blob: 6b5b943193855ed1446152ebbbf1b8b1d870e9d5 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/third_party/quiche/src/quic/core/quic_connection.h"
#include <errno.h>
#include <memory>
#include <ostream>
#include <string>
#include <utility>
#include "net/third_party/quiche/src/quic/core/congestion_control/loss_detection_interface.h"
#include "net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h"
#include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h"
#include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h"
#include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h"
#include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h"
#include "net/third_party/quiche/src/quic/core/quic_connection_id.h"
#include "net/third_party/quiche/src/quic/core/quic_packets.h"
#include "net/third_party/quiche/src/quic/core/quic_simple_buffer_allocator.h"
#include "net/third_party/quiche/src/quic/core/quic_types.h"
#include "net/third_party/quiche/src/quic/core/quic_utils.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_error_code_wrappers.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_expect_bug.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_flags.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_logging.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_reference_counted.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_string_piece.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_test.h"
#include "net/third_party/quiche/src/quic/test_tools/mock_clock.h"
#include "net/third_party/quiche/src/quic/test_tools/mock_random.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_config_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_connection_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_framer_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_packet_creator_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_packet_generator_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_sent_packet_manager_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_test_utils.h"
#include "net/third_party/quiche/src/quic/test_tools/simple_data_producer.h"
#include "net/third_party/quiche/src/quic/test_tools/simple_quic_framer.h"
#include "net/third_party/quiche/src/quic/test_tools/simple_session_notifier.h"
using testing::_;
using testing::AnyNumber;
using testing::AtLeast;
using testing::DoAll;
using testing::Exactly;
using testing::Ge;
using testing::IgnoreResult;
using testing::InSequence;
using testing::Invoke;
using testing::InvokeWithoutArgs;
using testing::Lt;
using testing::Ref;
using testing::Return;
using testing::SaveArg;
using testing::SetArgPointee;
using testing::StrictMock;
namespace quic {
namespace test {
namespace {
const char data1[] = "foo data";
const char data2[] = "bar data";
const bool kHasStopWaiting = true;
const int kDefaultRetransmissionTimeMs = 500;
DiversificationNonce kTestDiversificationNonce = {
'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a',
'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b',
'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b',
};
const QuicSocketAddress kPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(),
/*port=*/12345);
const QuicSocketAddress kSelfAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(),
/*port=*/443);
QuicStreamId GetNthClientInitiatedStreamId(int n,
QuicTransportVersion version) {
return QuicUtils::GetFirstBidirectionalStreamId(version,
Perspective::IS_CLIENT) +
n * 2;
}
QuicLongHeaderType EncryptionlevelToLongHeaderType(EncryptionLevel level) {
switch (level) {
case ENCRYPTION_INITIAL:
return INITIAL;
case ENCRYPTION_HANDSHAKE:
return HANDSHAKE;
case ENCRYPTION_ZERO_RTT:
return ZERO_RTT_PROTECTED;
case ENCRYPTION_FORWARD_SECURE:
DCHECK(false);
return INVALID_PACKET_TYPE;
default:
DCHECK(false);
return INVALID_PACKET_TYPE;
}
}
// TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message.
class TaggingEncrypter : public QuicEncrypter {
public:
explicit TaggingEncrypter(uint8_t tag) : tag_(tag) {}
TaggingEncrypter(const TaggingEncrypter&) = delete;
TaggingEncrypter& operator=(const TaggingEncrypter&) = delete;
~TaggingEncrypter() override {}
// QuicEncrypter interface.
bool SetKey(QuicStringPiece /*key*/) override { return true; }
bool SetNoncePrefix(QuicStringPiece /*nonce_prefix*/) override {
return true;
}
bool SetIV(QuicStringPiece /*iv*/) override { return true; }
bool SetHeaderProtectionKey(QuicStringPiece /*key*/) override { return true; }
bool EncryptPacket(uint64_t /*packet_number*/,
QuicStringPiece /*associated_data*/,
QuicStringPiece plaintext,
char* output,
size_t* output_length,
size_t max_output_length) override {
const size_t len = plaintext.size() + kTagSize;
if (max_output_length < len) {
return false;
}
// Memmove is safe for inplace encryption.
memmove(output, plaintext.data(), plaintext.size());
output += plaintext.size();
memset(output, tag_, kTagSize);
*output_length = len;
return true;
}
std::string GenerateHeaderProtectionMask(
QuicStringPiece /*sample*/) override {
return std::string(5, 0);
}
size_t GetKeySize() const override { return 0; }
size_t GetNoncePrefixSize() const override { return 0; }
size_t GetIVSize() const override { return 0; }
size_t GetMaxPlaintextSize(size_t ciphertext_size) const override {
return ciphertext_size - kTagSize;
}
size_t GetCiphertextSize(size_t plaintext_size) const override {
return plaintext_size + kTagSize;
}
QuicStringPiece GetKey() const override { return QuicStringPiece(); }
QuicStringPiece GetNoncePrefix() const override { return QuicStringPiece(); }
private:
enum {
kTagSize = 12,
};
const uint8_t tag_;
};
// TaggingDecrypter ensures that the final kTagSize bytes of the message all
// have the same value and then removes them.
class TaggingDecrypter : public QuicDecrypter {
public:
~TaggingDecrypter() override {}
// QuicDecrypter interface
bool SetKey(QuicStringPiece /*key*/) override { return true; }
bool SetNoncePrefix(QuicStringPiece /*nonce_prefix*/) override {
return true;
}
bool SetIV(QuicStringPiece /*iv*/) override { return true; }
bool SetHeaderProtectionKey(QuicStringPiece /*key*/) override { return true; }
bool SetPreliminaryKey(QuicStringPiece /*key*/) override {
QUIC_BUG << "should not be called";
return false;
}
bool SetDiversificationNonce(const DiversificationNonce& /*key*/) override {
return true;
}
bool DecryptPacket(uint64_t /*packet_number*/,
QuicStringPiece /*associated_data*/,
QuicStringPiece ciphertext,
char* output,
size_t* output_length,
size_t /*max_output_length*/) override {
if (ciphertext.size() < kTagSize) {
return false;
}
if (!CheckTag(ciphertext, GetTag(ciphertext))) {
return false;
}
*output_length = ciphertext.size() - kTagSize;
memcpy(output, ciphertext.data(), *output_length);
return true;
}
std::string GenerateHeaderProtectionMask(
QuicDataReader* /*sample_reader*/) override {
return std::string(5, 0);
}
size_t GetKeySize() const override { return 0; }
size_t GetIVSize() const override { return 0; }
QuicStringPiece GetKey() const override { return QuicStringPiece(); }
QuicStringPiece GetNoncePrefix() const override { return QuicStringPiece(); }
// Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
uint32_t cipher_id() const override { return 0xFFFFFFF0; }
protected:
virtual uint8_t GetTag(QuicStringPiece ciphertext) {
return ciphertext.data()[ciphertext.size() - 1];
}
private:
enum {
kTagSize = 12,
};
bool CheckTag(QuicStringPiece ciphertext, uint8_t tag) {
for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) {
if (ciphertext.data()[i] != tag) {
return false;
}
}
return true;
}
};
// StringTaggingDecrypter ensures that the final kTagSize bytes of the message
// match the expected value.
