blob: 754cf20dfa7614d2009997fcd48234edba885fdd [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "quic/core/congestion_control/bbr_sender.h"
#include <algorithm>
#include <map>
#include <memory>
#include <utility>
#include "quic/core/congestion_control/rtt_stats.h"
#include "quic/core/crypto/crypto_protocol.h"
#include "quic/core/quic_bandwidth.h"
#include "quic/core/quic_packets.h"
#include "quic/core/quic_types.h"
#include "quic/core/quic_utils.h"
#include "quic/platform/api/quic_flags.h"
#include "quic/platform/api/quic_logging.h"
#include "quic/platform/api/quic_test.h"
#include "quic/test_tools/mock_clock.h"
#include "quic/test_tools/quic_config_peer.h"
#include "quic/test_tools/quic_connection_peer.h"
#include "quic/test_tools/quic_sent_packet_manager_peer.h"
#include "quic/test_tools/quic_test_utils.h"
#include "quic/test_tools/send_algorithm_test_result.pb.h"
#include "quic/test_tools/send_algorithm_test_utils.h"
#include "quic/test_tools/simulator/quic_endpoint.h"
#include "quic/test_tools/simulator/simulator.h"
#include "quic/test_tools/simulator/switch.h"
using testing::AllOf;
using testing::Ge;
using testing::Le;
DEFINE_QUIC_COMMAND_LINE_FLAG(
std::string,
quic_bbr_test_regression_mode,
"",
"One of a) 'record' to record test result (one file per test), or "
"b) 'regress' to regress against recorded results, or "
"c) <anything else> for non-regression mode.");
namespace quic {
namespace test {
// Use the initial CWND of 10, as 32 is too much for the test network.
const uint32_t kInitialCongestionWindowPackets = 10;
const uint32_t kDefaultWindowTCP =
kInitialCongestionWindowPackets * kDefaultTCPMSS;
// Test network parameters. Here, the topology of the network is:
//
// BBR sender
// |
// | <-- local link (10 Mbps, 2 ms delay)
// |
// Network switch
// * <-- the bottleneck queue in the direction
// | of the receiver
// |
// | <-- test link (4 Mbps, 30 ms delay)
// |
// |
// Receiver
//
// The reason the bandwidths chosen are relatively low is the fact that the
// connection simulator uses QuicTime for its internal clock, and as such has
// the granularity of 1us, meaning that at bandwidth higher than 20 Mbps the
// packets can start to land on the same timestamp.
const QuicBandwidth kTestLinkBandwidth =
QuicBandwidth::FromKBitsPerSecond(4000);
const QuicBandwidth kLocalLinkBandwidth =
QuicBandwidth::FromKBitsPerSecond(10000);
const QuicTime::Delta kTestPropagationDelay =
QuicTime::Delta::FromMilliseconds(30);
const QuicTime::Delta kLocalPropagationDelay =
QuicTime::Delta::FromMilliseconds(2);
const QuicTime::Delta kTestTransferTime =
kTestLinkBandwidth.TransferTime(kMaxOutgoingPacketSize) +
kLocalLinkBandwidth.TransferTime(kMaxOutgoingPacketSize);
const QuicTime::Delta kTestRtt =
(kTestPropagationDelay + kLocalPropagationDelay + kTestTransferTime) * 2;
const QuicByteCount kTestBdp = kTestRtt * kTestLinkBandwidth;
class BbrSenderTest : public QuicTest {
protected:
BbrSenderTest()
: simulator_(&random_),
bbr_sender_(&simulator_,
"BBR sender",
"Receiver",
Perspective::IS_CLIENT,
/*connection_id=*/TestConnectionId(42)),
competing_sender_(&simulator_,
"Competing sender",
"Competing receiver",
Perspective::IS_CLIENT,
/*connection_id=*/TestConnectionId(43)),
receiver_(&simulator_,
"Receiver",
"BBR sender",
Perspective::IS_SERVER,
/*connection_id=*/TestConnectionId(42)),
competing_receiver_(&simulator_,
"Competing receiver",
"Competing sender",
Perspective::IS_SERVER,
/*connection_id=*/TestConnectionId(43)),
receiver_multiplexer_("Receiver multiplexer",
{&receiver_, &competing_receiver_}) {
rtt_stats_ = bbr_sender_.connection()->sent_packet_manager().GetRttStats();
const int kTestMaxPacketSize = 1350;
bbr_sender_.connection()->SetMaxPacketLength(kTestMaxPacketSize);
sender_ = SetupBbrSender(&bbr_sender_);
if (GetQuicReloadableFlag(
quic_bbr_start_new_aggregation_epoch_after_a_full_round)) {
SetConnectionOption(kBBRA);
}
clock_ = simulator_.GetClock();
}
void SetUp() override {
if (GetQuicFlag(FLAGS_quic_bbr_test_regression_mode) == "regress") {
SendAlgorithmTestResult expected;
ASSERT_TRUE(LoadSendAlgorithmTestResult(&expected));
random_seed_ = expected.random_seed();
} else {
random_seed_ = QuicRandom::GetInstance()->RandUint64();
}
random_.set_seed(random_seed_);
QUIC_LOG(INFO) << "BbrSenderTest simulator set up. Seed: " << random_seed_;
}
~BbrSenderTest() {
const std::string regression_mode =
GetQuicFlag(FLAGS_quic_bbr_test_regression_mode);
const QuicTime::Delta simulated_duration = clock_->Now() - QuicTime::Zero();
if (regression_mode == "record") {
RecordSendAlgorithmTestResult(random_seed_,
simulated_duration.ToMicroseconds());
} else if (regression_mode == "regress") {
CompareSendAlgorithmTestResult(simulated_duration.ToMicroseconds());
}
}
uint64_t random_seed_;
SimpleRandom random_;
simulator::Simulator simulator_;
simulator::QuicEndpoint bbr_sender_;
simulator::QuicEndpoint competing_sender_;
simulator::QuicEndpoint receiver_;
simulator::QuicEndpoint competing_receiver_;
simulator::QuicEndpointMultiplexer receiver_multiplexer_;
std::unique_ptr<simulator::Switch> switch_;
std::unique_ptr<simulator::SymmetricLink> bbr_sender_link_;
std::unique_ptr<simulator::SymmetricLink> competing_sender_link_;
std::unique_ptr<simulator::SymmetricLink> receiver_link_;
// Owned by different components of the connection.
const QuicClock* clock_;
const RttStats* rtt_stats_;
BbrSender* sender_;
// Enables BBR on |endpoint| and returns the associated BBR congestion
// controller.
BbrSender* SetupBbrSender(simulator::QuicEndpoint* endpoint) {
const RttStats* rtt_stats =
endpoint->connection()->sent_packet_manager().GetRttStats();
// Ownership of the sender will be overtaken by the endpoint.
