blob: 4e5bc8c45706da156152dce0ec87411b1ebe3b97 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/third_party/quiche/src/quic/core/quic_connection.h"
#include <errno.h>
#include <memory>
#include <ostream>
#include <string>
#include <utility>
#include "net/third_party/quiche/src/quic/core/congestion_control/loss_detection_interface.h"
#include "net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h"
#include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h"
#include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h"
#include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h"
#include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h"
#include "net/third_party/quiche/src/quic/core/quic_connection_id.h"
#include "net/third_party/quiche/src/quic/core/quic_constants.h"
#include "net/third_party/quiche/src/quic/core/quic_packets.h"
#include "net/third_party/quiche/src/quic/core/quic_simple_buffer_allocator.h"
#include "net/third_party/quiche/src/quic/core/quic_types.h"
#include "net/third_party/quiche/src/quic/core/quic_utils.h"
#include "net/third_party/quiche/src/quic/core/quic_versions.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_error_code_wrappers.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_expect_bug.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_flags.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_logging.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_reference_counted.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_socket_address.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_test.h"
#include "net/third_party/quiche/src/quic/test_tools/mock_clock.h"
#include "net/third_party/quiche/src/quic/test_tools/mock_random.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_config_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_connection_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_framer_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_packet_creator_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_sent_packet_manager_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_test_utils.h"
#include "net/third_party/quiche/src/quic/test_tools/simple_data_producer.h"
#include "net/third_party/quiche/src/quic/test_tools/simple_quic_framer.h"
#include "net/third_party/quiche/src/quic/test_tools/simple_session_notifier.h"
#include "net/third_party/quiche/src/common/platform/api/quiche_arraysize.h"
#include "net/third_party/quiche/src/common/platform/api/quiche_str_cat.h"
#include "net/third_party/quiche/src/common/platform/api/quiche_string_piece.h"
using testing::_;
using testing::AnyNumber;
using testing::AtLeast;
using testing::DoAll;
using testing::Ge;
using testing::IgnoreResult;
using testing::InSequence;
using testing::Invoke;
using testing::InvokeWithoutArgs;
using testing::Lt;
using testing::Ref;
using testing::Return;
using testing::SaveArg;
using testing::SetArgPointee;
using testing::StrictMock;
namespace quic {
namespace test {
namespace {
const char data1[] = "foo data";
const char data2[] = "bar data";
const bool kHasStopWaiting = true;
const int kDefaultRetransmissionTimeMs = 500;
DiversificationNonce kTestDiversificationNonce = {
'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a',
'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b',
'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b',
};
const QuicSocketAddress kPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(),
/*port=*/12345);
const QuicSocketAddress kSelfAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(),
/*port=*/443);
QuicStreamId GetNthClientInitiatedStreamId(int n,
QuicTransportVersion version) {
return QuicUtils::GetFirstBidirectionalStreamId(version,
Perspective::IS_CLIENT) +
n * 2;
}
QuicLongHeaderType EncryptionlevelToLongHeaderType(EncryptionLevel level) {
switch (level) {
case ENCRYPTION_INITIAL:
return INITIAL;
case ENCRYPTION_HANDSHAKE:
return HANDSHAKE;
case ENCRYPTION_ZERO_RTT:
return ZERO_RTT_PROTECTED;
case ENCRYPTION_FORWARD_SECURE:
DCHECK(false);
return INVALID_PACKET_TYPE;
default:
DCHECK(false);
return INVALID_PACKET_TYPE;
}
}
// TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message.
class TaggingEncrypter : public QuicEncrypter {
public:
explicit TaggingEncrypter(uint8_t tag) : tag_(tag) {}
TaggingEncrypter(const TaggingEncrypter&) = delete;
TaggingEncrypter& operator=(const TaggingEncrypter&) = delete;
~TaggingEncrypter() override {}
// QuicEncrypter interface.
bool SetKey(quiche::QuicheStringPiece /*key*/) override { return true; }
bool SetNoncePrefix(quiche::QuicheStringPiece /*nonce_prefix*/) override {
return true;
}
bool SetIV(quiche::QuicheStringPiece /*iv*/) override { return true; }
bool SetHeaderProtectionKey(quiche::QuicheStringPiece /*key*/) override {
return true;
}
bool EncryptPacket(uint64_t /*packet_number*/,
quiche::QuicheStringPiece /*associated_data*/,
quiche::QuicheStringPiece plaintext,
char* output,
size_t* output_length,
size_t max_output_length) override {
const size_t len = plaintext.size() + kTagSize;
if (max_output_length < len) {
return false;
}
// Memmove is safe for inplace encryption.
memmove(output, plaintext.data(), plaintext.size());
output += plaintext.size();
memset(output, tag_, kTagSize);
*output_length = len;
return true;
}
std::string GenerateHeaderProtectionMask(
quiche::QuicheStringPiece /*sample*/) override {
return std::string(5, 0);
}
size_t GetKeySize() const override { return 0; }
size_t GetNoncePrefixSize() const override { return 0; }
size_t GetIVSize() const override { return 0; }
size_t GetMaxPlaintextSize(size_t ciphertext_size) const override {
return ciphertext_size - kTagSize;
}
size_t GetCiphertextSize(size_t plaintext_size) const override {
return plaintext_size + kTagSize;
}
quiche::QuicheStringPiece GetKey() const override {
return quiche::QuicheStringPiece();
}
quiche::QuicheStringPiece GetNoncePrefix() const override {
return quiche::QuicheStringPiece();
}
private:
enum {
kTagSize = 12,
};
const uint8_t tag_;
};
// TaggingDecrypter ensures that the final kTagSize bytes of the message all
// have the same value and then removes them.
class TaggingDecrypter : public QuicDecrypter {
public:
~TaggingDecrypter() override {}
// QuicDecrypter interface
bool SetKey(quiche::QuicheStringPiece /*key*/) override { return true; }
bool SetNoncePrefix(quiche::QuicheStringPiece /*nonce_prefix*/) override {
return true;
}
bool SetIV(quiche::QuicheStringPiece /*iv*/) override { return true; }
bool SetHeaderProtectionKey(quiche::QuicheStringPiece /*key*/) override {
return true;
}
bool SetPreliminaryKey(quiche::QuicheStringPiece /*key*/) override {
QUIC_BUG << "should not be called";
return false;
}
bool SetDiversificationNonce(const DiversificationNonce& /*key*/) override {
return true;
}
bool DecryptPacket(uint64_t /*packet_number*/,
quiche::QuicheStringPiece /*associated_data*/,
quiche::QuicheStringPiece ciphertext,
char* output,
size_t* output_length,
size_t /*max_output_length*/) override {
if (ciphertext.size() < kTagSize) {
return false;
}
if (!CheckTag(ciphertext, GetTag(ciphertext))) {
return false;
}
*output_length = ciphertext.size() - kTagSize;
memcpy(output, ciphertext.data(), *output_length);
return true;
}
std::string GenerateHeaderProtectionMask(
QuicDataReader* /*sample_reader*/) override {
return std::string(5, 0);
}
size_t GetKeySize() const override { return 0; }
size_t GetNoncePrefixSize() const override { return 0; }
size_t GetIVSize() const override { return 0; }
quiche::QuicheStringPiece GetKey() const override {
return quiche::QuicheStringPiece();
}
quiche::QuicheStringPiece GetNoncePrefix() const override {
return quiche::QuicheStringPiece();
}
// Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
uint32_t cipher_id() const override { return 0xFFFFFFF0; }
protected:
virtual uint8_t GetTag(quiche::QuicheStringPiece ciphertext) {
return ciphertext.data()[ciphertext.size() - 1];
}
private:
enum {
kTagSize = 12,
};
bool CheckTag(quiche::QuicheStringPiece ciphertext, uint8_t tag) {
for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) {
if (ciphertext.data()[i] != tag) {
return false;
}
}
return true;
}
};
// StringTaggingDecrypter ensures that the final kTagSize bytes of the message
// match the expected value.
class StrictTaggingDecrypter : public TaggingDecrypter {
public:
explicit StrictTaggingDecrypter(uint8_t tag) : tag_(tag) {}
~StrictTaggingDecrypter() override {}
// TaggingQuicDecrypter
uint8_t GetTag(quiche::QuicheStringPiece /*ciphertext*/) override {
return tag_;
}
// Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
uint32_t cipher_id() const override { return 0xFFFFFFF1; }
private:
const uint8_t tag_;
};
class TestConnectionHelper : public QuicConnectionHelperInterface {
public:
TestConnectionHelper(MockClock* clock, MockRandom* random_generator)
: clock_(clock), random_generator_(random_generator) {
clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
}
TestConnectionHelper(const TestConnectionHelper&) = delete;
TestConnectionHelper& operator=(const TestConnectionHelper&) = delete;
// QuicConnectionHelperInterface
const QuicClock* GetClock() const override { return clock_; }
QuicRandom* GetRandomGenerator() override { return random_generator_; }
QuicBufferAllocator* GetStreamSendBufferAllocator() override {
return &buffer_allocator_;
}
private:
MockClock* clock_;
MockRandom* random_generator_;
SimpleBufferAllocator buffer_allocator_;
};
class TestAlarmFactory : public QuicAlarmFactory {
public:
class TestAlarm : public QuicAlarm {
public:
explicit TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate> delegate)
: QuicAlarm(std::move(delegate)) {}
void SetImpl() override {}
void CancelImpl() override {}
using QuicAlarm::Fire;
};
TestAlarmFactory() {}
TestAlarmFactory(const TestAlarmFactory&) = delete;
TestAlarmFactory& operator=(const TestAlarmFactory&) = delete;
QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) override {
return new TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate>(delegate));
}
QuicArenaScopedPtr<QuicAlarm> CreateAlarm(
QuicArenaScopedPtr<QuicAlarm::Delegate> delegate,
QuicConnectionArena* arena) override {
return arena->New<TestAlarm>(std::move(delegate));
}
};
class TestPacketWriter : public QuicPacketWriter {
struct PacketBuffer {
QUIC_CACHELINE_ALIGNED char buffer[1500];
bool in_use = false;
};
public:
TestPacketWriter(ParsedQuicVersion version, MockClock* clock)
: version_(version),
framer_(SupportedVersions(version_), Perspective::IS_SERVER),
clock_(clock) {
QuicFramerPeer::SetLastSerializedServerConnectionId(framer_.framer(),
TestConnectionId());
framer_.framer()->SetInitialObfuscators(TestConnectionId());
for (int i = 0; i < 128; ++i) {
PacketBuffer* p = new PacketBuffer();
packet_buffer_pool_.push_back(p);
packet_buffer_pool_index_[p->buffer] = p;
packet_buffer_free_list_.push_back(p);
}
}
TestPacketWriter(const TestPacketWriter&) = delete;
TestPacketWriter& operator=(const TestPacketWriter&) = delete;
~TestPacketWriter() override {
EXPECT_EQ(packet_buffer_pool_.size(), packet_buffer_free_list_.size())
<< packet_buffer_pool_.size() - packet_buffer_free_list_.size()
<< " out of " << packet_buffer_pool_.size()
<< " packet buffers have been leaked.";
for (auto p : packet_buffer_pool_) {
delete p;
}
}
// QuicPacketWriter interface
WriteResult WritePacket(const char* buffer,
size_t buf_len,
const QuicIpAddress& /*self_address*/,
const QuicSocketAddress& /*peer_address*/,
PerPacketOptions* /*options*/) override {
// If the buffer is allocated from the pool, return it back to the pool.
// Note the buffer content doesn't change.
if (packet_buffer_pool_index_.find(const_cast<char*>(buffer)) !=
packet_buffer_pool_index_.end()) {
FreePacketBuffer(buffer);
}
QuicEncryptedPacket packet(buffer, buf_len);
++packets_write_attempts_;
if (packet.length() >= sizeof(final_bytes_of_last_packet_)) {
final_bytes_of_previous_packet_ = final_bytes_of_last_packet_;
memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4,
sizeof(final_bytes_of_last_packet_));
}
if (use_tagging_decrypter_) {
if (framer_.framer()->version().KnowsWhichDecrypterToUse()) {
framer_.framer()->InstallDecrypter(
ENCRYPTION_INITIAL, std::make_unique<TaggingDecrypter>());
framer_.framer()->InstallDecrypter(
ENCRYPTION_HANDSHAKE, std::make_unique<TaggingDecrypter>());
framer_.framer()->InstallDecrypter(
ENCRYPTION_ZERO_RTT, std::make_unique<TaggingDecrypter>());
framer_.framer()->InstallDecrypter(
ENCRYPTION_FORWARD_SECURE, std::make_unique<TaggingDecrypter>());
} else {
framer_.framer()->SetDecrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingDecrypter>());
}
} else if (framer_.framer()->version().KnowsWhichDecrypterToUse()) {
framer_.framer()->InstallDecrypter(
ENCRYPTION_FORWARD_SECURE,
std::make_unique<NullDecrypter>(Perspective::IS_SERVER));
}
EXPECT_TRUE(framer_.ProcessPacket(packet))
<< framer_.framer()->detailed_error();
if (block_on_next_write_) {
write_blocked_ = true;
block_on_next_write_ = false;
}
if (next_packet_too_large_) {
next_packet_too_large_ = false;
return WriteResult(WRITE_STATUS_ERROR, QUIC_EMSGSIZE);
}
if (always_get_packet_too_large_) {
return WriteResult(WRITE_STATUS_ERROR, QUIC_EMSGSIZE);
}
if (IsWriteBlocked()) {
return WriteResult(is_write_blocked_data_buffered_
? WRITE_STATUS_BLOCKED_DATA_BUFFERED
: WRITE_STATUS_BLOCKED,
0);
}
if (ShouldWriteFail()) {
return WriteResult(WRITE_STATUS_ERROR, 0);
}
last_packet_size_ = packet.length();
last_packet_header_ = framer_.header();
if (!framer_.connection_close_frames().empty()) {
++connection_close_packets_;
}
if (!write_pause_time_delta_.IsZero()) {
clock_->AdvanceTime(write_pause_time_delta_);
}
if (is_batch_mode_) {
bytes_buffered_ += last_packet_size_;
return WriteResult(WRITE_STATUS_OK, 0);
}
return WriteResult(WRITE_STATUS_OK, last_packet_size_);
}
bool ShouldWriteFail() { return write_should_fail_; }
bool IsWriteBlocked() const override { return write_blocked_; }
void SetWriteBlocked() { write_blocked_ = true; }
void SetWritable() override { write_blocked_ = false; }
void SetShouldWriteFail() { write_should_fail_ = true; }
QuicByteCount GetMaxPacketSize(
const QuicSocketAddress& /*peer_address*/) const override {
return max_packet_size_;
}
bool SupportsReleaseTime() const override { return supports_release_time_; }
bool IsBatchMode() const override { return is_batch_mode_; }
QuicPacketBuffer GetNextWriteLocation(
const QuicIpAddress& /*self_address*/,
const QuicSocketAddress& /*peer_address*/) override {
if (GetQuicReloadableFlag(quic_avoid_leak_writer_buffer)) {
return {AllocPacketBuffer(),
[this](const char* p) { FreePacketBuffer(p); }};
}
// Do not use writer buffer for serializing packets.
return {nullptr, nullptr};
}
WriteResult Flush() override {
flush_attempts_++;
if (block_on_next_flush_) {
block_on_next_flush_ = false;
SetWriteBlocked();
return WriteResult(WRITE_STATUS_BLOCKED, /*errno*/ -1);
}
if (write_should_fail_) {
return WriteResult(WRITE_STATUS_ERROR, /*errno*/ -1);
}
int bytes_flushed = bytes_buffered_;
bytes_buffered_ = 0;
return WriteResult(WRITE_STATUS_OK, bytes_flushed);
}
void BlockOnNextFlush() { block_on_next_flush_ = true; }
void BlockOnNextWrite() { block_on_next_write_ = true; }
void SimulateNextPacketTooLarge() { next_packet_too_large_ = true; }
void AlwaysGetPacketTooLarge() { always_get_packet_too_large_ = true; }
// Sets the amount of time that the writer should before the actual write.
void SetWritePauseTimeDelta(QuicTime::Delta delta) {
write_pause_time_delta_ = delta;
}
void SetBatchMode(bool new_value) { is_batch_mode_ = new_value; }
const QuicPacketHeader& header() { return framer_.header(); }
size_t frame_count() const { return framer_.num_frames(); }
const std::vector<QuicAckFrame>& ack_frames() const {
return framer_.ack_frames();
}
const std::vector<QuicStopWaitingFrame>& stop_waiting_frames() const {
return framer_.stop_waiting_frames();
}
const std::vector<QuicConnectionCloseFrame>& connection_close_frames() const {
return framer_.connection_close_frames();
}
const std::vector<QuicRstStreamFrame>& rst_stream_frames() const {
return framer_.rst_stream_frames();
}
const std::vector<std::unique_ptr<QuicStreamFrame>>& stream_frames() const {
return framer_.stream_frames();
}
const std::vector<std::unique_ptr<QuicCryptoFrame>>& crypto_frames() const {
return framer_.crypto_frames();
}
const std::vector<QuicPingFrame>& ping_frames() const {
return framer_.ping_frames();
}
const std::vector<QuicMessageFrame>& message_frames() const {
return framer_.message_frames();
}
const std::vector<QuicWindowUpdateFrame>& window_update_frames() const {
return framer_.window_update_frames();
}
const std::vector<QuicPaddingFrame>& padding_frames() const {
return framer_.padding_frames();
}
const std::vector<QuicPathChallengeFrame>& path_challenge_frames() const {
return framer_.path_challenge_frames();
}
const std::vector<QuicPathResponseFrame>& path_response_frames() const {
return framer_.path_response_frames();
}
const QuicEncryptedPacket* coalesced_packet() const {
return framer_.coalesced_packet();
}
size_t last_packet_size() { return last_packet_size_; }
const QuicPacketHeader& last_packet_header() const {
return last_packet_header_;
}
const QuicVersionNegotiationPacket* version_negotiation_packet() {
return framer_.version_negotiation_packet();
}
void set_is_write_blocked_data_buffered(bool buffered) {
is_write_blocked_data_buffered_ = buffered;
}
void set_perspective(Perspective perspective) {
// We invert perspective here, because the framer needs to parse packets
// we send.
QuicFramerPeer::SetPerspective(framer_.framer(),
QuicUtils::InvertPerspective(perspective));
}
// final_bytes_of_last_packet_ returns the last four bytes of the previous
// packet as a little-endian, uint32_t. This is intended to be used with a
// TaggingEncrypter so that tests can determine which encrypter was used for
// a given packet.
uint32_t final_bytes_of_last_packet() { return final_bytes_of_last_packet_; }
// Returns the final bytes of the second to last packet.
uint32_t final_bytes_of_previous_packet() {
return final_bytes_of_previous_packet_;
}
void use_tagging_decrypter() { use_tagging_decrypter_ = true; }
uint32_t packets_write_attempts() const { return packets_write_attempts_; }
uint32_t flush_attempts() const { return flush_attempts_; }
uint32_t connection_close_packets() const {
return connection_close_packets_;
}
void Reset() { framer_.Reset(); }
void SetSupportedVersions(const ParsedQuicVersionVector& versions) {
framer_.SetSupportedVersions(versions);
}
void set_max_packet_size(QuicByteCount max_packet_size) {
max_packet_size_ = max_packet_size;
}
void set_supports_release_time(bool supports_release_time) {
supports_release_time_ = supports_release_time;
}
SimpleQuicFramer* framer() { return &framer_; }
private:
char* AllocPacketBuffer() {
PacketBuffer* p = packet_buffer_free_list_.front();
EXPECT_FALSE(p->in_use);
p->in_use = true;
packet_buffer_free_list_.pop_front();
return p->buffer;
}
void FreePacketBuffer(const char* buffer) {
auto iter = packet_buffer_pool_index_.find(const_cast<char*>(buffer));
ASSERT_TRUE(iter != packet_buffer_pool_index_.end());
PacketBuffer* p = iter->second;
ASSERT_TRUE(p->in_use);
p->in_use = false;
packet_buffer_free_list_.push_back(p);
}
ParsedQuicVersion version_;
SimpleQuicFramer framer_;
size_t last_packet_size_ = 0;
QuicPacketHeader last_packet_header_;
bool write_blocked_ = false;
bool write_should_fail_ = false;
bool block_on_next_flush_ = false;
bool block_on_next_write_ = false;
bool next_packet_too_large_ = false;
bool always_get_packet_too_large_ = false;
bool is_write_blocked_data_buffered_ = false;
bool is_batch_mode_ = false;
// Number of times Flush() was called.
uint32_t flush_attempts_ = 0;
// (Batch mode only) Number of bytes buffered in writer. It is used as the
// return value of a successful Flush().
uint32_t bytes_buffered_ = 0;
uint32_t final_bytes_of_last_packet_ = 0;
uint32_t final_bytes_of_previous_packet_ = 0;
bool use_tagging_decrypter_ = false;
uint32_t packets_write_attempts_ = 0;
uint32_t connection_close_packets_ = 0;
MockClock* clock_ = nullptr;
// If non-zero, the clock will pause during WritePacket for this amount of
// time.
QuicTime::Delta write_pause_time_delta_ = QuicTime::Delta::Zero();
QuicByteCount max_packet_size_ = kMaxOutgoingPacketSize;
bool supports_release_time_ = false;
// Used to verify writer-allocated packet buffers are properly released.
std::vector<PacketBuffer*> packet_buffer_pool_;
// Buffer address => Address of the owning PacketBuffer.
QuicHashMap<char*, PacketBuffer*> packet_buffer_pool_index_;
// Indices in packet_buffer_pool_ that are not allocated.
std::list<PacketBuffer*> packet_buffer_free_list_;
};
class TestConnection : public QuicConnection {
public:
TestConnection(QuicConnectionId connection_id,
QuicSocketAddress address,
TestConnectionHelper* helper,
TestAlarmFactory* alarm_factory,
TestPacketWriter* writer,
Perspective perspective,
ParsedQuicVersion version)
: QuicConnection(connection_id,
address,
helper,
alarm_factory,
writer,
/* owns_writer= */ false,
perspective,
SupportedVersions(version)),
notifier_(nullptr) {
writer->set_perspective(perspective);
SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<NullEncrypter>(perspective));
SetDataProducer(&producer_);
}
TestConnection(const TestConnection&) = delete;
TestConnection& operator=(const TestConnection&) = delete;
void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) {
QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm);
}
void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) {
QuicConnectionPeer::SetLossAlgorithm(this, loss_algorithm);
}
void SendPacket(EncryptionLevel /*level*/,
uint64_t packet_number,
std::unique_ptr<QuicPacket> packet,
HasRetransmittableData retransmittable,
bool has_ack,
bool has_pending_frames) {
ScopedPacketFlusher flusher(this);
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length =
QuicConnectionPeer::GetFramer(this)->EncryptPayload(
ENCRYPTION_INITIAL, QuicPacketNumber(packet_number), *packet,
buffer, kMaxOutgoingPacketSize);
SerializedPacket serialized_packet(
QuicPacketNumber(packet_number), PACKET_4BYTE_PACKET_NUMBER, buffer,
encrypted_length, has_ack, has_pending_frames);
if (retransmittable == HAS_RETRANSMITTABLE_DATA) {
serialized_packet.retransmittable_frames.push_back(
QuicFrame(QuicPingFrame()));
}
OnSerializedPacket(std::move(serialized_packet));
}
QuicConsumedData SaveAndSendStreamData(QuicStreamId id,
const struct iovec* iov,
int iov_count,
size_t total_length,
QuicStreamOffset offset,
StreamSendingState state) {
ScopedPacketFlusher flusher(this);
producer_.SaveStreamData(id, iov, iov_count, 0u, total_length);
if (notifier_ != nullptr) {
return notifier_->WriteOrBufferData(id, total_length, state);
}
return QuicConnection::SendStreamData(id, total_length, offset, state);
}
QuicConsumedData SendStreamDataWithString(QuicStreamId id,
quiche::QuicheStringPiece data,
QuicStreamOffset offset,
StreamSendingState state) {
ScopedPacketFlusher flusher(this);
if (!QuicUtils::IsCryptoStreamId(transport_version(), id) &&
this->encryption_level() == ENCRYPTION_INITIAL) {
this->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
if (perspective() == Perspective::IS_CLIENT && !IsHandshakeComplete()) {
OnHandshakeComplete();
}
if (version().SupportsAntiAmplificationLimit()) {
QuicConnectionPeer::SetAddressValidated(this);
}
}
struct iovec iov;
MakeIOVector(data, &iov);
return SaveAndSendStreamData(id, &iov, 1, data.length(), offset, state);
}
QuicConsumedData SendApplicationDataAtLevel(EncryptionLevel encryption_level,
QuicStreamId id,
quiche::QuicheStringPiece data,
QuicStreamOffset offset,
StreamSendingState state) {
ScopedPacketFlusher flusher(this);
DCHECK(encryption_level >= ENCRYPTION_ZERO_RTT);
SetEncrypter(encryption_level, std::make_unique<TaggingEncrypter>(0x01));
SetDefaultEncryptionLevel(encryption_level);
struct iovec iov;
MakeIOVector(data, &iov);
return SaveAndSendStreamData(id, &iov, 1, data.length(), offset, state);
}
QuicConsumedData SendStreamData3() {
return SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, transport_version()), "food", 0,
NO_FIN);
}
QuicConsumedData SendStreamData5() {
return SendStreamDataWithString(
GetNthClientInitiatedStreamId(2, transport_version()), "food2", 0,
NO_FIN);
}
// Ensures the connection can write stream data before writing.
QuicConsumedData EnsureWritableAndSendStreamData5() {
EXPECT_TRUE(CanWrite(HAS_RETRANSMITTABLE_DATA));
return SendStreamData5();
}
// The crypto stream has special semantics so that it is not blocked by a
// congestion window limitation, and also so that it gets put into a separate
// packet (so that it is easier to reason about a crypto frame not being
// split needlessly across packet boundaries). As a result, we have separate
// tests for some cases for this stream.
QuicConsumedData SendCryptoStreamData() {
QuicStreamOffset offset = 0;
quiche::QuicheStringPiece data("chlo");
if (!QuicVersionUsesCryptoFrames(transport_version())) {
return SendCryptoDataWithString(data, offset);
}
producer_.SaveCryptoData(ENCRYPTION_INITIAL, offset, data);
size_t bytes_written;
if (notifier_) {
bytes_written =
notifier_->WriteCryptoData(ENCRYPTION_INITIAL, data.length(), offset);
} else {
bytes_written = QuicConnection::SendCryptoData(ENCRYPTION_INITIAL,
data.length(), offset);
}
return QuicConsumedData(bytes_written, /*fin_consumed*/ false);
}
QuicConsumedData SendCryptoDataWithString(quiche::QuicheStringPiece data,
QuicStreamOffset offset) {
return SendCryptoDataWithString(data, offset, ENCRYPTION_INITIAL);
}
QuicConsumedData SendCryptoDataWithString(quiche::QuicheStringPiece data,
QuicStreamOffset offset,
EncryptionLevel encryption_level) {
if (!QuicVersionUsesCryptoFrames(transport_version())) {
return SendStreamDataWithString(
QuicUtils::GetCryptoStreamId(transport_version()), data, offset,
NO_FIN);
}
producer_.SaveCryptoData(encryption_level, offset, data);
size_t bytes_written;
if (notifier_) {
bytes_written =
notifier_->WriteCryptoData(encryption_level, data.length(), offset);
} else {
bytes_written = QuicConnection::SendCryptoData(encryption_level,
data.length(), offset);
}
return QuicConsumedData(bytes_written, /*fin_consumed*/ false);
}
void set_version(ParsedQuicVersion version) {
QuicConnectionPeer::GetFramer(this)->set_version(version);
}
void SetSupportedVersions(const ParsedQuicVersionVector& versions) {
QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions);
writer()->SetSupportedVersions(versions);
}
void set_perspective(Perspective perspective) {
writer()->set_perspective(perspective);
QuicConnectionPeer::SetPerspective(this, perspective);
}
// Enable path MTU discovery. Assumes that the test is performed from the
// server perspective and the higher value of MTU target is used.
void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) {
ASSERT_EQ(Perspective::IS_SERVER, perspective());
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(kMTUH);
config.SetInitialReceivedConnectionOptions(connection_options);
EXPECT_CALL(*send_algorithm, SetFromConfig(_, _));
SetFromConfig(config);
// Normally, the pacing would be disabled in the test, but calling
// SetFromConfig enables it. Set nearly-infinite bandwidth to make the
// pacing algorithm work.
EXPECT_CALL(*send_algorithm, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Infinite()));
}
TestAlarmFactory::TestAlarm* GetAckAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetAckAlarm(this));
}
TestAlarmFactory::TestAlarm* GetPingAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetPingAlarm(this));
}
TestAlarmFactory::TestAlarm* GetRetransmissionAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetRetransmissionAlarm(this));
}
TestAlarmFactory::TestAlarm* GetSendAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetSendAlarm(this));
}
TestAlarmFactory::TestAlarm* GetTimeoutAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetIdleNetworkDetectorAlarm(this));
}
TestAlarmFactory::TestAlarm* GetMtuDiscoveryAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetMtuDiscoveryAlarm(this));
}
TestAlarmFactory::TestAlarm* GetProcessUndecryptablePacketsAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetProcessUndecryptablePacketsAlarm(this));
}
TestAlarmFactory::TestAlarm* GetBlackholeDetectorAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetBlackholeDetectorAlarm(this));
}
void PathDegradingTimeout() {
DCHECK(PathDegradingDetectionInProgress());
GetBlackholeDetectorAlarm()->Fire();
}
bool PathDegradingDetectionInProgress() {
return QuicConnectionPeer::GetPathDegradingDeadline(this).IsInitialized();
}
bool BlackholeDetectionInProgress() {
return QuicConnectionPeer::GetBlackholeDetectionDeadline(this)
.IsInitialized();
}
void SetMaxTailLossProbes(size_t max_tail_loss_probes) {
QuicSentPacketManagerPeer::SetMaxTailLossProbes(
QuicConnectionPeer::GetSentPacketManager(this), max_tail_loss_probes);
}
QuicByteCount GetBytesInFlight() {
return QuicConnectionPeer::GetSentPacketManager(this)->GetBytesInFlight();
}
void set_notifier(SimpleSessionNotifier* notifier) { notifier_ = notifier; }
void ReturnEffectivePeerAddressForNextPacket(const QuicSocketAddress& addr) {
next_effective_peer_addr_ = std::make_unique<QuicSocketAddress>(addr);
}
bool PtoEnabled() {
if (QuicConnectionPeer::GetSentPacketManager(this)->pto_enabled()) {
// PTO mode is default enabled for T099. And TLP/RTO related tests are
// stale.
