blob: 50dc9ea9c0dfcdff652aca8412cffa370f634e62 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "quic/core/http/quic_spdy_stream.h"
#include <cstring>
#include <memory>
#include <string>
#include <utility>
#include "absl/base/macros.h"
#include "absl/memory/memory.h"
#include "absl/strings/escaping.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "quic/core/crypto/null_encrypter.h"
#include "quic/core/http/http_encoder.h"
#include "quic/core/http/quic_spdy_session.h"
#include "quic/core/http/spdy_utils.h"
#include "quic/core/http/web_transport_http3.h"
#include "quic/core/quic_connection.h"
#include "quic/core/quic_simple_buffer_allocator.h"
#include "quic/core/quic_stream_sequencer_buffer.h"
#include "quic/core/quic_utils.h"
#include "quic/core/quic_versions.h"
#include "quic/core/quic_write_blocked_list.h"
#include "quic/platform/api/quic_expect_bug.h"
#include "quic/platform/api/quic_test.h"
#include "quic/test_tools/qpack/qpack_test_utils.h"
#include "quic/test_tools/quic_config_peer.h"
#include "quic/test_tools/quic_connection_peer.h"
#include "quic/test_tools/quic_flow_controller_peer.h"
#include "quic/test_tools/quic_session_peer.h"
#include "quic/test_tools/quic_spdy_session_peer.h"
#include "quic/test_tools/quic_spdy_stream_peer.h"
#include "quic/test_tools/quic_stream_peer.h"
#include "quic/test_tools/quic_test_utils.h"
using spdy::kV3HighestPriority;
using spdy::kV3LowestPriority;
using spdy::SpdyHeaderBlock;
using spdy::SpdyPriority;
using testing::_;
using testing::AnyNumber;
using testing::AtLeast;
using testing::DoAll;
using testing::ElementsAre;
using testing::Invoke;
using testing::InvokeWithoutArgs;
using testing::MatchesRegex;
using testing::Pair;
using testing::Return;
using testing::SaveArg;
using testing::StrictMock;
namespace quic {
namespace test {
namespace {
const bool kShouldProcessData = true;
const char kDataFramePayload[] = "some data";
class TestCryptoStream : public QuicCryptoStream, public QuicCryptoHandshaker {
public:
explicit TestCryptoStream(QuicSession* session)
: QuicCryptoStream(session),
QuicCryptoHandshaker(this, session),
encryption_established_(false),
one_rtt_keys_available_(false),
params_(new QuicCryptoNegotiatedParameters) {
// Simulate a negotiated cipher_suite with a fake value.
params_->cipher_suite = 1;
}
void OnHandshakeMessage(const CryptoHandshakeMessage& /*message*/) override {
encryption_established_ = true;
one_rtt_keys_available_ = true;
QuicErrorCode error;
std::string error_details;
session()->config()->SetInitialStreamFlowControlWindowToSend(
kInitialStreamFlowControlWindowForTest);
session()->config()->SetInitialSessionFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
if (session()->version().UsesTls()) {
if (session()->perspective() == Perspective::IS_CLIENT) {
session()->config()->SetOriginalConnectionIdToSend(
session()->connection()->connection_id());
session()->config()->SetInitialSourceConnectionIdToSend(
session()->connection()->connection_id());
} else {
session()->config()->SetInitialSourceConnectionIdToSend(
session()->connection()->client_connection_id());
}
TransportParameters transport_parameters;
EXPECT_TRUE(
session()->config()->FillTransportParameters(&transport_parameters));
error = session()->config()->ProcessTransportParameters(
transport_parameters, /* is_resumption = */ false, &error_details);
} else {
CryptoHandshakeMessage msg;
session()->config()->ToHandshakeMessage(&msg, transport_version());
error =
session()->config()->ProcessPeerHello(msg, CLIENT, &error_details);
}
EXPECT_THAT(error, IsQuicNoError());
session()->OnNewEncryptionKeyAvailable(
ENCRYPTION_FORWARD_SECURE,
std::make_unique<NullEncrypter>(session()->perspective()));
session()->OnConfigNegotiated();
if (session()->version().UsesTls()) {
session()->OnTlsHandshakeComplete();
} else {
session()->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
}
if (session()->version().UsesTls()) {
// HANDSHAKE_DONE frame.
EXPECT_CALL(*this, HasPendingRetransmission());
}
session()->DiscardOldEncryptionKey(ENCRYPTION_INITIAL);
}
// QuicCryptoStream implementation
ssl_early_data_reason_t EarlyDataReason() const override {
return ssl_early_data_unknown;
}
bool encryption_established() const override {
return encryption_established_;
}
bool one_rtt_keys_available() const override {
return one_rtt_keys_available_;
}
HandshakeState GetHandshakeState() const override {
return one_rtt_keys_available() ? HANDSHAKE_COMPLETE : HANDSHAKE_START;
}
void SetServerApplicationStateForResumption(
std::unique_ptr<ApplicationState> /*application_state*/) override {}
bool KeyUpdateSupportedLocally() const override { return true; }
std::unique_ptr<QuicDecrypter> AdvanceKeysAndCreateCurrentOneRttDecrypter()
override {
return nullptr;
}
std::unique_ptr<QuicEncrypter> CreateCurrentOneRttEncrypter() override {
return nullptr;
}
const QuicCryptoNegotiatedParameters& crypto_negotiated_params()
const override {
return *params_;
}
CryptoMessageParser* crypto_message_parser() override {
return QuicCryptoHandshaker::crypto_message_parser();
}
void OnPacketDecrypted(EncryptionLevel /*level*/) override {}
void OnOneRttPacketAcknowledged() override {}
void OnHandshakePacketSent() override {}
void OnConnectionClosed(QuicErrorCode /*error*/,
ConnectionCloseSource /*source*/) override {}
void OnHandshakeDoneReceived() override {}
void OnNewTokenReceived(absl::string_view /*token*/) override {}
std::string GetAddressToken() const override { return ""; }
bool ValidateAddressToken(absl::string_view /*token*/) const override {
return true;
}
MOCK_METHOD(void, OnCanWrite, (), (override));
bool HasPendingCryptoRetransmission() const override { return false; }
MOCK_METHOD(bool, HasPendingRetransmission, (), (const, override));
bool ExportKeyingMaterial(absl::string_view /*label*/,
absl::string_view /*context*/,
size_t /*result_len*/,
std::string* /*result*/) override {
return false;
}
SSL* GetSsl() const override { return nullptr; }
private:
using QuicCryptoStream::session;
bool encryption_established_;
bool one_rtt_keys_available_;
QuicReferenceCountedPointer<QuicCryptoNegotiatedParameters> params_;
};
class TestStream : public QuicSpdyStream {
public:
TestStream(QuicStreamId id, QuicSpdySession* session,
bool should_process_data)
: QuicSpdyStream(id, session, BIDIRECTIONAL),
should_process_data_(should_process_data),
headers_payload_length_(0) {}
~TestStream() override = default;
using QuicSpdyStream::set_ack_listener;
using QuicStream::CloseWriteSide;
using QuicStream::WriteOrBufferData;
void OnBodyAvailable() override {
if (!should_process_data_) {
return;
}
char buffer[2048];
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = ABSL_ARRAYSIZE(buffer);
size_t bytes_read = Readv(&vec, 1);
data_ += std::string(buffer, bytes_read);
}
MOCK_METHOD(void, WriteHeadersMock, (bool fin), ());
size_t WriteHeadersImpl(spdy::SpdyHeaderBlock header_block, bool fin,
QuicReferenceCountedPointer<QuicAckListenerInterface>
/*ack_listener*/) override {
saved_headers_ = std::move(header_block);
WriteHeadersMock(fin);
if (VersionUsesHttp3(transport_version())) {
// In this case, call QuicSpdyStream::WriteHeadersImpl() that does the
// actual work of closing the stream.
return QuicSpdyStream::WriteHeadersImpl(saved_headers_.Clone(), fin,
nullptr);
}
return 0;
}
const std::string& data() const { return data_; }
const spdy::SpdyHeaderBlock& saved_headers() const { return saved_headers_; }
// Expose protected accessor.
const QuicStreamSequencer* sequencer() const {
return QuicStream::sequencer();
}
void OnStreamHeaderList(bool fin, size_t frame_len,
const QuicHeaderList& header_list) override {
headers_payload_length_ = frame_len;
QuicSpdyStream::OnStreamHeaderList(fin, frame_len, header_list);
}
size_t headers_payload_length() const { return headers_payload_length_; }
private:
bool should_process_data_;
spdy::SpdyHeaderBlock saved_headers_;
std::string data_;
size_t headers_payload_length_;
};
class TestSession : public MockQuicSpdySession {
public:
explicit TestSession(QuicConnection* connection)
: MockQuicSpdySession(connection, /*create_mock_crypto_stream=*/false),
crypto_stream_(this) {}
TestCryptoStream* GetMutableCryptoStream() override {
return &crypto_stream_;
}
const TestCryptoStream* GetCryptoStream() const override {
return &crypto_stream_;
}
bool ShouldNegotiateWebTransport() override { return enable_webtransport_; }
void EnableWebTransport() { enable_webtransport_ = true; }
HttpDatagramSupport LocalHttpDatagramSupport() override {
return local_http_datagram_support_;
}
void set_local_http_datagram_support(HttpDatagramSupport value) {
local_http_datagram_support_ = value;
}
private:
bool enable_webtransport_ = false;
HttpDatagramSupport local_http_datagram_support_ = HttpDatagramSupport::kNone;
StrictMock<TestCryptoStream> crypto_stream_;
};
class TestMockUpdateStreamSession : public MockQuicSpdySession {
public:
explicit TestMockUpdateStreamSession(QuicConnection* connection)
: MockQuicSpdySession(connection),
expected_precedence_(
spdy::SpdyStreamPrecedence(QuicStream::kDefaultPriority)) {}
void UpdateStreamPriority(
QuicStreamId id, const spdy::SpdyStreamPrecedence& precedence) override {
EXPECT_EQ(id, expected_stream_->id());
EXPECT_EQ(expected_precedence_, precedence);
EXPECT_EQ(expected_precedence_, expected_stream_->precedence());
}
void SetExpectedStream(QuicSpdyStream* stream) { expected_stream_ = stream; }
void SetExpectedPriority(const spdy::SpdyStreamPrecedence& precedence) {
expected_precedence_ = precedence;
}
private:
QuicSpdyStream* expected_stream_;
spdy::SpdyStreamPrecedence expected_precedence_;
};
class QuicSpdyStreamTest : public QuicTestWithParam<ParsedQuicVersion> {
protected:
QuicSpdyStreamTest() {
headers_[":host"] = "www.google.com";
headers_[":path"] = "/index.hml";
headers_[":scheme"] = "https";
headers_["cookie"] =
"__utma=208381060.1228362404.1372200928.1372200928.1372200928.1; "
"__utmc=160408618; "
"GX=DQAAAOEAAACWJYdewdE9rIrW6qw3PtVi2-d729qaa-74KqOsM1NVQblK4VhX"
"hoALMsy6HOdDad2Sz0flUByv7etmo3mLMidGrBoljqO9hSVA40SLqpG_iuKKSHX"
"RW3Np4bq0F0SDGDNsW0DSmTS9ufMRrlpARJDS7qAI6M3bghqJp4eABKZiRqebHT"
"pMU-RXvTI5D5oCF1vYxYofH_l1Kviuiy3oQ1kS1enqWgbhJ2t61_SNdv-1XJIS0"
"O3YeHLmVCs62O6zp89QwakfAWK9d3IDQvVSJzCQsvxvNIvaZFa567MawWlXg0Rh"
"1zFMi5vzcns38-8_Sns; "
"GA=v*2%2Fmem*57968640*47239936%2Fmem*57968640*47114716%2Fno-nm-"
"yj*15%2Fno-cc-yj*5%2Fpc-ch*133685%2Fpc-s-cr*133947%2Fpc-s-t*1339"
"47%2Fno-nm-yj*4%2Fno-cc-yj*1%2Fceft-as*1%2Fceft-nqas*0%2Fad-ra-c"
"v_p%2Fad-nr-cv_p-f*1%2Fad-v-cv_p*859%2Fad-ns-cv_p-f*1%2Ffn-v-ad%"
"2Fpc-t*250%2Fpc-cm*461%2Fpc-s-cr*722%2Fpc-s-t*722%2Fau_p*4"
"SICAID=AJKiYcHdKgxum7KMXG0ei2t1-W4OD1uW-ecNsCqC0wDuAXiDGIcT_HA2o1"
"3Rs1UKCuBAF9g8rWNOFbxt8PSNSHFuIhOo2t6bJAVpCsMU5Laa6lewuTMYI8MzdQP"
"ARHKyW-koxuhMZHUnGBJAM1gJODe0cATO_KGoX4pbbFxxJ5IicRxOrWK_5rU3cdy6"
"edlR9FsEdH6iujMcHkbE5l18ehJDwTWmBKBzVD87naobhMMrF6VvnDGxQVGp9Ir_b"
"Rgj3RWUoPumQVCxtSOBdX0GlJOEcDTNCzQIm9BSfetog_eP_TfYubKudt5eMsXmN6"
"QnyXHeGeK2UINUzJ-D30AFcpqYgH9_1BvYSpi7fc7_ydBU8TaD8ZRxvtnzXqj0RfG"
"tuHghmv3aD-uzSYJ75XDdzKdizZ86IG6Fbn1XFhYZM-fbHhm3mVEXnyRW4ZuNOLFk"
"Fas6LMcVC6Q8QLlHYbXBpdNFuGbuZGUnav5C-2I_-46lL0NGg3GewxGKGHvHEfoyn"
"EFFlEYHsBQ98rXImL8ySDycdLEFvBPdtctPmWCfTxwmoSMLHU2SCVDhbqMWU5b0yr"
"JBCScs_ejbKaqBDoB7ZGxTvqlrB__2ZmnHHjCr8RgMRtKNtIeuZAo ";
}
~QuicSpdyStreamTest() override = default;
// Return QPACK-encoded header block without using the dynamic table.
