|  | // Copyright (c) 2015 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "net/third_party/quiche/src/quic/core/congestion_control/cubic_bytes.h" | 
|  |  | 
|  | #include <cstdint> | 
|  |  | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_test.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/mock_clock.h" | 
|  |  | 
|  | namespace quic { | 
|  | namespace test { | 
|  | namespace { | 
|  |  | 
|  | const float kBeta = 0.7f;          // Default Cubic backoff factor. | 
|  | const float kBetaLastMax = 0.85f;  // Default Cubic backoff factor. | 
|  | const uint32_t kNumConnections = 2; | 
|  | const float kNConnectionBeta = (kNumConnections - 1 + kBeta) / kNumConnections; | 
|  | const float kNConnectionBetaLastMax = | 
|  | (kNumConnections - 1 + kBetaLastMax) / kNumConnections; | 
|  | const float kNConnectionAlpha = 3 * kNumConnections * kNumConnections * | 
|  | (1 - kNConnectionBeta) / (1 + kNConnectionBeta); | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | class CubicBytesTest : public QuicTest { | 
|  | protected: | 
|  | CubicBytesTest() | 
|  | : one_ms_(QuicTime::Delta::FromMilliseconds(1)), | 
|  | hundred_ms_(QuicTime::Delta::FromMilliseconds(100)), | 
|  | cubic_(&clock_) {} | 
|  |  | 
|  | QuicByteCount RenoCwndInBytes(QuicByteCount current_cwnd) { | 
|  | QuicByteCount reno_estimated_cwnd = | 
|  | current_cwnd + | 
|  | kDefaultTCPMSS * (kNConnectionAlpha * kDefaultTCPMSS) / current_cwnd; | 
|  | return reno_estimated_cwnd; | 
|  | } | 
|  |  | 
|  | QuicByteCount ConservativeCwndInBytes(QuicByteCount current_cwnd) { | 
|  | QuicByteCount conservative_cwnd = current_cwnd + kDefaultTCPMSS / 2; | 
|  | return conservative_cwnd; | 
|  | } | 
|  |  | 
|  | QuicByteCount CubicConvexCwndInBytes(QuicByteCount initial_cwnd, | 
|  | QuicTime::Delta rtt, | 
|  | QuicTime::Delta elapsed_time) { | 
|  | const int64_t offset = | 
|  | ((elapsed_time + rtt).ToMicroseconds() << 10) / 1000000; | 
|  | const QuicByteCount delta_congestion_window = | 
|  | ((410 * offset * offset * offset) * kDefaultTCPMSS >> 40); | 
|  | const QuicByteCount cubic_cwnd = initial_cwnd + delta_congestion_window; | 
|  | return cubic_cwnd; | 
|  | } | 
|  |  | 
|  | QuicByteCount LastMaxCongestionWindow() { | 
|  | return cubic_.last_max_congestion_window(); | 
|  | } | 
|  |  | 
|  | QuicTime::Delta MaxCubicTimeInterval() { | 
|  | return cubic_.MaxCubicTimeInterval(); | 
|  | } | 
|  |  | 
|  | const QuicTime::Delta one_ms_; | 
|  | const QuicTime::Delta hundred_ms_; | 
|  | MockClock clock_; | 
|  | CubicBytes cubic_; | 
|  | }; | 
|  |  | 
|  | // TODO(jokulik): The original "AboveOrigin" test, below, is very | 
|  | // loose.  It's nearly impossible to make the test tighter without | 
|  | // deploying the fix for convex mode.  Once cubic convex is deployed, | 
|  | // replace "AboveOrigin" with this test. | 
|  | TEST_F(CubicBytesTest, AboveOriginWithTighterBounds) { | 
|  | // Convex growth. | 
|  | const QuicTime::Delta rtt_min = hundred_ms_; | 
|  | int64_t rtt_min_ms = rtt_min.ToMilliseconds(); | 
|  | float rtt_min_s = rtt_min_ms / 1000.0; | 
|  | QuicByteCount current_cwnd = 10 * kDefaultTCPMSS; | 
|  | const QuicByteCount initial_cwnd = current_cwnd; | 
|  |  | 
|  | clock_.AdvanceTime(one_ms_); | 
|  | const QuicTime initial_time = clock_.ApproximateNow(); | 
|  | const QuicByteCount expected_first_cwnd = RenoCwndInBytes(current_cwnd); | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, | 
|  | rtt_min, initial_time); | 
