.");
return false;
}
QuicStringPiece phrase;
if (!reader->ReadStringPiece(&phrase, static_cast<size_t>(phrase_length))) {
set_detailed_error("Unable to read connection close error details.");
return false;
}
// TODO(fkastenholz): when full support is done, add code here
// to extract the extended error code from the reason phrase
// and set it into frame->extracted_error_code.
frame->error_details = std::string(phrase);
return true;
}
// IETF Quic Path Challenge/Response frames.
bool QuicFramer::ProcessPathChallengeFrame(QuicDataReader* reader,
QuicPathChallengeFrame* frame) {
if (!reader->ReadBytes(frame->data_buffer.data(),
frame->data_buffer.size())) {
set_detailed_error("Can not read path challenge data.");
return false;
}
return true;
}
bool QuicFramer::ProcessPathResponseFrame(QuicDataReader* reader,
QuicPathResponseFrame* frame) {
if (!reader->ReadBytes(frame->data_buffer.data(),
frame->data_buffer.size())) {
set_detailed_error("Can not read path response data.");
return false;
}
return true;
}
bool QuicFramer::AppendPathChallengeFrame(const QuicPathChallengeFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) {
set_detailed_error("Writing Path Challenge data failed.");
return false;
}
return true;
}
bool QuicFramer::AppendPathResponseFrame(const QuicPathResponseFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) {
set_detailed_error("Writing Path Response data failed.");
return false;
}
return true;
}
// Add a new ietf-format stream reset frame.
// General format is
// stream id
// application error code
// final offset
bool QuicFramer::AppendIetfResetStreamFrame(const QuicRstStreamFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) {
set_detailed_error("Writing reset-stream stream id failed.");
return false;
}
if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.ietf_error_code))) {
set_detailed_error("Writing reset-stream error code failed.");
return false;
}
if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.byte_offset))) {
set_detailed_error("Writing reset-stream final-offset failed.");
return false;
}
return true;
}
bool QuicFramer::ProcessIetfResetStreamFrame(QuicDataReader* reader,
QuicRstStreamFrame* frame) {
// Get Stream ID from frame. ReadVarIntStreamID returns false
// if either A) there is a read error or B) the resulting value of
// the Stream ID is larger than the maximum allowed value.
if (!reader->ReadVarIntU32(&frame->stream_id)) {
set_detailed_error("Unable to read rst stream stream id.");
return false;
}
uint64_t error_code;
if (!reader->ReadVarInt62(&error_code)) {
set_detailed_error("Unable to read rst stream error code.");
return false;
}
if (error_code > 0xffff) {
frame->ietf_error_code = 0xffff;
QUIC_DLOG(ERROR) << "Reset stream error code (" << error_code
<< ") > 0xffff";
} else {
frame->ietf_error_code = static_cast<uint16_t>(error_code);
}
if (!reader->ReadVarInt62(&frame->byte_offset)) {
set_detailed_error("Unable to read rst stream sent byte offset.");
return false;
}
return true;
}
bool QuicFramer::ProcessStopSendingFrame(
QuicDataReader* reader,
QuicStopSendingFrame* stop_sending_frame) {
if (!reader->ReadVarIntU32(&stop_sending_frame->stream_id)) {
set_detailed_error("Unable to read stop sending stream id.");
return false;
}
uint64_t error_code;
if (!reader->ReadVarInt62(&error_code)) {
set_detailed_error("Unable to read stop sending application error code.");
return false;
}
// TODO(fkastenholz): when error codes go to uint64_t, remove this.