std::string EncodeQpackHeaders(
std::vector<std::pair<absl::string_view, absl::string_view>> headers) {
SpdyHeaderBlock header_block;
for (const auto& header_field : headers) {
header_block.AppendValueOrAddHeader(header_field.first,
header_field.second);
}
return EncodeQpackHeaders(header_block);
}
// Return QPACK-encoded header block without using the dynamic table.
std::string EncodeQpackHeaders(const SpdyHeaderBlock& header) {
NoopQpackStreamSenderDelegate encoder_stream_sender_delegate;
auto qpack_encoder = std::make_unique<QpackEncoder>(session_.get());
qpack_encoder->set_qpack_stream_sender_delegate(
&encoder_stream_sender_delegate);
// QpackEncoder does not use the dynamic table by default,
// therefore the value of |stream_id| does not matter.
return qpack_encoder->EncodeHeaderList(/* stream_id = */ 0, header,
nullptr);
}
void Initialize(bool stream_should_process_data) {
InitializeWithPerspective(stream_should_process_data,
Perspective::IS_SERVER);
}
void InitializeWithPerspective(bool stream_should_process_data,
Perspective perspective) {
connection_ = new StrictMock<MockQuicConnection>(
&helper_, &alarm_factory_, perspective, SupportedVersions(GetParam()));
session_ = std::make_unique<StrictMock<TestSession>>(connection_);
EXPECT_CALL(*session_, OnCongestionWindowChange(_)).Times(AnyNumber());
session_->Initialize();
if (connection_->version().SupportsAntiAmplificationLimit()) {
QuicConnectionPeer::SetAddressValidated(connection_);
}
connection_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
ON_CALL(*session_, WritevData(_, _, _, _, _, _))
.WillByDefault(
Invoke(session_.get(), &MockQuicSpdySession::ConsumeData));
stream_ =
new StrictMock<TestStream>(GetNthClientInitiatedBidirectionalId(0),
session_.get(), stream_should_process_data);
session_->ActivateStream(absl::WrapUnique(stream_));
stream2_ =
new StrictMock<TestStream>(GetNthClientInitiatedBidirectionalId(1),
session_.get(), stream_should_process_data);
session_->ActivateStream(absl::WrapUnique(stream2_));
QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow(
session_->config(), kMinimumFlowControlSendWindow);
QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesUnidirectional(
session_->config(), kMinimumFlowControlSendWindow);
QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesIncomingBidirectional(
session_->config(), kMinimumFlowControlSendWindow);
QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesOutgoingBidirectional(
session_->config(), kMinimumFlowControlSendWindow);
QuicConfigPeer::SetReceivedMaxUnidirectionalStreams(session_->config(), 10);
session_->OnConfigNegotiated();
if (UsesHttp3()) {
// The control stream will write the stream type, a greased frame, and
// SETTINGS frame.
int num_control_stream_writes = 3;
auto send_control_stream =
QuicSpdySessionPeer::GetSendControlStream(session_.get());
EXPECT_CALL(*session_,
WritevData(send_control_stream->id(), _, _, _, _, _))
.Times(num_control_stream_writes);
}
TestCryptoStream* crypto_stream = session_->GetMutableCryptoStream();
EXPECT_CALL(*crypto_stream, HasPendingRetransmission()).Times(AnyNumber());
if (connection_->version().UsesTls() &&
session_->perspective() == Perspective::IS_SERVER) {
// HANDSHAKE_DONE frame.
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&ClearControlFrame));
}
CryptoHandshakeMessage message;
session_->GetMutableCryptoStream()->OnHandshakeMessage(message);
}
QuicHeaderList ProcessHeaders(bool fin, const SpdyHeaderBlock& headers) {
QuicHeaderList h = AsHeaderList(headers);
stream_->OnStreamHeaderList(fin, h.uncompressed_header_bytes(), h);
return h;
}
QuicStreamId GetNthClientInitiatedBidirectionalId(int n) {
return GetNthClientInitiatedBidirectionalStreamId(
connection_->transport_version(), n);
}
bool UsesHttp3() const {
return VersionUsesHttp3(GetParam().transport_version);
}
// Construct HEADERS frame with QPACK-encoded |headers| without using the
// dynamic table.
std::string HeadersFrame(
std::vector<std::pair<absl::string_view, absl::string_view>> headers) {
return HeadersFrame(EncodeQpackHeaders(headers));
}
// Construct HEADERS frame with QPACK-encoded |headers| without using the
// dynamic table.
std::string HeadersFrame(const SpdyHeaderBlock& headers) {
return HeadersFrame(EncodeQpackHeaders(headers));
}
// Construct HEADERS frame with given payload.
std::string HeadersFrame(absl::string_view payload) {
std::unique_ptr<char[]> headers_buffer;
QuicByteCount headers_frame_header_length =
HttpEncoder::SerializeHeadersFrameHeader(payload.length(),
&headers_buffer);
absl::string_view headers_frame_header(headers_buffer.get(),
headers_frame_header_length);
return absl::StrCat(headers_frame_header, payload);
}
std::string DataFrame(absl::string_view payload) {
QuicBuffer header = HttpEncoder::SerializeDataFrameHeader(
payload.length(), SimpleBufferAllocator::Get());
return absl::StrCat(header.AsStringView(), payload);
}
std::string UnknownFrame(uint64_t frame_type, absl::string_view payload) {
std::string frame;
const size_t length = QuicDataWriter::GetVarInt62Len(frame_type) +
QuicDataWriter::GetVarInt62Len(payload.size()) +
payload.size();
frame.resize(length);
QuicDataWriter writer(length, const_cast<char*>(frame.data()));
writer.WriteVarInt62(frame_type);
writer.WriteStringPieceVarInt62(payload);
// Even though integers can be encoded with different lengths,
// QuicDataWriter is expected to produce an encoding in Write*() of length
// promised in GetVarInt62Len().
QUICHE_DCHECK_EQ(length, writer.length());
return frame;
}
MockQuicConnectionHelper helper_;
MockAlarmFactory alarm_factory_;
MockQuicConnection* connection_;
std::unique_ptr<TestSession> session_;
// Owned by the |session_|.
TestStream* stream_;
TestStream* stream2_;
SpdyHeaderBlock headers_;
};
INSTANTIATE_TEST_SUITE_P(Tests, QuicSpdyStreamTest,
::testing::ValuesIn(AllSupportedVersions()),
::testing::PrintToStringParamName());
TEST_P(QuicSpdyStreamTest, ProcessHeaderList) {
Initialize(kShouldProcessData);
stream_->OnStreamHeadersPriority(
spdy::SpdyStreamPrecedence(kV3HighestPriority));
ProcessHeaders(false, headers_);
EXPECT_EQ("", stream_->data());
EXPECT_FALSE(stream_->header_list().empty());
EXPECT_FALSE(stream_->IsDoneReading());
}
TEST_P(QuicSpdyStreamTest, ProcessTooLargeHeaderList) {
Initialize(kShouldProcessData);
if (!UsesHttp3()) {
QuicHeaderList headers;
stream_->OnStreamHeadersPriority(
spdy::SpdyStreamPrecedence(kV3HighestPriority));
EXPECT_CALL(
*session_,
MaybeSendRstStreamFrame(
stream_->id(),
QuicResetStreamError::FromInternal(QUIC_HEADERS_TOO_LARGE), 0));
stream_->OnStreamHeaderList(false, 1 << 20, headers);
EXPECT_THAT(stream_->stream_error(), IsStreamError(QUIC_HEADERS_TOO_LARGE));
return;
}
// Header list size includes 32 bytes for overhead per header field.
session_->set_max_inbound_header_list_size(40);
std::string headers =
HeadersFrame({std::make_pair("foo", "too long headers")});
QuicStreamFrame frame(stream_->id(), false, 0, headers);
EXPECT_CALL(*session_, MaybeSendStopSendingFrame(
stream_->id(), QuicResetStreamError::FromInternal(
QUIC_HEADERS_TOO_LARGE)));
EXPECT_CALL(
*session_,
MaybeSendRstStreamFrame(
stream_->id(),
QuicResetStreamError::FromInternal(QUIC_HEADERS_TOO_LARGE), 0));
auto qpack_decoder_stream =
QuicSpdySessionPeer::GetQpackDecoderSendStream(session_.get());
// Stream type and stream cancellation.
EXPECT_CALL(*session_,
WritevData(qpack_decoder_stream->id(), _, _, NO_FIN, _, _))
.Times(2);
stream_->OnStreamFrame(frame);
EXPECT_THAT(stream_->stream_error(), IsStreamError(QUIC_HEADERS_TOO_LARGE));
}
TEST_P(QuicSpdyStreamTest, QpackProcessLargeHeaderListDiscountOverhead) {
if (!UsesHttp3()) {
return;
}
// Setting this flag to false causes no per-entry overhead to be included
// in the header size.
SetQuicFlag(FLAGS_quic_header_size_limit_includes_overhead, false);
Initialize(kShouldProcessData);
session_->set_max_inbound_header_list_size(40);
std::string headers =
HeadersFrame({std::make_pair("foo", "too long headers")});
QuicStreamFrame frame(stream_->id(), false, 0, headers);
stream_->OnStreamFrame(frame);
EXPECT_THAT(stream_->stream_error(), IsStreamError(QUIC_STREAM_NO_ERROR));
}
TEST_P(QuicSpdyStreamTest, ProcessHeaderListWithFin) {
Initialize(kShouldProcessData);
size_t total_bytes = 0;
QuicHeaderList headers;
for (auto p : headers_) {
headers.OnHeader(p.first, p.second);
total_bytes += p.first.size() + p.second.size();
}
stream_->OnStreamHeadersPriority(
spdy::SpdyStreamPrecedence(kV3HighestPriority));
stream_->OnStreamHeaderList(true, total_bytes, headers);
EXPECT_EQ("", stream_->data());
EXPECT_FALSE(stream_->header_list().empty());
EXPECT_FALSE(stream_->IsDoneReading());
EXPECT_TRUE(stream_->HasReceivedFinalOffset());
}
// A valid status code should be 3-digit integer. The first digit should be in
// the range of [1, 5]. All the others are invalid.
TEST_P(QuicSpdyStreamTest, ParseHeaderStatusCode) {
Initialize(kShouldProcessData);
int status_code = 0;
// Valid status codes.
headers_[":status"] = "404";
EXPECT_TRUE(stream_->ParseHeaderStatusCode(headers_, &status_code));
EXPECT_EQ(404, status_code);
headers_[":status"] = "100";
EXPECT_TRUE(stream_->ParseHeaderStatusCode(headers_, &status_code));
EXPECT_EQ(100, status_code);
headers_[":status"] = "599";
EXPECT_TRUE(stream_->ParseHeaderStatusCode(headers_, &status_code));
EXPECT_EQ(599, status_code);
// Invalid status codes.
headers_[":status"] = "010";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "600";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "200 ok";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "2000";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "+200";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "+20";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "-10";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "-100";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
// Leading or trailing spaces are also invalid.
headers_[":status"] = " 200";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "200 ";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = " 200 ";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = " ";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
}
TEST_P(QuicSpdyStreamTest, MarkHeadersConsumed) {
Initialize(kShouldProcessData);
std::string body = "this is the body";
QuicHeaderList headers = ProcessHeaders(false, headers_);
EXPECT_EQ(headers, stream_->header_list());
stream_->ConsumeHeaderList();
EXPECT_EQ(QuicHeaderList(), stream_->header_list());
}
TEST_P(QuicSpdyStreamTest, ProcessWrongFramesOnSpdyStream) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
testing::InSequence s;
connection_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
GoAwayFrame goaway;
goaway.id = 0x1;
std::unique_ptr<char[]> buffer;
QuicByteCount header_length =
HttpEncoder::SerializeGoAwayFrame(goaway, &buffer);
std::string data = std::string(buffer.get(), header_length);
EXPECT_EQ("", stream_->data());
QuicHeaderList headers = ProcessHeaders(false, headers_);
EXPECT_EQ(headers, stream_->header_list());
stream_->ConsumeHeaderList();
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
EXPECT_CALL(*connection_,
CloseConnection(QUIC_HTTP_FRAME_UNEXPECTED_ON_SPDY_STREAM, _, _))
.WillOnce(
(Invoke([this](QuicErrorCode error, const std::string& error_details,
ConnectionCloseBehavior connection_close_behavior) {
connection_->ReallyCloseConnection(error, error_details,
connection_close_behavior);
})));
EXPECT_CALL(*connection_, SendConnectionClosePacket(_, _, _));
EXPECT_CALL(*session_, OnConnectionClosed(_, _))
.WillOnce(Invoke([this](const QuicConnectionCloseFrame& frame,
ConnectionCloseSource source) {
session_->ReallyOnConnectionClosed(frame, source);
}));
EXPECT_CALL(*session_, MaybeSendRstStreamFrame(_, _, _)).Times(2);
stream_->OnStreamFrame(frame);
}
TEST_P(QuicSpdyStreamTest, Http3FrameError) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
// PUSH_PROMISE frame with empty payload is considered invalid.