BbrSender* sender = new BbrSender(
endpoint->connection()->clock()->Now(), rtt_stats,
QuicSentPacketManagerPeer::GetUnackedPacketMap(
QuicConnectionPeer::GetSentPacketManager(endpoint->connection())),
kInitialCongestionWindowPackets,
GetQuicFlag(FLAGS_quic_max_congestion_window), &random_,
QuicConnectionPeer::GetStats(endpoint->connection()));
QuicConnectionPeer::SetSendAlgorithm(endpoint->connection(), sender);
endpoint->RecordTrace();
return sender;
}
// Creates a default setup, which is a network with a bottleneck between the
// receiver and the switch. The switch has the buffers four times larger than
// the bottleneck BDP, which should guarantee a lack of losses.
void CreateDefaultSetup() {
switch_ = std::make_unique<simulator::Switch>(&simulator_, "Switch", 8,
2 * kTestBdp);
bbr_sender_link_ = std::make_unique<simulator::SymmetricLink>(
&bbr_sender_, switch_->port(1), kLocalLinkBandwidth,
kLocalPropagationDelay);
receiver_link_ = std::make_unique<simulator::SymmetricLink>(
&receiver_, switch_->port(2), kTestLinkBandwidth,
kTestPropagationDelay);
}
// Same as the default setup, except the buffer now is half of the BDP.
void CreateSmallBufferSetup() {
switch_ = std::make_unique<simulator::Switch>(&simulator_, "Switch", 8,
0.5 * kTestBdp);
bbr_sender_link_ = std::make_unique<simulator::SymmetricLink>(
&bbr_sender_, switch_->port(1), kLocalLinkBandwidth,
kLocalPropagationDelay);
receiver_link_ = std::make_unique<simulator::SymmetricLink>(
&receiver_, switch_->port(2), kTestLinkBandwidth,
kTestPropagationDelay);
}
// Creates the variation of the default setup in which there is another sender
// that competes for the same bottleneck link.
void CreateCompetitionSetup() {
switch_ = std::make_unique<simulator::Switch>(&simulator_, "Switch", 8,
2 * kTestBdp);
// Add a small offset to the competing link in order to avoid
// synchronization effects.
const QuicTime::Delta small_offset = QuicTime::Delta::FromMicroseconds(3);
bbr_sender_link_ = std::make_unique<simulator::SymmetricLink>(
&bbr_sender_, switch_->port(1), kLocalLinkBandwidth,
kLocalPropagationDelay);
competing_sender_link_ = std::make_unique<simulator::SymmetricLink>(
&competing_sender_, switch_->port(3), kLocalLinkBandwidth,
kLocalPropagationDelay + small_offset);
receiver_link_ = std::make_unique<simulator::SymmetricLink>(
&receiver_multiplexer_, switch_->port(2), kTestLinkBandwidth,
kTestPropagationDelay);
}
// Creates a BBR vs BBR competition setup.
void CreateBbrVsBbrSetup() {
SetupBbrSender(&competing_sender_);
CreateCompetitionSetup();
}
void EnableAggregation(QuicByteCount aggregation_bytes,
QuicTime::Delta aggregation_timeout) {
// Enable aggregation on the path from the receiver to the sender.
switch_->port_queue(1)->EnableAggregation(aggregation_bytes,
aggregation_timeout);
}
void DoSimpleTransfer(QuicByteCount transfer_size, QuicTime::Delta deadline) {
bbr_sender_.AddBytesToTransfer(transfer_size);
// TODO(vasilvv): consider rewriting this to run until the receiver actually
// receives the intended amount of bytes.
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return bbr_sender_.bytes_to_transfer() == 0; }, deadline);
EXPECT_TRUE(simulator_result)
<< "Simple transfer failed. Bytes remaining: "
<< bbr_sender_.bytes_to_transfer();
QUIC_LOG(INFO) << "Simple transfer state: " << sender_->ExportDebugState();
}
// Drive the simulator by sending enough data to enter PROBE_BW.
void DriveOutOfStartup() {
ASSERT_FALSE(sender_->ExportDebugState().is_at_full_bandwidth);
DoSimpleTransfer(1024 * 1024, QuicTime::Delta::FromSeconds(15));
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.02f);
}
// Send |bytes|-sized bursts of data |number_of_bursts| times, waiting for
// |wait_time| between each burst.
void SendBursts(size_t number_of_bursts,
QuicByteCount bytes,
QuicTime::Delta wait_time) {
ASSERT_EQ(0u, bbr_sender_.bytes_to_transfer());
for (size_t i = 0; i < number_of_bursts; i++) {
bbr_sender_.AddBytesToTransfer(bytes);
// Transfer data and wait for three seconds between each transfer.
simulator_.RunFor(wait_time);
// Ensure the connection did not time out.
ASSERT_TRUE(bbr_sender_.connection()->connected());
ASSERT_TRUE(receiver_.connection()->connected());
}
simulator_.RunFor(wait_time + kTestRtt);
ASSERT_EQ(0u, bbr_sender_.bytes_to_transfer());
}
void SetConnectionOption(QuicTag option) {
QuicConfig config;
QuicTagVector options;
options.push_back(option);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
sender_->SetFromConfig(config, Perspective::IS_SERVER);
}
};
TEST_F(BbrSenderTest, SetInitialCongestionWindow) {
EXPECT_NE(3u * kDefaultTCPMSS, sender_->GetCongestionWindow());
sender_->SetInitialCongestionWindowInPackets(3);
EXPECT_EQ(3u * kDefaultTCPMSS, sender_->GetCongestionWindow());
}
// Test a simple long data transfer in the default setup.
TEST_F(BbrSenderTest, SimpleTransfer) {
CreateDefaultSetup();
// At startup make sure we are at the default.
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// At startup make sure we can send.
EXPECT_TRUE(sender_->CanSend(0));
// And that window is un-affected.
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// Verify that Sender is in slow start.
EXPECT_TRUE(sender_->InSlowStart());
// Verify that pacing rate is based on the initial RTT.
QuicBandwidth expected_pacing_rate = QuicBandwidth::FromBytesAndTimeDelta(
2.885 * kDefaultWindowTCP, rtt_stats_->initial_rtt());
EXPECT_APPROX_EQ(expected_pacing_rate.ToBitsPerSecond(),
sender_->PacingRate(0).ToBitsPerSecond(), 0.01f);
ASSERT_GE(kTestBdp, kDefaultWindowTCP + kDefaultTCPMSS);
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(30));
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_EQ(0u, bbr_sender_.connection()->GetStats().packets_lost);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
// The margin here is quite high, since there exists a possibility that the
// connection just exited high gain cycle.
EXPECT_APPROX_EQ(kTestRtt, rtt_stats_->smoothed_rtt(), 0.2f);
}
TEST_F(BbrSenderTest, SimpleTransferBBRB) {
SetQuicReloadableFlag(quic_bbr_use_send_rate_in_max_ack_height_tracker, true);
SetConnectionOption(kBBRB);
CreateDefaultSetup();
// At startup make sure we are at the default.
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// At startup make sure we can send.
EXPECT_TRUE(sender_->CanSend(0));
// And that window is un-affected.
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// Verify that Sender is in slow start.