if (error_code > 0xffff) {
stop_sending_frame->application_error_code = 0xffff;
QUIC_DLOG(ERROR) << "Stop sending error code (" << error_code
<< ") > 0xffff";
} else {
stop_sending_frame->application_error_code =
static_cast<uint16_t>(error_code);
}
return true;
}
bool QuicFramer::AppendStopSendingFrame(
const QuicStopSendingFrame& stop_sending_frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(stop_sending_frame.stream_id)) {
set_detailed_error("Can not write stop sending stream id");
return false;
}
if (!writer->WriteVarInt62(
static_cast<uint64_t>(stop_sending_frame.application_error_code))) {
set_detailed_error("Can not write application error code");
return false;
}
return true;
}
// Append/process IETF-Format MAX_DATA Frame
bool QuicFramer::AppendMaxDataFrame(const QuicWindowUpdateFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(frame.byte_offset)) {
set_detailed_error("Can not write MAX_DATA byte-offset");
return false;
}
return true;
}
bool QuicFramer::ProcessMaxDataFrame(QuicDataReader* reader,
QuicWindowUpdateFrame* frame) {
frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version());
if (!reader->ReadVarInt62(&frame->byte_offset)) {
set_detailed_error("Can not read MAX_DATA byte-offset");
return false;
}
return true;
}
// Append/process IETF-Format MAX_STREAM_DATA Frame
bool QuicFramer::AppendMaxStreamDataFrame(const QuicWindowUpdateFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(frame.stream_id)) {
set_detailed_error("Can not write MAX_STREAM_DATA stream id");
return false;
}
if (!writer->WriteVarInt62(frame.byte_offset)) {
set_detailed_error("Can not write MAX_STREAM_DATA byte-offset");
return false;
}
return true;
}
bool QuicFramer::ProcessMaxStreamDataFrame(QuicDataReader* reader,
QuicWindowUpdateFrame* frame) {
if (!reader->ReadVarIntU32(&frame->stream_id)) {
set_detailed_error("Can not read MAX_STREAM_DATA stream id");
return false;
}
if (!reader->ReadVarInt62(&frame->byte_offset)) {
set_detailed_error("Can not read MAX_STREAM_DATA byte-count");
return false;
}
return true;
}
bool QuicFramer::AppendMaxStreamsFrame(const QuicMaxStreamsFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(frame.stream_count)) {
set_detailed_error("Can not write MAX_STREAMS stream count");
return false;
}
return true;
}
bool QuicFramer::ProcessMaxStreamsFrame(QuicDataReader* reader,
QuicMaxStreamsFrame* frame,
uint64_t frame_type) {
if (!reader->ReadVarIntU32(&frame->stream_count)) {
set_detailed_error("Can not read MAX_STREAMS stream count.");
return false;
}
frame->unidirectional = (frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL);
return true;
}
bool QuicFramer::AppendIetfBlockedFrame(const QuicBlockedFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(frame.offset)) {
set_detailed_error("Can not write blocked offset.");
return false;
}
return true;
}
bool QuicFramer::ProcessIetfBlockedFrame(QuicDataReader* reader,
QuicBlockedFrame* frame) {
// Indicates that it is a BLOCKED frame (as opposed to STREAM_BLOCKED).
frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version());
if (!reader->ReadVarInt62(&frame->offset)) {
set_detailed_error("Can not read blocked offset.");
return false;
}
return true;
}
bool QuicFramer::AppendStreamBlockedFrame(const QuicBlockedFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(frame.stream_id)) {
set_detailed_error("Can not write stream blocked stream id.");
return false;
}
if (!writer->WriteVarInt62(frame.offset)) {
set_detailed_error("Can not write stream blocked offset.");
return false;
}
return true;
}
bool QuicFramer::ProcessStreamBlockedFrame(QuicDataReader* reader,
QuicBlockedFrame* frame) {
if (!reader->ReadVarIntU32(&frame->stream_id)) {
set_detailed_error("Can not read stream blocked stream id.");
return false;
}
if (!reader->ReadVarInt62(&frame->offset)) {
set_detailed_error("Can not read stream blocked offset.");
return false;
}
return true;
}
bool QuicFramer::AppendStreamsBlockedFrame(const QuicStreamsBlockedFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(frame.stream_count)) {
set_detailed_error("Can not write STREAMS_BLOCKED stream count");
return false;
}
return true;
}
bool QuicFramer::ProcessStreamsBlockedFrame(QuicDataReader* reader,
QuicStreamsBlockedFrame* frame,
uint64_t frame_type) {
if (!reader->ReadVarIntU32(&frame->stream_count)) {
set_detailed_error("Can not read STREAMS_BLOCKED stream count.");
return false;
}
frame->unidirectional = (frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL);
// TODO(fkastenholz): handle properly when the STREAMS_BLOCKED
// frame is implemented and passed up to the stream ID manager.