class StrictTaggingDecrypter : public TaggingDecrypter {
public:
explicit StrictTaggingDecrypter(uint8_t tag) : tag_(tag) {}
~StrictTaggingDecrypter() override {}
// TaggingQuicDecrypter
uint8_t GetTag(QuicStringPiece /*ciphertext*/) override { return tag_; }
// Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
uint32_t cipher_id() const override { return 0xFFFFFFF1; }
private:
const uint8_t tag_;
};
class TestConnectionHelper : public QuicConnectionHelperInterface {
public:
TestConnectionHelper(MockClock* clock, MockRandom* random_generator)
: clock_(clock), random_generator_(random_generator) {
clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
}
TestConnectionHelper(const TestConnectionHelper&) = delete;
TestConnectionHelper& operator=(const TestConnectionHelper&) = delete;
// QuicConnectionHelperInterface
const QuicClock* GetClock() const override { return clock_; }
QuicRandom* GetRandomGenerator() override { return random_generator_; }
QuicBufferAllocator* GetStreamSendBufferAllocator() override {
return &buffer_allocator_;
}
private:
MockClock* clock_;
MockRandom* random_generator_;
SimpleBufferAllocator buffer_allocator_;
};
class TestAlarmFactory : public QuicAlarmFactory {
public:
class TestAlarm : public QuicAlarm {
public:
explicit TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate> delegate)
: QuicAlarm(std::move(delegate)) {}
void SetImpl() override {}
void CancelImpl() override {}
using QuicAlarm::Fire;
};
TestAlarmFactory() {}
TestAlarmFactory(const TestAlarmFactory&) = delete;
TestAlarmFactory& operator=(const TestAlarmFactory&) = delete;
QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) override {
return new TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate>(delegate));
}
QuicArenaScopedPtr<QuicAlarm> CreateAlarm(
QuicArenaScopedPtr<QuicAlarm::Delegate> delegate,
QuicConnectionArena* arena) override {
return arena->New<TestAlarm>(std::move(delegate));
}
};
class TestPacketWriter : public QuicPacketWriter {
public:
TestPacketWriter(ParsedQuicVersion version, MockClock* clock)
: version_(version),
framer_(SupportedVersions(version_), Perspective::IS_SERVER),
last_packet_size_(0),
write_blocked_(false),
write_should_fail_(false),
block_on_next_flush_(false),
block_on_next_write_(false),
next_packet_too_large_(false),
always_get_packet_too_large_(false),
is_write_blocked_data_buffered_(false),
is_batch_mode_(false),
final_bytes_of_last_packet_(0),
final_bytes_of_previous_packet_(0),
use_tagging_decrypter_(false),
packets_write_attempts_(0),
clock_(clock),
write_pause_time_delta_(QuicTime::Delta::Zero()),
max_packet_size_(kMaxOutgoingPacketSize),
supports_release_time_(false) {}
TestPacketWriter(const TestPacketWriter&) = delete;
TestPacketWriter& operator=(const TestPacketWriter&) = delete;
// QuicPacketWriter interface
WriteResult WritePacket(const char* buffer,
size_t buf_len,
const QuicIpAddress& /*self_address*/,
const QuicSocketAddress& /*peer_address*/,
PerPacketOptions* /*options*/) override {
QuicEncryptedPacket packet(buffer, buf_len);
++packets_write_attempts_;
if (packet.length() >= sizeof(final_bytes_of_last_packet_)) {
final_bytes_of_previous_packet_ = final_bytes_of_last_packet_;
memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4,
sizeof(final_bytes_of_last_packet_));
}
if (use_tagging_decrypter_) {
if (framer_.framer()->version().KnowsWhichDecrypterToUse()) {
framer_.framer()->InstallDecrypter(ENCRYPTION_INITIAL,
QuicMakeUnique<TaggingDecrypter>());
framer_.framer()->InstallDecrypter(ENCRYPTION_ZERO_RTT,
QuicMakeUnique<TaggingDecrypter>());
framer_.framer()->InstallDecrypter(ENCRYPTION_FORWARD_SECURE,
QuicMakeUnique<TaggingDecrypter>());
} else {
framer_.framer()->SetDecrypter(ENCRYPTION_INITIAL,
QuicMakeUnique<TaggingDecrypter>());
}
} else if (framer_.framer()->version().KnowsWhichDecrypterToUse()) {
framer_.framer()->InstallDecrypter(
ENCRYPTION_FORWARD_SECURE,
QuicMakeUnique<NullDecrypter>(Perspective::IS_SERVER));
}
EXPECT_TRUE(framer_.ProcessPacket(packet));
if (block_on_next_write_) {
write_blocked_ = true;
block_on_next_write_ = false;
}
if (next_packet_too_large_) {
next_packet_too_large_ = false;
return WriteResult(WRITE_STATUS_ERROR, QUIC_EMSGSIZE);
}
if (always_get_packet_too_large_) {
return WriteResult(WRITE_STATUS_ERROR, QUIC_EMSGSIZE);
}
if (IsWriteBlocked()) {
return WriteResult(is_write_blocked_data_buffered_
? WRITE_STATUS_BLOCKED_DATA_BUFFERED
: WRITE_STATUS_BLOCKED,
0);
}
if (ShouldWriteFail()) {
return WriteResult(WRITE_STATUS_ERROR, 0);
}
last_packet_size_ = packet.length();
last_packet_header_ = framer_.header();
if (!write_pause_time_delta_.IsZero()) {
clock_->AdvanceTime(write_pause_time_delta_);
}
return WriteResult(WRITE_STATUS_OK, last_packet_size_);
}
bool ShouldWriteFail() { return write_should_fail_; }
bool IsWriteBlocked() const override { return write_blocked_; }
void SetWriteBlocked() { write_blocked_ = true; }
void SetWritable() override { write_blocked_ = false; }
void SetShouldWriteFail() { write_should_fail_ = true; }
QuicByteCount GetMaxPacketSize(
const QuicSocketAddress& /*peer_address*/) const override {
return max_packet_size_;
}
bool SupportsReleaseTime() const override { return supports_release_time_; }
bool IsBatchMode() const override { return is_batch_mode_; }
char* GetNextWriteLocation(
const QuicIpAddress& /*self_address*/,
const QuicSocketAddress& /*peer_address*/) override {
return nullptr;
}
WriteResult Flush() override {
if (block_on_next_flush_) {
block_on_next_flush_ = false;
SetWriteBlocked();
return WriteResult(WRITE_STATUS_BLOCKED, /*errno*/ -1);
}
return WriteResult(WRITE_STATUS_OK, 0);
}
void BlockOnNextFlush() { block_on_next_flush_ = true; }
void BlockOnNextWrite() { block_on_next_write_ = true; }
void SimulateNextPacketTooLarge() { next_packet_too_large_ = true; }
void AlwaysGetPacketTooLarge() { always_get_packet_too_large_ = true; }
// Sets the amount of time that the writer should before the actual write.
void SetWritePauseTimeDelta(QuicTime::Delta delta) {
write_pause_time_delta_ = delta;
}
void SetBatchMode(bool new_value) { is_batch_mode_ = new_value; }
const QuicPacketHeader& header() { return framer_.header(); }
size_t frame_count() const { return framer_.num_frames(); }
const std::vector<QuicAckFrame>& ack_frames() const {
return framer_.ack_frames();
}
const std::vector<QuicStopWaitingFrame>& stop_waiting_frames() const {
return framer_.stop_waiting_frames();
}
const std::vector<QuicConnectionCloseFrame>& connection_close_frames() const {
return framer_.connection_close_frames();
}
const std::vector<QuicRstStreamFrame>& rst_stream_frames() const {
return framer_.rst_stream_frames();
}
const std::vector<std::unique_ptr<QuicStreamFrame>>& stream_frames() const {
return framer_.stream_frames();
}
const std::vector<std::unique_ptr<QuicCryptoFrame>>& crypto_frames() const {
return framer_.crypto_frames();
}
const std::vector<QuicPingFrame>& ping_frames() const {
return framer_.ping_frames();
}
const std::vector<QuicMessageFrame>& message_frames() const {
return framer_.message_frames();
}
const std::vector<QuicWindowUpdateFrame>& window_update_frames() const {
return framer_.window_update_frames();
}
const std::vector<QuicPaddingFrame>& padding_frames() const {
return framer_.padding_frames();
}
const std::vector<QuicPathChallengeFrame>& path_challenge_frames() const {
return framer_.path_challenge_frames();
}
const std::vector<QuicPathResponseFrame>& path_response_frames() const {
return framer_.path_response_frames();
}
size_t last_packet_size() { return last_packet_size_; }
const QuicPacketHeader& last_packet_header() const {
return last_packet_header_;
}
const QuicVersionNegotiationPacket* version_negotiation_packet() {
return framer_.version_negotiation_packet();
}
void set_is_write_blocked_data_buffered(bool buffered) {
is_write_blocked_data_buffered_ = buffered;
}
void set_perspective(Perspective perspective) {
// We invert perspective here, because the framer needs to parse packets
// we send.
QuicFramerPeer::SetPerspective(framer_.framer(),
QuicUtils::InvertPerspective(perspective));
}
// final_bytes_of_last_packet_ returns the last four bytes of the previous
// packet as a little-endian, uint32_t. This is intended to be used with a
// TaggingEncrypter so that tests can determine which encrypter was used for
// a given packet.
uint32_t final_bytes_of_last_packet() { return final_bytes_of_last_packet_; }
// Returns the final bytes of the second to last packet.
uint32_t final_bytes_of_previous_packet() {
return final_bytes_of_previous_packet_;
}
void use_tagging_decrypter() { use_tagging_decrypter_ = true; }
uint32_t packets_write_attempts() { return packets_write_attempts_; }
void Reset() { framer_.Reset(); }
void SetSupportedVersions(const ParsedQuicVersionVector& versions) {
framer_.SetSupportedVersions(versions);
}
void set_max_packet_size(QuicByteCount max_packet_size) {
max_packet_size_ = max_packet_size;
}
void set_supports_release_time(bool supports_release_time) {
supports_release_time_ = supports_release_time;
}
SimpleQuicFramer* framer() { return &framer_; }
private:
ParsedQuicVersion version_;
SimpleQuicFramer framer_;
size_t last_packet_size_;
QuicPacketHeader last_packet_header_;
bool write_blocked_;
bool write_should_fail_;
bool block_on_next_flush_;
bool block_on_next_write_;
bool next_packet_too_large_;
bool always_get_packet_too_large_;
bool is_write_blocked_data_buffered_;
bool is_batch_mode_;
uint32_t final_bytes_of_last_packet_;
uint32_t final_bytes_of_previous_packet_;
bool use_tagging_decrypter_;
uint32_t packets_write_attempts_;
MockClock* clock_;
// If non-zero, the clock will pause during WritePacket for this amount of
// time.