EXPECT_TRUE(sender_->InSlowStart());
// Verify that pacing rate is based on the initial RTT.
QuicBandwidth expected_pacing_rate = QuicBandwidth::FromBytesAndTimeDelta(
2.885 * kDefaultWindowTCP, rtt_stats_->initial_rtt());
EXPECT_APPROX_EQ(expected_pacing_rate.ToBitsPerSecond(),
sender_->PacingRate(0).ToBitsPerSecond(), 0.01f);
ASSERT_GE(kTestBdp, kDefaultWindowTCP + kDefaultTCPMSS);
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(30));
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_EQ(0u, bbr_sender_.connection()->GetStats().packets_lost);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
// The margin here is quite high, since there exists a possibility that the
// connection just exited high gain cycle.
EXPECT_APPROX_EQ(kTestRtt, rtt_stats_->smoothed_rtt(), 0.2f);
}
// Test a simple transfer in a situation when the buffer is less than BDP.
TEST_F(BbrSenderTest, SimpleTransferSmallBuffer) {
CreateSmallBufferSetup();
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(30));
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
EXPECT_GE(bbr_sender_.connection()->GetStats().packets_lost, 0u);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
// The margin here is quite high, since there exists a possibility that the
// connection just exited high gain cycle.
EXPECT_APPROX_EQ(kTestRtt, sender_->GetMinRtt(), 0.2f);
}
TEST_F(BbrSenderTest, RemoveBytesLostInRecovery) {
CreateDefaultSetup();
DriveOutOfStartup();
// Drop a packet to enter recovery.
receiver_.DropNextIncomingPacket();
ASSERT_TRUE(
simulator_.RunUntilOrTimeout([this]() { return sender_->InRecovery(); },
QuicTime::Delta::FromSeconds(30)));
QuicUnackedPacketMap* unacked_packets =
QuicSentPacketManagerPeer::GetUnackedPacketMap(
QuicConnectionPeer::GetSentPacketManager(bbr_sender_.connection()));
QuicPacketNumber largest_sent =
bbr_sender_.connection()->sent_packet_manager().GetLargestSentPacket();
// least_inflight is the smallest inflight packet.
QuicPacketNumber least_inflight =
bbr_sender_.connection()->sent_packet_manager().GetLeastUnacked();
while (!unacked_packets->GetTransmissionInfo(least_inflight).in_flight) {
ASSERT_LE(least_inflight, largest_sent);
least_inflight++;
}
QuicPacketLength least_inflight_packet_size =
unacked_packets->GetTransmissionInfo(least_inflight).bytes_sent;
QuicByteCount prior_recovery_window =
sender_->ExportDebugState().recovery_window;
QuicByteCount prior_inflight = unacked_packets->bytes_in_flight();
QUIC_LOG(INFO) << "Recovery window:" << prior_recovery_window
<< ", least_inflight_packet_size:"
<< least_inflight_packet_size
<< ", bytes_in_flight:" << prior_inflight;
ASSERT_GT(prior_recovery_window, least_inflight_packet_size);
// Lose the least inflight packet and expect the recovery window to drop.
unacked_packets->RemoveFromInFlight(least_inflight);
LostPacketVector lost_packets;
lost_packets.emplace_back(least_inflight, least_inflight_packet_size);
sender_->OnCongestionEvent(false, prior_inflight, clock_->Now(), {},
lost_packets);
EXPECT_EQ(sender_->ExportDebugState().recovery_window,
prior_inflight - least_inflight_packet_size);
EXPECT_LT(sender_->ExportDebugState().recovery_window, prior_recovery_window);
}
// Test a simple long data transfer with 2 rtts of aggregation.
TEST_F(BbrSenderTest, SimpleTransfer2RTTAggregationBytes) {
SetConnectionOption(kBSAO);
CreateDefaultSetup();
// 2 RTTs of aggregation, with a max of 10kb.
EnableAggregation(10 * 1024, 2 * kTestRtt);
// Transfer 12MB.
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(35));
EXPECT_TRUE(sender_->ExportDebugState().mode == BbrSender::PROBE_BW ||
sender_->ExportDebugState().mode == BbrSender::PROBE_RTT);
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
// The margin here is high, because the aggregation greatly increases
// smoothed rtt.
EXPECT_GE(kTestRtt * 4, rtt_stats_->smoothed_rtt());
EXPECT_APPROX_EQ(kTestRtt, rtt_stats_->min_rtt(), 0.5f);
}
// Test a simple long data transfer with 2 rtts of aggregation.
TEST_F(BbrSenderTest, SimpleTransferAckDecimation) {
SetConnectionOption(kBSAO);
// Decrease the CWND gain so extra CWND is required with stretch acks.
SetQuicFlag(FLAGS_quic_bbr_cwnd_gain, 1.0);
sender_ = new BbrSender(
bbr_sender_.connection()->clock()->Now(), rtt_stats_,
QuicSentPacketManagerPeer::GetUnackedPacketMap(
QuicConnectionPeer::GetSentPacketManager(bbr_sender_.connection())),
kInitialCongestionWindowPackets,
GetQuicFlag(FLAGS_quic_max_congestion_window), &random_,
QuicConnectionPeer::GetStats(bbr_sender_.connection()));
QuicConnectionPeer::SetSendAlgorithm(bbr_sender_.connection(), sender_);
CreateDefaultSetup();
// Transfer 12MB.
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(35));
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
// TODO(ianswett): Expect 0 packets are lost once BBR no longer measures
// bandwidth higher than the link rate.
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
// The margin here is high, because the aggregation greatly increases
// smoothed rtt.
EXPECT_GE(kTestRtt * 2, rtt_stats_->smoothed_rtt());
EXPECT_APPROX_EQ(kTestRtt, rtt_stats_->min_rtt(), 0.1f);
}
// Test a simple long data transfer with 2 rtts of aggregation.
// TODO(b/172302465) Re-enable this test.
TEST_F(BbrSenderTest,
QUIC_TEST_DISABLED_IN_CHROME(
SimpleTransfer2RTTAggregationBytes20RTTWindow)) {
SetConnectionOption(kBSAO);
CreateDefaultSetup();
SetConnectionOption(kBBR4);
// 2 RTTs of aggregation, with a max of 10kb.
EnableAggregation(10 * 1024, 2 * kTestRtt);
// Transfer 12MB.
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(35));
EXPECT_TRUE(sender_->ExportDebugState().mode == BbrSender::PROBE_BW ||
sender_->ExportDebugState().mode == BbrSender::PROBE_RTT);
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
// TODO(ianswett): Expect 0 packets are lost once BBR no longer measures
// bandwidth higher than the link rate.
// The margin here is high, because the aggregation greatly increases
// smoothed rtt.
EXPECT_GE(kTestRtt * 4, rtt_stats_->smoothed_rtt());
EXPECT_APPROX_EQ(kTestRtt, rtt_stats_->min_rtt(), 0.25f);
}
// Test a simple long data transfer with 2 rtts of aggregation.