std::string invalid_http3_frame = absl::HexStringToBytes("0500");
QuicStreamFrame stream_frame(stream_->id(), /* fin = */ false,
/* offset = */ 0, invalid_http3_frame);
EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_FRAME_ERROR, _, _));
stream_->OnStreamFrame(stream_frame);
}
TEST_P(QuicSpdyStreamTest, UnexpectedHttp3Frame) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
// SETTINGS frame with empty payload.
std::string settings = absl::HexStringToBytes("0400");
QuicStreamFrame stream_frame(stream_->id(), /* fin = */ false,
/* offset = */ 0, settings);
EXPECT_CALL(*connection_,
CloseConnection(QUIC_HTTP_FRAME_UNEXPECTED_ON_SPDY_STREAM, _, _));
stream_->OnStreamFrame(stream_frame);
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBody) {
Initialize(kShouldProcessData);
std::string body = "this is the body";
std::string data = UsesHttp3() ? DataFrame(body) : body;
EXPECT_EQ("", stream_->data());
QuicHeaderList headers = ProcessHeaders(false, headers_);
EXPECT_EQ(headers, stream_->header_list());
stream_->ConsumeHeaderList();
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
stream_->OnStreamFrame(frame);
EXPECT_EQ(QuicHeaderList(), stream_->header_list());
EXPECT_EQ(body, stream_->data());
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyFragments) {
std::string body = "this is the body";
std::string data = UsesHttp3() ? DataFrame(body) : body;
for (size_t fragment_size = 1; fragment_size < data.size(); ++fragment_size) {
Initialize(kShouldProcessData);
QuicHeaderList headers = ProcessHeaders(false, headers_);
ASSERT_EQ(headers, stream_->header_list());
stream_->ConsumeHeaderList();
for (size_t offset = 0; offset < data.size(); offset += fragment_size) {
size_t remaining_data = data.size() - offset;
absl::string_view fragment(data.data() + offset,
std::min(fragment_size, remaining_data));
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false,
offset, absl::string_view(fragment));
stream_->OnStreamFrame(frame);
}
ASSERT_EQ(body, stream_->data()) << "fragment_size: " << fragment_size;
}
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyFragmentsSplit) {
std::string body = "this is the body";
std::string data = UsesHttp3() ? DataFrame(body) : body;
for (size_t split_point = 1; split_point < data.size() - 1; ++split_point) {
Initialize(kShouldProcessData);
QuicHeaderList headers = ProcessHeaders(false, headers_);
ASSERT_EQ(headers, stream_->header_list());
stream_->ConsumeHeaderList();
absl::string_view fragment1(data.data(), split_point);
QuicStreamFrame frame1(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(fragment1));
stream_->OnStreamFrame(frame1);
absl::string_view fragment2(data.data() + split_point,
data.size() - split_point);
QuicStreamFrame frame2(GetNthClientInitiatedBidirectionalId(0), false,
split_point, absl::string_view(fragment2));
stream_->OnStreamFrame(frame2);
ASSERT_EQ(body, stream_->data()) << "split_point: " << split_point;
}
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyReadv) {
Initialize(!kShouldProcessData);
std::string body = "this is the body";
std::string data = UsesHttp3() ? DataFrame(body) : body;
ProcessHeaders(false, headers_);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
stream_->OnStreamFrame(frame);
stream_->ConsumeHeaderList();
char buffer[2048];
ASSERT_LT(data.length(), ABSL_ARRAYSIZE(buffer));
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = ABSL_ARRAYSIZE(buffer);
size_t bytes_read = stream_->Readv(&vec, 1);
QuicStreamPeer::CloseReadSide(stream_);
EXPECT_EQ(body.length(), bytes_read);
EXPECT_EQ(body, std::string(buffer, bytes_read));
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndLargeBodySmallReadv) {
Initialize(kShouldProcessData);
std::string body(12 * 1024, 'a');
std::string data = UsesHttp3() ? DataFrame(body) : body;
ProcessHeaders(false, headers_);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
stream_->OnStreamFrame(frame);
stream_->ConsumeHeaderList();
char buffer[2048];
char buffer2[2048];
struct iovec vec[2];
vec[0].iov_base = buffer;
vec[0].iov_len = ABSL_ARRAYSIZE(buffer);
vec[1].iov_base = buffer2;
vec[1].iov_len = ABSL_ARRAYSIZE(buffer2);
size_t bytes_read = stream_->Readv(vec, 2);
EXPECT_EQ(2048u * 2, bytes_read);
EXPECT_EQ(body.substr(0, 2048), std::string(buffer, 2048));
EXPECT_EQ(body.substr(2048, 2048), std::string(buffer2, 2048));
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyMarkConsumed) {
Initialize(!kShouldProcessData);
std::string body = "this is the body";
std::string data = UsesHttp3() ? DataFrame(body) : body;
ProcessHeaders(false, headers_);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
stream_->OnStreamFrame(frame);
stream_->ConsumeHeaderList();
struct iovec vec;
EXPECT_EQ(1, stream_->GetReadableRegions(&vec, 1));
EXPECT_EQ(body.length(), vec.iov_len);
EXPECT_EQ(body, std::string(static_cast<char*>(vec.iov_base), vec.iov_len));
stream_->MarkConsumed(body.length());
EXPECT_EQ(data.length(), QuicStreamPeer::bytes_consumed(stream_));
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndConsumeMultipleBody) {
Initialize(!kShouldProcessData);
std::string body1 = "this is body 1";
std::string data1 = UsesHttp3() ? DataFrame(body1) : body1;
std::string body2 = "body 2";
std::string data2 = UsesHttp3() ? DataFrame(body2) : body2;
ProcessHeaders(false, headers_);
QuicStreamFrame frame1(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data1));
QuicStreamFrame frame2(GetNthClientInitiatedBidirectionalId(0), false,
data1.length(), absl::string_view(data2));
stream_->OnStreamFrame(frame1);
stream_->OnStreamFrame(frame2);
stream_->ConsumeHeaderList();
stream_->MarkConsumed(body1.length() + body2.length());
EXPECT_EQ(data1.length() + data2.length(),
QuicStreamPeer::bytes_consumed(stream_));
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyIncrementalReadv) {
Initialize(!kShouldProcessData);
std::string body = "this is the body";
std::string data = UsesHttp3() ? DataFrame(body) : body;
ProcessHeaders(false, headers_);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
stream_->OnStreamFrame(frame);
stream_->ConsumeHeaderList();
char buffer[1];
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = ABSL_ARRAYSIZE(buffer);
for (size_t i = 0; i < body.length(); ++i) {
size_t bytes_read = stream_->Readv(&vec, 1);
ASSERT_EQ(1u, bytes_read);
EXPECT_EQ(body.data()[i], buffer[0]);
}
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersUsingReadvWithMultipleIovecs) {
Initialize(!kShouldProcessData);
std::string body = "this is the body";
std::string data = UsesHttp3() ? DataFrame(body) : body;
ProcessHeaders(false, headers_);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
stream_->OnStreamFrame(frame);
stream_->ConsumeHeaderList();
char buffer1[1];
char buffer2[1];
struct iovec vec[2];
vec[0].iov_base = buffer1;
vec[0].iov_len = ABSL_ARRAYSIZE(buffer1);
vec[1].iov_base = buffer2;
vec[1].iov_len = ABSL_ARRAYSIZE(buffer2);
for (size_t i = 0; i < body.length(); i += 2) {
size_t bytes_read = stream_->Readv(vec, 2);
ASSERT_EQ(2u, bytes_read) << i;
ASSERT_EQ(body.data()[i], buffer1[0]) << i;
ASSERT_EQ(body.data()[i + 1], buffer2[0]) << i;
}
}
// Tests that we send a BLOCKED frame to the peer when we attempt to write, but
// are flow control blocked.
TEST_P(QuicSpdyStreamTest, StreamFlowControlBlocked) {
Initialize(kShouldProcessData);
testing::InSequence seq;
// Set a small flow control limit.
const uint64_t kWindow = 36;
QuicStreamPeer::SetSendWindowOffset(stream_, kWindow);
EXPECT_EQ(kWindow, QuicStreamPeer::SendWindowOffset(stream_));
// Try to send more data than the flow control limit allows.
const uint64_t kOverflow = 15;
std::string body(kWindow + kOverflow, 'a');
const uint64_t kHeaderLength = UsesHttp3() ? 2 : 0;
if (UsesHttp3()) {
EXPECT_CALL(*session_, WritevData(_, kHeaderLength, _, NO_FIN, _, _));
}
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _))
.WillOnce(Return(QuicConsumedData(kWindow - kHeaderLength, true)));
EXPECT_CALL(*session_, SendBlocked(_));
EXPECT_CALL(*connection_, SendControlFrame(_));
stream_->WriteOrBufferBody(body, false);
// Should have sent as much as possible, resulting in no send window left.
EXPECT_EQ(0u, QuicStreamPeer::SendWindowSize(stream_));
// And we should have queued the overflowed data.
EXPECT_EQ(kOverflow + kHeaderLength, stream_->BufferedDataBytes());
}
// The flow control receive window decreases whenever we add new bytes to the
// sequencer, whether they are consumed immediately or buffered. However we only
// send WINDOW_UPDATE frames based on increasing number of bytes consumed.
TEST_P(QuicSpdyStreamTest, StreamFlowControlNoWindowUpdateIfNotConsumed) {
// Don't process data - it will be buffered instead.
Initialize(!kShouldProcessData);
// Expect no WINDOW_UPDATE frames to be sent.
EXPECT_CALL(*session_, SendWindowUpdate(_, _)).Times(0);
// Set a small flow control receive window.
const uint64_t kWindow = 36;
QuicStreamPeer::SetReceiveWindowOffset(stream_, kWindow);
QuicStreamPeer::SetMaxReceiveWindow(stream_, kWindow);
// Stream receives enough data to fill a fraction of the receive window.
std::string body(kWindow / 3, 'a');
QuicByteCount header_length = 0;
std::string data;
if (UsesHttp3()) {
QuicBuffer header = HttpEncoder::SerializeDataFrameHeader(
body.length(), SimpleBufferAllocator::Get());
data = absl::StrCat(header.AsStringView(), body);
header_length = header.size();
} else {
data = body;
}
ProcessHeaders(false, headers_);
QuicStreamFrame frame1(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
stream_->OnStreamFrame(frame1);
EXPECT_EQ(kWindow - (kWindow / 3) - header_length,
QuicStreamPeer::ReceiveWindowSize(stream_));
// Now receive another frame which results in the receive window being over
// half full. This should all be buffered, decreasing the receive window but
// not sending WINDOW_UPDATE.
QuicStreamFrame frame2(GetNthClientInitiatedBidirectionalId(0), false,
kWindow / 3 + header_length, absl::string_view(data));
stream_->OnStreamFrame(frame2);
EXPECT_EQ(kWindow - (2 * kWindow / 3) - 2 * header_length,
QuicStreamPeer::ReceiveWindowSize(stream_));
}
// Tests that on receipt of data, the stream updates its receive window offset
// appropriately, and sends WINDOW_UPDATE frames when its receive window drops
// too low.
TEST_P(QuicSpdyStreamTest, StreamFlowControlWindowUpdate) {
Initialize(kShouldProcessData);
// Set a small flow control limit.
const uint64_t kWindow = 36;
QuicStreamPeer::SetReceiveWindowOffset(stream_, kWindow);
QuicStreamPeer::SetMaxReceiveWindow(stream_, kWindow);
// Stream receives enough data to fill a fraction of the receive window.
std::string body(kWindow / 3, 'a');
QuicByteCount header_length = 0;
std::string data;
if (UsesHttp3()) {
QuicBuffer header = HttpEncoder::SerializeDataFrameHeader(
body.length(), SimpleBufferAllocator::Get());
data = absl::StrCat(header.AsStringView(), body);
header_length = header.size();
} else {
data = body;
}
ProcessHeaders(false, headers_);
stream_->ConsumeHeaderList();
QuicStreamFrame frame1(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
stream_->OnStreamFrame(frame1);
EXPECT_EQ(kWindow - (kWindow / 3) - header_length,
QuicStreamPeer::ReceiveWindowSize(stream_));
// Now receive another frame which results in the receive window being over
// half full. This will trigger the stream to increase its receive window
// offset and send a WINDOW_UPDATE. The result will be again an available
// window of kWindow bytes.
QuicStreamFrame frame2(GetNthClientInitiatedBidirectionalId(0), false,
kWindow / 3 + header_length, absl::string_view(data));
EXPECT_CALL(*session_, SendWindowUpdate(_, _));
EXPECT_CALL(*connection_, SendControlFrame(_));
stream_->OnStreamFrame(frame2);
EXPECT_EQ(kWindow, QuicStreamPeer::ReceiveWindowSize(stream_));
}
// Tests that on receipt of data, the connection updates its receive window
// offset appropriately, and sends WINDOW_UPDATE frames when its receive window
// drops too low.