DCHECK(PROTOCOL_TLS1_3 == version().handshake_protocol ||
GetQuicReloadableFlag(quic_default_on_pto));
return true;
}
return false;
}
SimpleDataProducer* producer() { return &producer_; }
using QuicConnection::active_effective_peer_migration_type;
using QuicConnection::IsCurrentPacketConnectivityProbing;
using QuicConnection::SelectMutualVersion;
using QuicConnection::SendProbingRetransmissions;
using QuicConnection::set_defer_send_in_response_to_packets;
protected:
QuicSocketAddress GetEffectivePeerAddressFromCurrentPacket() const override {
if (next_effective_peer_addr_) {
return *std::move(next_effective_peer_addr_);
}
return QuicConnection::GetEffectivePeerAddressFromCurrentPacket();
}
private:
TestPacketWriter* writer() {
return static_cast<TestPacketWriter*>(QuicConnection::writer());
}
SimpleDataProducer producer_;
SimpleSessionNotifier* notifier_;
std::unique_ptr<QuicSocketAddress> next_effective_peer_addr_;
};
enum class AckResponse { kDefer, kImmediate };
// Run tests with combinations of {ParsedQuicVersion, AckResponse}.
struct TestParams {
TestParams(ParsedQuicVersion version,
AckResponse ack_response,
bool no_stop_waiting)
: version(version),
ack_response(ack_response),
no_stop_waiting(no_stop_waiting) {}
ParsedQuicVersion version;
AckResponse ack_response;
bool no_stop_waiting;
};
// Used by ::testing::PrintToStringParamName().
std::string PrintToString(const TestParams& p) {
return quiche::QuicheStrCat(
ParsedQuicVersionToString(p.version), "_",
(p.ack_response == AckResponse::kDefer ? "defer" : "immediate"), "_",
(p.no_stop_waiting ? "No" : ""), "StopWaiting");
}
// Constructs various test permutations.
std::vector<TestParams> GetTestParams() {
QuicFlagSaver flags;
std::vector<TestParams> params;
ParsedQuicVersionVector all_supported_versions = AllSupportedVersions();
for (size_t i = 0; i < all_supported_versions.size(); ++i) {
for (AckResponse ack_response :
{AckResponse::kDefer, AckResponse::kImmediate}) {
params.push_back(
TestParams(all_supported_versions[i], ack_response, true));
if (!VersionHasIetfInvariantHeader(
all_supported_versions[i].transport_version)) {
params.push_back(
TestParams(all_supported_versions[i], ack_response, false));
}
}
}
return params;
}
class QuicConnectionTest : public QuicTestWithParam<TestParams> {
public:
// For tests that do silent connection closes, no such packet is generated. In
// order to verify the contents of the OnConnectionClosed upcall, EXPECTs
// should invoke this method, saving the frame, and then the test can verify
// the contents.
void SaveConnectionCloseFrame(const QuicConnectionCloseFrame& frame,
ConnectionCloseSource /*source*/) {
saved_connection_close_frame_ = frame;
connection_close_frame_count_++;
}
protected:
QuicConnectionTest()
: connection_id_(TestConnectionId()),
framer_(SupportedVersions(version()),
QuicTime::Zero(),
Perspective::IS_CLIENT,
connection_id_.length()),
send_algorithm_(new StrictMock<MockSendAlgorithm>),
loss_algorithm_(new MockLossAlgorithm()),
helper_(new TestConnectionHelper(&clock_, &random_generator_)),
alarm_factory_(new TestAlarmFactory()),
peer_framer_(SupportedVersions(version()),
QuicTime::Zero(),
Perspective::IS_SERVER,
connection_id_.length()),
peer_creator_(connection_id_,
&peer_framer_,
/*delegate=*/nullptr),
writer_(new TestPacketWriter(version(), &clock_)),
connection_(connection_id_,
kPeerAddress,
helper_.get(),
alarm_factory_.get(),
writer_.get(),
Perspective::IS_CLIENT,
version()),
creator_(QuicConnectionPeer::GetPacketCreator(&connection_)),
manager_(QuicConnectionPeer::GetSentPacketManager(&connection_)),
frame1_(0, false, 0, quiche::QuicheStringPiece(data1)),
frame2_(0, false, 3, quiche::QuicheStringPiece(data2)),
crypto_frame_(ENCRYPTION_INITIAL, 0, quiche::QuicheStringPiece(data1)),
packet_number_length_(PACKET_4BYTE_PACKET_NUMBER),
connection_id_included_(CONNECTION_ID_PRESENT),
notifier_(&connection_),
connection_close_frame_count_(0) {
QUIC_DVLOG(2) << "QuicConnectionTest(" << PrintToString(GetParam()) << ")";
connection_.set_defer_send_in_response_to_packets(GetParam().ack_response ==
AckResponse::kDefer);
framer_.SetInitialObfuscators(TestConnectionId());
connection_.InstallInitialCrypters(TestConnectionId());
CrypterPair crypters;
CryptoUtils::CreateInitialObfuscators(Perspective::IS_SERVER, version(),
TestConnectionId(), &crypters);
peer_creator_.SetEncrypter(ENCRYPTION_INITIAL,
std::move(crypters.encrypter));
if (version().KnowsWhichDecrypterToUse()) {
peer_framer_.InstallDecrypter(ENCRYPTION_INITIAL,
std::move(crypters.decrypter));
} else {
peer_framer_.SetDecrypter(ENCRYPTION_INITIAL,
std::move(crypters.decrypter));
}
for (EncryptionLevel level :
{ENCRYPTION_ZERO_RTT, ENCRYPTION_FORWARD_SECURE}) {
peer_creator_.SetEncrypter(
level, std::make_unique<NullEncrypter>(peer_framer_.perspective()));
}
QuicFramerPeer::SetLastSerializedServerConnectionId(
QuicConnectionPeer::GetFramer(&connection_), connection_id_);
QuicFramerPeer::SetLastWrittenPacketNumberLength(
QuicConnectionPeer::GetFramer(&connection_), packet_number_length_);
if (VersionHasIetfInvariantHeader(version().transport_version)) {
EXPECT_TRUE(QuicConnectionPeer::GetNoStopWaitingFrames(&connection_));
} else {
QuicConnectionPeer::SetNoStopWaitingFrames(&connection_,
GetParam().no_stop_waiting);
}
QuicStreamId stream_id;
if (QuicVersionUsesCryptoFrames(version().transport_version)) {
stream_id = QuicUtils::GetFirstBidirectionalStreamId(
version().transport_version, Perspective::IS_CLIENT);
} else {
stream_id = QuicUtils::GetCryptoStreamId(version().transport_version);
}
frame1_.stream_id = stream_id;
frame2_.stream_id = stream_id;
connection_.set_visitor(&visitor_);
connection_.SetSessionNotifier(&notifier_);
connection_.set_notifier(&notifier_);
connection_.SetSendAlgorithm(send_algorithm_);
connection_.SetLossAlgorithm(loss_algorithm_.get());
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, OnPacketNeutered(_)).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillRepeatedly(Return(kDefaultTCPMSS));
EXPECT_CALL(*send_algorithm_, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
.Times(AnyNumber())
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_))
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber());
EXPECT_CALL(visitor_, OnPacketDecrypted(_)).Times(AnyNumber());
EXPECT_CALL(visitor_, OnCanWrite())
.WillRepeatedly(Invoke(&notifier_, &SimpleSessionNotifier::OnCanWrite));
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(false));
EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber());
EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(AnyNumber());
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber());
EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged())
.Times(testing::AtMost(1));
EXPECT_CALL(*loss_algorithm_, GetLossTimeout())
.WillRepeatedly(Return(QuicTime::Zero()));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.Times(AnyNumber());
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_START));
if (connection_.version().KnowsWhichDecrypterToUse()) {
connection_.InstallDecrypter(
ENCRYPTION_FORWARD_SECURE,
std::make_unique<NullDecrypter>(Perspective::IS_CLIENT));
}
}
QuicConnectionTest(const QuicConnectionTest&) = delete;
QuicConnectionTest& operator=(const QuicConnectionTest&) = delete;
ParsedQuicVersion version() { return GetParam().version; }
QuicStopWaitingFrame* stop_waiting() {
QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_);
return &stop_waiting_;
}
QuicPacketNumber least_unacked() {
if (writer_->stop_waiting_frames().empty()) {
return QuicPacketNumber();
}
return writer_->stop_waiting_frames()[0].least_unacked;
}
void use_tagging_decrypter() { writer_->use_tagging_decrypter(); }
void SetDecrypter(EncryptionLevel level,
std::unique_ptr<QuicDecrypter> decrypter) {
if (connection_.version().KnowsWhichDecrypterToUse()) {
connection_.InstallDecrypter(level, std::move(decrypter));
connection_.RemoveDecrypter(ENCRYPTION_INITIAL);
} else {
connection_.SetDecrypter(level, std::move(decrypter));
}
}
void ProcessPacket(uint64_t number) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(number);
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
}
void ProcessReceivedPacket(const QuicSocketAddress& self_address,
const QuicSocketAddress& peer_address,
const QuicReceivedPacket& packet) {
connection_.ProcessUdpPacket(self_address, peer_address, packet);
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
}
QuicFrame MakeCryptoFrame() const {
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
return QuicFrame(new QuicCryptoFrame(crypto_frame_));
}
return QuicFrame(QuicStreamFrame(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
0u, quiche::QuicheStringPiece()));
}
void ProcessFramePacket(QuicFrame frame) {
ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
}
void ProcessFramePacketWithAddresses(QuicFrame frame,
QuicSocketAddress self_address,
QuicSocketAddress peer_address) {
QuicFrames frames;
frames.push_back(QuicFrame(frame));
return ProcessFramesPacketWithAddresses(frames, self_address, peer_address);
}
void ProcessFramesPacketWithAddresses(QuicFrames frames,
QuicSocketAddress self_address,
QuicSocketAddress peer_address) {
QuicPacketCreatorPeer::SetSendVersionInPacket(
&peer_creator_,
QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) <
ENCRYPTION_FORWARD_SECURE &&
connection_.perspective() == Perspective::IS_SERVER);
char buffer[kMaxOutgoingPacketSize];
SerializedPacket serialized_packet =
QuicPacketCreatorPeer::SerializeAllFrames(
&peer_creator_, frames, buffer, kMaxOutgoingPacketSize);
connection_.ProcessUdpPacket(
self_address, peer_address,
QuicReceivedPacket(serialized_packet.encrypted_buffer,
serialized_packet.encrypted_length, clock_.Now()));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
}
// Bypassing the packet creator is unrealistic, but allows us to process
// packets the QuicPacketCreator won't allow us to create.
void ForceProcessFramePacket(QuicFrame frame) {
QuicFrames frames;
frames.push_back(QuicFrame(frame));
bool send_version = connection_.perspective() == Perspective::IS_SERVER;
if (connection_.version().KnowsWhichDecrypterToUse()) {
send_version = true;
}
QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_, send_version);
QuicPacketHeader header;
QuicPacketCreatorPeer::FillPacketHeader(&peer_creator_, &header);
char encrypted_buffer[kMaxOutgoingPacketSize];
size_t length = peer_framer_.BuildDataPacket(
header, frames, encrypted_buffer, kMaxOutgoingPacketSize,
ENCRYPTION_INITIAL);
DCHECK_GT(length, 0u);
const size_t encrypted_length = peer_framer_.EncryptInPlace(
ENCRYPTION_INITIAL, header.packet_number,
GetStartOfEncryptedData(peer_framer_.version().transport_version,
header),
length, kMaxOutgoingPacketSize, encrypted_buffer);
DCHECK_GT(encrypted_length, 0u);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(encrypted_buffer, encrypted_length, clock_.Now()));
}
size_t ProcessFramePacketAtLevel(uint64_t number,
QuicFrame frame,
EncryptionLevel level) {
QuicFrames frames;
frames.push_back(frame);
return ProcessFramesPacketAtLevel(number, frames, level);
}
size_t ProcessFramesPacketAtLevel(uint64_t number,
const QuicFrames& frames,
EncryptionLevel level) {
QuicPacketHeader header;
header.destination_connection_id = connection_id_;
header.packet_number_length = packet_number_length_;
header.destination_connection_id_included = connection_id_included_;
if (peer_framer_.perspective() == Perspective::IS_SERVER) {
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
}
if (level == ENCRYPTION_INITIAL &&
peer_framer_.version().KnowsWhichDecrypterToUse()) {
header.version_flag = true;
if (QuicVersionHasLongHeaderLengths(peer_framer_.transport_version())) {
header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
}
}
if (header.version_flag &&
peer_framer_.perspective() == Perspective::IS_SERVER) {
header.source_connection_id = connection_id_;
header.source_connection_id_included = CONNECTION_ID_PRESENT;
}
header.packet_number = QuicPacketNumber(number);
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
// Set the correct encryption level and encrypter on peer_creator and
// peer_framer, respectively.
peer_creator_.set_encryption_level(level);
if (QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) >
ENCRYPTION_INITIAL) {
peer_framer_.SetEncrypter(
QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
std::make_unique<TaggingEncrypter>(0x01));
// Set the corresponding decrypter.
if (connection_.version().KnowsWhichDecrypterToUse()) {
connection_.InstallDecrypter(
QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
std::make_unique<StrictTaggingDecrypter>(0x01));
connection_.RemoveDecrypter(ENCRYPTION_INITIAL);
} else {
connection_.SetDecrypter(
QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
std::make_unique<StrictTaggingDecrypter>(0x01));
}
}
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length =
peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet,
buffer, kMaxOutgoingPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
return encrypted_length;
}
size_t ProcessDataPacket(uint64_t number) {
return ProcessDataPacketAtLevel(number, false, ENCRYPTION_FORWARD_SECURE);
}
size_t ProcessDataPacket(QuicPacketNumber packet_number) {
return ProcessDataPacketAtLevel(packet_number, false,
ENCRYPTION_FORWARD_SECURE);
}
size_t ProcessDataPacketAtLevel(QuicPacketNumber packet_number,
bool has_stop_waiting,
EncryptionLevel level) {
return ProcessDataPacketAtLevel(packet_number.ToUint64(), has_stop_waiting,
level);
}
size_t ProcessCryptoPacketAtLevel(uint64_t number, EncryptionLevel level) {
QuicPacketHeader header = ConstructPacketHeader(number, level);
QuicFrames frames;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frames.push_back(QuicFrame(&crypto_frame_));
} else {
frames.push_back(QuicFrame(frame1_));
}
frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames);
char buffer[kMaxOutgoingPacketSize];
peer_creator_.set_encryption_level(level);
size_t encrypted_length =
peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet,
buffer, kMaxOutgoingPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
return encrypted_length;
}
size_t ProcessDataPacketAtLevel(uint64_t number,
bool has_stop_waiting,
EncryptionLevel level) {
std::unique_ptr<QuicPacket> packet(
ConstructDataPacket(number, has_stop_waiting, level));
char buffer[kMaxOutgoingPacketSize];
peer_creator_.set_encryption_level(level);
size_t encrypted_length =
peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet,
buffer, kMaxOutgoingPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
return encrypted_length;
}
void ProcessClosePacket(uint64_t number) {
std::unique_ptr<QuicPacket> packet(ConstructClosePacket(number));
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length = peer_framer_.EncryptPayload(
ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(number), *packet, buffer,
kMaxOutgoingPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
}
QuicByteCount SendStreamDataToPeer(QuicStreamId id,
quiche::QuicheStringPiece data,
QuicStreamOffset offset,
StreamSendingState state,
QuicPacketNumber* last_packet) {
QuicByteCount packet_size;
// Save the last packet's size.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber())
.WillRepeatedly(SaveArg<3>(&packet_size));
connection_.SendStreamDataWithString(id, data, offset, state);
if (last_packet != nullptr) {
*last_packet = creator_->packet_number();
}
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
return packet_size;
}
void SendAckPacketToPeer() {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
{
QuicConnection::ScopedPacketFlusher flusher(&connection_);
connection_.SendAck();
}
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
}
void SendRstStream(QuicStreamId id,
QuicRstStreamErrorCode error,
QuicStreamOffset bytes_written) {
notifier_.WriteOrBufferRstStream(id, error, bytes_written);
connection_.OnStreamReset(id, error);
}
void SendPing() { notifier_.WriteOrBufferPing(); }
MessageStatus SendMessage(quiche::QuicheStringPiece message) {
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
QuicMemSliceStorage storage(nullptr, 0, nullptr, 0);
return connection_.SendMessage(
1,
MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(), message,
&storage),
false);
}
void ProcessAckPacket(uint64_t packet_number, QuicAckFrame* frame) {
if (packet_number > 1) {
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, packet_number - 1);
} else {
QuicPacketCreatorPeer::ClearPacketNumber(&peer_creator_);
}
ProcessFramePacket(QuicFrame(frame));
}
void ProcessAckPacket(QuicAckFrame* frame) {
ProcessFramePacket(QuicFrame(frame));
}
void ProcessStopWaitingPacket(QuicStopWaitingFrame frame) {
ProcessFramePacket(QuicFrame(frame));
}
size_t ProcessStopWaitingPacketAtLevel(uint64_t number,
QuicStopWaitingFrame frame,
EncryptionLevel /*level*/) {
return ProcessFramePacketAtLevel(number, QuicFrame(frame),
ENCRYPTION_ZERO_RTT);
}
void ProcessGoAwayPacket(QuicGoAwayFrame* frame) {
ProcessFramePacket(QuicFrame(frame));
}
bool IsMissing(uint64_t number) {
return IsAwaitingPacket(connection_.ack_frame(), QuicPacketNumber(number),
QuicPacketNumber());
}
std::unique_ptr<QuicPacket> ConstructPacket(const QuicPacketHeader& header,
const QuicFrames& frames) {
auto packet = BuildUnsizedDataPacket(&peer_framer_, header, frames);
EXPECT_NE(nullptr, packet.get());
return packet;
}
QuicPacketHeader ConstructPacketHeader(uint64_t number,
EncryptionLevel level) {
QuicPacketHeader header;
if (VersionHasIetfInvariantHeader(peer_framer_.transport_version()) &&
level < ENCRYPTION_FORWARD_SECURE) {
// Set long header type accordingly.
header.version_flag = true;
header.form = IETF_QUIC_LONG_HEADER_PACKET;
header.long_packet_type = EncryptionlevelToLongHeaderType(level);
if (QuicVersionHasLongHeaderLengths(
peer_framer_.version().transport_version)) {
header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
if (header.long_packet_type == INITIAL) {
header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
}
}
}
// Set connection_id to peer's in memory representation as this data packet
// is created by peer_framer.
if (peer_framer_.perspective() == Perspective::IS_SERVER) {
header.source_connection_id = connection_id_;
header.source_connection_id_included = connection_id_included_;
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
} else {
header.destination_connection_id = connection_id_;
header.destination_connection_id_included = connection_id_included_;
}
if (VersionHasIetfInvariantHeader(peer_framer_.transport_version()) &&
peer_framer_.perspective() == Perspective::IS_SERVER) {
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
if (header.version_flag) {
header.source_connection_id = connection_id_;
header.source_connection_id_included = CONNECTION_ID_PRESENT;
if (GetParam().version.handshake_protocol == PROTOCOL_QUIC_CRYPTO &&
header.long_packet_type == ZERO_RTT_PROTECTED) {
header.nonce = &kTestDiversificationNonce;
}
}
}
header.packet_number_length = packet_number_length_;
header.packet_number = QuicPacketNumber(number);
return header;
}
std::unique_ptr<QuicPacket> ConstructDataPacket(uint64_t number,
bool has_stop_waiting,
EncryptionLevel level) {
QuicPacketHeader header = ConstructPacketHeader(number, level);
QuicFrames frames;
frames.push_back(QuicFrame(frame1_));
if (has_stop_waiting) {
frames.push_back(QuicFrame(stop_waiting_));
}
return ConstructPacket(header, frames);
}
std::unique_ptr<SerializedPacket> ConstructProbingPacket() {
if (VersionHasIetfQuicFrames(version().transport_version)) {
QuicPathFrameBuffer payload = {
{0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}};
return QuicPacketCreatorPeer::
SerializePathChallengeConnectivityProbingPacket(&peer_creator_,
&payload);
}
return QuicPacketCreatorPeer::SerializeConnectivityProbingPacket(
&peer_creator_);
}
std::unique_ptr<QuicPacket> ConstructClosePacket(uint64_t number) {
QuicPacketHeader header;
// Set connection_id to peer's in memory representation as this connection
// close packet is created by peer_framer.
if (peer_framer_.perspective() == Perspective::IS_SERVER) {
header.source_connection_id = connection_id_;
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
if (!VersionHasIetfInvariantHeader(peer_framer_.transport_version())) {
header.source_connection_id_included = CONNECTION_ID_PRESENT;
}
} else {
header.destination_connection_id = connection_id_;
if (VersionHasIetfInvariantHeader(peer_framer_.transport_version())) {
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
}
}
header.packet_number = QuicPacketNumber(number);
QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY;
QuicConnectionCloseFrame qccf(peer_framer_.transport_version(),
kQuicErrorCode, "",
/*transport_close_frame_type=*/0);
QuicFrames frames;
frames.push_back(QuicFrame(&qccf));
return ConstructPacket(header, frames);
}
QuicTime::Delta DefaultRetransmissionTime() {
return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
}
QuicTime::Delta DefaultDelayedAckTime() {
return QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs);
}
const QuicStopWaitingFrame InitStopWaitingFrame(uint64_t least_unacked) {
QuicStopWaitingFrame frame;
frame.least_unacked = QuicPacketNumber(least_unacked);
return frame;
}
// Construct a ack_frame that acks all packet numbers between 1 and
// |largest_acked|, except |missing|.
// REQUIRES: 1 <= |missing| < |largest_acked|
QuicAckFrame ConstructAckFrame(uint64_t largest_acked, uint64_t missing) {
return ConstructAckFrame(QuicPacketNumber(largest_acked),
QuicPacketNumber(missing));
}
QuicAckFrame ConstructAckFrame(QuicPacketNumber largest_acked,
QuicPacketNumber missing) {
if (missing == QuicPacketNumber(1)) {
return InitAckFrame({{missing + 1, largest_acked + 1}});
}
return InitAckFrame(
{{QuicPacketNumber(1), missing}, {missing + 1, largest_acked + 1}});
}
// Undo nacking a packet within the frame.
void AckPacket(QuicPacketNumber arrived, QuicAckFrame* frame) {
EXPECT_FALSE(frame->packets.Contains(arrived));
frame->packets.Add(arrived);
}
void TriggerConnectionClose() {
// Send an erroneous packet to close the connection.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Triggers a connection by receiving ACK of unsent packet.
QuicAckFrame frame = InitAckFrame(10000);
ProcessAckPacket(1, &frame);
EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
nullptr);
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_INVALID_ACK_DATA));
}
void BlockOnNextWrite() {
writer_->BlockOnNextWrite();
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
}
void SimulateNextPacketTooLarge() { writer_->SimulateNextPacketTooLarge(); }
void AlwaysGetPacketTooLarge() { writer_->AlwaysGetPacketTooLarge(); }
void SetWritePauseTimeDelta(QuicTime::Delta delta) {
writer_->SetWritePauseTimeDelta(delta);
}
void CongestionBlockWrites() {
EXPECT_CALL(*send_algorithm_, CanSend(_))
.WillRepeatedly(testing::Return(false));
}
void CongestionUnblockWrites() {
EXPECT_CALL(*send_algorithm_, CanSend(_))
.WillRepeatedly(testing::Return(true));
}
void set_perspective(Perspective perspective) {
connection_.set_perspective(perspective);
if (perspective == Perspective::IS_SERVER) {
connection_.set_can_truncate_connection_ids(true);
QuicConnectionPeer::SetNegotiatedVersion(&connection_);
connection_.OnSuccessfulVersionNegotiation();
}
QuicFramerPeer::SetPerspective(&peer_framer_,
QuicUtils::InvertPerspective(perspective));
}
void set_packets_between_probes_base(
const QuicPacketCount packets_between_probes_base) {
QuicConnectionPeer::ReInitializeMtuDiscoverer(
&connection_, packets_between_probes_base,
QuicPacketNumber(packets_between_probes_base));
}
bool IsDefaultTestConfiguration() {
TestParams p = GetParam();
return p.ack_response == AckResponse::kImmediate &&
p.version == AllSupportedVersions()[0] && p.no_stop_waiting;
}
void TestConnectionCloseQuicErrorCode(QuicErrorCode expected_code) {
// Not strictly needed for this test, but is commonly done.
EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
nullptr);
const std::vector<QuicConnectionCloseFrame>& connection_close_frames =
writer_->connection_close_frames();
ASSERT_EQ(1u, connection_close_frames.size());
EXPECT_THAT(connection_close_frames[0].quic_error_code,
IsError(expected_code));
if (!VersionHasIetfQuicFrames(version().transport_version)) {
EXPECT_THAT(connection_close_frames[0].wire_error_code,
IsError(expected_code));
EXPECT_EQ(GOOGLE_QUIC_CONNECTION_CLOSE,
connection_close_frames[0].close_type);
return;
}
QuicErrorCodeToIetfMapping mapping =
QuicErrorCodeToTransportErrorCode(expected_code);
if (mapping.is_transport_close) {
// This Google QUIC Error Code maps to a transport close,
EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE,
connection_close_frames[0].close_type);
} else {
// This maps to an application close.
EXPECT_EQ(IETF_QUIC_APPLICATION_CONNECTION_CLOSE,
connection_close_frames[0].close_type);
}
EXPECT_EQ(mapping.error_code, connection_close_frames[0].wire_error_code);
}
void MtuDiscoveryTestInit() {
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
if (version().SupportsAntiAmplificationLimit()) {
QuicConnectionPeer::SetAddressValidated(&connection_);
}
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
// QuicFramer::GetMaxPlaintextSize uses the smallest max plaintext size
// across all encrypters. The initial encrypter used with IETF QUIC has a
// 16-byte overhead, while the NullEncrypter used throughout this test has a
// 12-byte overhead. This test tests behavior that relies on computing the
// packet size correctly, so by unsetting the initial encrypter, we avoid
// having a mismatch between the overheads for the encrypters used. In
// non-test scenarios all encrypters used for a given connection have the
// same overhead, either 12 bytes for ones using Google QUIC crypto, or 16
// bytes for ones using TLS.
connection_.SetEncrypter(ENCRYPTION_INITIAL, nullptr);
// Prevent packets from being coalesced.
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
EXPECT_TRUE(connection_.connected());
}
void PathProbeTestInit(Perspective perspective) {
set_perspective(perspective);
EXPECT_EQ(connection_.perspective(), perspective);
if (perspective == Perspective::IS_SERVER) {
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
}
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
}
void TestClientRetryHandling(bool invalid_retry_tag,
bool missing_original_id_in_config,
bool wrong_original_id_in_config,
bool missing_retry_id_in_config,
bool wrong_retry_id_in_config);
QuicConnectionId connection_id_;
QuicFramer framer_;
MockSendAlgorithm* send_algorithm_;
std::unique_ptr<MockLossAlgorithm> loss_algorithm_;
MockClock clock_;
MockRandom random_generator_;
SimpleBufferAllocator buffer_allocator_;
std::unique_ptr<TestConnectionHelper> helper_;
std::unique_ptr<TestAlarmFactory> alarm_factory_;
QuicFramer peer_framer_;
QuicPacketCreator peer_creator_;
std::unique_ptr<TestPacketWriter> writer_;
TestConnection connection_;
QuicPacketCreator* creator_;
QuicSentPacketManager* manager_;
StrictMock<MockQuicConnectionVisitor> visitor_;
QuicStreamFrame frame1_;
QuicStreamFrame frame2_;
QuicCryptoFrame crypto_frame_;
QuicAckFrame ack_;
QuicStopWaitingFrame stop_waiting_;
QuicPacketNumberLength packet_number_length_;
QuicConnectionIdIncluded connection_id_included_;
SimpleSessionNotifier notifier_;
QuicConnectionCloseFrame saved_connection_close_frame_;
int connection_close_frame_count_;
};
// Run all end to end tests with all supported versions.
INSTANTIATE_TEST_SUITE_P(QuicConnectionTests,
QuicConnectionTest,
::testing::ValuesIn(GetTestParams()),
::testing::PrintToStringParamName());
// These two tests ensure that the QuicErrorCode mapping works correctly.
// Both tests expect to see a Google QUIC close if not running IETF QUIC.
// If running IETF QUIC, the first will generate a transport connection
// close, the second an application connection close.
// The connection close codes for the two tests are manually chosen;
// they are expected to always map to transport- and application-
// closes, respectively. If that changes, new codes should be chosen.
TEST_P(QuicConnectionTest, CloseErrorCodeTestTransport) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
connection_.CloseConnection(
IETF_QUIC_PROTOCOL_VIOLATION, "Should be transport close",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
}
// Test that the IETF QUIC Error code mapping function works
// properly for application connection close codes.
TEST_P(QuicConnectionTest, CloseErrorCodeTestApplication) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
connection_.CloseConnection(
QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE,
"Should be application close",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE);
}
TEST_P(QuicConnectionTest, SelfAddressChangeAtClient) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
EXPECT_TRUE(connection_.connected());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_));
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_));
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
// Cause change in self_address.
QuicIpAddress host;
host.FromString("1.1.1.1");
QuicSocketAddress self_address(host, 123);
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_));
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_));
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address,
kPeerAddress);
EXPECT_TRUE(connection_.connected());
}
TEST_P(QuicConnectionTest, SelfAddressChangeAtServer) {
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
EXPECT_TRUE(connection_.connected());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_));
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_));
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
// Cause change in self_address.
QuicIpAddress host;
host.FromString("1.1.1.1");
QuicSocketAddress self_address(host, 123);
EXPECT_CALL(visitor_, AllowSelfAddressChange()).WillOnce(Return(false));
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address,
kPeerAddress);
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_ERROR_MIGRATING_ADDRESS);
}
TEST_P(QuicConnectionTest, AllowSelfAddressChangeToMappedIpv4AddressAtServer) {
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
EXPECT_TRUE(connection_.connected());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3);
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3);
}
QuicIpAddress host;
host.FromString("1.1.1.1");
QuicSocketAddress self_address1(host, 443);
ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address1,
kPeerAddress);
// Cause self_address change to mapped Ipv4 address.
QuicIpAddress host2;
host2.FromString(quiche::QuicheStrCat(
"::ffff:", connection_.self_address().host().ToString()));
QuicSocketAddress self_address2(host2, connection_.self_address().port());
ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address2,
kPeerAddress);
EXPECT_TRUE(connection_.connected());
// self_address change back to Ipv4 address.
ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address1,
kPeerAddress);
EXPECT_TRUE(connection_.connected());
}
TEST_P(QuicConnectionTest, ClientAddressChangeAndPacketReordered) {
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(),
/*port=*/23456);
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kNewPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
// Decrease packet number to simulate out-of-order packets.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4);
// This is an old packet, do not migrate.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, PeerAddressChangeAtServer) {
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Process another packet with a different peer address on server side will
// start connection migration.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kNewPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, EffectivePeerAddressChangeAtServer) {
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
if (version().SupportsAntiAmplificationLimit()) {
QuicConnectionPeer::SetAddressValidated(&connection_);
}
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is different from direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
const QuicSocketAddress kEffectivePeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/43210);
connection_.ReturnEffectivePeerAddressForNextPacket(kEffectivePeerAddress);
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kEffectivePeerAddress, connection_.effective_peer_address());
// Process another packet with the same direct peer address and different
// effective peer address on server side will start connection migration.
const QuicSocketAddress kNewEffectivePeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/54321);
connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address());
// Process another packet with a different direct peer address and the same
// effective peer address on server side will not start connection migration.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
// ack_frame is used to complete the migration started by the last packet, we
// need to make sure a new migration does not start after the previous one is
// completed.
QuicAckFrame ack_frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
ProcessFramePacketWithAddresses(QuicFrame(&ack_frame), kSelfAddress,
kNewPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address());
// Process another packet with different direct peer address and different
// effective peer address on server side will start connection migration.
const QuicSocketAddress kNewerEffectivePeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/65432);
const QuicSocketAddress kFinalPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/34567);
connection_.ReturnEffectivePeerAddressForNextPacket(
kNewerEffectivePeerAddress);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kFinalPeerAddress);
EXPECT_EQ(kFinalPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewerEffectivePeerAddress, connection_.effective_peer_address());
EXPECT_EQ(PORT_CHANGE, connection_.active_effective_peer_migration_type());
// While the previous migration is ongoing, process another packet with the
// same direct peer address and different effective peer address on server
// side will start a new connection migration.
const QuicSocketAddress kNewestEffectivePeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/65430);
connection_.ReturnEffectivePeerAddressForNextPacket(
kNewestEffectivePeerAddress);
EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
EXPECT_CALL(*send_algorithm_, OnConnectionMigration()).Times(1);
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kFinalPeerAddress);
EXPECT_EQ(kFinalPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewestEffectivePeerAddress, connection_.effective_peer_address());
EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
connection_.active_effective_peer_migration_type());
}
TEST_P(QuicConnectionTest, ReceivePathProbeWithNoAddressChangeAtServer) {
PathProbeTestInit(Perspective::IS_SERVER);
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
EXPECT_CALL(visitor_, OnPacketReceived(_, _, false)).Times(0);
// Process a padded PING or PATH CHALLENGE packet with no peer address change
// on server side will be ignored.
std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received);
EXPECT_EQ(num_probing_received,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
// Regression test for b/150161358.
TEST_P(QuicConnectionTest, BufferedMtuPacketTooBig) {
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
writer_->SetWriteBlocked();
// Send a MTU packet while blocked. It should be buffered.
connection_.SendMtuDiscoveryPacket(kMaxOutgoingPacketSize);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
EXPECT_TRUE(writer_->IsWriteBlocked());
writer_->AlwaysGetPacketTooLarge();
writer_->SetWritable();
connection_.OnCanWrite();
}
TEST_P(QuicConnectionTest, WriteOutOfOrderQueuedPackets) {
// EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
if (!IsDefaultTestConfiguration()) {
return;
}
set_perspective(Perspective::IS_CLIENT);
BlockOnNextWrite();
QuicStreamId stream_id = 2;
connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
writer_->SetWritable();
connection_.SendConnectivityProbingPacket(writer_.get(),
connection_.peer_address());
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
connection_.OnCanWrite();
}
TEST_P(QuicConnectionTest, DiscardQueuedPacketsAfterConnectionClose) {
// Regression test for b/74073386.
{
InSequence seq;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AtLeast(1));
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(AtLeast(1));
}
set_perspective(Perspective::IS_CLIENT);
writer_->SimulateNextPacketTooLarge();
// This packet write should fail, which should cause the connection to close
// after sending a connection close packet, then the failed packet should be
// queued.
connection_.SendStreamDataWithString(/*id=*/2, "foo", 0, NO_FIN);
EXPECT_FALSE(connection_.connected());
// No need to buffer packets.
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_EQ(0u, connection_.GetStats().packets_discarded);
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.GetStats().packets_discarded);
}
// Receive a path probe request at the server side, i.e.,
// in non-IETF version: receive a padded PING packet with a peer addess change;
// in IETF version: receive a packet contains PATH CHALLENGE with peer address
// change.
TEST_P(QuicConnectionTest, ReceivePathProbingAtServer) {
PathProbeTestInit(Perspective::IS_SERVER);
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
if (!GetParam().version.HasIetfQuicFrames()) {
EXPECT_CALL(visitor_,
OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
.Times(1);
} else {
EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
}
// Process a padded PING packet from a new peer address on server side
// is effectively receiving a connectivity probing.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
EXPECT_EQ(num_probing_received + 1,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Process another packet with the old peer address on server side will not
// start peer migration.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
// Receive a padded PING packet with a port change on server side.
TEST_P(QuicConnectionTest, ReceivePaddedPingWithPortChangeAtServer) {
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
if (GetParam().version.UsesCryptoFrames()) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
if (GetParam().version.HasIetfQuicFrames()) {
// In IETF version, a padded PING packet with port change is not taken as
// connectivity probe.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
} else {
// In non-IETF version, process a padded PING packet from a new peer
// address on server side is effectively receiving a connectivity probing.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
EXPECT_CALL(visitor_,
OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
.Times(1);
}
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
QuicFrames frames;
// Write a PING frame, which has no data payload.
QuicPingFrame ping_frame;
frames.push_back(QuicFrame(ping_frame));
// Add padding to the rest of the packet.
QuicPaddingFrame padding_frame;
frames.push_back(QuicFrame(padding_frame));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress);
if (GetParam().version.HasIetfQuicFrames()) {
// Padded PING with port changen is not considered as connectivity probe but
// a PORT CHANGE.