TEST_F(BbrSenderTest, SimpleTransfer2RTTAggregationBytes40RTTWindow) {
SetConnectionOption(kBSAO);
CreateDefaultSetup();
SetConnectionOption(kBBR5);
// 2 RTTs of aggregation, with a max of 10kb.
EnableAggregation(10 * 1024, 2 * kTestRtt);
// Transfer 12MB.
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(35));
EXPECT_TRUE(sender_->ExportDebugState().mode == BbrSender::PROBE_BW ||
sender_->ExportDebugState().mode == BbrSender::PROBE_RTT);
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
// TODO(ianswett): Expect 0 packets are lost once BBR no longer measures
// bandwidth higher than the link rate.
// The margin here is high, because the aggregation greatly increases
// smoothed rtt.
EXPECT_GE(kTestRtt * 4, rtt_stats_->smoothed_rtt());
EXPECT_APPROX_EQ(kTestRtt, rtt_stats_->min_rtt(), 0.25f);
}
// Test the number of losses incurred by the startup phase in a situation when
// the buffer is less than BDP.
TEST_F(BbrSenderTest, PacketLossOnSmallBufferStartup) {
CreateSmallBufferSetup();
DriveOutOfStartup();
float loss_rate =
static_cast<float>(bbr_sender_.connection()->GetStats().packets_lost) /
bbr_sender_.connection()->GetStats().packets_sent;
EXPECT_LE(loss_rate, 0.31);
}
// Test the number of losses incurred by the startup phase in a situation when
// the buffer is less than BDP, with a STARTUP CWND gain of 2.
TEST_F(BbrSenderTest, PacketLossOnSmallBufferStartupDerivedCWNDGain) {
CreateSmallBufferSetup();
SetConnectionOption(kBBQ2);
DriveOutOfStartup();
float loss_rate =
static_cast<float>(bbr_sender_.connection()->GetStats().packets_lost) /
bbr_sender_.connection()->GetStats().packets_sent;
EXPECT_LE(loss_rate, 0.1);
}
// Ensures the code transitions loss recovery states correctly (NOT_IN_RECOVERY
// -> CONSERVATION -> GROWTH -> NOT_IN_RECOVERY).
TEST_F(BbrSenderTest, RecoveryStates) {
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(10);
bool simulator_result;
CreateSmallBufferSetup();
bbr_sender_.AddBytesToTransfer(100 * 1024 * 1024);
ASSERT_EQ(BbrSender::NOT_IN_RECOVERY,
sender_->ExportDebugState().recovery_state);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().recovery_state !=
BbrSender::NOT_IN_RECOVERY;
},
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::CONSERVATION,
sender_->ExportDebugState().recovery_state);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().recovery_state !=
BbrSender::CONSERVATION;
},
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::GROWTH, sender_->ExportDebugState().recovery_state);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().recovery_state != BbrSender::GROWTH;
},
timeout);
ASSERT_EQ(BbrSender::NOT_IN_RECOVERY,
sender_->ExportDebugState().recovery_state);
ASSERT_TRUE(simulator_result);
}
// Verify the behavior of the algorithm in the case when the connection sends
// small bursts of data after sending continuously for a while.
TEST_F(BbrSenderTest, ApplicationLimitedBursts) {
CreateDefaultSetup();
DriveOutOfStartup();
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
SendBursts(20, 512, QuicTime::Delta::FromSeconds(3));
EXPECT_TRUE(sender_->ExportDebugState().last_sample_is_app_limited);
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
}
// Verify the behavior of the algorithm in the case when the connection sends
// small bursts of data and then starts sending continuously.
TEST_F(BbrSenderTest, ApplicationLimitedBurstsWithoutPrior) {
CreateDefaultSetup();
SendBursts(40, 512, QuicTime::Delta::FromSeconds(3));
EXPECT_TRUE(sender_->ExportDebugState().last_sample_is_app_limited);
DriveOutOfStartup();
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
}
// Verify that the DRAIN phase works correctly.
TEST_F(BbrSenderTest, Drain) {
CreateDefaultSetup();
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(10);
// Get the queue at the bottleneck, which is the outgoing queue at the port to
// which the receiver is connected.
const simulator::Queue* queue = switch_->port_queue(2);
bool simulator_result;
// We have no intention of ever finishing this transfer.
bbr_sender_.AddBytesToTransfer(100 * 1024 * 1024);
// Run the startup, and verify that it fills up the queue.
ASSERT_EQ(BbrSender::STARTUP, sender_->ExportDebugState().mode);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().mode != BbrSender::STARTUP;
},
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
EXPECT_APPROX_EQ(sender_->BandwidthEstimate() * (1 / 2.885f),
sender_->PacingRate(0), 0.01f);
// BBR uses CWND gain of 2 during STARTUP, hence it will fill the buffer
// with approximately 1 BDP. Here, we use 0.8 to give some margin for
// error.
EXPECT_GE(queue->bytes_queued(), 0.8 * kTestBdp);
// Observe increased RTT due to bufferbloat.
const QuicTime::Delta queueing_delay =
kTestLinkBandwidth.TransferTime(queue->bytes_queued());
EXPECT_APPROX_EQ(kTestRtt + queueing_delay, rtt_stats_->latest_rtt(), 0.1f);
// Transition to the drain phase and verify that it makes the queue
// have at most a BDP worth of packets.
simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return sender_->ExportDebugState().mode != BbrSender::DRAIN; },
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_LE(queue->bytes_queued(), kTestBdp);
// Wait for a few round trips and ensure we're in appropriate phase of gain
// cycling before taking an RTT measurement.
const QuicRoundTripCount start_round_trip =
sender_->ExportDebugState().round_trip_count;
simulator_result = simulator_.RunUntilOrTimeout(
[this, start_round_trip]() {
QuicRoundTripCount rounds_passed =
sender_->ExportDebugState().round_trip_count - start_round_trip;
return rounds_passed >= 4 &&
sender_->ExportDebugState().gain_cycle_index == 7;
},
timeout);
ASSERT_TRUE(simulator_result);
// Observe the bufferbloat go away.
EXPECT_APPROX_EQ(kTestRtt, rtt_stats_->smoothed_rtt(), 0.1f);
}
// TODO(wub): Re-enable this test once default drain_gain changed to 0.75.
// Verify that the DRAIN phase works correctly.
TEST_F(BbrSenderTest, DISABLED_ShallowDrain) {
CreateDefaultSetup();
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(10);
// Get the queue at the bottleneck, which is the outgoing queue at the port to
// which the receiver is connected.
const simulator::Queue* queue = switch_->port_queue(2);
bool simulator_result;
// We have no intention of ever finishing this transfer.
bbr_sender_.AddBytesToTransfer(100 * 1024 * 1024);
// Run the startup, and verify that it fills up the queue.
ASSERT_EQ(BbrSender::STARTUP, sender_->ExportDebugState().mode);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().mode != BbrSender::STARTUP;
},
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
EXPECT_EQ(0.75 * sender_->BandwidthEstimate(), sender_->PacingRate(0));
// BBR uses CWND gain of 2.88 during STARTUP, hence it will fill the buffer
// with approximately 1.88 BDPs. Here, we use 1.5 to give some margin for
// error.