QuicTime::Delta write_pause_time_delta_;
QuicByteCount max_packet_size_;
bool supports_release_time_;
};
class TestConnection : public QuicConnection {
public:
TestConnection(QuicConnectionId connection_id,
QuicSocketAddress address,
TestConnectionHelper* helper,
TestAlarmFactory* alarm_factory,
TestPacketWriter* writer,
Perspective perspective,
ParsedQuicVersion version)
: QuicConnection(connection_id,
address,
helper,
alarm_factory,
writer,
/* owns_writer= */ false,
perspective,
SupportedVersions(version)),
notifier_(nullptr) {
writer->set_perspective(perspective);
SetEncrypter(ENCRYPTION_FORWARD_SECURE,
QuicMakeUnique<NullEncrypter>(perspective));
SetDataProducer(&producer_);
}
TestConnection(const TestConnection&) = delete;
TestConnection& operator=(const TestConnection&) = delete;
void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) {
QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm);
}
void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) {
QuicConnectionPeer::SetLossAlgorithm(this, loss_algorithm);
}
void SendPacket(EncryptionLevel /*level*/,
uint64_t packet_number,
std::unique_ptr<QuicPacket> packet,
HasRetransmittableData retransmittable,
bool has_ack,
bool has_pending_frames) {
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length =
QuicConnectionPeer::GetFramer(this)->EncryptPayload(
ENCRYPTION_INITIAL, QuicPacketNumber(packet_number), *packet,
buffer, kMaxOutgoingPacketSize);
SerializedPacket serialized_packet(
QuicPacketNumber(packet_number), PACKET_4BYTE_PACKET_NUMBER, buffer,
encrypted_length, has_ack, has_pending_frames);
if (retransmittable == HAS_RETRANSMITTABLE_DATA) {
serialized_packet.retransmittable_frames.push_back(
QuicFrame(QuicStreamFrame()));
}
OnSerializedPacket(&serialized_packet);
}
QuicConsumedData SaveAndSendStreamData(QuicStreamId id,
const struct iovec* iov,
int iov_count,
size_t total_length,
QuicStreamOffset offset,
StreamSendingState state) {
ScopedPacketFlusher flusher(this);
producer_.SaveStreamData(id, iov, iov_count, 0u, total_length);
if (notifier_ != nullptr) {
return notifier_->WriteOrBufferData(id, total_length, state);
}
return QuicConnection::SendStreamData(id, total_length, offset, state);
}
QuicConsumedData SendStreamDataWithString(QuicStreamId id,
QuicStringPiece data,
QuicStreamOffset offset,
StreamSendingState state) {
ScopedPacketFlusher flusher(this);
if (!QuicUtils::IsCryptoStreamId(transport_version(), id) &&
this->encryption_level() == ENCRYPTION_INITIAL) {
this->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
}
struct iovec iov;
MakeIOVector(data, &iov);
return SaveAndSendStreamData(id, &iov, 1, data.length(), offset, state);
}
QuicConsumedData SendApplicationDataAtLevel(EncryptionLevel encryption_level,
QuicStreamId id,
QuicStringPiece data,
QuicStreamOffset offset,
StreamSendingState state) {
ScopedPacketFlusher flusher(this);
DCHECK(encryption_level >= ENCRYPTION_ZERO_RTT);
SetEncrypter(encryption_level, QuicMakeUnique<TaggingEncrypter>(0x01));
SetDefaultEncryptionLevel(encryption_level);
struct iovec iov;
MakeIOVector(data, &iov);
return SaveAndSendStreamData(id, &iov, 1, data.length(), offset, state);
}
QuicConsumedData SendStreamData3() {
return SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, transport_version()), "food", 0,
NO_FIN);
}
QuicConsumedData SendStreamData5() {
return SendStreamDataWithString(
GetNthClientInitiatedStreamId(2, transport_version()), "food2", 0,
NO_FIN);
}
// Ensures the connection can write stream data before writing.
QuicConsumedData EnsureWritableAndSendStreamData5() {
EXPECT_TRUE(CanWriteStreamData());
return SendStreamData5();
}
// The crypto stream has special semantics so that it is not blocked by a
// congestion window limitation, and also so that it gets put into a separate
// packet (so that it is easier to reason about a crypto frame not being
// split needlessly across packet boundaries). As a result, we have separate
// tests for some cases for this stream.
QuicConsumedData SendCryptoStreamData() {
QuicStreamOffset offset = 0;
QuicStringPiece data("chlo");
return SendCryptoDataWithString(data, offset);
}
QuicConsumedData SendCryptoDataWithString(QuicStringPiece data,
QuicStreamOffset offset) {
if (!QuicVersionUsesCryptoFrames(transport_version())) {
return SendStreamDataWithString(
QuicUtils::GetCryptoStreamId(transport_version()), data, offset,
NO_FIN);
}
producer_.SaveCryptoData(ENCRYPTION_INITIAL, offset, data);
size_t bytes_written;
if (notifier_) {
bytes_written =
notifier_->WriteCryptoData(ENCRYPTION_INITIAL, data.length(), offset);
} else {
bytes_written = QuicConnection::SendCryptoData(ENCRYPTION_INITIAL,
data.length(), offset);
}
return QuicConsumedData(bytes_written, /*fin_consumed*/ false);
}
void set_version(ParsedQuicVersion version) {
QuicConnectionPeer::GetFramer(this)->set_version(version);
}
void SetSupportedVersions(const ParsedQuicVersionVector& versions) {
QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions);
writer()->SetSupportedVersions(versions);
}
void set_perspective(Perspective perspective) {
writer()->set_perspective(perspective);
QuicConnectionPeer::SetPerspective(this, perspective);
}
// Enable path MTU discovery. Assumes that the test is performed from the
// client perspective and the higher value of MTU target is used.
void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) {
ASSERT_EQ(Perspective::IS_CLIENT, perspective());
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(kMTUH);
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm, SetFromConfig(_, _));
SetFromConfig(config);
// Normally, the pacing would be disabled in the test, but calling
// SetFromConfig enables it. Set nearly-infinite bandwidth to make the
// pacing algorithm work.
EXPECT_CALL(*send_algorithm, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Infinite()));
}
TestAlarmFactory::TestAlarm* GetAckAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetAckAlarm(this));
}
TestAlarmFactory::TestAlarm* GetPingAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetPingAlarm(this));
}
TestAlarmFactory::TestAlarm* GetRetransmissionAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetRetransmissionAlarm(this));
}
TestAlarmFactory::TestAlarm* GetSendAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetSendAlarm(this));
}
TestAlarmFactory::TestAlarm* GetTimeoutAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetTimeoutAlarm(this));
}
TestAlarmFactory::TestAlarm* GetMtuDiscoveryAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetMtuDiscoveryAlarm(this));
}
TestAlarmFactory::TestAlarm* GetPathDegradingAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetPathDegradingAlarm(this));
}
TestAlarmFactory::TestAlarm* GetProcessUndecryptablePacketsAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetProcessUndecryptablePacketsAlarm(this));
}
void SetMaxTailLossProbes(size_t max_tail_loss_probes) {
QuicSentPacketManagerPeer::SetMaxTailLossProbes(
QuicConnectionPeer::GetSentPacketManager(this), max_tail_loss_probes);
}
QuicByteCount GetBytesInFlight() {
return QuicConnectionPeer::GetSentPacketManager(this)->GetBytesInFlight();
}
void set_notifier(SimpleSessionNotifier* notifier) { notifier_ = notifier; }
void ReturnEffectivePeerAddressForNextPacket(const QuicSocketAddress& addr) {
next_effective_peer_addr_ = QuicMakeUnique<QuicSocketAddress>(addr);
}
SimpleDataProducer* producer() { return &producer_; }
using QuicConnection::active_effective_peer_migration_type;
using QuicConnection::IsCurrentPacketConnectivityProbing;
using QuicConnection::SelectMutualVersion;
using QuicConnection::SendProbingRetransmissions;
using QuicConnection::set_defer_send_in_response_to_packets;
protected:
QuicSocketAddress GetEffectivePeerAddressFromCurrentPacket() const override {
if (next_effective_peer_addr_) {
return *std::move(next_effective_peer_addr_);
}
return QuicConnection::GetEffectivePeerAddressFromCurrentPacket();
}
private:
TestPacketWriter* writer() {
return static_cast<TestPacketWriter*>(QuicConnection::writer());
}
SimpleDataProducer producer_;
SimpleSessionNotifier* notifier_;
std::unique_ptr<QuicSocketAddress> next_effective_peer_addr_;
};
enum class AckResponse { kDefer, kImmediate };
// Run tests with combinations of {ParsedQuicVersion, AckResponse}.
struct TestParams {
TestParams(ParsedQuicVersion version,
AckResponse ack_response,
bool no_stop_waiting)
: version(version),
ack_response(ack_response),
no_stop_waiting(no_stop_waiting) {}
friend std::ostream& operator<<(std::ostream& os, const TestParams& p) {
os << "{ client_version: " << ParsedQuicVersionToString(p.version)
<< " ack_response: "
<< (p.ack_response == AckResponse::kDefer ? "defer" : "immediate")
<< " no_stop_waiting: " << p.no_stop_waiting << " }";
return os;
}
ParsedQuicVersion version;
AckResponse ack_response;
bool no_stop_waiting;
};
// Constructs various test permutations.