|  | ASSERT_EQ(expected_first_cwnd, current_cwnd); | 
|  |  | 
|  | // Normal TCP phase. | 
|  | // The maximum number of expected Reno RTTs is calculated by | 
|  | // finding the point where the cubic curve and the reno curve meet. | 
|  | const int max_reno_rtts = | 
|  | std::sqrt(kNConnectionAlpha / (.4 * rtt_min_s * rtt_min_s * rtt_min_s)) - | 
|  | 2; | 
|  | for (int i = 0; i < max_reno_rtts; ++i) { | 
|  | // Alternatively, we expect it to increase by one, every time we | 
|  | // receive current_cwnd/Alpha acks back.  (This is another way of | 
|  | // saying we expect cwnd to increase by approximately Alpha once | 
|  | // we receive current_cwnd number ofacks back). | 
|  | const uint64_t num_acks_this_epoch = | 
|  | current_cwnd / kDefaultTCPMSS / kNConnectionAlpha; | 
|  | const QuicByteCount initial_cwnd_this_epoch = current_cwnd; | 
|  | for (QuicPacketCount n = 0; n < num_acks_this_epoch; ++n) { | 
|  | // Call once per ACK. | 
|  | const QuicByteCount expected_next_cwnd = RenoCwndInBytes(current_cwnd); | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | ASSERT_EQ(expected_next_cwnd, current_cwnd); | 
|  | } | 
|  | // Our byte-wise Reno implementation is an estimate.  We expect | 
|  | // the cwnd to increase by approximately one MSS every | 
|  | // cwnd/kDefaultTCPMSS/Alpha acks, but it may be off by as much as | 
|  | // half a packet for smaller values of current_cwnd. | 
|  | const QuicByteCount cwnd_change_this_epoch = | 
|  | current_cwnd - initial_cwnd_this_epoch; | 
|  | ASSERT_NEAR(kDefaultTCPMSS, cwnd_change_this_epoch, kDefaultTCPMSS / 2); | 
|  | clock_.AdvanceTime(hundred_ms_); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 54; ++i) { | 
|  | const uint64_t max_acks_this_epoch = current_cwnd / kDefaultTCPMSS; | 
|  | const QuicTime::Delta interval = QuicTime::Delta::FromMicroseconds( | 
|  | hundred_ms_.ToMicroseconds() / max_acks_this_epoch); | 
|  | for (QuicPacketCount n = 0; n < max_acks_this_epoch; ++n) { | 
|  | clock_.AdvanceTime(interval); | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | const QuicByteCount expected_cwnd = CubicConvexCwndInBytes( | 
|  | initial_cwnd, rtt_min, (clock_.ApproximateNow() - initial_time)); | 
|  | // If we allow per-ack updates, every update is a small cubic update. | 
|  | ASSERT_EQ(expected_cwnd, current_cwnd); | 
|  | } | 
|  | } | 
|  | const QuicByteCount expected_cwnd = CubicConvexCwndInBytes( | 
|  | initial_cwnd, rtt_min, (clock_.ApproximateNow() - initial_time)); | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | ASSERT_EQ(expected_cwnd, current_cwnd); | 
|  | } | 
|  |  | 
|  | // TODO(ianswett): This test was disabled when all fixes were enabled, but it | 
|  | // may be worth fixing. | 
|  | TEST_F(CubicBytesTest, DISABLED_AboveOrigin) { | 
|  | // Convex growth. | 
|  | const QuicTime::Delta rtt_min = hundred_ms_; | 
|  | QuicByteCount current_cwnd = 10 * kDefaultTCPMSS; | 
|  | // Without the signed-integer, cubic-convex fix, we start out in the | 
|  | // wrong mode. | 
|  | QuicPacketCount expected_cwnd = RenoCwndInBytes(current_cwnd); | 
|  | // Initialize the state. | 
|  | clock_.AdvanceTime(one_ms_); | 
|  | ASSERT_EQ(expected_cwnd, | 
|  | cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, | 
|  | rtt_min, clock_.ApproximateNow())); | 
|  | current_cwnd = expected_cwnd; | 
|  | const QuicPacketCount initial_cwnd = expected_cwnd; | 
|  | // Normal TCP phase. | 
|  | for (int i = 0; i < 48; ++i) { | 
|  | for (QuicPacketCount n = 1; | 