EXPECT_GE(queue->bytes_queued(), 1.5 * kTestBdp);
// Observe increased RTT due to bufferbloat.
const QuicTime::Delta queueing_delay =
kTestLinkBandwidth.TransferTime(queue->bytes_queued());
EXPECT_APPROX_EQ(kTestRtt + queueing_delay, rtt_stats_->latest_rtt(), 0.1f);
// Transition to the drain phase and verify that it makes the queue
// have at most a BDP worth of packets.
simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return sender_->ExportDebugState().mode != BbrSender::DRAIN; },
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_LE(queue->bytes_queued(), kTestBdp);
// Wait for a few round trips and ensure we're in appropriate phase of gain
// cycling before taking an RTT measurement.
const QuicRoundTripCount start_round_trip =
sender_->ExportDebugState().round_trip_count;
simulator_result = simulator_.RunUntilOrTimeout(
[this, start_round_trip]() {
QuicRoundTripCount rounds_passed =
sender_->ExportDebugState().round_trip_count - start_round_trip;
return rounds_passed >= 4 &&
sender_->ExportDebugState().gain_cycle_index == 7;
},
timeout);
ASSERT_TRUE(simulator_result);
// Observe the bufferbloat go away.
EXPECT_APPROX_EQ(kTestRtt, rtt_stats_->smoothed_rtt(), 0.1f);
}
// Verify that the connection enters and exits PROBE_RTT correctly.
TEST_F(BbrSenderTest, ProbeRtt) {
CreateDefaultSetup();
DriveOutOfStartup();
// We have no intention of ever finishing this transfer.
bbr_sender_.AddBytesToTransfer(100 * 1024 * 1024);
// Wait until the connection enters PROBE_RTT.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(12);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().mode == BbrSender::PROBE_RTT;
},
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::PROBE_RTT, sender_->ExportDebugState().mode);
// Exit PROBE_RTT.
const QuicTime probe_rtt_start = clock_->Now();
const QuicTime::Delta time_to_exit_probe_rtt =
kTestRtt + QuicTime::Delta::FromMilliseconds(200);
simulator_.RunFor(1.5 * time_to_exit_probe_rtt);
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_GE(sender_->ExportDebugState().min_rtt_timestamp, probe_rtt_start);
}
// Ensure that a connection that is app-limited and is at sufficiently low
// bandwidth will not exit high gain phase, and similarly ensure that the
// connection will exit low gain early if the number of bytes in flight is low.
// TODO(crbug.com/1145095): Re-enable this test.
TEST_F(BbrSenderTest, QUIC_TEST_DISABLED_IN_CHROME(InFlightAwareGainCycling)) {
CreateDefaultSetup();
DriveOutOfStartup();
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
while (!(sender_->ExportDebugState().gain_cycle_index >= 4 &&
bbr_sender_.bytes_to_transfer() == 0)) {
bbr_sender_.AddBytesToTransfer(kTestLinkBandwidth.ToBytesPerSecond());
ASSERT_TRUE(simulator_.RunUntilOrTimeout(
[this]() { return bbr_sender_.bytes_to_transfer() == 0; }, timeout));
}
// Send at 10% of available rate. Run for 3 seconds, checking in the middle
// and at the end. The pacing gain should be high throughout.
QuicBandwidth target_bandwidth = 0.1f * kTestLinkBandwidth;
QuicTime::Delta burst_interval = QuicTime::Delta::FromMilliseconds(300);
for (int i = 0; i < 2; i++) {
SendBursts(5, target_bandwidth * burst_interval, burst_interval);
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_EQ(0, sender_->ExportDebugState().gain_cycle_index);
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.02f);
}
// Now that in-flight is almost zero and the pacing gain is still above 1,
// send approximately 1.25 BDPs worth of data. This should cause the
// PROBE_BW mode to enter low gain cycle, and exit it earlier than one min_rtt
// due to running out of data to send.
bbr_sender_.AddBytesToTransfer(1.3 * kTestBdp);
ASSERT_TRUE(simulator_.RunUntilOrTimeout(
[this]() { return sender_->ExportDebugState().gain_cycle_index == 1; },
timeout));
simulator_.RunFor(0.75 * sender_->ExportDebugState().min_rtt);
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_EQ(2, sender_->ExportDebugState().gain_cycle_index);
}
// Ensure that the pacing rate does not drop at startup.
TEST_F(BbrSenderTest, NoBandwidthDropOnStartup) {
CreateDefaultSetup();
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
bool simulator_result;
QuicBandwidth initial_rate = QuicBandwidth::FromBytesAndTimeDelta(
kInitialCongestionWindowPackets * kDefaultTCPMSS,
rtt_stats_->initial_rtt());
EXPECT_GE(sender_->PacingRate(0), initial_rate);
// Send a packet.
bbr_sender_.AddBytesToTransfer(1000);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return receiver_.bytes_received() == 1000; }, timeout);
ASSERT_TRUE(simulator_result);
EXPECT_GE(sender_->PacingRate(0), initial_rate);
// Wait for a while.
simulator_.RunFor(QuicTime::Delta::FromSeconds(2));
EXPECT_GE(sender_->PacingRate(0), initial_rate);
// Send another packet.
bbr_sender_.AddBytesToTransfer(1000);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return receiver_.bytes_received() == 2000; }, timeout);
ASSERT_TRUE(simulator_result);
EXPECT_GE(sender_->PacingRate(0), initial_rate);
}
// Test exiting STARTUP earlier due to the 1RTT connection option.
TEST_F(BbrSenderTest, SimpleTransfer1RTTStartup) {
CreateDefaultSetup();
SetConnectionOption(k1RTT);
EXPECT_EQ(1u, sender_->num_startup_rtts());
// Run until the full bandwidth is reached and check how many rounds it was.
bbr_sender_.AddBytesToTransfer(12 * 1024 * 1024);
QuicRoundTripCount max_bw_round = 0;
QuicBandwidth max_bw(QuicBandwidth::Zero());
bool simulator_result = simulator_.RunUntilOrTimeout(
[this, &max_bw, &max_bw_round]() {
if (max_bw < sender_->ExportDebugState().max_bandwidth) {
max_bw = sender_->ExportDebugState().max_bandwidth;
max_bw_round = sender_->ExportDebugState().round_trip_count;
}
return sender_->ExportDebugState().is_at_full_bandwidth;
},
QuicTime::Delta::FromSeconds(5));
ASSERT_TRUE(simulator_result);
EXPECT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
EXPECT_EQ(1u, sender_->ExportDebugState().round_trip_count - max_bw_round);
EXPECT_EQ(1u, sender_->ExportDebugState().rounds_without_bandwidth_gain);
EXPECT_EQ(0u, bbr_sender_.connection()->GetStats().packets_lost);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
}
// Test exiting STARTUP earlier due to the 2RTT connection option.
