|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "net/third_party/quiche/src/quic/core/quic_connection.h" | 
|  |  | 
|  | #include <errno.h> | 
|  |  | 
|  | #include <memory> | 
|  | #include <ostream> | 
|  | #include <string> | 
|  | #include <utility> | 
|  |  | 
|  | #include "net/third_party/quiche/src/quic/core/congestion_control/loss_detection_interface.h" | 
|  | #include "net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h" | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_connection_id.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_constants.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_packets.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_simple_buffer_allocator.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_types.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_utils.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_versions.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_error_code_wrappers.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_expect_bug.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_logging.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_reference_counted.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_socket_address.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_test.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/mock_clock.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/mock_random.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/quic_config_peer.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/quic_connection_peer.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/quic_framer_peer.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/quic_packet_creator_peer.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/quic_sent_packet_manager_peer.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/quic_test_utils.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/simple_data_producer.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/simple_quic_framer.h" | 
|  | #include "net/third_party/quiche/src/quic/test_tools/simple_session_notifier.h" | 
|  | #include "net/third_party/quiche/src/common/platform/api/quiche_arraysize.h" | 
|  | #include "net/third_party/quiche/src/common/platform/api/quiche_str_cat.h" | 
|  | #include "net/third_party/quiche/src/common/platform/api/quiche_string_piece.h" | 
|  |  | 
|  | using testing::_; | 
|  | using testing::AnyNumber; | 
|  | using testing::AtLeast; | 
|  | using testing::DoAll; | 
|  | using testing::Ge; | 
|  | using testing::IgnoreResult; | 
|  | using testing::InSequence; | 
|  | using testing::Invoke; | 
|  | using testing::InvokeWithoutArgs; | 
|  | using testing::Lt; | 
|  | using testing::Ref; | 
|  | using testing::Return; | 
|  | using testing::SaveArg; | 
|  | using testing::SetArgPointee; | 
|  | using testing::StrictMock; | 
|  |  | 
|  | namespace quic { | 
|  | namespace test { | 
|  | namespace { | 
|  |  | 
|  | const char data1[] = "foo data"; | 
|  | const char data2[] = "bar data"; | 
|  |  | 
|  | const bool kHasStopWaiting = true; | 
|  |  | 
|  | const int kDefaultRetransmissionTimeMs = 500; | 
|  |  | 
|  | DiversificationNonce kTestDiversificationNonce = { | 
|  | 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', | 
|  | 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', | 
|  | 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', | 
|  | }; | 
|  |  | 
|  | const QuicSocketAddress kPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), | 
|  | /*port=*/12345); | 
|  | const QuicSocketAddress kSelfAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), | 
|  | /*port=*/443); | 
|  |  | 
|  | QuicStreamId GetNthClientInitiatedStreamId(int n, | 
|  | QuicTransportVersion version) { | 
|  | return QuicUtils::GetFirstBidirectionalStreamId(version, | 
|  | Perspective::IS_CLIENT) + | 
|  | n * 2; | 
|  | } | 
|  |  | 
|  | QuicLongHeaderType EncryptionlevelToLongHeaderType(EncryptionLevel level) { | 
|  | switch (level) { | 
|  | case ENCRYPTION_INITIAL: | 
|  | return INITIAL; | 
|  | case ENCRYPTION_HANDSHAKE: | 
|  | return HANDSHAKE; | 
|  | case ENCRYPTION_ZERO_RTT: | 
|  | return ZERO_RTT_PROTECTED; | 
|  | case ENCRYPTION_FORWARD_SECURE: | 
|  | DCHECK(false); | 
|  | return INVALID_PACKET_TYPE; | 
|  | default: | 
|  | DCHECK(false); | 
|  | return INVALID_PACKET_TYPE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message. | 
|  | class TaggingEncrypter : public QuicEncrypter { | 
|  | public: | 
|  | explicit TaggingEncrypter(uint8_t tag) : tag_(tag) {} | 
|  | TaggingEncrypter(const TaggingEncrypter&) = delete; | 
|  | TaggingEncrypter& operator=(const TaggingEncrypter&) = delete; | 
|  |  | 
|  | ~TaggingEncrypter() override {} | 
|  |  | 
|  | // QuicEncrypter interface. | 
|  | bool SetKey(quiche::QuicheStringPiece /*key*/) override { return true; } | 
|  |  | 
|  | bool SetNoncePrefix(quiche::QuicheStringPiece /*nonce_prefix*/) override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SetIV(quiche::QuicheStringPiece /*iv*/) override { return true; } | 
|  |  | 
|  | bool SetHeaderProtectionKey(quiche::QuicheStringPiece /*key*/) override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool EncryptPacket(uint64_t /*packet_number*/, | 
|  | quiche::QuicheStringPiece /*associated_data*/, | 
|  | quiche::QuicheStringPiece plaintext, | 
|  | char* output, | 
|  | size_t* output_length, | 
|  | size_t max_output_length) override { | 
|  | const size_t len = plaintext.size() + kTagSize; | 
|  | if (max_output_length < len) { | 
|  | return false; | 
|  | } | 
|  | // Memmove is safe for inplace encryption. | 
|  | memmove(output, plaintext.data(), plaintext.size()); | 
|  | output += plaintext.size(); | 
|  | memset(output, tag_, kTagSize); | 
|  | *output_length = len; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::string GenerateHeaderProtectionMask( | 
|  | quiche::QuicheStringPiece /*sample*/) override { | 
|  | return std::string(5, 0); | 
|  | } | 
|  |  | 
|  | size_t GetKeySize() const override { return 0; } | 
|  | size_t GetNoncePrefixSize() const override { return 0; } | 
|  | size_t GetIVSize() const override { return 0; } | 
|  |  | 
|  | size_t GetMaxPlaintextSize(size_t ciphertext_size) const override { | 
|  | return ciphertext_size - kTagSize; | 
|  | } | 
|  |  | 
|  | size_t GetCiphertextSize(size_t plaintext_size) const override { | 
|  | return plaintext_size + kTagSize; | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece GetKey() const override { | 
|  | return quiche::QuicheStringPiece(); | 
|  | } | 
|  |  | 
|  | quiche::QuicheStringPiece GetNoncePrefix() const override { | 
|  | return quiche::QuicheStringPiece(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | enum { | 
|  | kTagSize = 12, | 
|  | }; | 
|  |  | 
|  | const uint8_t tag_; | 
|  | }; | 
|  |  | 
|  | // TaggingDecrypter ensures that the final kTagSize bytes of the message all | 
|  | // have the same value and then removes them. | 
|  | class TaggingDecrypter : public QuicDecrypter { | 
|  | public: | 
|  | ~TaggingDecrypter() override {} | 
|  |  | 
|  | // QuicDecrypter interface | 
|  | bool SetKey(quiche::QuicheStringPiece /*key*/) override { return true; } | 
|  |  | 
|  | bool SetNoncePrefix(quiche::QuicheStringPiece /*nonce_prefix*/) override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SetIV(quiche::QuicheStringPiece /*iv*/) override { return true; } | 
|  |  | 
|  | bool SetHeaderProtectionKey(quiche::QuicheStringPiece /*key*/) override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SetPreliminaryKey(quiche::QuicheStringPiece /*key*/) override { | 
|  | QUIC_BUG << "should not be called"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SetDiversificationNonce(const DiversificationNonce& /*key*/) override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DecryptPacket(uint64_t /*packet_number*/, | 
|  | quiche::QuicheStringPiece /*associated_data*/, | 
|  | quiche::QuicheStringPiece ciphertext, | 
|  | char* output, | 
|  | size_t* output_length, | 
|  | size_t /*max_output_length*/) override { | 
|  | if (ciphertext.size() < kTagSize) { | 
|  | return false; | 
|  | } | 
|  | if (!CheckTag(ciphertext, GetTag(ciphertext))) { | 
|  | return false; | 
|  | } | 
|  | *output_length = ciphertext.size() - kTagSize; | 
|  | memcpy(output, ciphertext.data(), *output_length); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::string GenerateHeaderProtectionMask( | 
|  | QuicDataReader* /*sample_reader*/) override { | 
|  | return std::string(5, 0); | 
|  | } | 
|  |  | 
|  | size_t GetKeySize() const override { return 0; } | 
|  | size_t GetNoncePrefixSize() const override { return 0; } | 
|  | size_t GetIVSize() const override { return 0; } | 
|  | quiche::QuicheStringPiece GetKey() const override { | 
|  | return quiche::QuicheStringPiece(); | 
|  | } | 
|  | quiche::QuicheStringPiece GetNoncePrefix() const override { | 
|  | return quiche::QuicheStringPiece(); | 
|  | } | 
|  | // Use a distinct value starting with 0xFFFFFF, which is never used by TLS. | 
|  | uint32_t cipher_id() const override { return 0xFFFFFFF0; } | 
|  |  | 
|  | protected: | 
|  | virtual uint8_t GetTag(quiche::QuicheStringPiece ciphertext) { | 
|  | return ciphertext.data()[ciphertext.size() - 1]; | 
|  | } | 
|  |  | 
|  | private: | 
|  | enum { | 
|  | kTagSize = 12, | 
|  | }; | 
|  |  | 
|  | bool CheckTag(quiche::QuicheStringPiece ciphertext, uint8_t tag) { | 
|  | for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) { | 
|  | if (ciphertext.data()[i] != tag) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // StringTaggingDecrypter ensures that the final kTagSize bytes of the message | 
|  | // match the expected value. | 
|  | class StrictTaggingDecrypter : public TaggingDecrypter { | 
|  | public: | 
|  | explicit StrictTaggingDecrypter(uint8_t tag) : tag_(tag) {} | 
|  | ~StrictTaggingDecrypter() override {} | 
|  |  | 
|  | // TaggingQuicDecrypter | 
|  | uint8_t GetTag(quiche::QuicheStringPiece /*ciphertext*/) override { | 
|  | return tag_; | 
|  | } | 
|  |  | 
|  | // Use a distinct value starting with 0xFFFFFF, which is never used by TLS. | 
|  | uint32_t cipher_id() const override { return 0xFFFFFFF1; } | 
|  |  | 
|  | private: | 
|  | const uint8_t tag_; | 
|  | }; | 
|  |  | 
|  | class TestConnectionHelper : public QuicConnectionHelperInterface { | 
|  | public: | 
|  | TestConnectionHelper(MockClock* clock, MockRandom* random_generator) | 
|  | : clock_(clock), random_generator_(random_generator) { | 
|  | clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
|  | } | 
|  | TestConnectionHelper(const TestConnectionHelper&) = delete; | 
|  | TestConnectionHelper& operator=(const TestConnectionHelper&) = delete; | 
|  |  | 
|  | // QuicConnectionHelperInterface | 
|  | const QuicClock* GetClock() const override { return clock_; } | 
|  |  | 
|  | QuicRandom* GetRandomGenerator() override { return random_generator_; } | 
|  |  | 
|  | QuicBufferAllocator* GetStreamSendBufferAllocator() override { | 
|  | return &buffer_allocator_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | MockClock* clock_; | 
|  | MockRandom* random_generator_; | 
|  | SimpleBufferAllocator buffer_allocator_; | 
|  | }; | 
|  |  | 
|  | class TestAlarmFactory : public QuicAlarmFactory { | 
|  | public: | 
|  | class TestAlarm : public QuicAlarm { | 
|  | public: | 
|  | explicit TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate> delegate) | 
|  | : QuicAlarm(std::move(delegate)) {} | 
|  |  | 
|  | void SetImpl() override {} | 
|  | void CancelImpl() override {} | 
|  | using QuicAlarm::Fire; | 
|  | }; | 
|  |  | 
|  | TestAlarmFactory() {} | 
|  | TestAlarmFactory(const TestAlarmFactory&) = delete; | 
|  | TestAlarmFactory& operator=(const TestAlarmFactory&) = delete; | 
|  |  | 
|  | QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) override { | 
|  | return new TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate>(delegate)); | 
|  | } | 
|  |  | 
|  | QuicArenaScopedPtr<QuicAlarm> CreateAlarm( | 
|  | QuicArenaScopedPtr<QuicAlarm::Delegate> delegate, | 
|  | QuicConnectionArena* arena) override { | 
|  | return arena->New<TestAlarm>(std::move(delegate)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class TestPacketWriter : public QuicPacketWriter { | 
|  | struct PacketBuffer { | 
|  | QUIC_CACHELINE_ALIGNED char buffer[1500]; | 
|  | bool in_use = false; | 
|  | }; | 
|  |  | 
|  | public: | 
|  | TestPacketWriter(ParsedQuicVersion version, MockClock* clock) | 
|  | : version_(version), | 
|  | framer_(SupportedVersions(version_), Perspective::IS_SERVER), | 
|  | clock_(clock) { | 
|  | QuicFramerPeer::SetLastSerializedServerConnectionId(framer_.framer(), | 
|  | TestConnectionId()); | 
|  | framer_.framer()->SetInitialObfuscators(TestConnectionId()); | 
|  |  | 
|  | for (int i = 0; i < 128; ++i) { | 
|  | PacketBuffer* p = new PacketBuffer(); | 
|  | packet_buffer_pool_.push_back(p); | 
|  | packet_buffer_pool_index_[p->buffer] = p; | 
|  | packet_buffer_free_list_.push_back(p); | 
|  | } | 
|  | } | 
|  | TestPacketWriter(const TestPacketWriter&) = delete; | 
|  | TestPacketWriter& operator=(const TestPacketWriter&) = delete; | 
|  |  | 
|  | ~TestPacketWriter() override { | 
|  | EXPECT_EQ(packet_buffer_pool_.size(), packet_buffer_free_list_.size()) | 
|  | << packet_buffer_pool_.size() - packet_buffer_free_list_.size() | 
|  | << " out of " << packet_buffer_pool_.size() | 
|  | << " packet buffers have been leaked."; | 
|  | for (auto p : packet_buffer_pool_) { | 
|  | delete p; | 
|  | } | 
|  | } | 
|  |  | 
|  | // QuicPacketWriter interface | 
|  | WriteResult WritePacket(const char* buffer, | 
|  | size_t buf_len, | 
|  | const QuicIpAddress& /*self_address*/, | 
|  | const QuicSocketAddress& /*peer_address*/, | 
|  | PerPacketOptions* /*options*/) override { | 
|  | // If the buffer is allocated from the pool, return it back to the pool. | 
|  | // Note the buffer content doesn't change. | 
|  | if (packet_buffer_pool_index_.find(const_cast<char*>(buffer)) != | 
|  | packet_buffer_pool_index_.end()) { | 
|  | FreePacketBuffer(buffer); | 
|  | } | 
|  |  | 
|  | QuicEncryptedPacket packet(buffer, buf_len); | 
|  | ++packets_write_attempts_; | 
|  |  | 
|  | if (packet.length() >= sizeof(final_bytes_of_last_packet_)) { | 
|  | final_bytes_of_previous_packet_ = final_bytes_of_last_packet_; | 
|  | memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4, | 
|  | sizeof(final_bytes_of_last_packet_)); | 
|  | } | 
|  |  | 
|  | if (use_tagging_decrypter_) { | 
|  | if (framer_.framer()->version().KnowsWhichDecrypterToUse()) { | 
|  | framer_.framer()->InstallDecrypter( | 
|  | ENCRYPTION_INITIAL, std::make_unique<TaggingDecrypter>()); | 
|  | framer_.framer()->InstallDecrypter( | 
|  | ENCRYPTION_HANDSHAKE, std::make_unique<TaggingDecrypter>()); | 
|  | framer_.framer()->InstallDecrypter( | 
|  | ENCRYPTION_ZERO_RTT, std::make_unique<TaggingDecrypter>()); | 
|  | framer_.framer()->InstallDecrypter( | 
|  | ENCRYPTION_FORWARD_SECURE, std::make_unique<TaggingDecrypter>()); | 
|  | } else { | 
|  | framer_.framer()->SetDecrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingDecrypter>()); | 
|  | } | 
|  | } else if (framer_.framer()->version().KnowsWhichDecrypterToUse()) { | 
|  | framer_.framer()->InstallDecrypter( | 
|  | ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<NullDecrypter>(Perspective::IS_SERVER)); | 
|  | } | 
|  | EXPECT_TRUE(framer_.ProcessPacket(packet)) | 
|  | << framer_.framer()->detailed_error(); | 
|  | if (block_on_next_write_) { | 
|  | write_blocked_ = true; | 
|  | block_on_next_write_ = false; | 
|  | } | 
|  | if (next_packet_too_large_) { | 
|  | next_packet_too_large_ = false; | 
|  | return WriteResult(WRITE_STATUS_ERROR, QUIC_EMSGSIZE); | 
|  | } | 
|  | if (always_get_packet_too_large_) { | 
|  | return WriteResult(WRITE_STATUS_ERROR, QUIC_EMSGSIZE); | 
|  | } | 
|  | if (IsWriteBlocked()) { | 
|  | return WriteResult(is_write_blocked_data_buffered_ | 
|  | ? WRITE_STATUS_BLOCKED_DATA_BUFFERED | 
|  | : WRITE_STATUS_BLOCKED, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | if (ShouldWriteFail()) { | 
|  | return WriteResult(WRITE_STATUS_ERROR, 0); | 
|  | } | 
|  |  | 
|  | last_packet_size_ = packet.length(); | 
|  | last_packet_header_ = framer_.header(); | 
|  | if (!framer_.connection_close_frames().empty()) { | 
|  | ++connection_close_packets_; | 
|  | } | 
|  | if (!write_pause_time_delta_.IsZero()) { | 
|  | clock_->AdvanceTime(write_pause_time_delta_); | 
|  | } | 
|  | if (is_batch_mode_) { | 
|  | bytes_buffered_ += last_packet_size_; | 
|  | return WriteResult(WRITE_STATUS_OK, 0); | 
|  | } | 
|  | return WriteResult(WRITE_STATUS_OK, last_packet_size_); | 
|  | } | 
|  |  | 
|  | bool ShouldWriteFail() { return write_should_fail_; } | 
|  |  | 
|  | bool IsWriteBlocked() const override { return write_blocked_; } | 
|  |  | 
|  | void SetWriteBlocked() { write_blocked_ = true; } | 
|  |  | 
|  | void SetWritable() override { write_blocked_ = false; } | 
|  |  | 
|  | void SetShouldWriteFail() { write_should_fail_ = true; } | 
|  |  | 
|  | QuicByteCount GetMaxPacketSize( | 
|  | const QuicSocketAddress& /*peer_address*/) const override { | 
|  | return max_packet_size_; | 
|  | } | 
|  |  | 
|  | bool SupportsReleaseTime() const override { return supports_release_time_; } | 
|  |  | 
|  | bool IsBatchMode() const override { return is_batch_mode_; } | 
|  |  | 
|  | QuicPacketBuffer GetNextWriteLocation( | 
|  | const QuicIpAddress& /*self_address*/, | 
|  | const QuicSocketAddress& /*peer_address*/) override { | 
|  | if (GetQuicReloadableFlag(quic_avoid_leak_writer_buffer)) { | 
|  | return {AllocPacketBuffer(), | 
|  | [this](const char* p) { FreePacketBuffer(p); }}; | 
|  | } | 
|  | // Do not use writer buffer for serializing packets. | 
|  | return {nullptr, nullptr}; | 
|  | } | 
|  |  | 
|  | WriteResult Flush() override { | 
|  | flush_attempts_++; | 
|  | if (block_on_next_flush_) { | 
|  | block_on_next_flush_ = false; | 
|  | SetWriteBlocked(); | 
|  | return WriteResult(WRITE_STATUS_BLOCKED, /*errno*/ -1); | 
|  | } | 
|  | if (write_should_fail_) { | 
|  | return WriteResult(WRITE_STATUS_ERROR, /*errno*/ -1); | 
|  | } | 
|  | int bytes_flushed = bytes_buffered_; | 
|  | bytes_buffered_ = 0; | 
|  | return WriteResult(WRITE_STATUS_OK, bytes_flushed); | 
|  | } | 
|  |  | 
|  | void BlockOnNextFlush() { block_on_next_flush_ = true; } | 
|  |  | 
|  | void BlockOnNextWrite() { block_on_next_write_ = true; } | 
|  |  | 
|  | void SimulateNextPacketTooLarge() { next_packet_too_large_ = true; } | 
|  |  | 
|  | void AlwaysGetPacketTooLarge() { always_get_packet_too_large_ = true; } | 
|  |  | 
|  | // Sets the amount of time that the writer should before the actual write. | 
|  | void SetWritePauseTimeDelta(QuicTime::Delta delta) { | 
|  | write_pause_time_delta_ = delta; | 
|  | } | 
|  |  | 
|  | void SetBatchMode(bool new_value) { is_batch_mode_ = new_value; } | 
|  |  | 
|  | const QuicPacketHeader& header() { return framer_.header(); } | 
|  |  | 
|  | size_t frame_count() const { return framer_.num_frames(); } | 
|  |  | 
|  | const std::vector<QuicAckFrame>& ack_frames() const { | 
|  | return framer_.ack_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicStopWaitingFrame>& stop_waiting_frames() const { | 
|  | return framer_.stop_waiting_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicConnectionCloseFrame>& connection_close_frames() const { | 
|  | return framer_.connection_close_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicRstStreamFrame>& rst_stream_frames() const { | 
|  | return framer_.rst_stream_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<std::unique_ptr<QuicStreamFrame>>& stream_frames() const { | 
|  | return framer_.stream_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<std::unique_ptr<QuicCryptoFrame>>& crypto_frames() const { | 
|  | return framer_.crypto_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicPingFrame>& ping_frames() const { | 
|  | return framer_.ping_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicMessageFrame>& message_frames() const { | 
|  | return framer_.message_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicWindowUpdateFrame>& window_update_frames() const { | 
|  | return framer_.window_update_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicPaddingFrame>& padding_frames() const { | 
|  | return framer_.padding_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicPathChallengeFrame>& path_challenge_frames() const { | 
|  | return framer_.path_challenge_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicPathResponseFrame>& path_response_frames() const { | 
|  | return framer_.path_response_frames(); | 
|  | } | 
|  |  | 
|  | const QuicEncryptedPacket* coalesced_packet() const { | 
|  | return framer_.coalesced_packet(); | 
|  | } | 
|  |  | 
|  | size_t last_packet_size() { return last_packet_size_; } | 
|  |  | 
|  | const QuicPacketHeader& last_packet_header() const { | 
|  | return last_packet_header_; | 
|  | } | 
|  |  | 
|  | const QuicVersionNegotiationPacket* version_negotiation_packet() { | 
|  | return framer_.version_negotiation_packet(); | 
|  | } | 
|  |  | 
|  | void set_is_write_blocked_data_buffered(bool buffered) { | 
|  | is_write_blocked_data_buffered_ = buffered; | 
|  | } | 
|  |  | 
|  | void set_perspective(Perspective perspective) { | 
|  | // We invert perspective here, because the framer needs to parse packets | 
|  | // we send. | 
|  | QuicFramerPeer::SetPerspective(framer_.framer(), | 
|  | QuicUtils::InvertPerspective(perspective)); | 
|  | } | 
|  |  | 
|  | // final_bytes_of_last_packet_ returns the last four bytes of the previous | 
|  | // packet as a little-endian, uint32_t. This is intended to be used with a | 
|  | // TaggingEncrypter so that tests can determine which encrypter was used for | 
|  | // a given packet. | 
|  | uint32_t final_bytes_of_last_packet() { return final_bytes_of_last_packet_; } | 
|  |  | 
|  | // Returns the final bytes of the second to last packet. | 
|  | uint32_t final_bytes_of_previous_packet() { | 
|  | return final_bytes_of_previous_packet_; | 
|  | } | 
|  |  | 
|  | void use_tagging_decrypter() { use_tagging_decrypter_ = true; } | 
|  |  | 
|  | uint32_t packets_write_attempts() const { return packets_write_attempts_; } | 
|  |  | 
|  | uint32_t flush_attempts() const { return flush_attempts_; } | 
|  |  | 
|  | uint32_t connection_close_packets() const { | 
|  | return connection_close_packets_; | 
|  | } | 
|  |  | 
|  | void Reset() { framer_.Reset(); } | 
|  |  | 
|  | void SetSupportedVersions(const ParsedQuicVersionVector& versions) { | 
|  | framer_.SetSupportedVersions(versions); | 
|  | } | 
|  |  | 
|  | void set_max_packet_size(QuicByteCount max_packet_size) { | 
|  | max_packet_size_ = max_packet_size; | 
|  | } | 
|  |  | 
|  | void set_supports_release_time(bool supports_release_time) { | 
|  | supports_release_time_ = supports_release_time; | 
|  | } | 
|  |  | 
|  | SimpleQuicFramer* framer() { return &framer_; } | 
|  |  | 
|  | private: | 
|  | char* AllocPacketBuffer() { | 
|  | PacketBuffer* p = packet_buffer_free_list_.front(); | 
|  | EXPECT_FALSE(p->in_use); | 
|  | p->in_use = true; | 
|  | packet_buffer_free_list_.pop_front(); | 
|  | return p->buffer; | 
|  | } | 
|  |  | 
|  | void FreePacketBuffer(const char* buffer) { | 
|  | auto iter = packet_buffer_pool_index_.find(const_cast<char*>(buffer)); | 
|  | ASSERT_TRUE(iter != packet_buffer_pool_index_.end()); | 
|  | PacketBuffer* p = iter->second; | 
|  | ASSERT_TRUE(p->in_use); | 
|  | p->in_use = false; | 
|  | packet_buffer_free_list_.push_back(p); | 
|  | } | 
|  |  | 
|  | ParsedQuicVersion version_; | 
|  | SimpleQuicFramer framer_; | 
|  | size_t last_packet_size_ = 0; | 
|  | QuicPacketHeader last_packet_header_; | 
|  | bool write_blocked_ = false; | 
|  | bool write_should_fail_ = false; | 
|  | bool block_on_next_flush_ = false; | 
|  | bool block_on_next_write_ = false; | 
|  | bool next_packet_too_large_ = false; | 
|  | bool always_get_packet_too_large_ = false; | 
|  | bool is_write_blocked_data_buffered_ = false; | 
|  | bool is_batch_mode_ = false; | 
|  | // Number of times Flush() was called. | 
|  | uint32_t flush_attempts_ = 0; | 
|  | // (Batch mode only) Number of bytes buffered in writer. It is used as the | 
|  | // return value of a successful Flush(). | 
|  | uint32_t bytes_buffered_ = 0; | 
|  | uint32_t final_bytes_of_last_packet_ = 0; | 
|  | uint32_t final_bytes_of_previous_packet_ = 0; | 
|  | bool use_tagging_decrypter_ = false; | 
|  | uint32_t packets_write_attempts_ = 0; | 
|  | uint32_t connection_close_packets_ = 0; | 
|  | MockClock* clock_ = nullptr; | 
|  | // If non-zero, the clock will pause during WritePacket for this amount of | 
|  | // time. | 
|  | QuicTime::Delta write_pause_time_delta_ = QuicTime::Delta::Zero(); | 
|  | QuicByteCount max_packet_size_ = kMaxOutgoingPacketSize; | 
|  | bool supports_release_time_ = false; | 
|  | // Used to verify writer-allocated packet buffers are properly released. | 
|  | std::vector<PacketBuffer*> packet_buffer_pool_; | 
|  | // Buffer address => Address of the owning PacketBuffer. | 
|  | QuicHashMap<char*, PacketBuffer*> packet_buffer_pool_index_; | 
|  | // Indices in packet_buffer_pool_ that are not allocated. | 
|  | std::list<PacketBuffer*> packet_buffer_free_list_; | 
|  | }; | 
|  |  | 
|  | class TestConnection : public QuicConnection { | 
|  | public: | 
|  | TestConnection(QuicConnectionId connection_id, | 
|  | QuicSocketAddress address, | 
|  | TestConnectionHelper* helper, | 
|  | TestAlarmFactory* alarm_factory, | 
|  | TestPacketWriter* writer, | 
|  | Perspective perspective, | 
|  | ParsedQuicVersion version) | 
|  | : QuicConnection(connection_id, | 
|  | address, | 
|  | helper, | 
|  | alarm_factory, | 
|  | writer, | 
|  | /* owns_writer= */ false, | 
|  | perspective, | 
|  | SupportedVersions(version)), | 
|  | notifier_(nullptr) { | 
|  | writer->set_perspective(perspective); | 
|  | SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<NullEncrypter>(perspective)); | 
|  | SetDataProducer(&producer_); | 
|  | } | 
|  | TestConnection(const TestConnection&) = delete; | 
|  | TestConnection& operator=(const TestConnection&) = delete; | 
|  |  | 
|  | void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) { | 
|  | QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm); | 
|  | } | 
|  |  | 
|  | void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) { | 
|  | QuicConnectionPeer::SetLossAlgorithm(this, loss_algorithm); | 
|  | } | 
|  |  | 
|  | void SendPacket(EncryptionLevel /*level*/, | 
|  | uint64_t packet_number, | 
|  | std::unique_ptr<QuicPacket> packet, | 
|  | HasRetransmittableData retransmittable, | 
|  | bool has_ack, | 
|  | bool has_pending_frames) { | 
|  | ScopedPacketFlusher flusher(this); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | size_t encrypted_length = | 
|  | QuicConnectionPeer::GetFramer(this)->EncryptPayload( | 
|  | ENCRYPTION_INITIAL, QuicPacketNumber(packet_number), *packet, | 
|  | buffer, kMaxOutgoingPacketSize); | 
|  | SerializedPacket serialized_packet( | 
|  | QuicPacketNumber(packet_number), PACKET_4BYTE_PACKET_NUMBER, buffer, | 
|  | encrypted_length, has_ack, has_pending_frames); | 
|  | if (retransmittable == HAS_RETRANSMITTABLE_DATA) { | 
|  | serialized_packet.retransmittable_frames.push_back( | 
|  | QuicFrame(QuicPingFrame())); | 
|  | } | 
|  | OnSerializedPacket(std::move(serialized_packet)); | 
|  | } | 
|  |  | 
|  | QuicConsumedData SaveAndSendStreamData(QuicStreamId id, | 
|  | const struct iovec* iov, | 
|  | int iov_count, | 
|  | size_t total_length, | 
|  | QuicStreamOffset offset, | 
|  | StreamSendingState state) { | 
|  | ScopedPacketFlusher flusher(this); | 
|  | producer_.SaveStreamData(id, iov, iov_count, 0u, total_length); | 
|  | if (notifier_ != nullptr) { | 
|  | return notifier_->WriteOrBufferData(id, total_length, state); | 
|  | } | 
|  | return QuicConnection::SendStreamData(id, total_length, offset, state); | 
|  | } | 
|  |  | 
|  | QuicConsumedData SendStreamDataWithString(QuicStreamId id, | 
|  | quiche::QuicheStringPiece data, | 
|  | QuicStreamOffset offset, | 
|  | StreamSendingState state) { | 
|  | ScopedPacketFlusher flusher(this); | 
|  | if (!QuicUtils::IsCryptoStreamId(transport_version(), id) && | 
|  | this->encryption_level() == ENCRYPTION_INITIAL) { | 
|  | this->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | if (perspective() == Perspective::IS_CLIENT && !IsHandshakeComplete()) { | 
|  | OnHandshakeComplete(); | 
|  | } | 
|  | if (version().SupportsAntiAmplificationLimit()) { | 
|  | QuicConnectionPeer::SetAddressValidated(this); | 
|  | } | 
|  | } | 
|  | struct iovec iov; | 
|  | MakeIOVector(data, &iov); | 
|  | return SaveAndSendStreamData(id, &iov, 1, data.length(), offset, state); | 
|  | } | 
|  |  | 
|  | QuicConsumedData SendApplicationDataAtLevel(EncryptionLevel encryption_level, | 
|  | QuicStreamId id, | 
|  | quiche::QuicheStringPiece data, | 
|  | QuicStreamOffset offset, | 
|  | StreamSendingState state) { | 
|  | ScopedPacketFlusher flusher(this); | 
|  | DCHECK(encryption_level >= ENCRYPTION_ZERO_RTT); | 
|  | SetEncrypter(encryption_level, std::make_unique<TaggingEncrypter>(0x01)); | 
|  | SetDefaultEncryptionLevel(encryption_level); | 
|  | struct iovec iov; | 
|  | MakeIOVector(data, &iov); | 
|  | return SaveAndSendStreamData(id, &iov, 1, data.length(), offset, state); | 
|  | } | 
|  |  | 
|  | QuicConsumedData SendStreamData3() { | 
|  | return SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, transport_version()), "food", 0, | 
|  | NO_FIN); | 
|  | } | 
|  |  | 
|  | QuicConsumedData SendStreamData5() { | 
|  | return SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(2, transport_version()), "food2", 0, | 
|  | NO_FIN); | 
|  | } | 
|  |  | 
|  | // Ensures the connection can write stream data before writing. | 
|  | QuicConsumedData EnsureWritableAndSendStreamData5() { | 
|  | EXPECT_TRUE(CanWrite(HAS_RETRANSMITTABLE_DATA)); | 
|  | return SendStreamData5(); | 
|  | } | 
|  |  | 
|  | // The crypto stream has special semantics so that it is not blocked by a | 
|  | // congestion window limitation, and also so that it gets put into a separate | 
|  | // packet (so that it is easier to reason about a crypto frame not being | 
|  | // split needlessly across packet boundaries).  As a result, we have separate | 
|  | // tests for some cases for this stream. | 
|  | QuicConsumedData SendCryptoStreamData() { | 
|  | QuicStreamOffset offset = 0; | 
|  | quiche::QuicheStringPiece data("chlo"); | 
|  | if (!QuicVersionUsesCryptoFrames(transport_version())) { | 
|  | return SendCryptoDataWithString(data, offset); | 
|  | } | 
|  | producer_.SaveCryptoData(ENCRYPTION_INITIAL, offset, data); | 
|  | size_t bytes_written; | 
|  | if (notifier_) { | 
|  | bytes_written = | 
|  | notifier_->WriteCryptoData(ENCRYPTION_INITIAL, data.length(), offset); | 
|  | } else { | 
|  | bytes_written = QuicConnection::SendCryptoData(ENCRYPTION_INITIAL, | 
|  | data.length(), offset); | 
|  | } | 
|  | return QuicConsumedData(bytes_written, /*fin_consumed*/ false); | 
|  | } | 
|  |  | 
|  | QuicConsumedData SendCryptoDataWithString(quiche::QuicheStringPiece data, | 
|  | QuicStreamOffset offset) { | 
|  | return SendCryptoDataWithString(data, offset, ENCRYPTION_INITIAL); | 
|  | } | 
|  |  | 
|  | QuicConsumedData SendCryptoDataWithString(quiche::QuicheStringPiece data, | 
|  | QuicStreamOffset offset, | 
|  | EncryptionLevel encryption_level) { | 
|  | if (!QuicVersionUsesCryptoFrames(transport_version())) { | 
|  | return SendStreamDataWithString( | 
|  | QuicUtils::GetCryptoStreamId(transport_version()), data, offset, | 
|  | NO_FIN); | 
|  | } | 
|  | producer_.SaveCryptoData(encryption_level, offset, data); | 
|  | size_t bytes_written; | 
|  | if (notifier_) { | 
|  | bytes_written = | 
|  | notifier_->WriteCryptoData(encryption_level, data.length(), offset); | 
|  | } else { | 
|  | bytes_written = QuicConnection::SendCryptoData(encryption_level, | 
|  | data.length(), offset); | 
|  | } | 
|  | return QuicConsumedData(bytes_written, /*fin_consumed*/ false); | 
|  | } | 
|  |  | 
|  | void set_version(ParsedQuicVersion version) { | 
|  | QuicConnectionPeer::GetFramer(this)->set_version(version); | 
|  | } | 
|  |  | 
|  | void SetSupportedVersions(const ParsedQuicVersionVector& versions) { | 
|  | QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions); | 
|  | writer()->SetSupportedVersions(versions); | 
|  | } | 
|  |  | 
|  | void set_perspective(Perspective perspective) { | 
|  | writer()->set_perspective(perspective); | 
|  | QuicConnectionPeer::SetPerspective(this, perspective); | 
|  | } | 
|  |  | 
|  | // Enable path MTU discovery.  Assumes that the test is performed from the | 
|  | // server perspective and the higher value of MTU target is used. | 
|  | void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) { | 
|  | ASSERT_EQ(Perspective::IS_SERVER, perspective()); | 
|  |  | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(kMTUH); | 
|  | config.SetInitialReceivedConnectionOptions(connection_options); | 
|  | EXPECT_CALL(*send_algorithm, SetFromConfig(_, _)); | 
|  | SetFromConfig(config); | 
|  |  | 
|  | // Normally, the pacing would be disabled in the test, but calling | 
|  | // SetFromConfig enables it.  Set nearly-infinite bandwidth to make the | 
|  | // pacing algorithm work. | 
|  | EXPECT_CALL(*send_algorithm, PacingRate(_)) | 
|  | .WillRepeatedly(Return(QuicBandwidth::Infinite())); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetAckAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetAckAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetPingAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetPingAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetRetransmissionAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetRetransmissionAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetSendAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetSendAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetTimeoutAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetIdleNetworkDetectorAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetMtuDiscoveryAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetMtuDiscoveryAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetProcessUndecryptablePacketsAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetProcessUndecryptablePacketsAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetBlackholeDetectorAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetBlackholeDetectorAlarm(this)); | 
|  | } | 
|  |  | 
|  | void PathDegradingTimeout() { | 
|  | DCHECK(PathDegradingDetectionInProgress()); | 
|  | GetBlackholeDetectorAlarm()->Fire(); | 
|  | } | 
|  |  | 
|  | bool PathDegradingDetectionInProgress() { | 
|  | return QuicConnectionPeer::GetPathDegradingDeadline(this).IsInitialized(); | 
|  | } | 
|  |  | 
|  | bool BlackholeDetectionInProgress() { | 
|  | return QuicConnectionPeer::GetBlackholeDetectionDeadline(this) | 
|  | .IsInitialized(); | 
|  | } | 
|  |  | 
|  | void SetMaxTailLossProbes(size_t max_tail_loss_probes) { | 
|  | QuicSentPacketManagerPeer::SetMaxTailLossProbes( | 
|  | QuicConnectionPeer::GetSentPacketManager(this), max_tail_loss_probes); | 
|  | } | 
|  |  | 
|  | QuicByteCount GetBytesInFlight() { | 
|  | return QuicConnectionPeer::GetSentPacketManager(this)->GetBytesInFlight(); | 
|  | } | 
|  |  | 
|  | void set_notifier(SimpleSessionNotifier* notifier) { notifier_ = notifier; } | 
|  |  | 
|  | void ReturnEffectivePeerAddressForNextPacket(const QuicSocketAddress& addr) { | 
|  | next_effective_peer_addr_ = std::make_unique<QuicSocketAddress>(addr); | 
|  | } | 
|  |  | 
|  | bool PtoEnabled() { | 
|  | if (QuicConnectionPeer::GetSentPacketManager(this)->pto_enabled()) { | 
|  | // PTO mode is default enabled for T099. And TLP/RTO related tests are | 
|  | // stale. | 
|  | DCHECK(PROTOCOL_TLS1_3 == version().handshake_protocol || | 
|  | GetQuicReloadableFlag(quic_default_on_pto)); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SimpleDataProducer* producer() { return &producer_; } | 
|  |  | 
|  | using QuicConnection::active_effective_peer_migration_type; | 
|  | using QuicConnection::IsCurrentPacketConnectivityProbing; | 
|  | using QuicConnection::SelectMutualVersion; | 
|  | using QuicConnection::SendProbingRetransmissions; | 
|  | using QuicConnection::set_defer_send_in_response_to_packets; | 
|  |  | 
|  | protected: | 
|  | QuicSocketAddress GetEffectivePeerAddressFromCurrentPacket() const override { | 
|  | if (next_effective_peer_addr_) { | 
|  | return *std::move(next_effective_peer_addr_); | 
|  | } | 
|  | return QuicConnection::GetEffectivePeerAddressFromCurrentPacket(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | TestPacketWriter* writer() { | 
|  | return static_cast<TestPacketWriter*>(QuicConnection::writer()); | 
|  | } | 
|  |  | 
|  | SimpleDataProducer producer_; | 
|  |  | 
|  | SimpleSessionNotifier* notifier_; | 
|  |  | 
|  | std::unique_ptr<QuicSocketAddress> next_effective_peer_addr_; | 
|  | }; | 
|  |  | 
|  | enum class AckResponse { kDefer, kImmediate }; | 
|  |  | 
|  | // Run tests with combinations of {ParsedQuicVersion, AckResponse}. | 
|  | struct TestParams { | 
|  | TestParams(ParsedQuicVersion version, | 
|  | AckResponse ack_response, | 
|  | bool no_stop_waiting) | 
|  | : version(version), | 
|  | ack_response(ack_response), | 
|  | no_stop_waiting(no_stop_waiting) {} | 
|  |  | 
|  | ParsedQuicVersion version; | 
|  | AckResponse ack_response; | 
|  | bool no_stop_waiting; | 
|  | }; | 
|  |  | 
|  | // Used by ::testing::PrintToStringParamName(). | 
|  | std::string PrintToString(const TestParams& p) { | 
|  | return quiche::QuicheStrCat( | 
|  | ParsedQuicVersionToString(p.version), "_", | 
|  | (p.ack_response == AckResponse::kDefer ? "defer" : "immediate"), "_", | 
|  | (p.no_stop_waiting ? "No" : ""), "StopWaiting"); | 
|  | } | 
|  |  | 
|  | // Constructs various test permutations. | 
|  | std::vector<TestParams> GetTestParams() { | 
|  | QuicFlagSaver flags; | 
|  | std::vector<TestParams> params; | 
|  | ParsedQuicVersionVector all_supported_versions = AllSupportedVersions(); | 
|  | for (size_t i = 0; i < all_supported_versions.size(); ++i) { | 
|  | for (AckResponse ack_response : | 
|  | {AckResponse::kDefer, AckResponse::kImmediate}) { | 
|  | params.push_back( | 
|  | TestParams(all_supported_versions[i], ack_response, true)); | 
|  | if (!VersionHasIetfInvariantHeader( | 
|  | all_supported_versions[i].transport_version)) { | 
|  | params.push_back( | 
|  | TestParams(all_supported_versions[i], ack_response, false)); | 
|  | } | 
|  | } | 
|  | } | 
|  | return params; | 
|  | } | 
|  |  | 
|  | class QuicConnectionTest : public QuicTestWithParam<TestParams> { | 
|  | public: | 
|  | // For tests that do silent connection closes, no such packet is generated. In | 
|  | // order to verify the contents of the OnConnectionClosed upcall, EXPECTs | 
|  | // should invoke this method, saving the frame, and then the test can verify | 
|  | // the contents. | 
|  | void SaveConnectionCloseFrame(const QuicConnectionCloseFrame& frame, | 
|  | ConnectionCloseSource /*source*/) { | 
|  | saved_connection_close_frame_ = frame; | 
|  | connection_close_frame_count_++; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | QuicConnectionTest() | 
|  | : connection_id_(TestConnectionId()), | 
|  | framer_(SupportedVersions(version()), | 
|  | QuicTime::Zero(), | 
|  | Perspective::IS_CLIENT, | 
|  | connection_id_.length()), | 
|  | send_algorithm_(new StrictMock<MockSendAlgorithm>), | 
|  | loss_algorithm_(new MockLossAlgorithm()), | 
|  | helper_(new TestConnectionHelper(&clock_, &random_generator_)), | 
|  | alarm_factory_(new TestAlarmFactory()), | 
|  | peer_framer_(SupportedVersions(version()), | 
|  | QuicTime::Zero(), | 
|  | Perspective::IS_SERVER, | 
|  | connection_id_.length()), | 
|  | peer_creator_(connection_id_, | 
|  | &peer_framer_, | 
|  | /*delegate=*/nullptr), | 
|  | writer_(new TestPacketWriter(version(), &clock_)), | 
|  | connection_(connection_id_, | 
|  | kPeerAddress, | 
|  | helper_.get(), | 
|  | alarm_factory_.get(), | 
|  | writer_.get(), | 
|  | Perspective::IS_CLIENT, | 
|  | version()), | 
|  | creator_(QuicConnectionPeer::GetPacketCreator(&connection_)), | 
|  | manager_(QuicConnectionPeer::GetSentPacketManager(&connection_)), | 
|  | frame1_(0, false, 0, quiche::QuicheStringPiece(data1)), | 
|  | frame2_(0, false, 3, quiche::QuicheStringPiece(data2)), | 
|  | crypto_frame_(ENCRYPTION_INITIAL, 0, quiche::QuicheStringPiece(data1)), | 
|  | packet_number_length_(PACKET_4BYTE_PACKET_NUMBER), | 
|  | connection_id_included_(CONNECTION_ID_PRESENT), | 
|  | notifier_(&connection_), | 
|  | connection_close_frame_count_(0) { | 
|  | QUIC_DVLOG(2) << "QuicConnectionTest(" << PrintToString(GetParam()) << ")"; | 
|  | connection_.set_defer_send_in_response_to_packets(GetParam().ack_response == | 
|  | AckResponse::kDefer); | 
|  | framer_.SetInitialObfuscators(TestConnectionId()); | 
|  | connection_.InstallInitialCrypters(TestConnectionId()); | 
|  | CrypterPair crypters; | 
|  | CryptoUtils::CreateInitialObfuscators(Perspective::IS_SERVER, version(), | 
|  | TestConnectionId(), &crypters); | 
|  | peer_creator_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::move(crypters.encrypter)); | 
|  | if (version().KnowsWhichDecrypterToUse()) { | 
|  | peer_framer_.InstallDecrypter(ENCRYPTION_INITIAL, | 
|  | std::move(crypters.decrypter)); | 
|  | } else { | 
|  | peer_framer_.SetDecrypter(ENCRYPTION_INITIAL, | 
|  | std::move(crypters.decrypter)); | 
|  | } | 
|  | for (EncryptionLevel level : | 
|  | {ENCRYPTION_ZERO_RTT, ENCRYPTION_FORWARD_SECURE}) { | 
|  | peer_creator_.SetEncrypter( | 
|  | level, std::make_unique<NullEncrypter>(peer_framer_.perspective())); | 
|  | } | 
|  | QuicFramerPeer::SetLastSerializedServerConnectionId( | 
|  | QuicConnectionPeer::GetFramer(&connection_), connection_id_); | 
|  | QuicFramerPeer::SetLastWrittenPacketNumberLength( | 
|  | QuicConnectionPeer::GetFramer(&connection_), packet_number_length_); | 
|  | if (VersionHasIetfInvariantHeader(version().transport_version)) { | 
|  | EXPECT_TRUE(QuicConnectionPeer::GetNoStopWaitingFrames(&connection_)); | 
|  | } else { | 
|  | QuicConnectionPeer::SetNoStopWaitingFrames(&connection_, | 
|  | GetParam().no_stop_waiting); | 
|  | } | 
|  | QuicStreamId stream_id; | 
|  | if (QuicVersionUsesCryptoFrames(version().transport_version)) { | 
|  | stream_id = QuicUtils::GetFirstBidirectionalStreamId( | 
|  | version().transport_version, Perspective::IS_CLIENT); | 
|  | } else { | 
|  | stream_id = QuicUtils::GetCryptoStreamId(version().transport_version); | 
|  | } | 
|  | frame1_.stream_id = stream_id; | 
|  | frame2_.stream_id = stream_id; | 
|  | connection_.set_visitor(&visitor_); | 
|  | connection_.SetSessionNotifier(¬ifier_); | 
|  | connection_.set_notifier(¬ifier_); | 
|  | connection_.SetSendAlgorithm(send_algorithm_); | 
|  | connection_.SetLossAlgorithm(loss_algorithm_.get()); | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketNeutered(_)).Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) | 
|  | .WillRepeatedly(Return(kDefaultTCPMSS)); | 
|  | EXPECT_CALL(*send_algorithm_, PacingRate(_)) | 
|  | .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
|  | EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) | 
|  | .Times(AnyNumber()) | 
|  | .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
|  | EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)) | 
|  | .Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, OnPacketDecrypted(_)).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()) | 
|  | .WillRepeatedly(Invoke(¬ifier_, &SimpleSessionNotifier::OnCanWrite)); | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(false)); | 
|  | EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()) | 
|  | .Times(testing::AtMost(1)); | 
|  | EXPECT_CALL(*loss_algorithm_, GetLossTimeout()) | 
|  | .WillRepeatedly(Return(QuicTime::Zero())); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_START)); | 
|  | if (connection_.version().KnowsWhichDecrypterToUse()) { | 
|  | connection_.InstallDecrypter( | 
|  | ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<NullDecrypter>(Perspective::IS_CLIENT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | QuicConnectionTest(const QuicConnectionTest&) = delete; | 
|  | QuicConnectionTest& operator=(const QuicConnectionTest&) = delete; | 
|  |  | 
|  | ParsedQuicVersion version() { return GetParam().version; } | 
|  |  | 
|  | QuicStopWaitingFrame* stop_waiting() { | 
|  | QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_); | 
|  | return &stop_waiting_; | 
|  | } | 
|  |  | 
|  | QuicPacketNumber least_unacked() { | 
|  | if (writer_->stop_waiting_frames().empty()) { | 
|  | return QuicPacketNumber(); | 
|  | } | 
|  | return writer_->stop_waiting_frames()[0].least_unacked; | 
|  | } | 
|  |  | 
|  | void use_tagging_decrypter() { writer_->use_tagging_decrypter(); } | 
|  |  | 
|  | void SetDecrypter(EncryptionLevel level, | 
|  | std::unique_ptr<QuicDecrypter> decrypter) { | 
|  | if (connection_.version().KnowsWhichDecrypterToUse()) { | 
|  | connection_.InstallDecrypter(level, std::move(decrypter)); | 
|  | connection_.RemoveDecrypter(ENCRYPTION_INITIAL); | 
|  | } else { | 
|  | connection_.SetDecrypter(level, std::move(decrypter)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ProcessPacket(uint64_t number) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacket(number); | 
|  | if (connection_.GetSendAlarm()->IsSet()) { | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ProcessReceivedPacket(const QuicSocketAddress& self_address, | 
|  | const QuicSocketAddress& peer_address, | 
|  | const QuicReceivedPacket& packet) { | 
|  | connection_.ProcessUdpPacket(self_address, peer_address, packet); | 
|  | if (connection_.GetSendAlarm()->IsSet()) { | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | } | 
|  | } | 
|  |  | 
|  | QuicFrame MakeCryptoFrame() const { | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | return QuicFrame(new QuicCryptoFrame(crypto_frame_)); | 
|  | } | 
|  | return QuicFrame(QuicStreamFrame( | 
|  | QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, | 
|  | 0u, quiche::QuicheStringPiece())); | 
|  | } | 
|  |  | 
|  | void ProcessFramePacket(QuicFrame frame) { | 
|  | ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); | 
|  | } | 
|  |  | 
|  | void ProcessFramePacketWithAddresses(QuicFrame frame, | 
|  | QuicSocketAddress self_address, | 