|  | n < current_cwnd / kDefaultTCPMSS / kNConnectionAlpha; ++n) { | 
|  | // Call once per ACK. | 
|  | ASSERT_NEAR( | 
|  | current_cwnd, | 
|  | cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, rtt_min, | 
|  | clock_.ApproximateNow()), | 
|  | kDefaultTCPMSS); | 
|  | } | 
|  | clock_.AdvanceTime(hundred_ms_); | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | // When we fix convex mode and the uint64 arithmetic, we | 
|  | // increase the expected_cwnd only after after the first 100ms, | 
|  | // rather than after the initial 1ms. | 
|  | expected_cwnd += kDefaultTCPMSS; | 
|  | ASSERT_NEAR(expected_cwnd, current_cwnd, kDefaultTCPMSS); | 
|  | } | 
|  | // Cubic phase. | 
|  | for (int i = 0; i < 52; ++i) { | 
|  | for (QuicPacketCount n = 1; n < current_cwnd / kDefaultTCPMSS; ++n) { | 
|  | // Call once per ACK. | 
|  | ASSERT_NEAR( | 
|  | current_cwnd, | 
|  | cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, rtt_min, | 
|  | clock_.ApproximateNow()), | 
|  | kDefaultTCPMSS); | 
|  | } | 
|  | clock_.AdvanceTime(hundred_ms_); | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | } | 
|  | // Total time elapsed so far; add min_rtt (0.1s) here as well. | 
|  | float elapsed_time_s = 10.0f + 0.1f; | 
|  | // |expected_cwnd| is initial value of cwnd + K * t^3, where K = 0.4. | 
|  | expected_cwnd = | 
|  | initial_cwnd / kDefaultTCPMSS + | 
|  | (elapsed_time_s * elapsed_time_s * elapsed_time_s * 410) / 1024; | 
|  | EXPECT_EQ(expected_cwnd, current_cwnd / kDefaultTCPMSS); | 
|  | } | 
|  |  | 
|  | // Constructs an artificial scenario to ensure that cubic-convex | 
|  | // increases are truly fine-grained: | 
|  | // | 
|  | // - After starting the epoch, this test advances the elapsed time | 
|  | // sufficiently far that cubic will do small increases at less than | 
|  | // MaxCubicTimeInterval() intervals. | 
|  | // | 
|  | // - Sets an artificially large initial cwnd to prevent Reno from the | 
|  | // convex increases on every ack. | 
|  | TEST_F(CubicBytesTest, AboveOriginFineGrainedCubing) { | 
|  | // Start the test with an artificially large cwnd to prevent Reno | 
|  | // from over-taking cubic. | 
|  | QuicByteCount current_cwnd = 1000 * kDefaultTCPMSS; | 
|  | const QuicByteCount initial_cwnd = current_cwnd; | 
|  | const QuicTime::Delta rtt_min = hundred_ms_; | 
|  | clock_.AdvanceTime(one_ms_); | 
|  | QuicTime initial_time = clock_.ApproximateNow(); | 
|  |  | 
|  | // Start the epoch and then artificially advance the time. | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(600)); | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  |  | 
|  | // We expect the algorithm to perform only non-zero, fine-grained cubic | 
|  | // increases on every ack in this case. | 
|  | for (int i = 0; i < 100; ++i) { | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); | 
|  | const QuicByteCount expected_cwnd = CubicConvexCwndInBytes( | 
|  | initial_cwnd, rtt_min, (clock_.ApproximateNow() - initial_time)); | 
|  | const QuicByteCount next_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | // Make sure we are performing cubic increases. | 
|  | ASSERT_EQ(expected_cwnd, next_cwnd); | 
|  | // Make sure that these are non-zero, less-than-packet sized | 
|  | // increases. | 
|  | ASSERT_GT(next_cwnd, current_cwnd); | 
|  | const QuicByteCount cwnd_delta = next_cwnd - current_cwnd; | 
|  | ASSERT_GT(kDefaultTCPMSS * .1, cwnd_delta); | 
|  |  | 