TEST_F(BbrSenderTest, SimpleTransfer2RTTStartup) {
CreateDefaultSetup();
SetConnectionOption(k2RTT);
EXPECT_EQ(2u, sender_->num_startup_rtts());
// Run until the full bandwidth is reached and check how many rounds it was.
bbr_sender_.AddBytesToTransfer(12 * 1024 * 1024);
QuicRoundTripCount max_bw_round = 0;
QuicBandwidth max_bw(QuicBandwidth::Zero());
bool simulator_result = simulator_.RunUntilOrTimeout(
[this, &max_bw, &max_bw_round]() {
if (max_bw < sender_->ExportDebugState().max_bandwidth) {
max_bw = sender_->ExportDebugState().max_bandwidth;
max_bw_round = sender_->ExportDebugState().round_trip_count;
}
return sender_->ExportDebugState().is_at_full_bandwidth;
},
QuicTime::Delta::FromSeconds(5));
ASSERT_TRUE(simulator_result);
EXPECT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
EXPECT_EQ(2u, sender_->ExportDebugState().round_trip_count - max_bw_round);
EXPECT_EQ(2u, sender_->ExportDebugState().rounds_without_bandwidth_gain);
EXPECT_EQ(0u, bbr_sender_.connection()->GetStats().packets_lost);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
}
// Test exiting STARTUP earlier upon loss.
TEST_F(BbrSenderTest, SimpleTransferExitStartupOnLoss) {
CreateDefaultSetup();
EXPECT_EQ(3u, sender_->num_startup_rtts());
// Run until the full bandwidth is reached and check how many rounds it was.
bbr_sender_.AddBytesToTransfer(12 * 1024 * 1024);
QuicRoundTripCount max_bw_round = 0;
QuicBandwidth max_bw(QuicBandwidth::Zero());
bool simulator_result = simulator_.RunUntilOrTimeout(
[this, &max_bw, &max_bw_round]() {
if (max_bw < sender_->ExportDebugState().max_bandwidth) {
max_bw = sender_->ExportDebugState().max_bandwidth;
max_bw_round = sender_->ExportDebugState().round_trip_count;
}
return sender_->ExportDebugState().is_at_full_bandwidth;
},
QuicTime::Delta::FromSeconds(5));
ASSERT_TRUE(simulator_result);
EXPECT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
EXPECT_EQ(3u, sender_->ExportDebugState().round_trip_count - max_bw_round);
EXPECT_EQ(3u, sender_->ExportDebugState().rounds_without_bandwidth_gain);
EXPECT_EQ(0u, bbr_sender_.connection()->GetStats().packets_lost);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
}
// Test exiting STARTUP earlier upon loss with a small buffer.
TEST_F(BbrSenderTest, SimpleTransferExitStartupOnLossSmallBuffer) {
CreateSmallBufferSetup();
EXPECT_EQ(3u, sender_->num_startup_rtts());
// Run until the full bandwidth is reached and check how many rounds it was.
bbr_sender_.AddBytesToTransfer(12 * 1024 * 1024);
QuicRoundTripCount max_bw_round = 0;
QuicBandwidth max_bw(QuicBandwidth::Zero());
bool simulator_result = simulator_.RunUntilOrTimeout(
[this, &max_bw, &max_bw_round]() {
if (max_bw < sender_->ExportDebugState().max_bandwidth) {
max_bw = sender_->ExportDebugState().max_bandwidth;
max_bw_round = sender_->ExportDebugState().round_trip_count;
}
return sender_->ExportDebugState().is_at_full_bandwidth;
},
QuicTime::Delta::FromSeconds(5));
ASSERT_TRUE(simulator_result);
EXPECT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
EXPECT_GE(2u, sender_->ExportDebugState().round_trip_count - max_bw_round);
EXPECT_EQ(1u, sender_->ExportDebugState().rounds_without_bandwidth_gain);
EXPECT_NE(0u, bbr_sender_.connection()->GetStats().packets_lost);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
}
TEST_F(BbrSenderTest, DerivedPacingGainStartup) {
CreateDefaultSetup();
SetConnectionOption(kBBQ1);
EXPECT_EQ(3u, sender_->num_startup_rtts());
// Verify that Sender is in slow start.
EXPECT_TRUE(sender_->InSlowStart());
// Verify that pacing rate is based on the initial RTT.
QuicBandwidth expected_pacing_rate = QuicBandwidth::FromBytesAndTimeDelta(
2.773 * kDefaultWindowTCP, rtt_stats_->initial_rtt());
EXPECT_APPROX_EQ(expected_pacing_rate.ToBitsPerSecond(),
sender_->PacingRate(0).ToBitsPerSecond(), 0.01f);
// Run until the full bandwidth is reached and check how many rounds it was.
bbr_sender_.AddBytesToTransfer(12 * 1024 * 1024);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return sender_->ExportDebugState().is_at_full_bandwidth; },
QuicTime::Delta::FromSeconds(5));
ASSERT_TRUE(simulator_result);
EXPECT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
EXPECT_EQ(3u, sender_->ExportDebugState().rounds_without_bandwidth_gain);
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
EXPECT_EQ(0u, bbr_sender_.connection()->GetStats().packets_lost);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
}
TEST_F(BbrSenderTest, DerivedCWNDGainStartup) {
CreateSmallBufferSetup();
EXPECT_EQ(3u, sender_->num_startup_rtts());
// Verify that Sender is in slow start.
EXPECT_TRUE(sender_->InSlowStart());
// Verify that pacing rate is based on the initial RTT.
QuicBandwidth expected_pacing_rate = QuicBandwidth::FromBytesAndTimeDelta(
2.885 * kDefaultWindowTCP, rtt_stats_->initial_rtt());
EXPECT_APPROX_EQ(expected_pacing_rate.ToBitsPerSecond(),
sender_->PacingRate(0).ToBitsPerSecond(), 0.01f);
// Run until the full bandwidth is reached and check how many rounds it was.
bbr_sender_.AddBytesToTransfer(12 * 1024 * 1024);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return sender_->ExportDebugState().is_at_full_bandwidth; },
QuicTime::Delta::FromSeconds(5));
ASSERT_TRUE(simulator_result);
EXPECT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
if (!bbr_sender_.connection()->GetStats().bbr_exit_startup_due_to_loss) {
EXPECT_EQ(3u, sender_->ExportDebugState().rounds_without_bandwidth_gain);
}
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
float loss_rate =
static_cast<float>(bbr_sender_.connection()->GetStats().packets_lost) /
bbr_sender_.connection()->GetStats().packets_sent;
EXPECT_LT(loss_rate, 0.15f);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
// Expect an SRTT less than 2.7 * Min RTT on exit from STARTUP.
EXPECT_GT(kTestRtt * 2.7, rtt_stats_->smoothed_rtt());
}
TEST_F(BbrSenderTest, AckAggregationInStartup) {
CreateDefaultSetup();
SetConnectionOption(kBBQ3);
EXPECT_EQ(3u, sender_->num_startup_rtts());
// Verify that Sender is in slow start.