std::vector<TestParams> GetTestParams() {
QuicFlagSaver flags;
SetQuicFlag(FLAGS_quic_supports_tls_handshake, true);
std::vector<TestParams> params;
ParsedQuicVersionVector all_supported_versions = AllSupportedVersions();
for (size_t i = 0; i < all_supported_versions.size(); ++i) {
for (AckResponse ack_response :
{AckResponse::kDefer, AckResponse::kImmediate}) {
for (bool no_stop_waiting : {true, false}) {
// After version 43, never use STOP_WAITING.
params.push_back(
TestParams(all_supported_versions[i], ack_response,
!VersionHasIetfInvariantHeader(
all_supported_versions[i].transport_version)
? no_stop_waiting
: true));
}
}
}
return params;
}
class QuicConnectionTest : public QuicTestWithParam<TestParams> {
public:
// For tests that do silent connection closes, no such packet is generated. In
// order to verify the contents of the OnConnectionClosed upcall, EXPECTs
// should invoke this method, saving the frame, and then the test can verify
// the contents.
void SaveConnectionCloseFrame(const QuicConnectionCloseFrame& frame,
ConnectionCloseSource /*source*/) {
saved_connection_close_frame_ = frame;
connection_close_frame_count_++;
}
protected:
QuicConnectionTest()
: connection_id_(TestConnectionId()),
framer_(SupportedVersions(version()),
QuicTime::Zero(),
Perspective::IS_CLIENT,
connection_id_.length()),
send_algorithm_(new StrictMock<MockSendAlgorithm>),
loss_algorithm_(new MockLossAlgorithm()),
helper_(new TestConnectionHelper(&clock_, &random_generator_)),
alarm_factory_(new TestAlarmFactory()),
peer_framer_(SupportedVersions(version()),
QuicTime::Zero(),
Perspective::IS_SERVER,
connection_id_.length()),
peer_creator_(connection_id_,
&peer_framer_,
/*delegate=*/nullptr),
writer_(new TestPacketWriter(version(), &clock_)),
connection_(connection_id_,
kPeerAddress,
helper_.get(),
alarm_factory_.get(),
writer_.get(),
Perspective::IS_CLIENT,
version()),
creator_(QuicConnectionPeer::GetPacketCreator(&connection_)),
generator_(QuicConnectionPeer::GetPacketGenerator(&connection_)),
manager_(QuicConnectionPeer::GetSentPacketManager(&connection_)),
frame1_(0, false, 0, QuicStringPiece(data1)),
frame2_(0, false, 3, QuicStringPiece(data2)),
crypto_frame_(ENCRYPTION_INITIAL, 0, QuicStringPiece(data1)),
packet_number_length_(PACKET_4BYTE_PACKET_NUMBER),
connection_id_included_(CONNECTION_ID_PRESENT),
notifier_(&connection_),
connection_close_frame_count_(0) {
SetQuicFlag(FLAGS_quic_supports_tls_handshake, true);
connection_.set_defer_send_in_response_to_packets(GetParam().ack_response ==
AckResponse::kDefer);
for (EncryptionLevel level :
{ENCRYPTION_ZERO_RTT, ENCRYPTION_FORWARD_SECURE}) {
peer_creator_.SetEncrypter(
level, QuicMakeUnique<NullEncrypter>(peer_framer_.perspective()));
}
if (version().handshake_protocol == PROTOCOL_TLS1_3) {
connection_.SetEncrypter(
ENCRYPTION_INITIAL,
QuicMakeUnique<NullEncrypter>(Perspective::IS_CLIENT));
connection_.InstallDecrypter(
ENCRYPTION_INITIAL,
QuicMakeUnique<NullDecrypter>(Perspective::IS_CLIENT));
}
QuicFramerPeer::SetLastSerializedServerConnectionId(
QuicConnectionPeer::GetFramer(&connection_), connection_id_);
if (VersionHasIetfInvariantHeader(version().transport_version)) {
EXPECT_TRUE(QuicConnectionPeer::GetNoStopWaitingFrames(&connection_));
} else {
QuicConnectionPeer::SetNoStopWaitingFrames(&connection_,
GetParam().no_stop_waiting);
}
QuicStreamId stream_id;
if (QuicVersionUsesCryptoFrames(version().transport_version)) {
stream_id = QuicUtils::GetFirstBidirectionalStreamId(
version().transport_version, Perspective::IS_CLIENT);
} else {
stream_id = QuicUtils::GetCryptoStreamId(version().transport_version);
}
frame1_.stream_id = stream_id;
frame2_.stream_id = stream_id;
connection_.set_visitor(&visitor_);
if (connection_.session_decides_what_to_write()) {
connection_.SetSessionNotifier(&notifier_);
connection_.set_notifier(&notifier_);
}
connection_.SetSendAlgorithm(send_algorithm_);
connection_.SetLossAlgorithm(loss_algorithm_.get());
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillRepeatedly(Return(kDefaultTCPMSS));
EXPECT_CALL(*send_algorithm_, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate())
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
.Times(AnyNumber())
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber());
EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber());
if (connection_.session_decides_what_to_write()) {
EXPECT_CALL(visitor_, OnCanWrite())
.WillRepeatedly(
Invoke(&notifier_, &SimpleSessionNotifier::OnCanWrite));
} else {
EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber());
}
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(false));
EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber());
EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(AnyNumber());
EXPECT_CALL(visitor_, OnForwardProgressConfirmed()).Times(AnyNumber());
EXPECT_CALL(*loss_algorithm_, GetLossTimeout())
.WillRepeatedly(Return(QuicTime::Zero()));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.Times(AnyNumber());
if (connection_.version().KnowsWhichDecrypterToUse()) {
connection_.InstallDecrypter(
ENCRYPTION_FORWARD_SECURE,
QuicMakeUnique<NullDecrypter>(Perspective::IS_CLIENT));
}
}
QuicConnectionTest(const QuicConnectionTest&) = delete;
QuicConnectionTest& operator=(const QuicConnectionTest&) = delete;
ParsedQuicVersion version() { return GetParam().version; }
QuicStopWaitingFrame* stop_waiting() {
QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_);
return &stop_waiting_;
}
QuicPacketNumber least_unacked() {
if (writer_->stop_waiting_frames().empty()) {
return QuicPacketNumber();
}
return writer_->stop_waiting_frames()[0].least_unacked;
}
void use_tagging_decrypter() { writer_->use_tagging_decrypter(); }
void SetDecrypter(EncryptionLevel level,
std::unique_ptr<QuicDecrypter> decrypter) {
if (connection_.version().KnowsWhichDecrypterToUse()) {
connection_.InstallDecrypter(level, std::move(decrypter));
connection_.RemoveDecrypter(ENCRYPTION_INITIAL);
} else {
connection_.SetDecrypter(level, std::move(decrypter));
}
}
void ProcessPacket(uint64_t number) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(number);
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
}
void ProcessReceivedPacket(const QuicSocketAddress& self_address,
const QuicSocketAddress& peer_address,
const QuicReceivedPacket& packet) {
connection_.ProcessUdpPacket(self_address, peer_address, packet);
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
}
void ProcessFramePacket(QuicFrame frame) {
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
}
void ProcessFramePacketWithAddresses(QuicFrame frame,
QuicSocketAddress self_address,
QuicSocketAddress peer_address) {
QuicFrames frames;
frames.push_back(QuicFrame(frame));
QuicPacketCreatorPeer::SetSendVersionInPacket(
&peer_creator_, connection_.perspective() == Perspective::IS_SERVER);
char buffer[kMaxOutgoingPacketSize];
SerializedPacket serialized_packet =
QuicPacketCreatorPeer::SerializeAllFrames(
&peer_creator_, frames, buffer, kMaxOutgoingPacketSize);
connection_.ProcessUdpPacket(
self_address, peer_address,
QuicReceivedPacket(serialized_packet.encrypted_buffer,
serialized_packet.encrypted_length, clock_.Now()));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
}
// Bypassing the packet creator is unrealistic, but allows us to process
// packets the QuicPacketCreator won't allow us to create.