|  | QuicSocketAddress peer_address) { | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(frame)); | 
|  | return ProcessFramesPacketWithAddresses(frames, self_address, peer_address); | 
|  | } | 
|  |  | 
|  | void ProcessFramesPacketWithAddresses(QuicFrames frames, | 
|  | QuicSocketAddress self_address, | 
|  | QuicSocketAddress peer_address) { | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket( | 
|  | &peer_creator_, | 
|  | QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) < | 
|  | ENCRYPTION_FORWARD_SECURE && | 
|  | connection_.perspective() == Perspective::IS_SERVER); | 
|  |  | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | SerializedPacket serialized_packet = | 
|  | QuicPacketCreatorPeer::SerializeAllFrames( | 
|  | &peer_creator_, frames, buffer, kMaxOutgoingPacketSize); | 
|  | connection_.ProcessUdpPacket( | 
|  | self_address, peer_address, | 
|  | QuicReceivedPacket(serialized_packet.encrypted_buffer, | 
|  | serialized_packet.encrypted_length, clock_.Now())); | 
|  | if (connection_.GetSendAlarm()->IsSet()) { | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Bypassing the packet creator is unrealistic, but allows us to process | 
|  | // packets the QuicPacketCreator won't allow us to create. | 
|  | void ForceProcessFramePacket(QuicFrame frame) { | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(frame)); | 
|  | bool send_version = connection_.perspective() == Perspective::IS_SERVER; | 
|  | if (connection_.version().KnowsWhichDecrypterToUse()) { | 
|  | send_version = true; | 
|  | } | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_, send_version); | 
|  | QuicPacketHeader header; | 
|  | QuicPacketCreatorPeer::FillPacketHeader(&peer_creator_, &header); | 
|  | char encrypted_buffer[kMaxOutgoingPacketSize]; | 
|  | size_t length = peer_framer_.BuildDataPacket( | 
|  | header, frames, encrypted_buffer, kMaxOutgoingPacketSize, | 
|  | ENCRYPTION_INITIAL); | 
|  | DCHECK_GT(length, 0u); | 
|  |  | 
|  | const size_t encrypted_length = peer_framer_.EncryptInPlace( | 
|  | ENCRYPTION_INITIAL, header.packet_number, | 
|  | GetStartOfEncryptedData(peer_framer_.version().transport_version, | 
|  | header), | 
|  | length, kMaxOutgoingPacketSize, encrypted_buffer); | 
|  | DCHECK_GT(encrypted_length, 0u); | 
|  |  | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(encrypted_buffer, encrypted_length, clock_.Now())); | 
|  | } | 
|  |  | 
|  | size_t ProcessFramePacketAtLevel(uint64_t number, | 
|  | QuicFrame frame, | 
|  | EncryptionLevel level) { | 
|  | QuicFrames frames; | 
|  | frames.push_back(frame); | 
|  | return ProcessFramesPacketAtLevel(number, frames, level); | 
|  | } | 
|  |  | 
|  | size_t ProcessFramesPacketAtLevel(uint64_t number, | 
|  | const QuicFrames& frames, | 
|  | EncryptionLevel level) { | 
|  | QuicPacketHeader header; | 
|  | header.destination_connection_id = connection_id_; | 
|  | header.packet_number_length = packet_number_length_; | 
|  | header.destination_connection_id_included = connection_id_included_; | 
|  | if (peer_framer_.perspective() == Perspective::IS_SERVER) { | 
|  | header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | } | 
|  | if (level == ENCRYPTION_INITIAL && | 
|  | peer_framer_.version().KnowsWhichDecrypterToUse()) { | 
|  | header.version_flag = true; | 
|  | if (QuicVersionHasLongHeaderLengths(peer_framer_.transport_version())) { | 
|  | header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1; | 
|  | header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2; | 
|  | } | 
|  | } | 
|  | if (header.version_flag && | 
|  | peer_framer_.perspective() == Perspective::IS_SERVER) { | 
|  | header.source_connection_id = connection_id_; | 
|  | header.source_connection_id_included = CONNECTION_ID_PRESENT; | 
|  | } | 
|  | header.packet_number = QuicPacketNumber(number); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  | // Set the correct encryption level and encrypter on peer_creator and | 
|  | // peer_framer, respectively. | 
|  | peer_creator_.set_encryption_level(level); | 
|  | if (QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) > | 
|  | ENCRYPTION_INITIAL) { | 
|  | peer_framer_.SetEncrypter( | 
|  | QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | // Set the corresponding decrypter. | 
|  | if (connection_.version().KnowsWhichDecrypterToUse()) { | 
|  | connection_.InstallDecrypter( | 
|  | QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), | 
|  | std::make_unique<StrictTaggingDecrypter>(0x01)); | 
|  | connection_.RemoveDecrypter(ENCRYPTION_INITIAL); | 
|  | } else { | 
|  | connection_.SetDecrypter( | 
|  | QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_), | 
|  | std::make_unique<StrictTaggingDecrypter>(0x01)); | 
|  | } | 
|  | } | 
|  |  | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | size_t encrypted_length = | 
|  | peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet, | 
|  | buffer, kMaxOutgoingPacketSize); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
|  | if (connection_.GetSendAlarm()->IsSet()) { | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | } | 
|  | return encrypted_length; | 
|  | } | 
|  |  | 
|  | size_t ProcessDataPacket(uint64_t number) { | 
|  | return ProcessDataPacketAtLevel(number, false, ENCRYPTION_FORWARD_SECURE); | 
|  | } | 
|  |  | 
|  | size_t ProcessDataPacket(QuicPacketNumber packet_number) { | 
|  | return ProcessDataPacketAtLevel(packet_number, false, | 
|  | ENCRYPTION_FORWARD_SECURE); | 
|  | } | 
|  |  | 
|  | size_t ProcessDataPacketAtLevel(QuicPacketNumber packet_number, | 
|  | bool has_stop_waiting, | 
|  | EncryptionLevel level) { | 
|  | return ProcessDataPacketAtLevel(packet_number.ToUint64(), has_stop_waiting, | 
|  | level); | 
|  | } | 
|  |  | 
|  | size_t ProcessCryptoPacketAtLevel(uint64_t number, EncryptionLevel level) { | 
|  | QuicPacketHeader header = ConstructPacketHeader(number, level); | 
|  | QuicFrames frames; | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | frames.push_back(QuicFrame(&crypto_frame_)); | 
|  | } else { | 
|  | frames.push_back(QuicFrame(frame1_)); | 
|  | } | 
|  | frames.push_back(QuicFrame(QuicPaddingFrame(-1))); | 
|  | std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | peer_creator_.set_encryption_level(level); | 
|  | size_t encrypted_length = | 
|  | peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet, | 
|  | buffer, kMaxOutgoingPacketSize); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
|  | if (connection_.GetSendAlarm()->IsSet()) { | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | } | 
|  | return encrypted_length; | 
|  | } | 
|  |  | 
|  | size_t ProcessDataPacketAtLevel(uint64_t number, | 
|  | bool has_stop_waiting, | 
|  | EncryptionLevel level) { | 
|  | std::unique_ptr<QuicPacket> packet( | 
|  | ConstructDataPacket(number, has_stop_waiting, level)); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | peer_creator_.set_encryption_level(level); | 
|  | size_t encrypted_length = | 
|  | peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet, | 
|  | buffer, kMaxOutgoingPacketSize); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
|  | if (connection_.GetSendAlarm()->IsSet()) { | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | } | 
|  | return encrypted_length; | 
|  | } | 
|  |  | 
|  | void ProcessClosePacket(uint64_t number) { | 
|  | std::unique_ptr<QuicPacket> packet(ConstructClosePacket(number)); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | size_t encrypted_length = peer_framer_.EncryptPayload( | 
|  | ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(number), *packet, buffer, | 
|  | kMaxOutgoingPacketSize); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  | } | 
|  |  | 
|  | QuicByteCount SendStreamDataToPeer(QuicStreamId id, | 
|  | quiche::QuicheStringPiece data, | 
|  | QuicStreamOffset offset, | 
|  | StreamSendingState state, | 
|  | QuicPacketNumber* last_packet) { | 
|  | QuicByteCount packet_size; | 
|  | // Save the last packet's size. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .Times(AnyNumber()) | 
|  | .WillRepeatedly(SaveArg<3>(&packet_size)); | 
|  | connection_.SendStreamDataWithString(id, data, offset, state); | 
|  | if (last_packet != nullptr) { | 
|  | *last_packet = creator_->packet_number(); | 
|  | } | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | return packet_size; | 
|  | } | 
|  |  | 
|  | void SendAckPacketToPeer() { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | { | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | connection_.SendAck(); | 
|  | } | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | } | 
|  |  | 
|  | void SendRstStream(QuicStreamId id, | 
|  | QuicRstStreamErrorCode error, | 
|  | QuicStreamOffset bytes_written) { | 
|  | notifier_.WriteOrBufferRstStream(id, error, bytes_written); | 
|  | connection_.OnStreamReset(id, error); | 
|  | } | 
|  |  | 
|  | void SendPing() { notifier_.WriteOrBufferPing(); } | 
|  |  | 
|  | MessageStatus SendMessage(quiche::QuicheStringPiece message) { | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | QuicMemSliceStorage storage(nullptr, 0, nullptr, 0); | 
|  | return connection_.SendMessage( | 
|  | 1, | 
|  | MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(), message, | 
|  | &storage), | 
|  | false); | 
|  | } | 
|  |  | 
|  | void ProcessAckPacket(uint64_t packet_number, QuicAckFrame* frame) { | 
|  | if (packet_number > 1) { | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, packet_number - 1); | 
|  | } else { | 
|  | QuicPacketCreatorPeer::ClearPacketNumber(&peer_creator_); | 
|  | } | 
|  | ProcessFramePacket(QuicFrame(frame)); | 
|  | } | 
|  |  | 
|  | void ProcessAckPacket(QuicAckFrame* frame) { | 
|  | ProcessFramePacket(QuicFrame(frame)); | 
|  | } | 
|  |  | 
|  | void ProcessStopWaitingPacket(QuicStopWaitingFrame frame) { | 
|  | ProcessFramePacket(QuicFrame(frame)); | 
|  | } | 
|  |  | 
|  | size_t ProcessStopWaitingPacketAtLevel(uint64_t number, | 
|  | QuicStopWaitingFrame frame, | 
|  | EncryptionLevel /*level*/) { | 
|  | return ProcessFramePacketAtLevel(number, QuicFrame(frame), | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  |  | 
|  | void ProcessGoAwayPacket(QuicGoAwayFrame* frame) { | 
|  | ProcessFramePacket(QuicFrame(frame)); | 
|  | } | 
|  |  | 
|  | bool IsMissing(uint64_t number) { | 
|  | return IsAwaitingPacket(connection_.ack_frame(), QuicPacketNumber(number), | 
|  | QuicPacketNumber()); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<QuicPacket> ConstructPacket(const QuicPacketHeader& header, | 
|  | const QuicFrames& frames) { | 
|  | auto packet = BuildUnsizedDataPacket(&peer_framer_, header, frames); | 
|  | EXPECT_NE(nullptr, packet.get()); | 
|  | return packet; | 
|  | } | 
|  |  | 
|  | QuicPacketHeader ConstructPacketHeader(uint64_t number, | 
|  | EncryptionLevel level) { | 
|  | QuicPacketHeader header; | 
|  | if (VersionHasIetfInvariantHeader(peer_framer_.transport_version()) && | 
|  | level < ENCRYPTION_FORWARD_SECURE) { | 
|  | // Set long header type accordingly. | 
|  | header.version_flag = true; | 
|  | header.form = IETF_QUIC_LONG_HEADER_PACKET; | 
|  | header.long_packet_type = EncryptionlevelToLongHeaderType(level); | 
|  | if (QuicVersionHasLongHeaderLengths( | 
|  | peer_framer_.version().transport_version)) { | 
|  | header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2; | 
|  | if (header.long_packet_type == INITIAL) { | 
|  | header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Set connection_id to peer's in memory representation as this data packet | 
|  | // is created by peer_framer. | 
|  | if (peer_framer_.perspective() == Perspective::IS_SERVER) { | 
|  | header.source_connection_id = connection_id_; | 
|  | header.source_connection_id_included = connection_id_included_; | 
|  | header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | } else { | 
|  | header.destination_connection_id = connection_id_; | 
|  | header.destination_connection_id_included = connection_id_included_; | 
|  | } | 
|  | if (VersionHasIetfInvariantHeader(peer_framer_.transport_version()) && | 
|  | peer_framer_.perspective() == Perspective::IS_SERVER) { | 
|  | header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | if (header.version_flag) { | 
|  | header.source_connection_id = connection_id_; | 
|  | header.source_connection_id_included = CONNECTION_ID_PRESENT; | 
|  | if (GetParam().version.handshake_protocol == PROTOCOL_QUIC_CRYPTO && | 
|  | header.long_packet_type == ZERO_RTT_PROTECTED) { | 
|  | header.nonce = &kTestDiversificationNonce; | 
|  | } | 
|  | } | 
|  | } | 
|  | header.packet_number_length = packet_number_length_; | 
|  | header.packet_number = QuicPacketNumber(number); | 
|  | return header; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<QuicPacket> ConstructDataPacket(uint64_t number, | 
|  | bool has_stop_waiting, | 
|  | EncryptionLevel level) { | 
|  | QuicPacketHeader header = ConstructPacketHeader(number, level); | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(frame1_)); | 
|  | if (has_stop_waiting) { | 
|  | frames.push_back(QuicFrame(stop_waiting_)); | 
|  | } | 
|  | return ConstructPacket(header, frames); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<SerializedPacket> ConstructProbingPacket() { | 
|  | if (VersionHasIetfQuicFrames(version().transport_version)) { | 
|  | QuicPathFrameBuffer payload = { | 
|  | {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}}; | 
|  | return QuicPacketCreatorPeer:: | 
|  | SerializePathChallengeConnectivityProbingPacket(&peer_creator_, | 
|  | &payload); | 
|  | } | 
|  | return QuicPacketCreatorPeer::SerializeConnectivityProbingPacket( | 
|  | &peer_creator_); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<QuicPacket> ConstructClosePacket(uint64_t number) { | 
|  | QuicPacketHeader header; | 
|  | // Set connection_id to peer's in memory representation as this connection | 
|  | // close packet is created by peer_framer. | 
|  | if (peer_framer_.perspective() == Perspective::IS_SERVER) { | 
|  | header.source_connection_id = connection_id_; | 
|  | header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | if (!VersionHasIetfInvariantHeader(peer_framer_.transport_version())) { | 
|  | header.source_connection_id_included = CONNECTION_ID_PRESENT; | 
|  | } | 
|  | } else { | 
|  | header.destination_connection_id = connection_id_; | 
|  | if (VersionHasIetfInvariantHeader(peer_framer_.transport_version())) { | 
|  | header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | header.packet_number = QuicPacketNumber(number); | 
|  |  | 
|  | QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY; | 
|  | QuicConnectionCloseFrame qccf(peer_framer_.transport_version(), | 
|  | kQuicErrorCode, "", | 
|  | /*transport_close_frame_type=*/0); | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(&qccf)); | 
|  | return ConstructPacket(header, frames); | 
|  | } | 
|  |  | 
|  | QuicTime::Delta DefaultRetransmissionTime() { | 
|  | return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); | 
|  | } | 
|  |  | 
|  | QuicTime::Delta DefaultDelayedAckTime() { | 
|  | return QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs); | 
|  | } | 
|  |  | 
|  | const QuicStopWaitingFrame InitStopWaitingFrame(uint64_t least_unacked) { | 
|  | QuicStopWaitingFrame frame; | 
|  | frame.least_unacked = QuicPacketNumber(least_unacked); | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | // Construct a ack_frame that acks all packet numbers between 1 and | 
|  | // |largest_acked|, except |missing|. | 
|  | // REQUIRES: 1 <= |missing| < |largest_acked| | 
|  | QuicAckFrame ConstructAckFrame(uint64_t largest_acked, uint64_t missing) { | 
|  | return ConstructAckFrame(QuicPacketNumber(largest_acked), | 
|  | QuicPacketNumber(missing)); | 
|  | } | 
|  |  | 
|  | QuicAckFrame ConstructAckFrame(QuicPacketNumber largest_acked, | 
|  | QuicPacketNumber missing) { | 
|  | if (missing == QuicPacketNumber(1)) { | 
|  | return InitAckFrame({{missing + 1, largest_acked + 1}}); | 
|  | } | 
|  | return InitAckFrame( | 
|  | {{QuicPacketNumber(1), missing}, {missing + 1, largest_acked + 1}}); | 
|  | } | 
|  |  | 
|  | // Undo nacking a packet within the frame. | 
|  | void AckPacket(QuicPacketNumber arrived, QuicAckFrame* frame) { | 
|  | EXPECT_FALSE(frame->packets.Contains(arrived)); | 
|  | frame->packets.Add(arrived); | 
|  | } | 
|  |  | 
|  | void TriggerConnectionClose() { | 
|  | // Send an erroneous packet to close the connection. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | // Triggers a connection by receiving ACK of unsent packet. | 
|  | QuicAckFrame frame = InitAckFrame(10000); | 
|  | ProcessAckPacket(1, &frame); | 
|  | EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == | 
|  | nullptr); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_INVALID_ACK_DATA)); | 
|  | } | 
|  |  | 
|  | void BlockOnNextWrite() { | 
|  | writer_->BlockOnNextWrite(); | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); | 
|  | } | 
|  |  | 
|  | void SimulateNextPacketTooLarge() { writer_->SimulateNextPacketTooLarge(); } | 
|  |  | 
|  | void AlwaysGetPacketTooLarge() { writer_->AlwaysGetPacketTooLarge(); } | 
|  |  | 
|  | void SetWritePauseTimeDelta(QuicTime::Delta delta) { | 
|  | writer_->SetWritePauseTimeDelta(delta); | 
|  | } | 
|  |  | 
|  | void CongestionBlockWrites() { | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)) | 
|  | .WillRepeatedly(testing::Return(false)); | 
|  | } | 
|  |  | 
|  | void CongestionUnblockWrites() { | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)) | 
|  | .WillRepeatedly(testing::Return(true)); | 
|  | } | 
|  |  | 
|  | void set_perspective(Perspective perspective) { | 
|  | connection_.set_perspective(perspective); | 
|  | if (perspective == Perspective::IS_SERVER) { | 
|  | connection_.set_can_truncate_connection_ids(true); | 
|  | QuicConnectionPeer::SetNegotiatedVersion(&connection_); | 
|  | connection_.OnSuccessfulVersionNegotiation(); | 
|  | } | 
|  | QuicFramerPeer::SetPerspective(&peer_framer_, | 
|  | QuicUtils::InvertPerspective(perspective)); | 
|  | } | 
|  |  | 
|  | void set_packets_between_probes_base( | 
|  | const QuicPacketCount packets_between_probes_base) { | 
|  | QuicConnectionPeer::ReInitializeMtuDiscoverer( | 
|  | &connection_, packets_between_probes_base, | 
|  | QuicPacketNumber(packets_between_probes_base)); | 
|  | } | 
|  |  | 
|  | bool IsDefaultTestConfiguration() { | 
|  | TestParams p = GetParam(); | 
|  | return p.ack_response == AckResponse::kImmediate && | 
|  | p.version == AllSupportedVersions()[0] && p.no_stop_waiting; | 
|  | } | 
|  |  | 
|  | void TestConnectionCloseQuicErrorCode(QuicErrorCode expected_code) { | 
|  | // Not strictly needed for this test, but is commonly done. | 
|  | EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == | 
|  | nullptr); | 
|  | const std::vector<QuicConnectionCloseFrame>& connection_close_frames = | 
|  | writer_->connection_close_frames(); | 
|  | ASSERT_EQ(1u, connection_close_frames.size()); | 
|  |  | 
|  | EXPECT_THAT(connection_close_frames[0].quic_error_code, | 
|  | IsError(expected_code)); | 
|  |  | 
|  | if (!VersionHasIetfQuicFrames(version().transport_version)) { | 
|  | EXPECT_THAT(connection_close_frames[0].wire_error_code, | 
|  | IsError(expected_code)); | 
|  | EXPECT_EQ(GOOGLE_QUIC_CONNECTION_CLOSE, | 
|  | connection_close_frames[0].close_type); | 
|  | return; | 
|  | } | 
|  |  | 
|  | QuicErrorCodeToIetfMapping mapping = | 
|  | QuicErrorCodeToTransportErrorCode(expected_code); | 
|  |  | 
|  | if (mapping.is_transport_close) { | 
|  | // This Google QUIC Error Code maps to a transport close, | 
|  | EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE, | 
|  | connection_close_frames[0].close_type); | 
|  | } else { | 
|  | // This maps to an application close. | 
|  | EXPECT_EQ(IETF_QUIC_APPLICATION_CONNECTION_CLOSE, | 
|  | connection_close_frames[0].close_type); | 
|  | } | 
|  | EXPECT_EQ(mapping.error_code, connection_close_frames[0].wire_error_code); | 
|  | } | 
|  |  | 
|  | void MtuDiscoveryTestInit() { | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  | if (version().SupportsAntiAmplificationLimit()) { | 
|  | QuicConnectionPeer::SetAddressValidated(&connection_); | 
|  | } | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); | 
|  | // QuicFramer::GetMaxPlaintextSize uses the smallest max plaintext size | 
|  | // across all encrypters. The initial encrypter used with IETF QUIC has a | 
|  | // 16-byte overhead, while the NullEncrypter used throughout this test has a | 
|  | // 12-byte overhead. This test tests behavior that relies on computing the | 
|  | // packet size correctly, so by unsetting the initial encrypter, we avoid | 
|  | // having a mismatch between the overheads for the encrypters used. In | 
|  | // non-test scenarios all encrypters used for a given connection have the | 
|  | // same overhead, either 12 bytes for ones using Google QUIC crypto, or 16 | 
|  | // bytes for ones using TLS. | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, nullptr); | 
|  | // Prevent packets from being coalesced. | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | void PathProbeTestInit(Perspective perspective) { | 
|  | set_perspective(perspective); | 
|  | EXPECT_EQ(connection_.perspective(), perspective); | 
|  | if (perspective == Perspective::IS_SERVER) { | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  | } | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); | 
|  | } | 
|  |  | 
|  | void TestClientRetryHandling(bool invalid_retry_tag, | 
|  | bool missing_original_id_in_config, | 
|  | bool wrong_original_id_in_config, | 
|  | bool missing_retry_id_in_config, | 
|  | bool wrong_retry_id_in_config); | 
|  |  | 
|  | QuicConnectionId connection_id_; | 
|  | QuicFramer framer_; | 
|  |  | 
|  | MockSendAlgorithm* send_algorithm_; | 
|  | std::unique_ptr<MockLossAlgorithm> loss_algorithm_; | 
|  | MockClock clock_; | 
|  | MockRandom random_generator_; | 
|  | SimpleBufferAllocator buffer_allocator_; | 
|  | std::unique_ptr<TestConnectionHelper> helper_; | 
|  | std::unique_ptr<TestAlarmFactory> alarm_factory_; | 
|  | QuicFramer peer_framer_; | 
|  | QuicPacketCreator peer_creator_; | 
|  | std::unique_ptr<TestPacketWriter> writer_; | 
|  | TestConnection connection_; | 
|  | QuicPacketCreator* creator_; | 
|  | QuicSentPacketManager* manager_; | 
|  | StrictMock<MockQuicConnectionVisitor> visitor_; | 
|  |  | 
|  | QuicStreamFrame frame1_; | 
|  | QuicStreamFrame frame2_; | 
|  | QuicCryptoFrame crypto_frame_; | 
|  | QuicAckFrame ack_; | 
|  | QuicStopWaitingFrame stop_waiting_; | 
|  | QuicPacketNumberLength packet_number_length_; | 
|  | QuicConnectionIdIncluded connection_id_included_; | 
|  |  | 
|  | SimpleSessionNotifier notifier_; | 
|  |  | 
|  | QuicConnectionCloseFrame saved_connection_close_frame_; | 
|  | int connection_close_frame_count_; | 
|  | }; | 
|  |  | 
|  | // Run all end to end tests with all supported versions. | 
|  | INSTANTIATE_TEST_SUITE_P(QuicConnectionTests, | 
|  | QuicConnectionTest, | 
|  | ::testing::ValuesIn(GetTestParams()), | 
|  | ::testing::PrintToStringParamName()); | 
|  |  | 
|  | // These two tests ensure that the QuicErrorCode mapping works correctly. | 
|  | // Both tests expect to see a Google QUIC close if not running IETF QUIC. | 
|  | // If running IETF QUIC, the first will generate a transport connection | 
|  | // close, the second an application connection close. | 
|  | // The connection close codes for the two tests are manually chosen; | 
|  | // they are expected to always map to transport- and application- | 
|  | // closes, respectively. If that changes, new codes should be chosen. | 
|  | TEST_P(QuicConnectionTest, CloseErrorCodeTestTransport) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | connection_.CloseConnection( | 
|  | IETF_QUIC_PROTOCOL_VIOLATION, "Should be transport close", | 
|  | ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION); | 
|  | } | 
|  |  | 
|  | // Test that the IETF QUIC Error code mapping function works | 
|  | // properly for application connection close codes. | 
|  | TEST_P(QuicConnectionTest, CloseErrorCodeTestApplication) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | connection_.CloseConnection( | 
|  | QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE, | 
|  | "Should be application close", | 
|  | ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SelfAddressChangeAtClient) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | // Cause change in self_address. | 
|  | QuicIpAddress host; | 
|  | host.FromString("1.1.1.1"); | 
|  | QuicSocketAddress self_address(host, 123); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address, | 
|  | kPeerAddress); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SelfAddressChangeAtServer) { | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  |  | 
|  | EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | // Cause change in self_address. | 
|  | QuicIpAddress host; | 
|  | host.FromString("1.1.1.1"); | 
|  | QuicSocketAddress self_address(host, 123); | 
|  | EXPECT_CALL(visitor_, AllowSelfAddressChange()).WillOnce(Return(false)); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address, | 
|  | kPeerAddress); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_ERROR_MIGRATING_ADDRESS); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AllowSelfAddressChangeToMappedIpv4AddressAtServer) { | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  |  | 
|  | EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3); | 
|  | } | 
|  | QuicIpAddress host; | 
|  | host.FromString("1.1.1.1"); | 
|  | QuicSocketAddress self_address1(host, 443); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address1, | 
|  | kPeerAddress); | 
|  | // Cause self_address change to mapped Ipv4 address. | 
|  | QuicIpAddress host2; | 
|  | host2.FromString(quiche::QuicheStrCat( | 
|  | "::ffff:", connection_.self_address().host().ToString())); | 
|  | QuicSocketAddress self_address2(host2, connection_.self_address().port()); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address2, | 
|  | kPeerAddress); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | // self_address change back to Ipv4 address. | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address1, | 
|  | kPeerAddress); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientAddressChangeAndPacketReordered) { | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  |  | 
|  | // Clear direct_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | // Clear effective_peer_address, it is the same as direct_peer_address for | 
|  | // this test. | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); | 
|  | const QuicSocketAddress kNewPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), | 
|  | /*port=*/23456); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kNewPeerAddress); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Decrease packet number to simulate out-of-order packets. | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4); | 
|  | // This is an old packet, do not migrate. | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PeerAddressChangeAtServer) { | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  | EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
|  |  | 
|  | // Clear direct_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | // Clear effective_peer_address, it is the same as direct_peer_address for | 
|  | // this test. | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  | EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Process another packet with a different peer address on server side will | 
|  | // start connection migration. | 
|  | const QuicSocketAddress kNewPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kNewPeerAddress); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, EffectivePeerAddressChangeAtServer) { | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  | EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
|  | if (version().SupportsAntiAmplificationLimit()) { | 
|  | QuicConnectionPeer::SetAddressValidated(&connection_); | 
|  | } | 
|  |  | 
|  | // Clear direct_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | // Clear effective_peer_address, it is different from direct_peer_address for | 
|  | // this test. | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  | const QuicSocketAddress kEffectivePeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/43210); | 
|  | connection_.ReturnEffectivePeerAddressForNextPacket(kEffectivePeerAddress); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kEffectivePeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Process another packet with the same direct peer address and different | 
|  | // effective peer address on server side will start connection migration. | 
|  | const QuicSocketAddress kNewEffectivePeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/54321); | 
|  | connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress); | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Process another packet with a different direct peer address and the same | 
|  | // effective peer address on server side will not start connection migration. | 
|  | const QuicSocketAddress kNewPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
|  | connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress); | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | // ack_frame is used to complete the migration started by the last packet, we | 
|  | // need to make sure a new migration does not start after the previous one is | 
|  | // completed. | 
|  | QuicAckFrame ack_frame = InitAckFrame(1); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
|  | ProcessFramePacketWithAddresses(QuicFrame(&ack_frame), kSelfAddress, | 
|  | kNewPeerAddress); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Process another packet with different direct peer address and different | 
|  | // effective peer address on server side will start connection migration. | 
|  | const QuicSocketAddress kNewerEffectivePeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/65432); | 
|  | const QuicSocketAddress kFinalPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/34567); | 
|  | connection_.ReturnEffectivePeerAddressForNextPacket( | 
|  | kNewerEffectivePeerAddress); | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kFinalPeerAddress); | 
|  | EXPECT_EQ(kFinalPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kNewerEffectivePeerAddress, connection_.effective_peer_address()); | 
|  | EXPECT_EQ(PORT_CHANGE, connection_.active_effective_peer_migration_type()); | 
|  |  | 
|  | // While the previous migration is ongoing, process another packet with the | 
|  | // same direct peer address and different effective peer address on server | 
|  | // side will start a new connection migration. | 
|  | const QuicSocketAddress kNewestEffectivePeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/65430); | 
|  | connection_.ReturnEffectivePeerAddressForNextPacket( | 
|  | kNewestEffectivePeerAddress); | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1); | 
|  | EXPECT_CALL(*send_algorithm_, OnConnectionMigration()).Times(1); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kFinalPeerAddress); | 
|  | EXPECT_EQ(kFinalPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kNewestEffectivePeerAddress, connection_.effective_peer_address()); | 
|  | EXPECT_EQ(IPV6_TO_IPV4_CHANGE, | 
|  | connection_.active_effective_peer_migration_type()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ReceivePathProbeWithNoAddressChangeAtServer) { | 
|  | PathProbeTestInit(Perspective::IS_SERVER); | 
|  |  | 
|  | // Clear direct_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | // Clear effective_peer_address, it is the same as direct_peer_address for | 
|  | // this test. | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  | EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | EXPECT_CALL(visitor_, OnPacketReceived(_, _, false)).Times(0); | 
|  |  | 
|  | // Process a padded PING or PATH CHALLENGE packet with no peer address change | 
|  | // on server side will be ignored. | 
|  | std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
|  |  | 
|  | std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
|  | QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
|  | probing_packet->encrypted_length), | 
|  | clock_.Now())); | 
|  |  | 
|  | uint64_t num_probing_received = | 
|  | connection_.GetStats().num_connectivity_probing_received; | 
|  | ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received); | 
|  |  | 
|  | EXPECT_EQ(num_probing_received, | 
|  | connection_.GetStats().num_connectivity_probing_received); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  | } | 
|  |  | 
|  | // Regression test for b/150161358. | 
|  | TEST_P(QuicConnectionTest, BufferedMtuPacketTooBig) { | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); | 
|  | writer_->SetWriteBlocked(); | 
|  |  | 
|  | // Send a MTU packet while blocked. It should be buffered. | 
|  | connection_.SendMtuDiscoveryPacket(kMaxOutgoingPacketSize); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  |  | 
|  | writer_->AlwaysGetPacketTooLarge(); | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WriteOutOfOrderQueuedPackets) { | 
|  | // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. | 
|  | if (!IsDefaultTestConfiguration()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | set_perspective(Perspective::IS_CLIENT); | 
|  |  | 
|  | BlockOnNextWrite(); | 
|  |  | 
|  | QuicStreamId stream_id = 2; | 
|  | connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN); | 
|  |  | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | writer_->SetWritable(); | 
|  | connection_.SendConnectivityProbingPacket(writer_.get(), | 
|  | connection_.peer_address()); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
|  | connection_.OnCanWrite(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DiscardQueuedPacketsAfterConnectionClose) { | 
|  | // Regression test for b/74073386. | 
|  | { | 
|  | InSequence seq; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .Times(AtLeast(1)); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(AtLeast(1)); | 
|  | } | 
|  |  | 
|  | set_perspective(Perspective::IS_CLIENT); | 
|  |  | 
|  | writer_->SimulateNextPacketTooLarge(); | 
|  |  | 
|  | // This packet write should fail, which should cause the connection to close | 
|  | // after sending a connection close packet, then the failed packet should be | 
|  | // queued. | 
|  | connection_.SendStreamDataWithString(/*id=*/2, "foo", 0, NO_FIN); | 
|  |  | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | // No need to buffer packets. | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.GetStats().packets_discarded); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(0u, connection_.GetStats().packets_discarded); | 
|  | } | 
|  |  | 
|  | // Receive a path probe request at the server side, i.e., | 
|  | // in non-IETF version: receive a padded PING packet with a peer addess change; | 
|  | // in IETF version: receive a packet contains PATH CHALLENGE with peer address | 
|  | // change. | 
|  | TEST_P(QuicConnectionTest, ReceivePathProbingAtServer) { | 
|  | PathProbeTestInit(Perspective::IS_SERVER); | 
|  |  | 
|  | // Clear direct_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | // Clear effective_peer_address, it is the same as direct_peer_address for | 
|  | // this test. | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  | EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | if (!GetParam().version.HasIetfQuicFrames()) { | 
|  | EXPECT_CALL(visitor_, | 
|  | OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
|  | .Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0); | 
|  | } | 
|  | // Process a padded PING packet from a new peer address on server side | 
|  | // is effectively receiving a connectivity probing. | 
|  | const QuicSocketAddress kNewPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
|  |  | 
|  | std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
|  | std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
|  | QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
|  | probing_packet->encrypted_length), | 
|  | clock_.Now())); | 
|  |  | 
|  | uint64_t num_probing_received = | 
|  | connection_.GetStats().num_connectivity_probing_received; | 
|  | ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received); | 
|  |  | 
|  | EXPECT_EQ(num_probing_received + 1, | 
|  | connection_.GetStats().num_connectivity_probing_received); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Process another packet with the old peer address on server side will not | 
|  | // start peer migration. | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  | } | 
|  |  | 
|  | // Receive a padded PING packet with a port change on server side. | 
|  | TEST_P(QuicConnectionTest, ReceivePaddedPingWithPortChangeAtServer) { | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  | EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
|  |  | 
|  | // Clear direct_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | // Clear effective_peer_address, it is the same as direct_peer_address for | 
|  | // this test. | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  | EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
|  |  | 
|  | if (GetParam().version.UsesCryptoFrames()) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | if (GetParam().version.HasIetfQuicFrames()) { | 
|  | // In IETF version, a padded PING packet with port change is not taken as | 
|  | // connectivity probe. | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
|  | EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0); | 
|  | } else { | 
|  | // In non-IETF version, process a padded PING packet from a new peer | 
|  | // address on server side is effectively receiving a connectivity probing. | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | EXPECT_CALL(visitor_, | 
|  | OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
|  | .Times(1); | 
|  | } | 
|  | const QuicSocketAddress kNewPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
|  |  | 
|  | QuicFrames frames; | 
|  | // Write a PING frame, which has no data payload. | 
|  | QuicPingFrame ping_frame; | 
|  | frames.push_back(QuicFrame(ping_frame)); | 
|  |  | 
|  | // Add padding to the rest of the packet. | 
|  | QuicPaddingFrame padding_frame; | 
|  | frames.push_back(QuicFrame(padding_frame)); | 
|  |  | 
|  | uint64_t num_probing_received = | 
|  | connection_.GetStats().num_connectivity_probing_received; | 
|  |  | 
|  | ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress); | 
|  |  | 
|  | if (GetParam().version.HasIetfQuicFrames()) { | 
|  | // Padded PING with port changen is not considered as connectivity probe but | 
|  | // a PORT CHANGE. | 
|  | EXPECT_EQ(num_probing_received, | 
|  | connection_.GetStats().num_connectivity_probing_received); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
|  | } else { | 
|  | EXPECT_EQ(num_probing_received + 1, | 
|  | connection_.GetStats().num_connectivity_probing_received); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  | } | 
|  |  | 
|  | // Process another packet with the old peer address on server side. | 
|  | if (GetParam().version.HasIetfQuicFrames()) { | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ReceiveReorderedPathProbingAtServer) { | 
|  | PathProbeTestInit(Perspective::IS_SERVER); | 
|  |  | 
|  | // Clear direct_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | // Clear effective_peer_address, it is the same as direct_peer_address for | 
|  | // this test. | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  | EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Decrease packet number to simulate out-of-order packets. | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | if (!GetParam().version.HasIetfQuicFrames()) { | 
|  | EXPECT_CALL(visitor_, | 
|  | OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
|  | .Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0); | 
|  | } | 
|  |  | 
|  | // Process a padded PING packet from a new peer address on server side | 
|  | // is effectively receiving a connectivity probing, even if a newer packet has | 
|  | // been received before this one. | 
|  | const QuicSocketAddress kNewPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
|  |  | 
|  | std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
|  | std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
|  | QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
|  | probing_packet->encrypted_length), | 
|  | clock_.Now())); | 
|  |  | 
|  | uint64_t num_probing_received = | 
|  | connection_.GetStats().num_connectivity_probing_received; | 
|  | ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received); | 
|  |  | 
|  | EXPECT_EQ(num_probing_received + 1, | 
|  | connection_.GetStats().num_connectivity_probing_received); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, MigrateAfterProbingAtServer) { | 
|  | PathProbeTestInit(Perspective::IS_SERVER); | 
|  |  | 
|  | // Clear direct_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | // Clear effective_peer_address, it is the same as direct_peer_address for | 
|  | // this test. | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  | EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | if (!GetParam().version.HasIetfQuicFrames()) { | 
|  | EXPECT_CALL(visitor_, | 
|  | OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
|  | .Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0); | 
|  | } | 
|  |  | 
|  | // Process a padded PING packet from a new peer address on server side | 
|  | // is effectively receiving a connectivity probing. | 
|  | const QuicSocketAddress kNewPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
|  |  | 
|  | std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
|  | std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
|  | QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
|  | probing_packet->encrypted_length), | 
|  | clock_.Now())); | 
|  | ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Process another non-probing packet with the new peer address on server | 
|  | // side will start peer migration. | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1); | 
|  |  | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kNewPeerAddress); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ReceivePaddedPingAtClient) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | PathProbeTestInit(Perspective::IS_CLIENT); | 
|  |  | 
|  | // Clear direct_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | // Clear effective_peer_address, it is the same as direct_peer_address for | 
|  | // this test. | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  | EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Client takes all padded PING packet as speculative connectivity | 
|  | // probing packet, and reports to visitor. | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | EXPECT_CALL(visitor_, OnPacketReceived(_, _, false)).Times(1); | 
|  |  | 
|  | std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
|  | std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
|  | QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
|  | probing_packet->encrypted_length), | 
|  | clock_.Now())); | 
|  | uint64_t num_probing_received = | 
|  | connection_.GetStats().num_connectivity_probing_received; | 
|  | ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received); | 
|  |  | 
|  | EXPECT_EQ(num_probing_received, | 
|  | connection_.GetStats().num_connectivity_probing_received); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ReceiveConnectivityProbingResponseAtClient) { | 
|  | // TODO(b/150095484): add test coverage for IETF to verify that client takes | 
|  | // PATH RESPONSE with peer address change as correct validation on the new | 
|  | // path. | 
|  | if (GetParam().version.HasIetfQuicFrames()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | PathProbeTestInit(Perspective::IS_CLIENT); | 
|  |  | 
|  | // Clear direct_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | // Clear effective_peer_address, it is the same as direct_peer_address for | 
|  | // this test. | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  | EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Process a padded PING packet with a different self address on client side | 
|  | // is effectively receiving a connectivity probing. | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | if (!GetParam().version.HasIetfQuicFrames()) { | 
|  | EXPECT_CALL(visitor_, | 
|  | OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
|  | .Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0); | 
|  | } | 
|  |  | 
|  | const QuicSocketAddress kNewSelfAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
|  |  | 
|  | std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
|  | std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
|  | QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
|  | probing_packet->encrypted_length), | 
|  | clock_.Now())); | 
|  | uint64_t num_probing_received = | 
|  | connection_.GetStats().num_connectivity_probing_received; | 
|  | ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received); | 
|  |  | 
|  | EXPECT_EQ(num_probing_received + 1, | 
|  | connection_.GetStats().num_connectivity_probing_received); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PeerAddressChangeAtClient) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | set_perspective(Perspective::IS_CLIENT); | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
|  |  | 
|  | // Clear direct_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | // Clear effective_peer_address, it is the same as direct_peer_address for | 
|  | // this test. | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  | EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Process another packet with a different peer address on client side will | 
|  | // only update peer address. | 
|  | const QuicSocketAddress kNewPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kNewPeerAddress); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, MaxPacketSize) { | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
|  | EXPECT_EQ(1350u, connection_.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PeerLowersMaxPacketSize) { | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
|  |  | 
|  | // SetFromConfig is always called after construction from InitializeSession. | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | constexpr uint32_t kTestMaxPacketSize = 1233u; | 