if (frame->stream_count >
QuicUtils::GetMaxStreamCount(
(frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL),
((perspective_ == Perspective::IS_CLIENT)
? Perspective::IS_SERVER
: Perspective::IS_CLIENT))) {
// If stream count is such that the resulting stream ID would exceed our
// implementation limit, generate an error.
set_detailed_error(
"STREAMS_BLOCKED stream count exceeds implementation limit.");
return false;
}
return true;
}
bool QuicFramer::AppendNewConnectionIdFrame(
const QuicNewConnectionIdFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(frame.sequence_number)) {
set_detailed_error("Can not write New Connection ID sequence number");
return false;
}
if (!writer->WriteVarInt62(frame.retire_prior_to)) {
set_detailed_error("Can not write New Connection ID retire_prior_to");
return false;
}
if (!writer->WriteUInt8(frame.connection_id.length())) {
set_detailed_error(
"Can not write New Connection ID frame connection ID Length");
return false;
}
if (!writer->WriteConnectionId(frame.connection_id)) {
set_detailed_error("Can not write New Connection ID frame connection ID");
return false;
}
if (!writer->WriteBytes(
static_cast<const void*>(&frame.stateless_reset_token),
sizeof(frame.stateless_reset_token))) {
set_detailed_error("Can not write New Connection ID Reset Token");
return false;
}
return true;
}
bool QuicFramer::ProcessNewConnectionIdFrame(QuicDataReader* reader,
QuicNewConnectionIdFrame* frame) {
if (!reader->ReadVarInt62(&frame->sequence_number)) {
set_detailed_error(
"Unable to read new connection ID frame sequence number.");
return false;
}
if (!reader->ReadVarInt62(&frame->retire_prior_to)) {
set_detailed_error(
"Unable to read new connection ID frame retire_prior_to.");
return false;
}
if (frame->retire_prior_to > frame->sequence_number) {
set_detailed_error("Retire_prior_to > sequence_number.");
return false;
}
uint8_t connection_id_length;
if (!reader->ReadUInt8(&connection_id_length)) {
set_detailed_error(
"Unable to read new connection ID frame connection id length.");
return false;
}
if (connection_id_length > kQuicMaxConnectionIdLength) {
set_detailed_error("New connection ID length too high.");
return false;
}
if (connection_id_length != kQuicDefaultConnectionIdLength &&
!QuicUtils::VariableLengthConnectionIdAllowedForVersion(
transport_version())) {
set_detailed_error("Invalid new connection ID length for version.");
return false;
}
if (!reader->ReadConnectionId(&frame->connection_id, connection_id_length)) {
set_detailed_error("Unable to read new connection ID frame connection id.");
return false;
}
if (!reader->ReadBytes(&frame->stateless_reset_token,
sizeof(frame->stateless_reset_token))) {
set_detailed_error("Can not read new connection ID frame reset token.");
return false;
}
return true;
}
bool QuicFramer::AppendRetireConnectionIdFrame(
const QuicRetireConnectionIdFrame& frame,
QuicDataWriter* writer) {
if (!writer->WriteVarInt62(frame.sequence_number)) {
set_detailed_error("Can not write Retire Connection ID sequence number");
return false;
}
return true;
}
bool QuicFramer::ProcessRetireConnectionIdFrame(
QuicDataReader* reader,
QuicRetireConnectionIdFrame* frame) {
if (!reader->ReadVarInt62(&frame->sequence_number)) {
set_detailed_error(
"Unable to read retire connection ID frame sequence number.");
return false;
}
return true;
}
uint8_t QuicFramer::GetStreamFrameTypeByte(const QuicStreamFrame& frame,
bool last_frame_in_packet) const {
if (VersionHasIetfQuicFrames(version_.transport_version)) {
return GetIetfStreamFrameTypeByte(frame, last_frame_in_packet);
}
uint8_t type_byte = 0;
// Fin bit.