void ForceProcessFramePacket(QuicFrame frame) {
QuicFrames frames;
frames.push_back(QuicFrame(frame));
bool send_version = connection_.perspective() == Perspective::IS_SERVER;
if (connection_.version().KnowsWhichDecrypterToUse()) {
send_version = true;
}
QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_, send_version);
QuicPacketHeader header;
QuicPacketCreatorPeer::FillPacketHeader(&peer_creator_, &header);
char encrypted_buffer[kMaxOutgoingPacketSize];
size_t length = peer_framer_.BuildDataPacket(
header, frames, encrypted_buffer, kMaxOutgoingPacketSize,
ENCRYPTION_INITIAL);
DCHECK_GT(length, 0u);
const size_t encrypted_length = peer_framer_.EncryptInPlace(
ENCRYPTION_INITIAL, header.packet_number,
GetStartOfEncryptedData(peer_framer_.version().transport_version,
header),
length, kMaxOutgoingPacketSize, encrypted_buffer);
DCHECK_GT(encrypted_length, 0u);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(encrypted_buffer, encrypted_length, clock_.Now()));
}
size_t ProcessFramePacketAtLevel(uint64_t number,
QuicFrame frame,
EncryptionLevel level) {
QuicPacketHeader header;
header.destination_connection_id = connection_id_;
header.packet_number_length = packet_number_length_;
header.destination_connection_id_included = connection_id_included_;
if ((VersionHasIetfInvariantHeader(peer_framer_.transport_version()) ||
GetQuicRestartFlag(quic_do_not_override_connection_id)) &&
peer_framer_.perspective() == Perspective::IS_SERVER) {
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
}
if (level == ENCRYPTION_INITIAL &&
peer_framer_.version().KnowsWhichDecrypterToUse()) {
header.version_flag = true;
if (QuicVersionHasLongHeaderLengths(peer_framer_.transport_version())) {
header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
}
}
if ((GetQuicRestartFlag(quic_do_not_override_connection_id) ||
(level == ENCRYPTION_INITIAL &&
peer_framer_.version().KnowsWhichDecrypterToUse())) &&
header.version_flag &&
peer_framer_.perspective() == Perspective::IS_SERVER) {
header.source_connection_id = connection_id_;
header.source_connection_id_included = CONNECTION_ID_PRESENT;
}
header.packet_number = QuicPacketNumber(number);
QuicFrames frames;
frames.push_back(frame);
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
// Set the correct encryption level and encrypter on peer_creator and
// peer_framer, respectively.
peer_creator_.set_encryption_level(level);
if (QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) >
ENCRYPTION_INITIAL) {
peer_framer_.SetEncrypter(
QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
QuicMakeUnique<TaggingEncrypter>(0x01));
// Set the corresponding decrypter.
if (connection_.version().KnowsWhichDecrypterToUse()) {
connection_.InstallDecrypter(
QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
QuicMakeUnique<StrictTaggingDecrypter>(0x01));
connection_.RemoveDecrypter(ENCRYPTION_INITIAL);
} else {
connection_.SetDecrypter(
QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
QuicMakeUnique<StrictTaggingDecrypter>(0x01));
}
}
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length =
peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet,
buffer, kMaxOutgoingPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
return encrypted_length;
}
size_t ProcessDataPacket(uint64_t number) {
return ProcessDataPacketAtLevel(number, false, ENCRYPTION_FORWARD_SECURE);
}
size_t ProcessDataPacket(QuicPacketNumber packet_number) {
return ProcessDataPacketAtLevel(packet_number, false,
ENCRYPTION_FORWARD_SECURE);
}
size_t ProcessDataPacketAtLevel(QuicPacketNumber packet_number,
bool has_stop_waiting,
EncryptionLevel level) {
return ProcessDataPacketAtLevel(packet_number.ToUint64(), has_stop_waiting,
level);
}
size_t ProcessCryptoPacketAtLevel(uint64_t number,
EncryptionLevel /*level*/) {
QuicPacketHeader header = ConstructPacketHeader(number, ENCRYPTION_INITIAL);
QuicFrames frames;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frames.push_back(QuicFrame(&crypto_frame_));
} else {
frames.push_back(QuicFrame(frame1_));
}
std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames);
char buffer[kMaxOutgoingPacketSize];
peer_creator_.set_encryption_level(ENCRYPTION_INITIAL);
size_t encrypted_length = peer_framer_.EncryptPayload(
ENCRYPTION_INITIAL, QuicPacketNumber(number), *packet, buffer,
kMaxOutgoingPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
return encrypted_length;
}
size_t ProcessDataPacketAtLevel(uint64_t number,
bool has_stop_waiting,
EncryptionLevel level) {
std::unique_ptr<QuicPacket> packet(
ConstructDataPacket(number, has_stop_waiting, level));
char buffer[kMaxOutgoingPacketSize];
peer_creator_.set_encryption_level(level);
size_t encrypted_length =
peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet,
buffer, kMaxOutgoingPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
return encrypted_length;
}
void ProcessClosePacket(uint64_t number) {
std::unique_ptr<QuicPacket> packet(ConstructClosePacket(number));
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length = peer_framer_.EncryptPayload(
ENCRYPTION_INITIAL, QuicPacketNumber(number), *packet, buffer,
kMaxOutgoingPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
}
QuicByteCount SendStreamDataToPeer(QuicStreamId id,
QuicStringPiece data,
QuicStreamOffset offset,
StreamSendingState state,
QuicPacketNumber* last_packet) {
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&packet_size));
connection_.SendStreamDataWithString(id, data, offset, state);
if (last_packet != nullptr) {
*last_packet = creator_->packet_number();
}
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
return packet_size;
}
void SendAckPacketToPeer() {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
{
QuicConnection::ScopedPacketFlusher flusher(&connection_);
connection_.SendAck();
}
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
}
void SendRstStream(QuicStreamId id,
QuicRstStreamErrorCode error,
QuicStreamOffset bytes_written) {
if (connection_.session_decides_what_to_write()) {
notifier_.WriteOrBufferRstStream(id, error, bytes_written);
connection_.OnStreamReset(id, error);
return;
}
std::unique_ptr<QuicRstStreamFrame> rst_stream =
QuicMakeUnique<QuicRstStreamFrame>(1, id, error, bytes_written);
if (connection_.SendControlFrame(QuicFrame(rst_stream.get()))) {
rst_stream.release();
}
connection_.OnStreamReset(id, error);
}
void SendPing() {
if (connection_.session_decides_what_to_write()) {
notifier_.WriteOrBufferPing();
} else {
connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
}
}
void ProcessAckPacket(uint64_t packet_number, QuicAckFrame* frame) {
if (packet_number > 1) {
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, packet_number - 1);
} else {
QuicPacketCreatorPeer::ClearPacketNumber(&peer_creator_);
}
ProcessFramePacket(QuicFrame(frame));
}
void ProcessAckPacket(QuicAckFrame* frame) {
ProcessFramePacket(QuicFrame(frame));
}
void ProcessStopWaitingPacket(QuicStopWaitingFrame frame) {
ProcessFramePacket(QuicFrame(frame));
}
size_t ProcessStopWaitingPacketAtLevel(uint64_t number,
QuicStopWaitingFrame frame,
EncryptionLevel /*level*/) {
return ProcessFramePacketAtLevel(number, QuicFrame(frame),
ENCRYPTION_ZERO_RTT);
}
void ProcessGoAwayPacket(QuicGoAwayFrame* frame) {
ProcessFramePacket(QuicFrame(frame));
}
bool IsMissing(uint64_t number) {
return IsAwaitingPacket(connection_.ack_frame(), QuicPacketNumber(number),
QuicPacketNumber());
}
std::unique_ptr<QuicPacket> ConstructPacket(const QuicPacketHeader& header,
const QuicFrames& frames) {
auto packet = BuildUnsizedDataPacket(&peer_framer_, header, frames);
EXPECT_NE(nullptr, packet.get());
return packet;
}
QuicPacketHeader ConstructPacketHeader(uint64_t number,
EncryptionLevel level) {
QuicPacketHeader header;
if (VersionHasIetfInvariantHeader(peer_framer_.transport_version()) &&
level < ENCRYPTION_FORWARD_SECURE) {
// Set long header type accordingly.
header.version_flag = true;
header.long_packet_type = EncryptionlevelToLongHeaderType(level);
if (QuicVersionHasLongHeaderLengths(
peer_framer_.version().transport_version)) {
header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
if (header.long_packet_type == INITIAL) {
header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
}
}
}
// Set connection_id to peer's in memory representation as this data packet
// is created by peer_framer.
if (GetQuicRestartFlag(quic_do_not_override_connection_id) &&
peer_framer_.perspective() == Perspective::IS_SERVER) {
header.source_connection_id = connection_id_;
header.source_connection_id_included = connection_id_included_;
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
} else {
header.destination_connection_id = connection_id_;
header.destination_connection_id_included = connection_id_included_;
}
if (VersionHasIetfInvariantHeader(peer_framer_.transport_version()) &&
peer_framer_.perspective() == Perspective::IS_SERVER) {
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
if (header.version_flag) {
header.source_connection_id = connection_id_;
header.source_connection_id_included = CONNECTION_ID_PRESENT;
if (GetParam().version.handshake_protocol == PROTOCOL_QUIC_CRYPTO &&
header.long_packet_type == ZERO_RTT_PROTECTED) {
header.nonce = &kTestDiversificationNonce;
}
}
}
header.packet_number_length = packet_number_length_;
header.packet_number = QuicPacketNumber(number);
return header;
}
std::unique_ptr<QuicPacket> ConstructDataPacket(uint64_t number,
bool has_stop_waiting,
EncryptionLevel level) {
QuicPacketHeader header = ConstructPacketHeader(number, level);
QuicFrames frames;
frames.push_back(QuicFrame(frame1_));
if (has_stop_waiting) {
frames.push_back(QuicFrame(stop_waiting_));
}
return ConstructPacket(header, frames);
}
OwningSerializedPacketPointer ConstructProbingPacket() {
if (VersionHasIetfQuicFrames(version().transport_version)) {
QuicPathFrameBuffer payload = {
{0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}};
return QuicPacketCreatorPeer::
SerializePathChallengeConnectivityProbingPacket(&peer_creator_,
&payload);
}
return QuicPacketCreatorPeer::SerializeConnectivityProbingPacket(
&peer_creator_);
}
std::unique_ptr<QuicPacket> ConstructClosePacket(uint64_t number) {
QuicPacketHeader header;
// Set connection_id to peer's in memory representation as this connection
// close packet is created by peer_framer.