|  | QuicConfig config; | 
|  | QuicConfigPeer::SetReceivedMaxPacketSize(&config, kTestMaxPacketSize); | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | EXPECT_EQ(kTestMaxPacketSize, connection_.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PeerCannotRaiseMaxPacketSize) { | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
|  |  | 
|  | // SetFromConfig is always called after construction from InitializeSession. | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | constexpr uint32_t kTestMaxPacketSize = 1450u; | 
|  | QuicConfig config; | 
|  | QuicConfigPeer::SetReceivedMaxPacketSize(&config, kTestMaxPacketSize); | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) { | 
|  | TestConnection connection(TestConnectionId(), kPeerAddress, helper_.get(), | 
|  | alarm_factory_.get(), writer_.get(), | 
|  | Perspective::IS_SERVER, version()); | 
|  | EXPECT_EQ(Perspective::IS_SERVER, connection.perspective()); | 
|  | EXPECT_EQ(1000u, connection.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) { | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | connection_.SetMaxPacketLength(1000); | 
|  |  | 
|  | QuicPacketHeader header; | 
|  | header.destination_connection_id = connection_id_; | 
|  | header.version_flag = true; | 
|  | header.packet_number = QuicPacketNumber(12); | 
|  |  | 
|  | if (QuicVersionHasLongHeaderLengths( | 
|  | peer_framer_.version().transport_version)) { | 
|  | header.long_packet_type = INITIAL; | 
|  | header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1; | 
|  | header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2; | 
|  | } | 
|  |  | 
|  | QuicFrames frames; | 
|  | QuicPaddingFrame padding; | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | frames.push_back(QuicFrame(&crypto_frame_)); | 
|  | } else { | 
|  | frames.push_back(QuicFrame(frame1_)); | 
|  | } | 
|  | frames.push_back(QuicFrame(padding)); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | size_t encrypted_length = | 
|  | peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12), | 
|  | *packet, buffer, kMaxOutgoingPacketSize); | 
|  | EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length); | 
|  |  | 
|  | framer_.set_version(version()); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | } | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  |  | 
|  | EXPECT_EQ(kMaxOutgoingPacketSize, connection_.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSizeWhileWriterLimited) { | 
|  | const QuicByteCount lower_max_packet_size = 1240; | 
|  | writer_->set_max_packet_size(lower_max_packet_size); | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | connection_.SetMaxPacketLength(1000); | 
|  | EXPECT_EQ(1000u, connection_.max_packet_length()); | 
|  |  | 
|  | QuicPacketHeader header; | 
|  | header.destination_connection_id = connection_id_; | 
|  | header.version_flag = true; | 
|  | header.packet_number = QuicPacketNumber(12); | 
|  |  | 
|  | if (QuicVersionHasLongHeaderLengths( | 
|  | peer_framer_.version().transport_version)) { | 
|  | header.long_packet_type = INITIAL; | 
|  | header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1; | 
|  | header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2; | 
|  | } | 
|  |  | 
|  | QuicFrames frames; | 
|  | QuicPaddingFrame padding; | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | frames.push_back(QuicFrame(&crypto_frame_)); | 
|  | } else { | 
|  | frames.push_back(QuicFrame(frame1_)); | 
|  | } | 
|  | frames.push_back(QuicFrame(padding)); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | size_t encrypted_length = | 
|  | peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12), | 
|  | *packet, buffer, kMaxOutgoingPacketSize); | 
|  | EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length); | 
|  |  | 
|  | framer_.set_version(version()); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | } | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  |  | 
|  | // Here, the limit imposed by the writer is lower than the size of the packet | 
|  | // received, so the writer max packet size is used. | 
|  | EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriter) { | 
|  | const QuicByteCount lower_max_packet_size = 1240; | 
|  | writer_->set_max_packet_size(lower_max_packet_size); | 
|  |  | 
|  | static_assert(lower_max_packet_size < kDefaultMaxPacketSize, | 
|  | "Default maximum packet size is too low"); | 
|  | connection_.SetMaxPacketLength(kDefaultMaxPacketSize); | 
|  |  | 
|  | EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriterForNewConnection) { | 
|  | const QuicConnectionId connection_id = TestConnectionId(17); | 
|  | const QuicByteCount lower_max_packet_size = 1240; | 
|  | writer_->set_max_packet_size(lower_max_packet_size); | 
|  | TestConnection connection(connection_id, kPeerAddress, helper_.get(), | 
|  | alarm_factory_.get(), writer_.get(), | 
|  | Perspective::IS_CLIENT, version()); | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection.perspective()); | 
|  | EXPECT_EQ(lower_max_packet_size, connection.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PacketsInOrder) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | ProcessPacket(1); | 
|  | EXPECT_EQ(QuicPacketNumber(1u), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
|  |  | 
|  | ProcessPacket(2); | 
|  | EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
|  |  | 
|  | ProcessPacket(3); | 
|  | EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PacketsOutOfOrder) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | ProcessPacket(3); | 
|  | EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_TRUE(IsMissing(2)); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  |  | 
|  | ProcessPacket(2); | 
|  | EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_FALSE(IsMissing(2)); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  |  | 
|  | ProcessPacket(1); | 
|  | EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_FALSE(IsMissing(2)); | 
|  | EXPECT_FALSE(IsMissing(1)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DuplicatePacket) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | ProcessPacket(3); | 
|  | EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_TRUE(IsMissing(2)); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  |  | 
|  | // Send packet 3 again, but do not set the expectation that | 
|  | // the visitor OnStreamFrame() will be called. | 
|  | ProcessDataPacket(3); | 
|  | EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_TRUE(IsMissing(2)); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | ProcessPacket(3); | 
|  | EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_TRUE(IsMissing(2)); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  |  | 
|  | ProcessPacket(2); | 
|  | EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  |  | 
|  | ProcessPacket(5); | 
|  | EXPECT_EQ(QuicPacketNumber(5u), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  | EXPECT_TRUE(IsMissing(4)); | 
|  |  | 
|  | // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a | 
|  | // packet the peer will not retransmit.  It indicates this by sending 'least | 
|  | // awaiting' is 4.  The connection should then realize 1 will not be | 
|  | // retransmitted, and will remove it from the missing list. | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
|  | ProcessAckPacket(6, &frame); | 
|  |  | 
|  | // Force an ack to be sent. | 
|  | SendAckPacketToPeer(); | 
|  | EXPECT_TRUE(IsMissing(4)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) { | 
|  | // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. | 
|  | if (!IsDefaultTestConfiguration()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Process an unencrypted packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_QUIC_PEER_BUG(ProcessDataPacketAtLevel(1, false, ENCRYPTION_INITIAL), | 
|  | ""); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_UNENCRYPTED_STREAM_DATA); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | ProcessPacket(3); | 
|  | // Should not cause an ack. | 
|  | EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
|  |  | 
|  | ProcessPacket(2); | 
|  | // Should ack immediately, since this fills the last hole. | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  |  | 
|  | ProcessPacket(1); | 
|  | // Should ack immediately, since this fills the last hole. | 
|  | EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
|  |  | 
|  | ProcessPacket(4); | 
|  | // Should not cause an ack. | 
|  | EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); | 
|  | SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); | 
|  | EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
|  |  | 
|  | QuicAckFrame ack1 = InitAckFrame(1); | 
|  | QuicAckFrame ack2 = InitAckFrame(2); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()).Times(1); | 
|  | } | 
|  | ProcessAckPacket(2, &ack2); | 
|  | // Should ack immediately since we have missing packets. | 
|  | EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
|  |  | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()).Times(0); | 
|  | } | 
|  | ProcessAckPacket(1, &ack1); | 
|  | // Should not ack an ack filling a missing packet. | 
|  | EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | QuicPacketNumber original, second; | 
|  |  | 
|  | QuicByteCount packet_size = | 
|  | SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original);  // 1st packet. | 
|  | SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second);        // 2nd packet. | 
|  |  | 
|  | QuicAckFrame frame = InitAckFrame({{second, second + 1}}); | 
|  | // First nack triggers early retransmit. | 
|  | LostPacketVector lost_packets; | 
|  | lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
|  | .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
|  | Return(LossDetectionInterface::DetectionStats()))); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicPacketNumber retransmission; | 
|  | // Packet 1 is short header for IETF QUIC because the encryption level | 
|  | // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer. | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, _, | 
|  | VersionHasIetfInvariantHeader( | 
|  | GetParam().version.transport_version) | 
|  | ? packet_size | 
|  | : packet_size - kQuicVersionSize, | 
|  | _)) | 
|  | .WillOnce(SaveArg<2>(&retransmission)); | 
|  |  | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | QuicAckFrame frame2 = ConstructAckFrame(retransmission, original); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | ProcessAckPacket(&frame2); | 
|  |  | 
|  | // Now if the peer sends an ack which still reports the retransmitted packet | 
|  | // as missing, that will bundle an ack with data after two acks in a row | 
|  | // indicate the high water mark needs to be raised. | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); | 
|  | connection_.SendStreamDataWithString(3, "foo", 6, NO_FIN); | 
|  | // No ack sent. | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  |  | 
|  | // No more packet loss for the rest of the test. | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | ProcessAckPacket(&frame2); | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); | 
|  | connection_.SendStreamDataWithString(3, "foofoofoo", 9, NO_FIN); | 
|  | // Ack bundled. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Do not ACK acks. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | } else { | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | } | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_TRUE(writer_->ack_frames().empty()); | 
|  | } else { | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | } | 
|  |  | 
|  | // But an ack with no missing packets will not send an ack. | 
|  | AckPacket(original, &frame2); | 
|  | ProcessAckPacket(&frame2); | 
|  | ProcessAckPacket(&frame2); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckSentEveryNthPacket) { | 
|  | connection_.set_ack_frequency_before_ack_decimation(3); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(39); | 
|  |  | 
|  | // Expect 13 acks, every 3rd packet. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(13); | 
|  | // Receives packets 1 - 39. | 
|  | for (size_t i = 1; i <= 39; ++i) { | 
|  | ProcessDataPacket(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckDecimationReducesAcks) { | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
|  |  | 
|  | QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING); | 
|  |  | 
|  | // Start ack decimation from 10th packet. | 
|  | connection_.set_min_received_before_ack_decimation(10); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(30); | 
|  |  | 
|  | // Expect 6 acks: 5 acks between packets 1-10, and ack at 20. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6); | 
|  | // Receives packets 1 - 29. | 
|  | for (size_t i = 1; i <= 29; ++i) { | 
|  | ProcessDataPacket(i); | 
|  | } | 
|  |  | 
|  | // We now receive the 30th packet, and so we send an ack. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | ProcessDataPacket(30); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckNeedsRetransmittableFrames) { | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(99); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19); | 
|  | // Receives packets 1 - 39. | 
|  | for (size_t i = 1; i <= 39; ++i) { | 
|  | ProcessDataPacket(i); | 
|  | } | 
|  | // Receiving Packet 40 causes 20th ack to send. Session is informed and adds | 
|  | // WINDOW_UPDATE. | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()) | 
|  | .WillOnce(Invoke([this]() { | 
|  | connection_.SendControlFrame( | 
|  | QuicFrame(new QuicWindowUpdateFrame(1, 0, 0))); | 
|  | })); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | EXPECT_EQ(0u, writer_->window_update_frames().size()); | 
|  | ProcessDataPacket(40); | 
|  | EXPECT_EQ(1u, writer_->window_update_frames().size()); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(9); | 
|  | // Receives packets 41 - 59. | 
|  | for (size_t i = 41; i <= 59; ++i) { | 
|  | ProcessDataPacket(i); | 
|  | } | 
|  | // Send a packet containing stream frame. | 
|  | SendStreamDataToPeer( | 
|  | QuicUtils::GetFirstBidirectionalStreamId( | 
|  | connection_.version().transport_version, Perspective::IS_CLIENT), | 
|  | "bar", 0, NO_FIN, nullptr); | 
|  |  | 
|  | // Session will not be informed until receiving another 20 packets. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19); | 
|  | for (size_t i = 60; i <= 98; ++i) { | 
|  | ProcessDataPacket(i); | 
|  | EXPECT_EQ(0u, writer_->window_update_frames().size()); | 
|  | } | 
|  | // Session does not add a retransmittable frame. | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()) | 
|  | .WillOnce(Invoke([this]() { | 
|  | connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); | 
|  | })); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | EXPECT_EQ(0u, writer_->ping_frames().size()); | 
|  | ProcessDataPacket(99); | 
|  | EXPECT_EQ(0u, writer_->window_update_frames().size()); | 
|  | // A ping frame will be added. | 
|  | EXPECT_EQ(1u, writer_->ping_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckNeedsRetransmittableFramesAfterPto) { | 
|  | // Disable TLP so the RTO fires immediately. | 
|  | connection_.SetMaxTailLossProbes(0); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(kEACK); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(10); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(4); | 
|  | // Receive packets 1 - 9. | 
|  | for (size_t i = 1; i <= 9; ++i) { | 
|  | ProcessDataPacket(i); | 
|  | } | 
|  |  | 
|  | // Send a ping and fire the retransmission alarm. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | SendPing(); | 
|  | QuicTime retransmission_time = | 
|  | connection_.GetRetransmissionAlarm()->deadline(); | 
|  | clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | ASSERT_TRUE(manager_->GetConsecutiveRtoCount() > 0 || | 
|  | manager_->GetConsecutivePtoCount() > 0); | 
|  |  | 
|  | // Process a packet, which requests a retransmittable frame be bundled | 
|  | // with the ACK. | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()) | 
|  | .WillOnce(Invoke([this]() { | 
|  | connection_.SendControlFrame( | 
|  | QuicFrame(new QuicWindowUpdateFrame(1, 0, 0))); | 
|  | })); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | ProcessDataPacket(11); | 
|  | EXPECT_EQ(1u, writer_->window_update_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LeastUnackedLower) { | 
|  | if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); | 
|  | SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); | 
|  | SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr); | 
|  |  | 
|  | // Start out saying the least unacked is 2. | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); | 
|  | ProcessStopWaitingPacket(InitStopWaitingFrame(2)); | 
|  |  | 
|  | // Change it to 1, but lower the packet number to fake out-of-order packets. | 
|  | // This should be fine. | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1); | 
|  | // The scheduler will not process out of order acks, but all packet processing | 
|  | // causes the connection to try to write. | 
|  | if (!GetParam().no_stop_waiting) { | 
|  | EXPECT_CALL(visitor_, OnCanWrite()); | 
|  | } | 
|  | ProcessStopWaitingPacket(InitStopWaitingFrame(1)); | 
|  |  | 
|  | // Now claim it's one, but set the ordering so it was sent "after" the first | 
|  | // one.  This should cause a connection error. | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 7); | 
|  | if (!GetParam().no_stop_waiting) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .Times(AtLeast(1)); | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .Times(AtLeast(1)); | 
|  | } | 
|  | ProcessStopWaitingPacket(InitStopWaitingFrame(1)); | 
|  | if (!GetParam().no_stop_waiting) { | 
|  | TestConnectionCloseQuicErrorCode(QUIC_INVALID_STOP_WAITING_DATA); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TooManySentPackets) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | QuicPacketCount max_tracked_packets = 50; | 
|  | QuicConnectionPeer::SetMaxTrackedPackets(&connection_, max_tracked_packets); | 
|  |  | 
|  | const int num_packets = max_tracked_packets + 5; | 
|  |  | 
|  | for (int i = 0; i < num_packets; ++i) { | 
|  | SendStreamDataToPeer(1, "foo", 3 * i, NO_FIN, nullptr); | 
|  | } | 
|  |  | 
|  | // Ack packet 1, which leaves more than the limit outstanding. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  |  | 
|  | // Nack the first packet and ack the rest, leaving a huge gap. | 
|  | QuicAckFrame frame1 = ConstructAckFrame(num_packets, 1); | 
|  | ProcessAckPacket(&frame1); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LargestObservedLower) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); | 
|  | SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); | 
|  | SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  |  | 
|  | // Start out saying the largest observed is 2. | 
|  | QuicAckFrame frame1 = InitAckFrame(1); | 
|  | QuicAckFrame frame2 = InitAckFrame(2); | 
|  | ProcessAckPacket(&frame2); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnCanWrite()); | 
|  | ProcessAckPacket(&frame1); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckUnsentData) { | 
|  | // Ack a packet which has not been sent. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()).Times(0); | 
|  | ProcessAckPacket(&frame); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BasicSending) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | const QuicConnectionStats& stats = connection_.GetStats(); | 
|  | EXPECT_FALSE(stats.first_decrypted_packet.IsInitialized()); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacket(1); | 
|  | EXPECT_EQ(QuicPacketNumber(1), stats.first_decrypted_packet); | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2); | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);  // Packet 1 | 
|  | EXPECT_EQ(QuicPacketNumber(1u), last_packet); | 
|  | SendAckPacketToPeer();  // Packet 2 | 
|  |  | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Expect no stop waiting frame is sent. | 
|  | EXPECT_FALSE(least_unacked().IsInitialized()); | 
|  | } else { | 
|  | EXPECT_EQ(QuicPacketNumber(1u), least_unacked()); | 
|  | } | 
|  |  | 
|  | SendAckPacketToPeer();  // Packet 3 | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Expect no stop waiting frame is sent. | 
|  | EXPECT_FALSE(least_unacked().IsInitialized()); | 
|  | } else { | 
|  | EXPECT_EQ(QuicPacketNumber(1u), least_unacked()); | 
|  | } | 
|  |  | 
|  | SendStreamDataToPeer(1, "bar", 3, NO_FIN, &last_packet);  // Packet 4 | 
|  | EXPECT_EQ(QuicPacketNumber(4u), last_packet); | 
|  | SendAckPacketToPeer();  // Packet 5 | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Expect no stop waiting frame is sent. | 
|  | EXPECT_FALSE(least_unacked().IsInitialized()); | 
|  | } else { | 
|  | EXPECT_EQ(QuicPacketNumber(1u), least_unacked()); | 
|  | } | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  |  | 
|  | // Peer acks up to packet 3. | 
|  | QuicAckFrame frame = InitAckFrame(3); | 
|  | ProcessAckPacket(&frame); | 
|  | SendAckPacketToPeer();  // Packet 6 | 
|  |  | 
|  | // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of | 
|  | // ack for 4. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Expect no stop waiting frame is sent. | 
|  | EXPECT_FALSE(least_unacked().IsInitialized()); | 
|  | } else { | 
|  | EXPECT_EQ(QuicPacketNumber(4u), least_unacked()); | 
|  | } | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  |  | 
|  | // Peer acks up to packet 4, the last packet. | 
|  | QuicAckFrame frame2 = InitAckFrame(6); | 
|  | ProcessAckPacket(&frame2);  // Acks don't instigate acks. | 
|  |  | 
|  | // Verify that we did not send an ack. | 
|  | EXPECT_EQ(QuicPacketNumber(6u), writer_->header().packet_number); | 
|  |  | 
|  | // So the last ack has not changed. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Expect no stop waiting frame is sent. | 
|  | EXPECT_FALSE(least_unacked().IsInitialized()); | 
|  | } else { | 
|  | EXPECT_EQ(QuicPacketNumber(4u), least_unacked()); | 
|  | } | 
|  |  | 
|  | // If we force an ack, we shouldn't change our retransmit state. | 
|  | SendAckPacketToPeer();  // Packet 7 | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Expect no stop waiting frame is sent. | 
|  | EXPECT_FALSE(least_unacked().IsInitialized()); | 
|  | } else { | 
|  | EXPECT_EQ(QuicPacketNumber(7u), least_unacked()); | 
|  | } | 
|  |  | 
|  | // But if we send more data it should. | 
|  | SendStreamDataToPeer(1, "eep", 6, NO_FIN, &last_packet);  // Packet 8 | 
|  | EXPECT_EQ(QuicPacketNumber(8u), last_packet); | 
|  | SendAckPacketToPeer();  // Packet 9 | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Expect no stop waiting frame is sent. | 
|  | EXPECT_FALSE(least_unacked().IsInitialized()); | 
|  | } else { | 
|  | EXPECT_EQ(QuicPacketNumber(7u), least_unacked()); | 
|  | } | 
|  | EXPECT_EQ(QuicPacketNumber(1), stats.first_decrypted_packet); | 
|  | } | 
|  |  | 
|  | // QuicConnection should record the packet sent-time prior to sending the | 
|  | // packet. | 
|  | TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) { | 
|  | // We're using a MockClock for the tests, so we have complete control over the | 
|  | // time. | 
|  | // Our recorded timestamp for the last packet sent time will be passed in to | 
|  | // the send_algorithm.  Make sure that it is set to the correct value. | 
|  | QuicTime actual_recorded_send_time = QuicTime::Zero(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<0>(&actual_recorded_send_time)); | 
|  |  | 
|  | // First send without any pause and check the result. | 
|  | QuicTime expected_recorded_send_time = clock_.Now(); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
|  | EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) | 
|  | << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() | 
|  | << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue(); | 
|  |  | 
|  | // Now pause during the write, and check the results. | 
|  | actual_recorded_send_time = QuicTime::Zero(); | 
|  | const QuicTime::Delta write_pause_time_delta = | 
|  | QuicTime::Delta::FromMilliseconds(5000); | 
|  | SetWritePauseTimeDelta(write_pause_time_delta); | 
|  | expected_recorded_send_time = clock_.Now(); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<0>(&actual_recorded_send_time)); | 
|  | connection_.SendStreamDataWithString(2, "baz", 0, NO_FIN); | 
|  | EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) | 
|  | << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() | 
|  | << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePacking) { | 
|  | // Send two stream frames in 1 packet by queueing them. | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | { | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | connection_.SendStreamData3(); | 
|  | connection_.SendStreamData5(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | } | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure it's an ack and two stream frames from | 
|  | // two different streams. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  |  | 
|  | EXPECT_TRUE(writer_->ack_frames().empty()); | 
|  |  | 
|  | ASSERT_EQ(2u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), | 
|  | writer_->stream_frames()[0]->stream_id); | 
|  | EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()), | 
|  | writer_->stream_frames()[1]->stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) { | 
|  | // Send two stream frames (one non-crypto, then one crypto) in 2 packets by | 
|  | // queueing them. | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | connection_.SendStreamData3(); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
|  | connection_.SendCryptoStreamData(); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | } | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure it's the crypto stream frame. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | ASSERT_EQ(1u, writer_->padding_frames().size()); | 
|  | if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | ASSERT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(QuicUtils::GetCryptoStreamId(connection_.transport_version()), | 
|  | writer_->stream_frames()[0]->stream_id); | 
|  | } else { | 
|  | EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) { | 
|  | // Send two stream frames (one crypto, then one non-crypto) in 2 packets by | 
|  | // queueing them. | 
|  | { | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | connection_.SendCryptoStreamData(); | 
|  | connection_.SendStreamData3(); | 
|  | } | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure it's the stream frame from stream 3. | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | ASSERT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), | 
|  | writer_->stream_frames()[0]->stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePackingAckResponse) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | // Process a data packet to queue up a pending ack. | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | } | 
|  | ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
|  |  | 
|  | QuicPacketNumber last_packet; | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | connection_.SendCryptoDataWithString("foo", 0); | 
|  | } else { | 
|  | SendStreamDataToPeer( | 
|  | QuicUtils::GetCryptoStreamId(connection_.transport_version()), "foo", 0, | 
|  | NO_FIN, &last_packet); | 
|  | } | 
|  | // Verify ack is bundled with outging packet. | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnCanWrite()) | 
|  | .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendStreamData3)), | 
|  | IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendStreamData5)))); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  |  | 
|  | // Process a data packet to cause the visitor's OnCanWrite to be invoked. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<StrictTaggingDecrypter>(0x01)); | 
|  | ProcessDataPacket(2); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure it's an ack and two stream frames from | 
|  | // two different streams. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(4u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | ASSERT_EQ(2u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), | 
|  | writer_->stream_frames()[0]->stream_id); | 
|  | EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()), | 
|  | writer_->stream_frames()[1]->stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePackingSendv) { | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | // Send data in 1 packet by writing multiple blocks in a single iovector | 
|  | // using writev. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  |  | 
|  | char data[] = "ABCDEF"; | 
|  | struct iovec iov[2]; | 
|  | iov[0].iov_base = data; | 
|  | iov[0].iov_len = 4; | 
|  | iov[1].iov_base = data + 4; | 
|  | iov[1].iov_len = 2; | 
|  | QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( | 
|  | connection_.transport_version(), Perspective::IS_CLIENT); | 
|  | connection_.SaveAndSendStreamData(stream_id, iov, 2, 6, 0, NO_FIN); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure multiple iovector blocks have | 
|  | // been packed into a single stream frame from one stream. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(0u, writer_->padding_frames().size()); | 
|  | QuicStreamFrame* frame = writer_->stream_frames()[0].get(); | 
|  | EXPECT_EQ(stream_id, frame->stream_id); | 
|  | EXPECT_EQ("ABCDEF", | 
|  | quiche::QuicheStringPiece(frame->data_buffer, frame->data_length)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePackingSendvQueued) { | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | // Try to send two stream frames in 1 packet by using writev. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  |  | 
|  | BlockOnNextWrite(); | 
|  | char data[] = "ABCDEF"; | 
|  | struct iovec iov[2]; | 
|  | iov[0].iov_base = data; | 
|  | iov[0].iov_len = 4; | 
|  | iov[1].iov_base = data + 4; | 
|  | iov[1].iov_len = 2; | 
|  | QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( | 
|  | connection_.transport_version(), Perspective::IS_CLIENT); | 
|  | connection_.SaveAndSendStreamData(stream_id, iov, 2, 6, 0, NO_FIN); | 
|  |  | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  | EXPECT_TRUE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Unblock the writes and actually send. | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Parse the last packet and ensure it's one stream frame from one stream. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(0u, writer_->padding_frames().size()); | 
|  | EXPECT_EQ(stream_id, writer_->stream_frames()[0]->stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendingZeroBytes) { | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | // Send a zero byte write with a fin using writev. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( | 
|  | connection_.transport_version(), Perspective::IS_CLIENT); | 
|  | connection_.SaveAndSendStreamData(stream_id, nullptr, 0, 0, 0, FIN); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Padding frames are added by v99 to ensure a minimum packet size. | 
|  | size_t extra_padding_frames = 0; | 
|  | if (GetParam().version.HasHeaderProtection()) { | 
|  | extra_padding_frames = 1; | 
|  | } | 
|  |  | 
|  | // Parse the last packet and ensure it's one stream frame from one stream. | 
|  | EXPECT_EQ(1u + extra_padding_frames, writer_->frame_count()); | 
|  | EXPECT_EQ(extra_padding_frames, writer_->padding_frames().size()); | 
|  | ASSERT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(stream_id, writer_->stream_frames()[0]->stream_id); | 
|  | EXPECT_TRUE(writer_->stream_frames()[0]->fin); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LargeSendWithPendingAck) { | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
|  | // Set the ack alarm by processing a ping frame. | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Processs a PING frame. | 
|  | ProcessFramePacket(QuicFrame(QuicPingFrame())); | 
|  | // Ensure that this has caused the ACK alarm to be set. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // Send data and ensure the ack is bundled. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(8); | 
|  | size_t len = 10000; | 
|  | std::unique_ptr<char[]> data_array(new char[len]); | 
|  | memset(data_array.get(), '?', len); | 
|  | struct iovec iov; | 
|  | iov.iov_base = data_array.get(); | 
|  | iov.iov_len = len; | 
|  | QuicConsumedData consumed = connection_.SaveAndSendStreamData( | 
|  | GetNthClientInitiatedStreamId(0, connection_.transport_version()), &iov, | 
|  | 1, len, 0, FIN); | 
|  | EXPECT_EQ(len, consumed.bytes_consumed); | 
|  | EXPECT_TRUE(consumed.fin_consumed); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure it's one stream frame with a fin. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | ASSERT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(GetNthClientInitiatedStreamId(0, connection_.transport_version()), | 
|  | writer_->stream_frames()[0]->stream_id); | 
|  | EXPECT_TRUE(writer_->stream_frames()[0]->fin); | 
|  | // Ensure the ack alarm was cancelled when the ack was sent. | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, OnCanWrite) { | 
|  | // Visitor's OnCanWrite will send data, but will have more pending writes. | 
|  | EXPECT_CALL(visitor_, OnCanWrite()) | 
|  | .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendStreamData3)), | 
|  | IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendStreamData5)))); | 
|  | { | 
|  | InSequence seq; | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true)); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()) | 
|  | .WillRepeatedly(Return(false)); | 
|  | } | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)) | 
|  | .WillRepeatedly(testing::Return(true)); | 
|  |  | 
|  | connection_.OnCanWrite(); | 
|  |  | 
|  | // Parse the last packet and ensure it's the two stream frames from | 
|  | // two different streams. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_EQ(2u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()), | 
|  | writer_->stream_frames()[0]->stream_id); | 
|  | EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()), | 
|  | writer_->stream_frames()[1]->stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitOnNack) { | 
|  | QuicPacketNumber last_packet; | 
|  | QuicByteCount second_packet_size; | 
|  | SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet);  // Packet 1 | 
|  | second_packet_size = | 
|  | SendStreamDataToPeer(3, "foos", 3, NO_FIN, &last_packet);  // Packet 2 | 
|  | SendStreamDataToPeer(3, "fooos", 7, NO_FIN, &last_packet);     // Packet 3 | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Don't lose a packet on an ack, and nothing is retransmitted. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame ack_one = InitAckFrame(1); | 
|  | ProcessAckPacket(&ack_one); | 
|  |  | 
|  | // Lose a packet and ensure it triggers retransmission. | 
|  | QuicAckFrame nack_two = ConstructAckFrame(3, 2); | 
|  | LostPacketVector lost_packets; | 
|  | lost_packets.push_back( | 
|  | LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
|  | .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
|  | Return(LossDetectionInterface::DetectionStats()))); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | EXPECT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_)); | 
|  | ProcessAckPacket(&nack_two); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotSendQueuedPacketForResetStream) { | 
|  | // Block the connection to queue the packet. | 
|  | BlockOnNextWrite(); | 
|  |  | 
|  | QuicStreamId stream_id = 2; | 
|  | connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN); | 
|  |  | 
|  | // Now that there is a queued packet, reset the stream. | 
|  | SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
|  |  | 
|  | // Unblock the connection and verify that only the RST_STREAM is sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendQueuedPacketForQuicRstStreamNoError) { | 
|  | // Block the connection to queue the packet. | 
|  | BlockOnNextWrite(); | 
|  |  | 
|  | QuicStreamId stream_id = 2; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN); | 
|  |  | 
|  | // Now that there is a queued packet, reset the stream. | 
|  | SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3); | 
|  |  | 
|  | // Unblock the connection and verify that the RST_STREAM is sent and the data | 
|  | // packet is sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnNack) { | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12); | 
|  |  | 
|  | // Lose a packet and ensure it does not trigger retransmission. | 
|  | QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessAckPacket(&nack_two); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnNack) { | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12); | 
|  |  | 
|  | // Lose a packet, ensure it triggers retransmission. | 
|  | QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | LostPacketVector lost_packets; | 
|  | lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
|  | .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
|  | Return(LossDetectionInterface::DetectionStats()))); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | ProcessAckPacket(&nack_two); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnRTO) { | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
|  |  | 
|  | // Fire the RTO and verify that the RST_STREAM is resent, not stream data. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); | 
|  | } | 
|  |  | 
|  | // Ensure that if the only data in flight is non-retransmittable, the | 
|  | // retransmission alarm is not set. | 
|  | TEST_P(QuicConnectionTest, CancelRetransmissionAlarmAfterResetStream) { | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_data_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet); | 
|  |  | 
|  | // Cancel the stream. | 
|  | const QuicPacketNumber rst_packet = last_data_packet + 1; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, rst_packet, _, _)).Times(1); | 
|  | SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
|  |  | 
|  | // Ack the RST_STREAM frame (since it's retransmittable), but not the data | 
|  | // packet, which is no longer retransmittable since the stream was cancelled. | 
|  | QuicAckFrame nack_stream_data = | 
|  | ConstructAckFrame(rst_packet, last_data_packet); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessAckPacket(&nack_stream_data); | 
|  |  | 
|  | // Ensure that the data is still in flight, but the retransmission alarm is no | 
|  | // longer set. | 
|  | EXPECT_GT(manager_->GetBytesInFlight(), 0u); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnRTO) { | 
|  | connection_.SetMaxTailLossProbes(0); | 
|  |  | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3); | 
|  |  | 
|  | // Fire the RTO and verify that the RST_STREAM is resent, the stream data | 
|  | // is sent. | 
|  | const size_t num_retransmissions = | 
|  | connection_.SupportsMultiplePacketNumberSpaces() ? 1 : 2; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .Times(AtLeast(num_retransmissions)); | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | if (num_retransmissions == 2) { | 
|  | ASSERT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotSendPendingRetransmissionForResetStream) { | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN); | 
|  |  | 
|  | // Lose a packet which will trigger a pending retransmission. | 
|  | QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12); | 
|  |  | 
|  | // Unblock the connection and verify that the RST_STREAM is sent but not the | 
|  | // second data packet nor a retransmit. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | ASSERT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendPendingRetransmissionForQuicRstStreamNoError) { | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet); | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN); | 
|  |  | 
|  | // Lose a packet which will trigger a pending retransmission. | 
|  | QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | LostPacketVector lost_packets; | 
|  | lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
|  | .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
|  | Return(LossDetectionInterface::DetectionStats()))); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12); | 
|  |  | 
|  | // Unblock the connection and verify that the RST_STREAM is sent and the | 
|  | // second data packet or a retransmit is sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2)); | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | // The RST_STREAM_FRAME is sent after queued packets and pending | 
|  | // retransmission. | 
|  | connection_.SendControlFrame(QuicFrame( | 
|  | new QuicRstStreamFrame(1, stream_id, QUIC_STREAM_NO_ERROR, 14))); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitAckedPacket) { | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);    // Packet 1 | 
|  | SendStreamDataToPeer(1, "foos", 3, NO_FIN, &last_packet);   // Packet 2 | 
|  | SendStreamDataToPeer(1, "fooos", 7, NO_FIN, &last_packet);  // Packet 3 | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Instigate a loss with an ack. | 
|  | QuicAckFrame nack_two = ConstructAckFrame(3, 2); | 
|  | // The first nack should trigger a fast retransmission, but we'll be | 
|  | // write blocked, so the packet will be queued. | 
|  | BlockOnNextWrite(); | 
|  |  | 
|  | LostPacketVector lost_packets; | 
|  | lost_packets.push_back( | 
|  | LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
|  | .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
|  | Return(LossDetectionInterface::DetectionStats()))); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _)) | 
|  | .Times(1); | 
|  | ProcessAckPacket(&nack_two); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Now, ack the previous transmission. | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(false, _, _, _, _)); | 
|  | QuicAckFrame ack_all = InitAckFrame(3); | 
|  | ProcessAckPacket(&ack_all); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _)) | 
|  | .Times(0); | 
|  |  | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | // We do not store retransmittable frames of this retransmission. | 
|  | EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, 4)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | QuicPacketNumber original, second; | 
|  |  | 
|  | QuicByteCount packet_size = | 
|  | SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original);  // 1st packet. | 
|  | SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second);        // 2nd packet. | 
|  |  | 
|  | QuicAckFrame frame = InitAckFrame({{second, second + 1}}); | 
|  | // The first nack should retransmit the largest observed packet. | 
|  | LostPacketVector lost_packets; | 
|  | lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
|  | .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
|  | Return(LossDetectionInterface::DetectionStats()))); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | // Packet 1 is short header for IETF QUIC because the encryption level | 
|  | // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer. | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, _, | 
|  | VersionHasIetfInvariantHeader( | 
|  | GetParam().version.transport_version) | 
|  | ? packet_size | 
|  | : packet_size - kQuicVersionSize, | 
|  | _)); | 
|  | ProcessAckPacket(&frame); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | connection_.SetMaxTailLossProbes(0); | 
|  |  | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(3, "foo", i * 3, NO_FIN); | 
|  | } | 
|  |  | 
|  | // Block the writer and ensure they're queued. | 
|  | BlockOnNextWrite(); | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Unblock the writer. | 
|  | writer_->SetWritable(); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( | 
|  | 2 * DefaultRetransmissionTime().ToMicroseconds())); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | connection_.OnCanWrite(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WriteBlockedBufferedThenSent) { | 
|  | BlockOnNextWrite(); | 
|  | writer_->set_is_write_blocked_data_buffered(true); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WriteBlockedThenSent) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | BlockOnNextWrite(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // The second packet should also be queued, in order to ensure packets are | 
|  | // never sent out of order. | 
|  | writer_->SetWritable(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
|  | EXPECT_EQ(2u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Now both are sent in order when we unblock. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | BlockOnNextWrite(); | 
|  | writer_->set_is_write_blocked_data_buffered(true); | 
|  | // Simulate the retransmission alarm firing. | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // Ack the sent packet before the callback returns, which happens in | 
|  | // rare circumstances with write blocked sockets. | 
|  | QuicAckFrame ack = InitAckFrame(1); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | uint64_t retransmission = connection_.SupportsMultiplePacketNumberSpaces() && | 
|  | !GetQuicReloadableFlag(quic_default_on_pto) | 
|  | ? 3 | 
|  | : 2; | 
|  | EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, | 
|  | retransmission)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) { | 
|  | // Block the connection. | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  |  | 
|  | // Set the send alarm. Fire the alarm and ensure it doesn't attempt to write. | 
|  | connection_.GetSendAlarm()->Set(clock_.ApproximateNow()); | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoSendAlarmAfterProcessPacketWhenWriteBlocked) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Block the connection. | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | // Process packet number 1. Can not call ProcessPacket or ProcessDataPacket | 
|  | // here, because they will fire the alarm after QuicConnection::ProcessPacket | 
|  | // is returned. | 
|  | const uint64_t received_packet_num = 1; | 
|  | const bool has_stop_waiting = false; | 
|  | const EncryptionLevel level = ENCRYPTION_FORWARD_SECURE; | 
|  | std::unique_ptr<QuicPacket> packet( | 
|  | ConstructDataPacket(received_packet_num, has_stop_waiting, level)); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | size_t encrypted_length = | 
|  | peer_framer_.EncryptPayload(level, QuicPacketNumber(received_packet_num), | 
|  | *packet, buffer, kMaxOutgoingPacketSize); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
|  |  | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AddToWriteBlockedListIfWriterBlockedWhenProcessing) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); | 