EXPECT_TRUE(sender_->InSlowStart());
// Verify that pacing rate is based on the initial RTT.
QuicBandwidth expected_pacing_rate = QuicBandwidth::FromBytesAndTimeDelta(
2.885 * kDefaultWindowTCP, rtt_stats_->initial_rtt());
EXPECT_APPROX_EQ(expected_pacing_rate.ToBitsPerSecond(),
sender_->PacingRate(0).ToBitsPerSecond(), 0.01f);
// Run until the full bandwidth is reached and check how many rounds it was.
bbr_sender_.AddBytesToTransfer(12 * 1024 * 1024);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return sender_->ExportDebugState().is_at_full_bandwidth; },
QuicTime::Delta::FromSeconds(5));
ASSERT_TRUE(simulator_result);
EXPECT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
EXPECT_EQ(3u, sender_->ExportDebugState().rounds_without_bandwidth_gain);
EXPECT_APPROX_EQ(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
EXPECT_EQ(0u, bbr_sender_.connection()->GetStats().packets_lost);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
}
// Test that two BBR flows started slightly apart from each other terminate.
TEST_F(BbrSenderTest, SimpleCompetition) {
const QuicByteCount transfer_size = 10 * 1024 * 1024;
const QuicTime::Delta transfer_time =
kTestLinkBandwidth.TransferTime(transfer_size);
CreateBbrVsBbrSetup();
// Transfer 10% of data in first transfer.
bbr_sender_.AddBytesToTransfer(transfer_size);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return receiver_.bytes_received() >= 0.1 * transfer_size; },
transfer_time);
ASSERT_TRUE(simulator_result);
// Start the second transfer and wait until both finish.
competing_sender_.AddBytesToTransfer(transfer_size);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return receiver_.bytes_received() == transfer_size &&
competing_receiver_.bytes_received() == transfer_size;
},
3 * transfer_time);
ASSERT_TRUE(simulator_result);
}
// Test that BBR can resume bandwidth from cached network parameters.
TEST_F(BbrSenderTest, ResumeConnectionState) {
CreateDefaultSetup();
bbr_sender_.connection()->AdjustNetworkParameters(
SendAlgorithmInterface::NetworkParams(kTestLinkBandwidth, kTestRtt,
false));
EXPECT_EQ(kTestLinkBandwidth * kTestRtt,
sender_->ExportDebugState().congestion_window);
EXPECT_EQ(kTestLinkBandwidth, sender_->PacingRate(/*bytes_in_flight=*/0));
EXPECT_APPROX_EQ(kTestRtt, sender_->ExportDebugState().min_rtt, 0.01f);
DriveOutOfStartup();
}
// Test with a min CWND of 1 instead of 4 packets.
TEST_F(BbrSenderTest, ProbeRTTMinCWND1) {
CreateDefaultSetup();
SetConnectionOption(kMIN1);
DriveOutOfStartup();
// We have no intention of ever finishing this transfer.
bbr_sender_.AddBytesToTransfer(100 * 1024 * 1024);
// Wait until the connection enters PROBE_RTT.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(12);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().mode == BbrSender::PROBE_RTT;
},
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::PROBE_RTT, sender_->ExportDebugState().mode);
// The PROBE_RTT CWND should be 1 if the min CWND is 1.
EXPECT_EQ(kDefaultTCPMSS, sender_->GetCongestionWindow());
// Exit PROBE_RTT.
const QuicTime probe_rtt_start = clock_->Now();
const QuicTime::Delta time_to_exit_probe_rtt =
kTestRtt + QuicTime::Delta::FromMilliseconds(200);
simulator_.RunFor(1.5 * time_to_exit_probe_rtt);
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_GE(sender_->ExportDebugState().min_rtt_timestamp, probe_rtt_start);
}
TEST_F(BbrSenderTest, StartupStats) {
CreateDefaultSetup();
DriveOutOfStartup();
ASSERT_FALSE(sender_->InSlowStart());
const QuicConnectionStats& stats = bbr_sender_.connection()->GetStats();
EXPECT_EQ(1u, stats.slowstart_count);
EXPECT_THAT(stats.slowstart_num_rtts, AllOf(Ge(5u), Le(15u)));
EXPECT_THAT(stats.slowstart_packets_sent, AllOf(Ge(100u), Le(1000u)));
EXPECT_THAT(stats.slowstart_bytes_sent, AllOf(Ge(100000u), Le(1000000u)));
EXPECT_LE(stats.slowstart_packets_lost, 10u);
EXPECT_LE(stats.slowstart_bytes_lost, 10000u);
EXPECT_FALSE(stats.slowstart_duration.IsRunning());
EXPECT_THAT(stats.slowstart_duration.GetTotalElapsedTime(),
AllOf(Ge(QuicTime::Delta::FromMilliseconds(500)),
Le(QuicTime::Delta::FromMilliseconds(1500))));
EXPECT_EQ(stats.slowstart_duration.GetTotalElapsedTime(),
QuicConnectionPeer::GetSentPacketManager(bbr_sender_.connection())
->GetSlowStartDuration());
}
// Regression test for b/143540157.
TEST_F(BbrSenderTest, RecalculatePacingRateOnCwndChange1RTT) {
CreateDefaultSetup();
bbr_sender_.AddBytesToTransfer(1 * 1024 * 1024);
// Wait until an ACK comes back.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return !sender_->ExportDebugState().min_rtt.IsZero(); },
timeout);
ASSERT_TRUE(simulator_result);
const QuicByteCount previous_cwnd =
sender_->ExportDebugState().congestion_window;
// Bootstrap cwnd.
bbr_sender_.connection()->AdjustNetworkParameters(
SendAlgorithmInterface::NetworkParams(kTestLinkBandwidth,
QuicTime::Delta::Zero(), false));
EXPECT_LT(previous_cwnd, sender_->ExportDebugState().congestion_window);
// Verify pacing rate is re-calculated based on the new cwnd and min_rtt.
EXPECT_APPROX_EQ(QuicBandwidth::FromBytesAndTimeDelta(
sender_->ExportDebugState().congestion_window,
sender_->ExportDebugState().min_rtt),
sender_->PacingRate(/*bytes_in_flight=*/0), 0.01f);
}
TEST_F(BbrSenderTest, RecalculatePacingRateOnCwndChange0RTT) {
CreateDefaultSetup();
// Initial RTT is available.
const_cast<RttStats*>(rtt_stats_)->set_initial_rtt(kTestRtt);
// Bootstrap cwnd.
bbr_sender_.connection()->AdjustNetworkParameters(
SendAlgorithmInterface::NetworkParams(kTestLinkBandwidth,
QuicTime::Delta::Zero(), false));
EXPECT_LT(kInitialCongestionWindowPackets * kDefaultTCPMSS,
sender_->ExportDebugState().congestion_window);
// No Rtt sample is available.
EXPECT_TRUE(sender_->ExportDebugState().min_rtt.IsZero());
// Verify pacing rate is re-calculated based on the new cwnd and initial
// RTT.