if (GetQuicRestartFlag(quic_do_not_override_connection_id) &&
peer_framer_.perspective() == Perspective::IS_SERVER) {
header.source_connection_id = connection_id_;
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
if (!VersionHasIetfInvariantHeader(peer_framer_.transport_version())) {
header.source_connection_id_included = CONNECTION_ID_PRESENT;
}
} else {
header.destination_connection_id = connection_id_;
if (VersionHasIetfInvariantHeader(peer_framer_.transport_version())) {
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
}
}
header.packet_number = QuicPacketNumber(number);
QuicConnectionCloseFrame qccf(QUIC_PEER_GOING_AWAY, "");
if (VersionHasIetfQuicFrames(peer_framer_.transport_version())) {
// Default close-type is Google QUIC. If doing IETF QUIC then
// set close type to be IETF CC/T.
qccf.close_type = IETF_QUIC_TRANSPORT_CONNECTION_CLOSE;
}
QuicFrames frames;
frames.push_back(QuicFrame(&qccf));
return ConstructPacket(header, frames);
}
QuicTime::Delta DefaultRetransmissionTime() {
return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
}
QuicTime::Delta DefaultDelayedAckTime() {
return QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs);
}
const QuicStopWaitingFrame InitStopWaitingFrame(uint64_t least_unacked) {
QuicStopWaitingFrame frame;
frame.least_unacked = QuicPacketNumber(least_unacked);
return frame;
}
// Construct a ack_frame that acks all packet numbers between 1 and
// |largest_acked|, except |missing|.
// REQUIRES: 1 <= |missing| < |largest_acked|
QuicAckFrame ConstructAckFrame(uint64_t largest_acked, uint64_t missing) {
return ConstructAckFrame(QuicPacketNumber(largest_acked),
QuicPacketNumber(missing));
}
QuicAckFrame ConstructAckFrame(QuicPacketNumber largest_acked,
QuicPacketNumber missing) {
if (missing == QuicPacketNumber(1)) {
return InitAckFrame({{missing + 1, largest_acked + 1}});
}
return InitAckFrame(
{{QuicPacketNumber(1), missing}, {missing + 1, largest_acked + 1}});
}
// Undo nacking a packet within the frame.
void AckPacket(QuicPacketNumber arrived, QuicAckFrame* frame) {
EXPECT_FALSE(frame->packets.Contains(arrived));
frame->packets.Add(arrived);
}
void TriggerConnectionClose() {
// Send an erroneous packet to close the connection.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Triggers a connection by receiving ACK of unsent packet.
QuicAckFrame frame = InitAckFrame(10000);
ProcessAckPacket(1, &frame);
EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
nullptr);
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_EQ(QUIC_INVALID_ACK_DATA,
saved_connection_close_frame_.quic_error_code);
}
void BlockOnNextWrite() {
writer_->BlockOnNextWrite();
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
}
void SimulateNextPacketTooLarge() { writer_->SimulateNextPacketTooLarge(); }
void AlwaysGetPacketTooLarge() { writer_->AlwaysGetPacketTooLarge(); }
void SetWritePauseTimeDelta(QuicTime::Delta delta) {
writer_->SetWritePauseTimeDelta(delta);
}
void CongestionBlockWrites() {
EXPECT_CALL(*send_algorithm_, CanSend(_))
.WillRepeatedly(testing::Return(false));
}
void CongestionUnblockWrites() {
EXPECT_CALL(*send_algorithm_, CanSend(_))
.WillRepeatedly(testing::Return(true));
}
void set_perspective(Perspective perspective) {
connection_.set_perspective(perspective);
if (perspective == Perspective::IS_SERVER) {
connection_.set_can_truncate_connection_ids(true);
}
QuicFramerPeer::SetPerspective(&peer_framer_,
QuicUtils::InvertPerspective(perspective));
}
void set_packets_between_probes_base(
const QuicPacketCount packets_between_probes_base) {
QuicConnectionPeer::SetPacketsBetweenMtuProbes(&connection_,
packets_between_probes_base);
QuicConnectionPeer::SetNextMtuProbeAt(
&connection_, QuicPacketNumber(packets_between_probes_base));
}
bool IsDefaultTestConfiguration() {
TestParams p = GetParam();
return p.ack_response == AckResponse::kImmediate &&
p.version == AllSupportedVersions()[0] && p.no_stop_waiting;
}
void TestConnectionCloseQuicErrorCode(QuicErrorCode expected_code) {
// Not strictly needed for this test, but is commonly done.
EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
nullptr);
const std::vector<QuicConnectionCloseFrame>& connection_close_frames =
writer_->connection_close_frames();
ASSERT_EQ(1u, connection_close_frames.size());
EXPECT_EQ(expected_code, connection_close_frames[0].quic_error_code);
}
QuicConnectionId connection_id_;
QuicFramer framer_;
MockSendAlgorithm* send_algorithm_;
std::unique_ptr<MockLossAlgorithm> loss_algorithm_;
MockClock clock_;
MockRandom random_generator_;
SimpleBufferAllocator buffer_allocator_;
std::unique_ptr<TestConnectionHelper> helper_;
std::unique_ptr<TestAlarmFactory> alarm_factory_;
QuicFramer peer_framer_;
QuicPacketCreator peer_creator_;
std::unique_ptr<TestPacketWriter> writer_;
TestConnection connection_;
QuicPacketCreator* creator_;
QuicPacketGenerator* generator_;
QuicSentPacketManager* manager_;
StrictMock<MockQuicConnectionVisitor> visitor_;
QuicStreamFrame frame1_;
QuicStreamFrame frame2_;
QuicCryptoFrame crypto_frame_;
QuicAckFrame ack_;
QuicStopWaitingFrame stop_waiting_;
QuicPacketNumberLength packet_number_length_;
QuicConnectionIdIncluded connection_id_included_;
SimpleSessionNotifier notifier_;
QuicConnectionCloseFrame saved_connection_close_frame_;
int connection_close_frame_count_;
};
// Run all end to end tests with all supported versions.
INSTANTIATE_TEST_SUITE_P(SupportedVersion,
QuicConnectionTest,
::testing::ValuesIn(GetTestParams()));
TEST_P(QuicConnectionTest, SelfAddressChangeAtClient) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
EXPECT_TRUE(connection_.connected());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_));
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_));
}
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
// Cause change in self_address.
QuicIpAddress host;
host.FromString("1.1.1.1");
QuicSocketAddress self_address(host, 123);
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_));
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_));
}
ProcessFramePacketWithAddresses(frame, self_address, kPeerAddress);
EXPECT_TRUE(connection_.connected());
}
TEST_P(QuicConnectionTest, SelfAddressChangeAtServer) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
EXPECT_TRUE(connection_.connected());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_));
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_));
}
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
// Cause change in self_address.
QuicIpAddress host;
host.FromString("1.1.1.1");
QuicSocketAddress self_address(host, 123);
EXPECT_CALL(visitor_, AllowSelfAddressChange()).WillOnce(Return(false));
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
ProcessFramePacketWithAddresses(frame, self_address, kPeerAddress);
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_ERROR_MIGRATING_ADDRESS);
}
TEST_P(QuicConnectionTest, AllowSelfAddressChangeToMappedIpv4AddressAtServer) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
EXPECT_TRUE(connection_.connected());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3);
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3);
}
QuicIpAddress host;
host.FromString("1.1.1.1");
QuicSocketAddress self_address1(host, 443);
ProcessFramePacketWithAddresses(frame, self_address1, kPeerAddress);
// Cause self_address change to mapped Ipv4 address.
QuicIpAddress host2;
host2.FromString(
QuicStrCat("::ffff:", connection_.self_address().host().ToString()));
QuicSocketAddress self_address2(host2, connection_.self_address().port());
ProcessFramePacketWithAddresses(frame, self_address2, kPeerAddress);
EXPECT_TRUE(connection_.connected());
// self_address change back to Ipv4 address.