|  |  | 
|  | // Simulate the case where a shared writer gets blocked by another connection. | 
|  | writer_->SetWriteBlocked(); | 
|  |  | 
|  | // Process an ACK, make sure the connection calls visitor_->OnWriteBlocked(). | 
|  | QuicAckFrame ack1 = InitAckFrame(1); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); | 
|  | ProcessAckPacket(1, &ack1); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotAddToWriteBlockedListAfterDisconnect) { | 
|  | writer_->SetBatchMode(true); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | // Have to explicitly grab the OnConnectionClosed frame and check | 
|  | // its parameters because this is a silent connection close and the | 
|  | // frame is not also transmitted to the peer. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0); | 
|  |  | 
|  | { | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", | 
|  | ConnectionCloseBehavior::SILENT_CLOSE); | 
|  |  | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | writer_->SetWriteBlocked(); | 
|  | } | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_PEER_GOING_AWAY)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AddToWriteBlockedListIfBlockedOnFlushPackets) { | 
|  | writer_->SetBatchMode(true); | 
|  | writer_->BlockOnNextFlush(); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); | 
|  | { | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | // flusher's destructor will call connection_.FlushPackets, which should add | 
|  | // the connection to the write blocked list. | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | int offset = 0; | 
|  | // Send packets 1 to 15. | 
|  | for (int i = 0; i < 15; ++i) { | 
|  | SendStreamDataToPeer(1, "foo", offset, NO_FIN, nullptr); | 
|  | offset += 3; | 
|  | } | 
|  |  | 
|  | // Ack 15, nack 1-14. | 
|  |  | 
|  | QuicAckFrame nack = | 
|  | InitAckFrame({{QuicPacketNumber(15), QuicPacketNumber(16)}}); | 
|  |  | 
|  | // 14 packets have been NACK'd and lost. | 
|  | LostPacketVector lost_packets; | 
|  | for (int i = 1; i < 15; ++i) { | 
|  | lost_packets.push_back( | 
|  | LostPacket(QuicPacketNumber(i), kMaxOutgoingPacketSize)); | 
|  | } | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
|  | .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
|  | Return(LossDetectionInterface::DetectionStats()))); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | ProcessAckPacket(&nack); | 
|  | } | 
|  |  | 
|  | // Test sending multiple acks from the connection to the session. | 
|  | TEST_P(QuicConnectionTest, MultipleAcks) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacket(1); | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2); | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);  // Packet 1 | 
|  | EXPECT_EQ(QuicPacketNumber(1u), last_packet); | 
|  | SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet);  // Packet 2 | 
|  | EXPECT_EQ(QuicPacketNumber(2u), last_packet); | 
|  | SendAckPacketToPeer();                                    // Packet 3 | 
|  | SendStreamDataToPeer(5, "foo", 0, NO_FIN, &last_packet);  // Packet 4 | 
|  | EXPECT_EQ(QuicPacketNumber(4u), last_packet); | 
|  | SendStreamDataToPeer(1, "foo", 3, NO_FIN, &last_packet);  // Packet 5 | 
|  | EXPECT_EQ(QuicPacketNumber(5u), last_packet); | 
|  | SendStreamDataToPeer(3, "foo", 3, NO_FIN, &last_packet);  // Packet 6 | 
|  | EXPECT_EQ(QuicPacketNumber(6u), last_packet); | 
|  |  | 
|  | // Client will ack packets 1, 2, [!3], 4, 5. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame1 = ConstructAckFrame(5, 3); | 
|  | ProcessAckPacket(&frame1); | 
|  |  | 
|  | // Now the client implicitly acks 3, and explicitly acks 6. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame2 = InitAckFrame(6); | 
|  | ProcessAckPacket(&frame2); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DontLatchUnackedPacket) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacket(1); | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2); | 
|  | SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);  // Packet 1; | 
|  | // From now on, we send acks, so the send algorithm won't mark them pending. | 
|  | SendAckPacketToPeer();  // Packet 2 | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | // Verify that our internal state has least-unacked as 2, because we're still | 
|  | // waiting for a potential ack for 2. | 
|  |  | 
|  | EXPECT_EQ(QuicPacketNumber(2u), stop_waiting()->least_unacked); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | frame = InitAckFrame(2); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked); | 
|  |  | 
|  | // When we send an ack, we make sure our least-unacked makes sense.  In this | 
|  | // case since we're not waiting on an ack for 2 and all packets are acked, we | 
|  | // set it to 3. | 
|  | SendAckPacketToPeer();  // Packet 3 | 
|  | // Least_unacked remains at 3 until another ack is received. | 
|  | EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Expect no stop waiting frame is sent. | 
|  | EXPECT_FALSE(least_unacked().IsInitialized()); | 
|  | } else { | 
|  | // Check that the outgoing ack had its packet number as least_unacked. | 
|  | EXPECT_EQ(QuicPacketNumber(3u), least_unacked()); | 
|  | } | 
|  |  | 
|  | // Ack the ack, which updates the rtt and raises the least unacked. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | frame = InitAckFrame(3); | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);  // Packet 4 | 
|  | EXPECT_EQ(QuicPacketNumber(4u), stop_waiting()->least_unacked); | 
|  | SendAckPacketToPeer();  // Packet 5 | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Expect no stop waiting frame is sent. | 
|  | EXPECT_FALSE(least_unacked().IsInitialized()); | 
|  | } else { | 
|  | EXPECT_EQ(QuicPacketNumber(4u), least_unacked()); | 
|  | } | 
|  |  | 
|  | // Send two data packets at the end, and ensure if the last one is acked, | 
|  | // the least unacked is raised above the ack packets. | 
|  | SendStreamDataToPeer(1, "bar", 6, NO_FIN, nullptr);  // Packet 6 | 
|  | SendStreamDataToPeer(1, "bar", 9, NO_FIN, nullptr);  // Packet 7 | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | frame = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(5)}, | 
|  | {QuicPacketNumber(7), QuicPacketNumber(8)}}); | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | EXPECT_EQ(QuicPacketNumber(6u), stop_waiting()->least_unacked); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TLP) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | connection_.SetMaxTailLossProbes(1); | 
|  |  | 
|  | SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); | 
|  | EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); | 
|  | QuicTime retransmission_time = | 
|  | connection_.GetRetransmissionAlarm()->deadline(); | 
|  | EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
|  |  | 
|  | EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number); | 
|  | // Simulate the retransmission alarm firing and sending a tlp, | 
|  | // so send algorithm's OnRetransmissionTimeout is not called. | 
|  | clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
|  | const QuicPacketNumber retransmission( | 
|  | connection_.SupportsMultiplePacketNumberSpaces() ? 3 : 2); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, retransmission, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(retransmission, writer_->header().packet_number); | 
|  | // We do not raise the high water mark yet. | 
|  | EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TailLossProbeDelayForStreamDataInTLPR) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Set TLPR from QuicConfig. | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | QuicTagVector options; | 
|  | options.push_back(kTLPR); | 
|  | config.SetConnectionOptionsToSend(options); | 
|  | connection_.SetFromConfig(config); | 
|  | connection_.SetMaxTailLossProbes(1); | 
|  |  | 
|  | SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); | 
|  | EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); | 
|  |  | 
|  | QuicTime retransmission_time = | 
|  | connection_.GetRetransmissionAlarm()->deadline(); | 
|  | EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
|  | QuicTime::Delta expected_tlp_delay = | 
|  | 0.5 * manager_->GetRttStats()->SmoothedOrInitialRtt(); | 
|  | EXPECT_EQ(expected_tlp_delay, retransmission_time - clock_.Now()); | 
|  |  | 
|  | EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number); | 
|  | // Simulate firing of the retransmission alarm and retransmit the packet. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _)); | 
|  | clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number); | 
|  |  | 
|  | // We do not raise the high water mark yet. | 
|  | EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TailLossProbeDelayForNonStreamDataInTLPR) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Set TLPR from QuicConfig. | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | QuicTagVector options; | 
|  | options.push_back(kTLPR); | 
|  | config.SetConnectionOptionsToSend(options); | 
|  | QuicConfigPeer::SetNegotiated(&config, true); | 
|  | if (connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | QuicConfigPeer::SetReceivedOriginalConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | } | 
|  | connection_.SetFromConfig(config); | 
|  | connection_.SetMaxTailLossProbes(1); | 
|  |  | 
|  | // Sets retransmittable on wire. | 
|  | const QuicTime::Delta retransmittable_on_wire_timeout = | 
|  | QuicTime::Delta::FromMilliseconds(50); | 
|  | connection_.set_initial_retransmittable_on_wire_timeout( | 
|  | retransmittable_on_wire_timeout); | 
|  |  | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(true)); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  |  | 
|  | const char data[] = "data"; | 
|  | size_t data_size = strlen(data); | 
|  | QuicStreamOffset offset = 0; | 
|  |  | 
|  | // Send a data packet. | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  |  | 
|  | // Path degrading alarm should be set when there is a retransmittable packet | 
|  | // on the wire. | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  |  | 
|  | // Verify the path degrading delay. | 
|  | // First TLP with stream data. | 
|  | QuicTime::Delta srtt = manager_->GetRttStats()->SmoothedOrInitialRtt(); | 
|  | QuicTime::Delta expected_delay = 0.5 * srtt; | 
|  | // Add 1st RTO. | 
|  | QuicTime::Delta retransmission_delay = | 
|  | QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); | 
|  | expected_delay = expected_delay + retransmission_delay; | 
|  | // Add 2nd RTO. | 
|  | expected_delay = expected_delay + retransmission_delay * 2; | 
|  | EXPECT_EQ(expected_delay, | 
|  | QuicConnectionPeer::GetSentPacketManager(&connection_) | 
|  | ->GetPathDegradingDelay()); | 
|  | ASSERT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
|  |  | 
|  | // The ping alarm is set for the ping timeout, not the shorter | 
|  | // retransmittable_on_wire_timeout. | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(connection_.ping_timeout(), | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Receive an ACK for the data packet. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame = | 
|  | InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | // Path degrading alarm should be cancelled as there is no more | 
|  | // reretransmittable packets on the wire. | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | // The ping alarm should be set to the retransmittable_on_wire_timeout. | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Simulate firing of the retransmittable on wire and send a PING. | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); | 
|  | clock_.AdvanceTime(retransmittable_on_wire_timeout); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  |  | 
|  | // The retransmission alarm and the path degrading alarm should be set as | 
|  | // there is a retransmittable packet (PING) on the wire, | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  |  | 
|  | // Verify the retransmission delay. | 
|  | QuicTime::Delta min_rto_timeout = | 
|  | QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs); | 
|  | srtt = manager_->GetRttStats()->SmoothedOrInitialRtt(); | 
|  |  | 
|  | // First TLP without unacked stream data will no longer use TLPR. | 
|  | expected_delay = std::max(2 * srtt, 1.5 * srtt + 0.5 * min_rto_timeout); | 
|  | EXPECT_EQ(expected_delay, | 
|  | connection_.GetRetransmissionAlarm()->deadline() - clock_.Now()); | 
|  |  | 
|  | // Verify the path degrading delay = TLP delay + 1st RTO + 2nd RTO. | 
|  | // Add 1st RTO. | 
|  | retransmission_delay = | 
|  | std::max(manager_->GetRttStats()->smoothed_rtt() + | 
|  | 4 * manager_->GetRttStats()->mean_deviation(), | 
|  | min_rto_timeout); | 
|  | expected_delay = expected_delay + retransmission_delay; | 
|  | // Add 2nd RTO. | 
|  | expected_delay = expected_delay + retransmission_delay * 2; | 
|  | EXPECT_EQ(expected_delay, | 
|  | QuicConnectionPeer::GetSentPacketManager(&connection_) | 
|  | ->GetPathDegradingDelay()); | 
|  |  | 
|  | // The ping alarm is set for the ping timeout, not the shorter | 
|  | // retransmittable_on_wire_timeout. | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(connection_.ping_timeout(), | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Advance a small period of time: 5ms. And receive a retransmitted ACK. | 
|  | // This will update the retransmission alarm, verify the retransmission delay | 
|  | // is correct. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicAckFrame ack = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | // Verify the retransmission delay. | 
|  | // First TLP without unacked stream data will no longer use TLPR. | 
|  | expected_delay = std::max(2 * srtt, 1.5 * srtt + 0.5 * min_rto_timeout); | 
|  | expected_delay = expected_delay - QuicTime::Delta::FromMilliseconds(5); | 
|  | EXPECT_EQ(expected_delay, | 
|  | connection_.GetRetransmissionAlarm()->deadline() - clock_.Now()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RTO) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | connection_.SetMaxTailLossProbes(0); | 
|  |  | 
|  | QuicTime default_retransmission_time = | 
|  | clock_.ApproximateNow() + DefaultRetransmissionTime(); | 
|  | SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); | 
|  | EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); | 
|  |  | 
|  | EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number); | 
|  | EXPECT_EQ(default_retransmission_time, | 
|  | connection_.GetRetransmissionAlarm()->deadline()); | 
|  | // Simulate the retransmission alarm firing. | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number); | 
|  | // We do not raise the high water mark yet. | 
|  | EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked); | 
|  | } | 
|  |  | 
|  | // Regression test of b/133771183. | 
|  | TEST_P(QuicConnectionTest, RtoWithNoDataToRetransmit) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | connection_.SetMaxTailLossProbes(0); | 
|  |  | 
|  | SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr); | 
|  | // Connection is cwnd limited. | 
|  | CongestionBlockWrites(); | 
|  | // Stream gets reset. | 
|  | SendRstStream(3, QUIC_ERROR_PROCESSING_STREAM, 3); | 
|  | // Simulate the retransmission alarm firing. | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | // RTO fires, but there is no packet to be RTOed. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(40); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(20); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false)); | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(1); | 
|  | // Receives packets 1 - 40. | 
|  | for (size_t i = 1; i <= 40; ++i) { | 
|  | ProcessDataPacket(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendHandshakeMessages) { | 
|  | use_tagging_decrypter(); | 
|  | // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at | 
|  | // the end of the packet. We can test this to check which encrypter was used. | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  |  | 
|  | // Attempt to send a handshake message and have the socket block. | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendCryptoDataWithString("foo", 0); | 
|  | // The packet should be serialized, but not queued. | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Switch to the new encrypter. | 
|  | connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Now become writeable and flush the packets. | 
|  | writer_->SetWritable(); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Verify that the handshake packet went out at the null encryption. | 
|  | EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, | 
|  | DropRetransmitsForNullEncryptedPacketAfterForwardSecure) { | 
|  | use_tagging_decrypter(); | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | connection_.SendCryptoStreamData(); | 
|  |  | 
|  | // Simulate the retransmission alarm firing and the socket blocking. | 
|  | BlockOnNextWrite(); | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Go forward secure. | 
|  | connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | notifier_.NeuterUnencryptedData(); | 
|  | connection_.NeuterUnencryptedPackets(); | 
|  | connection_.OnHandshakeComplete(); | 
|  |  | 
|  | EXPECT_EQ(QuicTime::Zero(), connection_.GetRetransmissionAlarm()->deadline()); | 
|  | // Unblock the socket and ensure that no packets are sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) { | 
|  | SetQuicReloadableFlag(quic_do_not_retransmit_immediately_on_zero_rtt_reject, | 
|  | true); | 
|  | use_tagging_decrypter(); | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
|  |  | 
|  | connection_.SendCryptoDataWithString("foo", 0); | 
|  |  | 
|  | connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | SendStreamDataToPeer(2, "bar", 0, NO_FIN, nullptr); | 
|  | EXPECT_FALSE(notifier_.HasLostStreamData()); | 
|  | connection_.RetransmitZeroRttPackets(); | 
|  | EXPECT_TRUE(notifier_.HasLostStreamData()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | // SetFromConfig is always called after construction from InitializeSession. | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | use_tagging_decrypter(); | 
|  |  | 
|  | const uint8_t tag = 0x07; | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  |  | 
|  | // Process an encrypted packet which can not yet be decrypted which should | 
|  | // result in the packet being buffered. | 
|  | ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Transition to the new encryption state and process another encrypted packet | 
|  | // which should result in the original packet being processed. | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
|  | connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2); | 
|  | ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Finally, process a third packet and note that we do not reprocess the | 
|  | // buffered packet. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TestRetransmitOrder) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | connection_.SetMaxTailLossProbes(0); | 
|  |  | 
|  | QuicByteCount first_packet_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&first_packet_size)); | 
|  |  | 
|  | connection_.SendStreamDataWithString(3, "first_packet", 0, NO_FIN); | 
|  | QuicByteCount second_packet_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&second_packet_size)); | 
|  | connection_.SendStreamDataWithString(3, "second_packet", 12, NO_FIN); | 
|  | EXPECT_NE(first_packet_size, second_packet_size); | 
|  | // Advance the clock by huge time to make sure packets will be retransmitted. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); | 
|  | { | 
|  | InSequence s; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); | 
|  | } | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // Advance again and expect the packets to be sent again in the same order. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20)); | 
|  | { | 
|  | InSequence s; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); | 
|  | } | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, Buffer100NonDecryptablePacketsThenKeyChange) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | // SetFromConfig is always called after construction from InitializeSession. | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | config.set_max_undecryptable_packets(100); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | use_tagging_decrypter(); | 
|  |  | 
|  | const uint8_t tag = 0x07; | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  |  | 
|  | // Process an encrypted packet which can not yet be decrypted which should | 
|  | // result in the packet being buffered. | 
|  | for (uint64_t i = 1; i <= 100; ++i) { | 
|  | ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  |  | 
|  | // Transition to the new encryption state and process another encrypted packet | 
|  | // which should result in the original packets being processed. | 
|  | EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); | 
|  | connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(100); | 
|  | connection_.GetProcessUndecryptablePacketsAlarm()->Fire(); | 
|  |  | 
|  | // Finally, process a third packet and note that we do not reprocess the | 
|  | // buffered packet. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(102, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) { | 
|  | BlockOnNextWrite(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Test that RTO is started once we write to the socket. | 
|  | writer_->SetWritable(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | connection_.SetMaxTailLossProbes(0); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN); | 
|  | connection_.SendStreamDataWithString(3, "bar", 0, NO_FIN); | 
|  | QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm(); | 
|  | EXPECT_TRUE(retransmission_alarm->IsSet()); | 
|  | EXPECT_EQ(DefaultRetransmissionTime(), | 
|  | retransmission_alarm->deadline() - clock_.Now()); | 
|  |  | 
|  | // Advance the time right before the RTO, then receive an ack for the first | 
|  | // packet to delay the RTO. | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame ack = InitAckFrame(1); | 
|  | ProcessAckPacket(&ack); | 
|  | // Now we have an RTT sample of DefaultRetransmissionTime(500ms), | 
|  | // so the RTO has increased to 2 * SRTT. | 
|  | EXPECT_TRUE(retransmission_alarm->IsSet()); | 
|  | EXPECT_EQ(retransmission_alarm->deadline() - clock_.Now(), | 
|  | 2 * DefaultRetransmissionTime()); | 
|  |  | 
|  | // Move forward past the original RTO and ensure the RTO is still pending. | 
|  | clock_.AdvanceTime(2 * DefaultRetransmissionTime()); | 
|  |  | 
|  | // Ensure the second packet gets retransmitted when it finally fires. | 
|  | EXPECT_TRUE(retransmission_alarm->IsSet()); | 
|  | EXPECT_EQ(retransmission_alarm->deadline(), clock_.ApproximateNow()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | // Manually cancel the alarm to simulate a real test. | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // The new retransmitted packet number should set the RTO to a larger value | 
|  | // than previously. | 
|  | EXPECT_TRUE(retransmission_alarm->IsSet()); | 
|  | QuicTime next_rto_time = retransmission_alarm->deadline(); | 
|  | QuicTime expected_rto_time = | 
|  | connection_.sent_packet_manager().GetRetransmissionTime(); | 
|  | EXPECT_EQ(next_rto_time, expected_rto_time); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TestQueued) { | 
|  | connection_.SetMaxTailLossProbes(0); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Unblock the writes and actually send. | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, InitialTimeout) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  |  | 
|  | // SetFromConfig sets the initial timeouts before negotiation. | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | // Subtract a second from the idle timeout on the client side. | 
|  | QuicTime default_timeout = | 
|  | clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | // Simulate the timeout alarm firing. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1)); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  |  | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, IdleTimeoutAfterFirstSentPacket) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | QuicTime initial_ddl = | 
|  | clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | // Advance the time and send the first packet to the peer. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20)); | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); | 
|  | EXPECT_EQ(QuicPacketNumber(1u), last_packet); | 
|  | // This will be the updated deadline for the connection to idle time out. | 
|  | QuicTime new_ddl = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  |  | 
|  | // Simulate the timeout alarm firing, the connection should not be closed as | 
|  | // a new packet has been sent. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
|  | QuicTime::Delta delay = initial_ddl - clock_.ApproximateNow(); | 
|  | clock_.AdvanceTime(delay); | 
|  | // Verify the timeout alarm deadline is updated. | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_EQ(new_ddl, connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Simulate the timeout alarm firing again, the connection now should be | 
|  | // closed. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | clock_.AdvanceTime(new_ddl - clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  |  | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, IdleTimeoutAfterSendTwoPackets) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | QuicTime initial_ddl = | 
|  | clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | // Immediately send the first packet, this is a rare case but test code will | 
|  | // hit this issue often as MockClock used for tests doesn't move with code | 
|  | // execution until manually adjusted. | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); | 
|  | EXPECT_EQ(QuicPacketNumber(1u), last_packet); | 
|  |  | 
|  | // Advance the time and send the second packet to the peer. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20)); | 
|  | SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); | 
|  | EXPECT_EQ(QuicPacketNumber(2u), last_packet); | 
|  |  | 
|  | // Simulate the timeout alarm firing, the connection will be closed. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | clock_.AdvanceTime(initial_ddl - clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  |  | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, HandshakeTimeout) { | 
|  | // Use a shorter handshake timeout than idle timeout for this test. | 
|  | const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5); | 
|  | connection_.SetNetworkTimeouts(timeout, timeout); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
|  |  | 
|  | QuicTime handshake_timeout = | 
|  | clock_.ApproximateNow() + timeout - QuicTime::Delta::FromSeconds(1); | 
|  | EXPECT_EQ(handshake_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | // Send and ack new data 3 seconds later to lengthen the idle timeout. | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(0, connection_.transport_version()), | 
|  | "GET /", 0, FIN, nullptr); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3)); | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(2)); | 
|  |  | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | // Simulate the timeout alarm firing. | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  |  | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_HANDSHAKE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PingAfterSend) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(true)); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  |  | 
|  | // Advance to 5ms, and send a packet to the peer, which will set | 
|  | // the ping alarm. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(0, connection_.transport_version()), | 
|  | "GET /", 0, FIN, nullptr); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(QuicTime::Delta::FromSeconds(15), | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Now recevie an ACK of the previous packet, which will move the | 
|  | // ping alarm forward. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | // The ping timer is set slightly less than 15 seconds in the future, because | 
|  | // of the 1s ping timer alarm granularity. | 
|  | EXPECT_EQ( | 
|  | QuicTime::Delta::FromSeconds(15) - QuicTime::Delta::FromMilliseconds(5), | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | writer_->Reset(); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15)); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | ASSERT_EQ(1u, writer_->ping_frames().size()); | 
|  | writer_->Reset(); | 
|  |  | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(false)); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | SendAckPacketToPeer(); | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ReducedPingTimeout) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(true)); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  |  | 
|  | // Use a reduced ping timeout for this connection. | 
|  | connection_.set_ping_timeout(QuicTime::Delta::FromSeconds(10)); | 
|  |  | 
|  | // Advance to 5ms, and send a packet to the peer, which will set | 
|  | // the ping alarm. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(0, connection_.transport_version()), | 
|  | "GET /", 0, FIN, nullptr); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(QuicTime::Delta::FromSeconds(10), | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Now recevie an ACK of the previous packet, which will move the | 
|  | // ping alarm forward. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | // The ping timer is set slightly less than 10 seconds in the future, because | 
|  | // of the 1s ping timer alarm granularity. | 
|  | EXPECT_EQ( | 
|  | QuicTime::Delta::FromSeconds(10) - QuicTime::Delta::FromMilliseconds(5), | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | writer_->Reset(); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { | 
|  | connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); | 
|  | })); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | ASSERT_EQ(1u, writer_->ping_frames().size()); | 
|  | writer_->Reset(); | 
|  |  | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(false)); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | SendAckPacketToPeer(); | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Tests whether sending an MTU discovery packet to peer successfully causes the | 
|  | // maximum packet size to increase. | 
|  | TEST_P(QuicConnectionTest, SendMtuDiscoveryPacket) { | 
|  | MtuDiscoveryTestInit(); | 
|  |  | 
|  | // Send an MTU probe. | 
|  | const size_t new_mtu = kDefaultMaxPacketSize + 100; | 
|  | QuicByteCount mtu_probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&mtu_probe_size)); | 
|  | connection_.SendMtuDiscoveryPacket(new_mtu); | 
|  | EXPECT_EQ(new_mtu, mtu_probe_size); | 
|  | EXPECT_EQ(QuicPacketNumber(1u), creator_->packet_number()); | 
|  |  | 
|  | // Send more than MTU worth of data.  No acknowledgement was received so far, | 
|  | // so the MTU should be at its old value. | 
|  | const std::string data(kDefaultMaxPacketSize + 1, '.'); | 
|  | QuicByteCount size_before_mtu_change; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .Times(2) | 
|  | .WillOnce(SaveArg<3>(&size_before_mtu_change)) | 
|  | .WillOnce(Return()); | 
|  | connection_.SendStreamDataWithString(3, data, 0, FIN); | 
|  | EXPECT_EQ(QuicPacketNumber(3u), creator_->packet_number()); | 
|  | EXPECT_EQ(kDefaultMaxPacketSize, size_before_mtu_change); | 
|  |  | 
|  | // Acknowledge all packets so far. | 
|  | QuicAckFrame probe_ack = InitAckFrame(3); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&probe_ack); | 
|  | EXPECT_EQ(new_mtu, connection_.max_packet_length()); | 
|  |  | 
|  | // Send the same data again.  Check that it fits into a single packet now. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(3, data, 0, FIN); | 
|  | EXPECT_EQ(QuicPacketNumber(4u), creator_->packet_number()); | 
|  | } | 
|  |  | 
|  | // Verifies that when a MTU probe packet is sent and buffered in a batch writer, | 
|  | // the writer is flushed immediately. | 
|  | TEST_P(QuicConnectionTest, BatchWriterFlushedAfterMtuDiscoveryPacket) { | 
|  | writer_->SetBatchMode(true); | 
|  | MtuDiscoveryTestInit(); | 
|  |  | 
|  | // Send an MTU probe. | 
|  | const size_t target_mtu = kDefaultMaxPacketSize + 100; | 
|  | QuicByteCount mtu_probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&mtu_probe_size)); | 
|  | const uint32_t prior_flush_attempts = writer_->flush_attempts(); | 
|  | connection_.SendMtuDiscoveryPacket(target_mtu); | 
|  | EXPECT_EQ(target_mtu, mtu_probe_size); | 
|  | EXPECT_EQ(writer_->flush_attempts(), prior_flush_attempts + 1); | 
|  | } | 
|  |  | 
|  | // Tests whether MTU discovery does not happen when it is not explicitly enabled | 
|  | // by the connection options. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoveryDisabled) { | 
|  | MtuDiscoveryTestInit(); | 
|  |  | 
|  | const QuicPacketCount packets_between_probes_base = 10; | 
|  | set_packets_between_probes_base(packets_between_probes_base); | 
|  |  | 
|  | const QuicPacketCount number_of_packets = packets_between_probes_base * 2; | 
|  | for (QuicPacketCount i = 0; i < number_of_packets; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
|  | EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | EXPECT_EQ(0u, connection_.mtu_probe_count()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tests whether MTU discovery works when all probes are acknowledged on the | 
|  | // first try. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoveryEnabled) { | 
|  | MtuDiscoveryTestInit(); | 
|  |  | 
|  | const QuicPacketCount packets_between_probes_base = 5; | 
|  | set_packets_between_probes_base(packets_between_probes_base); | 
|  |  | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | // Send enough packets so that the next one triggers path MTU discovery. | 
|  | for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the probe. | 
|  | SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
|  | nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | QuicByteCount probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&probe_size)); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  |  | 
|  | EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), | 
|  | kMtuDiscoveryTargetPacketSizeHigh)); | 
|  |  | 
|  | const QuicPacketNumber probe_packet_number = | 
|  | FirstSendingPacketNumber() + packets_between_probes_base; | 
|  | ASSERT_EQ(probe_packet_number, creator_->packet_number()); | 
|  |  | 
|  | // Acknowledge all packets sent so far. | 
|  | QuicAckFrame probe_ack = InitAckFrame(probe_packet_number); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | ProcessAckPacket(&probe_ack); | 
|  | EXPECT_EQ(probe_size, connection_.max_packet_length()); | 
|  | EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
|  |  | 
|  | EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
|  |  | 
|  | QuicStreamOffset stream_offset = packets_between_probes_base; | 
|  | QuicByteCount last_probe_size = 0; | 
|  | for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts; | 
|  | ++num_probes) { | 
|  | // Send just enough packets without triggering the next probe. | 
|  | for (QuicPacketCount i = 0; | 
|  | i < (packets_between_probes_base << num_probes) - 1; ++i) { | 
|  | SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the next probe. | 
|  | SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | QuicByteCount new_probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&new_probe_size)); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | EXPECT_THAT(new_probe_size, | 
|  | InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh)); | 
|  | EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count()); | 
|  |  | 
|  | // Acknowledge all packets sent so far. | 
|  | QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number()); | 
|  | ProcessAckPacket(&probe_ack); | 
|  | EXPECT_EQ(new_probe_size, connection_.max_packet_length()); | 
|  | EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
|  |  | 
|  | last_probe_size = probe_size; | 
|  | probe_size = new_probe_size; | 
|  | } | 
|  |  | 
|  | // The last probe size should be equal to the target. | 
|  | EXPECT_EQ(probe_size, kMtuDiscoveryTargetPacketSizeHigh); | 
|  |  | 
|  | writer_->SetShouldWriteFail(); | 
|  |  | 
|  | // Ignore PACKET_WRITE_ERROR once. | 
|  | SendStreamDataToPeer(3, "(", stream_offset++, NO_FIN, nullptr); | 
|  | EXPECT_EQ(last_probe_size, connection_.max_packet_length()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | // Close connection on another PACKET_WRITE_ERROR. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | SendStreamDataToPeer(3, ")", stream_offset++, NO_FIN, nullptr); | 
|  | EXPECT_EQ(last_probe_size, connection_.max_packet_length()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_PACKET_WRITE_ERROR)); | 
|  | } | 
|  |  | 
|  | // After a successful MTU probe, one and only one write error should be ignored | 
|  | // if it happened in QuicConnection::FlushPacket. | 
|  | TEST_P(QuicConnectionTest, | 
|  | MtuDiscoveryIgnoreOneWriteErrorInFlushAfterSuccessfulProbes) { | 
|  | MtuDiscoveryTestInit(); | 
|  | writer_->SetBatchMode(true); | 
|  |  | 
|  | const QuicPacketCount packets_between_probes_base = 5; | 
|  | set_packets_between_probes_base(packets_between_probes_base); | 
|  |  | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | const QuicByteCount original_max_packet_length = | 
|  | connection_.max_packet_length(); | 
|  | // Send enough packets so that the next one triggers path MTU discovery. | 
|  | for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the probe. | 
|  | SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
|  | nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | QuicByteCount probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&probe_size)); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  |  | 
|  | EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), | 
|  | kMtuDiscoveryTargetPacketSizeHigh)); | 
|  |  | 
|  | const QuicPacketNumber probe_packet_number = | 
|  | FirstSendingPacketNumber() + packets_between_probes_base; | 
|  | ASSERT_EQ(probe_packet_number, creator_->packet_number()); | 
|  |  | 
|  | // Acknowledge all packets sent so far. | 
|  | QuicAckFrame probe_ack = InitAckFrame(probe_packet_number); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | ProcessAckPacket(&probe_ack); | 
|  | EXPECT_EQ(probe_size, connection_.max_packet_length()); | 
|  | EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
|  |  | 
|  | EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
|  |  | 
|  | writer_->SetShouldWriteFail(); | 
|  |  | 
|  | // Ignore PACKET_WRITE_ERROR once. | 
|  | { | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | // flusher's destructor will call connection_.FlushPackets, which should | 
|  | // get a WRITE_STATUS_ERROR from the writer and ignore it. | 
|  | } | 
|  | EXPECT_EQ(original_max_packet_length, connection_.max_packet_length()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | // Close connection on another PACKET_WRITE_ERROR. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | { | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | // flusher's destructor will call connection_.FlushPackets, which should | 
|  | // get a WRITE_STATUS_ERROR from the writer and ignore it. | 
|  | } | 
|  | EXPECT_EQ(original_max_packet_length, connection_.max_packet_length()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_PACKET_WRITE_ERROR)); | 
|  | } | 
|  |  | 
|  | // Simulate the case where the first attempt to send a probe is write blocked, | 
|  | // and after unblock, the second attempt returns a MSG_TOO_BIG error. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoveryWriteBlocked) { | 
|  | MtuDiscoveryTestInit(); | 
|  |  | 
|  | const QuicPacketCount packets_between_probes_base = 5; | 
|  | set_packets_between_probes_base(packets_between_probes_base); | 
|  |  | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | // Send enough packets so that the next one triggers path MTU discovery. | 
|  | for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | QuicByteCount original_max_packet_length = connection_.max_packet_length(); | 
|  |  | 
|  | // Trigger the probe. | 
|  | SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
|  | nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | BlockOnNextWrite(); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  | ASSERT_TRUE(connection_.connected()); | 
|  |  | 
|  | writer_->SetWritable(); | 
|  | SimulateNextPacketTooLarge(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_EQ(original_max_packet_length, connection_.max_packet_length()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | // Tests whether MTU discovery works correctly when the probes never get | 
|  | // acknowledged. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoveryFailed) { | 
|  | MtuDiscoveryTestInit(); | 
|  |  | 
|  | // Lower the number of probes between packets in order to make the test go | 
|  | // much faster. | 
|  | const QuicPacketCount packets_between_probes_base = 5; | 
|  | set_packets_between_probes_base(packets_between_probes_base); | 
|  |  | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100); | 
|  |  | 
|  | EXPECT_EQ(packets_between_probes_base, | 
|  | QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_)); | 
|  |  | 
|  | // This tests sends more packets than strictly necessary to make sure that if | 
|  | // the connection was to send more discovery packets than needed, those would | 
|  | // get caught as well. | 
|  | const QuicPacketCount number_of_packets = | 
|  | packets_between_probes_base * (1 << (kMtuDiscoveryAttempts + 1)); | 
|  | std::vector<QuicPacketNumber> mtu_discovery_packets; | 
|  | // Called on many acks. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | for (QuicPacketCount i = 0; i < number_of_packets; i++) { | 
|  | SendStreamDataToPeer(3, "!", i, NO_FIN, nullptr); | 
|  | clock_.AdvanceTime(rtt); | 
|  |  | 
|  | // Receive an ACK, which marks all data packets as received, and all MTU | 
|  | // discovery packets as missing. | 
|  |  | 
|  | QuicAckFrame ack; | 
|  |  | 
|  | if (!mtu_discovery_packets.empty()) { | 
|  | QuicPacketNumber min_packet = *min_element(mtu_discovery_packets.begin(), | 
|  | mtu_discovery_packets.end()); | 
|  | QuicPacketNumber max_packet = *max_element(mtu_discovery_packets.begin(), | 
|  | mtu_discovery_packets.end()); | 
|  | ack.packets.AddRange(QuicPacketNumber(1), min_packet); | 
|  | ack.packets.AddRange(QuicPacketNumber(max_packet + 1), | 
|  | creator_->packet_number() + 1); | 
|  | ack.largest_acked = creator_->packet_number(); | 
|  |  | 
|  | } else { | 
|  | ack.packets.AddRange(QuicPacketNumber(1), creator_->packet_number() + 1); | 
|  | ack.largest_acked = creator_->packet_number(); | 
|  | } | 
|  |  | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | // Trigger MTU probe if it would be scheduled now. | 
|  | if (!connection_.GetMtuDiscoveryAlarm()->IsSet()) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Fire the alarm.  The alarm should cause a packet to be sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | // Record the packet number of the MTU discovery packet in order to | 
|  | // mark it as NACK'd. | 
|  | mtu_discovery_packets.push_back(creator_->packet_number()); | 
|  | } | 
|  |  | 
|  | // Ensure the number of packets between probes grows exponentially by checking | 
|  | // it against the closed-form expression for the packet number. | 
|  | ASSERT_EQ(kMtuDiscoveryAttempts, mtu_discovery_packets.size()); | 
|  | for (uint64_t i = 0; i < kMtuDiscoveryAttempts; i++) { | 
|  | // 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1 | 
|  | const QuicPacketCount packets_between_probes = | 
|  | packets_between_probes_base * ((1 << (i + 1)) - 1); | 
|  | EXPECT_EQ(QuicPacketNumber(packets_between_probes + (i + 1)), | 
|  | mtu_discovery_packets[i]); | 
|  | } | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length()); | 
|  | EXPECT_EQ(kMtuDiscoveryAttempts, connection_.mtu_probe_count()); | 
|  | } | 
|  |  | 
|  | // Probe 3 times, the first one succeeds, then fails, then succeeds again. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoverySecondProbeFailed) { | 
|  | MtuDiscoveryTestInit(); | 
|  |  | 
|  | const QuicPacketCount packets_between_probes_base = 5; | 
|  | set_packets_between_probes_base(packets_between_probes_base); | 
|  |  | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | // Send enough packets so that the next one triggers path MTU discovery. | 
|  | QuicStreamOffset stream_offset = 0; | 
|  | for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
|  | SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the probe. | 
|  | SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
|  | nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | QuicByteCount probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&probe_size)); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), | 
|  | kMtuDiscoveryTargetPacketSizeHigh)); | 
|  |  | 
|  | const QuicPacketNumber probe_packet_number = | 
|  | FirstSendingPacketNumber() + packets_between_probes_base; | 
|  | ASSERT_EQ(probe_packet_number, creator_->packet_number()); | 
|  |  | 
|  | // Acknowledge all packets sent so far. | 
|  | QuicAckFrame first_ack = InitAckFrame(probe_packet_number); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | ProcessAckPacket(&first_ack); | 
|  | EXPECT_EQ(probe_size, connection_.max_packet_length()); | 
|  | EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
|  |  | 
|  | EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
|  |  | 
|  | // Send just enough packets without triggering the second probe. | 
|  | for (QuicPacketCount i = 0; i < (packets_between_probes_base << 1) - 1; ++i) { | 
|  | SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the second probe. | 
|  | SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | QuicByteCount second_probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&second_probe_size)); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | EXPECT_THAT(second_probe_size, | 
|  | InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh)); | 
|  | EXPECT_EQ(2u, connection_.mtu_probe_count()); | 
|  |  | 
|  | // Acknowledge all packets sent so far, except the second probe. | 
|  | QuicPacketNumber second_probe_packet_number = creator_->packet_number(); | 