EXPECT_EQ(num_probing_received,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
} else {
EXPECT_EQ(num_probing_received + 1,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
// Process another packet with the old peer address on server side.
if (GetParam().version.HasIetfQuicFrames()) {
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
} else {
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, ReceiveReorderedPathProbingAtServer) {
PathProbeTestInit(Perspective::IS_SERVER);
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Decrease packet number to simulate out-of-order packets.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
if (!GetParam().version.HasIetfQuicFrames()) {
EXPECT_CALL(visitor_,
OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
.Times(1);
} else {
EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
}
// Process a padded PING packet from a new peer address on server side
// is effectively receiving a connectivity probing, even if a newer packet has
// been received before this one.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
EXPECT_EQ(num_probing_received + 1,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, MigrateAfterProbingAtServer) {
PathProbeTestInit(Perspective::IS_SERVER);
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
if (!GetParam().version.HasIetfQuicFrames()) {
EXPECT_CALL(visitor_,
OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
.Times(1);
} else {
EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
}
// Process a padded PING packet from a new peer address on server side
// is effectively receiving a connectivity probing.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Process another non-probing packet with the new peer address on server
// side will start peer migration.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kNewPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, ReceivePaddedPingAtClient) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
PathProbeTestInit(Perspective::IS_CLIENT);
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Client takes all padded PING packet as speculative connectivity
// probing packet, and reports to visitor.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
EXPECT_CALL(visitor_, OnPacketReceived(_, _, false)).Times(1);
std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received);
EXPECT_EQ(num_probing_received,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, ReceiveConnectivityProbingResponseAtClient) {
// TODO(b/150095484): add test coverage for IETF to verify that client takes
// PATH RESPONSE with peer address change as correct validation on the new
// path.
if (GetParam().version.HasIetfQuicFrames()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
PathProbeTestInit(Perspective::IS_CLIENT);
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Process a padded PING packet with a different self address on client side
// is effectively receiving a connectivity probing.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
if (!GetParam().version.HasIetfQuicFrames()) {
EXPECT_CALL(visitor_,
OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
.Times(1);
} else {
EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
}
const QuicSocketAddress kNewSelfAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received);
EXPECT_EQ(num_probing_received + 1,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, PeerAddressChangeAtClient) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_CLIENT);
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
// Clear direct_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
// Clear effective_peer_address, it is the same as direct_peer_address for
// this test.
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Process another packet with a different peer address on client side will
// only update peer address.
const QuicSocketAddress kNewPeerAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kNewPeerAddress);
EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
}
TEST_P(QuicConnectionTest, MaxPacketSize) {
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
EXPECT_EQ(1350u, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, PeerLowersMaxPacketSize) {
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
// SetFromConfig is always called after construction from InitializeSession.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
constexpr uint32_t kTestMaxPacketSize = 1233u;
QuicConfig config;
QuicConfigPeer::SetReceivedMaxPacketSize(&config, kTestMaxPacketSize);
connection_.SetFromConfig(config);
EXPECT_EQ(kTestMaxPacketSize, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, PeerCannotRaiseMaxPacketSize) {
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
// SetFromConfig is always called after construction from InitializeSession.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
constexpr uint32_t kTestMaxPacketSize = 1450u;
QuicConfig config;
QuicConfigPeer::SetReceivedMaxPacketSize(&config, kTestMaxPacketSize);
connection_.SetFromConfig(config);
EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) {
TestConnection connection(TestConnectionId(), kPeerAddress, helper_.get(),
alarm_factory_.get(), writer_.get(),
Perspective::IS_SERVER, version());
EXPECT_EQ(Perspective::IS_SERVER, connection.perspective());
EXPECT_EQ(1000u, connection.max_packet_length());
}
TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) {
set_perspective(Perspective::IS_SERVER);
connection_.SetMaxPacketLength(1000);
QuicPacketHeader header;
header.destination_connection_id = connection_id_;
header.version_flag = true;
header.packet_number = QuicPacketNumber(12);
if (QuicVersionHasLongHeaderLengths(
peer_framer_.version().transport_version)) {
header.long_packet_type = INITIAL;
header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
}
QuicFrames frames;
QuicPaddingFrame padding;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frames.push_back(QuicFrame(&crypto_frame_));
} else {
frames.push_back(QuicFrame(frame1_));
}
frames.push_back(QuicFrame(padding));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length =
peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12),
*packet, buffer, kMaxOutgoingPacketSize);
EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length);
framer_.set_version(version());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
}
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
EXPECT_EQ(kMaxOutgoingPacketSize, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSizeWhileWriterLimited) {
const QuicByteCount lower_max_packet_size = 1240;
writer_->set_max_packet_size(lower_max_packet_size);
set_perspective(Perspective::IS_SERVER);
connection_.SetMaxPacketLength(1000);
EXPECT_EQ(1000u, connection_.max_packet_length());
QuicPacketHeader header;
header.destination_connection_id = connection_id_;
header.version_flag = true;
header.packet_number = QuicPacketNumber(12);
if (QuicVersionHasLongHeaderLengths(
peer_framer_.version().transport_version)) {
header.long_packet_type = INITIAL;
header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
}
QuicFrames frames;
QuicPaddingFrame padding;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frames.push_back(QuicFrame(&crypto_frame_));
} else {
frames.push_back(QuicFrame(frame1_));
}
frames.push_back(QuicFrame(padding));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length =
peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12),
*packet, buffer, kMaxOutgoingPacketSize);
EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length);
framer_.set_version(version());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
}
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
// Here, the limit imposed by the writer is lower than the size of the packet
// received, so the writer max packet size is used.
EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriter) {
const QuicByteCount lower_max_packet_size = 1240;
writer_->set_max_packet_size(lower_max_packet_size);
static_assert(lower_max_packet_size < kDefaultMaxPacketSize,
"Default maximum packet size is too low");
connection_.SetMaxPacketLength(kDefaultMaxPacketSize);
EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriterForNewConnection) {
const QuicConnectionId connection_id = TestConnectionId(17);
const QuicByteCount lower_max_packet_size = 1240;
writer_->set_max_packet_size(lower_max_packet_size);
TestConnection connection(connection_id, kPeerAddress, helper_.get(),
alarm_factory_.get(), writer_.get(),
Perspective::IS_CLIENT, version());
EXPECT_EQ(Perspective::IS_CLIENT, connection.perspective());
EXPECT_EQ(lower_max_packet_size, connection.max_packet_length());
}
TEST_P(QuicConnectionTest, PacketsInOrder) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
EXPECT_EQ(QuicPacketNumber(1u), LargestAcked(connection_.ack_frame()));
EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
ProcessPacket(2);
EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(connection_.ack_frame()));
EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
ProcessPacket(3);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
}
TEST_P(QuicConnectionTest, PacketsOutOfOrder) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(2);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_FALSE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(1);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_FALSE(IsMissing(2));
EXPECT_FALSE(IsMissing(1));
}
TEST_P(QuicConnectionTest, DuplicatePacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
// Send packet 3 again, but do not set the expectation that
// the visitor OnStreamFrame() will be called.
ProcessDataPacket(3);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
}
TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(2);
EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(5);
EXPECT_EQ(QuicPacketNumber(5u), LargestAcked(connection_.ack_frame()));
EXPECT_TRUE(IsMissing(1));
EXPECT_TRUE(IsMissing(4));
// Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
// packet the peer will not retransmit. It indicates this by sending 'least
// awaiting' is 4. The connection should then realize 1 will not be
// retransmitted, and will remove it from the missing list.
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
ProcessAckPacket(6, &frame);
// Force an ack to be sent.
SendAckPacketToPeer();
EXPECT_TRUE(IsMissing(4));
}
TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) {
// EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
if (!IsDefaultTestConfiguration()) {
return;
}
// Process an unencrypted packet from the non-crypto stream.
frame1_.stream_id = 3;
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_QUIC_PEER_BUG(ProcessDataPacketAtLevel(1, false, ENCRYPTION_INITIAL),
"");
TestConnectionCloseQuicErrorCode(QUIC_UNENCRYPTED_STREAM_DATA);
}
TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
// Should not cause an ack.
EXPECT_EQ(0u, writer_->packets_write_attempts());
ProcessPacket(2);
// Should ack immediately, since this fills the last hole.
EXPECT_EQ(1u, writer_->packets_write_attempts());
ProcessPacket(1);
// Should ack immediately, since this fills the last hole.
EXPECT_EQ(2u, writer_->packets_write_attempts());
ProcessPacket(4);
// Should not cause an ack.
EXPECT_EQ(2u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
EXPECT_EQ(2u, writer_->packets_write_attempts());
QuicAckFrame ack1 = InitAckFrame(1);
QuicAckFrame ack2 = InitAckFrame(2);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
if (connection_.SupportsMultiplePacketNumberSpaces()) {
EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()).Times(1);
}
ProcessAckPacket(2, &ack2);
// Should ack immediately since we have missing packets.
EXPECT_EQ(2u, writer_->packets_write_attempts());
if (connection_.SupportsMultiplePacketNumberSpaces()) {
EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()).Times(0);
}
ProcessAckPacket(1, &ack1);
// Should not ack an ack filling a missing packet.
EXPECT_EQ(2u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketNumber original, second;
QuicByteCount packet_size =
SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original); // 1st packet.
SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second); // 2nd packet.
QuicAckFrame frame = InitAckFrame({{second, second + 1}});
// First nack triggers early retransmit.
LostPacketVector lost_packets;
lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<5>(lost_packets),
Return(LossDetectionInterface::DetectionStats())));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicPacketNumber retransmission;
// Packet 1 is short header for IETF QUIC because the encryption level
// switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _,
VersionHasIetfInvariantHeader(
GetParam().version.transport_version)
? packet_size
: packet_size - kQuicVersionSize,
_))
.WillOnce(SaveArg<2>(&retransmission));
ProcessAckPacket(&frame);
QuicAckFrame frame2 = ConstructAckFrame(retransmission, original);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
ProcessAckPacket(&frame2);
// Now if the peer sends an ack which still reports the retransmitted packet
// as missing, that will bundle an ack with data after two acks in a row
// indicate the high water mark needs to be raised.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
connection_.SendStreamDataWithString(3, "foo", 6, NO_FIN);
// No ack sent.
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
// No more packet loss for the rest of the test.
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.Times(AnyNumber());
ProcessAckPacket(&frame2);
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
connection_.SendStreamDataWithString(3, "foofoofoo", 9, NO_FIN);
// Ack bundled.
if (GetParam().no_stop_waiting) {
// Do not ACK acks.
EXPECT_EQ(1u, writer_->frame_count());
} else {
EXPECT_EQ(3u, writer_->frame_count());
}
EXPECT_EQ(1u, writer_->stream_frames().size());
if (GetParam().no_stop_waiting) {
EXPECT_TRUE(writer_->ack_frames().empty());
} else {
EXPECT_FALSE(writer_->ack_frames().empty());
}
// But an ack with no missing packets will not send an ack.
AckPacket(original, &frame2);
ProcessAckPacket(&frame2);
ProcessAckPacket(&frame2);
}
TEST_P(QuicConnectionTest, AckSentEveryNthPacket) {
connection_.set_ack_frequency_before_ack_decimation(3);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(39);
// Expect 13 acks, every 3rd packet.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(13);
// Receives packets 1 - 39.
for (size_t i = 1; i <= 39; ++i) {
ProcessDataPacket(i);
}
}
TEST_P(QuicConnectionTest, AckDecimationReducesAcks) {
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING);
// Start ack decimation from 10th packet.
connection_.set_min_received_before_ack_decimation(10);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(30);
// Expect 6 acks: 5 acks between packets 1-10, and ack at 20.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6);
// Receives packets 1 - 29.
for (size_t i = 1; i <= 29; ++i) {
ProcessDataPacket(i);
}
// We now receive the 30th packet, and so we send an ack.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
ProcessDataPacket(30);
}
TEST_P(QuicConnectionTest, AckNeedsRetransmittableFrames) {
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(99);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19);
// Receives packets 1 - 39.
for (size_t i = 1; i <= 39; ++i) {
ProcessDataPacket(i);
}
// Receiving Packet 40 causes 20th ack to send. Session is informed and adds
// WINDOW_UPDATE.
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
.WillOnce(Invoke([this]() {
connection_.SendControlFrame(
QuicFrame(new QuicWindowUpdateFrame(1, 0, 0)));
}));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
EXPECT_EQ(0u, writer_->window_update_frames().size());
ProcessDataPacket(40);
EXPECT_EQ(1u, writer_->window_update_frames().size());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(9);
// Receives packets 41 - 59.
for (size_t i = 41; i <= 59; ++i) {
ProcessDataPacket(i);
}
// Send a packet containing stream frame.
SendStreamDataToPeer(
QuicUtils::GetFirstBidirectionalStreamId(
connection_.version().transport_version, Perspective::IS_CLIENT),
"bar", 0, NO_FIN, nullptr);
// Session will not be informed until receiving another 20 packets.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19);
for (size_t i = 60; i <= 98; ++i) {
ProcessDataPacket(i);
EXPECT_EQ(0u, writer_->window_update_frames().size());
}
// Session does not add a retransmittable frame.
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
.WillOnce(Invoke([this]() {
connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
}));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
EXPECT_EQ(0u, writer_->ping_frames().size());
ProcessDataPacket(99);
EXPECT_EQ(0u, writer_->window_update_frames().size());
// A ping frame will be added.
EXPECT_EQ(1u, writer_->ping_frames().size());
}
TEST_P(QuicConnectionTest, AckNeedsRetransmittableFramesAfterPto) {
// Disable TLP so the RTO fires immediately.
connection_.SetMaxTailLossProbes(0);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(kEACK);
config.SetConnectionOptionsToSend(connection_options);
connection_.SetFromConfig(config);
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(10);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(4);
// Receive packets 1 - 9.
for (size_t i = 1; i <= 9; ++i) {
ProcessDataPacket(i);
}
// Send a ping and fire the retransmission alarm.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
SendPing();
QuicTime retransmission_time =
connection_.GetRetransmissionAlarm()->deadline();
clock_.AdvanceTime(retransmission_time - clock_.Now());
connection_.GetRetransmissionAlarm()->Fire();
ASSERT_TRUE(manager_->GetConsecutiveRtoCount() > 0 ||
manager_->GetConsecutivePtoCount() > 0);
// Process a packet, which requests a retransmittable frame be bundled
// with the ACK.
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
.WillOnce(Invoke([this]() {
connection_.SendControlFrame(
QuicFrame(new QuicWindowUpdateFrame(1, 0, 0)));
}));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
ProcessDataPacket(11);
EXPECT_EQ(1u, writer_->window_update_frames().size());
}
TEST_P(QuicConnectionTest, LeastUnackedLower) {
if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr);
// Start out saying the least unacked is 2.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
ProcessStopWaitingPacket(InitStopWaitingFrame(2));
// Change it to 1, but lower the packet number to fake out-of-order packets.
// This should be fine.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1);
// The scheduler will not process out of order acks, but all packet processing
// causes the connection to try to write.
if (!GetParam().no_stop_waiting) {
EXPECT_CALL(visitor_, OnCanWrite());
}
ProcessStopWaitingPacket(InitStopWaitingFrame(1));
// Now claim it's one, but set the ordering so it was sent "after" the first
// one. This should cause a connection error.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 7);
if (!GetParam().no_stop_waiting) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AtLeast(1));
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.Times(AtLeast(1));
}
ProcessStopWaitingPacket(InitStopWaitingFrame(1));
if (!GetParam().no_stop_waiting) {
TestConnectionCloseQuicErrorCode(QUIC_INVALID_STOP_WAITING_DATA);
}
}
TEST_P(QuicConnectionTest, TooManySentPackets) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketCount max_tracked_packets = 50;
QuicConnectionPeer::SetMaxTrackedPackets(&connection_, max_tracked_packets);
const int num_packets = max_tracked_packets + 5;
for (int i = 0; i < num_packets; ++i) {
SendStreamDataToPeer(1, "foo", 3 * i, NO_FIN, nullptr);
}
// Ack packet 1, which leaves more than the limit outstanding.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
// Nack the first packet and ack the rest, leaving a huge gap.
QuicAckFrame frame1 = ConstructAckFrame(num_packets, 1);
ProcessAckPacket(&frame1);
TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS);
}
TEST_P(QuicConnectionTest, LargestObservedLower) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
// Start out saying the largest observed is 2.
QuicAckFrame frame1 = InitAckFrame(1);
QuicAckFrame frame2 = InitAckFrame(2);
ProcessAckPacket(&frame2);
EXPECT_CALL(visitor_, OnCanWrite());
ProcessAckPacket(&frame1);
}
TEST_P(QuicConnectionTest, AckUnsentData) {
// Ack a packet which has not been sent.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
ProcessAckPacket(&frame);
TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA);
}
TEST_P(QuicConnectionTest, BasicSending) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
const QuicConnectionStats& stats = connection_.GetStats();
EXPECT_FALSE(stats.first_decrypted_packet.IsInitialized());
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(1);
EXPECT_EQ(QuicPacketNumber(1), stats.first_decrypted_packet);
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
QuicPacketNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1
EXPECT_EQ(QuicPacketNumber(1u), last_packet);
SendAckPacketToPeer(); // Packet 2
if (GetParam().no_stop_waiting) {
// Expect no stop waiting frame is sent.
EXPECT_FALSE(least_unacked().IsInitialized());
} else {
EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
}
SendAckPacketToPeer(); // Packet 3
if (GetParam().no_stop_waiting) {
// Expect no stop waiting frame is sent.
EXPECT_FALSE(least_unacked().IsInitialized());
} else {
EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
}
SendStreamDataToPeer(1, "bar", 3, NO_FIN, &last_packet); // Packet 4
EXPECT_EQ(QuicPacketNumber(4u), last_packet);
SendAckPacketToPeer(); // Packet 5
if (GetParam().no_stop_waiting) {
// Expect no stop waiting frame is sent.
EXPECT_FALSE(least_unacked().IsInitialized());
} else {
EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
}
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
// Peer acks up to packet 3.
QuicAckFrame frame = InitAckFrame(3);
ProcessAckPacket(&frame);
SendAckPacketToPeer(); // Packet 6
// As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
// ack for 4.
if (GetParam().no_stop_waiting) {
// Expect no stop waiting frame is sent.
EXPECT_FALSE(least_unacked().IsInitialized());
} else {
EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
}
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
// Peer acks up to packet 4, the last packet.
QuicAckFrame frame2 = InitAckFrame(6);
ProcessAckPacket(&frame2); // Acks don't instigate acks.
// Verify that we did not send an ack.
EXPECT_EQ(QuicPacketNumber(6u), writer_->header().packet_number);
// So the last ack has not changed.
if (GetParam().no_stop_waiting) {
// Expect no stop waiting frame is sent.
EXPECT_FALSE(least_unacked().IsInitialized());
} else {
EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
}
// If we force an ack, we shouldn't change our retransmit state.
SendAckPacketToPeer(); // Packet 7
if (GetParam().no_stop_waiting) {
// Expect no stop waiting frame is sent.
EXPECT_FALSE(least_unacked().IsInitialized());
} else {
EXPECT_EQ(QuicPacketNumber(7u), least_unacked());
}
// But if we send more data it should.
SendStreamDataToPeer(1, "eep", 6, NO_FIN, &last_packet); // Packet 8
EXPECT_EQ(QuicPacketNumber(8u), last_packet);
SendAckPacketToPeer(); // Packet 9
if (GetParam().no_stop_waiting) {
// Expect no stop waiting frame is sent.
EXPECT_FALSE(least_unacked().IsInitialized());
} else {
EXPECT_EQ(QuicPacketNumber(7u), least_unacked());
}
EXPECT_EQ(QuicPacketNumber(1), stats.first_decrypted_packet);
}
// QuicConnection should record the packet sent-time prior to sending the
// packet.
TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) {
// We're using a MockClock for the tests, so we have complete control over the
// time.
// Our recorded timestamp for the last packet sent time will be passed in to
// the send_algorithm. Make sure that it is set to the correct value.
QuicTime actual_recorded_send_time = QuicTime::Zero();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<0>(&actual_recorded_send_time));
// First send without any pause and check the result.
QuicTime expected_recorded_send_time = clock_.Now();
connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
<< "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
<< ". Actual time = " << actual_recorded_send_time.ToDebuggingValue();
// Now pause during the write, and check the results.
actual_recorded_send_time = QuicTime::Zero();
const QuicTime::Delta write_pause_time_delta =
QuicTime::Delta::FromMilliseconds(5000);
SetWritePauseTimeDelta(write_pause_time_delta);
expected_recorded_send_time = clock_.Now();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<0>(&actual_recorded_send_time));
connection_.SendStreamDataWithString(2, "baz", 0, NO_FIN);
EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
<< "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
<< ". Actual time = " << actual_recorded_send_time.ToDebuggingValue();
}
TEST_P(QuicConnectionTest, FramePacking) {
// Send two stream frames in 1 packet by queueing them.
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
{
QuicConnection::ScopedPacketFlusher flusher(&connection_);
connection_.SendStreamData3();
connection_.SendStreamData5();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
}
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's an ack and two stream frames from
// two different streams.
if (GetParam().no_stop_waiting) {
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
}
EXPECT_TRUE(writer_->ack_frames().empty());
ASSERT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
writer_->stream_frames()[0]->stream_id);
EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
writer_->stream_frames()[1]->stream_id);
}
TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) {
// Send two stream frames (one non-crypto, then one crypto) in 2 packets by
// queueing them.
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
{
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
QuicConnection::ScopedPacketFlusher flusher(&connection_);
connection_.SendStreamData3();
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
connection_.SendCryptoStreamData();
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
}
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's the crypto stream frame.
EXPECT_EQ(2u, writer_->frame_count());
ASSERT_EQ(1u, writer_->padding_frames().size());
if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) {
ASSERT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(QuicUtils::GetCryptoStreamId(connection_.transport_version()),
writer_->stream_frames()[0]->stream_id);
} else {
EXPECT_EQ(1u, writer_->crypto_frames().size());
}
}
TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) {
// Send two stream frames (one crypto, then one non-crypto) in 2 packets by
// queueing them.
{
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
QuicConnection::ScopedPacketFlusher flusher(&connection_);
connection_.SendCryptoStreamData();
connection_.SendStreamData3();
}
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's the stream frame from stream 3.
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
writer_->stream_frames()[0]->stream_id);
}
TEST_P(QuicConnectionTest, FramePackingAckResponse) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Process a data packet to queue up a pending ack.
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
}
ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
QuicPacketNumber last_packet;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
connection_.SendCryptoDataWithString("foo", 0);
} else {
SendStreamDataToPeer(
QuicUtils::GetCryptoStreamId(connection_.transport_version()), "foo", 0,
NO_FIN, &last_packet);
}
// Verify ack is bundled with outging packet.
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_CALL(visitor_, OnCanWrite())
.WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData5))));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
// Process a data packet to cause the visitor's OnCanWrite to be invoked.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(0x01));
SetDecrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<StrictTaggingDecrypter>(0x01));
ProcessDataPacket(2);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's an ack and two stream frames from
// two different streams.
if (GetParam().no_stop_waiting) {
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(4u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
ASSERT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
writer_->stream_frames()[0]->stream_id);
EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
writer_->stream_frames()[1]->stream_id);
}
TEST_P(QuicConnectionTest, FramePackingSendv) {
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
// Send data in 1 packet by writing multiple blocks in a single iovector
// using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
char data[] = "ABCDEF";
struct iovec iov[2];
iov[0].iov_base = data;
iov[0].iov_len = 4;
iov[1].iov_base = data + 4;
iov[1].iov_len = 2;
QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId(
connection_.transport_version(), Perspective::IS_CLIENT);
connection_.SaveAndSendStreamData(stream_id, iov, 2, 6, 0, NO_FIN);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure multiple iovector blocks have
// been packed into a single stream frame from one stream.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(0u, writer_->padding_frames().size());
QuicStreamFrame* frame = writer_->stream_frames()[0].get();
EXPECT_EQ(stream_id, frame->stream_id);
EXPECT_EQ("ABCDEF",
quiche::QuicheStringPiece(frame->data_buffer, frame->data_length));
}
TEST_P(QuicConnectionTest, FramePackingSendvQueued) {
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
// Try to send two stream frames in 1 packet by using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
BlockOnNextWrite();
char data[] = "ABCDEF";
struct iovec iov[2];
iov[0].iov_base = data;
iov[0].iov_len = 4;
iov[1].iov_base = data + 4;
iov[1].iov_len = 2;
QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId(
connection_.transport_version(), Perspective::IS_CLIENT);
connection_.SaveAndSendStreamData(stream_id, iov, 2, 6, 0, NO_FIN);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
EXPECT_TRUE(connection_.HasQueuedData());
// Unblock the writes and actually send.
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// Parse the last packet and ensure it's one stream frame from one stream.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(0u, writer_->padding_frames().size());
EXPECT_EQ(stream_id, writer_->stream_frames()[0]->stream_id);
}
TEST_P(QuicConnectionTest, SendingZeroBytes) {
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
// Send a zero byte write with a fin using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId(
connection_.transport_version(), Perspective::IS_CLIENT);
connection_.SaveAndSendStreamData(stream_id, nullptr, 0, 0, 0, FIN);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Padding frames are added by v99 to ensure a minimum packet size.
size_t extra_padding_frames = 0;
if (GetParam().version.HasHeaderProtection()) {
extra_padding_frames = 1;
}
// Parse the last packet and ensure it's one stream frame from one stream.
EXPECT_EQ(1u + extra_padding_frames, writer_->frame_count());
EXPECT_EQ(extra_padding_frames, writer_->padding_frames().size());
ASSERT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(stream_id, writer_->stream_frames()[0]->stream_id);
EXPECT_TRUE(writer_->stream_frames()[0]->fin);
}
TEST_P(QuicConnectionTest, LargeSendWithPendingAck) {
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
// Set the ack alarm by processing a ping frame.
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Processs a PING frame.
ProcessFramePacket(QuicFrame(QuicPingFrame()));
// Ensure that this has caused the ACK alarm to be set.
EXPECT_TRUE(connection_.HasPendingAcks());
// Send data and ensure the ack is bundled.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(8);
size_t len = 10000;
std::unique_ptr<char[]> data_array(new char[len]);
memset(data_array.get(), '?', len);
struct iovec iov;
iov.iov_base = data_array.get();
iov.iov_len = len;
QuicConsumedData consumed = connection_.SaveAndSendStreamData(
GetNthClientInitiatedStreamId(0, connection_.transport_version()), &iov,
1, len, 0, FIN);
EXPECT_EQ(len, consumed.bytes_consumed);
EXPECT_TRUE(consumed.fin_consumed);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's one stream frame with a fin.
EXPECT_EQ(1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(GetNthClientInitiatedStreamId(0, connection_.transport_version()),
writer_->stream_frames()[0]->stream_id);
EXPECT_TRUE(writer_->stream_frames()[0]->fin);
// Ensure the ack alarm was cancelled when the ack was sent.
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, OnCanWrite) {
// Visitor's OnCanWrite will send data, but will have more pending writes.
EXPECT_CALL(visitor_, OnCanWrite())
.WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData5))));
{
InSequence seq;
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true));
EXPECT_CALL(visitor_, WillingAndAbleToWrite())
.WillRepeatedly(Return(false));
}
EXPECT_CALL(*send_algorithm_, CanSend(_))
.WillRepeatedly(testing::Return(true));
connection_.OnCanWrite();
// Parse the last packet and ensure it's the two stream frames from
// two different streams.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
writer_->stream_frames()[0]->stream_id);
EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
writer_->stream_frames()[1]->stream_id);
}
TEST_P(QuicConnectionTest, RetransmitOnNack) {
QuicPacketNumber last_packet;
QuicByteCount second_packet_size;
SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet); // Packet 1
second_packet_size =
SendStreamDataToPeer(3, "foos", 3, NO_FIN, &last_packet); // Packet 2
SendStreamDataToPeer(3, "fooos", 7, NO_FIN, &last_packet); // Packet 3
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Don't lose a packet on an ack, and nothing is retransmitted.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame ack_one = InitAckFrame(1);
ProcessAckPacket(&ack_one);
// Lose a packet and ensure it triggers retransmission.
QuicAckFrame nack_two = ConstructAckFrame(3, 2);
LostPacketVector lost_packets;
lost_packets.push_back(
LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<5>(lost_packets),
Return(LossDetectionInterface::DetectionStats())));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
EXPECT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_));
ProcessAckPacket(&nack_two);
}
TEST_P(QuicConnectionTest, DoNotSendQueuedPacketForResetStream) {
// Block the connection to queue the packet.
BlockOnNextWrite();
QuicStreamId stream_id = 2;
connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
// Now that there is a queued packet, reset the stream.
SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
// Unblock the connection and verify that only the RST_STREAM is sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
writer_->SetWritable();
connection_.OnCanWrite();
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
}
TEST_P(QuicConnectionTest, SendQueuedPacketForQuicRstStreamNoError) {
// Block the connection to queue the packet.
BlockOnNextWrite();
QuicStreamId stream_id = 2;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
// Now that there is a queued packet, reset the stream.
SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3);
// Unblock the connection and verify that the RST_STREAM is sent and the data
// packet is sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
writer_->SetWritable();
connection_.OnCanWrite();
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
}
TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnNack) {
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12);
// Lose a packet and ensure it does not trigger retransmission.
QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessAckPacket(&nack_two);
}
TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnNack) {
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12);
// Lose a packet, ensure it triggers retransmission.
QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
LostPacketVector lost_packets;
lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<5>(lost_packets),
Return(LossDetectionInterface::DetectionStats())));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
ProcessAckPacket(&nack_two);
}
TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnRTO) {
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
// Fire the RTO and verify that the RST_STREAM is resent, not stream data.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
}
// Ensure that if the only data in flight is non-retransmittable, the
// retransmission alarm is not set.
TEST_P(QuicConnectionTest, CancelRetransmissionAlarmAfterResetStream) {
QuicStreamId stream_id = 2;
QuicPacketNumber last_data_packet;
SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet);
// Cancel the stream.
const QuicPacketNumber rst_packet = last_data_packet + 1;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, rst_packet, _, _)).Times(1);
SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
// Ack the RST_STREAM frame (since it's retransmittable), but not the data
// packet, which is no longer retransmittable since the stream was cancelled.
QuicAckFrame nack_stream_data =
ConstructAckFrame(rst_packet, last_data_packet);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessAckPacket(&nack_stream_data);
// Ensure that the data is still in flight, but the retransmission alarm is no
// longer set.
EXPECT_GT(manager_->GetBytesInFlight(), 0u);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnRTO) {
connection_.SetMaxTailLossProbes(0);
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3);
// Fire the RTO and verify that the RST_STREAM is resent, the stream data
// is sent.
const size_t num_retransmissions =
connection_.SupportsMultiplePacketNumberSpaces() ? 1 : 2;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AtLeast(num_retransmissions));
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
if (num_retransmissions == 2) {
ASSERT_EQ(1u, writer_->rst_stream_frames().size());
EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
}
}
TEST_P(QuicConnectionTest, DoNotSendPendingRetransmissionForResetStream) {
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
BlockOnNextWrite();
connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN);
// Lose a packet which will trigger a pending retransmission.
QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessAckPacket(&ack);
SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12);
// Unblock the connection and verify that the RST_STREAM is sent but not the
// second data packet nor a retransmit.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
writer_->SetWritable();
connection_.OnCanWrite();
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->rst_stream_frames().size());
EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
}
TEST_P(QuicConnectionTest, SendPendingRetransmissionForQuicRstStreamNoError) {
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
BlockOnNextWrite();
connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN);
// Lose a packet which will trigger a pending retransmission.
QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
LostPacketVector lost_packets;
lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<5>(lost_packets),
Return(LossDetectionInterface::DetectionStats())));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessAckPacket(&ack);
SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12);
// Unblock the connection and verify that the RST_STREAM is sent and the
// second data packet or a retransmit is sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2));
writer_->SetWritable();
connection_.OnCanWrite();
// The RST_STREAM_FRAME is sent after queued packets and pending
// retransmission.
connection_.SendControlFrame(QuicFrame(
new QuicRstStreamFrame(1, stream_id, QUIC_STREAM_NO_ERROR, 14)));
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
}
TEST_P(QuicConnectionTest, RetransmitAckedPacket) {
QuicPacketNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1
SendStreamDataToPeer(1, "foos", 3, NO_FIN, &last_packet); // Packet 2
SendStreamDataToPeer(1, "fooos", 7, NO_FIN, &last_packet); // Packet 3
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Instigate a loss with an ack.
QuicAckFrame nack_two = ConstructAckFrame(3, 2);
// The first nack should trigger a fast retransmission, but we'll be
// write blocked, so the packet will be queued.
BlockOnNextWrite();
LostPacketVector lost_packets;
lost_packets.push_back(
LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<5>(lost_packets),
Return(LossDetectionInterface::DetectionStats())));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _))
.Times(1);
ProcessAckPacket(&nack_two);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Now, ack the previous transmission.
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(false, _, _, _, _));
QuicAckFrame ack_all = InitAckFrame(3);
ProcessAckPacket(&ack_all);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _))
.Times(0);
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// We do not store retransmittable frames of this retransmission.
EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, 4));
}
TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketNumber original, second;
QuicByteCount packet_size =
SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original); // 1st packet.
SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second); // 2nd packet.
QuicAckFrame frame = InitAckFrame({{second, second + 1}});
// The first nack should retransmit the largest observed packet.