ProcessFramePacketWithAddresses(frame, self_address1, kPeerAddress);
EXPECT_TRUE(connection_.connected());
}
TEST_P(QuicConnectionTest, ClientAddressChangeAndPacketReordered) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(),
/*port=*/23456);
ProcessFramePacketWithAddresses(frame, kSelfAddress, kNewPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
// Decrease packet number to simulate out-of-order packets.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4);
// This is an old packet, do not migrate.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, PeerAddressChangeAtServer) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Process another packet with a different peer address on server side will
// start connection migration.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
ProcessFramePacketWithAddresses(frame, kSelfAddress, kNewPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, EffectivePeerAddressChangeAtServer) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is different from direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
const QuicSocketAddress kEffectivePeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/43210);
connection_.ReturnEffectivePeerAddressForNextPacket(kEffectivePeerAddress);
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kEffectivePeerAddress, connection_.effective_peer_address());
// Process another packet with the same direct peer address and different
// effective peer address on server side will start connection migration.
const QuicSocketAddress kNewEffectivePeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/54321);
connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address());
// Process another packet with a different direct peer address and the same
// effective peer address on server side will not start connection migration.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
// ack_frame is used to complete the migration started by the last packet, we
// need to make sure a new migration does not start after the previous one is
// completed.
QuicAckFrame ack_frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
ProcessFramePacketWithAddresses(QuicFrame(&ack_frame), kSelfAddress,
kNewPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address());
// Process another packet with different direct peer address and different
// effective peer address on server side will start connection migration.
const QuicSocketAddress kNewerEffectivePeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/65432);
const QuicSocketAddress kFinalPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/34567);
connection_.ReturnEffectivePeerAddressForNextPacket(
kNewerEffectivePeerAddress);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
ProcessFramePacketWithAddresses(frame, kSelfAddress, kFinalPeerAddress);
EXPECT_EQ(kFinalPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewerEffectivePeerAddress, connection_.effective_peer_address());
EXPECT_EQ(PORT_CHANGE, connection_.active_effective_peer_migration_type());
// While the previous migration is ongoing, process another packet with the
// same direct peer address and different effective peer address on server
// side will start a new connection migration.
const QuicSocketAddress kNewestEffectivePeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/65430);
connection_.ReturnEffectivePeerAddressForNextPacket(
kNewestEffectivePeerAddress);
EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
EXPECT_CALL(*send_algorithm_, OnConnectionMigration()).Times(1);
ProcessFramePacketWithAddresses(frame, kSelfAddress, kFinalPeerAddress);
EXPECT_EQ(kFinalPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewestEffectivePeerAddress, connection_.effective_peer_address());
EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
connection_.active_effective_peer_migration_type());
}
TEST_P(QuicConnectionTest, ReceivePaddedPingAtServer) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(0);
// Process a padded PING or PATH CHALLENGE packet with no peer address change
// on server side will be ignored.
OwningSerializedPacketPointer probing_packet;
if (VersionHasIetfQuicFrames(version().transport_version)) {
QuicPathFrameBuffer payload = {
{0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}};
probing_packet =
QuicPacketCreatorPeer::SerializePathChallengeConnectivityProbingPacket(
&peer_creator_, &payload);
} else {
probing_packet = QuicPacketCreatorPeer::SerializeConnectivityProbingPacket(
&peer_creator_);
}
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received);
EXPECT_EQ(num_probing_received,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, WriteOutOfOrderQueuedPackets) {
// EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
if (!IsDefaultTestConfiguration()) {
return;
}
set_perspective(Perspective::IS_CLIENT);
BlockOnNextWrite();
QuicStreamId stream_id = 2;
connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
writer_->SetWritable();
connection_.SendConnectivityProbingPacket(writer_.get(),
connection_.peer_address());
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_QUIC_BUG(connection_.OnCanWrite(),
"Attempt to write packet:1 after:2");
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_INTERNAL_ERROR);
const std::vector<QuicConnectionCloseFrame>& connection_close_frames =
writer_->connection_close_frames();
EXPECT_EQ("Packet written out of order.",
connection_close_frames[0].error_details);
}
TEST_P(QuicConnectionTest, DiscardQueuedPacketsAfterConnectionClose) {
// Regression test for b/74073386.
{
InSequence seq;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1);
}
set_perspective(Perspective::IS_CLIENT);
writer_->SimulateNextPacketTooLarge();
// This packet write should fail, which should cause the connection to close
// after sending a connection close packet, then the failed packet should be
// queued.
connection_.SendStreamDataWithString(/*id=*/2, "foo", 0, NO_FIN);
EXPECT_FALSE(connection_.connected());
EXPECT_EQ(1u, connection_.NumQueuedPackets());
EXPECT_EQ(0u, connection_.GetStats().packets_discarded);
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.GetStats().packets_discarded);
}
TEST_P(QuicConnectionTest, ReceiveConnectivityProbingAtServer) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(1);
// Process a padded PING packet from a new peer address on server side
// is effectively receiving a connectivity probing.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
OwningSerializedPacketPointer probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
EXPECT_EQ(num_probing_received + 1,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Process another packet with the old peer address on server side will not
// start peer migration.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, ReceiveReorderedConnectivityProbingAtServer) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Decrease packet number to simulate out-of-order packets.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(1);
// Process a padded PING packet from a new peer address on server side
// is effectively receiving a connectivity probing, even if a newer packet has
// been received before this one.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
OwningSerializedPacketPointer probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
EXPECT_EQ(num_probing_received + 1,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, MigrateAfterProbingAtServer) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(1);
// Process a padded PING packet from a new peer address on server side
// is effectively receiving a connectivity probing.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
OwningSerializedPacketPointer probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Process another non-probing packet with the new peer address on server
// side will start peer migration.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
ProcessFramePacketWithAddresses(frame, kSelfAddress, kNewPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, ReceivePaddedPingAtClient) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_CLIENT);
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Client takes all padded PING packet as speculative connectivity
// probing packet, and reports to visitor.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(1);
OwningSerializedPacketPointer probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received);
EXPECT_EQ(num_probing_received,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, ReceiveConnectivityProbingAtClient) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_CLIENT);
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Process a padded PING packet with a different self address on client side
// is effectively receiving a connectivity probing.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(1);
const QuicSocketAddress kNewSelfAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
OwningSerializedPacketPointer probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received);
EXPECT_EQ(num_probing_received + 1,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, PeerAddressChangeAtClient) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_CLIENT);
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
QuicFrame frame;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frame = QuicFrame(&crypto_frame_);
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
frame = QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, QuicStringPiece()));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Process another packet with a different peer address on client side will
// only update peer address.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
ProcessFramePacketWithAddresses(frame, kSelfAddress, kNewPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, MaxPacketSize) {
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
EXPECT_EQ(1350u, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) {
TestConnection connection(TestConnectionId(), kPeerAddress, helper_.get(),
alarm_factory_.get(), writer_.get(),
Perspective::IS_SERVER, version());
EXPECT_EQ(Perspective::IS_SERVER, connection.perspective());
EXPECT_EQ(1000u, connection.max_packet_length());
}
TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
connection_.SetMaxPacketLength(1000);
QuicPacketHeader header;
header.destination_connection_id = connection_id_;
header.version_flag = true;
header.packet_number = QuicPacketNumber(12);
if (QuicVersionHasLongHeaderLengths(
peer_framer_.version().transport_version)) {
header.long_packet_type = INITIAL;
header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
}
QuicFrames frames;
QuicPaddingFrame padding;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frames.push_back(QuicFrame(&crypto_frame_));
} else {
frames.push_back(QuicFrame(frame1_));
}
frames.push_back(QuicFrame(padding));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length =
peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12),
*packet, buffer, kMaxOutgoingPacketSize);
EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length);
framer_.set_version(version());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
}
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
EXPECT_EQ(kMaxOutgoingPacketSize, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSizeWhileWriterLimited) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
const QuicByteCount lower_max_packet_size = 1240;
writer_->set_max_packet_size(lower_max_packet_size);
set_perspective(Perspective::IS_SERVER);
connection_.SetMaxPacketLength(1000);
EXPECT_EQ(1000u, connection_.max_packet_length());
QuicPacketHeader header;
header.destination_connection_id = connection_id_;
header.version_flag = true;
header.packet_number = QuicPacketNumber(12);
if (QuicVersionHasLongHeaderLengths(
peer_framer_.version().transport_version)) {
header.long_packet_type = INITIAL;
header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
}
QuicFrames frames;
QuicPaddingFrame padding;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frames.push_back(QuicFrame(&crypto_frame_));
} else {
frames.push_back(QuicFrame(frame1_));
}
frames.push_back(QuicFrame(padding));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length =
peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12),
*packet, buffer, kMaxOutgoingPacketSize);
EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length);
framer_.set_version(version());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
}
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
// Here, the limit imposed by the writer is lower than the size of the packet
// received, so the writer max packet size is used.
EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriter) {
const QuicByteCount lower_max_packet_size = 1240;
writer_->set_max_packet_size(lower_max_packet_size);
static_assert(lower_max_packet_size < kDefaultMaxPacketSize,
"Default maximum packet size is too low");
connection_.SetMaxPacketLength(kDefaultMaxPacketSize);
EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriterForNewConnection) {
const QuicConnectionId connection_id = TestConnectionId(17);
const QuicByteCount lower_max_packet_size = 1240;
writer_->set_max_packet_size(lower_max_packet_size);
TestConnection connection(connection_id, kPeerAddress, helper_.get(),
alarm_factory_.get(), writer_.get(),
Perspective::IS_CLIENT, version());
EXPECT_EQ(Perspective::IS_CLIENT, connection.perspective());
EXPECT_EQ(lower_max_packet_size, connection.max_packet_length());
}
TEST_P(QuicConnectionTest, PacketsInOrder) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
EXPECT_EQ(QuicPacketNumber(1u), LargestAcked(connection_.ack_frame()));
EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
ProcessPacket(2);
EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(connection_.ack_frame()));
EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
ProcessPacket(3);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
}
TEST_P(QuicConnectionTest, PacketsOutOfOrder) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(2);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_FALSE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(1);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_FALSE(IsMissing(2));
EXPECT_FALSE(IsMissing(1));
}
TEST_P(QuicConnectionTest, DuplicatePacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
// Send packet 3 again, but do not set the expectation that
// the visitor OnStreamFrame() will be called.
ProcessDataPacket(3);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
}
TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(2);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(5);
EXPECT_EQ(QuicPacketNumber(5u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(1));
EXPECT_TRUE(IsMissing(4));
// Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
// packet the peer will not retransmit. It indicates this by sending 'least
// awaiting' is 4. The connection should then realize 1 will not be
// retransmitted, and will remove it from the missing list.
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
ProcessAckPacket(6, &frame);
// Force an ack to be sent.
SendAckPacketToPeer();
EXPECT_TRUE(IsMissing(4));
}
TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) {
// EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
if (!IsDefaultTestConfiguration()) {
return;
}
// Process an unencrypted packet from the non-crypto stream.
frame1_.stream_id = 3;
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_QUIC_PEER_BUG(ProcessDataPacketAtLevel(1, false, ENCRYPTION_INITIAL),
"");
TestConnectionCloseQuicErrorCode(QUIC_UNENCRYPTED_STREAM_DATA);
}
TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
// Should not cause an ack.
EXPECT_EQ(0u, writer_->packets_write_attempts());
ProcessPacket(2);
// Should ack immediately, since this fills the last hole.
EXPECT_EQ(1u, writer_->packets_write_attempts());
ProcessPacket(1);
// Should ack immediately, since this fills the last hole.
EXPECT_EQ(2u, writer_->packets_write_attempts());
ProcessPacket(4);
// Should not cause an ack.
EXPECT_EQ(2u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
EXPECT_EQ(2u, writer_->packets_write_attempts());
QuicAckFrame ack1 = InitAckFrame(1);
QuicAckFrame ack2 = InitAckFrame(2);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
ProcessAckPacket(2, &ack2);
// Should ack immediately since we have missing packets.
EXPECT_EQ(2u, writer_->packets_write_attempts());
ProcessAckPacket(1, &ack1);
// Should not ack an ack filling a missing packet.
EXPECT_EQ(2u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketNumber original, second;
QuicByteCount packet_size =
SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original); // 1st packet.
SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second); // 2nd packet.
QuicAckFrame frame = InitAckFrame({{second, second + 1}});
// First nack triggers early retransmit.
LostPacketVector lost_packets;
lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.WillOnce(SetArgPointee<5>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicPacketNumber retransmission;
// Packet 1 is short header for IETF QUIC because the encryption level
// switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _,
VersionHasIetfInvariantHeader(
GetParam().version.transport_version)
? packet_size
: packet_size - kQuicVersionSize,
_))
.WillOnce(SaveArg<2>(&retransmission));
ProcessAckPacket(&frame);
QuicAckFrame frame2 = ConstructAckFrame(retransmission, original);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
ProcessAckPacket(&frame2);
// Now if the peer sends an ack which still reports the retransmitted packet
// as missing, that will bundle an ack with data after two acks in a row
// indicate the high water mark needs to be raised.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
connection_.SendStreamDataWithString(3, "foo", 6, NO_FIN);
// No ack sent.
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
// No more packet loss for the rest of the test.
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.Times(AnyNumber());
ProcessAckPacket(&frame2);
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
connection_.SendStreamDataWithString(3, "foofoofoo", 9, NO_FIN);
// Ack bundled.
if (GetParam().no_stop_waiting) {
// Do not ACK acks.
EXPECT_EQ(1u, writer_->frame_count());
} else {
EXPECT_EQ(3u, writer_->frame_count());
}
EXPECT_EQ(1u, writer_->stream_frames().size());
if (GetParam().no_stop_waiting) {
EXPECT_TRUE(writer_->ack_frames().empty());
} else {
EXPECT_FALSE(writer_->ack_frames().empty());
}
// But an ack with no missing packets will not send an ack.
AckPacket(original, &frame2);
ProcessAckPacket(&frame2);
ProcessAckPacket(&frame2);
}
TEST_P(QuicConnectionTest, AckSentEveryNthPacket) {
connection_.set_ack_frequency_before_ack_decimation(3);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(39);
// Expect 13 acks, every 3rd packet.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(13);
// Receives packets 1 - 39.
for (size_t i = 1; i <= 39; ++i) {
ProcessDataPacket(i);
}
}
TEST_P(QuicConnectionTest, AckDecimationReducesAcks) {
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING);
// Start ack decimation from 10th packet.
connection_.set_min_received_before_ack_decimation(10);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(30);
// Expect 6 acks: 5 acks between packets 1-10, and ack at 20.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6);
// Receives packets 1 - 29.
for (size_t i = 1; i <= 29; ++i) {
ProcessDataPacket(i);
}
// We now receive the 30th packet, and so we send an ack.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
ProcessDataPacket(30);
}
TEST_P(QuicConnectionTest, AckNeedsRetransmittableFrames) {
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(99);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19);
// Receives packets 1 - 39.
for (size_t i = 1; i <= 39; ++i) {
ProcessDataPacket(i);
}
// Receiving Packet 40 causes 20th ack to send. Session is informed and adds
// WINDOW_UPDATE.
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
.WillOnce(Invoke([this]() {
connection_.SendControlFrame(
QuicFrame(new QuicWindowUpdateFrame(1, 0, 0)));
}));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
EXPECT_EQ(0u, writer_->window_update_frames().size());
ProcessDataPacket(40);
EXPECT_EQ(1u, writer_->window_update_frames().size());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(9);
// Receives packets 41 - 59.
for (size_t i = 41; i <= 59; ++i) {
ProcessDataPacket(i);
}
// Send a packet containing stream frame.
SendStreamDataToPeer(
QuicUtils::GetFirstBidirectionalStreamId(
connection_.version().transport_version, Perspective::IS_CLIENT),
"bar", 0, NO_FIN, nullptr);
// Session will not be informed until receiving another 20 packets.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19);
for (size_t i = 60; i <= 98; ++i) {
ProcessDataPacket(i);
EXPECT_EQ(0u, writer_->window_update_frames().size());
}
// Session does not add a retransmittable frame.
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
.WillOnce(Invoke([this]() {
connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
}));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
EXPECT_EQ(0u, writer_->ping_frames().size());
ProcessDataPacket(99);
EXPECT_EQ(0u, writer_->window_update_frames().size());
// A ping frame will be added.
EXPECT_EQ(1u, writer_->ping_frames().size());
}
TEST_P(QuicConnectionTest, LeastUnackedLower) {
if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr);
// Start out saying the least unacked is 2.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
ProcessStopWaitingPacket(InitStopWaitingFrame(2));
// Change it to 1, but lower the packet number to fake out-of-order packets.
// This should be fine.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1);
// The scheduler will not process out of order acks, but all packet processing
// causes the connection to try to write.
if (!GetParam().no_stop_waiting) {
EXPECT_CALL(visitor_, OnCanWrite());
}
ProcessStopWaitingPacket(InitStopWaitingFrame(1));
// Now claim it's one, but set the ordering so it was sent "after" the first
// one. This should cause a connection error.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 7);
if (!GetParam().no_stop_waiting) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
}
ProcessStopWaitingPacket(InitStopWaitingFrame(1));
if (!GetParam().no_stop_waiting) {
TestConnectionCloseQuicErrorCode(QUIC_INVALID_STOP_WAITING_DATA);
}
}
TEST_P(QuicConnectionTest, TooManySentPackets) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketCount max_tracked_packets = 50;
QuicConnectionPeer::SetMaxTrackedPackets(&connection_, max_tracked_packets);
const int num_packets = max_tracked_packets + 5;
for (int i = 0; i < num_packets; ++i) {
SendStreamDataToPeer(1, "foo", 3 * i, NO_FIN, nullptr);
}
// Ack packet 1, which leaves more than the limit outstanding.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
// Nack the first packet and ack the rest, leaving a huge gap.
QuicAckFrame frame1 = ConstructAckFrame(num_packets, 1);
ProcessAckPacket(&frame1);
TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS);
}
TEST_P(QuicConnectionTest, LargestObservedLower) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);