|  | QuicAckFrame second_ack = InitAckFrame(second_probe_packet_number - 1); | 
|  | ProcessAckPacket(&first_ack); | 
|  | EXPECT_EQ(probe_size, connection_.max_packet_length()); | 
|  |  | 
|  | // Send just enough packets without triggering the third probe. | 
|  | for (QuicPacketCount i = 0; i < (packets_between_probes_base << 2) - 1; ++i) { | 
|  | SendStreamDataToPeer(3, "@", stream_offset++, NO_FIN, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the third probe. | 
|  | SendStreamDataToPeer(3, "#", stream_offset++, NO_FIN, nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | QuicByteCount third_probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&third_probe_size)); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | EXPECT_THAT(third_probe_size, InRange(probe_size, second_probe_size)); | 
|  | EXPECT_EQ(3u, connection_.mtu_probe_count()); | 
|  |  | 
|  | // Acknowledge all packets sent so far, except the second probe. | 
|  | QuicAckFrame third_ack = | 
|  | ConstructAckFrame(creator_->packet_number(), second_probe_packet_number); | 
|  | ProcessAckPacket(&third_ack); | 
|  | EXPECT_EQ(third_probe_size, connection_.max_packet_length()); | 
|  | } | 
|  |  | 
|  | // Tests whether MTU discovery works when the writer has a limit on how large a | 
|  | // packet can be. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoveryWriterLimited) { | 
|  | MtuDiscoveryTestInit(); | 
|  |  | 
|  | const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1; | 
|  | writer_->set_max_packet_size(mtu_limit); | 
|  |  | 
|  | const QuicPacketCount packets_between_probes_base = 5; | 
|  | set_packets_between_probes_base(packets_between_probes_base); | 
|  |  | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | // Send enough packets so that the next one triggers path MTU discovery. | 
|  | for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the probe. | 
|  | SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
|  | nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | QuicByteCount probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&probe_size)); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  |  | 
|  | EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), mtu_limit)); | 
|  |  | 
|  | const QuicPacketNumber probe_sequence_number = | 
|  | FirstSendingPacketNumber() + packets_between_probes_base; | 
|  | ASSERT_EQ(probe_sequence_number, creator_->packet_number()); | 
|  |  | 
|  | // Acknowledge all packets sent so far. | 
|  | QuicAckFrame probe_ack = InitAckFrame(probe_sequence_number); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | ProcessAckPacket(&probe_ack); | 
|  | EXPECT_EQ(probe_size, connection_.max_packet_length()); | 
|  | EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
|  |  | 
|  | EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
|  |  | 
|  | QuicStreamOffset stream_offset = packets_between_probes_base; | 
|  | for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts; | 
|  | ++num_probes) { | 
|  | // Send just enough packets without triggering the next probe. | 
|  | for (QuicPacketCount i = 0; | 
|  | i < (packets_between_probes_base << num_probes) - 1; ++i) { | 
|  | SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the next probe. | 
|  | SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | QuicByteCount new_probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(SaveArg<3>(&new_probe_size)); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | EXPECT_THAT(new_probe_size, InRange(probe_size, mtu_limit)); | 
|  | EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count()); | 
|  |  | 
|  | // Acknowledge all packets sent so far. | 
|  | QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number()); | 
|  | ProcessAckPacket(&probe_ack); | 
|  | EXPECT_EQ(new_probe_size, connection_.max_packet_length()); | 
|  | EXPECT_EQ(0u, connection_.GetBytesInFlight()); | 
|  |  | 
|  | probe_size = new_probe_size; | 
|  | } | 
|  |  | 
|  | // The last probe size should be equal to the target. | 
|  | EXPECT_EQ(probe_size, mtu_limit); | 
|  | } | 
|  |  | 
|  | // Tests whether MTU discovery works when the writer returns an error despite | 
|  | // advertising higher packet length. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoveryWriterFailed) { | 
|  | MtuDiscoveryTestInit(); | 
|  |  | 
|  | const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1; | 
|  | const QuicByteCount initial_mtu = connection_.max_packet_length(); | 
|  | EXPECT_LT(initial_mtu, mtu_limit); | 
|  | writer_->set_max_packet_size(mtu_limit); | 
|  |  | 
|  | const QuicPacketCount packets_between_probes_base = 5; | 
|  | set_packets_between_probes_base(packets_between_probes_base); | 
|  |  | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | // Send enough packets so that the next one triggers path MTU discovery. | 
|  | for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the probe. | 
|  | SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
|  | nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | writer_->SimulateNextPacketTooLarge(); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | ASSERT_TRUE(connection_.connected()); | 
|  |  | 
|  | // Send more data. | 
|  | QuicPacketNumber probe_number = creator_->packet_number(); | 
|  | QuicPacketCount extra_packets = packets_between_probes_base * 3; | 
|  | for (QuicPacketCount i = 0; i < extra_packets; i++) { | 
|  | connection_.EnsureWritableAndSendStreamData5(); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Acknowledge all packets sent so far, except for the lost probe. | 
|  | QuicAckFrame probe_ack = | 
|  | ConstructAckFrame(creator_->packet_number(), probe_number); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&probe_ack); | 
|  | EXPECT_EQ(initial_mtu, connection_.max_packet_length()); | 
|  |  | 
|  | // Send more packets, and ensure that none of them sets the alarm. | 
|  | for (QuicPacketCount i = 0; i < 4 * packets_between_probes_base; i++) { | 
|  | connection_.EnsureWritableAndSendStreamData5(); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(initial_mtu, connection_.max_packet_length()); | 
|  | EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoMtuDiscoveryAfterConnectionClosed) { | 
|  | MtuDiscoveryTestInit(); | 
|  |  | 
|  | const QuicPacketCount packets_between_probes_base = 10; | 
|  | set_packets_between_probes_base(packets_between_probes_base); | 
|  |  | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | // Send enough packets so that the next one triggers path MTU discovery. | 
|  | for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN, | 
|  | nullptr); | 
|  | EXPECT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", | 
|  | ConnectionCloseBehavior::SILENT_CLOSE); | 
|  | EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfterSendDuringHandshake) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | const QuicTime::Delta initial_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; | 
|  |  | 
|  | // When we send a packet, the timeout will change to 5ms + | 
|  | // kInitialIdleTimeoutSecs. | 
|  | clock_.AdvanceTime(five_ms); | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Now send more data. This will not move the timeout because | 
|  | // no data has been received since the previous write. | 
|  | clock_.AdvanceTime(five_ms); | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 3, FIN, nullptr); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // The original alarm will fire.  We should not time out because we had a | 
|  | // network event at t=5ms.  The alarm will reregister. | 
|  | clock_.AdvanceTime(initial_idle_timeout - five_ms - five_ms); | 
|  | EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // This time, we should time out. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | clock_.AdvanceTime(five_ms); | 
|  | EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfterRetransmission) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | const QuicTime start_time = clock_.Now(); | 
|  | const QuicTime::Delta initial_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | QuicTime default_timeout = clock_.Now() + initial_idle_timeout; | 
|  |  | 
|  | connection_.SetMaxTailLossProbes(0); | 
|  | const QuicTime default_retransmission_time = | 
|  | start_time + DefaultRetransmissionTime(); | 
|  |  | 
|  | ASSERT_LT(default_retransmission_time, default_timeout); | 
|  |  | 
|  | // When we send a packet, the timeout will change to 5 ms + | 
|  | // kInitialIdleTimeoutSecs (but it will not reschedule the alarm). | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | const QuicTime send_time = start_time + five_ms; | 
|  | clock_.AdvanceTime(five_ms); | 
|  | ASSERT_EQ(send_time, clock_.Now()); | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Move forward 5 ms and receive a packet, which will move the timeout | 
|  | // forward 5 ms more (but will not reschedule the alarm). | 
|  | const QuicTime receive_time = send_time + five_ms; | 
|  | clock_.AdvanceTime(receive_time - clock_.Now()); | 
|  | ASSERT_EQ(receive_time, clock_.Now()); | 
|  | ProcessPacket(1); | 
|  |  | 
|  | // Now move forward to the retransmission time and retransmit the | 
|  | // packet, which should move the timeout forward again (but will not | 
|  | // reschedule the alarm). | 
|  | EXPECT_EQ(default_retransmission_time + five_ms, | 
|  | connection_.GetRetransmissionAlarm()->deadline()); | 
|  | // Simulate the retransmission alarm firing. | 
|  | const QuicTime rto_time = send_time + DefaultRetransmissionTime(); | 
|  | const QuicTime final_timeout = rto_time + initial_idle_timeout; | 
|  | clock_.AdvanceTime(rto_time - clock_.Now()); | 
|  | ASSERT_EQ(rto_time, clock_.Now()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // Advance to the original timeout and fire the alarm. The connection should | 
|  | // timeout, and the alarm should be registered based on the time of the | 
|  | // retransmission. | 
|  | clock_.AdvanceTime(default_timeout - clock_.Now()); | 
|  | ASSERT_EQ(default_timeout.ToDebuggingValue(), | 
|  | clock_.Now().ToDebuggingValue()); | 
|  | EXPECT_EQ(default_timeout, clock_.Now()); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | ASSERT_EQ(final_timeout.ToDebuggingValue(), | 
|  | connection_.GetTimeoutAlarm()->deadline().ToDebuggingValue()); | 
|  |  | 
|  | // This time, we should time out. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | clock_.AdvanceTime(final_timeout - clock_.Now()); | 
|  | EXPECT_EQ(connection_.GetTimeoutAlarm()->deadline(), clock_.Now()); | 
|  | EXPECT_EQ(final_timeout, clock_.Now()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfterSendAfterHandshake) { | 
|  | // When the idle timeout fires, verify that by default we do not send any | 
|  | // connection close packets. | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  |  | 
|  | // Create a handshake message that also enables silent close. | 
|  | CryptoHandshakeMessage msg; | 
|  | std::string error_details; | 
|  | QuicConfig client_config; | 
|  | client_config.SetInitialStreamFlowControlWindowToSend( | 
|  | kInitialStreamFlowControlWindowForTest); | 
|  | client_config.SetInitialSessionFlowControlWindowToSend( | 
|  | kInitialSessionFlowControlWindowForTest); | 
|  | client_config.SetIdleNetworkTimeout( | 
|  | QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs)); | 
|  | client_config.ToHandshakeMessage(&msg, connection_.transport_version()); | 
|  | const QuicErrorCode error = | 
|  | config.ProcessPeerHello(msg, CLIENT, &error_details); | 
|  | EXPECT_THAT(error, IsQuicNoError()); | 
|  |  | 
|  | if (connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | QuicConfigPeer::SetReceivedOriginalConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | } | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | const QuicTime::Delta default_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1); | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout; | 
|  |  | 
|  | // When we send a packet, the timeout will change to 5ms + | 
|  | // kInitialIdleTimeoutSecs. | 
|  | clock_.AdvanceTime(five_ms); | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Now send more data. This will not move the timeout because | 
|  | // no data has been received since the previous write. | 
|  | clock_.AdvanceTime(five_ms); | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 3, FIN, nullptr); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // The original alarm will fire.  We should not time out because we had a | 
|  | // network event at t=5ms.  The alarm will reregister. | 
|  | clock_.AdvanceTime(default_idle_timeout - five_ms - five_ms); | 
|  | EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // This time, we should time out. | 
|  | // This results in a SILENT_CLOSE, so the writer will not be invoked | 
|  | // and will not save the frame. Grab the frame from OnConnectionClosed | 
|  | // directly. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  |  | 
|  | clock_.AdvanceTime(five_ms); | 
|  | EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_NETWORK_IDLE_TIMEOUT)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseAndTLP) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | // Same test as above, but sending TLPs causes a connection close to be sent. | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  |  | 
|  | // Create a handshake message that also enables silent close. | 
|  | CryptoHandshakeMessage msg; | 
|  | std::string error_details; | 
|  | QuicConfig client_config; | 
|  | client_config.SetInitialStreamFlowControlWindowToSend( | 
|  | kInitialStreamFlowControlWindowForTest); | 
|  | client_config.SetInitialSessionFlowControlWindowToSend( | 
|  | kInitialSessionFlowControlWindowForTest); | 
|  | client_config.SetIdleNetworkTimeout( | 
|  | QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs)); | 
|  | client_config.ToHandshakeMessage(&msg, connection_.transport_version()); | 
|  | const QuicErrorCode error = | 
|  | config.ProcessPeerHello(msg, CLIENT, &error_details); | 
|  | EXPECT_THAT(error, IsQuicNoError()); | 
|  |  | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | const QuicTime::Delta default_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1); | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout; | 
|  |  | 
|  | // When we send a packet, the timeout will change to 5ms + | 
|  | // kInitialIdleTimeoutSecs. | 
|  | clock_.AdvanceTime(five_ms); | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Retransmit the packet via tail loss probe. | 
|  | clock_.AdvanceTime(connection_.GetRetransmissionAlarm()->deadline() - | 
|  | clock_.Now()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // This time, we should time out and send a connection close due to the TLP. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() - | 
|  | clock_.ApproximateNow() + five_ms); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseWithOpenStreams) { | 
|  | // Same test as above, but having open streams causes a connection close | 
|  | // to be sent. | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  |  | 
|  | // Create a handshake message that also enables silent close. | 
|  | CryptoHandshakeMessage msg; | 
|  | std::string error_details; | 
|  | QuicConfig client_config; | 
|  | client_config.SetInitialStreamFlowControlWindowToSend( | 
|  | kInitialStreamFlowControlWindowForTest); | 
|  | client_config.SetInitialSessionFlowControlWindowToSend( | 
|  | kInitialSessionFlowControlWindowForTest); | 
|  | client_config.SetIdleNetworkTimeout( | 
|  | QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs)); | 
|  | client_config.ToHandshakeMessage(&msg, connection_.transport_version()); | 
|  | const QuicErrorCode error = | 
|  | config.ProcessPeerHello(msg, CLIENT, &error_details); | 
|  | EXPECT_THAT(error, IsQuicNoError()); | 
|  |  | 
|  | if (connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | QuicConfigPeer::SetReceivedOriginalConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | } | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | const QuicTime::Delta default_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1); | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout; | 
|  |  | 
|  | // When we send a packet, the timeout will change to 5ms + | 
|  | // kInitialIdleTimeoutSecs. | 
|  | clock_.AdvanceTime(five_ms); | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Indicate streams are still open. | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(true)); | 
|  |  | 
|  | // This time, we should time out and send a connection close due to the TLP. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() - | 
|  | clock_.ApproximateNow() + five_ms); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfterReceive) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | const QuicTime::Delta initial_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; | 
|  |  | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, NO_FIN); | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 3, NO_FIN); | 
|  |  | 
|  | EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  | clock_.AdvanceTime(five_ms); | 
|  |  | 
|  | // When we receive a packet, the timeout will change to 5ms + | 
|  | // kInitialIdleTimeoutSecs. | 
|  | QuicAckFrame ack = InitAckFrame(2); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | // The original alarm will fire.  We should not time out because we had a | 
|  | // network event at t=5ms.  The alarm will reregister. | 
|  | clock_.AdvanceTime(initial_idle_timeout - five_ms); | 
|  | EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // This time, we should time out. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | clock_.AdvanceTime(five_ms); | 
|  | EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfterReceiveNotSendWhenUnacked) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | const QuicTime::Delta initial_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | connection_.SetNetworkTimeouts( | 
|  | QuicTime::Delta::Infinite(), | 
|  | initial_idle_timeout + QuicTime::Delta::FromSeconds(1)); | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, NO_FIN); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 3, NO_FIN); | 
|  |  | 
|  | EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | clock_.AdvanceTime(five_ms); | 
|  |  | 
|  | // When we receive a packet, the timeout will change to 5ms + | 
|  | // kInitialIdleTimeoutSecs. | 
|  | QuicAckFrame ack = InitAckFrame(2); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | // The original alarm will fire.  We should not time out because we had a | 
|  | // network event at t=5ms.  The alarm will reregister. | 
|  | clock_.AdvanceTime(initial_idle_timeout - five_ms); | 
|  | EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Now, send packets while advancing the time and verify that the connection | 
|  | // eventually times out. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
|  | for (int i = 0; i < 100 && connection_.connected(); ++i) { | 
|  | QUIC_LOG(INFO) << "sending data packet"; | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), | 
|  | "foo", 0, NO_FIN); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
|  | } | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfter5ClientRTOs) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | connection_.SetMaxTailLossProbes(2); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k5RTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | QuicConfigPeer::SetNegotiated(&config, true); | 
|  | if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
|  | } | 
|  | if (connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | QuicConfigPeer::SetReceivedOriginalConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | } | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  |  | 
|  | // Fire the retransmission alarm 6 times, twice for TLP and 4 times for RTO. | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()); | 
|  | connection_.PathDegradingTimeout(); | 
|  |  | 
|  | EXPECT_EQ(2u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); | 
|  | EXPECT_EQ(4u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); | 
|  | // This time, we should time out. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | ASSERT_TRUE(connection_.BlackholeDetectionInProgress()); | 
|  | connection_.GetBlackholeDetectorAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendScheduler) { | 
|  | // Test that if we send a packet without delay, it is not queued. | 
|  | QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT); | 
|  | std::unique_ptr<QuicPacket> packet = | 
|  | ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | QuicPacketCreatorPeer::SetPacketNumber(creator_, 1); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet), | 
|  | HAS_RETRANSMITTABLE_DATA, false, false); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FailToSendFirstPacket) { | 
|  | // Test that the connection does not crash when it fails to send the first | 
|  | // packet at which point self_address_ might be uninitialized. | 
|  | QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1); | 
|  | std::unique_ptr<QuicPacket> packet = | 
|  | ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | QuicPacketCreatorPeer::SetPacketNumber(creator_, 1); | 
|  | writer_->SetShouldWriteFail(); | 
|  | connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet), | 
|  | HAS_RETRANSMITTABLE_DATA, false, false); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) { | 
|  | QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT); | 
|  | std::unique_ptr<QuicPacket> packet = | 
|  | ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | QuicPacketCreatorPeer::SetPacketNumber(creator_, 1); | 
|  | BlockOnNextWrite(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _)) | 
|  | .Times(0); | 
|  | connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet), | 
|  | HAS_RETRANSMITTABLE_DATA, false, false); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) { | 
|  | // Queue the first packet. | 
|  | size_t payload_length = connection_.max_packet_length(); | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(testing::Return(false)); | 
|  | const std::string payload(payload_length, 'a'); | 
|  | QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId( | 
|  | connection_.version().transport_version, Perspective::IS_CLIENT)); | 
|  | EXPECT_EQ(0u, connection_ | 
|  | .SendStreamDataWithString(first_bidi_stream_id, payload, 0, | 
|  | NO_FIN) | 
|  | .bytes_consumed); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendingThreePackets) { | 
|  | // Make the payload twice the size of the packet, so 3 packets are written. | 
|  | size_t total_payload_length = 2 * connection_.max_packet_length(); | 
|  | const std::string payload(total_payload_length, 'a'); | 
|  | QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId( | 
|  | connection_.version().transport_version, Perspective::IS_CLIENT)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); | 
|  | EXPECT_EQ(payload.size(), connection_ | 
|  | .SendStreamDataWithString(first_bidi_stream_id, | 
|  | payload, 0, NO_FIN) | 
|  | .bytes_consumed); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) { | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | if (!VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { | 
|  | // For IETF QUIC, encryption level will be switched to FORWARD_SECURE in | 
|  | // SendStreamDataWithString. | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  | } | 
|  | // Set up a larger payload than will fit in one packet. | 
|  | const std::string payload(connection_.max_packet_length(), 'a'); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber()); | 
|  |  | 
|  | // Now send some packets with no truncation. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | EXPECT_EQ(payload.size(), | 
|  | connection_.SendStreamDataWithString(3, payload, 0, NO_FIN) | 
|  | .bytes_consumed); | 
|  | // Track the size of the second packet here.  The overhead will be the largest | 
|  | // we see in this test, due to the non-truncated connection id. | 
|  | size_t non_truncated_packet_size = writer_->last_packet_size(); | 
|  |  | 
|  | // Change to a 0 byte connection id. | 
|  | QuicConfig config; | 
|  | QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | EXPECT_EQ(payload.size(), | 
|  | connection_.SendStreamDataWithString(3, payload, 1350, NO_FIN) | 
|  | .bytes_consumed); | 
|  | if (VersionHasIetfInvariantHeader(connection_.transport_version())) { | 
|  | // Short header packets sent from server omit connection ID already, and | 
|  | // stream offset size increases from 0 to 2. | 
|  | EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() - 2); | 
|  | } else { | 
|  | // Just like above, we save 8 bytes on payload, and 8 on truncation. -2 | 
|  | // because stream offset size is 2 instead of 0. | 
|  | EXPECT_EQ(non_truncated_packet_size, | 
|  | writer_->last_packet_size() + 8 * 2 - 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAck) { | 
|  | QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | const uint8_t tag = 0x07; | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
|  | // instead of ENCRYPTION_INITIAL. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  | // Simulate delayed ack alarm firing. | 
|  | clock_.AdvanceTime(DefaultDelayedAckTime()); | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAfterQuiescence) { | 
|  | QuicConnectionPeer::SetFastAckAfterQuiescence(&connection_, true); | 
|  |  | 
|  | // The beginning of the connection counts as quiescence. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + kAlarmGranularity; | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | const uint8_t tag = 0x07; | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
|  | // instead of ENCRYPTION_INITIAL. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  | // Simulate delayed ack alarm firing. | 
|  | clock_.AdvanceTime(DefaultDelayedAckTime()); | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // Process another packet immedately after sending the ack and expect the | 
|  | // ack alarm to be set delayed ack time in the future. | 
|  | ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  | // Simulate delayed ack alarm firing. | 
|  | clock_.AdvanceTime(DefaultDelayedAckTime()); | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // Wait 1 second and ensure the ack alarm is set to 1ms in the future. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
|  | ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckDecimation) { | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
|  | QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/4, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | const uint8_t tag = 0x07; | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | uint64_t kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
|  | // instead of ENCRYPTION_INITIAL. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 9; ++i) { | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckAckDecimationAfterQuiescence) { | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
|  | QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION); | 
|  | QuicConnectionPeer::SetFastAckAfterQuiescence(&connection_, true); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  |  | 
|  | // The beginning of the connection counts as quiescence. | 
|  | QuicTime ack_time = | 
|  | clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | const uint8_t tag = 0x07; | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
|  | // instead of ENCRYPTION_INITIAL. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  | // Simulate delayed ack alarm firing. | 
|  | clock_.AdvanceTime(DefaultDelayedAckTime()); | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // Process another packet immedately after sending the ack and expect the | 
|  | // ack alarm to be set delayed ack time in the future. | 
|  | ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  | // Simulate delayed ack alarm firing. | 
|  | clock_.AdvanceTime(DefaultDelayedAckTime()); | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // Wait 1 second and enesure the ack alarm is set to 1ms in the future. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
|  | ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Process enough packets to get into ack decimation behavior. | 
|  | // The ack time should be based on min_rtt/4, since it's less than the | 
|  | // default delayed ack time. | 
|  | ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); | 
|  | uint64_t kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 4; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(4 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
|  | // instead of ENCRYPTION_INITIAL. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 9; ++i) { | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // Wait 1 second and enesure the ack alarm is set to 1ms in the future. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
|  | ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckDecimationUnlimitedAggregation) { | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(kACKD); | 
|  | // No limit on the number of packets received before sending an ack. | 
|  | connection_options.push_back(kAKDU); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/4, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | const uint8_t tag = 0x07; | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | uint64_t kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
|  | // instead of ENCRYPTION_INITIAL. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // 18 packets will not cause an ack to be sent.  19 will because when | 
|  | // stop waiting frames are in use, we ack every 20 packets no matter what. | 
|  | for (int i = 0; i < 18; ++i) { | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | // The delayed ack timer should still be set to the expected deadline. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckDecimationEighthRtt) { | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
|  | QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION); | 
|  | QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/8, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 8); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | const uint8_t tag = 0x07; | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | uint64_t kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
|  | // instead of ENCRYPTION_INITIAL. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 9; ++i) { | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReordering) { | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
|  | QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/4, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | const uint8_t tag = 0x07; | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | uint64_t kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // Receive one packet out of order and then the rest in order. | 
|  | // The loop leaves a one packet gap between acks sent to simulate some loss. | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | // Process packet 10 first and ensure the alarm is one eighth min_rtt. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 9 + (j * 11), | 
|  | !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | writer_->Reset(); | 
|  | for (int i = 0; i < 9; ++i) { | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | // The ACK shouldn't be sent until the 10th packet is processed. | 
|  | EXPECT_TRUE(writer_->ack_frames().empty()); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + i + (j * 11), | 
|  | !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithLargeReordering) { | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
|  | QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/4, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | const uint8_t tag = 0x07; | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | uint64_t kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
|  | // instead of ENCRYPTION_INITIAL. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Process packet 10 first and ensure the alarm is one eighth min_rtt. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 19, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(writer_->padding_frames().size() + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // The next packet received in order will cause an immediate ack, | 
|  | // because it fills a hole. | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(writer_->padding_frames().size() + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReorderingEighthRtt) { | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
|  | QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING); | 
|  | QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/8, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 8); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | const uint8_t tag = 0x07; | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | uint64_t kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
|  | // instead of ENCRYPTION_INITIAL. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Process packet 10 first and ensure the alarm is one eighth min_rtt. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 9, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, | 
|  | SendDelayedAckDecimationWithLargeReorderingEighthRtt) { | 
|  | EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber()); | 
|  | QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING); | 
|  | QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/8, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 8); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | const uint8_t tag = 0x07; | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(tag)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | uint64_t kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used | 
|  | // instead of ENCRYPTION_INITIAL. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Process packet 10 first and ensure the alarm is one eighth min_rtt. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 19, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(writer_->padding_frames().size() + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // The next packet received in order will cause an immediate ack, | 
|  | // because it fills a hole. | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting, | 
|  | ENCRYPTION_ZERO_RTT); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(writer_->padding_frames().size() + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessPacket(1); | 
|  | // Check that ack is sent and that delayed ack alarm is set. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Completing the handshake as the server does nothing. | 
|  | QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER); | 
|  | connection_.OnHandshakeComplete(); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Complete the handshake as the client decreases the delayed ack time to 0ms. | 
|  | QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_CLIENT); | 
|  | connection_.OnHandshakeComplete(); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | EXPECT_EQ(clock_.ApproximateNow() + DefaultDelayedAckTime(), | 
|  | connection_.GetAckAlarm()->deadline()); | 
|  | } else { | 
|  | EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessPacket(1); | 
|  | ProcessPacket(2); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoAckOnOldNacks) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessPacket(2); | 
|  | size_t frames_per_ack = GetParam().no_stop_waiting ? 1 : 2; | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | ProcessPacket(3); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | writer_->Reset(); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessPacket(4); | 
|  | EXPECT_EQ(0u, writer_->frame_count()); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | ProcessPacket(5); | 
|  | padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | writer_->Reset(); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | // Now only set the timer on the 6th packet, instead of sending another ack. | 
|  | ProcessPacket(6); | 
|  | padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count, writer_->frame_count()); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<StrictTaggingDecrypter>(0x01)); | 
|  | ProcessDataPacket(1); | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, NO_FIN); | 
|  | // Check that ack is bundled with outgoing data and that delayed ack | 
|  | // alarm is reset. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | } | 
|  | ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
|  | connection_.SendCryptoDataWithString("foo", 0); | 
|  | // Check that ack is bundled with outgoing crypto data. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(4u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessPacket(1); | 
|  | BlockOnNextWrite(); | 
|  | writer_->set_is_write_blocked_data_buffered(true); | 
|  | if (GetQuicReloadableFlag(quic_move_amplification_limit) && | 
|  | QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | } | 
|  | connection_.SendCryptoDataWithString("foo", 0); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  | connection_.SendCryptoDataWithString("bar", 3); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | if (GetQuicReloadableFlag(quic_move_amplification_limit) && | 
|  | QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | // CRYPTO frames are not flushed when writer is blocked. | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  | } else { | 
|  | EXPECT_TRUE(connection_.HasQueuedData()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()) | 
|  | .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendCryptoStreamData))); | 
|  | // Process a packet from the crypto stream, which is frame1_'s default. | 
|  | // Receiving the CHLO as packet 2 first will cause the connection to | 
|  | // immediately send an ack, due to the packet gap. | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | } | 
|  | ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(4u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | } else { | 
|  | EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
|  | } | 
|  | EXPECT_EQ(1u, writer_->padding_frames().size()); | 
|  | ASSERT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front())); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BundleAckForSecondCHLOTwoPacketReject) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // Process two packets from the crypto stream, which is frame1_'s default, | 
|  | // simulating a 2 packet reject. | 
|  | { | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | } | 
|  | ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
|  | // Send the new CHLO when the REJ is processed. | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)) | 
|  | .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendCryptoStreamData))); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
|  | .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendCryptoStreamData))); | 
|  | } | 
|  | ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_TRUE(writer_->stop_waiting_frames().empty()); | 
|  | } else { | 
|  | EXPECT_EQ(4u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | } else { | 
|  | EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
|  | } | 
|  | EXPECT_EQ(1u, writer_->padding_frames().size()); | 
|  | ASSERT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front())); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, NO_FIN); | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 3, NO_FIN); | 
|  | // Ack the second packet, which will retransmit the first packet. | 
|  | QuicAckFrame ack = ConstructAckFrame(2, 1); | 
|  | LostPacketVector lost_packets; | 
|  | lost_packets.push_back( | 
|  | LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
|  | .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
|  | Return(LossDetectionInterface::DetectionStats()))); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&ack); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | writer_->Reset(); | 
|  |  | 
|  | // Now ack the retransmission, which will both raise the high water mark | 
|  | // and see if there is more data to send. | 
|  | ack = ConstructAckFrame(3, 1); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | // Check that no packet is sent and the ack alarm isn't set. | 
|  | EXPECT_EQ(0u, writer_->frame_count()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | writer_->Reset(); | 
|  |  | 
|  | // Send the same ack, but send both data and an ack together. | 
|  | ack = ConstructAckFrame(3, 1); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()) | 
|  | .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::EnsureWritableAndSendStreamData5))); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | // Check that ack is bundled with outgoing data and the delayed ack | 
|  | // alarm is reset. | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Do not ACK acks. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | } else { | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | } | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_TRUE(writer_->ack_frames().empty()); | 
|  | } else { | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_EQ(QuicPacketNumber(3u), | 
|  | LargestAcked(writer_->ack_frames().front())); | 
|  | } | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoAckSentForClose) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessPacket(1); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessClosePacket(2); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_PEER_GOING_AWAY)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendWhenDisconnected) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", | 
|  | ConnectionCloseBehavior::SILENT_CLOSE); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)); | 
|  | if (GetQuicReloadableFlag(quic_determine_serialized_packet_fate_early)) { | 
|  | EXPECT_EQ(DISCARD, connection_.GetSerializedPacketFate( | 
|  | /*is_mtu_discovery=*/false, ENCRYPTION_INITIAL)); | 
|  | return; | 
|  | } | 
|  | std::unique_ptr<QuicPacket> packet = | 
|  | ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) | 
|  | .Times(0); | 
|  | connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet), | 
|  | HAS_RETRANSMITTABLE_DATA, false, false); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_PEER_GOING_AWAY)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendConnectivityProbingWhenDisconnected) { | 
|  | // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. | 
|  | if (!IsDefaultTestConfiguration()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", | 
|  | ConnectionCloseBehavior::SILENT_CLOSE); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) | 
|  | .Times(0); | 
|  |  | 
|  | EXPECT_QUIC_BUG(connection_.SendConnectivityProbingPacket( | 
|  | writer_.get(), connection_.peer_address()), | 
|  | "Not sending connectivity probing packet as connection is " | 
|  | "disconnected."); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_PEER_GOING_AWAY)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WriteBlockedAfterClientSendsConnectivityProbe) { | 
|  | PathProbeTestInit(Perspective::IS_CLIENT); | 
|  | TestPacketWriter probing_writer(version(), &clock_); | 
|  | // Block next write so that sending connectivity probe will encounter a | 
|  | // blocked write when send a connectivity probe to the peer. | 
|  | probing_writer.BlockOnNextWrite(); | 
|  | // Connection will not be marked as write blocked as connectivity probe only | 
|  | // affects the probing_writer which is not the default. | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) | 
|  | .Times(1); | 
|  | connection_.SendConnectivityProbingPacket(&probing_writer, | 
|  | connection_.peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WriterBlockedAfterServerSendsConnectivityProbe) { | 
|  | PathProbeTestInit(Perspective::IS_SERVER); | 
|  |  | 
|  | // Block next write so that sending connectivity probe will encounter a | 
|  | // blocked write when send a connectivity probe to the peer. | 
|  | writer_->BlockOnNextWrite(); | 
|  | // Connection will be marked as write blocked as server uses the default | 
|  | // writer to send connectivity probes. | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) | 
|  | .Times(1); | 
|  | connection_.SendConnectivityProbingPacket(writer_.get(), | 
|  | connection_.peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WriterErrorWhenClientSendsConnectivityProbe) { | 
|  | PathProbeTestInit(Perspective::IS_CLIENT); | 
|  | TestPacketWriter probing_writer(version(), &clock_); | 
|  | probing_writer.SetShouldWriteFail(); | 
|  |  | 
|  | // Connection should not be closed if a connectivity probe is failed to be | 
|  | // sent. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) | 
|  | .Times(0); | 
|  | connection_.SendConnectivityProbingPacket(&probing_writer, | 
|  | connection_.peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WriterErrorWhenServerSendsConnectivityProbe) { | 
|  | PathProbeTestInit(Perspective::IS_SERVER); | 
|  |  | 
|  | writer_->SetShouldWriteFail(); | 
|  | // Connection should not be closed if a connectivity probe is failed to be | 
|  | // sent. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _)) | 
|  | .Times(0); | 
|  | connection_.SendConnectivityProbingPacket(writer_.get(), | 
|  | connection_.peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PublicReset) { | 
|  | if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { | 
|  | return; | 
|  | } | 
|  | QuicPublicResetPacket header; | 
|  | // Public reset packet in only built by server. | 
|  | header.connection_id = connection_id_; | 
|  | std::unique_ptr<QuicEncryptedPacket> packet( | 
|  | framer_.BuildPublicResetPacket(header)); | 
|  | std::unique_ptr<QuicReceivedPacket> received( | 
|  | ConstructReceivedPacket(*packet, QuicTime::Zero())); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_PUBLIC_RESET)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, IetfStatelessReset) { | 
|  | if (!VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { | 
|  | return; | 
|  | } | 
|  | const QuicUint128 kTestStatelessResetToken = 1010101; | 
|  | QuicConfig config; | 
|  | QuicConfigPeer::SetReceivedStatelessResetToken(&config, | 
|  | kTestStatelessResetToken); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | std::unique_ptr<QuicEncryptedPacket> packet( | 
|  | QuicFramer::BuildIetfStatelessResetPacket(connection_id_, | 
|  | kTestStatelessResetToken)); | 
|  | std::unique_ptr<QuicReceivedPacket> received( | 