type_byte |= frame.fin ? kQuicStreamFinMask : 0;
// Data Length bit.
type_byte <<= kQuicStreamDataLengthShift;
type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask;
// Offset 3 bits.
type_byte <<= kQuicStreamShift;
const size_t offset_len =
GetStreamOffsetSize(version_.transport_version, frame.offset);
if (offset_len > 0) {
type_byte |= offset_len - 1;
}
// stream id 2 bits.
type_byte <<= kQuicStreamIdShift;
type_byte |= GetStreamIdSize(frame.stream_id) - 1;
type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
return type_byte;
}
uint8_t QuicFramer::GetIetfStreamFrameTypeByte(
const QuicStreamFrame& frame,
bool last_frame_in_packet) const {
DCHECK(VersionHasIetfQuicFrames(version_.transport_version));
uint8_t type_byte = IETF_STREAM;
if (!last_frame_in_packet) {
type_byte |= IETF_STREAM_FRAME_LEN_BIT;
}
if (frame.offset != 0) {
type_byte |= IETF_STREAM_FRAME_OFF_BIT;
}
if (frame.fin) {
type_byte |= IETF_STREAM_FRAME_FIN_BIT;
}
return type_byte;
}
void QuicFramer::InferPacketHeaderTypeFromVersion() {
// This function should only be called when server connection negotiates the
// version.
DCHECK(perspective_ == Perspective::IS_SERVER &&
!infer_packet_header_type_from_version_);
infer_packet_header_type_from_version_ = true;
}
void QuicFramer::EnableMultiplePacketNumberSpacesSupport() {
if (supports_multiple_packet_number_spaces_) {
QUIC_BUG << "Multiple packet number spaces has already been enabled";
return;
}
if (largest_packet_number_.IsInitialized()) {
QUIC_BUG << "Try to enable multiple packet number spaces support after any "
"packet has been received.";
return;
}
supports_multiple_packet_number_spaces_ = true;
}
// static
QuicErrorCode QuicFramer::ProcessPacketDispatcher(
const QuicEncryptedPacket& packet,
uint8_t expected_destination_connection_id_length,
PacketHeaderFormat* format,
bool* version_flag,
QuicVersionLabel* version_label,
QuicConnectionId* destination_connection_id,
QuicConnectionId* source_connection_id,
std::string* detailed_error) {
QuicDataReader reader(packet.data(), packet.length());
*source_connection_id = EmptyQuicConnectionId();
uint8_t first_byte;
if (!reader.ReadBytes(&first_byte, 1)) {
*detailed_error = "Unable to read first byte.";
return QUIC_INVALID_PACKET_HEADER;
}
uint8_t destination_connection_id_length = 0, source_connection_id_length = 0;
if (!QuicUtils::IsIetfPacketHeader(first_byte)) {
*format = GOOGLE_QUIC_PACKET;
*version_flag = (first_byte & PACKET_PUBLIC_FLAGS_VERSION) != 0;
destination_connection_id_length =
first_byte & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID;
if (destination_connection_id_length == 0 ||
!reader.ReadConnectionId(destination_connection_id,
destination_connection_id_length)) {
*detailed_error = "Unable to read ConnectionId.";
return QUIC_INVALID_PACKET_HEADER;
}
if (*version_flag && !ProcessVersionLabel(&reader, version_label)) {
*detailed_error = "Unable to read protocol version.";
return QUIC_INVALID_PACKET_HEADER;
}
return QUIC_NO_ERROR;
}
*format = GetIetfPacketHeaderFormat(first_byte);
QUIC_DVLOG(1) << "Dispatcher: Processing IETF QUIC packet, format: "
<< *format;
*version_flag = *format == IETF_QUIC_LONG_HEADER_PACKET;
if (*format == IETF_QUIC_LONG_HEADER_PACKET) {
if (!ProcessVersionLabel(&reader, version_label)) {
*detailed_error = "Unable to read protocol version.";
return QUIC_INVALID_PACKET_HEADER;
}
// Set should_update_expected_server_connection_id_length to true to bypass
// connection ID lengths validation.