TEST_P(QuicSpdyStreamTest, ConnectionFlowControlWindowUpdate) {
Initialize(kShouldProcessData);
// Set a small flow control limit for streams and connection.
const uint64_t kWindow = 36;
QuicStreamPeer::SetReceiveWindowOffset(stream_, kWindow);
QuicStreamPeer::SetMaxReceiveWindow(stream_, kWindow);
QuicStreamPeer::SetReceiveWindowOffset(stream2_, kWindow);
QuicStreamPeer::SetMaxReceiveWindow(stream2_, kWindow);
QuicFlowControllerPeer::SetReceiveWindowOffset(session_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(session_->flow_controller(),
kWindow);
// Supply headers to both streams so that they are happy to receive data.
auto headers = AsHeaderList(headers_);
stream_->OnStreamHeaderList(false, headers.uncompressed_header_bytes(),
headers);
stream_->ConsumeHeaderList();
stream2_->OnStreamHeaderList(false, headers.uncompressed_header_bytes(),
headers);
stream2_->ConsumeHeaderList();
// Each stream gets a quarter window of data. This should not trigger a
// WINDOW_UPDATE for either stream, nor for the connection.
QuicByteCount header_length = 0;
std::string body;
std::string data;
std::string data2;
std::string body2(1, 'a');
if (UsesHttp3()) {
body = std::string(kWindow / 4 - 2, 'a');
QuicBuffer header = HttpEncoder::SerializeDataFrameHeader(
body.length(), SimpleBufferAllocator::Get());
data = absl::StrCat(header.AsStringView(), body);
header_length = header.size();
QuicBuffer header2 = HttpEncoder::SerializeDataFrameHeader(
body.length(), SimpleBufferAllocator::Get());
data2 = absl::StrCat(header2.AsStringView(), body2);
} else {
body = std::string(kWindow / 4, 'a');
data = body;
data2 = body2;
}
QuicStreamFrame frame1(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
stream_->OnStreamFrame(frame1);
QuicStreamFrame frame2(GetNthClientInitiatedBidirectionalId(1), false, 0,
absl::string_view(data));
stream2_->OnStreamFrame(frame2);
// Now receive a further single byte on one stream - again this does not
// trigger a stream WINDOW_UPDATE, but now the connection flow control window
// is over half full and thus a connection WINDOW_UPDATE is sent.
EXPECT_CALL(*session_, SendWindowUpdate(_, _));
EXPECT_CALL(*connection_, SendControlFrame(_));
QuicStreamFrame frame3(GetNthClientInitiatedBidirectionalId(0), false,
body.length() + header_length,
absl::string_view(data2));
stream_->OnStreamFrame(frame3);
}
// Tests that on if the peer sends too much data (i.e. violates the flow control
// protocol), then we terminate the connection.
TEST_P(QuicSpdyStreamTest, StreamFlowControlViolation) {
// Stream should not process data, so that data gets buffered in the
// sequencer, triggering flow control limits.
Initialize(!kShouldProcessData);
// Set a small flow control limit.
const uint64_t kWindow = 50;
QuicStreamPeer::SetReceiveWindowOffset(stream_, kWindow);
ProcessHeaders(false, headers_);
// Receive data to overflow the window, violating flow control.
std::string body(kWindow + 1, 'a');
std::string data = UsesHttp3() ? DataFrame(body) : body;
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
EXPECT_CALL(*connection_,
CloseConnection(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA, _, _));
stream_->OnStreamFrame(frame);
}
TEST_P(QuicSpdyStreamTest, TestHandlingQuicRstStreamNoError) {
Initialize(kShouldProcessData);
ProcessHeaders(false, headers_);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _)).Times(AnyNumber());
stream_->OnStreamReset(QuicRstStreamFrame(
kInvalidControlFrameId, stream_->id(), QUIC_STREAM_NO_ERROR, 0));
if (GetQuicReloadableFlag(quic_fix_on_stream_reset) && UsesHttp3()) {
// RESET_STREAM should close the read side but not the write side.
EXPECT_TRUE(stream_->read_side_closed());
EXPECT_FALSE(stream_->write_side_closed());
} else {
EXPECT_TRUE(stream_->write_side_closed());
EXPECT_FALSE(stream_->reading_stopped());
}
}
// Tests that on if the peer sends too much data (i.e. violates the flow control
// protocol), at the connection level (rather than the stream level) then we
// terminate the connection.
TEST_P(QuicSpdyStreamTest, ConnectionFlowControlViolation) {
// Stream should not process data, so that data gets buffered in the
// sequencer, triggering flow control limits.
Initialize(!kShouldProcessData);
// Set a small flow control window on streams, and connection.
const uint64_t kStreamWindow = 50;
const uint64_t kConnectionWindow = 10;
QuicStreamPeer::SetReceiveWindowOffset(stream_, kStreamWindow);
QuicFlowControllerPeer::SetReceiveWindowOffset(session_->flow_controller(),
kConnectionWindow);
ProcessHeaders(false, headers_);
// Send enough data to overflow the connection level flow control window.
std::string body(kConnectionWindow + 1, 'a');
std::string data = UsesHttp3() ? DataFrame(body) : body;
EXPECT_LT(data.size(), kStreamWindow);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
absl::string_view(data));
EXPECT_CALL(*connection_,
CloseConnection(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA, _, _));
stream_->OnStreamFrame(frame);
}
// An attempt to write a FIN with no data should not be flow control blocked,
// even if the send window is 0.
TEST_P(QuicSpdyStreamTest, StreamFlowControlFinNotBlocked) {
Initialize(kShouldProcessData);
// Set a flow control limit of zero.
QuicStreamPeer::SetReceiveWindowOffset(stream_, 0);
// Send a frame with a FIN but no data. This should not be blocked.
std::string body = "";
bool fin = true;
EXPECT_CALL(*session_, SendBlocked(GetNthClientInitiatedBidirectionalId(0)))
.Times(0);
EXPECT_CALL(*session_, WritevData(_, 0, _, FIN, _, _));
stream_->WriteOrBufferBody(body, fin);
}
// Test that receiving trailing headers from the peer via OnStreamHeaderList()
// works, and can be read from the stream and consumed.
TEST_P(QuicSpdyStreamTest, ReceivingTrailersViaHeaderList) {
Initialize(kShouldProcessData);
// Receive initial headers.
size_t total_bytes = 0;
QuicHeaderList headers;
for (const auto& p : headers_) {
headers.OnHeader(p.first, p.second);
total_bytes += p.first.size() + p.second.size();
}
stream_->OnStreamHeadersPriority(
spdy::SpdyStreamPrecedence(kV3HighestPriority));
stream_->OnStreamHeaderList(/*fin=*/false, total_bytes, headers);
stream_->ConsumeHeaderList();
// Receive trailing headers.
SpdyHeaderBlock trailers_block;
trailers_block["key1"] = "value1";
trailers_block["key2"] = "value2";
trailers_block["key3"] = "value3";
SpdyHeaderBlock trailers_block_with_final_offset = trailers_block.Clone();
if (!UsesHttp3()) {
// :final-offset pseudo-header is only added if trailers are sent
// on the headers stream.
trailers_block_with_final_offset[kFinalOffsetHeaderKey] = "0";
}
total_bytes = 0;
QuicHeaderList trailers;
for (const auto& p : trailers_block_with_final_offset) {
trailers.OnHeader(p.first, p.second);
total_bytes += p.first.size() + p.second.size();
}
stream_->OnStreamHeaderList(/*fin=*/true, total_bytes, trailers);
// The trailers should be decompressed, and readable from the stream.
EXPECT_TRUE(stream_->trailers_decompressed());
EXPECT_EQ(trailers_block, stream_->received_trailers());
// IsDoneReading() returns false until trailers marked consumed.
EXPECT_FALSE(stream_->IsDoneReading());
stream_->MarkTrailersConsumed();
EXPECT_TRUE(stream_->IsDoneReading());
}
// Test that when receiving trailing headers with an offset before response
// body, stream is closed at the right offset.
TEST_P(QuicSpdyStreamTest, ReceivingTrailersWithOffset) {
// kFinalOffsetHeaderKey is not used when HEADERS are sent on the
// request/response stream.
if (UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
// Receive initial headers.
QuicHeaderList headers = ProcessHeaders(false, headers_);
stream_->ConsumeHeaderList();
const std::string body = "this is the body";
std::string data = UsesHttp3() ? DataFrame(body) : body;
// Receive trailing headers.
SpdyHeaderBlock trailers_block;
trailers_block["key1"] = "value1";
trailers_block["key2"] = "value2";
trailers_block["key3"] = "value3";
trailers_block[kFinalOffsetHeaderKey] = absl::StrCat(data.size());
QuicHeaderList trailers = ProcessHeaders(true, trailers_block);
// The trailers should be decompressed, and readable from the stream.
EXPECT_TRUE(stream_->trailers_decompressed());
// The final offset trailer will be consumed by QUIC.
trailers_block.erase(kFinalOffsetHeaderKey);
EXPECT_EQ(trailers_block, stream_->received_trailers());
// Consuming the trailers erases them from the stream.
stream_->MarkTrailersConsumed();
EXPECT_TRUE(stream_->FinishedReadingTrailers());
EXPECT_FALSE(stream_->IsDoneReading());
// Receive and consume body.
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), /*fin=*/false,
0, data);
stream_->OnStreamFrame(frame);
EXPECT_EQ(body, stream_->data());
EXPECT_TRUE(stream_->IsDoneReading());
}
// Test that receiving trailers without a final offset field is an error.
TEST_P(QuicSpdyStreamTest, ReceivingTrailersWithoutOffset) {
// kFinalOffsetHeaderKey is not used when HEADERS are sent on the
// request/response stream.
if (UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
// Receive initial headers.
ProcessHeaders(false, headers_);
stream_->ConsumeHeaderList();
// Receive trailing headers, without kFinalOffsetHeaderKey.
SpdyHeaderBlock trailers_block;
trailers_block["key1"] = "value1";
trailers_block["key2"] = "value2";
trailers_block["key3"] = "value3";
auto trailers = AsHeaderList(trailers_block);
// Verify that the trailers block didn't contain a final offset.
EXPECT_EQ("", trailers_block[kFinalOffsetHeaderKey].as_string());
// Receipt of the malformed trailers will close the connection.
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
stream_->OnStreamHeaderList(/*fin=*/true,
trailers.uncompressed_header_bytes(), trailers);
}
// Test that received Trailers must always have the FIN set.
TEST_P(QuicSpdyStreamTest, ReceivingTrailersWithoutFin) {
// In IETF QUIC, there is no such thing as FIN flag on HTTP/3 frames like the
// HEADERS frame.
if (UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
// Receive initial headers.
auto headers = AsHeaderList(headers_);
stream_->OnStreamHeaderList(/*fin=*/false,
headers.uncompressed_header_bytes(), headers);
stream_->ConsumeHeaderList();
// Receive trailing headers with FIN deliberately set to false.
SpdyHeaderBlock trailers_block;
trailers_block["foo"] = "bar";
auto trailers = AsHeaderList(trailers_block);
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
stream_->OnStreamHeaderList(/*fin=*/false,
trailers.uncompressed_header_bytes(), trailers);
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersAfterHeadersWithFin) {
// If headers are received with a FIN, no trailers should then arrive.
Initialize(kShouldProcessData);
// If HEADERS frames are sent on the request/response stream, then the
// sequencer will signal an error if any stream data arrives after a FIN,
// so QuicSpdyStream does not need to.
if (UsesHttp3()) {
return;
}
// Receive initial headers with FIN set.
ProcessHeaders(true, headers_);
stream_->ConsumeHeaderList();
// Receive trailing headers after FIN already received.
SpdyHeaderBlock trailers_block;
trailers_block["foo"] = "bar";
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
ProcessHeaders(true, trailers_block);
}
// If body data are received with a FIN, no trailers should then arrive.
TEST_P(QuicSpdyStreamTest, ReceivingTrailersAfterBodyWithFin) {
// If HEADERS frames are sent on the request/response stream,
// then the sequencer will block them from reaching QuicSpdyStream
// after the stream is closed.
if (UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
// Receive initial headers without FIN set.
ProcessHeaders(false, headers_);
stream_->ConsumeHeaderList();
// Receive body data, with FIN.
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), /*fin=*/true,
0, "body");
stream_->OnStreamFrame(frame);
// Receive trailing headers after FIN already received.
SpdyHeaderBlock trailers_block;
trailers_block["foo"] = "bar";
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
ProcessHeaders(true, trailers_block);
}
TEST_P(QuicSpdyStreamTest, ClosingStreamWithNoTrailers) {
// Verify that a stream receiving headers, body, and no trailers is correctly
// marked as done reading on consumption of headers and body.
Initialize(kShouldProcessData);
// Receive and consume initial headers with FIN not set.
auto h = AsHeaderList(headers_);
stream_->OnStreamHeaderList(/*fin=*/false, h.uncompressed_header_bytes(), h);
stream_->ConsumeHeaderList();
// Receive and consume body with FIN set, and no trailers.
std::string body(1024, 'x');
std::string data = UsesHttp3() ? DataFrame(body) : body;
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), /*fin=*/true,
0, data);
stream_->OnStreamFrame(frame);
EXPECT_TRUE(stream_->IsDoneReading());
}
// Test that writing trailers will send a FIN, as Trailers are the last thing to
// be sent on a stream.
TEST_P(QuicSpdyStreamTest, WritingTrailersSendsAFin) {
Initialize(kShouldProcessData);
if (UsesHttp3()) {
// In this case, TestStream::WriteHeadersImpl() does not prevent writes.
// Four writes on the request stream: HEADERS frame header and payload both
// for headers and trailers.