|  | ConstructReceivedPacket(*packet, QuicTime::Zero())); | 
|  | EXPECT_CALL(visitor_, ValidateStatelessReset(_, _)).WillOnce(Return(true)); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_PUBLIC_RESET)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, GoAway) { | 
|  | if (VersionHasIetfQuicFrames(GetParam().version.transport_version)) { | 
|  | // GoAway is not available in version 99. | 
|  | return; | 
|  | } | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | QuicGoAwayFrame* goaway = new QuicGoAwayFrame(); | 
|  | goaway->last_good_stream_id = 1; | 
|  | goaway->error_code = QUIC_PEER_GOING_AWAY; | 
|  | goaway->reason_phrase = "Going away."; | 
|  | EXPECT_CALL(visitor_, OnGoAway(_)); | 
|  | ProcessGoAwayPacket(goaway); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WindowUpdate) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | QuicWindowUpdateFrame* window_update = new QuicWindowUpdateFrame(); | 
|  | window_update->stream_id = 3; | 
|  | window_update->max_data = 1234; | 
|  | EXPECT_CALL(visitor_, OnWindowUpdateFrame(_)); | 
|  | ProcessFramePacket(QuicFrame(window_update)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, Blocked) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | QuicBlockedFrame* blocked = new QuicBlockedFrame(); | 
|  | blocked->stream_id = 3; | 
|  | EXPECT_CALL(visitor_, OnBlockedFrame(_)); | 
|  | ProcessFramePacket(QuicFrame(blocked)); | 
|  | EXPECT_EQ(1u, connection_.GetStats().blocked_frames_received); | 
|  | EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ZeroBytePacket) { | 
|  | // Don't close the connection for zero byte packets. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
|  | QuicReceivedPacket encrypted(nullptr, 0, QuicTime::Zero()); | 
|  | connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, encrypted); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) { | 
|  | if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { | 
|  | return; | 
|  | } | 
|  | // Set the packet number of the ack packet to be least unacked (4). | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 3); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessStopWaitingPacket(InitStopWaitingFrame(4)); | 
|  | EXPECT_FALSE(connection_.ack_frame().packets.Empty()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) { | 
|  | // All supported versions except the one the connection supports. | 
|  | ParsedQuicVersionVector versions; | 
|  | for (auto version : AllSupportedVersions()) { | 
|  | if (version != connection_.version()) { | 
|  | versions.push_back(version); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Send a version negotiation packet. | 
|  | std::unique_ptr<QuicEncryptedPacket> encrypted( | 
|  | QuicFramer::BuildVersionNegotiationPacket( | 
|  | connection_id_, EmptyQuicConnectionId(), | 
|  | VersionHasIetfInvariantHeader(connection_.transport_version()), | 
|  | connection_.version().HasLengthPrefixedConnectionIds(), versions)); | 
|  | std::unique_ptr<QuicReceivedPacket> received( | 
|  | ConstructReceivedPacket(*encrypted, QuicTime::Zero())); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | // Verify no connection close packet gets sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_INVALID_VERSION)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BadVersionNegotiation) { | 
|  | // Send a version negotiation packet with the version the client started with. | 
|  | // It should be rejected. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | std::unique_ptr<QuicEncryptedPacket> encrypted( | 
|  | QuicFramer::BuildVersionNegotiationPacket( | 
|  | connection_id_, EmptyQuicConnectionId(), | 
|  | VersionHasIetfInvariantHeader(connection_.transport_version()), | 
|  | connection_.version().HasLengthPrefixedConnectionIds(), | 
|  | AllSupportedVersions())); | 
|  | std::unique_ptr<QuicReceivedPacket> received( | 
|  | ConstructReceivedPacket(*encrypted, QuicTime::Zero())); | 
|  | connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CheckSendStats) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | connection_.SetMaxTailLossProbes(0); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.SendStreamDataWithString(3, "first", 0, NO_FIN); | 
|  | size_t first_packet_size = writer_->last_packet_size(); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.SendStreamDataWithString(5, "second", 0, NO_FIN); | 
|  | size_t second_packet_size = writer_->last_packet_size(); | 
|  |  | 
|  | // 2 retransmissions due to rto, 1 due to explicit nack. | 
|  | EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); | 
|  |  | 
|  | // Retransmit due to RTO. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // Retransmit due to explicit nacks. | 
|  | QuicAckFrame nack_three = | 
|  | InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}, | 
|  | {QuicPacketNumber(4), QuicPacketNumber(5)}}); | 
|  |  | 
|  | LostPacketVector lost_packets; | 
|  | lost_packets.push_back( | 
|  | LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize)); | 
|  | lost_packets.push_back( | 
|  | LostPacket(QuicPacketNumber(3), kMaxOutgoingPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)) | 
|  | .WillOnce(DoAll(SetArgPointee<5>(lost_packets), | 
|  | Return(LossDetectionInterface::DetectionStats()))); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessAckPacket(&nack_three); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) | 
|  | .WillOnce(Return(QuicBandwidth::Zero())); | 
|  |  | 
|  | const QuicConnectionStats& stats = connection_.GetStats(); | 
|  | // For IETF QUIC, version is not included as the encryption level switches to | 
|  | // FORWARD_SECURE in SendStreamDataWithString. | 
|  | size_t save_on_version = | 
|  | VersionHasIetfInvariantHeader(GetParam().version.transport_version) | 
|  | ? 0 | 
|  | : kQuicVersionSize; | 
|  | EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - save_on_version, | 
|  | stats.bytes_sent); | 
|  | EXPECT_EQ(5u, stats.packets_sent); | 
|  | EXPECT_EQ(2 * first_packet_size + second_packet_size - save_on_version, | 
|  | stats.bytes_retransmitted); | 
|  | EXPECT_EQ(3u, stats.packets_retransmitted); | 
|  | EXPECT_EQ(1u, stats.rto_count); | 
|  | EXPECT_EQ(kDefaultMaxPacketSize, stats.max_packet_size); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) { | 
|  | // Construct a packet with stream frame and connection close frame. | 
|  | QuicPacketHeader header; | 
|  | if (peer_framer_.perspective() == Perspective::IS_SERVER) { | 
|  | header.source_connection_id = connection_id_; | 
|  | header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | if (!VersionHasIetfInvariantHeader(peer_framer_.transport_version())) { | 
|  | header.source_connection_id_included = CONNECTION_ID_PRESENT; | 
|  | } | 
|  | } else { | 
|  | header.destination_connection_id = connection_id_; | 
|  | if (VersionHasIetfInvariantHeader(peer_framer_.transport_version())) { | 
|  | header.destination_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | } | 
|  | } | 
|  | header.packet_number = QuicPacketNumber(1); | 
|  | header.version_flag = false; | 
|  |  | 
|  | QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY; | 
|  | // This QuicConnectionCloseFrame will default to being for a Google QUIC | 
|  | // close. If doing IETF QUIC then set fields appropriately for CC/T or CC/A, | 
|  | // depending on the mapping. | 
|  | QuicConnectionCloseFrame qccf(peer_framer_.transport_version(), | 
|  | kQuicErrorCode, "", | 
|  | /*transport_close_frame_type=*/0); | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(frame1_)); | 
|  | frames.push_back(QuicFrame(&qccf)); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  | EXPECT_TRUE(nullptr != packet); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | size_t encrypted_length = peer_framer_.EncryptPayload( | 
|  | ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer, | 
|  | kMaxOutgoingPacketSize); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_PEER_GOING_AWAY)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SelectMutualVersion) { | 
|  | connection_.SetSupportedVersions(AllSupportedVersions()); | 
|  | // Set the connection to speak the lowest quic version. | 
|  | connection_.set_version(QuicVersionMin()); | 
|  | EXPECT_EQ(QuicVersionMin(), connection_.version()); | 
|  |  | 
|  | // Pass in available versions which includes a higher mutually supported | 
|  | // version.  The higher mutually supported version should be selected. | 
|  | ParsedQuicVersionVector supported_versions = AllSupportedVersions(); | 
|  | EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions)); | 
|  | EXPECT_EQ(QuicVersionMax(), connection_.version()); | 
|  |  | 
|  | // Expect that the lowest version is selected. | 
|  | // Ensure the lowest supported version is less than the max, unless they're | 
|  | // the same. | 
|  | ParsedQuicVersionVector lowest_version_vector; | 
|  | lowest_version_vector.push_back(QuicVersionMin()); | 
|  | EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector)); | 
|  | EXPECT_EQ(QuicVersionMin(), connection_.version()); | 
|  |  | 
|  | // Shouldn't be able to find a mutually supported version. | 
|  | ParsedQuicVersionVector unsupported_version; | 
|  | unsupported_version.push_back(UnsupportedQuicVersion()); | 
|  | EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) { | 
|  | EXPECT_FALSE(writer_->IsWriteBlocked()); | 
|  |  | 
|  | // Send a packet. | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  |  | 
|  | TriggerConnectionClose(); | 
|  | EXPECT_LE(2u, writer_->packets_write_attempts()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) { | 
|  | BlockOnNextWrite(); | 
|  | TriggerConnectionClose(); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) { | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | TriggerConnectionClose(); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, OnPacketSentDebugVisitor) { | 
|  | PathProbeTestInit(Perspective::IS_CLIENT); | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  |  | 
|  | EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN); | 
|  |  | 
|  | EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(1); | 
|  | connection_.SendConnectivityProbingPacket(writer_.get(), | 
|  | connection_.peer_address()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) { | 
|  | QuicPacketHeader header; | 
|  | header.packet_number = QuicPacketNumber(1); | 
|  | if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) { | 
|  | header.form = IETF_QUIC_LONG_HEADER_PACKET; | 
|  | } | 
|  |  | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  | EXPECT_CALL(debug_visitor, OnPacketHeader(Ref(header))).Times(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(1); | 
|  | EXPECT_CALL(debug_visitor, OnSuccessfulVersionNegotiation(_)).Times(1); | 
|  | connection_.OnPacketHeader(header); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, Pacing) { | 
|  | TestConnection server(connection_id_, kSelfAddress, helper_.get(), | 
|  | alarm_factory_.get(), writer_.get(), | 
|  | Perspective::IS_SERVER, version()); | 
|  | TestConnection client(connection_id_, kPeerAddress, helper_.get(), | 
|  | alarm_factory_.get(), writer_.get(), | 
|  | Perspective::IS_CLIENT, version()); | 
|  | EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing( | 
|  | static_cast<const QuicSentPacketManager*>( | 
|  | &client.sent_packet_manager()))); | 
|  | EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing( | 
|  | static_cast<const QuicSentPacketManager*>( | 
|  | &server.sent_packet_manager()))); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WindowUpdateInstigateAcks) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Send a WINDOW_UPDATE frame. | 
|  | QuicWindowUpdateFrame* window_update = new QuicWindowUpdateFrame(); | 
|  | window_update->stream_id = 3; | 
|  | window_update->max_data = 1234; | 
|  | EXPECT_CALL(visitor_, OnWindowUpdateFrame(_)); | 
|  | ProcessFramePacket(QuicFrame(window_update)); | 
|  |  | 
|  | // Ensure that this has caused the ACK alarm to be set. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BlockedFrameInstigateAcks) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Send a BLOCKED frame. | 
|  | QuicBlockedFrame* blocked = new QuicBlockedFrame(); | 
|  | blocked->stream_id = 3; | 
|  | EXPECT_CALL(visitor_, OnBlockedFrame(_)); | 
|  | ProcessFramePacket(QuicFrame(blocked)); | 
|  |  | 
|  | // Ensure that this has caused the ACK alarm to be set. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ReevaluateTimeUntilSendOnAck) { | 
|  | // Enable pacing. | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | // Send two packets.  One packet is not sufficient because if it gets acked, | 
|  | // there will be no packets in flight after that and the pacer will always | 
|  | // allow the next packet in that situation. | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, NO_FIN); | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "bar", | 
|  | 3, NO_FIN); | 
|  | connection_.OnCanWrite(); | 
|  |  | 
|  | // Schedule the next packet for a few milliseconds in future. | 
|  | QuicSentPacketManagerPeer::DisablePacerBursts(manager_); | 
|  | QuicTime scheduled_pacing_time = | 
|  | clock_.Now() + QuicTime::Delta::FromMilliseconds(5); | 
|  | QuicSentPacketManagerPeer::SetNextPacedPacketTime(manager_, | 
|  | scheduled_pacing_time); | 
|  |  | 
|  | // Send a packet and have it be blocked by congestion control. | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(false)); | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "baz", | 
|  | 6, NO_FIN); | 
|  | EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
|  |  | 
|  | // Process an ack and the send alarm will be set to the new 5ms delay. | 
|  | QuicAckFrame ack = InitAckFrame(1); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); | 
|  | ProcessAckPacket(&ack); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_TRUE(connection_.GetSendAlarm()->IsSet()); | 
|  | EXPECT_EQ(scheduled_pacing_time, connection_.GetSendAlarm()->deadline()); | 
|  | writer_->Reset(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendAcksImmediately) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacket(1); | 
|  | CongestionBlockWrites(); | 
|  | SendAckPacketToPeer(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendPingImmediately) { | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  |  | 
|  | CongestionBlockWrites(); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(1); | 
|  | EXPECT_CALL(debug_visitor, OnPingSent()).Times(1); | 
|  | connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendBlockedImmediately) { | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  |  | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(1); | 
|  | EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); | 
|  | connection_.SendControlFrame(QuicFrame(new QuicBlockedFrame(1, 3))); | 
|  | EXPECT_EQ(1u, connection_.GetStats().blocked_frames_sent); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FailedToSendBlockedFrames) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  | QuicBlockedFrame blocked(1, 3); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(0); | 
|  | EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); | 
|  | connection_.SendControlFrame(QuicFrame(&blocked)); | 
|  | EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendingUnencryptedStreamDataFails) { | 
|  | // EXPECT_QUIC_BUG tests are expensive so only run one instance of them. | 
|  | if (!IsDefaultTestConfiguration()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | struct iovec iov; | 
|  | MakeIOVector("", &iov); | 
|  | EXPECT_QUIC_BUG(connection_.SaveAndSendStreamData(3, &iov, 1, 0, 0, FIN), | 
|  | "Cannot send stream data with level: ENCRYPTION_INITIAL"); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SetRetransmissionAlarmForCryptoPacket) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendCryptoStreamData(); | 
|  |  | 
|  | // Verify retransmission timer is correctly set after crypto packet has been | 
|  | // sent. | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | QuicTime retransmission_time = | 
|  | QuicConnectionPeer::GetSentPacketManager(&connection_) | 
|  | ->GetRetransmissionTime(); | 
|  | EXPECT_NE(retransmission_time, clock_.ApproximateNow()); | 
|  | EXPECT_EQ(retransmission_time, | 
|  | connection_.GetRetransmissionAlarm()->deadline()); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | } | 
|  |  | 
|  | // Includes regression test for b/69979024. | 
|  | TEST_P(QuicConnectionTest, PathDegradingDetectionForNonCryptoPackets) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  |  | 
|  | const char data[] = "data"; | 
|  | size_t data_size = strlen(data); | 
|  | QuicStreamOffset offset = 0; | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | // Send a packet. Now there's a retransmittable packet on the wire, so the | 
|  | // path degrading detection should be set. | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), data, | 
|  | offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | // Check the deadline of the path degrading detection. | 
|  | QuicTime::Delta delay = | 
|  | QuicConnectionPeer::GetSentPacketManager(&connection_) | 
|  | ->GetPathDegradingDelay(); | 
|  | EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
|  | clock_.ApproximateNow()); | 
|  |  | 
|  | // Send a second packet. The path degrading detection's deadline should | 
|  | // remain the same. | 
|  | // Regression test for b/69979024. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicTime prev_deadline = | 
|  | connection_.GetBlackholeDetectorAlarm()->deadline(); | 
|  | connection_.SendStreamDataWithString( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), data, | 
|  | offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_EQ(prev_deadline, | 
|  | connection_.GetBlackholeDetectorAlarm()->deadline()); | 
|  |  | 
|  | // Now receive an ACK of the first packet. This should advance the path | 
|  | // degrading detection's deadline since forward progress has been made. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | if (i == 0) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | } | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame = InitAckFrame( | 
|  | {{QuicPacketNumber(1u + 2u * i), QuicPacketNumber(2u + 2u * i)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | // Check the deadline of the path degrading detection. | 
|  | delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
|  | ->GetPathDegradingDelay(); | 
|  | EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
|  | clock_.ApproximateNow()); | 
|  |  | 
|  | if (i == 0) { | 
|  | // Now receive an ACK of the second packet. Since there are no more | 
|  | // retransmittable packets on the wire, this should cancel the path | 
|  | // degrading detection. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | } else { | 
|  | // Advance time to the path degrading alarm's deadline and simulate | 
|  | // firing the alarm. | 
|  | clock_.AdvanceTime(delay); | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()); | 
|  | connection_.PathDegradingTimeout(); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | } | 
|  | } | 
|  | EXPECT_TRUE(connection_.IsPathDegrading()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmittableOnWireSetsPingAlarm) { | 
|  | const QuicTime::Delta retransmittable_on_wire_timeout = | 
|  | QuicTime::Delta::FromMilliseconds(50); | 
|  | connection_.set_initial_retransmittable_on_wire_timeout( | 
|  | retransmittable_on_wire_timeout); | 
|  |  | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(true)); | 
|  |  | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  |  | 
|  | const char data[] = "data"; | 
|  | size_t data_size = strlen(data); | 
|  | QuicStreamOffset offset = 0; | 
|  |  | 
|  | // Send a packet. | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  | // Now there's a retransmittable packet on the wire, so the path degrading | 
|  | // alarm should be set. | 
|  | // The retransmittable-on-wire alarm should not be set. | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
|  | ->GetPathDegradingDelay(); | 
|  | EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
|  | clock_.ApproximateNow()); | 
|  | ASSERT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
|  | // The ping alarm is set for the ping timeout, not the shorter | 
|  | // retransmittable_on_wire_timeout. | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs); | 
|  | EXPECT_EQ(ping_delay, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Now receive an ACK of the packet. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame = | 
|  | InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | // No more retransmittable packets on the wire, so the path degrading alarm | 
|  | // should be cancelled, and the ping alarm should be set to the | 
|  | // retransmittable_on_wire_timeout. | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Simulate firing the ping alarm and sending a PING. | 
|  | clock_.AdvanceTime(retransmittable_on_wire_timeout); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { | 
|  | connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); | 
|  | })); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  |  | 
|  | // Now there's a retransmittable packet (PING) on the wire, so the path | 
|  | // degrading alarm should be set. | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
|  | ->GetPathDegradingDelay(); | 
|  | EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
|  | clock_.ApproximateNow()); | 
|  | } | 
|  |  | 
|  | // This test verifies that the connection marks path as degrading and does not | 
|  | // spin timer to detect path degrading when a new packet is sent on the | 
|  | // degraded path. | 
|  | TEST_P(QuicConnectionTest, NoPathDegradingDetectionIfPathIsDegrading) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  |  | 
|  | const char data[] = "data"; | 
|  | size_t data_size = strlen(data); | 
|  | QuicStreamOffset offset = 0; | 
|  |  | 
|  | // Send the first packet. Now there's a retransmittable packet on the wire, so | 
|  | // the path degrading alarm should be set. | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | // Check the deadline of the path degrading detection. | 
|  | QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
|  | ->GetPathDegradingDelay(); | 
|  | EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
|  | clock_.ApproximateNow()); | 
|  |  | 
|  | // Send a second packet. The path degrading detection's deadline should remain | 
|  | // the same. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicTime prev_deadline = connection_.GetBlackholeDetectorAlarm()->deadline(); | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_EQ(prev_deadline, connection_.GetBlackholeDetectorAlarm()->deadline()); | 
|  |  | 
|  | // Now receive an ACK of the first packet. This should advance the path | 
|  | // degrading detection's deadline since forward progress has been made. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame = | 
|  | InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | // Check the deadline of the path degrading alarm. | 
|  | delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
|  | ->GetPathDegradingDelay(); | 
|  | EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
|  | clock_.ApproximateNow()); | 
|  |  | 
|  | // Advance time to the path degrading detection's deadline and simulate | 
|  | // firing the path degrading detection. This path will be considered as | 
|  | // degrading. | 
|  | clock_.AdvanceTime(delay); | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()).Times(1); | 
|  | connection_.PathDegradingTimeout(); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_TRUE(connection_.IsPathDegrading()); | 
|  |  | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | // Send a third packet. The path degrading detection is no longer set but path | 
|  | // should still be marked as degrading. | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_TRUE(connection_.IsPathDegrading()); | 
|  | } | 
|  |  | 
|  | // This test verifies that the connection unmarks path as degrarding and spins | 
|  | // the timer to detect future path degrading when forward progress is made | 
|  | // after path has been marked degrading. | 
|  | TEST_P(QuicConnectionTest, UnmarkPathDegradingOnForwardProgress) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  |  | 
|  | const char data[] = "data"; | 
|  | size_t data_size = strlen(data); | 
|  | QuicStreamOffset offset = 0; | 
|  |  | 
|  | // Send the first packet. Now there's a retransmittable packet on the wire, so | 
|  | // the path degrading alarm should be set. | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | // Check the deadline of the path degrading alarm. | 
|  | QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
|  | ->GetPathDegradingDelay(); | 
|  | EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
|  | clock_.ApproximateNow()); | 
|  |  | 
|  | // Send a second packet. The path degrading alarm's deadline should remain | 
|  | // the same. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicTime prev_deadline = connection_.GetBlackholeDetectorAlarm()->deadline(); | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_EQ(prev_deadline, connection_.GetBlackholeDetectorAlarm()->deadline()); | 
|  |  | 
|  | // Now receive an ACK of the first packet. This should advance the path | 
|  | // degrading alarm's deadline since forward progress has been made. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame = | 
|  | InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | // Check the deadline of the path degrading alarm. | 
|  | delay = QuicConnectionPeer::GetSentPacketManager(&connection_) | 
|  | ->GetPathDegradingDelay(); | 
|  | EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() - | 
|  | clock_.ApproximateNow()); | 
|  |  | 
|  | // Advance time to the path degrading alarm's deadline and simulate | 
|  | // firing the alarm. | 
|  | clock_.AdvanceTime(delay); | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()).Times(1); | 
|  | connection_.PathDegradingTimeout(); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_TRUE(connection_.IsPathDegrading()); | 
|  |  | 
|  | // Send a third packet. The path degrading alarm is no longer set but path | 
|  | // should still be marked as degrading. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_TRUE(connection_.IsPathDegrading()); | 
|  |  | 
|  | // Now receive an ACK of the second packet. This should unmark the path as | 
|  | // degrading. And will set a timer to detect new path degrading. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading()).Times(1); | 
|  | frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoPathDegradingOnServer) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  |  | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  |  | 
|  | // Send data. | 
|  | const char data[] = "data"; | 
|  | connection_.SendStreamDataWithString(1, data, 0, NO_FIN); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  |  | 
|  | // Ack data. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame = | 
|  | InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoPathDegradingAfterSendingAck) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacket(1); | 
|  | SendAckPacketToPeer(); | 
|  | EXPECT_FALSE(connection_.sent_packet_manager().unacked_packets().empty()); | 
|  | EXPECT_FALSE(connection_.sent_packet_manager().HasInFlightPackets()); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, MultipleCallsToCloseConnection) { | 
|  | // Verifies that multiple calls to CloseConnection do not | 
|  | // result in multiple attempts to close the connection - it will be marked as | 
|  | // disconnected after the first call. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1); | 
|  | connection_.CloseConnection(QUIC_NO_ERROR, "no reason", | 
|  | ConnectionCloseBehavior::SILENT_CLOSE); | 
|  | connection_.CloseConnection(QUIC_NO_ERROR, "no reason", | 
|  | ConnectionCloseBehavior::SILENT_CLOSE); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ServerReceivesChloOnNonCryptoStream) { | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  |  | 
|  | CryptoHandshakeMessage message; | 
|  | CryptoFramer framer; | 
|  | message.set_tag(kCHLO); | 
|  | std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message); | 
|  | frame1_.stream_id = 10; | 
|  | frame1_.data_buffer = data->data(); | 
|  | frame1_.data_length = data->length(); | 
|  |  | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | ForceProcessFramePacket(QuicFrame(frame1_)); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientReceivesRejOnNonCryptoStream) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | CryptoHandshakeMessage message; | 
|  | CryptoFramer framer; | 
|  | message.set_tag(kREJ); | 
|  | std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message); | 
|  | frame1_.stream_id = 10; | 
|  | frame1_.data_buffer = data->data(); | 
|  | frame1_.data_length = data->length(); | 
|  |  | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | ForceProcessFramePacket(QuicFrame(frame1_)); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CloseConnectionOnPacketTooLarge) { | 
|  | SimulateNextPacketTooLarge(); | 
|  | // A connection close packet is sent | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .Times(1); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AlwaysGetPacketTooLarge) { | 
|  | // Test even we always get packet too large, we do not infinitely try to send | 
|  | // close packet. | 
|  | AlwaysGetPacketTooLarge(); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .Times(1); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CloseConnectionOnQueuedWriteError) { | 
|  | // Regression test for crbug.com/979507. | 
|  | // | 
|  | // If we get a write error when writing queued packets, we should attempt to | 
|  | // send a connection close packet, but if sending that fails, it shouldn't get | 
|  | // queued. | 
|  |  | 
|  | // Queue a packet to write. | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Configure writer to always fail. | 
|  | AlwaysGetPacketTooLarge(); | 
|  |  | 
|  | // Expect that we attempt to close the connection exactly once. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .Times(1); | 
|  |  | 
|  | // Unblock the writes and actually send. | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); | 
|  | } | 
|  |  | 
|  | // Verify that if connection has no outstanding data, it notifies the send | 
|  | // algorithm after the write. | 
|  | TEST_P(QuicConnectionTest, SendDataAndBecomeApplicationLimited) { | 
|  | EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1); | 
|  | { | 
|  | InSequence seq; | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()) | 
|  | .WillRepeatedly(Return(false)); | 
|  | } | 
|  |  | 
|  | connection_.SendStreamData3(); | 
|  | } | 
|  |  | 
|  | // Verify that the connection does not become app-limited if there is | 
|  | // outstanding data to send after the write. | 
|  | TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedIfMoreDataAvailable) { | 
|  | EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0); | 
|  | { | 
|  | InSequence seq; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); | 
|  | } | 
|  |  | 
|  | connection_.SendStreamData3(); | 
|  | } | 
|  |  | 
|  | // Verify that the connection does not become app-limited after blocked write | 
|  | // even if there is outstanding data to send after the write. | 
|  | TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedDueToWriteBlock) { | 
|  | EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); | 
|  | BlockOnNextWrite(); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamData3(); | 
|  |  | 
|  | // Now unblock the writer, become congestion control blocked, | 
|  | // and ensure we become app-limited after writing. | 
|  | writer_->SetWritable(); | 
|  | CongestionBlockWrites(); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1); | 
|  | connection_.OnCanWrite(); | 
|  | } | 
|  |  | 
|  | // Test the mode in which the link is filled up with probing retransmissions if | 
|  | // the connection becomes application-limited. | 
|  | TEST_P(QuicConnectionTest, SendDataWhenApplicationLimited) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket()) | 
|  | .WillRepeatedly(Return(true)); | 
|  | { | 
|  | InSequence seq; | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()) | 
|  | .WillRepeatedly(Return(false)); | 
|  | } | 
|  | EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] { | 
|  | return connection_.sent_packet_manager().MaybeRetransmitOldestPacket( | 
|  | PROBING_RETRANSMISSION); | 
|  | }); | 
|  | // Fix congestion window to be 20,000 bytes. | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(Ge(20000u))) | 
|  | .WillRepeatedly(Return(false)); | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(Lt(20000u))) | 
|  | .WillRepeatedly(Return(true)); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0); | 
|  | ASSERT_EQ(0u, connection_.GetStats().packets_sent); | 
|  | connection_.set_fill_up_link_during_probing(true); | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_CONFIRMED)); | 
|  | connection_.OnHandshakeComplete(); | 
|  | connection_.SendStreamData3(); | 
|  |  | 
|  | // We expect a lot of packets from a 20 kbyte window. | 
|  | EXPECT_GT(connection_.GetStats().packets_sent, 10u); | 
|  | // Ensure that the packets are padded. | 
|  | QuicByteCount average_packet_size = | 
|  | connection_.GetStats().bytes_sent / connection_.GetStats().packets_sent; | 
|  | EXPECT_GT(average_packet_size, 1000u); | 
|  |  | 
|  | // Acknowledge all packets sent, except for the last one. | 
|  | QuicAckFrame ack = InitAckFrame( | 
|  | connection_.sent_packet_manager().GetLargestSentPacket() - 1); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  |  | 
|  | // Ensure that since we no longer have retransmittable bytes in flight, this | 
|  | // will not cause any responses to be sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1); | 
|  | ProcessAckPacket(&ack); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotForceSendingAckOnPacketTooLarge) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | // Send an ack by simulating delayed ack alarm firing. | 
|  | ProcessPacket(1); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | // Simulate data packet causes write error. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | SimulateNextPacketTooLarge(); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
|  | EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
|  | // Ack frame is not bundled in connection close packet. | 
|  | EXPECT_TRUE(writer_->ack_frames().empty()); | 
|  | if (writer_->padding_frames().empty()) { | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | } else { | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | } | 
|  |  | 
|  | TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CloseConnectionAllLevels) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR; | 
|  | connection_.CloseConnection( | 
|  | kQuicErrorCode, "Some random error message", | 
|  | ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
|  |  | 
|  | EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_)); | 
|  |  | 
|  | TestConnectionCloseQuicErrorCode(kQuicErrorCode); | 
|  | EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
|  |  | 
|  | if (!connection_.version().CanSendCoalescedPackets()) { | 
|  | // Each connection close packet should be sent in distinct UDP packets. | 
|  | EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_), | 
|  | writer_->connection_close_packets()); | 
|  | EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_), | 
|  | writer_->packets_write_attempts()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // A single UDP packet should be sent with multiple connection close packets | 
|  | // coalesced together. | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  |  | 
|  | // Only the first packet has been processed yet. | 
|  | EXPECT_EQ(1u, writer_->connection_close_packets()); | 
|  |  | 
|  | // ProcessPacket resets the visitor and frees the coalesced packet. | 
|  | ASSERT_TRUE(writer_->coalesced_packet() != nullptr); | 
|  | auto packet = writer_->coalesced_packet()->Clone(); | 
|  | writer_->framer()->ProcessPacket(*packet); | 
|  | EXPECT_EQ(1u, writer_->connection_close_packets()); | 
|  | ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CloseConnectionOneLevel) { | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR; | 
|  | connection_.CloseConnection( | 
|  | kQuicErrorCode, "Some random error message", | 
|  | ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
|  |  | 
|  | EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_)); | 
|  |  | 
|  | TestConnectionCloseQuicErrorCode(kQuicErrorCode); | 
|  | EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
|  | EXPECT_EQ(1u, writer_->connection_close_packets()); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotPadServerInitialConnectionClose) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR; | 
|  | connection_.CloseConnection( | 
|  | kQuicErrorCode, "Some random error message", | 
|  | ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
|  |  | 
|  | EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_)); | 
|  |  | 
|  | TestConnectionCloseQuicErrorCode(kQuicErrorCode); | 
|  | EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
|  | EXPECT_TRUE(writer_->padding_frames().empty()); | 
|  | EXPECT_EQ(ENCRYPTION_INITIAL, writer_->framer()->last_decrypted_level()); | 
|  | } | 
|  |  | 
|  | // Regression test for b/63620844. | 
|  | TEST_P(QuicConnectionTest, FailedToWriteHandshakePacket) { | 
|  | SimulateNextPacketTooLarge(); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .Times(1); | 
|  |  | 
|  | connection_.SendCryptoStreamData(); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, MaxPacingRate) { | 
|  | EXPECT_EQ(0, connection_.MaxPacingRate().ToBytesPerSecond()); | 
|  | connection_.SetMaxPacingRate(QuicBandwidth::FromBytesPerSecond(100)); | 
|  | EXPECT_EQ(100, connection_.MaxPacingRate().ToBytesPerSecond()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientAlwaysSendConnectionId) { | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN); | 
|  | EXPECT_EQ(CONNECTION_ID_PRESENT, | 
|  | writer_->last_packet_header().destination_connection_id_included); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0); | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(3, "bar", 3, NO_FIN); | 
|  | // Verify connection id is still sent in the packet. | 
|  | EXPECT_EQ(CONNECTION_ID_PRESENT, | 
|  | writer_->last_packet_header().destination_connection_id_included); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendProbingRetransmissions) { | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  |  | 
|  | const QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "bar", 3, NO_FIN, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "test", 6, NO_FIN, &last_packet); | 
|  |  | 
|  | const QuicByteCount old_bytes_in_flight = | 
|  | connection_.sent_packet_manager().GetBytesInFlight(); | 
|  |  | 
|  | // Allow 9 probing retransmissions to be sent. | 
|  | { | 
|  | InSequence seq; | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)) | 
|  | .Times(9 * 2) | 
|  | .WillRepeatedly(Return(true)); | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); | 
|  | } | 
|  | // Expect them retransmitted in cyclic order (foo, bar, test, foo, bar...). | 
|  | QuicPacketCount sent_count = 0; | 
|  | EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)) | 
|  | .WillRepeatedly(Invoke([this, &sent_count](const SerializedPacket&, | 
|  | TransmissionType, QuicTime) { | 
|  | ASSERT_EQ(1u, writer_->stream_frames().size()); | 
|  | if (connection_.version().CanSendCoalescedPackets()) { | 
|  | // There is a delay of sending coalesced packet, so (6, 0, 3, 6, | 
|  | // 0...). | 
|  | EXPECT_EQ(3 * ((sent_count + 2) % 3), | 
|  | writer_->stream_frames()[0]->offset); | 
|  | } else { | 
|  | // Identify the frames by stream offset (0, 3, 6, 0, 3...). | 
|  | EXPECT_EQ(3 * (sent_count % 3), writer_->stream_frames()[0]->offset); | 
|  | } | 
|  | sent_count++; | 
|  | })); | 
|  | EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket()) | 
|  | .WillRepeatedly(Return(true)); | 
|  | EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] { | 
|  | return connection_.sent_packet_manager().MaybeRetransmitOldestPacket( | 
|  | PROBING_RETRANSMISSION); | 
|  | }); | 
|  |  | 
|  | connection_.SendProbingRetransmissions(); | 
|  |  | 
|  | // Ensure that the in-flight has increased. | 
|  | const QuicByteCount new_bytes_in_flight = | 
|  | connection_.sent_packet_manager().GetBytesInFlight(); | 
|  | EXPECT_GT(new_bytes_in_flight, old_bytes_in_flight); | 
|  | } | 
|  |  | 
|  | // Ensure that SendProbingRetransmissions() does not retransmit anything when | 
|  | // there are no outstanding packets. | 
|  | TEST_P(QuicConnectionTest, | 
|  | SendProbingRetransmissionsFailsWhenNothingToRetransmit) { | 
|  | ASSERT_TRUE(connection_.sent_packet_manager().unacked_packets().empty()); | 
|  |  | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  | EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(0); | 
|  | EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket()) | 
|  | .WillRepeatedly(Return(true)); | 
|  | EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] { | 
|  | return connection_.sent_packet_manager().MaybeRetransmitOldestPacket( | 
|  | PROBING_RETRANSMISSION); | 
|  | }); | 
|  |  | 
|  | connection_.SendProbingRetransmissions(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PingAfterLastRetransmittablePacketAcked) { | 
|  | const QuicTime::Delta retransmittable_on_wire_timeout = | 
|  | QuicTime::Delta::FromMilliseconds(50); | 
|  | connection_.set_initial_retransmittable_on_wire_timeout( | 
|  | retransmittable_on_wire_timeout); | 
|  |  | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(true)); | 
|  |  | 
|  | const char data[] = "data"; | 
|  | size_t data_size = strlen(data); | 
|  | QuicStreamOffset offset = 0; | 
|  |  | 
|  | // Advance 5ms, send a retransmittable packet to the peer. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
|  | // The ping alarm is set for the ping timeout, not the shorter | 
|  | // retransmittable_on_wire_timeout. | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs); | 
|  | EXPECT_EQ(ping_delay, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Advance 5ms, send a second retransmittable packet to the peer. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  |  | 
|  | // Now receive an ACK of the first packet. This should not set the | 
|  | // retransmittable-on-wire alarm since packet 2 is still on the wire. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame = | 
|  | InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
|  | // The ping alarm is set for the ping timeout, not the shorter | 
|  | // retransmittable_on_wire_timeout. | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | // The ping alarm has a 1 second granularity, and the clock has been advanced | 
|  | // 10ms since it was originally set. | 
|  | EXPECT_EQ(ping_delay - QuicTime::Delta::FromMilliseconds(10), | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Now receive an ACK of the second packet. This should set the | 
|  | // retransmittable-on-wire alarm now that no retransmittable packets are on | 
|  | // the wire. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Now receive a duplicate ACK of the second packet. This should not update | 
|  | // the ping alarm. | 
|  | QuicTime prev_deadline = connection_.GetPingAlarm()->deadline(); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline()); | 
|  |  | 
|  | // Now receive a non-ACK packet.  This should not update the ping alarm. | 
|  | prev_deadline = connection_.GetPingAlarm()->deadline(); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | ProcessPacket(4); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline()); | 
|  |  | 
|  | // Simulate the alarm firing and check that a PING is sent. | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { | 
|  | connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); | 
|  | })); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count()); | 
|  | } | 
|  | ASSERT_EQ(1u, writer_->ping_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoPingIfRetransmittablePacketSent) { | 
|  | const QuicTime::Delta retransmittable_on_wire_timeout = | 
|  | QuicTime::Delta::FromMilliseconds(50); | 
|  | connection_.set_initial_retransmittable_on_wire_timeout( | 
|  | retransmittable_on_wire_timeout); | 
|  |  | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(true)); | 
|  |  | 
|  | const char data[] = "data"; | 
|  | size_t data_size = strlen(data); | 
|  | QuicStreamOffset offset = 0; | 
|  |  | 
|  | // Advance 5ms, send a retransmittable packet to the peer. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
|  | // The ping alarm is set for the ping timeout, not the shorter | 
|  | // retransmittable_on_wire_timeout. | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs); | 
|  | EXPECT_EQ(ping_delay, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Now receive an ACK of the first packet. This should set the | 
|  | // retransmittable-on-wire alarm now that no retransmittable packets are on | 
|  | // the wire. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame = | 
|  | InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Before the alarm fires, send another retransmittable packet. This should | 
|  | // cancel the retransmittable-on-wire alarm since now there's a | 
|  | // retransmittable packet on the wire. | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  |  | 
|  | // Now receive an ACK of the second packet. This should set the | 
|  | // retransmittable-on-wire alarm now that no retransmittable packets are on | 
|  | // the wire. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Simulate the alarm firing and check that a PING is sent. | 
|  | writer_->Reset(); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { | 
|  | connection_.SendControlFrame(QuicFrame(QuicPingFrame(1))); | 
|  | })); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  | size_t padding_frame_count = writer_->padding_frames().size(); | 
|  | if (GetParam().no_stop_waiting) { | 
|  | // Do not ACK acks. | 
|  | EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count()); | 
|  | } else { | 
|  | EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count()); | 
|  | } | 
|  | ASSERT_EQ(1u, writer_->ping_frames().size()); | 
|  | } | 
|  |  | 
|  | // When there is no stream data received but are open streams, send the | 