uint8_t unused_expected_server_connection_id_length = 0;
if (!ProcessAndValidateIetfConnectionIdLength(
&reader, ParseQuicVersionLabel(*version_label),
Perspective::IS_SERVER,
/*should_update_expected_server_connection_id_length=*/true,
&unused_expected_server_connection_id_length,
&destination_connection_id_length, &source_connection_id_length,
detailed_error)) {
return QUIC_INVALID_PACKET_HEADER;
}
} else {
// For short header packets, expected_destination_connection_id_length
// is used to determine the destination_connection_id_length.
destination_connection_id_length =
expected_destination_connection_id_length;
DCHECK_EQ(0, source_connection_id_length);
}
// Read destination connection ID.
if (!reader.ReadConnectionId(destination_connection_id,
destination_connection_id_length)) {
*detailed_error = "Unable to read destination connection ID.";
return QUIC_INVALID_PACKET_HEADER;
}
// Read source connection ID.
if (GetQuicRestartFlag(quic_do_not_override_connection_id) &&
!reader.ReadConnectionId(source_connection_id,
source_connection_id_length)) {
*detailed_error = "Unable to read source connection ID.";
return QUIC_INVALID_PACKET_HEADER;
}
return QUIC_NO_ERROR;
}
// static
bool QuicFramer::WriteClientVersionNegotiationProbePacket(
char* packet_bytes,
QuicByteCount packet_length,
const char* destination_connection_id_bytes,
uint8_t destination_connection_id_length) {
if (packet_bytes == nullptr) {
QUIC_BUG << "Invalid packet_bytes";
return false;
}
if (packet_length < kMinPacketSizeForVersionNegotiation ||
packet_length > 65535) {
QUIC_BUG << "Invalid packet_length";
return false;
}
if (destination_connection_id_length > kQuicMaxConnectionIdLength ||
(destination_connection_id_length > 0 &&
destination_connection_id_length < 4)) {
QUIC_BUG << "Invalid connection_id_length";
return false;
}
// clang-format off
static const unsigned char packet_start_bytes[] = {
// IETF long header with fixed bit set, type initial, all-0 encrypted bits.
0xc0,
// Version, part of the IETF space reserved for negotiation.
// This intentionally differs from QuicVersionReservedForNegotiation()
// to allow differentiating them over the wire.
0xca, 0xba, 0xda, 0xba,
};
// clang-format on
static_assert(sizeof(packet_start_bytes) == 5, "bad packet_start_bytes size");
QuicDataWriter writer(packet_length, packet_bytes);
if (!writer.WriteBytes(packet_start_bytes, sizeof(packet_start_bytes))) {
QUIC_BUG << "Failed to write packet start";
return false;
}
QuicConnectionId destination_connection_id(destination_connection_id_bytes,
destination_connection_id_length);
if (!AppendIetfConnectionIds(/*version_flag=*/true, destination_connection_id,
EmptyQuicConnectionId(), &writer)) {
QUIC_BUG << "Failed to write connection IDs";
return false;
}
// Add 8 bytes of zeroes followed by 8 bytes of ones to ensure that this does
// not parse with any known version. The zeroes make sure that packet numbers,
// retry token lengths and payload lengths are parsed as zero, and if the
// zeroes are treated as padding frames, 0xff is known to not parse as a
// valid frame type.