EXPECT_CALL(*session_, WritevData(stream_->id(), _, _, _, _, _)).Times(4);
}
// Write the initial headers, without a FIN.
EXPECT_CALL(*stream_, WriteHeadersMock(false));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Writing trailers implicitly sends a FIN.
SpdyHeaderBlock trailers;
trailers["trailer key"] = "trailer value";
EXPECT_CALL(*stream_, WriteHeadersMock(true));
stream_->WriteTrailers(std::move(trailers), nullptr);
EXPECT_TRUE(stream_->fin_sent());
}
TEST_P(QuicSpdyStreamTest, DoNotSendPriorityUpdateWithDefaultUrgency) {
if (!UsesHttp3()) {
return;
}
InitializeWithPerspective(kShouldProcessData, Perspective::IS_CLIENT);
StrictMock<MockHttp3DebugVisitor> debug_visitor;
session_->set_debug_visitor(&debug_visitor);
// Four writes on the request stream: HEADERS frame header and payload both
// for headers and trailers.
EXPECT_CALL(*session_, WritevData(stream_->id(), _, _, _, _, _)).Times(4);
// No PRIORITY_UPDATE frames on the control stream,
// because the stream has default priority.
auto send_control_stream =
QuicSpdySessionPeer::GetSendControlStream(session_.get());
EXPECT_CALL(*session_, WritevData(send_control_stream->id(), _, _, _, _, _))
.Times(0);
// Write the initial headers, without a FIN.
EXPECT_CALL(*stream_, WriteHeadersMock(false));
EXPECT_CALL(debug_visitor, OnHeadersFrameSent(stream_->id(), _));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Writing trailers implicitly sends a FIN.
SpdyHeaderBlock trailers;
trailers["trailer key"] = "trailer value";
EXPECT_CALL(*stream_, WriteHeadersMock(true));
EXPECT_CALL(debug_visitor, OnHeadersFrameSent(stream_->id(), _));
stream_->WriteTrailers(std::move(trailers), nullptr);
EXPECT_TRUE(stream_->fin_sent());
}
TEST_P(QuicSpdyStreamTest, ChangePriority) {
if (!UsesHttp3()) {
return;
}
InitializeWithPerspective(kShouldProcessData, Perspective::IS_CLIENT);
StrictMock<MockHttp3DebugVisitor> debug_visitor;
session_->set_debug_visitor(&debug_visitor);
// Two writes on the request stream: HEADERS frame header and payload.
EXPECT_CALL(*session_, WritevData(stream_->id(), _, _, _, _, _)).Times(2);
EXPECT_CALL(*stream_, WriteHeadersMock(false));
EXPECT_CALL(debug_visitor, OnHeadersFrameSent(stream_->id(), _));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// PRIORITY_UPDATE frame on the control stream.
auto send_control_stream =
QuicSpdySessionPeer::GetSendControlStream(session_.get());
EXPECT_CALL(*session_, WritevData(send_control_stream->id(), _, _, _, _, _));
PriorityUpdateFrame priority_update;
priority_update.prioritized_element_id = 0;
priority_update.priority_field_value = "u=0";
EXPECT_CALL(debug_visitor, OnPriorityUpdateFrameSent(priority_update));
stream_->SetPriority(spdy::SpdyStreamPrecedence(kV3HighestPriority));
}
TEST_P(QuicSpdyStreamTest, ChangePriorityBeforeWritingHeaders) {
if (!UsesHttp3()) {
return;
}
InitializeWithPerspective(kShouldProcessData, Perspective::IS_CLIENT);
// PRIORITY_UPDATE frame sent on the control stream as soon as SetPriority()
// is called, before HEADERS frame is sent.
auto send_control_stream =
QuicSpdySessionPeer::GetSendControlStream(session_.get());
EXPECT_CALL(*session_, WritevData(send_control_stream->id(), _, _, _, _, _));
stream_->SetPriority(spdy::SpdyStreamPrecedence(kV3HighestPriority));
testing::Mock::VerifyAndClearExpectations(session_.get());
// Two writes on the request stream: HEADERS frame header and payload.
// PRIORITY_UPDATE frame is not sent this time, because one is already sent.
EXPECT_CALL(*session_, WritevData(stream_->id(), _, _, _, _, _)).Times(2);
EXPECT_CALL(*stream_, WriteHeadersMock(true));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/true, nullptr);
}
// Test that when writing trailers, the trailers that are actually sent to the
// peer contain the final offset field indicating last byte of data.
TEST_P(QuicSpdyStreamTest, WritingTrailersFinalOffset) {
Initialize(kShouldProcessData);
if (UsesHttp3()) {
// In this case, TestStream::WriteHeadersImpl() does not prevent writes.
// HEADERS frame header and payload on the request stream.
EXPECT_CALL(*session_, WritevData(stream_->id(), _, _, _, _, _)).Times(2);
}
// Write the initial headers.
EXPECT_CALL(*stream_, WriteHeadersMock(false));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Write non-zero body data to force a non-zero final offset.
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _)).Times(AtLeast(1));
std::string body(1024, 'x'); // 1 kB
QuicByteCount header_length = 0;
if (UsesHttp3()) {
header_length = HttpEncoder::SerializeDataFrameHeader(
body.length(), SimpleBufferAllocator::Get())
.size();
}
stream_->WriteOrBufferBody(body, false);
// The final offset field in the trailing headers is populated with the
// number of body bytes written (including queued bytes).
SpdyHeaderBlock trailers;
trailers["trailer key"] = "trailer value";
SpdyHeaderBlock expected_trailers(trailers.Clone());
// :final-offset pseudo-header is only added if trailers are sent
// on the headers stream.
if (!UsesHttp3()) {
expected_trailers[kFinalOffsetHeaderKey] =
absl::StrCat(body.length() + header_length);
}
EXPECT_CALL(*stream_, WriteHeadersMock(true));
stream_->WriteTrailers(std::move(trailers), nullptr);
EXPECT_EQ(expected_trailers, stream_->saved_headers());
}
// Test that if trailers are written after all other data has been written
// (headers and body), that this closes the stream for writing.
TEST_P(QuicSpdyStreamTest, WritingTrailersClosesWriteSide) {
Initialize(kShouldProcessData);
// Expect data being written on the stream. In addition to that, headers are
// also written on the stream in case of IETF QUIC.
EXPECT_CALL(*session_, WritevData(stream_->id(), _, _, _, _, _))
.Times(AtLeast(1));
// Write the initial headers.
EXPECT_CALL(*stream_, WriteHeadersMock(false));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Write non-zero body data.
const int kBodySize = 1 * 1024; // 1 kB
stream_->WriteOrBufferBody(std::string(kBodySize, 'x'), false);
EXPECT_EQ(0u, stream_->BufferedDataBytes());
// Headers and body have been fully written, there is no queued data. Writing
// trailers marks the end of this stream, and thus the write side is closed.
EXPECT_CALL(*stream_, WriteHeadersMock(true));
stream_->WriteTrailers(SpdyHeaderBlock(), nullptr);
EXPECT_TRUE(stream_->write_side_closed());
}
// Test that the stream is not closed for writing when trailers are sent while
// there are still body bytes queued.
TEST_P(QuicSpdyStreamTest, WritingTrailersWithQueuedBytes) {
// This test exercises sending trailers on the headers stream while data is
// still queued on the response/request stream. In IETF QUIC, data and
// trailers are sent on the same stream, so this test does not apply.
if (UsesHttp3()) {
return;
}
testing::InSequence seq;
Initialize(kShouldProcessData);
// Write the initial headers.
EXPECT_CALL(*stream_, WriteHeadersMock(false));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Write non-zero body data, but only consume partially, ensuring queueing.
const int kBodySize = 1 * 1024; // 1 kB
if (UsesHttp3()) {
EXPECT_CALL(*session_, WritevData(_, 3, _, NO_FIN, _, _));
}
EXPECT_CALL(*session_, WritevData(_, kBodySize, _, NO_FIN, _, _))
.WillOnce(Return(QuicConsumedData(kBodySize - 1, false)));
stream_->WriteOrBufferBody(std::string(kBodySize, 'x'), false);
EXPECT_EQ(1u, stream_->BufferedDataBytes());
// Writing trailers will send a FIN, but not close the write side of the
// stream as there are queued bytes.
EXPECT_CALL(*stream_, WriteHeadersMock(true));
stream_->WriteTrailers(SpdyHeaderBlock(), nullptr);
EXPECT_TRUE(stream_->fin_sent());
EXPECT_FALSE(stream_->write_side_closed());
// Writing the queued bytes will close the write side of the stream.
EXPECT_CALL(*session_, WritevData(_, 1, _, NO_FIN, _, _));
stream_->OnCanWrite();
EXPECT_TRUE(stream_->write_side_closed());
}
// Test that it is not possible to write Trailers after a FIN has been sent.
TEST_P(QuicSpdyStreamTest, WritingTrailersAfterFIN) {
// In IETF QUIC, there is no such thing as FIN flag on HTTP/3 frames like the
// HEADERS frame.
if (UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
// Write the initial headers, with a FIN.
EXPECT_CALL(*stream_, WriteHeadersMock(true));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/true, nullptr);
EXPECT_TRUE(stream_->fin_sent());
// Writing Trailers should fail, as the FIN has already been sent.
// populated with the number of body bytes written.
EXPECT_QUIC_BUG(stream_->WriteTrailers(SpdyHeaderBlock(), nullptr),
"Trailers cannot be sent after a FIN");
}
TEST_P(QuicSpdyStreamTest, HeaderStreamNotiferCorrespondingSpdyStream) {
// There is no headers stream if QPACK is used.
if (UsesHttp3()) {
return;
}
const char kHeader1[] = "Header1";
const char kHeader2[] = "Header2";
const char kBody1[] = "Test1";
const char kBody2[] = "Test2";
Initialize(kShouldProcessData);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _)).Times(AtLeast(1));
testing::InSequence s;
QuicReferenceCountedPointer<MockAckListener> ack_listener1(
new MockAckListener());
QuicReferenceCountedPointer<MockAckListener> ack_listener2(
new MockAckListener());
stream_->set_ack_listener(ack_listener1);
stream2_->set_ack_listener(ack_listener2);
session_->headers_stream()->WriteOrBufferData(kHeader1, false, ack_listener1);
stream_->WriteOrBufferBody(kBody1, true);
session_->headers_stream()->WriteOrBufferData(kHeader2, false, ack_listener2);
stream2_->WriteOrBufferBody(kBody2, false);
QuicStreamFrame frame1(
QuicUtils::GetHeadersStreamId(connection_->transport_version()), false, 0,
kHeader1);
std::string data1 = UsesHttp3() ? DataFrame(kBody1) : kBody1;
QuicStreamFrame frame2(stream_->id(), true, 0, data1);
QuicStreamFrame frame3(
QuicUtils::GetHeadersStreamId(connection_->transport_version()), false, 7,
kHeader2);
std::string data2 = UsesHttp3() ? DataFrame(kBody2) : kBody2;
QuicStreamFrame frame4(stream2_->id(), false, 0, data2);
EXPECT_CALL(*ack_listener1, OnPacketRetransmitted(7));
session_->OnStreamFrameRetransmitted(frame1);
EXPECT_CALL(*ack_listener1, OnPacketAcked(7, _));
EXPECT_TRUE(session_->OnFrameAcked(QuicFrame(frame1), QuicTime::Delta::Zero(),
QuicTime::Zero()));
EXPECT_CALL(*ack_listener1, OnPacketAcked(5, _));
EXPECT_TRUE(session_->OnFrameAcked(QuicFrame(frame2), QuicTime::Delta::Zero(),
QuicTime::Zero()));
EXPECT_CALL(*ack_listener2, OnPacketAcked(7, _));
EXPECT_TRUE(session_->OnFrameAcked(QuicFrame(frame3), QuicTime::Delta::Zero(),
QuicTime::Zero()));
EXPECT_CALL(*ack_listener2, OnPacketAcked(5, _));
EXPECT_TRUE(session_->OnFrameAcked(QuicFrame(frame4), QuicTime::Delta::Zero(),
QuicTime::Zero()));
}
TEST_P(QuicSpdyStreamTest, OnPriorityFrame) {
Initialize(kShouldProcessData);
stream_->OnPriorityFrame(spdy::SpdyStreamPrecedence(kV3HighestPriority));
EXPECT_EQ(spdy::SpdyStreamPrecedence(kV3HighestPriority),
stream_->precedence());
}
TEST_P(QuicSpdyStreamTest, OnPriorityFrameAfterSendingData) {
Initialize(kShouldProcessData);
testing::InSequence seq;
if (UsesHttp3()) {
EXPECT_CALL(*session_, WritevData(_, 2, _, NO_FIN, _, _));
}
EXPECT_CALL(*session_, WritevData(_, 4, _, FIN, _, _));
stream_->WriteOrBufferBody("data", true);
stream_->OnPriorityFrame(spdy::SpdyStreamPrecedence(kV3HighestPriority));
EXPECT_EQ(spdy::SpdyStreamPrecedence(kV3HighestPriority),
stream_->precedence());
}
TEST_P(QuicSpdyStreamTest, SetPriorityBeforeUpdateStreamPriority) {
MockQuicConnection* connection = new StrictMock<MockQuicConnection>(
&helper_, &alarm_factory_, Perspective::IS_SERVER,
SupportedVersions(GetParam()));
std::unique_ptr<TestMockUpdateStreamSession> session(
new StrictMock<TestMockUpdateStreamSession>(connection));
auto stream =
new StrictMock<TestStream>(GetNthClientInitiatedBidirectionalStreamId(
session->transport_version(), 0),
session.get(),
/*should_process_data=*/true);
session->ActivateStream(absl::WrapUnique(stream));
// QuicSpdyStream::SetPriority() should eventually call UpdateStreamPriority()
// on the session. Make sure stream->priority() returns the updated priority
// if called within UpdateStreamPriority(). This expectation is enforced in
// TestMockUpdateStreamSession::UpdateStreamPriority().
session->SetExpectedStream(stream);
session->SetExpectedPriority(spdy::SpdyStreamPrecedence(kV3HighestPriority));
stream->SetPriority(spdy::SpdyStreamPrecedence(kV3HighestPriority));
session->SetExpectedPriority(spdy::SpdyStreamPrecedence(kV3LowestPriority));
stream->SetPriority(spdy::SpdyStreamPrecedence(kV3LowestPriority));
}
TEST_P(QuicSpdyStreamTest, StreamWaitsForAcks) {
Initialize(kShouldProcessData);
QuicReferenceCountedPointer<MockAckListener> mock_ack_listener(
new StrictMock<MockAckListener>);
stream_->set_ack_listener(mock_ack_listener);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _)).Times(AtLeast(1));
// Stream is not waiting for acks initially.