|  | // first few consecutive pings with aggressive retransmittable-on-wire | 
|  | // timeout. Exponentially back off the retransmittable-on-wire ping timeout | 
|  | // afterwards until it exceeds the default ping timeout. | 
|  | TEST_P(QuicConnectionTest, BackOffRetransmittableOnWireTimeout) { | 
|  | int max_aggressive_retransmittable_on_wire_ping_count = 5; | 
|  | SetQuicFlag(FLAGS_quic_max_aggressive_retransmittable_on_wire_ping_count, | 
|  | max_aggressive_retransmittable_on_wire_ping_count); | 
|  | const QuicTime::Delta initial_retransmittable_on_wire_timeout = | 
|  | QuicTime::Delta::FromMilliseconds(200); | 
|  | connection_.set_initial_retransmittable_on_wire_timeout( | 
|  | initial_retransmittable_on_wire_timeout); | 
|  |  | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(true)); | 
|  |  | 
|  | const char data[] = "data"; | 
|  | // Advance 5ms, send a retransmittable data packet to the peer. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | connection_.SendStreamDataWithString(1, data, 0, NO_FIN); | 
|  | EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
|  | // The ping alarm is set for the ping timeout, not the shorter | 
|  | // retransmittable_on_wire_timeout. | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(connection_.ping_timeout(), | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  |  | 
|  | // Verify that the first few consecutive retransmittable on wire pings are | 
|  | // sent with aggressive timeout. | 
|  | for (int i = 0; i <= max_aggressive_retransmittable_on_wire_ping_count; i++) { | 
|  | // Receive an ACK of the previous packet. This should set the ping alarm | 
|  | // with the initial retransmittable-on-wire timeout. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicPacketNumber ack_num = creator_->packet_number(); | 
|  | QuicAckFrame frame = InitAckFrame( | 
|  | {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  | // Simulate the alarm firing and check that a PING is sent. | 
|  | writer_->Reset(); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { | 
|  | SendPing(); | 
|  | })); | 
|  | clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  | } | 
|  |  | 
|  | QuicTime::Delta retransmittable_on_wire_timeout = | 
|  | initial_retransmittable_on_wire_timeout; | 
|  |  | 
|  | // Verify subsequent pings are sent with timeout that is exponentially backed | 
|  | // off. | 
|  | while (retransmittable_on_wire_timeout * 2 < connection_.ping_timeout()) { | 
|  | // Receive an ACK for the previous PING. This should set the | 
|  | // ping alarm with backed off retransmittable-on-wire timeout. | 
|  | retransmittable_on_wire_timeout = retransmittable_on_wire_timeout * 2; | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicPacketNumber ack_num = creator_->packet_number(); | 
|  | QuicAckFrame frame = InitAckFrame( | 
|  | {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Simulate the alarm firing and check that a PING is sent. | 
|  | writer_->Reset(); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { | 
|  | SendPing(); | 
|  | })); | 
|  | clock_.AdvanceTime(retransmittable_on_wire_timeout); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  | } | 
|  |  | 
|  | // The ping alarm is set with default ping timeout. | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(connection_.ping_timeout(), | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Receive an ACK for the previous PING. The ping alarm is set with an | 
|  | // earlier deadline. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicPacketNumber ack_num = creator_->packet_number(); | 
|  | QuicAckFrame frame = InitAckFrame( | 
|  | {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(connection_.ping_timeout() - QuicTime::Delta::FromMilliseconds(5), | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  | } | 
|  |  | 
|  | // This test verify that the count of consecutive aggressive pings is reset | 
|  | // when new data is received. And it also verifies the connection resets | 
|  | // the exponential back-off of the retransmittable-on-wire ping timeout | 
|  | // after receiving new stream data. | 
|  | TEST_P(QuicConnectionTest, ResetBackOffRetransmitableOnWireTimeout) { | 
|  | int max_aggressive_retransmittable_on_wire_ping_count = 3; | 
|  | SetQuicFlag(FLAGS_quic_max_aggressive_retransmittable_on_wire_ping_count, 3); | 
|  | const QuicTime::Delta initial_retransmittable_on_wire_timeout = | 
|  | QuicTime::Delta::FromMilliseconds(200); | 
|  | connection_.set_initial_retransmittable_on_wire_timeout( | 
|  | initial_retransmittable_on_wire_timeout); | 
|  |  | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(true)); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  |  | 
|  | const char data[] = "data"; | 
|  | // Advance 5ms, send a retransmittable data packet to the peer. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | connection_.SendStreamDataWithString(1, data, 0, NO_FIN); | 
|  | EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets()); | 
|  | // The ping alarm is set for the ping timeout, not the shorter | 
|  | // retransmittable_on_wire_timeout. | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(connection_.ping_timeout(), | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Receive an ACK of the first packet. This should set the ping alarm with | 
|  | // initial retransmittable-on-wire timeout since there is no retransmittable | 
|  | // packet on the wire. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicAckFrame frame = | 
|  | InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Simulate the alarm firing and check that a PING is sent. | 
|  | writer_->Reset(); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); | 
|  | clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  |  | 
|  | // Receive an ACK for the previous PING. Ping alarm will be set with | 
|  | // aggressive timeout. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicPacketNumber ack_num = creator_->packet_number(); | 
|  | frame = InitAckFrame( | 
|  | {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Process a data packet. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacket(peer_creator_.packet_number() + 1); | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, | 
|  | peer_creator_.packet_number() + 1); | 
|  | EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | // Verify the count of consecutive aggressive pings is reset. | 
|  | for (int i = 0; i < max_aggressive_retransmittable_on_wire_ping_count; i++) { | 
|  | // Receive an ACK of the previous packet. This should set the ping alarm | 
|  | // with the initial retransmittable-on-wire timeout. | 
|  | QuicPacketNumber ack_num = creator_->packet_number(); | 
|  | QuicAckFrame frame = InitAckFrame( | 
|  | {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  | // Simulate the alarm firing and check that a PING is sent. | 
|  | writer_->Reset(); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { | 
|  | SendPing(); | 
|  | })); | 
|  | clock_.AdvanceTime(initial_retransmittable_on_wire_timeout); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  | // Advance 5ms to receive next packet. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | } | 
|  |  | 
|  | // Receive another ACK for the previous PING. This should set the | 
|  | // ping alarm with backed off retransmittable-on-wire timeout. | 
|  | ack_num = creator_->packet_number(); | 
|  | frame = InitAckFrame( | 
|  | {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(initial_retransmittable_on_wire_timeout * 2, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  |  | 
|  | writer_->Reset(); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); | 
|  | clock_.AdvanceTime(2 * initial_retransmittable_on_wire_timeout); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  |  | 
|  | // Process another data packet and a new ACK packet. The ping alarm is set | 
|  | // with aggressive ping timeout again. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | ProcessDataPacket(peer_creator_.packet_number() + 1); | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, | 
|  | peer_creator_.packet_number() + 1); | 
|  | ack_num = creator_->packet_number(); | 
|  | frame = InitAckFrame( | 
|  | {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}}); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(initial_retransmittable_on_wire_timeout, | 
|  | connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ValidStatelessResetToken) { | 
|  | const QuicUint128 kTestToken = 1010101; | 
|  | const QuicUint128 kWrongTestToken = 1010100; | 
|  | QuicConfig config; | 
|  | // No token has been received. | 
|  | EXPECT_FALSE(connection_.IsValidStatelessResetToken(kTestToken)); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(2); | 
|  | // Token is different from received token. | 
|  | QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_FALSE(connection_.IsValidStatelessResetToken(kWrongTestToken)); | 
|  |  | 
|  | QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_TRUE(connection_.IsValidStatelessResetToken(kTestToken)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WriteBlockedWithInvalidAck) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
|  | BlockOnNextWrite(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(5, "foo", 0, FIN); | 
|  | // This causes connection to be closed because packet 1 has not been sent yet. | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
|  | ProcessAckPacket(1, &frame); | 
|  | EXPECT_EQ(0, connection_close_frame_count_); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendMessage) { | 
|  | if (!VersionSupportsMessageFrames(connection_.transport_version())) { | 
|  | return; | 
|  | } | 
|  | if (connection_.version().UsesTls()) { | 
|  | QuicConfig config; | 
|  | QuicConfigPeer::SetReceivedMaxDatagramFrameSize( | 
|  | &config, kMaxAcceptedDatagramFrameSize); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | } | 
|  | std::string message(connection_.GetCurrentLargestMessagePayload() * 2, 'a'); | 
|  | quiche::QuicheStringPiece message_data(message); | 
|  | QuicMemSliceStorage storage(nullptr, 0, nullptr, 0); | 
|  | { | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | connection_.SendStreamData3(); | 
|  | // Send a message which cannot fit into current open packet, and 2 packets | 
|  | // get sent, one contains stream frame, and the other only contains the | 
|  | // message frame. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | EXPECT_EQ(MESSAGE_STATUS_SUCCESS, | 
|  | connection_.SendMessage( | 
|  | 1, | 
|  | MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(), | 
|  | quiche::QuicheStringPiece( | 
|  | message_data.data(), | 
|  | connection_.GetCurrentLargestMessagePayload()), | 
|  | &storage), | 
|  | false)); | 
|  | } | 
|  | // Fail to send a message if connection is congestion control blocked. | 
|  | EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); | 
|  | EXPECT_EQ(MESSAGE_STATUS_BLOCKED, | 
|  | connection_.SendMessage( | 
|  | 2, | 
|  | MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(), | 
|  | "message", &storage), | 
|  | false)); | 
|  |  | 
|  | // Always fail to send a message which cannot fit into one packet. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | EXPECT_EQ(MESSAGE_STATUS_TOO_LARGE, | 
|  | connection_.SendMessage( | 
|  | 3, | 
|  | MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(), | 
|  | quiche::QuicheStringPiece( | 
|  | message_data.data(), | 
|  | connection_.GetCurrentLargestMessagePayload() + 1), | 
|  | &storage), | 
|  | false)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, GetCurrentLargestMessagePayload) { | 
|  | if (!connection_.version().SupportsMessageFrames()) { | 
|  | return; | 
|  | } | 
|  | // Force use of this encrypter to simplify test expectations by making sure | 
|  | // that the encryption overhead is constant across versions. | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x00)); | 
|  | QuicPacketLength expected_largest_payload = 1319; | 
|  | if (connection_.version().SendsVariableLengthPacketNumberInLongHeader()) { | 
|  | expected_largest_payload += 3; | 
|  | } | 
|  | if (connection_.version().HasLongHeaderLengths()) { | 
|  | expected_largest_payload -= 2; | 
|  | } | 
|  | if (connection_.version().HasLengthPrefixedConnectionIds()) { | 
|  | expected_largest_payload -= 1; | 
|  | } | 
|  | if (connection_.version().UsesTls()) { | 
|  | // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake. | 
|  | EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), 0); | 
|  | QuicConfig config; | 
|  | QuicConfigPeer::SetReceivedMaxDatagramFrameSize( | 
|  | &config, kMaxAcceptedDatagramFrameSize); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | // Verify the value post-handshake. | 
|  | EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), | 
|  | expected_largest_payload); | 
|  | } else { | 
|  | EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), | 
|  | expected_largest_payload); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, GetGuaranteedLargestMessagePayload) { | 
|  | if (!connection_.version().SupportsMessageFrames()) { | 
|  | return; | 
|  | } | 
|  | // Force use of this encrypter to simplify test expectations by making sure | 
|  | // that the encryption overhead is constant across versions. | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x00)); | 
|  | QuicPacketLength expected_largest_payload = 1319; | 
|  | if (connection_.version().HasLongHeaderLengths()) { | 
|  | expected_largest_payload -= 2; | 
|  | } | 
|  | if (connection_.version().HasLengthPrefixedConnectionIds()) { | 
|  | expected_largest_payload -= 1; | 
|  | } | 
|  | if (connection_.version().UsesTls()) { | 
|  | // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake. | 
|  | EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), 0); | 
|  | QuicConfig config; | 
|  | QuicConfigPeer::SetReceivedMaxDatagramFrameSize( | 
|  | &config, kMaxAcceptedDatagramFrameSize); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | // Verify the value post-handshake. | 
|  | EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), | 
|  | expected_largest_payload); | 
|  | } else { | 
|  | EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), | 
|  | expected_largest_payload); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LimitedLargestMessagePayload) { | 
|  | if (!connection_.version().SupportsMessageFrames() || | 
|  | !connection_.version().UsesTls()) { | 
|  | return; | 
|  | } | 
|  | constexpr QuicPacketLength kFrameSizeLimit = 1000; | 
|  | constexpr QuicPacketLength kPayloadSizeLimit = | 
|  | kFrameSizeLimit - kQuicFrameTypeSize; | 
|  | // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake. | 
|  | EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), 0); | 
|  | EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), 0); | 
|  | QuicConfig config; | 
|  | QuicConfigPeer::SetReceivedMaxDatagramFrameSize(&config, kFrameSizeLimit); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | // Verify the value post-handshake. | 
|  | EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), kPayloadSizeLimit); | 
|  | EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), | 
|  | kPayloadSizeLimit); | 
|  | } | 
|  |  | 
|  | // Test to check that the path challenge/path response logic works | 
|  | // correctly. This test is only for version-99 | 
|  | TEST_P(QuicConnectionTest, PathChallengeResponse) { | 
|  | if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) { | 
|  | return; | 
|  | } | 
|  | // First check if we can probe from server to client and back | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  |  | 
|  | // Create and send the probe request (PATH_CHALLENGE frame). | 
|  | // SendConnectivityProbingPacket ends up calling | 
|  | // TestPacketWriter::WritePacket() which in turns receives and parses the | 
|  | // packet by calling framer_.ProcessPacket() -- which in turn calls | 
|  | // SimpleQuicFramer::OnPathChallengeFrame(). SimpleQuicFramer saves | 
|  | // the packet in writer_->path_challenge_frames() | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendConnectivityProbingPacket(writer_.get(), | 
|  | connection_.peer_address()); | 
|  | // Save the random contents of the challenge for later comparison to the | 
|  | // response. | 
|  | ASSERT_GE(writer_->path_challenge_frames().size(), 1u); | 
|  | QuicPathFrameBuffer challenge_data = | 
|  | writer_->path_challenge_frames().front().data_buffer; | 
|  |  | 
|  | // Normally, QuicConnection::OnPathChallengeFrame and OnPaddingFrame would be | 
|  | // called and it will perform actions to ensure that the rest of the protocol | 
|  | // is performed (specifically, call UpdatePacketContent to say that this is a | 
|  | // path challenge so that when QuicConnection::OnPacketComplete is called | 
|  | // (again, out of the framer), the response is generated).  Simulate those | 
|  | // calls so that the right internal state is set up for generating | 
|  | // the response. | 
|  | EXPECT_TRUE(connection_.OnPathChallengeFrame( | 
|  | writer_->path_challenge_frames().front())); | 
|  | EXPECT_TRUE(connection_.OnPaddingFrame(writer_->padding_frames().front())); | 
|  | // Cause the response to be created and sent. Result is that the response | 
|  | // should be stashed in writer's path_response_frames. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendConnectivityProbingResponsePacket(connection_.peer_address()); | 
|  |  | 
|  | // The final check is to ensure that the random data in the response matches | 
|  | // the random data from the challenge. | 
|  | EXPECT_EQ(0, memcmp(&challenge_data, | 
|  | &(writer_->path_response_frames().front().data_buffer), | 
|  | sizeof(challenge_data))); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, | 
|  | RestartPathDegradingDetectionAfterMigrationWithProbe) { | 
|  | // TODO(b/150095484): add test coverage for IETF to verify that client takes | 
|  | // PATH RESPONSE with peer address change as correct validation on the new | 
|  | // path. | 
|  | if (GetParam().version.HasIetfQuicFrames()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | PathProbeTestInit(Perspective::IS_CLIENT); | 
|  |  | 
|  | // Clear direct_peer_address and effective_peer_address. | 
|  | QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress()); | 
|  | QuicConnectionPeer::SetEffectivePeerAddress(&connection_, | 
|  | QuicSocketAddress()); | 
|  | EXPECT_FALSE(connection_.effective_peer_address().IsInitialized()); | 
|  |  | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, ShouldKeepConnectionAlive()) | 
|  | .WillRepeatedly(Return(true)); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  |  | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  |  | 
|  | // Send data and verify the path degrading detection is set. | 
|  | const char data[] = "data"; | 
|  | size_t data_size = strlen(data); | 
|  | QuicStreamOffset offset = 0; | 
|  | connection_.SendStreamDataWithString(1, data, offset, NO_FIN); | 
|  | offset += data_size; | 
|  |  | 
|  | // Verify the path degrading detection is in progress. | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  | QuicTime ddl = connection_.GetBlackholeDetectorAlarm()->deadline(); | 
|  |  | 
|  | // Simulate the firing of path degrading. | 
|  | clock_.AdvanceTime(ddl - clock_.ApproximateNow()); | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()).Times(1); | 
|  | connection_.PathDegradingTimeout(); | 
|  | EXPECT_TRUE(connection_.IsPathDegrading()); | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  |  | 
|  | // Simulate path degrading handling by sending a probe on an alternet path. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | TestPacketWriter probing_writer(version(), &clock_); | 
|  | connection_.SendConnectivityProbingPacket(&probing_writer, | 
|  | connection_.peer_address()); | 
|  | // Verify that path degrading detection is not reset. | 
|  | EXPECT_FALSE(connection_.PathDegradingDetectionInProgress()); | 
|  |  | 
|  | // Simulate successful path degrading handling by receiving probe response. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20)); | 
|  |  | 
|  | if (!GetParam().version.HasIetfQuicFrames()) { | 
|  | EXPECT_CALL(visitor_, | 
|  | OnPacketReceived(_, _, /*is_connectivity_probe=*/true)) | 
|  | .Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0); | 
|  | } | 
|  | const QuicSocketAddress kNewSelfAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456); | 
|  |  | 
|  | std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket(); | 
|  | std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket( | 
|  | QuicEncryptedPacket(probing_packet->encrypted_buffer, | 
|  | probing_packet->encrypted_length), | 
|  | clock_.Now())); | 
|  | uint64_t num_probing_received = | 
|  | connection_.GetStats().num_connectivity_probing_received; | 
|  | ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received); | 
|  |  | 
|  | EXPECT_EQ(num_probing_received + 1, | 
|  | connection_.GetStats().num_connectivity_probing_received); | 
|  | EXPECT_EQ(kPeerAddress, connection_.peer_address()); | 
|  | EXPECT_EQ(kPeerAddress, connection_.effective_peer_address()); | 
|  | EXPECT_TRUE(connection_.IsPathDegrading()); | 
|  |  | 
|  | // Verify new path degrading detection is activated. | 
|  | EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading()).Times(1); | 
|  | connection_.OnSuccessfulMigrationAfterProbing(); | 
|  | EXPECT_FALSE(connection_.IsPathDegrading()); | 
|  | EXPECT_TRUE(connection_.PathDegradingDetectionInProgress()); | 
|  | } | 
|  |  | 
|  | // Regression test for b/110259444 | 
|  | TEST_P(QuicConnectionTest, DoNotScheduleSpuriousAckAlarm) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); | 
|  | writer_->SetWriteBlocked(); | 
|  |  | 
|  | ProcessPacket(1); | 
|  | // Verify ack alarm is set. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | // Fire the ack alarm, verify no packet is sent because the writer is blocked. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  |  | 
|  | writer_->SetWritable(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | ProcessPacket(2); | 
|  | // Verify ack alarm is not set. | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DisablePacingOffloadConnectionOptions) { | 
|  | EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_)); | 
|  | writer_->set_supports_release_time(true); | 
|  | QuicConfig config; | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_TRUE(QuicConnectionPeer::SupportsReleaseTime(&connection_)); | 
|  |  | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(kNPCO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | // Verify pacing offload is disabled. | 
|  | EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_)); | 
|  | } | 
|  |  | 
|  | // Regression test for b/110259444 | 
|  | // Get a path response without having issued a path challenge... | 
|  | TEST_P(QuicConnectionTest, OrphanPathResponse) { | 
|  | QuicPathFrameBuffer data = {{0, 1, 2, 3, 4, 5, 6, 7}}; | 
|  |  | 
|  | QuicPathResponseFrame frame(99, data); | 
|  | EXPECT_TRUE(connection_.OnPathResponseFrame(frame)); | 
|  | // If PATH_RESPONSE was accepted (payload matches the payload saved | 
|  | // in QuicConnection::transmitted_connectivity_probe_payload_) then | 
|  | // current_packet_content_ would be set to FIRST_FRAME_IS_PING. | 
|  | // Since this PATH_RESPONSE does not match, current_packet_content_ | 
|  | // must not be FIRST_FRAME_IS_PING. | 
|  | EXPECT_NE(QuicConnection::FIRST_FRAME_IS_PING, | 
|  | QuicConnectionPeer::GetCurrentPacketContent(&connection_)); | 
|  | } | 
|  |  | 
|  | // Regression test for b/120791670 | 
|  | TEST_P(QuicConnectionTest, StopProcessingGQuicPacketInIetfQuicConnection) { | 
|  | // This test mimics a problematic scenario where an IETF QUIC connection | 
|  | // receives a Google QUIC packet and continue processing it using Google QUIC | 
|  | // wire format. | 
|  | if (!VersionHasIetfInvariantHeader(version().transport_version)) { | 
|  | return; | 
|  | } | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  |  | 
|  | // Let connection process a Google QUIC packet. | 
|  | peer_framer_.set_version_for_tests( | 
|  | ParsedQuicVersion(PROTOCOL_QUIC_CRYPTO, QUIC_VERSION_43)); | 
|  | std::unique_ptr<QuicPacket> packet( | 
|  | ConstructDataPacket(2, !kHasStopWaiting, ENCRYPTION_INITIAL)); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | size_t encrypted_length = | 
|  | peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(2), | 
|  | *packet, buffer, kMaxOutgoingPacketSize); | 
|  | // Make sure no stream frame is processed. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(0); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
|  |  | 
|  | EXPECT_EQ(2u, connection_.GetStats().packets_received); | 
|  | EXPECT_EQ(1u, connection_.GetStats().packets_processed); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AcceptPacketNumberZero) { | 
|  | if (!VersionHasIetfQuicFrames(version().transport_version)) { | 
|  | return; | 
|  | } | 
|  | // Set first_sending_packet_number to be 0 to allow successfully processing | 
|  | // acks which ack packet number 0. | 
|  | QuicFramerPeer::SetFirstSendingPacketNumber(writer_->framer()->framer(), 0); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | ProcessPacket(0); | 
|  | EXPECT_EQ(QuicPacketNumber(0), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
|  |  | 
|  | ProcessPacket(1); | 
|  | EXPECT_EQ(QuicPacketNumber(1), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
|  |  | 
|  | ProcessPacket(2); | 
|  | EXPECT_EQ(QuicPacketNumber(2), LargestAcked(connection_.ack_frame())); | 
|  | EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicSending) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | use_tagging_decrypter(); | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  |  | 
|  | connection_.SendCryptoStreamData(); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | QuicAckFrame frame1 = InitAckFrame(1); | 
|  | // Received ACK for packet 1. | 
|  | ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(4); | 
|  | connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0, | 
|  | NO_FIN); | 
|  | connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4, | 
|  | NO_FIN); | 
|  | connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data", | 
|  | 8, NO_FIN); | 
|  | connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data", | 
|  | 12, FIN); | 
|  | // Received ACK for packets 2, 4, 5. | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | QuicAckFrame frame2 = | 
|  | InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}, | 
|  | {QuicPacketNumber(4), QuicPacketNumber(6)}}); | 
|  | // Make sure although the same packet number is used, but they are in | 
|  | // different packet number spaces. | 
|  | ProcessFramePacketAtLevel(30, QuicFrame(&frame2), ENCRYPTION_FORWARD_SECURE); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PeerAcksPacketsInWrongPacketNumberSpace) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | use_tagging_decrypter(); | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  |  | 
|  | connection_.SendCryptoStreamData(); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | QuicAckFrame frame1 = InitAckFrame(1); | 
|  | // Received ACK for packet 1. | 
|  | ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0, | 
|  | NO_FIN); | 
|  | connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4, | 
|  | NO_FIN); | 
|  |  | 
|  | // Received ACK for packets 2 and 3 in wrong packet number space. | 
|  | QuicAckFrame invalid_ack = | 
|  | InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(4)}}); | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | ProcessFramePacketAtLevel(300, QuicFrame(&invalid_ack), ENCRYPTION_INITIAL); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicReceiving) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | use_tagging_decrypter(); | 
|  | // Receives packet 1000 in initial data. | 
|  | ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(0x02)); | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | // Receives packet 1000 in application data. | 
|  | ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0, | 
|  | NO_FIN); | 
|  | // Verify application data ACK gets bundled with outgoing data. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | // Make sure ACK alarm is still set because initial data is not ACKed. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | // Receive packet 1001 in application data. | 
|  | ProcessDataPacketAtLevel(1001, false, ENCRYPTION_ZERO_RTT); | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | // Simulates ACK alarm fires and verify two ACKs are flushed. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | // Receives more packets in application data. | 
|  | ProcessDataPacketAtLevel(1002, false, ENCRYPTION_ZERO_RTT); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  |  | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<StrictTaggingDecrypter>(0x02)); | 
|  | // Verify zero rtt and forward secure packets get acked in the same packet. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | ProcessDataPacket(1003); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CancelAckAlarmOnWriteBlocked) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | use_tagging_decrypter(); | 
|  | // Receives packet 1000 in initial data. | 
|  | ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(0x02)); | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | // Receives packet 1000 in application data. | 
|  | ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  |  | 
|  | writer_->SetWriteBlocked(); | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AnyNumber()); | 
|  | // Simulates ACK alarm fires and verify no ACK is flushed because of write | 
|  | // blocked. | 
|  | clock_.AdvanceTime(DefaultDelayedAckTime()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | // Verify ACK alarm is not set. | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  |  | 
|  | writer_->SetWritable(); | 
|  | // Verify 2 ACKs are sent when connection gets unblocked. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | // Make sure a packet received with the right client connection ID is processed. | 
|  | TEST_P(QuicConnectionTest, ValidClientConnectionId) { | 
|  | if (!framer_.version().SupportsClientConnectionIds()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | connection_.set_client_connection_id(TestConnectionId(0x33)); | 
|  | QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE); | 
|  | header.destination_connection_id = TestConnectionId(0x33); | 
|  | header.destination_connection_id_included = CONNECTION_ID_PRESENT; | 
|  | header.source_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | QuicFrames frames; | 
|  | QuicPingFrame ping_frame; | 
|  | QuicPaddingFrame padding_frame; | 
|  | frames.push_back(QuicFrame(ping_frame)); | 
|  | frames.push_back(QuicFrame(padding_frame)); | 
|  | std::unique_ptr<QuicPacket> packet = | 
|  | BuildUnsizedDataPacket(&framer_, header, frames); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | size_t encrypted_length = peer_framer_.EncryptPayload( | 
|  | ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer, | 
|  | kMaxOutgoingPacketSize); | 
|  | QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(), | 
|  | false); | 
|  | EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
|  | ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet); | 
|  | EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
|  | } | 
|  |  | 
|  | // Make sure a packet received with a different client connection ID is dropped. | 
|  | TEST_P(QuicConnectionTest, InvalidClientConnectionId) { | 
|  | if (!framer_.version().SupportsClientConnectionIds()) { | 
|  | return; | 
|  | } | 
|  | connection_.set_client_connection_id(TestConnectionId(0x33)); | 
|  | QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE); | 
|  | header.destination_connection_id = TestConnectionId(0xbad); | 
|  | header.destination_connection_id_included = CONNECTION_ID_PRESENT; | 
|  | header.source_connection_id_included = CONNECTION_ID_ABSENT; | 
|  | QuicFrames frames; | 
|  | QuicPingFrame ping_frame; | 
|  | QuicPaddingFrame padding_frame; | 
|  | frames.push_back(QuicFrame(ping_frame)); | 
|  | frames.push_back(QuicFrame(padding_frame)); | 
|  | std::unique_ptr<QuicPacket> packet = | 
|  | BuildUnsizedDataPacket(&framer_, header, frames); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | size_t encrypted_length = peer_framer_.EncryptPayload( | 
|  | ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer, | 
|  | kMaxOutgoingPacketSize); | 
|  | QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(), | 
|  | false); | 
|  | EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
|  | ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet); | 
|  | EXPECT_EQ(1u, connection_.GetStats().packets_dropped); | 
|  | } | 
|  |  | 
|  | // Make sure the first packet received with a different client connection ID on | 
|  | // the server is processed and it changes the client connection ID. | 
|  | TEST_P(QuicConnectionTest, UpdateClientConnectionIdFromFirstPacket) { | 
|  | if (!framer_.version().SupportsClientConnectionIds()) { | 
|  | return; | 
|  | } | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_INITIAL); | 
|  | header.source_connection_id = TestConnectionId(0x33); | 
|  | header.source_connection_id_included = CONNECTION_ID_PRESENT; | 
|  | QuicFrames frames; | 
|  | QuicPingFrame ping_frame; | 
|  | QuicPaddingFrame padding_frame; | 
|  | frames.push_back(QuicFrame(ping_frame)); | 
|  | frames.push_back(QuicFrame(padding_frame)); | 
|  | std::unique_ptr<QuicPacket> packet = | 
|  | BuildUnsizedDataPacket(&framer_, header, frames); | 
|  | char buffer[kMaxOutgoingPacketSize]; | 
|  | size_t encrypted_length = | 
|  | peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(1), | 
|  | *packet, buffer, kMaxOutgoingPacketSize); | 
|  | QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(), | 
|  | false); | 
|  | EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
|  | ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet); | 
|  | EXPECT_EQ(0u, connection_.GetStats().packets_dropped); | 
|  | EXPECT_EQ(TestConnectionId(0x33), connection_.client_connection_id()); | 
|  | } | 
|  |  | 
|  | // Regression test for b/134416344. | 
|  | TEST_P(QuicConnectionTest, CheckConnectedBeforeFlush) { | 
|  | // This test mimics a scenario where a connection processes 2 packets and the | 
|  | // 2nd packet contains connection close frame. When the 2nd flusher goes out | 
|  | // of scope, a delayed ACK is pending, and ACK alarm should not be scheduled | 
|  | // because connection is disconnected. | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
|  | const QuicErrorCode kErrorCode = QUIC_INTERNAL_ERROR; | 
|  | std::unique_ptr<QuicConnectionCloseFrame> connection_close_frame( | 
|  | new QuicConnectionCloseFrame(connection_.transport_version(), kErrorCode, | 
|  | "", | 
|  | /*transport_close_frame_type=*/0)); | 
|  |  | 
|  | // Received 2 packets. | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, | 
|  | kPeerAddress); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | ProcessFramePacketWithAddresses(QuicFrame(connection_close_frame.release()), | 
|  | kSelfAddress, kPeerAddress); | 
|  | // Verify ack alarm is not set. | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | // Verify that a packet containing three coalesced packets is parsed correctly. | 
|  | TEST_P(QuicConnectionTest, CoalescedPacket) { | 
|  | if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) { | 
|  | // Coalesced packets can only be encoded using long header lengths. | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3); | 
|  | } | 
|  |  | 
|  | uint64_t packet_numbers[3] = {1, 2, 3}; | 
|  | EncryptionLevel encryption_levels[3] = { | 
|  | ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE}; | 
|  | char buffer[kMaxOutgoingPacketSize] = {}; | 
|  | size_t total_encrypted_length = 0; | 
|  | for (int i = 0; i < 3; i++) { | 
|  | QuicPacketHeader header = | 
|  | ConstructPacketHeader(packet_numbers[i], encryption_levels[i]); | 
|  | QuicFrames frames; | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | frames.push_back(QuicFrame(&crypto_frame_)); | 
|  | } else { | 
|  | frames.push_back(QuicFrame(frame1_)); | 
|  | } | 
|  | std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames); | 
|  | peer_creator_.set_encryption_level(encryption_levels[i]); | 
|  | size_t encrypted_length = peer_framer_.EncryptPayload( | 
|  | encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet, | 
|  | buffer + total_encrypted_length, | 
|  | sizeof(buffer) - total_encrypted_length); | 
|  | EXPECT_GT(encrypted_length, 0u); | 
|  | total_encrypted_length += encrypted_length; | 
|  | } | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false)); | 
|  | if (connection_.GetSendAlarm()->IsSet()) { | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | } | 
|  |  | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | // Regression test for crbug.com/992831. | 
|  | TEST_P(QuicConnectionTest, CoalescedPacketThatSavesFrames) { | 
|  | if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) { | 
|  | // Coalesced packets can only be encoded using long header lengths. | 
|  | return; | 
|  | } | 
|  | if (connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | // TODO(b/129151114) Enable this test with multiple packet number spaces. | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)) | 
|  | .Times(3) | 
|  | .WillRepeatedly([this](const QuicCryptoFrame& /*frame*/) { | 
|  | // QuicFrame takes ownership of the QuicBlockedFrame. | 
|  | connection_.SendControlFrame(QuicFrame(new QuicBlockedFrame(1, 3))); | 
|  | }); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
|  | .Times(3) | 
|  | .WillRepeatedly([this](const QuicStreamFrame& /*frame*/) { | 
|  | // QuicFrame takes ownership of the QuicBlockedFrame. | 
|  | connection_.SendControlFrame(QuicFrame(new QuicBlockedFrame(1, 3))); | 
|  | }); | 
|  | } | 
|  |  | 
|  | uint64_t packet_numbers[3] = {1, 2, 3}; | 
|  | EncryptionLevel encryption_levels[3] = { | 
|  | ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE}; | 
|  | char buffer[kMaxOutgoingPacketSize] = {}; | 
|  | size_t total_encrypted_length = 0; | 
|  | for (int i = 0; i < 3; i++) { | 
|  | QuicPacketHeader header = | 
|  | ConstructPacketHeader(packet_numbers[i], encryption_levels[i]); | 
|  | QuicFrames frames; | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | frames.push_back(QuicFrame(&crypto_frame_)); | 
|  | } else { | 
|  | frames.push_back(QuicFrame(frame1_)); | 
|  | } | 
|  | std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames); | 
|  | peer_creator_.set_encryption_level(encryption_levels[i]); | 
|  | size_t encrypted_length = peer_framer_.EncryptPayload( | 
|  | encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet, | 
|  | buffer + total_encrypted_length, | 
|  | sizeof(buffer) - total_encrypted_length); | 
|  | EXPECT_GT(encrypted_length, 0u); | 
|  | total_encrypted_length += encrypted_length; | 
|  | } | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false)); | 
|  | if (connection_.GetSendAlarm()->IsSet()) { | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | } | 
|  |  | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | SendAckPacketToPeer(); | 
|  | } | 
|  |  | 
|  | // Regresstion test for b/138962304. | 
|  | TEST_P(QuicConnectionTest, RtoAndWriteBlocked) { | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_data_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Writer gets blocked. | 
|  | writer_->SetWriteBlocked(); | 
|  |  | 
|  | // Cancel the stream. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()) | 
|  | .WillRepeatedly( | 
|  | Invoke(¬ifier_, &SimpleSessionNotifier::WillingToWrite)); | 
|  | SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
|  |  | 
|  | // Retransmission timer fires in RTO mode. | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | // Verify no packets get flushed when writer is blocked. | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | } | 
|  |  | 
|  | // Regresstion test for b/138962304. | 
|  | TEST_P(QuicConnectionTest, TlpAndWriteBlocked) { | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | connection_.SetMaxTailLossProbes(1); | 
|  |  | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_data_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet); | 
|  | SendStreamDataToPeer(4, "foo", 0, NO_FIN, &last_data_packet); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Writer gets blocked. | 
|  | writer_->SetWriteBlocked(); | 
|  |  | 
|  | // Cancel stream 2. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); | 
|  | SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | // Retransmission timer fires in TLP mode. | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | // Verify one packets is forced flushed when writer is blocked. | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  | } | 
|  |  | 
|  | // Regresstion test for b/139375344. | 
|  | TEST_P(QuicConnectionTest, RtoForcesSendingPing) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | connection_.SetMaxTailLossProbes(2); | 
|  | EXPECT_EQ(0u, connection_.GetStats().tlp_count); | 
|  | EXPECT_EQ(0u, connection_.GetStats().rto_count); | 
|  |  | 
|  | SendStreamDataToPeer(2, "foo", 0, NO_FIN, nullptr); | 
|  | QuicTime retransmission_time = | 
|  | connection_.GetRetransmissionAlarm()->deadline(); | 
|  | EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
|  | // TLP fires. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _)); | 
|  | clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, connection_.GetStats().tlp_count); | 
|  | EXPECT_EQ(0u, connection_.GetStats().rto_count); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Packet 1 gets acked. | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
|  | ProcessAckPacket(1, &frame); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | retransmission_time = connection_.GetRetransmissionAlarm()->deadline(); | 
|  |  | 
|  | // RTO fires, verify a PING packet gets sent because there is no data to send. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _)); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); | 
|  | clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, connection_.GetStats().tlp_count); | 
|  | EXPECT_EQ(1u, connection_.GetStats().rto_count); | 
|  | EXPECT_EQ(1u, writer_->ping_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ProbeTimeout) { | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k2PTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Reset stream. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3); | 
|  |  | 
|  | // Fire the PTO and verify only the RST_STREAM is resent, not stream data. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(0u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CloseConnectionAfter6ClientPTOs) { | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k1PTO); | 
|  | connection_options.push_back(k6PTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | QuicConfigPeer::SetNegotiated(&config, true); | 
|  | if (connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | QuicConfigPeer::SetReceivedOriginalConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | } | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
|  | } | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  |  | 
|  | // Fire the retransmission alarm 5 times. | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()); | 
|  | connection_.PathDegradingTimeout(); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); | 
|  | EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); | 
|  | EXPECT_EQ(5u, connection_.sent_packet_manager().GetConsecutivePtoCount()); | 
|  | // Closes connection on 6th PTO. | 
|  | // May send multiple connecction close packets with multiple PN spaces. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | ASSERT_TRUE(connection_.BlackholeDetectionInProgress()); | 
|  | connection_.GetBlackholeDetectorAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CloseConnectionAfter7ClientPTOs) { | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k2PTO); | 
|  | connection_options.push_back(k7PTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | QuicConfigPeer::SetNegotiated(&config, true); | 
|  | if (connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | QuicConfigPeer::SetReceivedOriginalConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | } | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
|  | } | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  |  | 
|  | // Fire the retransmission alarm 6 times. | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()); | 
|  | connection_.PathDegradingTimeout(); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); | 
|  | EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); | 
|  | EXPECT_EQ(6u, connection_.sent_packet_manager().GetConsecutivePtoCount()); | 
|  | // Closes connection on 7th PTO. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | ASSERT_TRUE(connection_.BlackholeDetectionInProgress()); | 
|  | connection_.GetBlackholeDetectorAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CloseConnectionAfter8ClientPTOs) { | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k2PTO); | 
|  | connection_options.push_back(k8PTO); | 
|  | QuicConfigPeer::SetNegotiated(&config, true); | 
|  | if (connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | QuicConfigPeer::SetReceivedOriginalConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | } | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
|  | } | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  |  | 
|  | // Fire the retransmission alarm 7 times. | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()); | 
|  | connection_.PathDegradingTimeout(); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); | 
|  | EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); | 
|  | EXPECT_EQ(7u, connection_.sent_packet_manager().GetConsecutivePtoCount()); | 
|  | // Closes connection on 8th PTO. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | ASSERT_TRUE(connection_.BlackholeDetectionInProgress()); | 
|  | connection_.GetBlackholeDetectorAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DeprecateHandshakeMode) { | 
|  | if (!connection_.version().SupportsAntiAmplificationLimit()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Send CHLO. | 
|  | connection_.SendCryptoStreamData(); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | QuicAckFrame frame1 = InitAckFrame(1); | 
|  | // Received ACK for packet 1. | 
|  | ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Verify retransmission alarm is still set because handshake is not | 