EXPECT_APPROX_EQ(QuicBandwidth::FromBytesAndTimeDelta(
sender_->ExportDebugState().congestion_window,
rtt_stats_->initial_rtt()),
sender_->PacingRate(/*bytes_in_flight=*/0), 0.01f);
}
TEST_F(BbrSenderTest, MitigateCwndBootstrappingOvershoot) {
CreateDefaultSetup();
bbr_sender_.AddBytesToTransfer(1 * 1024 * 1024);
// Wait until an ACK comes back.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return !sender_->ExportDebugState().min_rtt.IsZero(); },
timeout);
ASSERT_TRUE(simulator_result);
// Bootstrap cwnd by a overly large bandwidth sample.
bbr_sender_.connection()->AdjustNetworkParameters(
SendAlgorithmInterface::NetworkParams(8 * kTestLinkBandwidth,
QuicTime::Delta::Zero(), false));
QuicBandwidth pacing_rate = sender_->PacingRate(0);
EXPECT_EQ(8 * kTestLinkBandwidth, pacing_rate);
// Wait until pacing_rate decreases.
simulator_result = simulator_.RunUntilOrTimeout(
[this, pacing_rate]() { return sender_->PacingRate(0) < pacing_rate; },
timeout);
ASSERT_TRUE(simulator_result);
EXPECT_EQ(BbrSender::STARTUP, sender_->ExportDebugState().mode);
if (GetQuicReloadableFlag(quic_conservative_cwnd_and_pacing_gains)) {
EXPECT_APPROX_EQ(2.0f * sender_->BandwidthEstimate(),
sender_->PacingRate(0), 0.01f);
} else {
EXPECT_APPROX_EQ(2.885f * sender_->BandwidthEstimate(),
sender_->PacingRate(0), 0.01f);
}
}
TEST_F(BbrSenderTest, 200InitialCongestionWindowWithNetworkParameterAdjusted) {
CreateDefaultSetup();
bbr_sender_.AddBytesToTransfer(1 * 1024 * 1024);
// Wait until an ACK comes back.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return !sender_->ExportDebugState().min_rtt.IsZero(); },
timeout);
ASSERT_TRUE(simulator_result);
// Bootstrap cwnd by a overly large bandwidth sample.
bbr_sender_.connection()->AdjustNetworkParameters(
SendAlgorithmInterface::NetworkParams(1024 * kTestLinkBandwidth,
QuicTime::Delta::Zero(), false));
// Verify cwnd is capped at 200.
EXPECT_EQ(200 * kDefaultTCPMSS,
sender_->ExportDebugState().congestion_window);
EXPECT_GT(1024 * kTestLinkBandwidth, sender_->PacingRate(0));
}
TEST_F(BbrSenderTest, 100InitialCongestionWindowFromNetworkParameter) {
CreateDefaultSetup();
bbr_sender_.AddBytesToTransfer(1 * 1024 * 1024);
// Wait until an ACK comes back.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return !sender_->ExportDebugState().min_rtt.IsZero(); },
timeout);
ASSERT_TRUE(simulator_result);
// Bootstrap cwnd by a overly large bandwidth sample.
SendAlgorithmInterface::NetworkParams network_params(
1024 * kTestLinkBandwidth, QuicTime::Delta::Zero(), false);
network_params.max_initial_congestion_window = 100;
bbr_sender_.connection()->AdjustNetworkParameters(network_params);
// Verify cwnd is capped at 100.
EXPECT_EQ(100 * kDefaultTCPMSS,
sender_->ExportDebugState().congestion_window);
EXPECT_GT(1024 * kTestLinkBandwidth, sender_->PacingRate(0));
}
TEST_F(BbrSenderTest, 100InitialCongestionWindowWithNetworkParameterAdjusted) {
SetConnectionOption(kICW1);
CreateDefaultSetup();
bbr_sender_.AddBytesToTransfer(1 * 1024 * 1024);
// Wait until an ACK comes back.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return !sender_->ExportDebugState().min_rtt.IsZero(); },
timeout);
ASSERT_TRUE(simulator_result);
// Bootstrap cwnd by a overly large bandwidth sample.
bbr_sender_.connection()->AdjustNetworkParameters(
SendAlgorithmInterface::NetworkParams(1024 * kTestLinkBandwidth,
QuicTime::Delta::Zero(), false));
// Verify cwnd is capped at 100.
EXPECT_EQ(100 * kDefaultTCPMSS,
sender_->ExportDebugState().congestion_window);
EXPECT_GT(1024 * kTestLinkBandwidth, sender_->PacingRate(0));
}
// Ensures bandwidth estimate does not change after a loss only event.
// Regression test for b/151239871.
TEST_F(BbrSenderTest, LossOnlyCongestionEvent) {
CreateDefaultSetup();
DriveOutOfStartup();
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
// Send some bursts, each burst increments round count by 1, since it only
// generates small, app-limited samples, the max_bandwidth_ will not be
// updated. At the end of all bursts, all estimates in max_bandwidth_ will
// look very old such that any Update() will reset all estimates.
SendBursts(20, 512, QuicTime::Delta::FromSeconds(3));
QuicUnackedPacketMap* unacked_packets =
QuicSentPacketManagerPeer::GetUnackedPacketMap(
QuicConnectionPeer::GetSentPacketManager(bbr_sender_.connection()));
// Run until we have something in flight.
bbr_sender_.AddBytesToTransfer(50 * 1024 * 1024);
bool simulator_result = simulator_.RunUntilOrTimeout(
[&]() { return unacked_packets->bytes_in_flight() > 0; },
QuicTime::Delta::FromSeconds(5));
ASSERT_TRUE(simulator_result);
const QuicBandwidth prior_bandwidth_estimate = sender_->BandwidthEstimate();
EXPECT_APPROX_EQ(kTestLinkBandwidth, prior_bandwidth_estimate, 0.01f);
// Lose the least unacked packet.
LostPacketVector lost_packets;
lost_packets.emplace_back(
bbr_sender_.connection()->sent_packet_manager().GetLeastUnacked(),
kDefaultMaxPacketSize);
QuicTime now = simulator_.GetClock()->Now() + kTestRtt * 0.25;
sender_->OnCongestionEvent(false, unacked_packets->bytes_in_flight(), now, {},
lost_packets);
// Bandwidth estimate should not change for the loss only event.
EXPECT_EQ(prior_bandwidth_estimate, sender_->BandwidthEstimate());
}
TEST_F(BbrSenderTest, EnableOvershootingDetection) {
SetConnectionOption(kDTOS);
CreateSmallBufferSetup();
// Set a overly large initial cwnd.
sender_->SetInitialCongestionWindowInPackets(200);
const QuicConnectionStats& stats = bbr_sender_.connection()->GetStats();
EXPECT_FALSE(stats.overshooting_detected_with_network_parameters_adjusted);
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(30));
// Verify overshooting is detected.
EXPECT_TRUE(stats.overshooting_detected_with_network_parameters_adjusted);
}
} // namespace test
} // namespace quic