|  | current_cwnd = next_cwnd; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Constructs an artificial scenario to show what happens when we | 
|  | // allow per-ack updates, rather than limititing update freqency.  In | 
|  | // this scenario, the first two acks of the epoch produce the same | 
|  | // cwnd.  When we limit per-ack updates, this would cause the | 
|  | // cessation of cubic updates for 30ms.  When we allow per-ack | 
|  | // updates, the window continues to grow on every ack. | 
|  | TEST_F(CubicBytesTest, PerAckUpdates) { | 
|  | // Start the test with a large cwnd and RTT, to force the first | 
|  | // increase to be a cubic increase. | 
|  | QuicPacketCount initial_cwnd_packets = 150; | 
|  | QuicByteCount current_cwnd = initial_cwnd_packets * kDefaultTCPMSS; | 
|  | const QuicTime::Delta rtt_min = 350 * one_ms_; | 
|  |  | 
|  | // Initialize the epoch | 
|  | clock_.AdvanceTime(one_ms_); | 
|  | // Keep track of the growth of the reno-equivalent cwnd. | 
|  | QuicByteCount reno_cwnd = RenoCwndInBytes(current_cwnd); | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | const QuicByteCount initial_cwnd = current_cwnd; | 
|  |  | 
|  | // Simulate the return of cwnd packets in less than | 
|  | // MaxCubicInterval() time. | 
|  | const QuicPacketCount max_acks = initial_cwnd_packets / kNConnectionAlpha; | 
|  | const QuicTime::Delta interval = QuicTime::Delta::FromMicroseconds( | 
|  | MaxCubicTimeInterval().ToMicroseconds() / (max_acks + 1)); | 
|  |  | 
|  | // In this scenario, the first increase is dictated by the cubic | 
|  | // equation, but it is less than one byte, so the cwnd doesn't | 
|  | // change.  Normally, without per-ack increases, any cwnd plateau | 
|  | // will cause the cwnd to be pinned for MaxCubicTimeInterval().  If | 
|  | // we enable per-ack updates, the cwnd will continue to grow, | 
|  | // regardless of the temporary plateau. | 
|  | clock_.AdvanceTime(interval); | 
|  | reno_cwnd = RenoCwndInBytes(reno_cwnd); | 
|  | ASSERT_EQ(current_cwnd, | 
|  | cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, | 
|  | rtt_min, clock_.ApproximateNow())); | 
|  | for (QuicPacketCount i = 1; i < max_acks; ++i) { | 
|  | clock_.AdvanceTime(interval); | 
|  | const QuicByteCount next_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | reno_cwnd = RenoCwndInBytes(reno_cwnd); | 
|  | // The window shoud increase on every ack. | 
|  | ASSERT_LT(current_cwnd, next_cwnd); | 
|  | ASSERT_EQ(reno_cwnd, next_cwnd); | 
|  | current_cwnd = next_cwnd; | 
|  | } | 
|  |  | 
|  | // After all the acks are returned from the epoch, we expect the | 
|  | // cwnd to have increased by nearly one packet.  (Not exactly one | 
|  | // packet, because our byte-wise Reno algorithm is always a slight | 
|  | // under-estimation).  Without per-ack updates, the current_cwnd | 
|  | // would otherwise be unchanged. | 
|  | const QuicByteCount minimum_expected_increase = kDefaultTCPMSS * .9; | 
|  | EXPECT_LT(minimum_expected_increase + initial_cwnd, current_cwnd); | 
|  | } | 
|  |  | 
|  | TEST_F(CubicBytesTest, LossEvents) { | 
|  | const QuicTime::Delta rtt_min = hundred_ms_; | 
|  | QuicByteCount current_cwnd = 422 * kDefaultTCPMSS; | 
|  | // Without the signed-integer, cubic-convex fix, we mistakenly | 
|  | // increment cwnd after only one_ms_ and a single ack. | 
|  | QuicPacketCount expected_cwnd = RenoCwndInBytes(current_cwnd); | 
|  | // Initialize the state. | 
|  | clock_.AdvanceTime(one_ms_); | 
|  | EXPECT_EQ(expected_cwnd, | 