EXPECT_FALSE(stream_->IsWaitingForAcks());
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
// Send kData1.
stream_->WriteOrBufferData("FooAndBar", false, nullptr);
EXPECT_EQ(1u, QuicStreamPeer::SendBuffer(stream_).size());
EXPECT_TRUE(stream_->IsWaitingForAcks());
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(9, _));
QuicByteCount newly_acked_length = 0;
EXPECT_TRUE(stream_->OnStreamFrameAcked(0, 9, false, QuicTime::Delta::Zero(),
QuicTime::Zero(),
&newly_acked_length));
// Stream is not waiting for acks as all sent data is acked.
EXPECT_FALSE(stream_->IsWaitingForAcks());
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
// Send kData2.
stream_->WriteOrBufferData("FooAndBar", false, nullptr);
EXPECT_TRUE(stream_->IsWaitingForAcks());
EXPECT_EQ(1u, QuicStreamPeer::SendBuffer(stream_).size());
// Send FIN.
stream_->WriteOrBufferData("", true, nullptr);
// Fin only frame is not stored in send buffer.
EXPECT_EQ(1u, QuicStreamPeer::SendBuffer(stream_).size());
// kData2 is retransmitted.
EXPECT_CALL(*mock_ack_listener, OnPacketRetransmitted(9));
stream_->OnStreamFrameRetransmitted(9, 9, false);
// kData2 is acked.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(9, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(9, 9, false, QuicTime::Delta::Zero(),
QuicTime::Zero(),
&newly_acked_length));
// Stream is waiting for acks as FIN is not acked.
EXPECT_TRUE(stream_->IsWaitingForAcks());
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
// FIN is acked.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(0, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(18, 0, true, QuicTime::Delta::Zero(),
QuicTime::Zero(),
&newly_acked_length));
EXPECT_FALSE(stream_->IsWaitingForAcks());
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
}
TEST_P(QuicSpdyStreamTest, StreamDataGetAckedMultipleTimes) {
Initialize(kShouldProcessData);
QuicReferenceCountedPointer<MockAckListener> mock_ack_listener(
new StrictMock<MockAckListener>);
stream_->set_ack_listener(mock_ack_listener);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _)).Times(AtLeast(1));
// Send [0, 27) and fin.
stream_->WriteOrBufferData("FooAndBar", false, nullptr);
stream_->WriteOrBufferData("FooAndBar", false, nullptr);
stream_->WriteOrBufferData("FooAndBar", true, nullptr);
// Ack [0, 9), [5, 22) and [18, 26)
// Verify [0, 9) 9 bytes are acked.
QuicByteCount newly_acked_length = 0;
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(9, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(0, 9, false, QuicTime::Delta::Zero(),
QuicTime::Zero(),
&newly_acked_length));
EXPECT_EQ(2u, QuicStreamPeer::SendBuffer(stream_).size());
// Verify [9, 22) 13 bytes are acked.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(13, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(5, 17, false, QuicTime::Delta::Zero(),
QuicTime::Zero(),
&newly_acked_length));
EXPECT_EQ(1u, QuicStreamPeer::SendBuffer(stream_).size());
// Verify [22, 26) 4 bytes are acked.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(4, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(18, 8, false, QuicTime::Delta::Zero(),
QuicTime::Zero(),
&newly_acked_length));
EXPECT_EQ(1u, QuicStreamPeer::SendBuffer(stream_).size());
EXPECT_TRUE(stream_->IsWaitingForAcks());
// Ack [0, 27).
// Verify [26, 27) 1 byte is acked.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(1, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(26, 1, false, QuicTime::Delta::Zero(),
QuicTime::Zero(),
&newly_acked_length));
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
EXPECT_TRUE(stream_->IsWaitingForAcks());
// Ack Fin. Verify OnPacketAcked is called.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(0, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(27, 0, true, QuicTime::Delta::Zero(),
QuicTime::Zero(),
&newly_acked_length));
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
EXPECT_FALSE(stream_->IsWaitingForAcks());
// Ack [10, 27) and fin.
// No new data is acked, verify OnPacketAcked is not called.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(_, _)).Times(0);
EXPECT_FALSE(
stream_->OnStreamFrameAcked(10, 17, true, QuicTime::Delta::Zero(),
QuicTime::Zero(), &newly_acked_length));
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
EXPECT_FALSE(stream_->IsWaitingForAcks());
}
// HTTP/3 only.
TEST_P(QuicSpdyStreamTest, HeadersAckNotReportedWriteOrBufferBody) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
QuicReferenceCountedPointer<MockAckListener> mock_ack_listener(
new StrictMock<MockAckListener>);
stream_->set_ack_listener(mock_ack_listener);
std::string body = "Test1";
std::string body2(100, 'x');
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _)).Times(AtLeast(1));
stream_->WriteOrBufferBody(body, false);
stream_->WriteOrBufferBody(body2, true);
QuicBuffer header = HttpEncoder::SerializeDataFrameHeader(
body.length(), SimpleBufferAllocator::Get());
QuicBuffer header2 = HttpEncoder::SerializeDataFrameHeader(
body2.length(), SimpleBufferAllocator::Get());
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(body.length(), _));
QuicStreamFrame frame(stream_->id(), false, 0,
absl::StrCat(header.AsStringView(), body));
EXPECT_TRUE(session_->OnFrameAcked(QuicFrame(frame), QuicTime::Delta::Zero(),
QuicTime::Zero()));
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(0, _));
QuicStreamFrame frame2(stream_->id(), false, header.size() + body.length(),
header2.AsStringView());
EXPECT_TRUE(session_->OnFrameAcked(QuicFrame(frame2), QuicTime::Delta::Zero(),
QuicTime::Zero()));
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(body2.length(), _));
QuicStreamFrame frame3(stream_->id(), true,
header.size() + body.length() + header2.size(), body2);
EXPECT_TRUE(session_->OnFrameAcked(QuicFrame(frame3), QuicTime::Delta::Zero(),
QuicTime::Zero()));
EXPECT_TRUE(
QuicSpdyStreamPeer::unacked_frame_headers_offsets(stream_).Empty());
}
// HTTP/3 only.
TEST_P(QuicSpdyStreamTest, HeadersAckNotReportedWriteBodySlices) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
QuicReferenceCountedPointer<MockAckListener> mock_ack_listener(
new StrictMock<MockAckListener>);
stream_->set_ack_listener(mock_ack_listener);
std::string body1 = "Test1";
std::string body2(100, 'x');
struct iovec body1_iov = {const_cast<char*>(body1.data()), body1.length()};
struct iovec body2_iov = {const_cast<char*>(body2.data()), body2.length()};
QuicMemSliceStorage storage(&body1_iov, 1,
helper_.GetStreamSendBufferAllocator(), 1024);
QuicMemSliceStorage storage2(&body2_iov, 1,
helper_.GetStreamSendBufferAllocator(), 1024);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _)).Times(AtLeast(1));
stream_->WriteBodySlices(storage.ToSpan(), false);
stream_->WriteBodySlices(storage2.ToSpan(), true);
std::string data1 = DataFrame(body1);
std::string data2 = DataFrame(body2);
EXPECT_CALL(*mock_ack_listener,
OnPacketAcked(body1.length() + body2.length(), _));
QuicStreamFrame frame(stream_->id(), true, 0, data1 + data2);
EXPECT_TRUE(session_->OnFrameAcked(QuicFrame(frame), QuicTime::Delta::Zero(),
QuicTime::Zero()));
EXPECT_TRUE(
QuicSpdyStreamPeer::unacked_frame_headers_offsets(stream_).Empty());
}
// HTTP/3 only.
TEST_P(QuicSpdyStreamTest, HeaderBytesNotReportedOnRetransmission) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
QuicReferenceCountedPointer<MockAckListener> mock_ack_listener(
new StrictMock<MockAckListener>);
stream_->set_ack_listener(mock_ack_listener);
std::string body1 = "Test1";
std::string body2(100, 'x');
EXPECT_CALL(*session_, WritevData(_, _, _, _, _, _)).Times(AtLeast(1));
stream_->WriteOrBufferBody(body1, false);
stream_->WriteOrBufferBody(body2, true);
std::string data1 = DataFrame(body1);
std::string data2 = DataFrame(body2);
EXPECT_CALL(*mock_ack_listener, OnPacketRetransmitted(body1.length()));
QuicStreamFrame frame(stream_->id(), false, 0, data1);
session_->OnStreamFrameRetransmitted(frame);
EXPECT_CALL(*mock_ack_listener, OnPacketRetransmitted(body2.length()));
QuicStreamFrame frame2(stream_->id(), true, data1.length(), data2);
session_->OnStreamFrameRetransmitted(frame2);
EXPECT_FALSE(
QuicSpdyStreamPeer::unacked_frame_headers_offsets(stream_).Empty());
}
TEST_P(QuicSpdyStreamTest, HeadersFrameOnRequestStream) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
std::string headers = HeadersFrame({std::make_pair("foo", "bar")});
std::string data = DataFrame(kDataFramePayload);
std::string trailers =
HeadersFrame({std::make_pair("custom-key", "custom-value")});
std::string stream_frame_payload = absl::StrCat(headers, data, trailers);
QuicStreamFrame frame(stream_->id(), false, 0, stream_frame_payload);
stream_->OnStreamFrame(frame);
EXPECT_THAT(stream_->header_list(), ElementsAre(Pair("foo", "bar")));
// QuicSpdyStream only calls OnBodyAvailable()
// after the header list has been consumed.
EXPECT_EQ("", stream_->data());
stream_->ConsumeHeaderList();
EXPECT_EQ(kDataFramePayload, stream_->data());
EXPECT_THAT(stream_->received_trailers(),
ElementsAre(Pair("custom-key", "custom-value")));
}
TEST_P(QuicSpdyStreamTest, ProcessBodyAfterTrailers) {
if (!UsesHttp3()) {
return;
}
Initialize(!kShouldProcessData);
std::string headers = HeadersFrame({std::make_pair("foo", "bar")});
std::string data = DataFrame(kDataFramePayload);
// A header block that will take more than one block of sequencer buffer.
// This ensures that when the trailers are consumed, some buffer buckets will
// be freed.
SpdyHeaderBlock trailers_block;
trailers_block["key1"] = std::string(10000, 'x');
std::string trailers = HeadersFrame(trailers_block);
// Feed all three HTTP/3 frames in a single stream frame.
std::string stream_frame_payload = absl::StrCat(headers, data, trailers);
QuicStreamFrame frame(stream_->id(), false, 0, stream_frame_payload);
stream_->OnStreamFrame(frame);
stream_->ConsumeHeaderList();
stream_->MarkTrailersConsumed();
EXPECT_TRUE(stream_->trailers_decompressed());
EXPECT_EQ(trailers_block, stream_->received_trailers());
EXPECT_TRUE(stream_->HasBytesToRead());
// Consume data.
char buffer[2048];
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = ABSL_ARRAYSIZE(buffer);
size_t bytes_read = stream_->Readv(&vec, 1);
EXPECT_EQ(kDataFramePayload, absl::string_view(buffer, bytes_read));
EXPECT_FALSE(stream_->HasBytesToRead());
}
// The test stream will receive a stream frame containing malformed headers and
// normal body. Make sure the http decoder stops processing body after the
// connection shuts down.