LostPacketVector lost_packets;
lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<5>(lost_packets),
Return(LossDetectionInterface::DetectionStats())));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
// Packet 1 is short header for IETF QUIC because the encryption level
// switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _,
VersionHasIetfInvariantHeader(
GetParam().version.transport_version)
? packet_size
: packet_size - kQuicVersionSize,
_));
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) {
if (connection_.PtoEnabled()) {
return;
}
connection_.SetMaxTailLossProbes(0);
for (int i = 0; i < 10; ++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(3, "foo", i * 3, NO_FIN);
}
// Block the writer and ensure they're queued.
BlockOnNextWrite();
clock_.AdvanceTime(DefaultRetransmissionTime());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_TRUE(connection_.HasQueuedData());
// Unblock the writer.
writer_->SetWritable();
clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(
2 * DefaultRetransmissionTime().ToMicroseconds()));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
connection_.GetRetransmissionAlarm()->Fire();
connection_.OnCanWrite();
}
TEST_P(QuicConnectionTest, WriteBlockedBufferedThenSent) {
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, WriteBlockedThenSent) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
BlockOnNextWrite();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// The second packet should also be queued, in order to ensure packets are
// never sent out of order.
writer_->SetWritable();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
EXPECT_EQ(2u, connection_.NumQueuedPackets());
// Now both are sent in order when we unblock.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
connection_.OnCanWrite();
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
// Ack the sent packet before the callback returns, which happens in
// rare circumstances with write blocked sockets.
QuicAckFrame ack = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
ProcessAckPacket(&ack);
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
uint64_t retransmission = connection_.SupportsMultiplePacketNumberSpaces() &&
!GetQuicReloadableFlag(quic_default_on_pto)
? 3
: 2;
EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_,
retransmission));
}
TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) {
// Block the connection.
BlockOnNextWrite();
connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
EXPECT_EQ(1u, writer_->packets_write_attempts());
EXPECT_TRUE(writer_->IsWriteBlocked());
// Set the send alarm. Fire the alarm and ensure it doesn't attempt to write.
connection_.GetSendAlarm()->Set(clock_.ApproximateNow());
connection_.GetSendAlarm()->Fire();
EXPECT_TRUE(writer_->IsWriteBlocked());
EXPECT_EQ(1u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, NoSendAlarmAfterProcessPacketWhenWriteBlocked) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Block the connection.
BlockOnNextWrite();
connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
EXPECT_TRUE(writer_->IsWriteBlocked());
EXPECT_EQ(1u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
// Process packet number 1. Can not call ProcessPacket or ProcessDataPacket
// here, because they will fire the alarm after QuicConnection::ProcessPacket
// is returned.
const uint64_t received_packet_num = 1;
const bool has_stop_waiting = false;
const EncryptionLevel level = ENCRYPTION_FORWARD_SECURE;
std::unique_ptr<QuicPacket> packet(
ConstructDataPacket(received_packet_num, has_stop_waiting, level));
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length =
peer_framer_.EncryptPayload(level, QuicPacketNumber(received_packet_num),
*packet, buffer, kMaxOutgoingPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
EXPECT_TRUE(writer_->IsWriteBlocked());
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, AddToWriteBlockedListIfWriterBlockedWhenProcessing) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
// Simulate the case where a shared writer gets blocked by another connection.
writer_->SetWriteBlocked();
// Process an ACK, make sure the connection calls visitor_->OnWriteBlocked().
QuicAckFrame ack1 = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
ProcessAckPacket(1, &ack1);
}
TEST_P(QuicConnectionTest, DoNotAddToWriteBlockedListAfterDisconnect) {
writer_->SetBatchMode(true);
EXPECT_TRUE(connection_.connected());
// Have to explicitly grab the OnConnectionClosed frame and check
// its parameters because this is a silent connection close and the
// frame is not also transmitted to the peer.
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0);
{
QuicConnection::ScopedPacketFlusher flusher(&connection_);
connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
ConnectionCloseBehavior::SILENT_CLOSE);
EXPECT_FALSE(connection_.connected());
writer_->SetWriteBlocked();
}
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_PEER_GOING_AWAY));
}
TEST_P(QuicConnectionTest, AddToWriteBlockedListIfBlockedOnFlushPackets) {
writer_->SetBatchMode(true);
writer_->BlockOnNextFlush();
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
{
QuicConnection::ScopedPacketFlusher flusher(&connection_);
// flusher's destructor will call connection_.FlushPackets, which should add
// the connection to the write blocked list.
}
}
TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
int offset = 0;
// Send packets 1 to 15.
for (int i = 0; i < 15; ++i) {
SendStreamDataToPeer(1, "foo", offset, NO_FIN, nullptr);
offset += 3;
}
// Ack 15, nack 1-14.
QuicAckFrame nack =
InitAckFrame({{QuicPacketNumber(15), QuicPacketNumber(16)}});
// 14 packets have been NACK'd and lost.
LostPacketVector lost_packets;
for (int i = 1; i < 15; ++i) {
lost_packets.push_back(
LostPacket(QuicPacketNumber(i), kMaxOutgoingPacketSize));
}
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<5>(lost_packets),
Return(LossDetectionInterface::DetectionStats())));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
ProcessAckPacket(&nack);
}
// Test sending multiple acks from the connection to the session.
TEST_P(QuicConnectionTest, MultipleAcks) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(1);
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
QuicPacketNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1
EXPECT_EQ(QuicPacketNumber(1u), last_packet);
SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet); // Packet 2
EXPECT_EQ(QuicPacketNumber(2u), last_packet);
SendAckPacketToPeer(); // Packet 3
SendStreamDataToPeer(5, "foo", 0, NO_FIN, &last_packet); // Packet 4
EXPECT_EQ(QuicPacketNumber(4u), last_packet);
SendStreamDataToPeer(1, "foo", 3, NO_FIN, &last_packet); // Packet 5
EXPECT_EQ(QuicPacketNumber(5u), last_packet);
SendStreamDataToPeer(3, "foo", 3, NO_FIN, &last_packet); // Packet 6
EXPECT_EQ(QuicPacketNumber(6u), last_packet);
// Client will ack packets 1, 2, [!3], 4, 5.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame frame1 = ConstructAckFrame(5, 3);
ProcessAckPacket(&frame1);
// Now the client implicitly acks 3, and explicitly acks 6.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame frame2 = InitAckFrame(6);
ProcessAckPacket(&frame2);
}
TEST_P(QuicConnectionTest, DontLatchUnackedPacket) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(1);
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); // Packet 1;
// From now on, we send acks, so the send algorithm won't mark them pending.
SendAckPacketToPeer(); // Packet 2
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame frame = InitAckFrame(1);
ProcessAckPacket(&frame);
// Verify that our internal state has least-unacked as 2, because we're still
// waiting for a potential ack for 2.
EXPECT_EQ(QuicPacketNumber(2u), stop_waiting()->least_unacked);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
frame = InitAckFrame(2);
ProcessAckPacket(&frame);
EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked);
// When we send an ack, we make sure our least-unacked makes sense. In this
// case since we're not waiting on an ack for 2 and all packets are acked, we
// set it to 3.
SendAckPacketToPeer(); // Packet 3
// Least_unacked remains at 3 until another ack is received.
EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked);
if (GetParam().no_stop_waiting) {
// Expect no stop waiting frame is sent.
EXPECT_FALSE(least_unacked().IsInitialized());
} else {
// Check that the outgoing ack had its packet number as least_unacked.
EXPECT_EQ(QuicPacketNumber(3u), least_unacked());
}
// Ack the ack, which updates the rtt and raises the least unacked.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
frame = InitAckFrame(3);
ProcessAckPacket(&frame);
SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); // Packet 4
EXPECT_EQ(QuicPacketNumber(4u), stop_waiting()->least_unacked);
SendAckPacketToPeer(); // Packet 5
if (GetParam().no_stop_waiting) {
// Expect no stop waiting frame is sent.
EXPECT_FALSE(least_unacked().IsInitialized());
} else {
EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
}
// Send two data packets at the end, and ensure if the last one is acked,
// the least unacked is raised above the ack packets.
SendStreamDataToPeer(1, "bar", 6, NO_FIN, nullptr); // Packet 6
SendStreamDataToPeer(1, "bar", 9, NO_FIN, nullptr); // Packet 7
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
frame = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(5)},
{QuicPacketNumber(7), QuicPacketNumber(8)}});
ProcessAckPacket(&frame);
EXPECT_EQ(QuicPacketNumber(6u), stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, TLP) {
if (connection_.PtoEnabled()) {
return;
}
connection_.SetMaxTailLossProbes(1);
SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
QuicTime retransmission_time =
connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), retransmission_time);
EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number);
// Simulate the retransmission alarm firing and sending a tlp,
// so send algorithm's OnRetransmissionTimeout is not called.
clock_.AdvanceTime(retransmission_time - clock_.Now());
const QuicPacketNumber retransmission(
connection_.SupportsMultiplePacketNumberSpaces() ? 3 : 2);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, retransmission, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(retransmission, writer_->header().packet_number);
// We do not raise the high water mark yet.
EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, TailLossProbeDelayForStreamDataInTLPR) {
if (connection_.PtoEnabled()) {
return;
}
// Set TLPR from QuicConfig.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
QuicTagVector options;
options.push_back(kTLPR);
config.SetConnectionOptionsToSend(options);
connection_.SetFromConfig(config);
connection_.SetMaxTailLossProbes(1);
SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
QuicTime retransmission_time =
connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), retransmission_time);
QuicTime::Delta expected_tlp_delay =
0.5 * manager_->GetRttStats()->SmoothedOrInitialRtt();
EXPECT_EQ(expected_tlp_delay, retransmission_time - clock_.Now());
EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number);
// Simulate firing of the retransmission alarm and retransmit the packet.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _));
clock_.AdvanceTime(retransmission_time - clock_.Now());
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number);
// We do not raise the high water mark yet.
EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, TailLossProbeDelayForNonStreamDataInTLPR) {
if (connection_.PtoEnabled()) {
return;
}
// Set TLPR from QuicConfig.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
QuicTagVector options;
options.push_back(kTLPR);
config.SetConnectionOptionsToSend(options);
QuicConfigPeer::SetNegotiated(&config, true);
if (connection_.version().AuthenticatesHandshakeConnectionIds()) {
QuicConfigPeer::SetReceivedOriginalConnectionId(
&config, connection_.connection_id());
QuicConfigPeer::SetReceivedInitialSourceConnectionId(
&config, connection_.connection_id());
}
connection_.SetFromConfig(config);
connection_.SetMaxTailLossProbes(1);
// Sets retransmittable on wire.
const QuicTime::Delta retransmittable_on_wire_timeout =
QuicTime::Delta::FromMilliseconds(50);
connection_.set_initial_retransmittable_on_wire_timeout(
retransmittable_on_wire_timeout);
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(true));
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
EXPECT_FALSE(connection_.IsPathDegrading());
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
const char data[] = "data";
size_t data_size = strlen(data);
QuicStreamOffset offset = 0;
// Send a data packet.
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
// Path degrading alarm should be set when there is a retransmittable packet
// on the wire.
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
// Verify the path degrading delay.
// First TLP with stream data.
QuicTime::Delta srtt = manager_->GetRttStats()->SmoothedOrInitialRtt();
QuicTime::Delta expected_delay = 0.5 * srtt;
// Add 1st RTO.
QuicTime::Delta retransmission_delay =
QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
expected_delay = expected_delay + retransmission_delay;
// Add 2nd RTO.
expected_delay = expected_delay + retransmission_delay * 2;
EXPECT_EQ(expected_delay,
QuicConnectionPeer::GetSentPacketManager(&connection_)
->GetPathDegradingDelay());
ASSERT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
// The ping alarm is set for the ping timeout, not the shorter
// retransmittable_on_wire_timeout.
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(connection_.ping_timeout(),
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Receive an ACK for the data packet.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame frame =
InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
ProcessAckPacket(&frame);
// Path degrading alarm should be cancelled as there is no more
// reretransmittable packets on the wire.
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
// The ping alarm should be set to the retransmittable_on_wire_timeout.
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Simulate firing of the retransmittable on wire and send a PING.
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); }));
clock_.AdvanceTime(retransmittable_on_wire_timeout);
connection_.GetPingAlarm()->Fire();
// The retransmission alarm and the path degrading alarm should be set as
// there is a retransmittable packet (PING) on the wire,
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
// Verify the retransmission delay.
QuicTime::Delta min_rto_timeout =
QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs);
srtt = manager_->GetRttStats()->SmoothedOrInitialRtt();
// First TLP without unacked stream data will no longer use TLPR.
expected_delay = std::max(2 * srtt, 1.5 * srtt + 0.5 * min_rto_timeout);
EXPECT_EQ(expected_delay,
connection_.GetRetransmissionAlarm()->deadline() - clock_.Now());
// Verify the path degrading delay = TLP delay + 1st RTO + 2nd RTO.
// Add 1st RTO.
retransmission_delay =
std::max(manager_->GetRttStats()->smoothed_rtt() +
4 * manager_->GetRttStats()->mean_deviation(),
min_rto_timeout);
expected_delay = expected_delay + retransmission_delay;
// Add 2nd RTO.
expected_delay = expected_delay + retransmission_delay * 2;
EXPECT_EQ(expected_delay,
QuicConnectionPeer::GetSentPacketManager(&connection_)
->GetPathDegradingDelay());
// The ping alarm is set for the ping timeout, not the shorter
// retransmittable_on_wire_timeout.
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(connection_.ping_timeout(),
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Advance a small period of time: 5ms. And receive a retransmitted ACK.
// This will update the retransmission alarm, verify the retransmission delay
// is correct.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicAckFrame ack = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
ProcessAckPacket(&ack);
// Verify the retransmission delay.
// First TLP without unacked stream data will no longer use TLPR.
expected_delay = std::max(2 * srtt, 1.5 * srtt + 0.5 * min_rto_timeout);
expected_delay = expected_delay - QuicTime::Delta::FromMilliseconds(5);
EXPECT_EQ(expected_delay,
connection_.GetRetransmissionAlarm()->deadline() - clock_.Now());
}
TEST_P(QuicConnectionTest, RTO) {
if (connection_.PtoEnabled()) {
return;
}
connection_.SetMaxTailLossProbes(0);
QuicTime default_retransmission_time =
clock_.ApproximateNow() + DefaultRetransmissionTime();
SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number);
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number);
// We do not raise the high water mark yet.
EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
}
// Regression test of b/133771183.
TEST_P(QuicConnectionTest, RtoWithNoDataToRetransmit) {
if (connection_.PtoEnabled()) {
return;
}
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.SetMaxTailLossProbes(0);
SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
// Connection is cwnd limited.
CongestionBlockWrites();
// Stream gets reset.
SendRstStream(3, QUIC_ERROR_PROCESSING_STREAM, 3);
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
// RTO fires, but there is no packet to be RTOed.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(40);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(20);
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false));
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(1);
// Receives packets 1 - 40.
for (size_t i = 1; i <= 40; ++i) {
ProcessDataPacket(i);
}
}
TEST_P(QuicConnectionTest, SendHandshakeMessages) {
use_tagging_decrypter();
// A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
// the end of the packet. We can test this to check which encrypter was used.
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x01));
// Attempt to send a handshake message and have the socket block.
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
BlockOnNextWrite();
connection_.SendCryptoDataWithString("foo", 0);
// The packet should be serialized, but not queued.
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Switch to the new encrypter.
connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
// Now become writeable and flush the packets.
writer_->SetWritable();
EXPECT_CALL(visitor_, OnCanWrite());
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// Verify that the handshake packet went out at the null encryption.
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
}
TEST_P(QuicConnectionTest,
DropRetransmitsForNullEncryptedPacketAfterForwardSecure) {
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x01));
connection_.SendCryptoStreamData();
// Simulate the retransmission alarm firing and the socket blocking.
BlockOnNextWrite();
clock_.AdvanceTime(DefaultRetransmissionTime());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Go forward secure.
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
notifier_.NeuterUnencryptedData();
connection_.NeuterUnencryptedPackets();
connection_.OnHandshakeComplete();
EXPECT_EQ(QuicTime::Zero(), connection_.GetRetransmissionAlarm()->deadline());
// Unblock the socket and ensure that no packets are sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
writer_->SetWritable();
connection_.OnCanWrite();
}
TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) {
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x01));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
connection_.SendCryptoDataWithString("foo", 0);
connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
SendStreamDataToPeer(2, "bar", 0, NO_FIN, nullptr);
EXPECT_FALSE(notifier_.HasLostStreamData());
connection_.RetransmitZeroRttPackets();
EXPECT_TRUE(notifier_.HasLostStreamData());
}
TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
// SetFromConfig is always called after construction from InitializeSession.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
use_tagging_decrypter();
const uint8_t tag = 0x07;
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process an encrypted packet which can not yet be decrypted which should
// result in the packet being buffered.
ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
// Transition to the new encryption state and process another encrypted packet
// which should result in the original packet being processed.
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2);
ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
// Finally, process a third packet and note that we do not reprocess the
// buffered packet.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
TEST_P(QuicConnectionTest, TestRetransmitOrder) {
if (connection_.PtoEnabled()) {
return;
}
connection_.SetMaxTailLossProbes(0);
QuicByteCount first_packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&first_packet_size));
connection_.SendStreamDataWithString(3, "first_packet", 0, NO_FIN);
QuicByteCount second_packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&second_packet_size));
connection_.SendStreamDataWithString(3, "second_packet", 12, NO_FIN);
EXPECT_NE(first_packet_size, second_packet_size);
// Advance the clock by huge time to make sure packets will be retransmitted.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
{
InSequence s;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _));
}
connection_.GetRetransmissionAlarm()->Fire();
// Advance again and expect the packets to be sent again in the same order.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20));
{
InSequence s;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _));
}
connection_.GetRetransmissionAlarm()->Fire();
}
TEST_P(QuicConnectionTest, Buffer100NonDecryptablePacketsThenKeyChange) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
// SetFromConfig is always called after construction from InitializeSession.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
config.set_max_undecryptable_packets(100);
connection_.SetFromConfig(config);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
use_tagging_decrypter();
const uint8_t tag = 0x07;
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process an encrypted packet which can not yet be decrypted which should
// result in the packet being buffered.
for (uint64_t i = 1; i <= 100; ++i) {
ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
// Transition to the new encryption state and process another encrypted packet
// which should result in the original packets being processed.
EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(100);
connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
// Finally, process a third packet and note that we do not reprocess the
// buffered packet.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(102, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) {
BlockOnNextWrite();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
// Test that RTO is started once we write to the socket.
writer_->SetWritable();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
connection_.OnCanWrite();
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) {
if (connection_.PtoEnabled()) {
return;
}
connection_.SetMaxTailLossProbes(0);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
connection_.SendStreamDataWithString(3, "bar", 0, NO_FIN);
QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm();
EXPECT_TRUE(retransmission_alarm->IsSet());
EXPECT_EQ(DefaultRetransmissionTime(),
retransmission_alarm->deadline() - clock_.Now());
// Advance the time right before the RTO, then receive an ack for the first
// packet to delay the RTO.
clock_.AdvanceTime(DefaultRetransmissionTime());
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame ack = InitAckFrame(1);
ProcessAckPacket(&ack);
// Now we have an RTT sample of DefaultRetransmissionTime(500ms),
// so the RTO has increased to 2 * SRTT.
EXPECT_TRUE(retransmission_alarm->IsSet());
EXPECT_EQ(retransmission_alarm->deadline() - clock_.Now(),
2 * DefaultRetransmissionTime());
// Move forward past the original RTO and ensure the RTO is still pending.
clock_.AdvanceTime(2 * DefaultRetransmissionTime());
// Ensure the second packet gets retransmitted when it finally fires.
EXPECT_TRUE(retransmission_alarm->IsSet());
EXPECT_EQ(retransmission_alarm->deadline(), clock_.ApproximateNow());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
// Manually cancel the alarm to simulate a real test.
connection_.GetRetransmissionAlarm()->Fire();
// The new retransmitted packet number should set the RTO to a larger value
// than previously.
EXPECT_TRUE(retransmission_alarm->IsSet());
QuicTime next_rto_time = retransmission_alarm->deadline();
QuicTime expected_rto_time =
connection_.sent_packet_manager().GetRetransmissionTime();
EXPECT_EQ(next_rto_time, expected_rto_time);
}
TEST_P(QuicConnectionTest, TestQueued) {
connection_.SetMaxTailLossProbes(0);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Unblock the writes and actually send.
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, InitialTimeout) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
// SetFromConfig sets the initial timeouts before negotiation.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
// Subtract a second from the idle timeout on the client side.
QuicTime default_timeout =
clock_.ApproximateNow() +
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
// Simulate the timeout alarm firing.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1));
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.HasPendingAcks());
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
}
TEST_P(QuicConnectionTest, IdleTimeoutAfterFirstSentPacket) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
QuicTime initial_ddl =
clock_.ApproximateNow() +
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline());
EXPECT_TRUE(connection_.connected());
// Advance the time and send the first packet to the peer.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
QuicPacketNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
EXPECT_EQ(QuicPacketNumber(1u), last_packet);
// This will be the updated deadline for the connection to idle time out.
QuicTime new_ddl = clock_.ApproximateNow() +
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
// Simulate the timeout alarm firing, the connection should not be closed as
// a new packet has been sent.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
QuicTime::Delta delay = initial_ddl - clock_.ApproximateNow();
clock_.AdvanceTime(delay);
// Verify the timeout alarm deadline is updated.
EXPECT_TRUE(connection_.connected());
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_EQ(new_ddl, connection_.GetTimeoutAlarm()->deadline());
// Simulate the timeout alarm firing again, the connection now should be
// closed.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
clock_.AdvanceTime(new_ddl - clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.HasPendingAcks());
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
}
TEST_P(QuicConnectionTest, IdleTimeoutAfterSendTwoPackets) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
QuicTime initial_ddl =
clock_.ApproximateNow() +
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline());
EXPECT_TRUE(connection_.connected());
// Immediately send the first packet, this is a rare case but test code will
// hit this issue often as MockClock used for tests doesn't move with code
// execution until manually adjusted.
QuicPacketNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
EXPECT_EQ(QuicPacketNumber(1u), last_packet);
// Advance the time and send the second packet to the peer.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
EXPECT_EQ(QuicPacketNumber(2u), last_packet);
// Simulate the timeout alarm firing, the connection will be closed.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
clock_.AdvanceTime(initial_ddl - clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.HasPendingAcks());
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
}
TEST_P(QuicConnectionTest, HandshakeTimeout) {
// Use a shorter handshake timeout than idle timeout for this test.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
connection_.SetNetworkTimeouts(timeout, timeout);
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
QuicTime handshake_timeout =
clock_.ApproximateNow() + timeout - QuicTime::Delta::FromSeconds(1);
EXPECT_EQ(handshake_timeout, connection_.GetTimeoutAlarm()->deadline());
EXPECT_TRUE(connection_.connected());
// Send and ack new data 3 seconds later to lengthen the idle timeout.
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(0, connection_.transport_version()),
"GET /", 0, FIN, nullptr);
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3));
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(2));
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
// Simulate the timeout alarm firing.
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.HasPendingAcks());
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
TestConnectionCloseQuicErrorCode(QUIC_HANDSHAKE_TIMEOUT);
}
TEST_P(QuicConnectionTest, PingAfterSend) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(true));
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
// Advance to 5ms, and send a packet to the peer, which will set
// the ping alarm.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(0, connection_.transport_version()),
"GET /", 0, FIN, nullptr);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(QuicTime::Delta::FromSeconds(15),
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Now recevie an ACK of the previous packet, which will move the
// ping alarm forward.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
// The ping timer is set slightly less than 15 seconds in the future, because
// of the 1s ping timer alarm granularity.
EXPECT_EQ(
QuicTime::Delta::FromSeconds(15) - QuicTime::Delta::FromMilliseconds(5),
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
writer_->Reset();
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15));
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); }));
connection_.GetPingAlarm()->Fire();
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->ping_frames().size());
writer_->Reset();
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(false));
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
SendAckPacketToPeer();
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, ReducedPingTimeout) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(true));
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
// Use a reduced ping timeout for this connection.
connection_.set_ping_timeout(QuicTime::Delta::FromSeconds(10));
// Advance to 5ms, and send a packet to the peer, which will set
// the ping alarm.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(0, connection_.transport_version()),
"GET /", 0, FIN, nullptr);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(QuicTime::Delta::FromSeconds(10),
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Now recevie an ACK of the previous packet, which will move the
// ping alarm forward.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
// The ping timer is set slightly less than 10 seconds in the future, because
// of the 1s ping timer alarm granularity.
EXPECT_EQ(
QuicTime::Delta::FromSeconds(10) - QuicTime::Delta::FromMilliseconds(5),
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
writer_->Reset();
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
}));
connection_.GetPingAlarm()->Fire();
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->ping_frames().size());
writer_->Reset();
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(false));
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
SendAckPacketToPeer();
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
}
// Tests whether sending an MTU discovery packet to peer successfully causes the
// maximum packet size to increase.
TEST_P(QuicConnectionTest, SendMtuDiscoveryPacket) {
MtuDiscoveryTestInit();
// Send an MTU probe.
const size_t new_mtu = kDefaultMaxPacketSize + 100;
QuicByteCount mtu_probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&mtu_probe_size));
connection_.SendMtuDiscoveryPacket(new_mtu);
EXPECT_EQ(new_mtu, mtu_probe_size);
EXPECT_EQ(QuicPacketNumber(1u), creator_->packet_number());
// Send more than MTU worth of data. No acknowledgement was received so far,
// so the MTU should be at its old value.
const std::string data(kDefaultMaxPacketSize + 1, '.');
QuicByteCount size_before_mtu_change;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(2)
.WillOnce(SaveArg<3>(&size_before_mtu_change))
.WillOnce(Return());
connection_.SendStreamDataWithString(3, data, 0, FIN);
EXPECT_EQ(QuicPacketNumber(3u), creator_->packet_number());
EXPECT_EQ(kDefaultMaxPacketSize, size_before_mtu_change);
// Acknowledge all packets so far.
QuicAckFrame probe_ack = InitAckFrame(3);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
ProcessAckPacket(&probe_ack);
EXPECT_EQ(new_mtu, connection_.max_packet_length());
// Send the same data again. Check that it fits into a single packet now.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(3, data, 0, FIN);
EXPECT_EQ(QuicPacketNumber(4u), creator_->packet_number());
}
// Verifies that when a MTU probe packet is sent and buffered in a batch writer,
// the writer is flushed immediately.
TEST_P(QuicConnectionTest, BatchWriterFlushedAfterMtuDiscoveryPacket) {
writer_->SetBatchMode(true);
MtuDiscoveryTestInit();
// Send an MTU probe.
const size_t target_mtu = kDefaultMaxPacketSize + 100;
QuicByteCount mtu_probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&mtu_probe_size));
const uint32_t prior_flush_attempts = writer_->flush_attempts();
connection_.SendMtuDiscoveryPacket(target_mtu);
EXPECT_EQ(target_mtu, mtu_probe_size);
EXPECT_EQ(writer_->flush_attempts(), prior_flush_attempts + 1);
}
// Tests whether MTU discovery does not happen when it is not explicitly enabled
// by the connection options.
TEST_P(QuicConnectionTest, MtuDiscoveryDisabled) {
MtuDiscoveryTestInit();
const QuicPacketCount packets_between_probes_base = 10;
set_packets_between_probes_base(packets_between_probes_base);
const QuicPacketCount number_of_packets = packets_between_probes_base * 2;
for (QuicPacketCount i = 0; i < number_of_packets; i++) {
SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
EXPECT_EQ(0u, connection_.mtu_probe_count());
}
}
// Tests whether MTU discovery works when all probes are acknowledged on the
// first try.
TEST_P(QuicConnectionTest, MtuDiscoveryEnabled) {
MtuDiscoveryTestInit();
const QuicPacketCount packets_between_probes_base = 5;
set_packets_between_probes_base(packets_between_probes_base);
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the probe.
SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
QuicByteCount probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&probe_size));
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(),
kMtuDiscoveryTargetPacketSizeHigh));
const QuicPacketNumber probe_packet_number =
FirstSendingPacketNumber() + packets_between_probes_base;
ASSERT_EQ(probe_packet_number, creator_->packet_number());
// Acknowledge all packets sent so far.
QuicAckFrame probe_ack = InitAckFrame(probe_packet_number);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
.Times(AnyNumber());
ProcessAckPacket(&probe_ack);
EXPECT_EQ(probe_size, connection_.max_packet_length());
EXPECT_EQ(0u, connection_.GetBytesInFlight());
EXPECT_EQ(1u, connection_.mtu_probe_count());
QuicStreamOffset stream_offset = packets_between_probes_base;
QuicByteCount last_probe_size = 0;
for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts;
++num_probes) {
// Send just enough packets without triggering the next probe.
for (QuicPacketCount i = 0;
i < (packets_between_probes_base << num_probes) - 1; ++i) {
SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the next probe.
SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
QuicByteCount new_probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&new_probe_size));
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_THAT(new_probe_size,
InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh));
EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count());
// Acknowledge all packets sent so far.
QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number());
ProcessAckPacket(&probe_ack);
EXPECT_EQ(new_probe_size, connection_.max_packet_length());
EXPECT_EQ(0u, connection_.GetBytesInFlight());
last_probe_size = probe_size;
probe_size = new_probe_size;
}
// The last probe size should be equal to the target.
EXPECT_EQ(probe_size, kMtuDiscoveryTargetPacketSizeHigh);
writer_->SetShouldWriteFail();
// Ignore PACKET_WRITE_ERROR once.
SendStreamDataToPeer(3, "(", stream_offset++, NO_FIN, nullptr);
EXPECT_EQ(last_probe_size, connection_.max_packet_length());
EXPECT_TRUE(connection_.connected());
// Close connection on another PACKET_WRITE_ERROR.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
SendStreamDataToPeer(3, ")", stream_offset++, NO_FIN, nullptr);
EXPECT_EQ(last_probe_size, connection_.max_packet_length());
EXPECT_FALSE(connection_.connected());
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_PACKET_WRITE_ERROR));
}
// After a successful MTU probe, one and only one write error should be ignored
// if it happened in QuicConnection::FlushPacket.
TEST_P(QuicConnectionTest,
MtuDiscoveryIgnoreOneWriteErrorInFlushAfterSuccessfulProbes) {
MtuDiscoveryTestInit();
writer_->SetBatchMode(true);
const QuicPacketCount packets_between_probes_base = 5;
set_packets_between_probes_base(packets_between_probes_base);
connection_.EnablePathMtuDiscovery(send_algorithm_);
const QuicByteCount original_max_packet_length =
connection_.max_packet_length();
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the probe.
SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
QuicByteCount probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&probe_size));
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(),
kMtuDiscoveryTargetPacketSizeHigh));
const QuicPacketNumber probe_packet_number =
FirstSendingPacketNumber() + packets_between_probes_base;
ASSERT_EQ(probe_packet_number, creator_->packet_number());
// Acknowledge all packets sent so far.
QuicAckFrame probe_ack = InitAckFrame(probe_packet_number);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
.Times(AnyNumber());
ProcessAckPacket(&probe_ack);
EXPECT_EQ(probe_size, connection_.max_packet_length());
EXPECT_EQ(0u, connection_.GetBytesInFlight());
EXPECT_EQ(1u, connection_.mtu_probe_count());
writer_->SetShouldWriteFail();
// Ignore PACKET_WRITE_ERROR once.
{
QuicConnection::ScopedPacketFlusher flusher(&connection_);
// flusher's destructor will call connection_.FlushPackets, which should
// get a WRITE_STATUS_ERROR from the writer and ignore it.
}
EXPECT_EQ(original_max_packet_length, connection_.max_packet_length());
EXPECT_TRUE(connection_.connected());
// Close connection on another PACKET_WRITE_ERROR.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
{
QuicConnection::ScopedPacketFlusher flusher(&connection_);
// flusher's destructor will call connection_.FlushPackets, which should
// get a WRITE_STATUS_ERROR from the writer and ignore it.
}
EXPECT_EQ(original_max_packet_length, connection_.max_packet_length());
EXPECT_FALSE(connection_.connected());
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_PACKET_WRITE_ERROR));
}
// Simulate the case where the first attempt to send a probe is write blocked,
// and after unblock, the second attempt returns a MSG_TOO_BIG error.
TEST_P(QuicConnectionTest, MtuDiscoveryWriteBlocked) {
MtuDiscoveryTestInit();
const QuicPacketCount packets_between_probes_base = 5;
set_packets_between_probes_base(packets_between_probes_base);
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
QuicByteCount original_max_packet_length = connection_.max_packet_length();
// Trigger the probe.
SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
BlockOnNextWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_EQ(1u, connection_.mtu_probe_count());
EXPECT_EQ(1u, connection_.NumQueuedPackets());
ASSERT_TRUE(connection_.connected());
writer_->SetWritable();
SimulateNextPacketTooLarge();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_EQ(original_max_packet_length, connection_.max_packet_length());
EXPECT_TRUE(connection_.connected());
}
// Tests whether MTU discovery works correctly when the probes never get
// acknowledged.
TEST_P(QuicConnectionTest, MtuDiscoveryFailed) {
MtuDiscoveryTestInit();
// Lower the number of probes between packets in order to make the test go
// much faster.
const QuicPacketCount packets_between_probes_base = 5;
set_packets_between_probes_base(packets_between_probes_base);
connection_.EnablePathMtuDiscovery(send_algorithm_);
const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100);
EXPECT_EQ(packets_between_probes_base,
QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_));
// This tests sends more packets than strictly necessary to make sure that if
// the connection was to send more discovery packets than needed, those would
// get caught as well.
const QuicPacketCount number_of_packets =
packets_between_probes_base * (1 << (kMtuDiscoveryAttempts + 1));
std::vector<QuicPacketNumber> mtu_discovery_packets;
// Called on many acks.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
.Times(AnyNumber());
for (QuicPacketCount i = 0; i < number_of_packets; i++) {
SendStreamDataToPeer(3, "!", i, NO_FIN, nullptr);
clock_.AdvanceTime(rtt);
// Receive an ACK, which marks all data packets as received, and all MTU
// discovery packets as missing.