if (!writer.WriteUInt64(0) ||
!writer.WriteUInt64(std::numeric_limits<uint64_t>::max())) {
QUIC_BUG << "Failed to write 18 bytes";
return false;
}
// Make sure the polite greeting below is padded to a 16-byte boundary to
// make it easier to read in tcpdump.
while (writer.length() % 16 != 0) {
if (!writer.WriteUInt8(0)) {
QUIC_BUG << "Failed to write padding byte";
return false;
}
}
// Add a polite greeting in case a human sees this in tcpdump.
static const char polite_greeting[] =
"This packet only exists to trigger IETF QUIC version negotiation. "
"Please respond with a Version Negotiation packet indicating what "
"versions you support. Thank you and have a nice day.";
if (!writer.WriteBytes(polite_greeting, sizeof(polite_greeting))) {
QUIC_BUG << "Failed to write polite greeting";
return false;
}
// Fill the rest of the packet with zeroes.
writer.WritePadding();
DCHECK_EQ(0u, writer.remaining());
return true;
}
// static
bool QuicFramer::ParseServerVersionNegotiationProbeResponse(
const char* packet_bytes,
QuicByteCount packet_length,
char* source_connection_id_bytes,
uint8_t* source_connection_id_length_out,
std::string* detailed_error) {
if (detailed_error == nullptr) {
QUIC_BUG << "Invalid error_details";
return false;
}
*detailed_error = "";
if (packet_bytes == nullptr) {
*detailed_error = "Invalid packet_bytes";
return false;
}
if (packet_length < 6) {
*detailed_error = "Invalid packet_length";
return false;
}
if (source_connection_id_bytes == nullptr) {
*detailed_error = "Invalid source_connection_id_bytes";
return false;
}
if (source_connection_id_length_out == nullptr) {
*detailed_error = "Invalid source_connection_id_length_out";
return false;
}
QuicDataReader reader(packet_bytes, packet_length);
uint8_t type_byte = 0;
if (!reader.ReadUInt8(&type_byte)) {
*detailed_error = "Failed to read type byte";
return false;
}
if ((type_byte & 0x80) == 0) {
*detailed_error = "Packet does not have long header";
return false;
}
uint32_t version = 0;
if (!reader.ReadUInt32(&version)) {
*detailed_error = "Failed to read version";
return false;
}
if (version != 0) {
*detailed_error = "Packet is not a version negotiation packet";
return false;
}
uint8_t expected_server_connection_id_length = 0,
destination_connection_id_length = 0, source_connection_id_length = 0;
if (!ProcessAndValidateIetfConnectionIdLength(
&reader, UnsupportedQuicVersion(), Perspective::IS_CLIENT,
/*should_update_expected_server_connection_id_length=*/true,
&expected_server_connection_id_length,
&destination_connection_id_length, &source_connection_id_length,
detailed_error)) {
return false;
}
if (destination_connection_id_length != 0) {
*detailed_error = "Received unexpected destination connection ID length";
return false;
}
QuicConnectionId destination_connection_id, source_connection_id;
if (!reader.ReadConnectionId(&destination_connection_id,
destination_connection_id_length)) {
*detailed_error = "Failed to read destination connection ID";
return false;
}
if (!reader.ReadConnectionId(&source_connection_id,
source_connection_id_length)) {
*detailed_error = "Failed to read source connection ID";
return false;
}
memcpy(source_connection_id_bytes, source_connection_id.data(),
source_connection_id_length);
*source_connection_id_length_out = source_connection_id_length;
return true;
}
#undef ENDPOINT // undef for jumbo builds
} // namespace quic