TEST_P(QuicSpdyStreamTest, MalformedHeadersStopHttpDecoder) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
testing::InSequence s;
connection_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
// Random bad headers.
std::string headers =
HeadersFrame(absl::HexStringToBytes("00002a94e7036261"));
std::string data = DataFrame(kDataFramePayload);
std::string stream_frame_payload = absl::StrCat(headers, data);
QuicStreamFrame frame(stream_->id(), false, 0, stream_frame_payload);
EXPECT_CALL(
*connection_,
CloseConnection(QUIC_QPACK_DECOMPRESSION_FAILED,
MatchesRegex("Error decoding headers on stream \\d+: "
"Incomplete header block."),
_))
.WillOnce(
(Invoke([this](QuicErrorCode error, const std::string& error_details,
ConnectionCloseBehavior connection_close_behavior) {
connection_->ReallyCloseConnection(error, error_details,
connection_close_behavior);
})));
EXPECT_CALL(*connection_, SendConnectionClosePacket(_, _, _));
EXPECT_CALL(*session_, OnConnectionClosed(_, _))
.WillOnce(Invoke([this](const QuicConnectionCloseFrame& frame,
ConnectionCloseSource source) {
session_->ReallyOnConnectionClosed(frame, source);
}));
EXPECT_CALL(*session_, MaybeSendRstStreamFrame(_, _, _)).Times(2);
stream_->OnStreamFrame(frame);
}
// Regression test for https://crbug.com/1027895: a HEADERS frame triggers an
// error in QuicSpdyStream::OnHeadersFramePayload(). This closes the
// connection, freeing the buffer of QuicStreamSequencer. Therefore
// QuicStreamSequencer::MarkConsumed() must not be called from
// QuicSpdyStream::OnHeadersFramePayload().
TEST_P(QuicSpdyStreamTest, DoNotMarkConsumedAfterQpackDecodingError) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
connection_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
{
testing::InSequence s;
EXPECT_CALL(
*connection_,
CloseConnection(QUIC_QPACK_DECOMPRESSION_FAILED,
MatchesRegex("Error decoding headers on stream \\d+: "
"Invalid relative index."),
_))
.WillOnce((
Invoke([this](QuicErrorCode error, const std::string& error_details,
ConnectionCloseBehavior connection_close_behavior) {
connection_->ReallyCloseConnection(error, error_details,
connection_close_behavior);
})));
EXPECT_CALL(*connection_, SendConnectionClosePacket(_, _, _));
EXPECT_CALL(*session_, OnConnectionClosed(_, _))
.WillOnce(Invoke([this](const QuicConnectionCloseFrame& frame,
ConnectionCloseSource source) {
session_->ReallyOnConnectionClosed(frame, source);
}));
}
EXPECT_CALL(*session_, MaybeSendRstStreamFrame(stream_->id(), _, _));
EXPECT_CALL(*session_, MaybeSendRstStreamFrame(stream2_->id(), _, _));
// Invalid headers: Required Insert Count is zero, but the header block
// contains a dynamic table reference.
std::string headers = HeadersFrame(absl::HexStringToBytes("000080"));
QuicStreamFrame frame(stream_->id(), false, 0, headers);
stream_->OnStreamFrame(frame);
}
TEST_P(QuicSpdyStreamTest, ImmediateHeaderDecodingWithDynamicTableEntries) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
testing::InSequence s;
session_->qpack_decoder()->OnSetDynamicTableCapacity(1024);
StrictMock<MockHttp3DebugVisitor> debug_visitor;
session_->set_debug_visitor(&debug_visitor);
auto decoder_send_stream =
QuicSpdySessionPeer::GetQpackDecoderSendStream(session_.get());
// Deliver dynamic table entry to decoder.
session_->qpack_decoder()->OnInsertWithoutNameReference("foo", "bar");
// HEADERS frame referencing first dynamic table entry.
std::string encoded_headers = absl::HexStringToBytes("020080");
std::string headers = HeadersFrame(encoded_headers);
EXPECT_CALL(debug_visitor,
OnHeadersFrameReceived(stream_->id(), encoded_headers.length()));
// Decoder stream type.
EXPECT_CALL(*session_,
WritevData(decoder_send_stream->id(), /* write_length = */ 1,
/* offset = */ 0, _, _, _));
// Header acknowledgement.
EXPECT_CALL(*session_,
WritevData(decoder_send_stream->id(), /* write_length = */ 1,
/* offset = */ 1, _, _, _));
EXPECT_CALL(debug_visitor, OnHeadersDecoded(stream_->id(), _));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, 0, headers));
// Headers can be decoded immediately.
EXPECT_TRUE(stream_->headers_decompressed());
// Verify headers.
EXPECT_THAT(stream_->header_list(), ElementsAre(Pair("foo", "bar")));
stream_->ConsumeHeaderList();
// DATA frame.
std::string data = DataFrame(kDataFramePayload);
EXPECT_CALL(debug_visitor,
OnDataFrameReceived(stream_->id(), strlen(kDataFramePayload)));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, /* offset = */
headers.length(), data));
EXPECT_EQ(kDataFramePayload, stream_->data());
// Deliver second dynamic table entry to decoder.
session_->qpack_decoder()->OnInsertWithoutNameReference("trailing", "foobar");
// Trailing HEADERS frame referencing second dynamic table entry.
std::string encoded_trailers = absl::HexStringToBytes("030080");
std::string trailers = HeadersFrame(encoded_trailers);
EXPECT_CALL(debug_visitor,
OnHeadersFrameReceived(stream_->id(), encoded_trailers.length()));
// Header acknowledgement.
EXPECT_CALL(*session_, WritevData(decoder_send_stream->id(), _, _, _, _, _));
EXPECT_CALL(debug_visitor, OnHeadersDecoded(stream_->id(), _));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), true, /* offset = */
headers.length() + data.length(),
trailers));
// Trailers can be decoded immediately.
EXPECT_TRUE(stream_->trailers_decompressed());
// Verify trailers.
EXPECT_THAT(stream_->received_trailers(),
ElementsAre(Pair("trailing", "foobar")));
stream_->MarkTrailersConsumed();
}
TEST_P(QuicSpdyStreamTest, BlockedHeaderDecoding) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
testing::InSequence s;
session_->qpack_decoder()->OnSetDynamicTableCapacity(1024);
StrictMock<MockHttp3DebugVisitor> debug_visitor;
session_->set_debug_visitor(&debug_visitor);
// HEADERS frame referencing first dynamic table entry.
std::string encoded_headers = absl::HexStringToBytes("020080");
std::string headers = HeadersFrame(encoded_headers);
EXPECT_CALL(debug_visitor,
OnHeadersFrameReceived(stream_->id(), encoded_headers.length()));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, 0, headers));
// Decoding is blocked because dynamic table entry has not been received yet.
EXPECT_FALSE(stream_->headers_decompressed());
auto decoder_send_stream =
QuicSpdySessionPeer::GetQpackDecoderSendStream(session_.get());
// Decoder stream type.
EXPECT_CALL(*session_,
WritevData(decoder_send_stream->id(), /* write_length = */ 1,
/* offset = */ 0, _, _, _));
// Header acknowledgement.
EXPECT_CALL(*session_,
WritevData(decoder_send_stream->id(), /* write_length = */ 1,
/* offset = */ 1, _, _, _));
EXPECT_CALL(debug_visitor, OnHeadersDecoded(stream_->id(), _));
// Deliver dynamic table entry to decoder.
session_->qpack_decoder()->OnInsertWithoutNameReference("foo", "bar");
EXPECT_TRUE(stream_->headers_decompressed());
// Verify headers.
EXPECT_THAT(stream_->header_list(), ElementsAre(Pair("foo", "bar")));
stream_->ConsumeHeaderList();
// DATA frame.
std::string data = DataFrame(kDataFramePayload);
EXPECT_CALL(debug_visitor,
OnDataFrameReceived(stream_->id(), strlen(kDataFramePayload)));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, /* offset = */
headers.length(), data));
EXPECT_EQ(kDataFramePayload, stream_->data());
// Trailing HEADERS frame referencing second dynamic table entry.
std::string encoded_trailers = absl::HexStringToBytes("030080");
std::string trailers = HeadersFrame(encoded_trailers);
EXPECT_CALL(debug_visitor,
OnHeadersFrameReceived(stream_->id(), encoded_trailers.length()));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), true, /* offset = */
headers.length() + data.length(),
trailers));
// Decoding is blocked because dynamic table entry has not been received yet.
EXPECT_FALSE(stream_->trailers_decompressed());
// Header acknowledgement.
EXPECT_CALL(*session_, WritevData(decoder_send_stream->id(), _, _, _, _, _));
EXPECT_CALL(debug_visitor, OnHeadersDecoded(stream_->id(), _));
// Deliver second dynamic table entry to decoder.
session_->qpack_decoder()->OnInsertWithoutNameReference("trailing", "foobar");
EXPECT_TRUE(stream_->trailers_decompressed());
// Verify trailers.
EXPECT_THAT(stream_->received_trailers(),
ElementsAre(Pair("trailing", "foobar")));
stream_->MarkTrailersConsumed();
}
TEST_P(QuicSpdyStreamTest, AsyncErrorDecodingHeaders) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
session_->qpack_decoder()->OnSetDynamicTableCapacity(1024);
// HEADERS frame only referencing entry with absolute index 0 but with
// Required Insert Count = 2, which is incorrect.
std::string headers = HeadersFrame(absl::HexStringToBytes("030081"));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, 0, headers));
// Even though entire header block is received and every referenced entry is
// available, decoding is blocked until insert count reaches the Required
// Insert Count value advertised in the header block prefix.
EXPECT_FALSE(stream_->headers_decompressed());
EXPECT_CALL(
*connection_,
CloseConnection(QUIC_QPACK_DECOMPRESSION_FAILED,
MatchesRegex("Error decoding headers on stream \\d+: "
"Required Insert Count too large."),
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET));
// Deliver two dynamic table entries to decoder
// to trigger decoding of header block.
session_->qpack_decoder()->OnInsertWithoutNameReference("foo", "bar");
session_->qpack_decoder()->OnInsertWithoutNameReference("foo", "bar");
}
// Regression test for https://crbug.com/1024263 and for
// https://crbug.com/1025209#c11.
TEST_P(QuicSpdyStreamTest, BlockedHeaderDecodingUnblockedWithBufferedError) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
session_->qpack_decoder()->OnSetDynamicTableCapacity(1024);
// Relative index 2 is invalid because it is larger than or equal to the Base.
std::string headers = HeadersFrame(absl::HexStringToBytes("020082"));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, 0, headers));
// Decoding is blocked.
EXPECT_FALSE(stream_->headers_decompressed());
EXPECT_CALL(
*connection_,
CloseConnection(QUIC_QPACK_DECOMPRESSION_FAILED,
MatchesRegex("Error decoding headers on stream \\d+: "
"Invalid relative index."),
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET));
// Deliver one dynamic table entry to decoder
// to trigger decoding of header block.
session_->qpack_decoder()->OnInsertWithoutNameReference("foo", "bar");
}
TEST_P(QuicSpdyStreamTest, AsyncErrorDecodingTrailers) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
testing::InSequence s;
session_->qpack_decoder()->OnSetDynamicTableCapacity(1024);
// HEADERS frame referencing first dynamic table entry.
std::string headers = HeadersFrame(absl::HexStringToBytes("020080"));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, 0, headers));
// Decoding is blocked because dynamic table entry has not been received yet.
EXPECT_FALSE(stream_->headers_decompressed());
auto decoder_send_stream =
QuicSpdySessionPeer::GetQpackDecoderSendStream(session_.get());
// Decoder stream type.
EXPECT_CALL(*session_,
WritevData(decoder_send_stream->id(), /* write_length = */ 1,
/* offset = */ 0, _, _, _));
// Header acknowledgement.
EXPECT_CALL(*session_,
WritevData(decoder_send_stream->id(), /* write_length = */ 1,
/* offset = */ 1, _, _, _));
// Deliver dynamic table entry to decoder.
session_->qpack_decoder()->OnInsertWithoutNameReference("foo", "bar");
EXPECT_TRUE(stream_->headers_decompressed());
// Verify headers.
EXPECT_THAT(stream_->header_list(), ElementsAre(Pair("foo", "bar")));
stream_->ConsumeHeaderList();
// DATA frame.
std::string data = DataFrame(kDataFramePayload);
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, /* offset = */
headers.length(), data));
EXPECT_EQ(kDataFramePayload, stream_->data());
// Trailing HEADERS frame only referencing entry with absolute index 0 but
// with Required Insert Count = 2, which is incorrect.
std::string trailers = HeadersFrame(absl::HexStringToBytes("030081"));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), true, /* offset = */
headers.length() + data.length(),
trailers));
// Even though entire header block is received and every referenced entry is
// available, decoding is blocked until insert count reaches the Required
// Insert Count value advertised in the header block prefix.
EXPECT_FALSE(stream_->trailers_decompressed());
EXPECT_CALL(
*connection_,
CloseConnection(QUIC_QPACK_DECOMPRESSION_FAILED,
MatchesRegex("Error decoding trailers on stream \\d+: "
"Required Insert Count too large."),
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET));
// Deliver second dynamic table entry to decoder
// to trigger decoding of trailing header block.
session_->qpack_decoder()->OnInsertWithoutNameReference("trailing", "foobar");
}
// Regression test for b/132603592: QPACK decoding unblocked after stream is
// closed.
TEST_P(QuicSpdyStreamTest, HeaderDecodingUnblockedAfterStreamClosed) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
testing::InSequence s;
session_->qpack_decoder()->OnSetDynamicTableCapacity(1024);
StrictMock<MockHttp3DebugVisitor> debug_visitor;
session_->set_debug_visitor(&debug_visitor);
// HEADERS frame referencing first dynamic table entry.
std::string encoded_headers = absl::HexStringToBytes("020080");
std::string headers = HeadersFrame(encoded_headers);
EXPECT_CALL(debug_visitor,
OnHeadersFrameReceived(stream_->id(), encoded_headers.length()));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, 0, headers));
// Decoding is blocked because dynamic table entry has not been received yet.