QuicAckFrame ack;
if (!mtu_discovery_packets.empty()) {
QuicPacketNumber min_packet = *min_element(mtu_discovery_packets.begin(),
mtu_discovery_packets.end());
QuicPacketNumber max_packet = *max_element(mtu_discovery_packets.begin(),
mtu_discovery_packets.end());
ack.packets.AddRange(QuicPacketNumber(1), min_packet);
ack.packets.AddRange(QuicPacketNumber(max_packet + 1),
creator_->packet_number() + 1);
ack.largest_acked = creator_->packet_number();
} else {
ack.packets.AddRange(QuicPacketNumber(1), creator_->packet_number() + 1);
ack.largest_acked = creator_->packet_number();
}
ProcessAckPacket(&ack);
// Trigger MTU probe if it would be scheduled now.
if (!connection_.GetMtuDiscoveryAlarm()->IsSet()) {
continue;
}
// Fire the alarm. The alarm should cause a packet to be sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.GetMtuDiscoveryAlarm()->Fire();
// Record the packet number of the MTU discovery packet in order to
// mark it as NACK'd.
mtu_discovery_packets.push_back(creator_->packet_number());
}
// Ensure the number of packets between probes grows exponentially by checking
// it against the closed-form expression for the packet number.
ASSERT_EQ(kMtuDiscoveryAttempts, mtu_discovery_packets.size());
for (uint64_t i = 0; i < kMtuDiscoveryAttempts; i++) {
// 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1
const QuicPacketCount packets_between_probes =
packets_between_probes_base * ((1 << (i + 1)) - 1);
EXPECT_EQ(QuicPacketNumber(packets_between_probes + (i + 1)),
mtu_discovery_packets[i]);
}
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length());
EXPECT_EQ(kMtuDiscoveryAttempts, connection_.mtu_probe_count());
}
// Probe 3 times, the first one succeeds, then fails, then succeeds again.
TEST_P(QuicConnectionTest, MtuDiscoverySecondProbeFailed) {
MtuDiscoveryTestInit();
const QuicPacketCount packets_between_probes_base = 5;
set_packets_between_probes_base(packets_between_probes_base);
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
QuicStreamOffset stream_offset = 0;
for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the probe.
SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
QuicByteCount probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&probe_size));
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(),
kMtuDiscoveryTargetPacketSizeHigh));
const QuicPacketNumber probe_packet_number =
FirstSendingPacketNumber() + packets_between_probes_base;
ASSERT_EQ(probe_packet_number, creator_->packet_number());
// Acknowledge all packets sent so far.
QuicAckFrame first_ack = InitAckFrame(probe_packet_number);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
.Times(AnyNumber());
ProcessAckPacket(&first_ack);
EXPECT_EQ(probe_size, connection_.max_packet_length());
EXPECT_EQ(0u, connection_.GetBytesInFlight());
EXPECT_EQ(1u, connection_.mtu_probe_count());
// Send just enough packets without triggering the second probe.
for (QuicPacketCount i = 0; i < (packets_between_probes_base << 1) - 1; ++i) {
SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the second probe.
SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
QuicByteCount second_probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&second_probe_size));
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_THAT(second_probe_size,
InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh));
EXPECT_EQ(2u, connection_.mtu_probe_count());
// Acknowledge all packets sent so far, except the second probe.
QuicPacketNumber second_probe_packet_number = creator_->packet_number();
QuicAckFrame second_ack = InitAckFrame(second_probe_packet_number - 1);
ProcessAckPacket(&first_ack);
EXPECT_EQ(probe_size, connection_.max_packet_length());
// Send just enough packets without triggering the third probe.
for (QuicPacketCount i = 0; i < (packets_between_probes_base << 2) - 1; ++i) {
SendStreamDataToPeer(3, "@", stream_offset++, NO_FIN, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the third probe.
SendStreamDataToPeer(3, "#", stream_offset++, NO_FIN, nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
QuicByteCount third_probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&third_probe_size));
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_THAT(third_probe_size, InRange(probe_size, second_probe_size));
EXPECT_EQ(3u, connection_.mtu_probe_count());
// Acknowledge all packets sent so far, except the second probe.
QuicAckFrame third_ack =
ConstructAckFrame(creator_->packet_number(), second_probe_packet_number);
ProcessAckPacket(&third_ack);
EXPECT_EQ(third_probe_size, connection_.max_packet_length());
}
// Tests whether MTU discovery works when the writer has a limit on how large a
// packet can be.
TEST_P(QuicConnectionTest, MtuDiscoveryWriterLimited) {
MtuDiscoveryTestInit();
const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1;
writer_->set_max_packet_size(mtu_limit);
const QuicPacketCount packets_between_probes_base = 5;
set_packets_between_probes_base(packets_between_probes_base);
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the probe.
SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
QuicByteCount probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&probe_size));
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), mtu_limit));
const QuicPacketNumber probe_sequence_number =
FirstSendingPacketNumber() + packets_between_probes_base;
ASSERT_EQ(probe_sequence_number, creator_->packet_number());
// Acknowledge all packets sent so far.
QuicAckFrame probe_ack = InitAckFrame(probe_sequence_number);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
.Times(AnyNumber());
ProcessAckPacket(&probe_ack);
EXPECT_EQ(probe_size, connection_.max_packet_length());
EXPECT_EQ(0u, connection_.GetBytesInFlight());
EXPECT_EQ(1u, connection_.mtu_probe_count());
QuicStreamOffset stream_offset = packets_between_probes_base;
for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts;
++num_probes) {
// Send just enough packets without triggering the next probe.
for (QuicPacketCount i = 0;
i < (packets_between_probes_base << num_probes) - 1; ++i) {
SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the next probe.
SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
QuicByteCount new_probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(SaveArg<3>(&new_probe_size));
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_THAT(new_probe_size, InRange(probe_size, mtu_limit));
EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count());
// Acknowledge all packets sent so far.
QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number());
ProcessAckPacket(&probe_ack);
EXPECT_EQ(new_probe_size, connection_.max_packet_length());
EXPECT_EQ(0u, connection_.GetBytesInFlight());
probe_size = new_probe_size;
}
// The last probe size should be equal to the target.
EXPECT_EQ(probe_size, mtu_limit);
}
// Tests whether MTU discovery works when the writer returns an error despite
// advertising higher packet length.
TEST_P(QuicConnectionTest, MtuDiscoveryWriterFailed) {
MtuDiscoveryTestInit();
const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1;
const QuicByteCount initial_mtu = connection_.max_packet_length();
EXPECT_LT(initial_mtu, mtu_limit);
writer_->set_max_packet_size(mtu_limit);
const QuicPacketCount packets_between_probes_base = 5;
set_packets_between_probes_base(packets_between_probes_base);
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the probe.
SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
writer_->SimulateNextPacketTooLarge();
connection_.GetMtuDiscoveryAlarm()->Fire();
ASSERT_TRUE(connection_.connected());
// Send more data.
QuicPacketNumber probe_number = creator_->packet_number();
QuicPacketCount extra_packets = packets_between_probes_base * 3;
for (QuicPacketCount i = 0; i < extra_packets; i++) {
connection_.EnsureWritableAndSendStreamData5();
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Acknowledge all packets sent so far, except for the lost probe.
QuicAckFrame probe_ack =
ConstructAckFrame(creator_->packet_number(), probe_number);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
ProcessAckPacket(&probe_ack);
EXPECT_EQ(initial_mtu, connection_.max_packet_length());
// Send more packets, and ensure that none of them sets the alarm.
for (QuicPacketCount i = 0; i < 4 * packets_between_probes_base; i++) {
connection_.EnsureWritableAndSendStreamData5();
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
EXPECT_EQ(initial_mtu, connection_.max_packet_length());
EXPECT_EQ(1u, connection_.mtu_probe_count());
}
TEST_P(QuicConnectionTest, NoMtuDiscoveryAfterConnectionClosed) {
MtuDiscoveryTestInit();
const QuicPacketCount packets_between_probes_base = 10;
set_packets_between_probes_base(packets_between_probes_base);
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
nullptr);
EXPECT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
ConnectionCloseBehavior::SILENT_CLOSE);
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, TimeoutAfterSendDuringHandshake) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
const QuicTime::Delta initial_idle_timeout =
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
// When we send a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
clock_.AdvanceTime(five_ms);
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// Now send more data. This will not move the timeout because
// no data has been received since the previous write.
clock_.AdvanceTime(five_ms);
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
3, FIN, nullptr);
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// The original alarm will fire. We should not time out because we had a
// network event at t=5ms. The alarm will reregister.
clock_.AdvanceTime(initial_idle_timeout - five_ms - five_ms);
EXPECT_EQ(default_timeout, clock_.ApproximateNow());
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// This time, we should time out.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
clock_.AdvanceTime(five_ms);
EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
}
TEST_P(QuicConnectionTest, TimeoutAfterRetransmission) {
if (connection_.PtoEnabled()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
const QuicTime start_time = clock_.Now();
const QuicTime::Delta initial_idle_timeout =
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
QuicTime default_timeout = clock_.Now() + initial_idle_timeout;
connection_.SetMaxTailLossProbes(0);
const QuicTime default_retransmission_time =
start_time + DefaultRetransmissionTime();
ASSERT_LT(default_retransmission_time, default_timeout);
// When we send a packet, the timeout will change to 5 ms +
// kInitialIdleTimeoutSecs (but it will not reschedule the alarm).
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
const QuicTime send_time = start_time + five_ms;
clock_.AdvanceTime(five_ms);
ASSERT_EQ(send_time, clock_.Now());
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// Move forward 5 ms and receive a packet, which will move the timeout
// forward 5 ms more (but will not reschedule the alarm).
const QuicTime receive_time = send_time + five_ms;
clock_.AdvanceTime(receive_time - clock_.Now());
ASSERT_EQ(receive_time, clock_.Now());
ProcessPacket(1);
// Now move forward to the retransmission time and retransmit the
// packet, which should move the timeout forward again (but will not
// reschedule the alarm).
EXPECT_EQ(default_retransmission_time + five_ms,
connection_.GetRetransmissionAlarm()->deadline());
// Simulate the retransmission alarm firing.
const QuicTime rto_time = send_time + DefaultRetransmissionTime();
const QuicTime final_timeout = rto_time + initial_idle_timeout;
clock_.AdvanceTime(rto_time - clock_.Now());
ASSERT_EQ(rto_time, clock_.Now());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _));
connection_.GetRetransmissionAlarm()->Fire();
// Advance to the original timeout and fire the alarm. The connection should
// timeout, and the alarm should be registered based on the time of the
// retransmission.
clock_.AdvanceTime(default_timeout - clock_.Now());
ASSERT_EQ(default_timeout.ToDebuggingValue(),
clock_.Now().ToDebuggingValue());
EXPECT_EQ(default_timeout, clock_.Now());
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
ASSERT_EQ(final_timeout.ToDebuggingValue(),
connection_.GetTimeoutAlarm()->deadline().ToDebuggingValue());
// This time, we should time out.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
clock_.AdvanceTime(final_timeout - clock_.Now());
EXPECT_EQ(connection_.GetTimeoutAlarm()->deadline(), clock_.Now());
EXPECT_EQ(final_timeout, clock_.Now());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
}
TEST_P(QuicConnectionTest, TimeoutAfterSendAfterHandshake) {
// When the idle timeout fires, verify that by default we do not send any
// connection close packets.
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
// Create a handshake message that also enables silent close.
CryptoHandshakeMessage msg;
std::string error_details;
QuicConfig client_config;
client_config.SetInitialStreamFlowControlWindowToSend(
kInitialStreamFlowControlWindowForTest);
client_config.SetInitialSessionFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
client_config.SetIdleNetworkTimeout(
QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs));
client_config.ToHandshakeMessage(&msg, connection_.transport_version());
const QuicErrorCode error =
config.ProcessPeerHello(msg, CLIENT, &error_details);
EXPECT_THAT(error, IsQuicNoError());
if (connection_.version().AuthenticatesHandshakeConnectionIds()) {
QuicConfigPeer::SetReceivedOriginalConnectionId(
&config, connection_.connection_id());
QuicConfigPeer::SetReceivedInitialSourceConnectionId(
&config, connection_.connection_id());
}
connection_.SetFromConfig(config);
const QuicTime::Delta default_idle_timeout =
QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1);
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
// When we send a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
clock_.AdvanceTime(five_ms);
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// Now send more data. This will not move the timeout because
// no data has been received since the previous write.
clock_.AdvanceTime(five_ms);
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
3, FIN, nullptr);
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// The original alarm will fire. We should not time out because we had a
// network event at t=5ms. The alarm will reregister.
clock_.AdvanceTime(default_idle_timeout - five_ms - five_ms);
EXPECT_EQ(default_timeout, clock_.ApproximateNow());
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// This time, we should time out.
// This results in a SILENT_CLOSE, so the writer will not be invoked
// and will not save the frame. Grab the frame from OnConnectionClosed
// directly.
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
clock_.AdvanceTime(five_ms);
EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_NETWORK_IDLE_TIMEOUT));
}
TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseAndTLP) {
if (connection_.PtoEnabled()) {
return;
}
// Same test as above, but sending TLPs causes a connection close to be sent.
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
// Create a handshake message that also enables silent close.
CryptoHandshakeMessage msg;
std::string error_details;
QuicConfig client_config;
client_config.SetInitialStreamFlowControlWindowToSend(
kInitialStreamFlowControlWindowForTest);
client_config.SetInitialSessionFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
client_config.SetIdleNetworkTimeout(
QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs));
client_config.ToHandshakeMessage(&msg, connection_.transport_version());
const QuicErrorCode error =
config.ProcessPeerHello(msg, CLIENT, &error_details);
EXPECT_THAT(error, IsQuicNoError());
connection_.SetFromConfig(config);
const QuicTime::Delta default_idle_timeout =
QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1);
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
// When we send a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
clock_.AdvanceTime(five_ms);
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// Retransmit the packet via tail loss probe.
clock_.AdvanceTime(connection_.GetRetransmissionAlarm()->deadline() -
clock_.Now());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _));
connection_.GetRetransmissionAlarm()->Fire();
// This time, we should time out and send a connection close due to the TLP.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() -
clock_.ApproximateNow() + five_ms);
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
}
TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseWithOpenStreams) {
// Same test as above, but having open streams causes a connection close
// to be sent.
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
// Create a handshake message that also enables silent close.
CryptoHandshakeMessage msg;
std::string error_details;
QuicConfig client_config;
client_config.SetInitialStreamFlowControlWindowToSend(
kInitialStreamFlowControlWindowForTest);
client_config.SetInitialSessionFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
client_config.SetIdleNetworkTimeout(
QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs));
client_config.ToHandshakeMessage(&msg, connection_.transport_version());
const QuicErrorCode error =
config.ProcessPeerHello(msg, CLIENT, &error_details);
EXPECT_THAT(error, IsQuicNoError());
if (connection_.version().AuthenticatesHandshakeConnectionIds()) {
QuicConfigPeer::SetReceivedOriginalConnectionId(
&config, connection_.connection_id());
QuicConfigPeer::SetReceivedInitialSourceConnectionId(
&config, connection_.connection_id());
}
connection_.SetFromConfig(config);
const QuicTime::Delta default_idle_timeout =
QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1);
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
// When we send a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
clock_.AdvanceTime(five_ms);
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// Indicate streams are still open.
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(true));
// This time, we should time out and send a connection close due to the TLP.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() -
clock_.ApproximateNow() + five_ms);
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
}
TEST_P(QuicConnectionTest, TimeoutAfterReceive) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
const QuicTime::Delta initial_idle_timeout =
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, NO_FIN);
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
3, NO_FIN);
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
clock_.AdvanceTime(five_ms);
// When we receive a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
QuicAckFrame ack = InitAckFrame(2);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
ProcessAckPacket(&ack);
// The original alarm will fire. We should not time out because we had a
// network event at t=5ms. The alarm will reregister.
clock_.AdvanceTime(initial_idle_timeout - five_ms);
EXPECT_EQ(default_timeout, clock_.ApproximateNow());
EXPECT_TRUE(connection_.connected());
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// This time, we should time out.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
clock_.AdvanceTime(five_ms);
EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
}
TEST_P(QuicConnectionTest, TimeoutAfterReceiveNotSendWhenUnacked) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
const QuicTime::Delta initial_idle_timeout =
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
connection_.SetNetworkTimeouts(
QuicTime::Delta::Infinite(),
initial_idle_timeout + QuicTime::Delta::FromSeconds(1));
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, NO_FIN);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
3, NO_FIN);
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
clock_.AdvanceTime(five_ms);
// When we receive a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
QuicAckFrame ack = InitAckFrame(2);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
ProcessAckPacket(&ack);
// The original alarm will fire. We should not time out because we had a
// network event at t=5ms. The alarm will reregister.
clock_.AdvanceTime(initial_idle_timeout - five_ms);
EXPECT_EQ(default_timeout, clock_.ApproximateNow());
EXPECT_TRUE(connection_.connected());
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// Now, send packets while advancing the time and verify that the connection
// eventually times out.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
for (int i = 0; i < 100 && connection_.connected(); ++i) {
QUIC_LOG(INFO) << "sending data packet";
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()),
"foo", 0, NO_FIN);
connection_.GetTimeoutAlarm()->Fire();
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
}
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
}
TEST_P(QuicConnectionTest, TimeoutAfter5ClientRTOs) {
if (connection_.PtoEnabled()) {
return;
}
connection_.SetMaxTailLossProbes(2);
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k5RTO);
config.SetConnectionOptionsToSend(connection_options);
QuicConfigPeer::SetNegotiated(&config, true);
if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_COMPLETE));
}
if (connection_.version().AuthenticatesHandshakeConnectionIds()) {
QuicConfigPeer::SetReceivedOriginalConnectionId(
&config, connection_.connection_id());
QuicConfigPeer::SetReceivedInitialSourceConnectionId(
&config, connection_.connection_id());
}
connection_.SetFromConfig(config);
// Send stream data.
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
// Fire the retransmission alarm 6 times, twice for TLP and 4 times for RTO.
for (int i = 0; i < 6; ++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
}
EXPECT_CALL(visitor_, OnPathDegrading());
connection_.PathDegradingTimeout();
EXPECT_EQ(2u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
EXPECT_EQ(4u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
// This time, we should time out.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
connection_.GetBlackholeDetectorAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
}
TEST_P(QuicConnectionTest, SendScheduler) {
// Test that if we send a packet without delay, it is not queued.
QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
std::unique_ptr<QuicPacket> packet =
ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet),
HAS_RETRANSMITTABLE_DATA, false, false);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, FailToSendFirstPacket) {
// Test that the connection does not crash when it fails to send the first
// packet at which point self_address_ might be uninitialized.
QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1);
std::unique_ptr<QuicPacket> packet =
ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
writer_->SetShouldWriteFail();
connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet),
HAS_RETRANSMITTABLE_DATA, false, false);
}
TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) {
QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
std::unique_ptr<QuicPacket> packet =
ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
BlockOnNextWrite();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _))
.Times(0);
connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet),
HAS_RETRANSMITTABLE_DATA, false, false);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) {
// Queue the first packet.
size_t payload_length = connection_.max_packet_length();
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(testing::Return(false));
const std::string payload(payload_length, 'a');
QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId(
connection_.version().transport_version, Perspective::IS_CLIENT));
EXPECT_EQ(0u, connection_
.SendStreamDataWithString(first_bidi_stream_id, payload, 0,
NO_FIN)
.bytes_consumed);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, SendingThreePackets) {
// Make the payload twice the size of the packet, so 3 packets are written.
size_t total_payload_length = 2 * connection_.max_packet_length();
const std::string payload(total_payload_length, 'a');
QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId(
connection_.version().transport_version, Perspective::IS_CLIENT));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
EXPECT_EQ(payload.size(), connection_
.SendStreamDataWithString(first_bidi_stream_id,
payload, 0, NO_FIN)
.bytes_consumed);
}
TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) {
set_perspective(Perspective::IS_SERVER);
if (!VersionHasIetfInvariantHeader(GetParam().version.transport_version)) {
// For IETF QUIC, encryption level will be switched to FORWARD_SECURE in
// SendStreamDataWithString.
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
}
// Set up a larger payload than will fit in one packet.
const std::string payload(connection_.max_packet_length(), 'a');
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
// Now send some packets with no truncation.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
EXPECT_EQ(payload.size(),
connection_.SendStreamDataWithString(3, payload, 0, NO_FIN)
.bytes_consumed);
// Track the size of the second packet here. The overhead will be the largest
// we see in this test, due to the non-truncated connection id.
size_t non_truncated_packet_size = writer_->last_packet_size();
// Change to a 0 byte connection id.
QuicConfig config;
QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0);
connection_.SetFromConfig(config);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
EXPECT_EQ(payload.size(),
connection_.SendStreamDataWithString(3, payload, 1350, NO_FIN)
.bytes_consumed);
if (VersionHasIetfInvariantHeader(connection_.transport_version())) {
// Short header packets sent from server omit connection ID already, and
// stream offset size increases from 0 to 2.
EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() - 2);
} else {
// Just like above, we save 8 bytes on payload, and 8 on truncation. -2
// because stream offset size is 2 instead of 0.
EXPECT_EQ(non_truncated_packet_size,
writer_->last_packet_size() + 8 * 2 - 2);
}
}
TEST_P(QuicConnectionTest, SendDelayedAck) {
QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
const uint8_t tag = 0x07;
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
// instead of ENCRYPTION_INITIAL.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Simulate delayed ack alarm firing.
clock_.AdvanceTime(DefaultDelayedAckTime());
connection_.GetAckAlarm()->Fire();
// Check that ack is sent and that delayed ack alarm is reset.
size_t padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, SendDelayedAfterQuiescence) {
QuicConnectionPeer::SetFastAckAfterQuiescence(&connection_, true);
// The beginning of the connection counts as quiescence.
QuicTime ack_time = clock_.ApproximateNow() + kAlarmGranularity;
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
const uint8_t tag = 0x07;
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
// instead of ENCRYPTION_INITIAL.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Simulate delayed ack alarm firing.
clock_.AdvanceTime(DefaultDelayedAckTime());
connection_.GetAckAlarm()->Fire();
// Check that ack is sent and that delayed ack alarm is reset.
size_t padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
// Process another packet immedately after sending the ack and expect the
// ack alarm to be set delayed ack time in the future.
ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Simulate delayed ack alarm firing.
clock_.AdvanceTime(DefaultDelayedAckTime());
connection_.GetAckAlarm()->Fire();
// Check that ack is sent and that delayed ack alarm is reset.
padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
// Wait 1 second and ensure the ack alarm is set to 1ms in the future.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1);
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
}
TEST_P(QuicConnectionTest, SendDelayedAckDecimation) {
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/4, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
const uint8_t tag = 0x07;
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
uint64_t kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
EXPECT_FALSE(connection_.HasPendingAcks());
// The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
// instead of ENCRYPTION_INITIAL.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 9; ++i) {
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
}
// Check that ack is sent and that delayed ack alarm is reset.
size_t padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, SendDelayedAckAckDecimationAfterQuiescence) {
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION);
QuicConnectionPeer::SetFastAckAfterQuiescence(&connection_, true);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The beginning of the connection counts as quiescence.
QuicTime ack_time =
clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
const uint8_t tag = 0x07;
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
// instead of ENCRYPTION_INITIAL.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Simulate delayed ack alarm firing.
clock_.AdvanceTime(DefaultDelayedAckTime());
connection_.GetAckAlarm()->Fire();
// Check that ack is sent and that delayed ack alarm is reset.
size_t padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
// Process another packet immedately after sending the ack and expect the
// ack alarm to be set delayed ack time in the future.
ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Simulate delayed ack alarm firing.
clock_.AdvanceTime(DefaultDelayedAckTime());
connection_.GetAckAlarm()->Fire();
// Check that ack is sent and that delayed ack alarm is reset.
padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
// Wait 1 second and enesure the ack alarm is set to 1ms in the future.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1);
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Process enough packets to get into ack decimation behavior.
// The ack time should be based on min_rtt/4, since it's less than the
// default delayed ack time.
ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
uint64_t kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 4; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(4 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
EXPECT_FALSE(connection_.HasPendingAcks());
// The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
// instead of ENCRYPTION_INITIAL.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 9; ++i) {
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
}
// Check that ack is sent and that delayed ack alarm is reset.
padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
// Wait 1 second and enesure the ack alarm is set to 1ms in the future.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1);
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
}
TEST_P(QuicConnectionTest, SendDelayedAckDecimationUnlimitedAggregation) {
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(kACKD);
// No limit on the number of packets received before sending an ack.
connection_options.push_back(kAKDU);
config.SetConnectionOptionsToSend(connection_options);
connection_.SetFromConfig(config);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/4, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
const uint8_t tag = 0x07;
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
uint64_t kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
EXPECT_FALSE(connection_.HasPendingAcks());
// The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
// instead of ENCRYPTION_INITIAL.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// 18 packets will not cause an ack to be sent. 19 will because when
// stop waiting frames are in use, we ack every 20 packets no matter what.
for (int i = 0; i < 18; ++i) {
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
}
// The delayed ack timer should still be set to the expected deadline.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
}
TEST_P(QuicConnectionTest, SendDelayedAckDecimationEighthRtt) {
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION);
QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/8, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 8);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
const uint8_t tag = 0x07;
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
uint64_t kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
EXPECT_FALSE(connection_.HasPendingAcks());
// The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
// instead of ENCRYPTION_INITIAL.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 9; ++i) {
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
}
// Check that ack is sent and that delayed ack alarm is reset.
size_t padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReordering) {
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/4, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
const uint8_t tag = 0x07;
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
uint64_t kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
EXPECT_FALSE(connection_.HasPendingAcks());
// Receive one packet out of order and then the rest in order.
// The loop leaves a one packet gap between acks sent to simulate some loss.
for (int j = 0; j < 3; ++j) {
// Process packet 10 first and ensure the alarm is one eighth min_rtt.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 9 + (j * 11),
!kHasStopWaiting, ENCRYPTION_ZERO_RTT);
ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
writer_->Reset();
for (int i = 0; i < 9; ++i) {
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
// The ACK shouldn't be sent until the 10th packet is processed.
EXPECT_TRUE(writer_->ack_frames().empty());
ProcessDataPacketAtLevel(kFirstDecimatedPacket + i + (j * 11),
!kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
// Check that ack is sent and that delayed ack alarm is reset.
size_t padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
}
}
TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithLargeReordering) {
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/4, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
const uint8_t tag = 0x07;
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
uint64_t kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
EXPECT_FALSE(connection_.HasPendingAcks());
// The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
// instead of ENCRYPTION_INITIAL.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Process packet 10 first and ensure the alarm is one eighth min_rtt.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 19, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 8; ++i) {
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
}
// Check that ack is sent and that delayed ack alarm is reset.
if (GetParam().no_stop_waiting) {
EXPECT_EQ(writer_->padding_frames().size() + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
// The next packet received in order will cause an immediate ack,
// because it fills a hole.
EXPECT_FALSE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
// Check that ack is sent and that delayed ack alarm is reset.
if (GetParam().no_stop_waiting) {
EXPECT_EQ(writer_->padding_frames().size() + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReorderingEighthRtt) {
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING);
QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/8, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 8);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
const uint8_t tag = 0x07;
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
uint64_t kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
EXPECT_FALSE(connection_.HasPendingAcks());
// The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
// instead of ENCRYPTION_INITIAL.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Process packet 10 first and ensure the alarm is one eighth min_rtt.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 9, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 8; ++i) {
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
}
// Check that ack is sent and that delayed ack alarm is reset.
size_t padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest,
SendDelayedAckDecimationWithLargeReorderingEighthRtt) {
EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING);
QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/8, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 8);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
const uint8_t tag = 0x07;
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(tag));
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
uint64_t kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
}
EXPECT_FALSE(connection_.HasPendingAcks());
// The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
// instead of ENCRYPTION_INITIAL.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Process packet 10 first and ensure the alarm is one eighth min_rtt.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 19, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 8; ++i) {
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
}
// Check that ack is sent and that delayed ack alarm is reset.
if (GetParam().no_stop_waiting) {
EXPECT_EQ(writer_->padding_frames().size() + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
// The next packet received in order will cause an immediate ack,
// because it fills a hole.
EXPECT_FALSE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting,
ENCRYPTION_ZERO_RTT);
// Check that ack is sent and that delayed ack alarm is reset.
if (GetParam().no_stop_waiting) {
EXPECT_EQ(writer_->padding_frames().size() + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
// Check that ack is sent and that delayed ack alarm is set.
EXPECT_TRUE(connection_.HasPendingAcks());
QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Completing the handshake as the server does nothing.
QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER);
connection_.OnHandshakeComplete();
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Complete the handshake as the client decreases the delayed ack time to 0ms.
QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_CLIENT);
connection_.OnHandshakeComplete();
EXPECT_TRUE(connection_.HasPendingAcks());
if (connection_.SupportsMultiplePacketNumberSpaces()) {
EXPECT_EQ(clock_.ApproximateNow() + DefaultDelayedAckTime(),
connection_.GetAckAlarm()->deadline());
} else {
EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline());
}
}
TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
ProcessPacket(2);
// Check that ack is sent and that delayed ack alarm is reset.
size_t padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, NoAckOnOldNacks) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessPacket(2);
size_t frames_per_ack = GetParam().no_stop_waiting ? 1 : 2;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
ProcessPacket(3);
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
writer_->Reset();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessPacket(4);
EXPECT_EQ(0u, writer_->frame_count());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
ProcessPacket(5);
padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
writer_->Reset();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
// Now only set the timer on the 6th packet, instead of sending another ack.
ProcessPacket(6);
padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count, writer_->frame_count());
EXPECT_TRUE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_));
peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(0x01));
SetDecrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<StrictTaggingDecrypter>(0x01));
ProcessDataPacket(1);
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, NO_FIN);
// Check that ack is bundled with outgoing data and that delayed ack
// alarm is reset.
if (GetParam().no_stop_waiting) {
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
}
ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
connection_.SendCryptoDataWithString("foo", 0);
// Check that ack is bundled with outgoing crypto data.
if (GetParam().no_stop_waiting) {
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(4u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
} else {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
}
connection_.SendCryptoDataWithString("foo", 0);
EXPECT_TRUE(writer_->IsWriteBlocked());
EXPECT_FALSE(connection_.HasQueuedData());
connection_.SendCryptoDataWithString("bar", 3);
EXPECT_TRUE(writer_->IsWriteBlocked());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
// CRYPTO frames are not flushed when writer is blocked.
EXPECT_FALSE(connection_.HasQueuedData());
} else {
EXPECT_TRUE(connection_.HasQueuedData());
}
}
TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnCanWrite())
.WillOnce(IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendCryptoStreamData)));
// Process a packet from the crypto stream, which is frame1_'s default.
// Receiving the CHLO as packet 2 first will cause the connection to
// immediately send an ack, due to the packet gap.
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
}
ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
// Check that ack is sent and that delayed ack alarm is reset.
if (GetParam().no_stop_waiting) {
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(4u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_EQ(1u, writer_->stream_frames().size());
} else {
EXPECT_EQ(1u, writer_->crypto_frames().size());
}
EXPECT_EQ(1u, writer_->padding_frames().size());
ASSERT_FALSE(writer_->ack_frames().empty());
EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front()));
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, BundleAckForSecondCHLOTwoPacketReject) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.HasPendingAcks());
// Process two packets from the crypto stream, which is frame1_'s default,
// simulating a 2 packet reject.
{
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
}
ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
// Send the new CHLO when the REJ is processed.
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_))
.WillOnce(IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendCryptoStreamData)));
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_))
.WillOnce(IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendCryptoStreamData)));
}
ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
}
// Check that ack is sent and that delayed ack alarm is reset.
if (GetParam().no_stop_waiting) {
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_TRUE(writer_->stop_waiting_frames().empty());
} else {
EXPECT_EQ(4u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_EQ(1u, writer_->stream_frames().size());
} else {
EXPECT_EQ(1u, writer_->crypto_frames().size());
}
EXPECT_EQ(1u, writer_->padding_frames().size());
ASSERT_FALSE(writer_->ack_frames().empty());
EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front()));
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, NO_FIN);
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
3, NO_FIN);
// Ack the second packet, which will retransmit the first packet.
QuicAckFrame ack = ConstructAckFrame(2, 1);
LostPacketVector lost_packets;
lost_packets.push_back(
LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<5>(lost_packets),
Return(LossDetectionInterface::DetectionStats())));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
ProcessAckPacket(&ack);
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
writer_->Reset();
// Now ack the retransmission, which will both raise the high water mark
// and see if there is more data to send.
ack = ConstructAckFrame(3, 1);
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
ProcessAckPacket(&ack);
// Check that no packet is sent and the ack alarm isn't set.
EXPECT_EQ(0u, writer_->frame_count());
EXPECT_FALSE(connection_.HasPendingAcks());
writer_->Reset();
// Send the same ack, but send both data and an ack together.
ack = ConstructAckFrame(3, 1);
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(visitor_, OnCanWrite())
.WillOnce(IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::EnsureWritableAndSendStreamData5)));
ProcessAckPacket(&ack);
// Check that ack is bundled with outgoing data and the delayed ack
// alarm is reset.
if (GetParam().no_stop_waiting) {
// Do not ACK acks.