|  | // confirmed although there is nothing in flight. | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_EQ(0u, connection_.GetStats().pto_count); | 
|  | EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count); | 
|  |  | 
|  | // PTO fires, verify a PING packet gets sent because there is no data to send. | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, | 
|  | GetQuicReloadableFlag(quic_default_on_pto) | 
|  | ? QuicPacketNumber(2) | 
|  | : QuicPacketNumber(3), | 
|  | _, _)); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, connection_.GetStats().pto_count); | 
|  | EXPECT_EQ(1u, connection_.GetStats().crypto_retransmit_count); | 
|  | EXPECT_EQ(1u, writer_->ping_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AntiAmplificationLimit) { | 
|  | if (!connection_.version().SupportsAntiAmplificationLimit()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  |  | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | // Verify no data can be sent at the beginning because bytes received is 0. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | connection_.SendCryptoDataWithString("foo", 0); | 
|  | if (GetQuicReloadableFlag(quic_move_amplification_limit)) { | 
|  | EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)); | 
|  | EXPECT_FALSE(connection_.CanWrite(NO_RETRANSMITTABLE_DATA)); | 
|  | } | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Receives packet 1. | 
|  | ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
|  |  | 
|  | const size_t anti_amplification_factor = | 
|  | connection_.anti_amplification_factor(); | 
|  | // Verify now packets can be sent. | 
|  | for (size_t i = 0; i < anti_amplification_factor; ++i) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendCryptoDataWithString("foo", i * 3); | 
|  | // Verify retransmission alarm is not set if throttled by anti-amplification | 
|  | // limit. | 
|  | EXPECT_EQ(i != anti_amplification_factor - 1, | 
|  | connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | } | 
|  | // Verify server is throttled by anti-amplification limit. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3); | 
|  |  | 
|  | // Receives packet 2. | 
|  | ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); | 
|  | // Verify more packets can be sent. | 
|  | for (size_t i = anti_amplification_factor; i < anti_amplification_factor * 2; | 
|  | ++i) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendCryptoDataWithString("foo", i * 3); | 
|  | } | 
|  | // Verify server is throttled by anti-amplification limit. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | connection_.SendCryptoDataWithString("foo", | 
|  | 2 * anti_amplification_factor * 3); | 
|  |  | 
|  | ProcessPacket(3); | 
|  | // Verify anti-amplification limit is gone after address validation. | 
|  | for (size_t i = 0; i < 100; ++i) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckPendingWithAmplificationLimited) { | 
|  | if (!connection_.version().SupportsAntiAmplificationLimit() || | 
|  | !GetQuicReloadableFlag(quic_move_amplification_limit)) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber()); | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | use_tagging_decrypter(); | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
|  | // Receives packet 1. | 
|  | ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL); | 
|  | connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | // Send response in different encryption level and cause amplification factor | 
|  | // throttled. | 
|  | size_t i = 0; | 
|  | while (connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)) { | 
|  | connection_.SendCryptoDataWithString(std::string(1024, 'a'), i * 1024, | 
|  | ENCRYPTION_HANDSHAKE); | 
|  | ++i; | 
|  | } | 
|  | // Verify ACK is still pending. | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // Fire ACK alarm and verify ACK cannot be sent due to amplification factor. | 
|  | clock_.AdvanceTime(connection_.GetAckAlarm()->deadline() - clock_.Now()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | // Verify ACK alarm is cancelled. | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  |  | 
|  | // Receives packet 2 and verify ACK gets flushed. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ConnectionCloseFrameType) { | 
|  | if (!VersionHasIetfQuicFrames(version().transport_version)) { | 
|  | // Test relevent only for IETF QUIC. | 
|  | return; | 
|  | } | 
|  | const QuicErrorCode kQuicErrorCode = IETF_QUIC_PROTOCOL_VIOLATION; | 
|  | // Use the (unknown) frame type of 9999 to avoid triggering any logic | 
|  | // which might be associated with the processing of a known frame type. | 
|  | const uint64_t kTransportCloseFrameType = 9999u; | 
|  | QuicFramerPeer::set_current_received_frame_type( | 
|  | QuicConnectionPeer::GetFramer(&connection_), kTransportCloseFrameType); | 
|  | // Do a transport connection close | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | connection_.CloseConnection( | 
|  | kQuicErrorCode, "Some random error message", | 
|  | ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
|  | const std::vector<QuicConnectionCloseFrame>& connection_close_frames = | 
|  | writer_->connection_close_frames(); | 
|  | ASSERT_EQ(1u, connection_close_frames.size()); | 
|  | EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE, | 
|  | connection_close_frames[0].close_type); | 
|  | EXPECT_EQ(kQuicErrorCode, connection_close_frames[0].quic_error_code); | 
|  | EXPECT_EQ(kTransportCloseFrameType, | 
|  | connection_close_frames[0].transport_close_frame_type); | 
|  | } | 
|  |  | 
|  | // Regression test for b/137401387 and b/138962304. | 
|  | TEST_P(QuicConnectionTest, RtoPacketAsTwo) { | 
|  | if (connection_.PtoEnabled()) { | 
|  | return; | 
|  | } | 
|  | connection_.SetMaxTailLossProbes(1); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | std::string stream_data(3000, 's'); | 
|  | // Send packets 1 - 66 and exhaust cwnd. | 
|  | for (size_t i = 0; i < 22; ++i) { | 
|  | // 3 packets for each stream, the first 2 are guaranteed to be full packets. | 
|  | SendStreamDataToPeer(i + 2, stream_data, 0, FIN, nullptr); | 
|  | } | 
|  | CongestionBlockWrites(); | 
|  |  | 
|  | // Fires TLP. Please note, this tail loss probe has 1 byte less stream data | 
|  | // compared to packet 1 because packet number length increases. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(67), _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | // Fires RTO. Please note, although packets 2 and 3 *should* be RTOed, but | 
|  | // packet 2 gets RTOed to two packets because packet number length increases. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(68), _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(69), _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | // Resets all streams except 2 and ack packets 1 and 2. Now, packet 3 is the | 
|  | // only one containing retransmittable frames. | 
|  | for (size_t i = 1; i < 22; ++i) { | 
|  | notifier_.OnStreamReset(i + 2, QUIC_STREAM_CANCELLED); | 
|  | } | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
|  | QuicAckFrame frame = | 
|  | InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(3)}}); | 
|  | ProcessAckPacket(1, &frame); | 
|  | CongestionUnblockWrites(); | 
|  |  | 
|  | // Fires TLP, verify a PING gets sent because packet 3 is marked | 
|  | // RTO_RETRANSMITTED. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(70), _, _)); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PtoSkipsPacketNumber) { | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k1PTO); | 
|  | connection_options.push_back(kPTOS); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet); | 
|  | EXPECT_EQ(QuicPacketNumber(2), last_packet); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Fire PTO and verify the PTO retransmission skips one packet number. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(QuicPacketNumber(4), writer_->last_packet_header().packet_number); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendCoalescedPackets) { | 
|  | if (!connection_.version().CanSendCoalescedPackets()) { | 
|  | return; | 
|  | } | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  | EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(3); | 
|  | EXPECT_CALL(debug_visitor, OnCoalescedPacketSent(_, _)).Times(1); | 
|  | EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
|  | { | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | use_tagging_decrypter(); | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
|  | connection_.SendCryptoDataWithString("foo", 0); | 
|  | // Verify this packet is on hold. | 
|  | EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
|  |  | 
|  | connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
|  | connection_.SendCryptoDataWithString("bar", 3); | 
|  | EXPECT_EQ(0u, writer_->packets_write_attempts()); | 
|  |  | 
|  | connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(0x03)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | SendStreamDataToPeer(2, "baz", 3, NO_FIN, nullptr); | 
|  | } | 
|  | // Verify all 3 packets are coalesced in the same UDP datagram. | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); | 
|  | // Verify the packet is padded to full. | 
|  | EXPECT_EQ(connection_.max_packet_length(), writer_->last_packet_size()); | 
|  |  | 
|  | // Verify packet process. | 
|  | EXPECT_EQ(1u, writer_->crypto_frames().size()); | 
|  | EXPECT_EQ(0u, writer_->stream_frames().size()); | 
|  | // Verify there is coalesced packet. | 
|  | EXPECT_NE(nullptr, writer_->coalesced_packet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LegacyVersionEncapsulation) { | 
|  | connection_.EnableLegacyVersionEncapsulation("test.example.org"); | 
|  |  | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  | EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(1); | 
|  |  | 
|  | // Our TestPacketWriter normally parses the sent packet using the version | 
|  | // from the connection, so here we need to tell it to use the encapsulation | 
|  | // version, and reset the initial decrypter for that version. | 
|  | writer_->framer()->SetSupportedVersions( | 
|  | SupportedVersions(LegacyVersionForEncapsulation())); | 
|  | writer_->framer()->framer()->SetInitialObfuscators( | 
|  | connection_.connection_id()); | 
|  |  | 
|  | { | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | connection_.SendCryptoDataWithString("TEST_CRYPTO_DATA", /*offset=*/0); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | // Verify that the packet is fully padded. | 
|  | EXPECT_EQ(connection_.max_packet_length(), writer_->last_packet_size()); | 
|  |  | 
|  | // Check that the connection stats show Legacy Version Encapsulation was used. | 
|  | EXPECT_GT(connection_.GetStats().sent_legacy_version_encapsulated_packets, | 
|  | 0u); | 
|  |  | 
|  | // Verify that the sent packet was in fact encapsulated, and check header. | 
|  | const QuicPacketHeader& encapsulated_header = writer_->last_packet_header(); | 
|  | EXPECT_TRUE(encapsulated_header.version_flag); | 
|  | EXPECT_EQ(encapsulated_header.version, LegacyVersionForEncapsulation()); | 
|  | EXPECT_EQ(encapsulated_header.destination_connection_id, | 
|  | connection_.connection_id()); | 
|  |  | 
|  | // Encapsulated packet should contain a stream frame for the crypto stream, | 
|  | // optionally padding, and nothing else. | 
|  | EXPECT_EQ(0u, writer_->crypto_frames().size()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(writer_->frame_count(), writer_->framer()->padding_frames().size() + | 
|  | writer_->stream_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientReceivedHandshakeDone) { | 
|  | if (!connection_.version().HasHandshakeDone()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnHandshakeDoneReceived()); | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(QuicHandshakeDoneFrame())); | 
|  | frames.push_back(QuicFrame(QuicPaddingFrame(-1))); | 
|  | ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ServerReceivedHandshakeDone) { | 
|  | if (!connection_.version().HasHandshakeDone()) { | 
|  | return; | 
|  | } | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | EXPECT_CALL(visitor_, OnHandshakeDoneReceived()).Times(0); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame)); | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(QuicHandshakeDoneFrame())); | 
|  | frames.push_back(QuicFrame(QuicPaddingFrame(-1))); | 
|  | ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE); | 
|  | EXPECT_EQ(1, connection_close_frame_count_); | 
|  | EXPECT_THAT(saved_connection_close_frame_.quic_error_code, | 
|  | IsError(IETF_QUIC_PROTOCOL_VIOLATION)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, MultiplePacketNumberSpacePto) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | use_tagging_decrypter(); | 
|  | // Send handshake packet. | 
|  | connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
|  | EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
|  | connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
|  | EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
|  |  | 
|  | // Send application data. | 
|  | connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data", | 
|  | 0, NO_FIN); | 
|  | EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
|  | QuicTime retransmission_time = | 
|  | connection_.GetRetransmissionAlarm()->deadline(); | 
|  | EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
|  |  | 
|  | // Retransmit handshake data. | 
|  | clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, | 
|  | GetQuicReloadableFlag(quic_default_on_pto) | 
|  | ? QuicPacketNumber(3) | 
|  | : QuicPacketNumber(4), | 
|  | _, _)); | 
|  | EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
|  |  | 
|  | // Send application data. | 
|  | connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data", | 
|  | 4, NO_FIN); | 
|  | EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
|  | retransmission_time = connection_.GetRetransmissionAlarm()->deadline(); | 
|  | EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
|  |  | 
|  | // Retransmit handshake data again. | 
|  | clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, | 
|  | GetQuicReloadableFlag(quic_default_on_pto) | 
|  | ? QuicPacketNumber(5) | 
|  | : QuicPacketNumber(7), | 
|  | _, _)); | 
|  | EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
|  |  | 
|  | // Discard handshake key. | 
|  | connection_.OnHandshakeComplete(); | 
|  | retransmission_time = connection_.GetRetransmissionAlarm()->deadline(); | 
|  | EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
|  |  | 
|  | // Retransmit application data. | 
|  | clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, | 
|  | GetQuicReloadableFlag(quic_default_on_pto) | 
|  | ? QuicPacketNumber(6) | 
|  | : QuicPacketNumber(9), | 
|  | _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
|  | } | 
|  |  | 
|  | void QuicConnectionTest::TestClientRetryHandling( | 
|  | bool invalid_retry_tag, | 
|  | bool missing_original_id_in_config, | 
|  | bool wrong_original_id_in_config, | 
|  | bool missing_retry_id_in_config, | 
|  | bool wrong_retry_id_in_config) { | 
|  | if (invalid_retry_tag) { | 
|  | ASSERT_FALSE(missing_original_id_in_config); | 
|  | ASSERT_FALSE(wrong_original_id_in_config); | 
|  | ASSERT_FALSE(missing_retry_id_in_config); | 
|  | ASSERT_FALSE(wrong_retry_id_in_config); | 
|  | } else { | 
|  | ASSERT_FALSE(missing_original_id_in_config && wrong_original_id_in_config); | 
|  | ASSERT_FALSE(missing_retry_id_in_config && wrong_retry_id_in_config); | 
|  | } | 
|  | if (!version().HasRetryIntegrityTag()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // These values come from draft-ietf-quic-tls Appendix A.4. | 
|  | char retry_packet25[] = { | 
|  | 0xff, 0xff, 0x00, 0x00, 0x19, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a, | 
|  | 0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x1e, 0x5e, 0xc5, 0xb0, | 
|  | 0x14, 0xcb, 0xb1, 0xf0, 0xfd, 0x93, 0xdf, 0x40, 0x48, 0xc4, 0x46, 0xa6}; | 
|  | char retry_packet27[] = { | 
|  | 0xff, 0xff, 0x00, 0x00, 0x1b, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a, | 
|  | 0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0xa5, 0x23, 0xcb, 0x5b, | 
|  | 0xa5, 0x24, 0x69, 0x5f, 0x65, 0x69, 0xf2, 0x93, 0xa1, 0x35, 0x9d, 0x8e}; | 
|  | char retry_packet29[] = { | 
|  | 0xff, 0xff, 0x00, 0x00, 0x1d, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a, | 
|  | 0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0xd1, 0x69, 0x26, 0xd8, | 
|  | 0x1f, 0x6f, 0x9c, 0xa2, 0x95, 0x3a, 0x8a, 0xa4, 0x57, 0x5e, 0x1e, 0x49}; | 
|  |  | 
|  | char* retry_packet; | 
|  | size_t retry_packet_length; | 
|  | if (version() == ParsedQuicVersion::Draft29()) { | 
|  | retry_packet = retry_packet29; | 
|  | retry_packet_length = QUICHE_ARRAYSIZE(retry_packet29); | 
|  | } else if (version() == ParsedQuicVersion::Draft27()) { | 
|  | retry_packet = retry_packet27; | 
|  | retry_packet_length = QUICHE_ARRAYSIZE(retry_packet27); | 
|  | } else if (version() == ParsedQuicVersion::Draft25()) { | 
|  | retry_packet = retry_packet25; | 
|  | retry_packet_length = QUICHE_ARRAYSIZE(retry_packet25); | 
|  | } else { | 
|  | // TODO(dschinazi) generate retry packets for all versions once we have | 
|  | // server-side support for generating these programmatically. | 
|  | return; | 
|  | } | 
|  |  | 
|  | char original_connection_id_bytes[] = {0x83, 0x94, 0xc8, 0xf0, | 
|  | 0x3e, 0x51, 0x57, 0x08}; | 
|  | char new_connection_id_bytes[] = {0xf0, 0x67, 0xa5, 0x50, | 
|  | 0x2a, 0x42, 0x62, 0xb5}; | 
|  | char retry_token_bytes[] = {0x74, 0x6f, 0x6b, 0x65, 0x6e}; | 
|  |  | 
|  | QuicConnectionId original_connection_id( | 
|  | original_connection_id_bytes, | 
|  | QUICHE_ARRAYSIZE(original_connection_id_bytes)); | 
|  | QuicConnectionId new_connection_id(new_connection_id_bytes, | 
|  | QUICHE_ARRAYSIZE(new_connection_id_bytes)); | 
|  |  | 
|  | std::string retry_token(retry_token_bytes, | 
|  | QUICHE_ARRAYSIZE(retry_token_bytes)); | 
|  |  | 
|  | if (invalid_retry_tag) { | 
|  | // Flip the last bit of the retry packet to prevent the integrity tag | 
|  | // from validating correctly. | 
|  | retry_packet[retry_packet_length - 1] ^= 1; | 
|  | } | 
|  |  | 
|  | QuicConnectionId config_original_connection_id = original_connection_id; | 
|  | if (wrong_original_id_in_config) { | 
|  | // Flip the first bit of the connection ID. | 
|  | ASSERT_FALSE(config_original_connection_id.IsEmpty()); | 
|  | config_original_connection_id.mutable_data()[0] ^= 0x80; | 
|  | } | 
|  | QuicConnectionId config_retry_source_connection_id = new_connection_id; | 
|  | if (wrong_retry_id_in_config) { | 
|  | // Flip the first bit of the connection ID. | 
|  | ASSERT_FALSE(config_retry_source_connection_id.IsEmpty()); | 
|  | config_retry_source_connection_id.mutable_data()[0] ^= 0x80; | 
|  | } | 
|  |  | 
|  | // Make sure the connection uses the connection ID from the test vectors, | 
|  | QuicConnectionPeer::SetServerConnectionId(&connection_, | 
|  | original_connection_id); | 
|  |  | 
|  | // Process the RETRY packet. | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(retry_packet, retry_packet_length, clock_.Now())); | 
|  |  | 
|  | if (invalid_retry_tag) { | 
|  | // Make sure we refuse to process a RETRY with invalid tag. | 
|  | EXPECT_FALSE(connection_.GetStats().retry_packet_processed); | 
|  | EXPECT_EQ(connection_.connection_id(), original_connection_id); | 
|  | EXPECT_TRUE(QuicPacketCreatorPeer::GetRetryToken( | 
|  | QuicConnectionPeer::GetPacketCreator(&connection_)) | 
|  | .empty()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Make sure we correctly parsed the RETRY. | 
|  | EXPECT_TRUE(connection_.GetStats().retry_packet_processed); | 
|  | EXPECT_EQ(connection_.connection_id(), new_connection_id); | 
|  | EXPECT_EQ(QuicPacketCreatorPeer::GetRetryToken( | 
|  | QuicConnectionPeer::GetPacketCreator(&connection_)), | 
|  | retry_token); | 
|  | // Make sure our fake framer has the new post-retry INITIAL keys. | 
|  | writer_->framer()->framer()->SetInitialObfuscators(new_connection_id); | 
|  |  | 
|  | // Test validating the original_connection_id from the config. | 
|  | QuicConfig received_config; | 
|  | QuicConfigPeer::SetNegotiated(&received_config, true); | 
|  | if (connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
|  | &received_config, connection_.connection_id()); | 
|  | if (!missing_retry_id_in_config) { | 
|  | QuicConfigPeer::SetReceivedRetrySourceConnectionId( | 
|  | &received_config, config_retry_source_connection_id); | 
|  | } | 
|  | } | 
|  | if (!missing_original_id_in_config) { | 
|  | QuicConfigPeer::SetReceivedOriginalConnectionId( | 
|  | &received_config, config_original_connection_id); | 
|  | } | 
|  |  | 
|  | if (missing_original_id_in_config || wrong_original_id_in_config || | 
|  | missing_retry_id_in_config || wrong_retry_id_in_config) { | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .Times(0); | 
|  | } | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber()); | 
|  | connection_.SetFromConfig(received_config); | 
|  | if (missing_original_id_in_config || wrong_original_id_in_config || | 
|  | missing_retry_id_in_config || wrong_retry_id_in_config) { | 
|  | ASSERT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION); | 
|  | } else { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientParsesRetry) { | 
|  | TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
|  | /*missing_original_id_in_config=*/false, | 
|  | /*wrong_original_id_in_config=*/false, | 
|  | /*missing_retry_id_in_config=*/false, | 
|  | /*wrong_retry_id_in_config=*/false); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientParsesRetryInvalidTag) { | 
|  | TestClientRetryHandling(/*invalid_retry_tag=*/true, | 
|  | /*missing_original_id_in_config=*/false, | 
|  | /*wrong_original_id_in_config=*/false, | 
|  | /*missing_retry_id_in_config=*/false, | 
|  | /*wrong_retry_id_in_config=*/false); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientParsesRetryMissingOriginalId) { | 
|  | TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
|  | /*missing_original_id_in_config=*/true, | 
|  | /*wrong_original_id_in_config=*/false, | 
|  | /*missing_retry_id_in_config=*/false, | 
|  | /*wrong_retry_id_in_config=*/false); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientParsesRetryWrongOriginalId) { | 
|  | TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
|  | /*missing_original_id_in_config=*/false, | 
|  | /*wrong_original_id_in_config=*/true, | 
|  | /*missing_retry_id_in_config=*/false, | 
|  | /*wrong_retry_id_in_config=*/false); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientParsesRetryMissingRetryId) { | 
|  | if (!connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | // Versions that do not authenticate connection IDs never send the | 
|  | // retry_source_connection_id transport parameter. | 
|  | return; | 
|  | } | 
|  | TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
|  | /*missing_original_id_in_config=*/false, | 
|  | /*wrong_original_id_in_config=*/false, | 
|  | /*missing_retry_id_in_config=*/true, | 
|  | /*wrong_retry_id_in_config=*/false); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientParsesRetryWrongRetryId) { | 
|  | if (!connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | // Versions that do not authenticate connection IDs never send the | 
|  | // retry_source_connection_id transport parameter. | 
|  | return; | 
|  | } | 
|  | TestClientRetryHandling(/*invalid_retry_tag=*/false, | 
|  | /*missing_original_id_in_config=*/false, | 
|  | /*wrong_original_id_in_config=*/false, | 
|  | /*missing_retry_id_in_config=*/false, | 
|  | /*wrong_retry_id_in_config=*/true); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientReceivesOriginalConnectionIdWithoutRetry) { | 
|  | if (!connection_.version().UsesTls()) { | 
|  | // QUIC+TLS is required to transmit connection ID transport parameters. | 
|  | return; | 
|  | } | 
|  | if (connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | // Versions that authenticate connection IDs always send the | 
|  | // original_destination_connection_id transport parameter. | 
|  | return; | 
|  | } | 
|  | // Make sure that receiving the original_destination_connection_id transport | 
|  | // parameter fails the handshake when no RETRY packet was received before it. | 
|  | QuicConfig received_config; | 
|  | QuicConfigPeer::SetNegotiated(&received_config, true); | 
|  | QuicConfigPeer::SetReceivedOriginalConnectionId(&received_config, | 
|  | TestConnectionId(0x12345)); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .Times(1); | 
|  | connection_.SetFromConfig(received_config); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientReceivesRetrySourceConnectionIdWithoutRetry) { | 
|  | if (!connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | // Versions that do not authenticate connection IDs never send the | 
|  | // retry_source_connection_id transport parameter. | 
|  | return; | 
|  | } | 
|  | // Make sure that receiving the retry_source_connection_id transport parameter | 
|  | // fails the handshake when no RETRY packet was received before it. | 
|  | QuicConfig received_config; | 
|  | QuicConfigPeer::SetNegotiated(&received_config, true); | 
|  | QuicConfigPeer::SetReceivedRetrySourceConnectionId(&received_config, | 
|  | TestConnectionId(0x12345)); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)) | 
|  | .Times(1); | 
|  | connection_.SetFromConfig(received_config); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION); | 
|  | } | 
|  |  | 
|  | // Regression test for http://crbug/1047977 | 
|  | TEST_P(QuicConnectionTest, MaxStreamsFrameCausesConnectionClose) { | 
|  | if (!VersionHasIetfQuicFrames(connection_.transport_version())) { | 
|  | return; | 
|  | } | 
|  | // Received frame causes connection close. | 
|  | EXPECT_CALL(visitor_, OnMaxStreamsFrame(_)) | 
|  | .WillOnce(InvokeWithoutArgs([this]() { | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | connection_.CloseConnection( | 
|  | QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES, "error", | 
|  | ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
|  | return true; | 
|  | })); | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(QuicMaxStreamsFrame())); | 
|  | frames.push_back(QuicFrame(QuicPaddingFrame(-1))); | 
|  | ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, StreamsBlockedFrameCausesConnectionClose) { | 
|  | if (!VersionHasIetfQuicFrames(connection_.transport_version())) { | 
|  | return; | 
|  | } | 
|  | // Received frame causes connection close. | 
|  | EXPECT_CALL(visitor_, OnStreamsBlockedFrame(_)) | 
|  | .WillOnce(InvokeWithoutArgs([this]() { | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | connection_.CloseConnection( | 
|  | QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES, "error", | 
|  | ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
|  | return true; | 
|  | })); | 
|  | QuicFrames frames; | 
|  | frames.push_back( | 
|  | QuicFrame(QuicStreamsBlockedFrame(kInvalidControlFrameId, 10, false))); | 
|  | frames.push_back(QuicFrame(QuicPaddingFrame(-1))); | 
|  | ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, | 
|  | BundleAckWithConnectionCloseMultiplePacketNumberSpace) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | // Receives packet 1000 in initial data. | 
|  | ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
|  | // Receives packet 2000 in application data. | 
|  | ProcessDataPacketAtLevel(2000, false, ENCRYPTION_FORWARD_SECURE); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)); | 
|  | const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR; | 
|  | connection_.CloseConnection( | 
|  | kQuicErrorCode, "Some random error message", | 
|  | ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); | 
|  |  | 
|  | EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_)); | 
|  |  | 
|  | TestConnectionCloseQuicErrorCode(kQuicErrorCode); | 
|  | EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
|  | // Verify ack is bundled. | 
|  | EXPECT_EQ(1u, writer_->ack_frames().size()); | 
|  |  | 
|  | if (!connection_.version().CanSendCoalescedPackets()) { | 
|  | // Each connection close packet should be sent in distinct UDP packets. | 
|  | EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_), | 
|  | writer_->connection_close_packets()); | 
|  | EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_), | 
|  | writer_->packets_write_attempts()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // A single UDP packet should be sent with multiple connection close packets | 
|  | // coalesced together. | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  |  | 
|  | // Only the first packet has been processed yet. | 
|  | EXPECT_EQ(1u, writer_->connection_close_packets()); | 
|  |  | 
|  | // ProcessPacket resets the visitor and frees the coalesced packet. | 
|  | ASSERT_TRUE(writer_->coalesced_packet() != nullptr); | 
|  | auto packet = writer_->coalesced_packet()->Clone(); | 
|  | writer_->framer()->ProcessPacket(*packet); | 
|  | EXPECT_EQ(1u, writer_->connection_close_packets()); | 
|  | EXPECT_EQ(1u, writer_->connection_close_frames().size()); | 
|  | // Verify ack is bundled. | 
|  | EXPECT_EQ(1u, writer_->ack_frames().size()); | 
|  | ASSERT_TRUE(writer_->coalesced_packet() == nullptr); | 
|  | } | 
|  |  | 
|  | // Regression test for b/151220135. | 
|  | TEST_P(QuicConnectionTest, SendPingWhenSkipPacketNumberForPto) { | 
|  | if (!VersionSupportsMessageFrames(connection_.transport_version())) { | 
|  | return; | 
|  | } | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(kPTOS); | 
|  | connection_options.push_back(k1PTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | if (connection_.version().UsesTls()) { | 
|  | QuicConfigPeer::SetReceivedMaxDatagramFrameSize( | 
|  | &config, kMaxAcceptedDatagramFrameSize); | 
|  | } | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | EXPECT_EQ(MESSAGE_STATUS_SUCCESS, SendMessage("message")); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // PTO fires, verify a PING packet gets sent because there is no data to | 
|  | // send. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _)); | 
|  | EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); })); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, connection_.GetStats().pto_count); | 
|  | EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count); | 
|  | EXPECT_EQ(1u, writer_->ping_frames().size()); | 
|  | } | 
|  |  | 
|  | // Regression test for b/155757133 | 
|  | TEST_P(QuicConnectionTest, DonotChangeQueuedAcks) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  |  | 
|  | ProcessPacket(2); | 
|  | ProcessPacket(3); | 
|  | ProcessPacket(4); | 
|  | // Process a packet containing stream frame followed by ACK of packets 1. | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(QuicStreamFrame( | 
|  | QuicUtils::GetFirstBidirectionalStreamId( | 
|  | connection_.version().transport_version, Perspective::IS_CLIENT), | 
|  | false, 0u, quiche::QuicheStringPiece()))); | 
|  | QuicAckFrame ack_frame = InitAckFrame(1); | 
|  | frames.push_back(QuicFrame(&ack_frame)); | 
|  | // Receiving stream frame causes something to send. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([this]() { | 
|  | connection_.SendControlFrame(QuicFrame(new QuicWindowUpdateFrame(1, 0, 0))); | 
|  | // Verify now the queued ACK contains packet number 2. | 
|  | EXPECT_TRUE(QuicPacketCreatorPeer::QueuedFrames( | 
|  | QuicConnectionPeer::GetPacketCreator(&connection_))[0] | 
|  | .ack_frame->packets.Contains(QuicPacketNumber(2))); | 
|  | })); | 
|  | ProcessFramesPacketAtLevel(9, frames, ENCRYPTION_FORWARD_SECURE); | 
|  | EXPECT_TRUE(writer_->ack_frames()[0].packets.Contains(QuicPacketNumber(2))); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DonotExtendIdleTimeOnUndecryptablePackets) { | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | // Subtract a second from the idle timeout on the client side. | 
|  | QuicTime initial_deadline = | 
|  | clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | EXPECT_EQ(initial_deadline, connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Received an undecryptable packet. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
|  | const uint8_t tag = 0x07; | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(tag)); | 
|  | ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
|  | // Verify deadline does not get extended. | 
|  | EXPECT_EQ(initial_deadline, connection_.GetTimeoutAlarm()->deadline()); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1); | 
|  | QuicTime::Delta delay = initial_deadline - clock_.ApproximateNow(); | 
|  | clock_.AdvanceTime(delay); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | // Verify connection gets closed. | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BundleAckWithImmediateResponse) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([this]() { | 
|  | connection_.SendControlFrame(QuicFrame(new QuicWindowUpdateFrame(1, 0, 0))); | 
|  | })); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | ProcessDataPacket(1); | 
|  | // Verify ACK is bundled with WINDOW_UPDATE. | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.HasPendingAcks()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckAlarmFiresEarly) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | use_tagging_decrypter(); | 
|  | // Receives packet 1000 in initial data. | 
|  | ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  |  | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | SetDecrypter(ENCRYPTION_ZERO_RTT, | 
|  | std::make_unique<StrictTaggingDecrypter>(0x02)); | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | // Receives packet 1000 in application data. | 
|  | ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | // Verify ACK deadline does not change. | 
|  | EXPECT_EQ(clock_.ApproximateNow() + kAlarmGranularity, | 
|  | connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Ack alarm fires early. | 
|  | if (GetQuicReloadableFlag(quic_always_send_earliest_ack)) { | 
|  | // Verify the earliest ACK is flushed. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | } | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | if (GetQuicReloadableFlag(quic_always_send_earliest_ack)) { | 
|  | EXPECT_EQ(clock_.ApproximateNow() + DefaultDelayedAckTime(), | 
|  | connection_.GetAckAlarm()->deadline()); | 
|  | } else { | 
|  | // No forward progress has been made. | 
|  | EXPECT_EQ(clock_.ApproximateNow() + kAlarmGranularity, | 
|  | connection_.GetAckAlarm()->deadline()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientOnlyBlackholeDetectionClient) { | 
|  | if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | return; | 
|  | } | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(kCBHD); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
|  | EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  | // Verify blackhole detection is in progress. | 
|  | EXPECT_TRUE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientOnlyBlackholeDetectionServer) { | 
|  | if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | return; | 
|  | } | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  | if (version().SupportsAntiAmplificationLimit()) { | 
|  | QuicConnectionPeer::SetAddressValidated(&connection_); | 
|  | } | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(kCBHD); | 
|  | config.SetInitialReceivedConnectionOptions(connection_options); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
|  | EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  | // Verify blackhole detection is disabled. | 
|  | EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, 2RtoBlackholeDetection) { | 
|  | if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | return; | 
|  | } | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k2RTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
|  | EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  | // Verify blackhole delay is expected. | 
|  | EXPECT_EQ(clock_.Now() + | 
|  | connection_.sent_packet_manager().GetNetworkBlackholeDelay(2), | 
|  | QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, 3RtoBlackholeDetection) { | 
|  | if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | return; | 
|  | } | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k3RTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
|  | EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  | // Verify blackhole delay is expected. | 
|  | EXPECT_EQ(clock_.Now() + | 
|  | connection_.sent_packet_manager().GetNetworkBlackholeDelay(3), | 
|  | QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, 4RtoBlackholeDetection) { | 
|  | if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | return; | 
|  | } | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k4RTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
|  | EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  | // Verify blackhole delay is expected. | 
|  | EXPECT_EQ(clock_.Now() + | 
|  | connection_.sent_packet_manager().GetNetworkBlackholeDelay(4), | 
|  | QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, 6RtoBlackholeDetection) { | 
|  | if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | return; | 
|  | } | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k6RTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
|  | EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet()); | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer( | 
|  | GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo", | 
|  | 0, FIN, nullptr); | 
|  | // Verify blackhole delay is expected. | 
|  | EXPECT_EQ(clock_.Now() + | 
|  | connection_.sent_packet_manager().GetNetworkBlackholeDelay(6), | 
|  | QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_)); | 
|  | } | 
|  |  | 
|  | // Regresstion test for b/158491591. | 
|  | TEST_P(QuicConnectionTest, MadeForwardProgressOnDiscardingKeys) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | use_tagging_decrypter(); | 
|  | // Send handshake packet. | 
|  | connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
|  | EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k5RTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | QuicConfigPeer::SetNegotiated(&config, true); | 
|  | if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | EXPECT_CALL(visitor_, GetHandshakeState()) | 
|  | .WillRepeatedly(Return(HANDSHAKE_COMPLETE)); | 
|  | } | 
|  | if (connection_.version().AuthenticatesHandshakeConnectionIds()) { | 
|  | QuicConfigPeer::SetReceivedOriginalConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | QuicConfigPeer::SetReceivedInitialSourceConnectionId( | 
|  | &config, connection_.connection_id()); | 
|  | } | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
|  | EXPECT_TRUE(connection_.BlackholeDetectionInProgress()); | 
|  | // Discard handshake keys. | 
|  | connection_.OnHandshakeComplete(); | 
|  | if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) { | 
|  | // Verify blackhole detection stops. | 
|  | EXPECT_FALSE(connection_.BlackholeDetectionInProgress()); | 
|  | } else { | 
|  | // Problematic: although there is nothing in flight, blackhole detection is | 
|  | // still in progress. | 
|  | EXPECT_TRUE(connection_.BlackholeDetectionInProgress()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ProcessUndecryptablePacketsBasedOnEncryptionLevel) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | // SetFromConfig is always called after construction from InitializeSession. | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber()); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
|  | connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE); | 
|  | use_tagging_decrypter(); | 
|  |  | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  |  | 
|  | for (uint64_t i = 1; i <= 3; ++i) { | 
|  | ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_HANDSHAKE); | 
|  | } | 
|  | ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE); | 
|  | for (uint64_t j = 5; j <= 7; ++j) { | 
|  | ProcessDataPacketAtLevel(j, !kHasStopWaiting, ENCRYPTION_HANDSHAKE); | 
|  | } | 
|  | EXPECT_EQ(7u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
|  | EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
|  | SetDecrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<StrictTaggingDecrypter>(0x01)); | 
|  | EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
|  | connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | if (GetQuicReloadableFlag(quic_fix_undecryptable_packets)) { | 
|  | // Verify all ENCRYPTION_HANDSHAKE packets get processed. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(6); | 
|  | } else { | 
|  | // Verify packets before 4 get processed. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3); | 
|  | } | 
|  | connection_.GetProcessUndecryptablePacketsAlarm()->Fire(); | 
|  | EXPECT_EQ(4u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
|  |  | 
|  | SetDecrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<StrictTaggingDecrypter>(0x02)); | 
|  | EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet()); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | if (GetQuicReloadableFlag(quic_fix_undecryptable_packets)) { | 
|  | // Verify the 1-RTT packet gets processed. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | } else { | 
|  | // Verify all packets get processed. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(4); | 
|  | } | 
|  | connection_.GetProcessUndecryptablePacketsAlarm()->Fire(); | 
|  | EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ServerBundlesInitialDataWithInitialAck) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | use_tagging_decrypter(); | 
|  | // Receives packet 1000 in initial data. | 
|  | ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  |  | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
|  | connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL); | 
|  | QuicTime expected_pto_time = | 
|  | connection_.sent_packet_manager().GetRetransmissionTime(); | 
|  |  | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
|  | EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
|  | connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
|  | // Verify PTO time does not change. | 
|  | EXPECT_EQ(expected_pto_time, | 
|  | connection_.sent_packet_manager().GetRetransmissionTime()); | 
|  |  | 
|  | // Receives packet 1001 in initial data. | 
|  | ProcessCryptoPacketAtLevel(1001, ENCRYPTION_INITIAL); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | // Receives packet 1002 in initial data. | 
|  | ProcessCryptoPacketAtLevel(1002, ENCRYPTION_INITIAL); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | if (GetQuicReloadableFlag(quic_bundle_crypto_data_with_initial_ack)) { | 
|  | // Verify CRYPTO frame is bundled with INITIAL ACK. | 
|  | EXPECT_FALSE(writer_->crypto_frames().empty()); | 
|  | // Verify PTO time changes. | 
|  | EXPECT_NE(expected_pto_time, | 
|  | connection_.sent_packet_manager().GetRetransmissionTime()); | 
|  | } else { | 
|  | EXPECT_TRUE(writer_->crypto_frames().empty()); | 
|  | // Verify PTO time does not change. | 
|  | EXPECT_EQ(expected_pto_time, | 
|  | connection_.sent_packet_manager().GetRetransmissionTime()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientBundlesHandshakeDataWithHandshakeAck) { | 
|  | if (!connection_.SupportsMultiplePacketNumberSpaces()) { | 
|  | return; | 
|  | } | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
|  | if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { | 
|  | EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber()); | 
|  | } | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | use_tagging_decrypter(); | 
|  | connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
|  | SetDecrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<StrictTaggingDecrypter>(0x02)); | 
|  | peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | // Receives packet 1000 in handshake data. | 
|  | ProcessCryptoPacketAtLevel(1000, ENCRYPTION_HANDSHAKE); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(2); | 
|  | connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE); | 
|  |  | 
|  | // Receives packet 1001 in handshake data. | 
|  | ProcessCryptoPacketAtLevel(1001, ENCRYPTION_HANDSHAKE); | 
|  | EXPECT_TRUE(connection_.HasPendingAcks()); | 
|  | // Receives packet 1002 in handshake data. | 
|  | ProcessCryptoPacketAtLevel(1002, ENCRYPTION_HANDSHAKE); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | if (GetQuicReloadableFlag(quic_bundle_crypto_data_with_initial_ack)) { | 
|  | // Verify CRYPTO frame is bundled with HANDSHAKE ACK. | 
|  | EXPECT_FALSE(writer_->crypto_frames().empty()); | 
|  | } else { | 
|  | EXPECT_TRUE(writer_->crypto_frames().empty()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Regresstion test for b/156232673. | 
|  | TEST_P(QuicConnectionTest, CoalescePacketOfLowerEncryptionLevel) { | 
|  | if (!connection_.version().CanSendCoalescedPackets()) { | 
|  | return; | 
|  | } | 
|  | if (GetQuicReloadableFlag(quic_fix_extra_padding_bytes) || | 
|  | GetQuicReloadableFlag(quic_fix_min_crypto_frame_size)) { | 
|  | EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1); | 
|  | } else { | 
|  | EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(0); | 
|  | } | 
|  | { | 
|  | QuicConnection::ScopedPacketFlusher flusher(&connection_); | 
|  | use_tagging_decrypter(); | 
|  | connection_.SetEncrypter(ENCRYPTION_HANDSHAKE, | 
|  | std::make_unique<TaggingEncrypter>(0x01)); | 
|  | connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | std::make_unique<TaggingEncrypter>(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | SendStreamDataToPeer(2, std::string(1286, 'a'), 0, NO_FIN, nullptr); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE); | 
|  | // Try to coalesce a HANDSHAKE packet after 1-RTT packet. | 
|  | if (GetQuicReloadableFlag(quic_fix_extra_padding_bytes) || | 
|  | GetQuicReloadableFlag(quic_fix_min_crypto_frame_size)) { | 
|  | // Verify soft max packet length gets resumed and handshake packet gets | 
|  | // successfully sent. | 
|  | connection_.SendCryptoDataWithString("a", 0, ENCRYPTION_HANDSHAKE); | 
|  | } else { | 
|  | // Problematic: creator thinks there is space to consume 1-byte, however, | 
|  | // extra paddings make the serialization fail because of | 
|  | // MinPlaintextPacketSize. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_QUIC_BUG( | 
|  | connection_.SendCryptoDataWithString("a", 0, ENCRYPTION_HANDSHAKE), | 
|  | "AppendPaddingFrame of 3 failed"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  | }  // namespace test | 
|  | }  // namespace quic |