|  | cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, | 
|  | rtt_min, clock_.ApproximateNow())); | 
|  |  | 
|  | // On the first loss, the last max congestion window is set to the | 
|  | // congestion window before the loss. | 
|  | QuicByteCount pre_loss_cwnd = current_cwnd; | 
|  | ASSERT_EQ(0u, LastMaxCongestionWindow()); | 
|  | expected_cwnd = static_cast<QuicByteCount>(current_cwnd * kNConnectionBeta); | 
|  | EXPECT_EQ(expected_cwnd, | 
|  | cubic_.CongestionWindowAfterPacketLoss(current_cwnd)); | 
|  | ASSERT_EQ(pre_loss_cwnd, LastMaxCongestionWindow()); | 
|  | current_cwnd = expected_cwnd; | 
|  |  | 
|  | // On the second loss, the current congestion window has not yet | 
|  | // reached the last max congestion window.  The last max congestion | 
|  | // window will be reduced by an additional backoff factor to allow | 
|  | // for competition. | 
|  | pre_loss_cwnd = current_cwnd; | 
|  | expected_cwnd = static_cast<QuicByteCount>(current_cwnd * kNConnectionBeta); | 
|  | ASSERT_EQ(expected_cwnd, | 
|  | cubic_.CongestionWindowAfterPacketLoss(current_cwnd)); | 
|  | current_cwnd = expected_cwnd; | 
|  | EXPECT_GT(pre_loss_cwnd, LastMaxCongestionWindow()); | 
|  | QuicByteCount expected_last_max = | 
|  | static_cast<QuicByteCount>(pre_loss_cwnd * kNConnectionBetaLastMax); | 
|  | EXPECT_EQ(expected_last_max, LastMaxCongestionWindow()); | 
|  | EXPECT_LT(expected_cwnd, LastMaxCongestionWindow()); | 
|  | // Simulate an increase, and check that we are below the origin. | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | EXPECT_GT(LastMaxCongestionWindow(), current_cwnd); | 
|  |  | 
|  | // On the final loss, simulate the condition where the congestion | 
|  | // window had a chance to grow nearly to the last congestion window. | 
|  | current_cwnd = LastMaxCongestionWindow() - 1; | 
|  | pre_loss_cwnd = current_cwnd; | 
|  | expected_cwnd = static_cast<QuicByteCount>(current_cwnd * kNConnectionBeta); | 
|  | EXPECT_EQ(expected_cwnd, | 
|  | cubic_.CongestionWindowAfterPacketLoss(current_cwnd)); | 
|  | expected_last_max = pre_loss_cwnd; | 
|  | ASSERT_EQ(expected_last_max, LastMaxCongestionWindow()); | 
|  | } | 
|  |  | 
|  | TEST_F(CubicBytesTest, BelowOrigin) { | 
|  | // Concave growth. | 
|  | const QuicTime::Delta rtt_min = hundred_ms_; | 
|  | QuicByteCount current_cwnd = 422 * kDefaultTCPMSS; | 
|  | // Without the signed-integer, cubic-convex fix, we mistakenly | 
|  | // increment cwnd after only one_ms_ and a single ack. | 
|  | QuicPacketCount expected_cwnd = RenoCwndInBytes(current_cwnd); | 
|  | // Initialize the state. | 
|  | clock_.AdvanceTime(one_ms_); | 
|  | EXPECT_EQ(expected_cwnd, | 
|  | cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, | 
|  | rtt_min, clock_.ApproximateNow())); | 
|  | expected_cwnd = static_cast<QuicPacketCount>(current_cwnd * kNConnectionBeta); | 
|  | EXPECT_EQ(expected_cwnd, | 
|  | cubic_.CongestionWindowAfterPacketLoss(current_cwnd)); | 
|  | current_cwnd = expected_cwnd; | 
|  | // First update after loss to initialize the epoch. | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | // Cubic phase. | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | clock_.AdvanceTime(hundred_ms_); | 
|  | current_cwnd = cubic_.CongestionWindowAfterAck( | 
|  | kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); | 
|  | } | 
|  | expected_cwnd = 553632; | 
|  | EXPECT_EQ(expected_cwnd, current_cwnd); | 
|  | } | 
|  |  | 
|  | }  // namespace test | 
|  | }  // namespace quic |