EXPECT_EQ(1u, writer_->frame_count());
} else {
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
}
if (GetParam().no_stop_waiting) {
EXPECT_TRUE(writer_->ack_frames().empty());
} else {
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_EQ(QuicPacketNumber(3u),
LargestAcked(writer_->ack_frames().front()));
}
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, NoAckSentForClose) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessClosePacket(2);
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_PEER_GOING_AWAY));
}
TEST_P(QuicConnectionTest, SendWhenDisconnected) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
ConnectionCloseBehavior::SILENT_CLOSE);
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
if (GetQuicReloadableFlag(quic_determine_serialized_packet_fate_early)) {
EXPECT_EQ(DISCARD, connection_.GetSerializedPacketFate(
/*is_mtu_discovery=*/false, ENCRYPTION_INITIAL));
return;
}
std::unique_ptr<QuicPacket> packet =
ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
.Times(0);
connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet),
HAS_RETRANSMITTABLE_DATA, false, false);
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_PEER_GOING_AWAY));
}
TEST_P(QuicConnectionTest, SendConnectivityProbingWhenDisconnected) {
// EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
if (!IsDefaultTestConfiguration()) {
return;
}
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
ConnectionCloseBehavior::SILENT_CLOSE);
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
.Times(0);
EXPECT_QUIC_BUG(connection_.SendConnectivityProbingPacket(
writer_.get(), connection_.peer_address()),
"Not sending connectivity probing packet as connection is "
"disconnected.");
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_PEER_GOING_AWAY));
}
TEST_P(QuicConnectionTest, WriteBlockedAfterClientSendsConnectivityProbe) {
PathProbeTestInit(Perspective::IS_CLIENT);
TestPacketWriter probing_writer(version(), &clock_);
// Block next write so that sending connectivity probe will encounter a
// blocked write when send a connectivity probe to the peer.
probing_writer.BlockOnNextWrite();
// Connection will not be marked as write blocked as connectivity probe only
// affects the probing_writer which is not the default.
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
.Times(1);
connection_.SendConnectivityProbingPacket(&probing_writer,
connection_.peer_address());
}
TEST_P(QuicConnectionTest, WriterBlockedAfterServerSendsConnectivityProbe) {
PathProbeTestInit(Perspective::IS_SERVER);
// Block next write so that sending connectivity probe will encounter a
// blocked write when send a connectivity probe to the peer.
writer_->BlockOnNextWrite();
// Connection will be marked as write blocked as server uses the default
// writer to send connectivity probes.
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
.Times(1);
connection_.SendConnectivityProbingPacket(writer_.get(),
connection_.peer_address());
}
TEST_P(QuicConnectionTest, WriterErrorWhenClientSendsConnectivityProbe) {
PathProbeTestInit(Perspective::IS_CLIENT);
TestPacketWriter probing_writer(version(), &clock_);
probing_writer.SetShouldWriteFail();
// Connection should not be closed if a connectivity probe is failed to be
// sent.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
.Times(0);
connection_.SendConnectivityProbingPacket(&probing_writer,
connection_.peer_address());
}
TEST_P(QuicConnectionTest, WriterErrorWhenServerSendsConnectivityProbe) {
PathProbeTestInit(Perspective::IS_SERVER);
writer_->SetShouldWriteFail();
// Connection should not be closed if a connectivity probe is failed to be
// sent.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
.Times(0);
connection_.SendConnectivityProbingPacket(writer_.get(),
connection_.peer_address());
}
TEST_P(QuicConnectionTest, PublicReset) {
if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) {
return;
}
QuicPublicResetPacket header;
// Public reset packet in only built by server.
header.connection_id = connection_id_;
std::unique_ptr<QuicEncryptedPacket> packet(
framer_.BuildPublicResetPacket(header));
std::unique_ptr<QuicReceivedPacket> received(
ConstructReceivedPacket(*packet, QuicTime::Zero()));
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_PUBLIC_RESET));
}
TEST_P(QuicConnectionTest, IetfStatelessReset) {
if (!VersionHasIetfInvariantHeader(GetParam().version.transport_version)) {
return;
}
const QuicUint128 kTestStatelessResetToken = 1010101;
QuicConfig config;
QuicConfigPeer::SetReceivedStatelessResetToken(&config,
kTestStatelessResetToken);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
std::unique_ptr<QuicEncryptedPacket> packet(
QuicFramer::BuildIetfStatelessResetPacket(connection_id_,
kTestStatelessResetToken));
std::unique_ptr<QuicReceivedPacket> received(
ConstructReceivedPacket(*packet, QuicTime::Zero()));
EXPECT_CALL(visitor_, ValidateStatelessReset(_, _)).WillOnce(Return(true));
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_PUBLIC_RESET));
}
TEST_P(QuicConnectionTest, GoAway) {
if (VersionHasIetfQuicFrames(GetParam().version.transport_version)) {
// GoAway is not available in version 99.
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicGoAwayFrame* goaway = new QuicGoAwayFrame();
goaway->last_good_stream_id = 1;
goaway->error_code = QUIC_PEER_GOING_AWAY;
goaway->reason_phrase = "Going away.";
EXPECT_CALL(visitor_, OnGoAway(_));
ProcessGoAwayPacket(goaway);
}
TEST_P(QuicConnectionTest, WindowUpdate) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicWindowUpdateFrame* window_update = new QuicWindowUpdateFrame();
window_update->stream_id = 3;
window_update->max_data = 1234;
EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
ProcessFramePacket(QuicFrame(window_update));
}
TEST_P(QuicConnectionTest, Blocked) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicBlockedFrame* blocked = new QuicBlockedFrame();
blocked->stream_id = 3;
EXPECT_CALL(visitor_, OnBlockedFrame(_));
ProcessFramePacket(QuicFrame(blocked));
EXPECT_EQ(1u, connection_.GetStats().blocked_frames_received);
EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
}
TEST_P(QuicConnectionTest, ZeroBytePacket) {
// Don't close the connection for zero byte packets.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
QuicReceivedPacket encrypted(nullptr, 0, QuicTime::Zero());
connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, encrypted);
}
TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) {
if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) {
return;
}
// Set the packet number of the ack packet to be least unacked (4).
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 3);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessStopWaitingPacket(InitStopWaitingFrame(4));
EXPECT_FALSE(connection_.ack_frame().packets.Empty());
}
TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) {
// All supported versions except the one the connection supports.
ParsedQuicVersionVector versions;
for (auto version : AllSupportedVersions()) {
if (version != connection_.version()) {
versions.push_back(version);
}
}
// Send a version negotiation packet.
std::unique_ptr<QuicEncryptedPacket> encrypted(
QuicFramer::BuildVersionNegotiationPacket(
connection_id_, EmptyQuicConnectionId(),
VersionHasIetfInvariantHeader(connection_.transport_version()),
connection_.version().HasLengthPrefixedConnectionIds(), versions));
std::unique_ptr<QuicReceivedPacket> received(
ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
// Verify no connection close packet gets sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
EXPECT_FALSE(connection_.connected());
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_INVALID_VERSION));
}
TEST_P(QuicConnectionTest, BadVersionNegotiation) {
// Send a version negotiation packet with the version the client started with.
// It should be rejected.
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
std::unique_ptr<QuicEncryptedPacket> encrypted(
QuicFramer::BuildVersionNegotiationPacket(
connection_id_, EmptyQuicConnectionId(),
VersionHasIetfInvariantHeader(connection_.transport_version()),
connection_.version().HasLengthPrefixedConnectionIds(),
AllSupportedVersions()));
std::unique_ptr<QuicReceivedPacket> received(
ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET));
}
TEST_P(QuicConnectionTest, CheckSendStats) {
if (connection_.PtoEnabled()) {
return;
}
connection_.SetMaxTailLossProbes(0);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendStreamDataWithString(3, "first", 0, NO_FIN);
size_t first_packet_size = writer_->last_packet_size();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendStreamDataWithString(5, "second", 0, NO_FIN);
size_t second_packet_size = writer_->last_packet_size();
// 2 retransmissions due to rto, 1 due to explicit nack.
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
// Retransmit due to RTO.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
connection_.GetRetransmissionAlarm()->Fire();
// Retransmit due to explicit nacks.
QuicAckFrame nack_three =
InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)},
{QuicPacketNumber(4), QuicPacketNumber(5)}});
LostPacketVector lost_packets;
lost_packets.push_back(
LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize));
lost_packets.push_back(
LostPacket(QuicPacketNumber(3), kMaxOutgoingPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<5>(lost_packets),
Return(LossDetectionInterface::DetectionStats())));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessAckPacket(&nack_three);
EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
.WillOnce(Return(QuicBandwidth::Zero()));
const QuicConnectionStats& stats = connection_.GetStats();
// For IETF QUIC, version is not included as the encryption level switches to
// FORWARD_SECURE in SendStreamDataWithString.
size_t save_on_version =
VersionHasIetfInvariantHeader(GetParam().version.transport_version)
? 0
: kQuicVersionSize;
EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - save_on_version,
stats.bytes_sent);
EXPECT_EQ(5u, stats.packets_sent);
EXPECT_EQ(2 * first_packet_size + second_packet_size - save_on_version,
stats.bytes_retransmitted);
EXPECT_EQ(3u, stats.packets_retransmitted);
EXPECT_EQ(1u, stats.rto_count);
EXPECT_EQ(kDefaultMaxPacketSize, stats.max_packet_size);
}
TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) {
// Construct a packet with stream frame and connection close frame.
QuicPacketHeader header;
if (peer_framer_.perspective() == Perspective::IS_SERVER) {
header.source_connection_id = connection_id_;
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
if (!VersionHasIetfInvariantHeader(peer_framer_.transport_version())) {
header.source_connection_id_included = CONNECTION_ID_PRESENT;
}
} else {
header.destination_connection_id = connection_id_;
if (VersionHasIetfInvariantHeader(peer_framer_.transport_version())) {
header.destination_connection_id_included = CONNECTION_ID_ABSENT;
}
}
header.packet_number = QuicPacketNumber(1);
header.version_flag = false;
QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY;
// This QuicConnectionCloseFrame will default to being for a Google QUIC
// close. If doing IETF QUIC then set fields appropriately for CC/T or CC/A,
// depending on the mapping.
QuicConnectionCloseFrame qccf(peer_framer_.transport_version(),
kQuicErrorCode, "",
/*transport_close_frame_type=*/0);
QuicFrames frames;
frames.push_back(QuicFrame(frame1_));
frames.push_back(QuicFrame(&qccf));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
EXPECT_TRUE(nullptr != packet);
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length = peer_framer_.EncryptPayload(
ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer,
kMaxOutgoingPacketSize);
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_PEER_GOING_AWAY));
}
TEST_P(QuicConnectionTest, SelectMutualVersion) {
connection_.SetSupportedVersions(AllSupportedVersions());
// Set the connection to speak the lowest quic version.
connection_.set_version(QuicVersionMin());
EXPECT_EQ(QuicVersionMin(), connection_.version());
// Pass in available versions which includes a higher mutually supported
// version. The higher mutually supported version should be selected.
ParsedQuicVersionVector supported_versions = AllSupportedVersions();
EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions));
EXPECT_EQ(QuicVersionMax(), connection_.version());
// Expect that the lowest version is selected.
// Ensure the lowest supported version is less than the max, unless they're
// the same.
ParsedQuicVersionVector lowest_version_vector;
lowest_version_vector.push_back(QuicVersionMin());
EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector));
EXPECT_EQ(QuicVersionMin(), connection_.version());
// Shouldn't be able to find a mutually supported version.
ParsedQuicVersionVector unsupported_version;
unsupported_version.push_back(UnsupportedQuicVersion());
EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version));
}
TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) {
EXPECT_FALSE(writer_->IsWriteBlocked());
// Send a packet.
connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_EQ(1u, writer_->packets_write_attempts());
TriggerConnectionClose();
EXPECT_LE(2u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) {
BlockOnNextWrite();
TriggerConnectionClose();
EXPECT_EQ(1u, writer_->packets_write_attempts());
EXPECT_TRUE(writer_->IsWriteBlocked());
}
TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) {
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
EXPECT_EQ(1u, writer_->packets_write_attempts());
EXPECT_TRUE(writer_->IsWriteBlocked());
TriggerConnectionClose();
EXPECT_EQ(1u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, OnPacketSentDebugVisitor) {
PathProbeTestInit(Perspective::IS_CLIENT);
MockQuicConnectionDebugVisitor debug_visitor;
connection_.set_debug_visitor(&debug_visitor);
EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(1);
connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(1);
connection_.SendConnectivityProbingPacket(writer_.get(),
connection_.peer_address());
}
TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) {
QuicPacketHeader header;
header.packet_number = QuicPacketNumber(1);
if (VersionHasIetfInvariantHeader(GetParam().version.transport_version)) {
header.form = IETF_QUIC_LONG_HEADER_PACKET;
}
MockQuicConnectionDebugVisitor debug_visitor;
connection_.set_debug_visitor(&debug_visitor);
EXPECT_CALL(debug_visitor, OnPacketHeader(Ref(header))).Times(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(1);
EXPECT_CALL(debug_visitor, OnSuccessfulVersionNegotiation(_)).Times(1);
connection_.OnPacketHeader(header);
}
TEST_P(QuicConnectionTest, Pacing) {
TestConnection server(connection_id_, kSelfAddress, helper_.get(),
alarm_factory_.get(), writer_.get(),
Perspective::IS_SERVER, version());
TestConnection client(connection_id_, kPeerAddress, helper_.get(),
alarm_factory_.get(), writer_.get(),
Perspective::IS_CLIENT, version());
EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing(
static_cast<const QuicSentPacketManager*>(
&client.sent_packet_manager())));
EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing(
static_cast<const QuicSentPacketManager*>(
&server.sent_packet_manager())));
}
TEST_P(QuicConnectionTest, WindowUpdateInstigateAcks) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Send a WINDOW_UPDATE frame.
QuicWindowUpdateFrame* window_update = new QuicWindowUpdateFrame();
window_update->stream_id = 3;
window_update->max_data = 1234;
EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
ProcessFramePacket(QuicFrame(window_update));
// Ensure that this has caused the ACK alarm to be set.
EXPECT_TRUE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, BlockedFrameInstigateAcks) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Send a BLOCKED frame.
QuicBlockedFrame* blocked = new QuicBlockedFrame();
blocked->stream_id = 3;
EXPECT_CALL(visitor_, OnBlockedFrame(_));
ProcessFramePacket(QuicFrame(blocked));
// Ensure that this has caused the ACK alarm to be set.
EXPECT_TRUE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, ReevaluateTimeUntilSendOnAck) {
// Enable pacing.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
// Send two packets. One packet is not sufficient because if it gets acked,
// there will be no packets in flight after that and the pacer will always
// allow the next packet in that situation.
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, NO_FIN);
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "bar",
3, NO_FIN);
connection_.OnCanWrite();
// Schedule the next packet for a few milliseconds in future.
QuicSentPacketManagerPeer::DisablePacerBursts(manager_);
QuicTime scheduled_pacing_time =
clock_.Now() + QuicTime::Delta::FromMilliseconds(5);
QuicSentPacketManagerPeer::SetNextPacedPacketTime(manager_,
scheduled_pacing_time);
// Send a packet and have it be blocked by congestion control.
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(false));
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "baz",
6, NO_FIN);
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
// Process an ack and the send alarm will be set to the new 5ms delay.
QuicAckFrame ack = InitAckFrame(1);
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
ProcessAckPacket(&ack);
size_t padding_frame_count = writer_->padding_frames().size();
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_TRUE(connection_.GetSendAlarm()->IsSet());
EXPECT_EQ(scheduled_pacing_time, connection_.GetSendAlarm()->deadline());
writer_->Reset();
}
TEST_P(QuicConnectionTest, SendAcksImmediately) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(1);
CongestionBlockWrites();
SendAckPacketToPeer();
}
TEST_P(QuicConnectionTest, SendPingImmediately) {
MockQuicConnectionDebugVisitor debug_visitor;
connection_.set_debug_visitor(&debug_visitor);
CongestionBlockWrites();
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(1);
EXPECT_CALL(debug_visitor, OnPingSent()).Times(1);
connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
EXPECT_FALSE(connection_.HasQueuedData());
}
TEST_P(QuicConnectionTest, SendBlockedImmediately) {
MockQuicConnectionDebugVisitor debug_visitor;
connection_.set_debug_visitor(&debug_visitor);
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(1);
EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
connection_.SendControlFrame(QuicFrame(new QuicBlockedFrame(1, 3)));
EXPECT_EQ(1u, connection_.GetStats().blocked_frames_sent);
EXPECT_FALSE(connection_.HasQueuedData());
}
TEST_P(QuicConnectionTest, FailedToSendBlockedFrames) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
MockQuicConnectionDebugVisitor debug_visitor;
connection_.set_debug_visitor(&debug_visitor);
QuicBlockedFrame blocked(1, 3);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(0);
EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
connection_.SendControlFrame(QuicFrame(&blocked));
EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
EXPECT_FALSE(connection_.HasQueuedData());
}
TEST_P(QuicConnectionTest, SendingUnencryptedStreamDataFails) {
// EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
if (!IsDefaultTestConfiguration()) {
return;
}
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
struct iovec iov;
MakeIOVector("", &iov);
EXPECT_QUIC_BUG(connection_.SaveAndSendStreamData(3, &iov, 1, 0, 0, FIN),
"Cannot send stream data with level: ENCRYPTION_INITIAL");
EXPECT_FALSE(connection_.connected());
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA));
}
TEST_P(QuicConnectionTest, SetRetransmissionAlarmForCryptoPacket) {
EXPECT_TRUE(connection_.connected());
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendCryptoStreamData();
// Verify retransmission timer is correctly set after crypto packet has been
// sent.
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
QuicTime retransmission_time =
QuicConnectionPeer::GetSentPacketManager(&connection_)
->GetRetransmissionTime();
EXPECT_NE(retransmission_time, clock_.ApproximateNow());
EXPECT_EQ(retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.GetRetransmissionAlarm()->Fire();
}
// Includes regression test for b/69979024.
TEST_P(QuicConnectionTest, PathDegradingDetectionForNonCryptoPackets) {
EXPECT_TRUE(connection_.connected());
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
EXPECT_FALSE(connection_.IsPathDegrading());
const char data[] = "data";
size_t data_size = strlen(data);
QuicStreamOffset offset = 0;
for (int i = 0; i < 2; ++i) {
// Send a packet. Now there's a retransmittable packet on the wire, so the
// path degrading detection should be set.
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), data,
offset, NO_FIN);
offset += data_size;
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
// Check the deadline of the path degrading detection.
QuicTime::Delta delay =
QuicConnectionPeer::GetSentPacketManager(&connection_)
->GetPathDegradingDelay();
EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
clock_.ApproximateNow());
// Send a second packet. The path degrading detection's deadline should
// remain the same.
// Regression test for b/69979024.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicTime prev_deadline =
connection_.GetBlackholeDetectorAlarm()->deadline();
connection_.SendStreamDataWithString(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), data,
offset, NO_FIN);
offset += data_size;
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
EXPECT_EQ(prev_deadline,
connection_.GetBlackholeDetectorAlarm()->deadline());
// Now receive an ACK of the first packet. This should advance the path
// degrading detection's deadline since forward progress has been made.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
if (i == 0) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
}
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame frame = InitAckFrame(
{{QuicPacketNumber(1u + 2u * i), QuicPacketNumber(2u + 2u * i)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
// Check the deadline of the path degrading detection.
delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
->GetPathDegradingDelay();
EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
clock_.ApproximateNow());
if (i == 0) {
// Now receive an ACK of the second packet. Since there are no more
// retransmittable packets on the wire, this should cancel the path
// degrading detection.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
ProcessAckPacket(&frame);
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
} else {
// Advance time to the path degrading alarm's deadline and simulate
// firing the alarm.
clock_.AdvanceTime(delay);
EXPECT_CALL(visitor_, OnPathDegrading());
connection_.PathDegradingTimeout();
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
}
}
EXPECT_TRUE(connection_.IsPathDegrading());
}
TEST_P(QuicConnectionTest, RetransmittableOnWireSetsPingAlarm) {
const QuicTime::Delta retransmittable_on_wire_timeout =
QuicTime::Delta::FromMilliseconds(50);
connection_.set_initial_retransmittable_on_wire_timeout(
retransmittable_on_wire_timeout);
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(true));
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
EXPECT_FALSE(connection_.IsPathDegrading());
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
const char data[] = "data";
size_t data_size = strlen(data);
QuicStreamOffset offset = 0;
// Send a packet.
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
// Now there's a retransmittable packet on the wire, so the path degrading
// alarm should be set.
// The retransmittable-on-wire alarm should not be set.
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
->GetPathDegradingDelay();
EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
clock_.ApproximateNow());
ASSERT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
// The ping alarm is set for the ping timeout, not the shorter
// retransmittable_on_wire_timeout.
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
EXPECT_EQ(ping_delay,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Now receive an ACK of the packet.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame frame =
InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
ProcessAckPacket(&frame);
// No more retransmittable packets on the wire, so the path degrading alarm
// should be cancelled, and the ping alarm should be set to the
// retransmittable_on_wire_timeout.
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Simulate firing the ping alarm and sending a PING.
clock_.AdvanceTime(retransmittable_on_wire_timeout);
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
}));
connection_.GetPingAlarm()->Fire();
// Now there's a retransmittable packet (PING) on the wire, so the path
// degrading alarm should be set.
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
->GetPathDegradingDelay();
EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
clock_.ApproximateNow());
}
// This test verifies that the connection marks path as degrading and does not
// spin timer to detect path degrading when a new packet is sent on the
// degraded path.
TEST_P(QuicConnectionTest, NoPathDegradingDetectionIfPathIsDegrading) {
EXPECT_TRUE(connection_.connected());
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
EXPECT_FALSE(connection_.IsPathDegrading());
const char data[] = "data";
size_t data_size = strlen(data);
QuicStreamOffset offset = 0;
// Send the first packet. Now there's a retransmittable packet on the wire, so
// the path degrading alarm should be set.
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
// Check the deadline of the path degrading detection.
QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
->GetPathDegradingDelay();
EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
clock_.ApproximateNow());
// Send a second packet. The path degrading detection's deadline should remain
// the same.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicTime prev_deadline = connection_.GetBlackholeDetectorAlarm()->deadline();
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
EXPECT_EQ(prev_deadline, connection_.GetBlackholeDetectorAlarm()->deadline());
// Now receive an ACK of the first packet. This should advance the path
// degrading detection's deadline since forward progress has been made.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame frame =
InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
// Check the deadline of the path degrading alarm.
delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
->GetPathDegradingDelay();
EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
clock_.ApproximateNow());
// Advance time to the path degrading detection's deadline and simulate
// firing the path degrading detection. This path will be considered as
// degrading.
clock_.AdvanceTime(delay);
EXPECT_CALL(visitor_, OnPathDegrading()).Times(1);
connection_.PathDegradingTimeout();
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
EXPECT_TRUE(connection_.IsPathDegrading());
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
// Send a third packet. The path degrading detection is no longer set but path
// should still be marked as degrading.
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
EXPECT_TRUE(connection_.IsPathDegrading());
}
// This test verifies that the connection unmarks path as degrarding and spins
// the timer to detect future path degrading when forward progress is made
// after path has been marked degrading.
TEST_P(QuicConnectionTest, UnmarkPathDegradingOnForwardProgress) {
EXPECT_TRUE(connection_.connected());
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
EXPECT_FALSE(connection_.IsPathDegrading());
const char data[] = "data";
size_t data_size = strlen(data);
QuicStreamOffset offset = 0;
// Send the first packet. Now there's a retransmittable packet on the wire, so
// the path degrading alarm should be set.
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
// Check the deadline of the path degrading alarm.
QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
->GetPathDegradingDelay();
EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
clock_.ApproximateNow());
// Send a second packet. The path degrading alarm's deadline should remain
// the same.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicTime prev_deadline = connection_.GetBlackholeDetectorAlarm()->deadline();
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
EXPECT_EQ(prev_deadline, connection_.GetBlackholeDetectorAlarm()->deadline());
// Now receive an ACK of the first packet. This should advance the path
// degrading alarm's deadline since forward progress has been made.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame frame =
InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
// Check the deadline of the path degrading alarm.
delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
->GetPathDegradingDelay();
EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
clock_.ApproximateNow());
// Advance time to the path degrading alarm's deadline and simulate
// firing the alarm.
clock_.AdvanceTime(delay);
EXPECT_CALL(visitor_, OnPathDegrading()).Times(1);
connection_.PathDegradingTimeout();
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
EXPECT_TRUE(connection_.IsPathDegrading());
// Send a third packet. The path degrading alarm is no longer set but path
// should still be marked as degrading.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
EXPECT_TRUE(connection_.IsPathDegrading());
// Now receive an ACK of the second packet. This should unmark the path as
// degrading. And will set a timer to detect new path degrading.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading()).Times(1);
frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
ProcessAckPacket(&frame);
EXPECT_FALSE(connection_.IsPathDegrading());
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
}
TEST_P(QuicConnectionTest, NoPathDegradingOnServer) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_FALSE(connection_.IsPathDegrading());
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
// Send data.
const char data[] = "data";
connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
EXPECT_FALSE(connection_.IsPathDegrading());
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
// Ack data.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame frame =
InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
ProcessAckPacket(&frame);
EXPECT_FALSE(connection_.IsPathDegrading());
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
}
TEST_P(QuicConnectionTest, NoPathDegradingAfterSendingAck) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(1);
SendAckPacketToPeer();
EXPECT_FALSE(connection_.sent_packet_manager().unacked_packets().empty());
EXPECT_FALSE(connection_.sent_packet_manager().HasInFlightPackets());
EXPECT_FALSE(connection_.IsPathDegrading());
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
}
TEST_P(QuicConnectionTest, MultipleCallsToCloseConnection) {
// Verifies that multiple calls to CloseConnection do not
// result in multiple attempts to close the connection - it will be marked as
// disconnected after the first call.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1);
connection_.CloseConnection(QUIC_NO_ERROR, "no reason",
ConnectionCloseBehavior::SILENT_CLOSE);
connection_.CloseConnection(QUIC_NO_ERROR, "no reason",
ConnectionCloseBehavior::SILENT_CLOSE);
}
TEST_P(QuicConnectionTest, ServerReceivesChloOnNonCryptoStream) {
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
CryptoHandshakeMessage message;
CryptoFramer framer;
message.set_tag(kCHLO);
std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message);
frame1_.stream_id = 10;
frame1_.data_buffer = data->data();
frame1_.data_length = data->length();
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
ForceProcessFramePacket(QuicFrame(frame1_));
TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY);
}
TEST_P(QuicConnectionTest, ClientReceivesRejOnNonCryptoStream) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
CryptoHandshakeMessage message;
CryptoFramer framer;
message.set_tag(kREJ);
std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message);
frame1_.stream_id = 10;
frame1_.data_buffer = data->data();
frame1_.data_length = data->length();
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
ForceProcessFramePacket(QuicFrame(frame1_));
TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY);
}
TEST_P(QuicConnectionTest, CloseConnectionOnPacketTooLarge) {
SimulateNextPacketTooLarge();
// A connection close packet is sent
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.Times(1);
connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
}
TEST_P(QuicConnectionTest, AlwaysGetPacketTooLarge) {
// Test even we always get packet too large, we do not infinitely try to send
// close packet.
AlwaysGetPacketTooLarge();
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.Times(1);
connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
}
TEST_P(QuicConnectionTest, CloseConnectionOnQueuedWriteError) {
// Regression test for crbug.com/979507.
//
// If we get a write error when writing queued packets, we should attempt to
// send a connection close packet, but if sending that fails, it shouldn't get
// queued.
// Queue a packet to write.
BlockOnNextWrite();
connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Configure writer to always fail.
AlwaysGetPacketTooLarge();
// Expect that we attempt to close the connection exactly once.
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.Times(1);
// Unblock the writes and actually send.
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
}
// Verify that if connection has no outstanding data, it notifies the send
// algorithm after the write.
TEST_P(QuicConnectionTest, SendDataAndBecomeApplicationLimited) {
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
{
InSequence seq;
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
EXPECT_CALL(visitor_, WillingAndAbleToWrite())
.WillRepeatedly(Return(false));
}
connection_.SendStreamData3();
}
// Verify that the connection does not become app-limited if there is
// outstanding data to send after the write.
TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedIfMoreDataAvailable) {
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
{
InSequence seq;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
}
connection_.SendStreamData3();
}
// Verify that the connection does not become app-limited after blocked write
// even if there is outstanding data to send after the write.
TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedDueToWriteBlock) {
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
BlockOnNextWrite();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamData3();
// Now unblock the writer, become congestion control blocked,
// and ensure we become app-limited after writing.
writer_->SetWritable();
CongestionBlockWrites();
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
connection_.OnCanWrite();
}
// Test the mode in which the link is filled up with probing retransmissions if
// the connection becomes application-limited.
TEST_P(QuicConnectionTest, SendDataWhenApplicationLimited) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
.WillRepeatedly(Return(true));
{
InSequence seq;
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
EXPECT_CALL(visitor_, WillingAndAbleToWrite())
.WillRepeatedly(Return(false));
}
EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] {
return connection_.sent_packet_manager().MaybeRetransmitOldestPacket(
PROBING_RETRANSMISSION);
});
// Fix congestion window to be 20,000 bytes.
EXPECT_CALL(*send_algorithm_, CanSend(Ge(20000u)))
.WillRepeatedly(Return(false));
EXPECT_CALL(*send_algorithm_, CanSend(Lt(20000u)))
.WillRepeatedly(Return(true));
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
ASSERT_EQ(0u, connection_.GetStats().packets_sent);
connection_.set_fill_up_link_during_probing(true);
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
connection_.OnHandshakeComplete();
connection_.SendStreamData3();
// We expect a lot of packets from a 20 kbyte window.
EXPECT_GT(connection_.GetStats().packets_sent, 10u);
// Ensure that the packets are padded.
QuicByteCount average_packet_size =
connection_.GetStats().bytes_sent / connection_.GetStats().packets_sent;
EXPECT_GT(average_packet_size, 1000u);
// Acknowledge all packets sent, except for the last one.
QuicAckFrame ack = InitAckFrame(
connection_.sent_packet_manager().GetLargestSentPacket() - 1);
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
// Ensure that since we no longer have retransmittable bytes in flight, this
// will not cause any responses to be sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
ProcessAckPacket(&ack);
}
TEST_P(QuicConnectionTest, DoNotForceSendingAckOnPacketTooLarge) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Send an ack by simulating delayed ack alarm firing.
ProcessPacket(1);
EXPECT_TRUE(connection_.HasPendingAcks());
connection_.GetAckAlarm()->Fire();
// Simulate data packet causes write error.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
SimulateNextPacketTooLarge();
connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
EXPECT_EQ(1u, writer_->connection_close_frames().size());
// Ack frame is not bundled in connection close packet.
EXPECT_TRUE(writer_->ack_frames().empty());
if (writer_->padding_frames().empty()) {
EXPECT_EQ(1u, writer_->frame_count());
} else {
EXPECT_EQ(2u, writer_->frame_count());
}
TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
}
TEST_P(QuicConnectionTest, CloseConnectionAllLevels) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
connection_.CloseConnection(
kQuicErrorCode, "Some random error message",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
TestConnectionCloseQuicErrorCode(kQuicErrorCode);
EXPECT_EQ(1u, writer_->connection_close_frames().size());
if (!connection_.version().CanSendCoalescedPackets()) {
// Each connection close packet should be sent in distinct UDP packets.
EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
writer_->connection_close_packets());
EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
writer_->packets_write_attempts());
return;
}
// A single UDP packet should be sent with multiple connection close packets
// coalesced together.
EXPECT_EQ(1u, writer_->packets_write_attempts());
// Only the first packet has been processed yet.
EXPECT_EQ(1u, writer_->connection_close_packets());
// ProcessPacket resets the visitor and frees the coalesced packet.
ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
auto packet = writer_->coalesced_packet()->Clone();
writer_->framer()->ProcessPacket(*packet);
EXPECT_EQ(1u, writer_->connection_close_packets());
ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
}
TEST_P(QuicConnectionTest, CloseConnectionOneLevel) {
if (connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
connection_.CloseConnection(
kQuicErrorCode, "Some random error message",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
TestConnectionCloseQuicErrorCode(kQuicErrorCode);
EXPECT_EQ(1u, writer_->connection_close_frames().size());
EXPECT_EQ(1u, writer_->connection_close_packets());
EXPECT_EQ(1u, writer_->packets_write_attempts());
ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
}
TEST_P(QuicConnectionTest, DoNotPadServerInitialConnectionClose) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
set_perspective(Perspective::IS_SERVER);
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
connection_.CloseConnection(
kQuicErrorCode, "Some random error message",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
TestConnectionCloseQuicErrorCode(kQuicErrorCode);
EXPECT_EQ(1u, writer_->connection_close_frames().size());
EXPECT_TRUE(writer_->padding_frames().empty());
EXPECT_EQ(ENCRYPTION_INITIAL, writer_->framer()->last_decrypted_level());
}
// Regression test for b/63620844.
TEST_P(QuicConnectionTest, FailedToWriteHandshakePacket) {
SimulateNextPacketTooLarge();
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.Times(1);
connection_.SendCryptoStreamData();
TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
}
TEST_P(QuicConnectionTest, MaxPacingRate) {
EXPECT_EQ(0, connection_.MaxPacingRate().ToBytesPerSecond());
connection_.SetMaxPacingRate(QuicBandwidth::FromBytesPerSecond(100));
EXPECT_EQ(100, connection_.MaxPacingRate().ToBytesPerSecond());
}
TEST_P(QuicConnectionTest, ClientAlwaysSendConnectionId) {
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
EXPECT_EQ(CONNECTION_ID_PRESENT,
writer_->last_packet_header().destination_connection_id_included);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0);
connection_.SetFromConfig(config);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(3, "bar", 3, NO_FIN);
// Verify connection id is still sent in the packet.