EXPECT_FALSE(stream_->headers_decompressed());
// Decoder stream type and stream cancellation instruction.
auto decoder_send_stream =
QuicSpdySessionPeer::GetQpackDecoderSendStream(session_.get());
EXPECT_CALL(*session_,
WritevData(decoder_send_stream->id(), /* write_length = */ 1,
/* offset = */ 0, _, _, _));
EXPECT_CALL(*session_,
WritevData(decoder_send_stream->id(), /* write_length = */ 1,
/* offset = */ 1, _, _, _));
// Reset stream by this endpoint, for example, due to stream cancellation.
EXPECT_CALL(*session_, MaybeSendStopSendingFrame(
stream_->id(), QuicResetStreamError::FromInternal(
QUIC_STREAM_CANCELLED)));
EXPECT_CALL(
*session_,
MaybeSendRstStreamFrame(
stream_->id(),
QuicResetStreamError::FromInternal(QUIC_STREAM_CANCELLED), _));
stream_->Reset(QUIC_STREAM_CANCELLED);
// Deliver dynamic table entry to decoder.
session_->qpack_decoder()->OnInsertWithoutNameReference("foo", "bar");
EXPECT_FALSE(stream_->headers_decompressed());
}
TEST_P(QuicSpdyStreamTest, HeaderDecodingUnblockedAfterResetReceived) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
testing::InSequence s;
session_->qpack_decoder()->OnSetDynamicTableCapacity(1024);
StrictMock<MockHttp3DebugVisitor> debug_visitor;
session_->set_debug_visitor(&debug_visitor);
// HEADERS frame referencing first dynamic table entry.
std::string encoded_headers = absl::HexStringToBytes("020080");
std::string headers = HeadersFrame(encoded_headers);
EXPECT_CALL(debug_visitor,
OnHeadersFrameReceived(stream_->id(), encoded_headers.length()));
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, 0, headers));
// Decoding is blocked because dynamic table entry has not been received yet.
EXPECT_FALSE(stream_->headers_decompressed());
// Decoder stream type and stream cancellation instruction.
auto decoder_send_stream =
QuicSpdySessionPeer::GetQpackDecoderSendStream(session_.get());
EXPECT_CALL(*session_,
WritevData(decoder_send_stream->id(), /* write_length = */ 1,
/* offset = */ 0, _, _, _));
EXPECT_CALL(*session_,
WritevData(decoder_send_stream->id(), /* write_length = */ 1,
/* offset = */ 1, _, _, _));
// OnStreamReset() is called when RESET_STREAM frame is received from peer.
stream_->OnStreamReset(QuicRstStreamFrame(
kInvalidControlFrameId, stream_->id(), QUIC_STREAM_CANCELLED, 0));
if (!GetQuicReloadableFlag(quic_abort_qpack_on_stream_reset)) {
// Header acknowledgement.
EXPECT_CALL(*session_,
WritevData(decoder_send_stream->id(), /* write_length = */ 1,
/* offset = */ 2, _, _, _));
EXPECT_CALL(debug_visitor, OnHeadersDecoded(stream_->id(), _));
}
// Deliver dynamic table entry to decoder.
session_->qpack_decoder()->OnInsertWithoutNameReference("foo", "bar");
if (GetQuicReloadableFlag(quic_abort_qpack_on_stream_reset)) {
EXPECT_FALSE(stream_->headers_decompressed());
} else {
// Verify headers.
EXPECT_TRUE(stream_->headers_decompressed());
EXPECT_THAT(stream_->header_list(), ElementsAre(Pair("foo", "bar")));
}
}
class QuicSpdyStreamIncrementalConsumptionTest : public QuicSpdyStreamTest {
protected:
QuicSpdyStreamIncrementalConsumptionTest() : offset_(0), consumed_bytes_(0) {}
~QuicSpdyStreamIncrementalConsumptionTest() override = default;
// Create QuicStreamFrame with |payload|
// and pass it to stream_->OnStreamFrame().
void OnStreamFrame(absl::string_view payload) {
QuicStreamFrame frame(stream_->id(), /* fin = */ false, offset_, payload);
stream_->OnStreamFrame(frame);
offset_ += payload.size();
}
// Return number of bytes marked consumed with sequencer
// since last NewlyConsumedBytes() call.
QuicStreamOffset NewlyConsumedBytes() {
QuicStreamOffset previously_consumed_bytes = consumed_bytes_;
consumed_bytes_ = stream_->sequencer()->NumBytesConsumed();
return consumed_bytes_ - previously_consumed_bytes;
}
// Read |size| bytes from the stream.
std::string ReadFromStream(QuicByteCount size) {
std::string buffer;
buffer.resize(size);
struct iovec vec;
vec.iov_base = const_cast<char*>(buffer.data());
vec.iov_len = size;
size_t bytes_read = stream_->Readv(&vec, 1);
EXPECT_EQ(bytes_read, size);
return buffer;
}
private:
QuicStreamOffset offset_;
QuicStreamOffset consumed_bytes_;
};
INSTANTIATE_TEST_SUITE_P(Tests, QuicSpdyStreamIncrementalConsumptionTest,
::testing::ValuesIn(AllSupportedVersions()),
::testing::PrintToStringParamName());
// Test that stream bytes are consumed (by calling
// sequencer()->MarkConsumed()) incrementally, as soon as possible.
TEST_P(QuicSpdyStreamIncrementalConsumptionTest, OnlyKnownFrames) {
if (!UsesHttp3()) {
return;
}
Initialize(!kShouldProcessData);
std::string headers = HeadersFrame({std::make_pair("foo", "bar")});
// All HEADERS frame bytes are consumed even if the frame is not received
// completely.
OnStreamFrame(absl::string_view(headers).substr(0, headers.size() - 1));
EXPECT_EQ(headers.size() - 1, NewlyConsumedBytes());
// The rest of the HEADERS frame is also consumed immediately.
OnStreamFrame(absl::string_view(headers).substr(headers.size() - 1));
EXPECT_EQ(1u, NewlyConsumedBytes());
// Verify headers.
EXPECT_THAT(stream_->header_list(), ElementsAre(Pair("foo", "bar")));
stream_->ConsumeHeaderList();
// DATA frame.
absl::string_view data_payload(kDataFramePayload);
std::string data_frame = DataFrame(data_payload);
QuicByteCount data_frame_header_length =
data_frame.size() - data_payload.size();
// DATA frame header is consumed.
// DATA frame payload is not consumed because payload has to be buffered.
OnStreamFrame(data_frame);
EXPECT_EQ(data_frame_header_length, NewlyConsumedBytes());
// Consume all but last byte of data.
EXPECT_EQ(data_payload.substr(0, data_payload.size() - 1),
ReadFromStream(data_payload.size() - 1));
EXPECT_EQ(data_payload.size() - 1, NewlyConsumedBytes());
std::string trailers =
HeadersFrame({std::make_pair("custom-key", "custom-value")});
// No bytes are consumed, because last byte of DATA payload is still buffered.
OnStreamFrame(absl::string_view(trailers).substr(0, trailers.size() - 1));
EXPECT_EQ(0u, NewlyConsumedBytes());
// Reading last byte of DATA payload triggers consumption of all data received
// so far, even though last HEADERS frame has not been received completely.
EXPECT_EQ(data_payload.substr(data_payload.size() - 1), ReadFromStream(1));
EXPECT_EQ(1 + trailers.size() - 1, NewlyConsumedBytes());
// Last byte of trailers is immediately consumed.
OnStreamFrame(absl::string_view(trailers).substr(trailers.size() - 1));
EXPECT_EQ(1u, NewlyConsumedBytes());
// Verify trailers.
EXPECT_THAT(stream_->received_trailers(),
ElementsAre(Pair("custom-key", "custom-value")));
}
TEST_P(QuicSpdyStreamIncrementalConsumptionTest, ReceiveUnknownFrame) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
StrictMock<MockHttp3DebugVisitor> debug_visitor;
session_->set_debug_visitor(&debug_visitor);
EXPECT_CALL(debug_visitor,
OnUnknownFrameReceived(stream_->id(), /* frame_type = */ 0x21,
/* payload_length = */ 3));
std::string unknown_frame = UnknownFrame(0x21, "foo");
OnStreamFrame(unknown_frame);
}
TEST_P(QuicSpdyStreamIncrementalConsumptionTest, UnknownFramesInterleaved) {
if (!UsesHttp3()) {
return;
}
Initialize(!kShouldProcessData);
// Unknown frame of reserved type before HEADERS is consumed immediately.
std::string unknown_frame1 = UnknownFrame(0x21, "foo");
OnStreamFrame(unknown_frame1);
EXPECT_EQ(unknown_frame1.size(), NewlyConsumedBytes());
std::string headers = HeadersFrame({std::make_pair("foo", "bar")});
// All HEADERS frame bytes are consumed even if the frame is not received
// completely.
OnStreamFrame(absl::string_view(headers).substr(0, headers.size() - 1));
EXPECT_EQ(headers.size() - 1, NewlyConsumedBytes());
// The rest of the HEADERS frame is also consumed immediately.
OnStreamFrame(absl::string_view(headers).substr(headers.size() - 1));
EXPECT_EQ(1u, NewlyConsumedBytes());
// Verify headers.
EXPECT_THAT(stream_->header_list(), ElementsAre(Pair("foo", "bar")));
stream_->ConsumeHeaderList();
// Frame of unknown, not reserved type between HEADERS and DATA is consumed
// immediately.
std::string unknown_frame2 = UnknownFrame(0x3a, "");
OnStreamFrame(unknown_frame2);
EXPECT_EQ(unknown_frame2.size(), NewlyConsumedBytes());
// DATA frame.
absl::string_view data_payload(kDataFramePayload);
std::string data_frame = DataFrame(data_payload);
QuicByteCount data_frame_header_length =
data_frame.size() - data_payload.size();
// DATA frame header is consumed.
// DATA frame payload is not consumed because payload has to be buffered.
OnStreamFrame(data_frame);
EXPECT_EQ(data_frame_header_length, NewlyConsumedBytes());
// Frame of unknown, not reserved type is not consumed because DATA payload is
// still buffered.
std::string unknown_frame3 = UnknownFrame(0x39, "bar");
OnStreamFrame(unknown_frame3);
EXPECT_EQ(0u, NewlyConsumedBytes());
// Consume all but last byte of data.
EXPECT_EQ(data_payload.substr(0, data_payload.size() - 1),
ReadFromStream(data_payload.size() - 1));
EXPECT_EQ(data_payload.size() - 1, NewlyConsumedBytes());
std::string trailers =
HeadersFrame({std::make_pair("custom-key", "custom-value")});
// No bytes are consumed, because last byte of DATA payload is still buffered.
OnStreamFrame(absl::string_view(trailers).substr(0, trailers.size() - 1));
EXPECT_EQ(0u, NewlyConsumedBytes());
// Reading last byte of DATA payload triggers consumption of all data received
// so far, even though last HEADERS frame has not been received completely.
EXPECT_EQ(data_payload.substr(data_payload.size() - 1), ReadFromStream(1));
EXPECT_EQ(1 + unknown_frame3.size() + trailers.size() - 1,
NewlyConsumedBytes());
// Last byte of trailers is immediately consumed.
OnStreamFrame(absl::string_view(trailers).substr(trailers.size() - 1));
EXPECT_EQ(1u, NewlyConsumedBytes());
// Verify trailers.
EXPECT_THAT(stream_->received_trailers(),
ElementsAre(Pair("custom-key", "custom-value")));
// Unknown frame of reserved type after trailers is consumed immediately.
std::string unknown_frame4 = UnknownFrame(0x40, "");
OnStreamFrame(unknown_frame4);
EXPECT_EQ(unknown_frame4.size(), NewlyConsumedBytes());
}
// Close connection if a DATA frame is received before a HEADERS frame.
TEST_P(QuicSpdyStreamTest, DataBeforeHeaders) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
// Closing the connection is mocked out in tests. Instead, simply stop
// reading data at the stream level to prevent QuicSpdyStream from blowing up.
EXPECT_CALL(
*connection_,
CloseConnection(QUIC_HTTP_INVALID_FRAME_SEQUENCE_ON_SPDY_STREAM,
"Unexpected DATA frame received.",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET))
.WillOnce(InvokeWithoutArgs([this]() { stream_->StopReading(); }));
std::string data = DataFrame(kDataFramePayload);
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, 0, data));
}
// Close connection if a HEADERS frame is received after the trailing HEADERS.
TEST_P(QuicSpdyStreamTest, TrailersAfterTrailers) {
if (!UsesHttp3()) {
return;
}
Initialize(kShouldProcessData);
// Receive and consume headers.
std::string headers = HeadersFrame({std::make_pair("foo", "bar")});
QuicStreamOffset offset = 0;
stream_->OnStreamFrame(
QuicStreamFrame(stream_->id(), false, offset, headers));
offset += headers.size();
EXPECT_THAT(stream_->header_list(), ElementsAre(Pair("foo", "bar")));
stream_->ConsumeHeaderList();
// Receive data. It is consumed by TestStream.
std::string data = DataFrame(kDataFramePayload);
stream_->OnStreamFrame(QuicStreamFrame(stream_->id(), false, offset, data));
offset += data.size();
EXPECT_EQ(kDataFramePayload, stream_->data());
// Receive and consume trailers.
std::string trailers1 =
HeadersFrame({std::make_pair("custom-key", "custom-value")});
stream_->OnStreamFrame(
QuicStreamFrame(stream_->id(), false, offset, trailers1));
offset += trailers1.size();
EXPECT_TRUE(stream_->trailers_decompressed