EXPECT_EQ(CONNECTION_ID_PRESENT,
writer_->last_packet_header().destination_connection_id_included);
}
TEST_P(QuicConnectionTest, SendProbingRetransmissions) {
MockQuicConnectionDebugVisitor debug_visitor;
connection_.set_debug_visitor(&debug_visitor);
const QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
SendStreamDataToPeer(stream_id, "bar", 3, NO_FIN, &last_packet);
SendStreamDataToPeer(stream_id, "test", 6, NO_FIN, &last_packet);
const QuicByteCount old_bytes_in_flight =
connection_.sent_packet_manager().GetBytesInFlight();
// Allow 9 probing retransmissions to be sent.
{
InSequence seq;
EXPECT_CALL(*send_algorithm_, CanSend(_))
.Times(9 * 2)
.WillRepeatedly(Return(true));
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
}
// Expect them retransmitted in cyclic order (foo, bar, test, foo, bar...).
QuicPacketCount sent_count = 0;
EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _))
.WillRepeatedly(Invoke([this, &sent_count](const SerializedPacket&,
TransmissionType, QuicTime) {
ASSERT_EQ(1u, writer_->stream_frames().size());
if (connection_.version().CanSendCoalescedPackets()) {
// There is a delay of sending coalesced packet, so (6, 0, 3, 6,
// 0...).
EXPECT_EQ(3 * ((sent_count + 2) % 3),
writer_->stream_frames()[0]->offset);
} else {
// Identify the frames by stream offset (0, 3, 6, 0, 3...).
EXPECT_EQ(3 * (sent_count % 3), writer_->stream_frames()[0]->offset);
}
sent_count++;
}));
EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
.WillRepeatedly(Return(true));
EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] {
return connection_.sent_packet_manager().MaybeRetransmitOldestPacket(
PROBING_RETRANSMISSION);
});
connection_.SendProbingRetransmissions();
// Ensure that the in-flight has increased.
const QuicByteCount new_bytes_in_flight =
connection_.sent_packet_manager().GetBytesInFlight();
EXPECT_GT(new_bytes_in_flight, old_bytes_in_flight);
}
// Ensure that SendProbingRetransmissions() does not retransmit anything when
// there are no outstanding packets.
TEST_P(QuicConnectionTest,
SendProbingRetransmissionsFailsWhenNothingToRetransmit) {
ASSERT_TRUE(connection_.sent_packet_manager().unacked_packets().empty());
MockQuicConnectionDebugVisitor debug_visitor;
connection_.set_debug_visitor(&debug_visitor);
EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(0);
EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
.WillRepeatedly(Return(true));
EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] {
return connection_.sent_packet_manager().MaybeRetransmitOldestPacket(
PROBING_RETRANSMISSION);
});
connection_.SendProbingRetransmissions();
}
TEST_P(QuicConnectionTest, PingAfterLastRetransmittablePacketAcked) {
const QuicTime::Delta retransmittable_on_wire_timeout =
QuicTime::Delta::FromMilliseconds(50);
connection_.set_initial_retransmittable_on_wire_timeout(
retransmittable_on_wire_timeout);
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(true));
const char data[] = "data";
size_t data_size = strlen(data);
QuicStreamOffset offset = 0;
// Advance 5ms, send a retransmittable packet to the peer.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
// The ping alarm is set for the ping timeout, not the shorter
// retransmittable_on_wire_timeout.
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
EXPECT_EQ(ping_delay,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Advance 5ms, send a second retransmittable packet to the peer.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
// Now receive an ACK of the first packet. This should not set the
// retransmittable-on-wire alarm since packet 2 is still on the wire.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame frame =
InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
// The ping alarm is set for the ping timeout, not the shorter
// retransmittable_on_wire_timeout.
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
// The ping alarm has a 1 second granularity, and the clock has been advanced
// 10ms since it was originally set.
EXPECT_EQ(ping_delay - QuicTime::Delta::FromMilliseconds(10),
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Now receive an ACK of the second packet. This should set the
// retransmittable-on-wire alarm now that no retransmittable packets are on
// the wire.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Now receive a duplicate ACK of the second packet. This should not update
// the ping alarm.
QuicTime prev_deadline = connection_.GetPingAlarm()->deadline();
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline());
// Now receive a non-ACK packet. This should not update the ping alarm.
prev_deadline = connection_.GetPingAlarm()->deadline();
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
ProcessPacket(4);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline());
// Simulate the alarm firing and check that a PING is sent.
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
}));
connection_.GetPingAlarm()->Fire();
size_t padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
} else {
EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count());
}
ASSERT_EQ(1u, writer_->ping_frames().size());
}
TEST_P(QuicConnectionTest, NoPingIfRetransmittablePacketSent) {
const QuicTime::Delta retransmittable_on_wire_timeout =
QuicTime::Delta::FromMilliseconds(50);
connection_.set_initial_retransmittable_on_wire_timeout(
retransmittable_on_wire_timeout);
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(true));
const char data[] = "data";
size_t data_size = strlen(data);
QuicStreamOffset offset = 0;
// Advance 5ms, send a retransmittable packet to the peer.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
// The ping alarm is set for the ping timeout, not the shorter
// retransmittable_on_wire_timeout.
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
EXPECT_EQ(ping_delay,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Now receive an ACK of the first packet. This should set the
// retransmittable-on-wire alarm now that no retransmittable packets are on
// the wire.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
QuicAckFrame frame =
InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Before the alarm fires, send another retransmittable packet. This should
// cancel the retransmittable-on-wire alarm since now there's a
// retransmittable packet on the wire.
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
// Now receive an ACK of the second packet. This should set the
// retransmittable-on-wire alarm now that no retransmittable packets are on
// the wire.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Simulate the alarm firing and check that a PING is sent.
writer_->Reset();
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
}));
connection_.GetPingAlarm()->Fire();
size_t padding_frame_count = writer_->padding_frames().size();
if (GetParam().no_stop_waiting) {
// Do not ACK acks.
EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
} else {
EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count());
}
ASSERT_EQ(1u, writer_->ping_frames().size());
}
// When there is no stream data received but are open streams, send the
// first few consecutive pings with aggressive retransmittable-on-wire
// timeout. Exponentially back off the retransmittable-on-wire ping timeout
// afterwards until it exceeds the default ping timeout.
TEST_P(QuicConnectionTest, BackOffRetransmittableOnWireTimeout) {
int max_aggressive_retransmittable_on_wire_ping_count = 5;
SetQuicFlag(FLAGS_quic_max_aggressive_retransmittable_on_wire_ping_count,
max_aggressive_retransmittable_on_wire_ping_count);
const QuicTime::Delta initial_retransmittable_on_wire_timeout =
QuicTime::Delta::FromMilliseconds(200);
connection_.set_initial_retransmittable_on_wire_timeout(
initial_retransmittable_on_wire_timeout);
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(true));
const char data[] = "data";
// Advance 5ms, send a retransmittable data packet to the peer.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
// The ping alarm is set for the ping timeout, not the shorter
// retransmittable_on_wire_timeout.
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(connection_.ping_timeout(),
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
.Times(AnyNumber());
// Verify that the first few consecutive retransmittable on wire pings are
// sent with aggressive timeout.
for (int i = 0; i <= max_aggressive_retransmittable_on_wire_ping_count; i++) {
// Receive an ACK of the previous packet. This should set the ping alarm
// with the initial retransmittable-on-wire timeout.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicPacketNumber ack_num = creator_->packet_number();
QuicAckFrame frame = InitAckFrame(
{{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(initial_retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Simulate the alarm firing and check that a PING is sent.
writer_->Reset();
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
SendPing();
}));
clock_.AdvanceTime(initial_retransmittable_on_wire_timeout);
connection_.GetPingAlarm()->Fire();
}
QuicTime::Delta retransmittable_on_wire_timeout =
initial_retransmittable_on_wire_timeout;
// Verify subsequent pings are sent with timeout that is exponentially backed
// off.
while (retransmittable_on_wire_timeout * 2 < connection_.ping_timeout()) {
// Receive an ACK for the previous PING. This should set the
// ping alarm with backed off retransmittable-on-wire timeout.
retransmittable_on_wire_timeout = retransmittable_on_wire_timeout * 2;
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicPacketNumber ack_num = creator_->packet_number();
QuicAckFrame frame = InitAckFrame(
{{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Simulate the alarm firing and check that a PING is sent.
writer_->Reset();
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
SendPing();
}));
clock_.AdvanceTime(retransmittable_on_wire_timeout);
connection_.GetPingAlarm()->Fire();
}
// The ping alarm is set with default ping timeout.
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(connection_.ping_timeout(),
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Receive an ACK for the previous PING. The ping alarm is set with an
// earlier deadline.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicPacketNumber ack_num = creator_->packet_number();
QuicAckFrame frame = InitAckFrame(
{{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(connection_.ping_timeout() - QuicTime::Delta::FromMilliseconds(5),
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
}
// This test verify that the count of consecutive aggressive pings is reset
// when new data is received. And it also verifies the connection resets
// the exponential back-off of the retransmittable-on-wire ping timeout
// after receiving new stream data.
TEST_P(QuicConnectionTest, ResetBackOffRetransmitableOnWireTimeout) {
int max_aggressive_retransmittable_on_wire_ping_count = 3;
SetQuicFlag(FLAGS_quic_max_aggressive_retransmittable_on_wire_ping_count, 3);
const QuicTime::Delta initial_retransmittable_on_wire_timeout =
QuicTime::Delta::FromMilliseconds(200);
connection_.set_initial_retransmittable_on_wire_timeout(
initial_retransmittable_on_wire_timeout);
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(true));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
.Times(AnyNumber());
const char data[] = "data";
// Advance 5ms, send a retransmittable data packet to the peer.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
// The ping alarm is set for the ping timeout, not the shorter
// retransmittable_on_wire_timeout.
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(connection_.ping_timeout(),
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Receive an ACK of the first packet. This should set the ping alarm with
// initial retransmittable-on-wire timeout since there is no retransmittable
// packet on the wire.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicAckFrame frame =
InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(initial_retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Simulate the alarm firing and check that a PING is sent.
writer_->Reset();
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); }));
clock_.AdvanceTime(initial_retransmittable_on_wire_timeout);
connection_.GetPingAlarm()->Fire();
// Receive an ACK for the previous PING. Ping alarm will be set with
// aggressive timeout.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicPacketNumber ack_num = creator_->packet_number();
frame = InitAckFrame(
{{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(initial_retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Process a data packet.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(peer_creator_.packet_number() + 1);
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_,
peer_creator_.packet_number() + 1);
EXPECT_EQ(initial_retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Verify the count of consecutive aggressive pings is reset.
for (int i = 0; i < max_aggressive_retransmittable_on_wire_ping_count; i++) {
// Receive an ACK of the previous packet. This should set the ping alarm
// with the initial retransmittable-on-wire timeout.
QuicPacketNumber ack_num = creator_->packet_number();
QuicAckFrame frame = InitAckFrame(
{{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(initial_retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
// Simulate the alarm firing and check that a PING is sent.
writer_->Reset();
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
SendPing();
}));
clock_.AdvanceTime(initial_retransmittable_on_wire_timeout);
connection_.GetPingAlarm()->Fire();
// Advance 5ms to receive next packet.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
}
// Receive another ACK for the previous PING. This should set the
// ping alarm with backed off retransmittable-on-wire timeout.
ack_num = creator_->packet_number();
frame = InitAckFrame(
{{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(initial_retransmittable_on_wire_timeout * 2,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
writer_->Reset();
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); }));
clock_.AdvanceTime(2 * initial_retransmittable_on_wire_timeout);
connection_.GetPingAlarm()->Fire();
// Process another data packet and a new ACK packet. The ping alarm is set
// with aggressive ping timeout again.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
ProcessDataPacket(peer_creator_.packet_number() + 1);
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_,
peer_creator_.packet_number() + 1);
ack_num = creator_->packet_number();
frame = InitAckFrame(
{{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(initial_retransmittable_on_wire_timeout,
connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
}
TEST_P(QuicConnectionTest, ValidStatelessResetToken) {
const QuicUint128 kTestToken = 1010101;
const QuicUint128 kWrongTestToken = 1010100;
QuicConfig config;
// No token has been received.
EXPECT_FALSE(connection_.IsValidStatelessResetToken(kTestToken));
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(2);
// Token is different from received token.
QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken);
connection_.SetFromConfig(config);
EXPECT_FALSE(connection_.IsValidStatelessResetToken(kWrongTestToken));
QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken);
connection_.SetFromConfig(config);
EXPECT_TRUE(connection_.IsValidStatelessResetToken(kTestToken));
}
TEST_P(QuicConnectionTest, WriteBlockedWithInvalidAck) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
BlockOnNextWrite();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(5, "foo", 0, FIN);
// This causes connection to be closed because packet 1 has not been sent yet.
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
ProcessAckPacket(1, &frame);
EXPECT_EQ(0, connection_close_frame_count_);
}
TEST_P(QuicConnectionTest, SendMessage) {
if (!VersionSupportsMessageFrames(connection_.transport_version())) {
return;
}
if (connection_.version().UsesTls()) {
QuicConfig config;
QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
&config, kMaxAcceptedDatagramFrameSize);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
}
std::string message(connection_.GetCurrentLargestMessagePayload() * 2, 'a');
quiche::QuicheStringPiece message_data(message);
QuicMemSliceStorage storage(nullptr, 0, nullptr, 0);
{
QuicConnection::ScopedPacketFlusher flusher(&connection_);
connection_.SendStreamData3();
// Send a message which cannot fit into current open packet, and 2 packets
// get sent, one contains stream frame, and the other only contains the
// message frame.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
EXPECT_EQ(MESSAGE_STATUS_SUCCESS,
connection_.SendMessage(
1,
MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(),
quiche::QuicheStringPiece(
message_data.data(),
connection_.GetCurrentLargestMessagePayload()),
&storage),
false));
}
// Fail to send a message if connection is congestion control blocked.
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
EXPECT_EQ(MESSAGE_STATUS_BLOCKED,
connection_.SendMessage(
2,
MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(),
"message", &storage),
false));
// Always fail to send a message which cannot fit into one packet.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
EXPECT_EQ(MESSAGE_STATUS_TOO_LARGE,
connection_.SendMessage(
3,
MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(),
quiche::QuicheStringPiece(
message_data.data(),
connection_.GetCurrentLargestMessagePayload() + 1),
&storage),
false));
}
TEST_P(QuicConnectionTest, GetCurrentLargestMessagePayload) {
if (!connection_.version().SupportsMessageFrames()) {
return;
}
// Force use of this encrypter to simplify test expectations by making sure
// that the encryption overhead is constant across versions.
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x00));
QuicPacketLength expected_largest_payload = 1319;
if (connection_.version().SendsVariableLengthPacketNumberInLongHeader()) {
expected_largest_payload += 3;
}
if (connection_.version().HasLongHeaderLengths()) {
expected_largest_payload -= 2;
}
if (connection_.version().HasLengthPrefixedConnectionIds()) {
expected_largest_payload -= 1;
}
if (connection_.version().UsesTls()) {
// QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake.
EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), 0);
QuicConfig config;
QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
&config, kMaxAcceptedDatagramFrameSize);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
// Verify the value post-handshake.
EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(),
expected_largest_payload);
} else {
EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(),
expected_largest_payload);
}
}
TEST_P(QuicConnectionTest, GetGuaranteedLargestMessagePayload) {
if (!connection_.version().SupportsMessageFrames()) {
return;
}
// Force use of this encrypter to simplify test expectations by making sure
// that the encryption overhead is constant across versions.
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x00));
QuicPacketLength expected_largest_payload = 1319;
if (connection_.version().HasLongHeaderLengths()) {
expected_largest_payload -= 2;
}
if (connection_.version().HasLengthPrefixedConnectionIds()) {
expected_largest_payload -= 1;
}
if (connection_.version().UsesTls()) {
// QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake.
EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), 0);
QuicConfig config;
QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
&config, kMaxAcceptedDatagramFrameSize);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
// Verify the value post-handshake.
EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(),
expected_largest_payload);
} else {
EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(),
expected_largest_payload);
}
}
TEST_P(QuicConnectionTest, LimitedLargestMessagePayload) {
if (!connection_.version().SupportsMessageFrames() ||
!connection_.version().UsesTls()) {
return;
}
constexpr QuicPacketLength kFrameSizeLimit = 1000;
constexpr QuicPacketLength kPayloadSizeLimit =
kFrameSizeLimit - kQuicFrameTypeSize;
// QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake.
EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), 0);
EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), 0);
QuicConfig config;
QuicConfigPeer::SetReceivedMaxDatagramFrameSize(&config, kFrameSizeLimit);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
// Verify the value post-handshake.
EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), kPayloadSizeLimit);
EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(),
kPayloadSizeLimit);
}
// Test to check that the path challenge/path response logic works
// correctly. This test is only for version-99
TEST_P(QuicConnectionTest, PathChallengeResponse) {
if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
return;
}
// First check if we can probe from server to client and back
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
// Create and send the probe request (PATH_CHALLENGE frame).
// SendConnectivityProbingPacket ends up calling
// TestPacketWriter::WritePacket() which in turns receives and parses the
// packet by calling framer_.ProcessPacket() -- which in turn calls
// SimpleQuicFramer::OnPathChallengeFrame(). SimpleQuicFramer saves
// the packet in writer_->path_challenge_frames()
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendConnectivityProbingPacket(writer_.get(),
connection_.peer_address());
// Save the random contents of the challenge for later comparison to the
// response.
ASSERT_GE(writer_->path_challenge_frames().size(), 1u);
QuicPathFrameBuffer challenge_data =
writer_->path_challenge_frames().front().data_buffer;
// Normally, QuicConnection::OnPathChallengeFrame and OnPaddingFrame would be
// called and it will perform actions to ensure that the rest of the protocol
// is performed (specifically, call UpdatePacketContent to say that this is a
// path challenge so that when QuicConnection::OnPacketComplete is called
// (again, out of the framer), the response is generated). Simulate those
// calls so that the right internal state is set up for generating
// the response.
EXPECT_TRUE(connection_.OnPathChallengeFrame(
writer_->path_challenge_frames().front()));
EXPECT_TRUE(connection_.OnPaddingFrame(writer_->padding_frames().front()));
// Cause the response to be created and sent. Result is that the response
// should be stashed in writer's path_response_frames.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendConnectivityProbingResponsePacket(connection_.peer_address());
// The final check is to ensure that the random data in the response matches
// the random data from the challenge.
EXPECT_EQ(0, memcmp(&challenge_data,
&(writer_->path_response_frames().front().data_buffer),
sizeof(challenge_data)));
}
TEST_P(QuicConnectionTest,
RestartPathDegradingDetectionAfterMigrationWithProbe) {
// TODO(b/150095484): add test coverage for IETF to verify that client takes
// PATH RESPONSE with peer address change as correct validation on the new
// path.
if (GetParam().version.HasIetfQuicFrames()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
PathProbeTestInit(Perspective::IS_CLIENT);
// Clear direct_peer_address and effective_peer_address.
QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
QuicSocketAddress());
EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
.WillRepeatedly(Return(true));
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
EXPECT_FALSE(connection_.IsPathDegrading());
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
// Send data and verify the path degrading detection is set.
const char data[] = "data";
size_t data_size = strlen(data);
QuicStreamOffset offset = 0;
connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
offset += data_size;
// Verify the path degrading detection is in progress.
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
EXPECT_FALSE(connection_.IsPathDegrading());
QuicTime ddl = connection_.GetBlackholeDetectorAlarm()->deadline();
// Simulate the firing of path degrading.
clock_.AdvanceTime(ddl - clock_.ApproximateNow());
EXPECT_CALL(visitor_, OnPathDegrading()).Times(1);
connection_.PathDegradingTimeout();
EXPECT_TRUE(connection_.IsPathDegrading());
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
// Simulate path degrading handling by sending a probe on an alternet path.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
TestPacketWriter probing_writer(version(), &clock_);
connection_.SendConnectivityProbingPacket(&probing_writer,
connection_.peer_address());
// Verify that path degrading detection is not reset.
EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
// Simulate successful path degrading handling by receiving probe response.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
if (!GetParam().version.HasIetfQuicFrames()) {
EXPECT_CALL(visitor_,
OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
.Times(1);
} else {
EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
}
const QuicSocketAddress kNewSelfAddress =
QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
QuicEncryptedPacket(probing_packet->encrypted_buffer,
probing_packet->encrypted_length),
clock_.Now()));
uint64_t num_probing_received =
connection_.GetStats().num_connectivity_probing_received;
ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received);
EXPECT_EQ(num_probing_received + 1,
connection_.GetStats().num_connectivity_probing_received);
EXPECT_EQ(kPeerAddress, connection_.peer_address());
EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
EXPECT_TRUE(connection_.IsPathDegrading());
// Verify new path degrading detection is activated.
EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading()).Times(1);
connection_.OnSuccessfulMigrationAfterProbing();
EXPECT_FALSE(connection_.IsPathDegrading());
EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
}
// Regression test for b/110259444
TEST_P(QuicConnectionTest, DoNotScheduleSpuriousAckAlarm) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
writer_->SetWriteBlocked();
ProcessPacket(1);
// Verify ack alarm is set.
EXPECT_TRUE(connection_.HasPendingAcks());
// Fire the ack alarm, verify no packet is sent because the writer is blocked.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
connection_.GetAckAlarm()->Fire();
writer_->SetWritable();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
ProcessPacket(2);
// Verify ack alarm is not set.
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, DisablePacingOffloadConnectionOptions) {
EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
writer_->set_supports_release_time(true);
QuicConfig config;
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
EXPECT_TRUE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
QuicTagVector connection_options;
connection_options.push_back(kNPCO);
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
// Verify pacing offload is disabled.
EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
}
// Regression test for b/110259444
// Get a path response without having issued a path challenge...
TEST_P(QuicConnectionTest, OrphanPathResponse) {
QuicPathFrameBuffer data = {{0, 1, 2, 3, 4, 5, 6, 7}};
QuicPathResponseFrame frame(99, data);
EXPECT_TRUE(connection_.OnPathResponseFrame(frame));
// If PATH_RESPONSE was accepted (payload matches the payload saved
// in QuicConnection::transmitted_connectivity_probe_payload_) then
// current_packet_content_ would be set to FIRST_FRAME_IS_PING.
// Since this PATH_RESPONSE does not match, current_packet_content_
// must not be FIRST_FRAME_IS_PING.
EXPECT_NE(QuicConnection::FIRST_FRAME_IS_PING,
QuicConnectionPeer::GetCurrentPacketContent(&connection_));
}
// Regression test for b/120791670
TEST_P(QuicConnectionTest, StopProcessingGQuicPacketInIetfQuicConnection) {
// This test mimics a problematic scenario where an IETF QUIC connection
// receives a Google QUIC packet and continue processing it using Google QUIC
// wire format.
if (!VersionHasIetfInvariantHeader(version().transport_version)) {
return;
}
set_perspective(Perspective::IS_SERVER);
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
// Let connection process a Google QUIC packet.
peer_framer_.set_version_for_tests(
ParsedQuicVersion(PROTOCOL_QUIC_CRYPTO, QUIC_VERSION_43));
std::unique_ptr<QuicPacket> packet(
ConstructDataPacket(2, !kHasStopWaiting, ENCRYPTION_INITIAL));
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length =
peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(2),
*packet, buffer, kMaxOutgoingPacketSize);
// Make sure no stream frame is processed.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(0);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
EXPECT_EQ(2u, connection_.GetStats().packets_received);
EXPECT_EQ(1u, connection_.GetStats().packets_processed);
}
TEST_P(QuicConnectionTest, AcceptPacketNumberZero) {
if (!VersionHasIetfQuicFrames(version().transport_version)) {
return;
}
// Set first_sending_packet_number to be 0 to allow successfully processing
// acks which ack packet number 0.
QuicFramerPeer::SetFirstSendingPacketNumber(writer_->framer()->framer(), 0);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(0);
EXPECT_EQ(QuicPacketNumber(0), LargestAcked(connection_.ack_frame()));
EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
ProcessPacket(1);
EXPECT_EQ(QuicPacketNumber(1), LargestAcked(connection_.ack_frame()));
EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
ProcessPacket(2);
EXPECT_EQ(QuicPacketNumber(2), LargestAcked(connection_.ack_frame()));
EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
}
TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicSending) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x01));
connection_.SendCryptoStreamData();
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
QuicAckFrame frame1 = InitAckFrame(1);
// Received ACK for packet 1.
ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(4);
connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0,
NO_FIN);
connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4,
NO_FIN);
connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
8, NO_FIN);
connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
12, FIN);
// Received ACK for packets 2, 4, 5.
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
QuicAckFrame frame2 =
InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)},
{QuicPacketNumber(4), QuicPacketNumber(6)}});
// Make sure although the same packet number is used, but they are in
// different packet number spaces.
ProcessFramePacketAtLevel(30, QuicFrame(&frame2), ENCRYPTION_FORWARD_SECURE);
}
TEST_P(QuicConnectionTest, PeerAcksPacketsInWrongPacketNumberSpace) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x01));
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(0x01));
connection_.SendCryptoStreamData();
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
QuicAckFrame frame1 = InitAckFrame(1);
// Received ACK for packet 1.
ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0,
NO_FIN);
connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4,
NO_FIN);
// Received ACK for packets 2 and 3 in wrong packet number space.
QuicAckFrame invalid_ack =
InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(4)}});
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
ProcessFramePacketAtLevel(300, QuicFrame(&invalid_ack), ENCRYPTION_INITIAL);
TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA);
}
TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicReceiving) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
}
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
use_tagging_decrypter();
// Receives packet 1000 in initial data.
ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
EXPECT_TRUE(connection_.HasPendingAcks());
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(0x02));
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(0x02));
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x02));
// Receives packet 1000 in application data.
ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT);
EXPECT_TRUE(connection_.HasPendingAcks());
connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0,
NO_FIN);
// Verify application data ACK gets bundled with outgoing data.
EXPECT_EQ(2u, writer_->frame_count());
// Make sure ACK alarm is still set because initial data is not ACKed.
EXPECT_TRUE(connection_.HasPendingAcks());
// Receive packet 1001 in application data.
ProcessDataPacketAtLevel(1001, false, ENCRYPTION_ZERO_RTT);
clock_.AdvanceTime(DefaultRetransmissionTime());
// Simulates ACK alarm fires and verify two ACKs are flushed.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(0x02));
connection_.GetAckAlarm()->Fire();
EXPECT_FALSE(connection_.HasPendingAcks());
// Receives more packets in application data.
ProcessDataPacketAtLevel(1002, false, ENCRYPTION_ZERO_RTT);
EXPECT_TRUE(connection_.HasPendingAcks());
peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(0x02));
SetDecrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<StrictTaggingDecrypter>(0x02));
// Verify zero rtt and forward secure packets get acked in the same packet.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
ProcessDataPacket(1003);
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, CancelAckAlarmOnWriteBlocked) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
}
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
use_tagging_decrypter();
// Receives packet 1000 in initial data.
ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
EXPECT_TRUE(connection_.HasPendingAcks());
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(0x02));
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(0x02));
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x02));
// Receives packet 1000 in application data.
ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT);
EXPECT_TRUE(connection_.HasPendingAcks());
writer_->SetWriteBlocked();
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AnyNumber());
// Simulates ACK alarm fires and verify no ACK is flushed because of write
// blocked.
clock_.AdvanceTime(DefaultDelayedAckTime());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(0x02));
connection_.GetAckAlarm()->Fire();
// Verify ACK alarm is not set.
EXPECT_FALSE(connection_.HasPendingAcks());
writer_->SetWritable();
// Verify 2 ACKs are sent when connection gets unblocked.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
connection_.OnCanWrite();
EXPECT_FALSE(connection_.HasPendingAcks());
}
// Make sure a packet received with the right client connection ID is processed.
TEST_P(QuicConnectionTest, ValidClientConnectionId) {
if (!framer_.version().SupportsClientConnectionIds()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.set_client_connection_id(TestConnectionId(0x33));
QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE);
header.destination_connection_id = TestConnectionId(0x33);
header.destination_connection_id_included = CONNECTION_ID_PRESENT;
header.source_connection_id_included = CONNECTION_ID_ABSENT;
QuicFrames frames;
QuicPingFrame ping_frame;
QuicPaddingFrame padding_frame;
frames.push_back(QuicFrame(ping_frame));
frames.push_back(QuicFrame(padding_frame));
std::unique_ptr<QuicPacket> packet =
BuildUnsizedDataPacket(&framer_, header, frames);
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length = peer_framer_.EncryptPayload(
ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer,
kMaxOutgoingPacketSize);
QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
false);
EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
}
// Make sure a packet received with a different client connection ID is dropped.
TEST_P(QuicConnectionTest, InvalidClientConnectionId) {
if (!framer_.version().SupportsClientConnectionIds()) {
return;
}
connection_.set_client_connection_id(TestConnectionId(0x33));
QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE);
header.destination_connection_id = TestConnectionId(0xbad);
header.destination_connection_id_included = CONNECTION_ID_PRESENT;
header.source_connection_id_included = CONNECTION_ID_ABSENT;
QuicFrames frames;
QuicPingFrame ping_frame;
QuicPaddingFrame padding_frame;
frames.push_back(QuicFrame(ping_frame));
frames.push_back(QuicFrame(padding_frame));
std::unique_ptr<QuicPacket> packet =
BuildUnsizedDataPacket(&framer_, header, frames);
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length = peer_framer_.EncryptPayload(
ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer,
kMaxOutgoingPacketSize);
QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
false);
EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
EXPECT_EQ(1u, connection_.GetStats().packets_dropped);
}
// Make sure the first packet received with a different client connection ID on
// the server is processed and it changes the client connection ID.
TEST_P(QuicConnectionTest, UpdateClientConnectionIdFromFirstPacket) {
if (!framer_.version().SupportsClientConnectionIds()) {
return;
}
set_perspective(Perspective::IS_SERVER);
QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_INITIAL);
header.source_connection_id = TestConnectionId(0x33);
header.source_connection_id_included = CONNECTION_ID_PRESENT;
QuicFrames frames;
QuicPingFrame ping_frame;
QuicPaddingFrame padding_frame;
frames.push_back(QuicFrame(ping_frame));
frames.push_back(QuicFrame(padding_frame));
std::unique_ptr<QuicPacket> packet =
BuildUnsizedDataPacket(&framer_, header, frames);
char buffer[kMaxOutgoingPacketSize];
size_t encrypted_length =
peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(1),
*packet, buffer, kMaxOutgoingPacketSize);
QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
false);
EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
EXPECT_EQ(TestConnectionId(0x33), connection_.client_connection_id());
}
// Regression test for b/134416344.
TEST_P(QuicConnectionTest, CheckConnectedBeforeFlush) {
// This test mimics a scenario where a connection processes 2 packets and the
// 2nd packet contains connection close frame. When the 2nd flusher goes out
// of scope, a delayed ACK is pending, and ACK alarm should not be scheduled
// because connection is disconnected.
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
const QuicErrorCode kErrorCode = QUIC_INTERNAL_ERROR;
std::unique_ptr<QuicConnectionCloseFrame> connection_close_frame(
new QuicConnectionCloseFrame(connection_.transport_version(), kErrorCode,
"",
/*transport_close_frame_type=*/0));
// Received 2 packets.
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
}
ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
kPeerAddress);
EXPECT_TRUE(connection_.HasPendingAcks());
ProcessFramePacketWithAddresses(QuicFrame(connection_close_frame.release()),
kSelfAddress, kPeerAddress);
// Verify ack alarm is not set.
EXPECT_FALSE(connection_.HasPendingAcks());
}
// Verify that a packet containing three coalesced packets is parsed correctly.
TEST_P(QuicConnectionTest, CoalescedPacket) {
if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) {
// Coalesced packets can only be encoded using long header lengths.
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_TRUE(connection_.connected());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3);
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3);
}
uint64_t packet_numbers[3] = {1, 2, 3};
EncryptionLevel encryption_levels[3] = {
ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE};
char buffer[kMaxOutgoingPacketSize] = {};
size_t total_encrypted_length = 0;
for (int i = 0; i < 3; i++) {
QuicPacketHeader header =
ConstructPacketHeader(packet_numbers[i], encryption_levels[i]);
QuicFrames frames;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frames.push_back(QuicFrame(&crypto_frame_));
} else {
frames.push_back(QuicFrame(frame1_));
}
std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames);
peer_creator_.set_encryption_level(encryption_levels[i]);
size_t encrypted_length = peer_framer_.EncryptPayload(
encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet,
buffer + total_encrypted_length,
sizeof(buffer) - total_encrypted_length);
EXPECT_GT(encrypted_length, 0u);
total_encrypted_length += encrypted_length;
}
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
EXPECT_TRUE(connection_.connected());
}
// Regression test for crbug.com/992831.
TEST_P(QuicConnectionTest, CoalescedPacketThatSavesFrames) {
if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) {
// Coalesced packets can only be encoded using long header lengths.
return;
}
if (connection_.SupportsMultiplePacketNumberSpaces()) {
// TODO(b/129151114) Enable this test with multiple packet number spaces.
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_TRUE(connection_.connected());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_))
.Times(3)
.WillRepeatedly([this](const QuicCryptoFrame& /*frame*/) {
// QuicFrame takes ownership of the QuicBlockedFrame.
connection_.SendControlFrame(QuicFrame(new QuicBlockedFrame(1, 3)));
});
} else {
EXPECT_CALL(visitor_, OnStreamFrame(_))
.Times(3)
.WillRepeatedly([this](const QuicStreamFrame& /*frame*/) {
// QuicFrame takes ownership of the QuicBlockedFrame.
connection_.SendControlFrame(QuicFrame(new QuicBlockedFrame(1, 3)));
});
}
uint64_t packet_numbers[3] = {1, 2, 3};
EncryptionLevel encryption_levels[3] = {
ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE};
char buffer[kMaxOutgoingPacketSize] = {};
size_t total_encrypted_length = 0;
for (int i = 0; i < 3; i++) {
QuicPacketHeader header =
ConstructPacketHeader(packet_numbers[i], encryption_levels[i]);
QuicFrames frames;
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
frames.push_back(QuicFrame(&crypto_frame_));
} else {
frames.push_back(QuicFrame(frame1_));
}
std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames);
peer_creator_.set_encryption_level(encryption_levels[i]);
size_t encrypted_length = peer_framer_.EncryptPayload(
encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet,
buffer + total_encrypted_length,
sizeof(buffer) - total_encrypted_length);
EXPECT_GT(encrypted_length, 0u);
total_encrypted_length += encrypted_length;
}
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
EXPECT_TRUE(connection_.connected());
SendAckPacketToPeer();
}
// Regresstion test for b/138962304.
TEST_P(QuicConnectionTest, RtoAndWriteBlocked) {
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
QuicStreamId stream_id = 2;
QuicPacketNumber last_data_packet;
SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
// Writer gets blocked.
writer_->SetWriteBlocked();
// Cancel the stream.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
EXPECT_CALL(visitor_, WillingAndAbleToWrite())
.WillRepeatedly(
Invoke(&notifier_, &SimpleSessionNotifier::WillingToWrite));
SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
// Retransmission timer fires in RTO mode.
connection_.GetRetransmissionAlarm()->Fire();
// Verify no packets get flushed when writer is blocked.
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
// Regresstion test for b/138962304.
TEST_P(QuicConnectionTest, TlpAndWriteBlocked) {
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
connection_.SetMaxTailLossProbes(1);
QuicStreamId stream_id = 2;
QuicPacketNumber last_data_packet;
SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet);
SendStreamDataToPeer(4, "foo", 0, NO_FIN, &last_data_packet);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
// Writer gets blocked.
writer_->SetWriteBlocked();
// Cancel stream 2.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
// Retransmission timer fires in TLP mode.
connection_.GetRetransmissionAlarm()->Fire();
// Verify one packets is forced flushed when writer is blocked.
EXPECT_EQ(1u, connection_.NumQueuedPackets());
}
// Regresstion test for b/139375344.
TEST_P(QuicConnectionTest, RtoForcesSendingPing) {
if (connection_.PtoEnabled()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.SetMaxTailLossProbes(2);
EXPECT_EQ(0u, connection_.GetStats().tlp_count);
EXPECT_EQ(0u, connection_.GetStats().rto_count);
SendStreamDataToPeer(2, "foo", 0, NO_FIN, nullptr);
QuicTime retransmission_time =
connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), retransmission_time);
// TLP fires.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _));
clock_.AdvanceTime(retransmission_time - clock_.Now());
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(1u, connection_.GetStats().tlp_count);
EXPECT_EQ(0u, connection_.GetStats().rto_count);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
// Packet 1 gets acked.
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
ProcessAckPacket(1, &frame);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
retransmission_time = connection_.GetRetransmissionAlarm()->deadline();
// RTO fires, verify a PING packet gets sent because there is no data to send.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _));
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); }));
clock_.AdvanceTime(retransmission_time - clock_.Now());
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(1u, connection_.GetStats().tlp_count);
EXPECT_EQ(1u, connection_.GetStats().rto_count);
EXPECT_EQ(1u, writer_->ping_frames().size());
}
TEST_P(QuicConnectionTest, ProbeTimeout) {
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k2PTO);
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet);
SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
// Reset stream.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
// Fire the PTO and verify only the RST_STREAM is resent, not stream data.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(0u, writer_->stream_frames().size());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, CloseConnectionAfter6ClientPTOs) {
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k1PTO);
connection_options.push_back(k6PTO);
config.SetConnectionOptionsToSend(connection_options);
QuicConfigPeer::SetNegotiated(&config, true);
if (connection_.version().AuthenticatesHandshakeConnectionIds()) {
QuicConfigPeer::SetReceivedOriginalConnectionId(
&config, connection_.connection_id());
QuicConfigPeer::SetReceivedInitialSourceConnectionId(
&config, connection_.connection_id());
}
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_COMPLETE));
}
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
// Send stream data.
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
// Fire the retransmission alarm 5 times.
for (int i = 0; i < 5; ++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
}
EXPECT_CALL(visitor_, OnPathDegrading());
connection_.PathDegradingTimeout();
EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
EXPECT_EQ(5u, connection_.sent_packet_manager().GetConsecutivePtoCount());
// Closes connection on 6th PTO.
// May send multiple connecction close packets with multiple PN spaces.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
connection_.GetBlackholeDetectorAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
}
TEST_P(QuicConnectionTest, CloseConnectionAfter7ClientPTOs) {
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k2PTO);
connection_options.push_back(k7PTO);
config.SetConnectionOptionsToSend(connection_options);
QuicConfigPeer::SetNegotiated(&config, true);
if (connection_.version().AuthenticatesHandshakeConnectionIds()) {
QuicConfigPeer::SetReceivedOriginalConnectionId(
&config, connection_.connection_id());
QuicConfigPeer::SetReceivedInitialSourceConnectionId(
&config, connection_.connection_id());
}
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_COMPLETE));
}
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
// Send stream data.
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
// Fire the retransmission alarm 6 times.
for (int i = 0; i < 6; ++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
}
EXPECT_CALL(visitor_, OnPathDegrading());
connection_.PathDegradingTimeout();
EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
EXPECT_EQ(6u, connection_.sent_packet_manager().GetConsecutivePtoCount());
// Closes connection on 7th PTO.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
connection_.GetBlackholeDetectorAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
}
TEST_P(QuicConnectionTest, CloseConnectionAfter8ClientPTOs) {
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k2PTO);
connection_options.push_back(k8PTO);
QuicConfigPeer::SetNegotiated(&config, true);
if (connection_.version().AuthenticatesHandshakeConnectionIds()) {
QuicConfigPeer::SetReceivedOriginalConnectionId(
&config, connection_.connection_id());
QuicConfigPeer::SetReceivedInitialSourceConnectionId(
&config, connection_.connection_id());
}
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_COMPLETE));
}
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
// Send stream data.
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
// Fire the retransmission alarm 7 times.
for (int i = 0; i < 7; ++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
}
EXPECT_CALL(visitor_, OnPathDegrading());
connection_.PathDegradingTimeout();
EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
EXPECT_EQ(7u, connection_.sent_packet_manager().GetConsecutivePtoCount());
// Closes connection on 8th PTO.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
connection_.GetBlackholeDetectorAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
}
TEST_P(QuicConnectionTest, DeprecateHandshakeMode) {
if (!connection_.version().SupportsAntiAmplificationLimit()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
// Send CHLO.
connection_.SendCryptoStreamData();
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
QuicAckFrame frame1 = InitAckFrame(1);
// Received ACK for packet 1.
ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL);
// Verify retransmission alarm is still set because handshake is not
// confirmed although there is nothing in flight.
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_EQ(0u, connection_.GetStats().pto_count);
EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count);
// PTO fires, verify a PING packet gets sent because there is no data to send.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _,
GetQuicReloadableFlag(quic_default_on_pto)
? QuicPacketNumber(2)
: QuicPacketNumber(3),
_, _));
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); }));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(1u, connection_.GetStats().pto_count);
EXPECT_EQ(1u, connection_.GetStats().crypto_retransmit_count);
EXPECT_EQ(1u, writer_->ping_frames().size());
}
TEST_P(QuicConnectionTest, AntiAmplificationLimit) {
if (!connection_.version().SupportsAntiAmplificationLimit()) {
return;
}
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
set_perspective(Perspective::IS_SERVER);
// Verify no data can be sent at the beginning because bytes received is 0.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
connection_.SendCryptoDataWithString("foo", 0);
EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
EXPECT_FALSE(connection_.CanWrite(NO_RETRANSMITTABLE_DATA));
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
// Receives packet 1.
ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
const size_t anti_amplification_factor =
GetQuicFlag(FLAGS_quic_anti_amplification_factor);
// Verify now packets can be sent.
for (size_t i = 0; i < anti_amplification_factor; ++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendCryptoDataWithString("foo", i * 3);
// Verify retransmission alarm is not set if throttled by anti-amplification
// limit.
EXPECT_EQ(i != anti_amplification_factor - 1,
connection_.GetRetransmissionAlarm()->IsSet());
}
// Verify server is throttled by anti-amplification limit.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3);
// Receives packet 2.
ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
// Verify more packets can be sent.
for (size_t i = anti_amplification_factor; i < anti_amplification_factor * 2;
++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendCryptoDataWithString("foo", i * 3);
}
// Verify server is throttled by anti-amplification limit.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
connection_.SendCryptoDataWithString("foo",
2 * anti_amplification_factor * 3);
ProcessPacket(3);
// Verify anti-amplification limit is gone after address validation.
for (size_t i = 0; i < 100; ++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN);
}
}
TEST_P(QuicConnectionTest, AckPendingWithAmplificationLimited) {
if (!connection_.version().SupportsAntiAmplificationLimit()) {
return;
}
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber());
set_perspective(Perspective::IS_SERVER);
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x01));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
// Receives packet 1.
ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<TaggingEncrypter>(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
EXPECT_TRUE(connection_.HasPendingAcks());
// Send response in different encryption level and cause amplification factor
// throttled.
size_t i = 0;
while (connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)) {
connection_.SendCryptoDataWithString(std::string(1024, 'a'), i * 1024,
ENCRYPTION_HANDSHAKE);
++i;
}
// Verify ACK is still pending.
EXPECT_TRUE(connection_.HasPendingAcks());
// Fire ACK alarm and verify ACK cannot be sent due to amplification factor.
clock_.AdvanceTime(connection_.GetAckAlarm()->deadline() - clock_.Now());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
connection_.GetAckAlarm()->Fire();
// Verify ACK alarm is cancelled.
EXPECT_FALSE(connection_.HasPendingAcks());
// Receives packet 2 and verify ACK gets flushed.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
EXPECT_FALSE(writer_->ack_frames().empty());
}
TEST_P(QuicConnectionTest, ConnectionCloseFrameType) {
if (!VersionHasIetfQuicFrames(version().transport_version)) {
// Test relevent only for IETF QUIC.
return;
}
const QuicErrorCode kQuicErrorCode = IETF_QUIC_PROTOCOL_VIOLATION;
// Use the (unknown) frame type of 9999 to avoid triggering any logic
// which might be associated with the processing of a known frame type.
const uint64_t kTransportCloseFrameType = 9999u;
QuicFramerPeer::set_current_received_frame_type(
QuicConnectionPeer::GetFramer(&connection_), kTransportCloseFrameType);
// Do a transport connection close
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
connection_.CloseConnection(
kQuicErrorCode, "Some random error message",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
const std::vector<QuicConnectionCloseFrame>& connection_close_frames =
writer_->connection_close_frames();
ASSERT_EQ(1u, connection_close_frames.size());
EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE,
connection_close_frames[0].close_type);
EXPECT_EQ(kQuicErrorCode, connection_close_frames[0].quic_error_code);
EXPECT_EQ(kTransportCloseFrameType,
connection_close_frames[0].transport_close_frame_type);
}
// Regression test for b/137401387 and b/138962304.
TEST_P(QuicConnectionTest, RtoPacketAsTwo) {
if (connection_.PtoEnabled()) {
return;
}
connection_.SetMaxTailLossProbes(1);
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
std::string stream_data(3000, 's');
// Send packets 1 - 66 and exhaust cwnd.
for (size_t i = 0; i < 22; ++i) {
// 3 packets for each stream, the first 2 are guaranteed to be full packets.
SendStreamDataToPeer(i + 2, stream_data, 0, FIN, nullptr);
}
CongestionBlockWrites();
// Fires TLP. Please note, this tail loss probe has 1 byte less stream data
// compared to packet 1 because packet number length increases.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(67), _, _));
connection_.GetRetransmissionAlarm()->Fire();
// Fires RTO. Please note, although packets 2 and 3 *should* be RTOed, but
// packet 2 gets RTOed to two packets because packet number length increases.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(68), _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(69), _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Resets all streams except 2 and ack packets 1 and 2. Now, packet 3 is the
// only one containing retransmittable frames.
for (size_t i = 1; i < 22; ++i) {
notifier_.OnStreamReset(i + 2, QUIC_STREAM_CANCELLED);
}
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
QuicAckFrame frame =
InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(3)}});
ProcessAckPacket(1, &frame);
CongestionUnblockWrites();
// Fires TLP, verify a PING gets sent because packet 3 is marked
// RTO_RETRANSMITTED.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(70), _, _));
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); }));
connection_.GetRetransmissionAlarm()->Fire();
}
TEST_P(QuicConnectionTest, PtoSkipsPacketNumber) {
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k1PTO);
connection_options.push_back(kPTOS);
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet);
SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet);
EXPECT_EQ(QuicPacketNumber(2), last_packet);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
// Fire PTO and verify the PTO retransmission skips one packet number.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(QuicPacketNumber(4), writer_->last_packet_header().packet_number);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendCoalescedPackets) {
if (!connection_.version().CanSendCoalescedPackets()) {
return;
}
MockQuicConnectionDebugVisitor debug_visitor;
connection_.set_debug_visitor(&debug_visitor);
EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(3);
EXPECT_CALL(debug_visitor, OnCoalescedPacketSent(_, _)).Times(1);
EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
{
QuicConnection::ScopedPacketFlusher flusher(&connection_);
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x01));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
connection_.SendCryptoDataWithString("foo", 0);
// Verify this packet is on hold.
EXPECT_EQ(0u, writer_->packets_write_attempts());
connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<TaggingEncrypter>(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
connection_.SendCryptoDataWithString("bar", 3);
EXPECT_EQ(0u, writer_->packets_write_attempts());
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(0x03));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
SendStreamDataToPeer(2, "baz", 3, NO_FIN, nullptr);
}
// Verify all 3 packets are coalesced in the same UDP datagram.
EXPECT_EQ(1u, writer_->packets_write_attempts());
EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
// Verify the packet is padded to full.
EXPECT_EQ(connection_.max_packet_length(), writer_->last_packet_size());
// Verify packet process.
EXPECT_EQ(1u, writer_->crypto_frames().size());
EXPECT_EQ(0u, writer_->stream_frames().size());
// Verify there is coalesced packet.
EXPECT_NE(nullptr, writer_->coalesced_packet());
}
TEST_P(QuicConnectionTest, LegacyVersionEncapsulation) {
connection_.EnableLegacyVersionEncapsulation("test.example.org");
MockQuicConnectionDebugVisitor debug_visitor;
connection_.set_debug_visitor(&debug_visitor);
EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _)).Times(1);
// Our TestPacketWriter normally parses the sent packet using the version
// from the connection, so here we need to tell it to use the encapsulation
// version, and reset the initial decrypter for that version.
writer_->framer()->SetSupportedVersions(
SupportedVersions(LegacyVersionForEncapsulation()));
writer_->framer()->framer()->SetInitialObfuscators(
connection_.connection_id());
{
QuicConnection::ScopedPacketFlusher flusher(&connection_);
connection_.SendCryptoDataWithString("TEST_CRYPTO_DATA", /*offset=*/0);
}
EXPECT_EQ(1u, writer_->packets_write_attempts());
// Verify that the packet is fully padded.
EXPECT_EQ(connection_.max_packet_length(), writer_->last_packet_size());
// Check that the connection stats show Legacy Version Encapsulation was used.
EXPECT_GT(connection_.GetStats().sent_legacy_version_encapsulated_packets,
0u);
// Verify that the sent packet was in fact encapsulated, and check header.
const QuicPacketHeader& encapsulated_header = writer_->last_packet_header();
EXPECT_TRUE(encapsulated_header.version_flag);
EXPECT_EQ(encapsulated_header.version, LegacyVersionForEncapsulation());
EXPECT_EQ(encapsulated_header.destination_connection_id,
connection_.connection_id());
// Encapsulated packet should contain a stream frame for the crypto stream,
// optionally padding, and nothing else.
EXPECT_EQ(0u, writer_->crypto_frames().size());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(writer_->frame_count(), writer_->framer()->padding_frames().size() +
writer_->stream_frames().size());
}
TEST_P(QuicConnectionTest, ClientReceivedHandshakeDone) {
if (!connection_.version().HasHandshakeDone()) {
return;
}
EXPECT_CALL(visitor_, OnHandshakeDoneReceived());
QuicFrames frames;
frames.push_back(QuicFrame(QuicHandshakeDoneFrame()));
frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
}
TEST_P(QuicConnectionTest, ServerReceivedHandshakeDone) {
if (!connection_.version().HasHandshakeDone()) {
return;
}
set_perspective(Perspective::IS_SERVER);
EXPECT_CALL(visitor_, OnHandshakeDoneReceived()).Times(0);
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
QuicFrames frames;
frames.push_back(QuicFrame(QuicHandshakeDoneFrame()));
frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
EXPECT_EQ(1, connection_close_frame_count_);
EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
IsError(IETF_QUIC_PROTOCOL_VIOLATION));
}
TEST_P(QuicConnectionTest, MultiplePacketNumberSpacePto) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
use_tagging_decrypter();
// Send handshake packet.
connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<TaggingEncrypter>(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
// Send application data.
connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
0, NO_FIN);
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
QuicTime retransmission_time =
connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), retransmission_time);
// Retransmit handshake data.
clock_.AdvanceTime(retransmission_time - clock_.Now());
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _,
GetQuicReloadableFlag(quic_default_on_pto)
? QuicPacketNumber(3)
: QuicPacketNumber(4),
_, _));
EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
// Send application data.
connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
4, NO_FIN);
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
retransmission_time = connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), retransmission_time);
// Retransmit handshake data again.
clock_.AdvanceTime(retransmission_time - clock_.Now());
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _,
GetQuicReloadableFlag(quic_default_on_pto)
? QuicPacketNumber(5)
: QuicPacketNumber(7),
_, _));
EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
// Discard handshake key.
connection_.OnHandshakeComplete();
retransmission_time = connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), retransmission_time);
// Retransmit application data.
clock_.AdvanceTime(retransmission_time - clock_.Now());
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _,
GetQuicReloadableFlag(quic_default_on_pto)
? QuicPacketNumber(6)
: QuicPacketNumber(9),
_, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
}
void QuicConnectionTest::TestClientRetryHandling(
bool invalid_retry_tag,
bool missing_original_id_in_config,
bool wrong_original_id_in_config,
bool missing_retry_id_in_config,
bool wrong_retry_id_in_config) {
if (invalid_retry_tag) {
ASSERT_FALSE(missing_original_id_in_config);
ASSERT_FALSE(wrong_original_id_in_config);
ASSERT_FALSE(missing_retry_id_in_config);
ASSERT_FALSE(wrong_retry_id_in_config);
} else {
ASSERT_FALSE(missing_original_id_in_config && wrong_original_id_in_config);
ASSERT_FALSE(missing_retry_id_in_config && wrong_retry_id_in_config);
}
if (!version().HasRetryIntegrityTag()) {
return;
}
// These values come from draft-ietf-quic-tls Appendix A.4.
char retry_packet25[] = {
0xff, 0xff, 0x00, 0x00, 0x19, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a,
0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x1e, 0x5e, 0xc5, 0xb0,
0x14, 0xcb, 0xb1, 0xf0, 0xfd, 0x93, 0xdf, 0x40, 0x48, 0xc4, 0x46, 0xa6};
char retry_packet27[] = {
0xff, 0xff, 0x00, 0x00, 0x1b, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a,
0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0xa5, 0x23, 0xcb, 0x5b,
0xa5, 0x24, 0x69, 0x5f, 0x65, 0x69, 0xf2, 0x93, 0xa1, 0x35, 0x9d, 0x8e};
char retry_packet29[] = {
0xff, 0xff, 0x00, 0x00, 0x1d, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a,
0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0xd1, 0x69, 0x26, 0xd8,
0x1f, 0x6f, 0x9c, 0xa2, 0x95, 0x3a, 0x8a, 0xa4, 0x57, 0x5e, 0x1e, 0x49};
char* retry_packet;
size_t retry_packet_length;
if (version() == ParsedQuicVersion::Draft29()) {
retry_packet = retry_packet29;
retry_packet_length = QUICHE_ARRAYSIZE(retry_packet29);
} else if (version() == ParsedQuicVersion::Draft27()) {
retry_packet = retry_packet27;
retry_packet_length = QUICHE_ARRAYSIZE(retry_packet27);
} else if (version() == ParsedQuicVersion::Draft25()) {
retry_packet = retry_packet25;
retry_packet_length = QUICHE_ARRAYSIZE(retry_packet25);
} else {
// TODO(dschinazi) generate retry packets for all versions once we have
// server-side support for generating these programmatically.
return;
}
char original_connection_id_bytes[] = {0x83, 0x94, 0xc8, 0xf0,
0x3e, 0x51, 0x57, 0x08};
char new_connection_id_bytes[] = {0xf0, 0x67, 0xa5, 0x50,
0x2a, 0x42, 0x62, 0xb5};
char retry_token_bytes[] = {0x74, 0x6f, 0x6b, 0x65, 0x6e};
QuicConnectionId original_connection_id(
original_connection_id_bytes,
QUICHE_ARRAYSIZE(original_connection_id_bytes));
QuicConnectionId new_connection_id(new_connection_id_bytes,
QUICHE_ARRAYSIZE(new_connection_id_bytes));
std::string retry_token(retry_token_bytes,
QUICHE_ARRAYSIZE(retry_token_bytes));
if (invalid_retry_tag) {
// Flip the last bit of the retry packet to prevent the integrity tag
// from validating correctly.
retry_packet[retry_packet_length - 1] ^= 1;
}
QuicConnectionId config_original_connection_id = original_connection_id;
if (wrong_original_id_in_config) {
// Flip the first bit of the connection ID.
ASSERT_FALSE(config_original_connection_id.IsEmpty());
config_original_connection_id.mutable_data()[0] ^= 0x80;
}
QuicConnectionId config_retry_source_connection_id = new_connection_id;
if (wrong_retry_id_in_config) {
// Flip the first bit of the connection ID.
ASSERT_FALSE(config_retry_source_connection_id.IsEmpty());
config_retry_source_connection_id.mutable_data()[0] ^= 0x80;
}
// Make sure the connection uses the connection ID from the test vectors,
QuicConnectionPeer::SetServerConnectionId(&connection_,
original_connection_id);
// Process the RETRY packet.
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(retry_packet, retry_packet_length, clock_.Now()));
if (invalid_retry_tag) {
// Make sure we refuse to process a RETRY with invalid tag.
EXPECT_FALSE(connection_.GetStats().retry_packet_processed);
EXPECT_EQ(connection_.connection_id(), original_connection_id);
EXPECT_TRUE(QuicPacketCreatorPeer::GetRetryToken(
QuicConnectionPeer::GetPacketCreator(&connection_))
.empty());
return;
}
// Make sure we correctly parsed the RETRY.
EXPECT_TRUE(connection_.GetStats().retry_packet_processed);
EXPECT_EQ(connection_.connection_id(), new_connection_id);
EXPECT_EQ(QuicPacketCreatorPeer::GetRetryToken(
QuicConnectionPeer::GetPacketCreator(&connection_)),
retry_token);
// Make sure our fake framer has the new post-retry INITIAL keys.
writer_->framer()->framer()->SetInitialObfuscators(new_connection_id);
// Test validating the original_connection_id from the config.
QuicConfig received_config;
QuicConfigPeer::SetNegotiated(&received_config, true);
if (connection_.version().AuthenticatesHandshakeConnectionIds()) {
QuicConfigPeer::SetReceivedInitialSourceConnectionId(
&received_config, connection_.connection_id());
if (!missing_retry_id_in_config) {
QuicConfigPeer::SetReceivedRetrySourceConnectionId(
&received_config, config_retry_source_connection_id);
}
}
if (!missing_original_id_in_config) {
QuicConfigPeer::SetReceivedOriginalConnectionId(
&received_config, config_original_connection_id);
}
if (missing_original_id_in_config || wrong_original_id_in_config ||
missing_retry_id_in_config || wrong_retry_id_in_config) {
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.Times(1);
} else {
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.Times(0);
}
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
connection_.SetFromConfig(received_config);
if (missing_original_id_in_config || wrong_original_id_in_config ||
missing_retry_id_in_config || wrong_retry_id_in_config) {
ASSERT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
} else {
EXPECT_TRUE(connection_.connected());
}
}
TEST_P(QuicConnectionTest, ClientParsesRetry) {
TestClientRetryHandling(/*invalid_retry_tag=*/false,
/*missing_original_id_in_config=*/false,
/*wrong_original_id_in_config=*/false,
/*missing_retry_id_in_config=*/false,
/*wrong_retry_id_in_config=*/false);
}
TEST_P(QuicConnectionTest, ClientParsesRetryInvalidTag) {
TestClientRetryHandling(/*invalid_retry_tag=*/true,
/*missing_original_id_in_config=*/false,
/*wrong_original_id_in_config=*/false,
/*missing_retry_id_in_config=*/false,
/*wrong_retry_id_in_config=*/false);
}
TEST_P(QuicConnectionTest, ClientParsesRetryMissingOriginalId) {
TestClientRetryHandling(/*invalid_retry_tag=*/false,
/*missing_original_id_in_config=*/true,
/*wrong_original_id_in_config=*/false,
/*missing_retry_id_in_config=*/false,
/*wrong_retry_id_in_config=*/false);
}
TEST_P(QuicConnectionTest, ClientParsesRetryWrongOriginalId) {
TestClientRetryHandling(/*invalid_retry_tag=*/false,
/*missing_original_id_in_config=*/false,
/*wrong_original_id_in_config=*/true,
/*missing_retry_id_in_config=*/false,
/*wrong_retry_id_in_config=*/false);
}
TEST_P(QuicConnectionTest, ClientParsesRetryMissingRetryId) {
if (!connection_.version().AuthenticatesHandshakeConnectionIds()) {
// Versions that do not authenticate connection IDs never send the
// retry_source_connection_id transport parameter.
return;
}
TestClientRetryHandling(/*invalid_retry_tag=*/false,
/*missing_original_id_in_config=*/false,
/*wrong_original_id_in_config=*/false,
/*missing_retry_id_in_config=*/true,
/*wrong_retry_id_in_config=*/false);
}
TEST_P(QuicConnectionTest, ClientParsesRetryWrongRetryId) {
if (!connection_.version().AuthenticatesHandshakeConnectionIds()) {
// Versions that do not authenticate connection IDs never send the
// retry_source_connection_id transport parameter.
return;
}
TestClientRetryHandling(/*invalid_retry_tag=*/false,
/*missing_original_id_in_config=*/false,
/*wrong_original_id_in_config=*/false,
/*missing_retry_id_in_config=*/false,
/*wrong_retry_id_in_config=*/true);
}
TEST_P(QuicConnectionTest, ClientReceivesOriginalConnectionIdWithoutRetry) {
if (!connection_.version().UsesTls()) {
// QUIC+TLS is required to transmit connection ID transport parameters.
return;
}
if (connection_.version().AuthenticatesHandshakeConnectionIds()) {
// Versions that authenticate connection IDs always send the
// original_destination_connection_id transport parameter.
return;
}
// Make sure that receiving the original_destination_connection_id transport
// parameter fails the handshake when no RETRY packet was received before it.
QuicConfig received_config;
QuicConfigPeer::SetNegotiated(&received_config, true);
QuicConfigPeer::SetReceivedOriginalConnectionId(&received_config,
TestConnectionId(0x12345));
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.Times(1);
connection_.SetFromConfig(received_config);
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
}
TEST_P(QuicConnectionTest, ClientReceivesRetrySourceConnectionIdWithoutRetry) {
if (!connection_.version().AuthenticatesHandshakeConnectionIds()) {
// Versions that do not authenticate connection IDs never send the
// retry_source_connection_id transport parameter.
return;
}
// Make sure that receiving the retry_source_connection_id transport parameter
// fails the handshake when no RETRY packet was received before it.
QuicConfig received_config;
QuicConfigPeer::SetNegotiated(&received_config, true);
QuicConfigPeer::SetReceivedRetrySourceConnectionId(&received_config,
TestConnectionId(0x12345));
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
.Times(1);
connection_.SetFromConfig(received_config);
EXPECT_FALSE(connection_.connected());
TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
}
// Regression test for http://crbug/1047977
TEST_P(QuicConnectionTest, MaxStreamsFrameCausesConnectionClose) {
if (!VersionHasIetfQuicFrames(connection_.transport_version())) {
return;
}
// Received frame causes connection close.
EXPECT_CALL(visitor_, OnMaxStreamsFrame(_))
.WillOnce(InvokeWithoutArgs([this]() {
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
connection_.CloseConnection(
QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES, "error",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
return true;
}));
QuicFrames frames;
frames.push_back(QuicFrame(QuicMaxStreamsFrame()));
frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
}
TEST_P(QuicConnectionTest, StreamsBlockedFrameCausesConnectionClose) {
if (!VersionHasIetfQuicFrames(connection_.transport_version())) {
return;
}
// Received frame causes connection close.
EXPECT_CALL(visitor_, OnStreamsBlockedFrame(_))
.WillOnce(InvokeWithoutArgs([this]() {
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
connection_.CloseConnection(
QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES, "error",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
return true;
}));
QuicFrames frames;
frames.push_back(
QuicFrame(QuicStreamsBlockedFrame(kInvalidControlFrameId, 10, false)));
frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
}
TEST_P(QuicConnectionTest,
BundleAckWithConnectionCloseMultiplePacketNumberSpace) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
// Receives packet 1000 in initial data.
ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
// Receives packet 2000 in application data.
ProcessDataPacketAtLevel(2000, false, ENCRYPTION_FORWARD_SECURE);
EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
connection_.CloseConnection(
kQuicErrorCode, "Some random error message",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
TestConnectionCloseQuicErrorCode(kQuicErrorCode);
EXPECT_EQ(1u, writer_->connection_close_frames().size());
// Verify ack is bundled.
EXPECT_EQ(1u, writer_->ack_frames().size());
if (!connection_.version().CanSendCoalescedPackets()) {
// Each connection close packet should be sent in distinct UDP packets.
EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
writer_->connection_close_packets());
EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
writer_->packets_write_attempts());
return;
}
// A single UDP packet should be sent with multiple connection close packets
// coalesced together.
EXPECT_EQ(1u, writer_->packets_write_attempts());
// Only the first packet has been processed yet.
EXPECT_EQ(1u, writer_->connection_close_packets());
// ProcessPacket resets the visitor and frees the coalesced packet.
ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
auto packet = writer_->coalesced_packet()->Clone();
writer_->framer()->ProcessPacket(*packet);
EXPECT_EQ(1u, writer_->connection_close_packets());
EXPECT_EQ(1u, writer_->connection_close_frames().size());
// Verify ack is bundled.
EXPECT_EQ(1u, writer_->ack_frames().size());
ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
}
// Regression test for b/151220135.
TEST_P(QuicConnectionTest, SendPingWhenSkipPacketNumberForPto) {
if (!VersionSupportsMessageFrames(connection_.transport_version())) {
return;
}
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(kPTOS);
connection_options.push_back(k1PTO);
config.SetConnectionOptionsToSend(connection_options);
if (connection_.version().UsesTls()) {
QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
&config, kMaxAcceptedDatagramFrameSize);
}
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_EQ(MESSAGE_STATUS_SUCCESS, SendMessage("message"));
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
// PTO fires, verify a PING packet gets sent because there is no data to
// send.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _));
EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() { SendPing(); }));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(1u, connection_.GetStats().pto_count);
EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count);
EXPECT_EQ(1u, writer_->ping_frames().size());
}
// Regression test for b/155757133
TEST_P(QuicConnectionTest, DonotChangeQueuedAcks) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
ProcessPacket(2);
ProcessPacket(3);
ProcessPacket(4);
// Process a packet containing stream frame followed by ACK of packets 1.
QuicFrames frames;
frames.push_back(QuicFrame(QuicStreamFrame(
QuicUtils::GetFirstBidirectionalStreamId(
connection_.version().transport_version, Perspective::IS_CLIENT),
false, 0u, quiche::QuicheStringPiece())));
QuicAckFrame ack_frame = InitAckFrame(1);
frames.push_back(QuicFrame(&ack_frame));
// Receiving stream frame causes something to send.
EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([this]() {
connection_.SendControlFrame(QuicFrame(new QuicWindowUpdateFrame(1, 0, 0)));
// Verify now the queued ACK contains packet number 2.
EXPECT_TRUE(QuicPacketCreatorPeer::QueuedFrames(
QuicConnectionPeer::GetPacketCreator(&connection_))[0]
.ack_frame->packets.Contains(QuicPacketNumber(2)));
}));
ProcessFramesPacketAtLevel(9, frames, ENCRYPTION_FORWARD_SECURE);
EXPECT_TRUE(writer_->ack_frames()[0].packets.Contains(QuicPacketNumber(2)));
}
TEST_P(QuicConnectionTest, DonotExtendIdleTimeOnUndecryptablePackets) {
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
// Subtract a second from the idle timeout on the client side.
QuicTime initial_deadline =
clock_.ApproximateNow() +
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
EXPECT_EQ(initial_deadline, connection_.GetTimeoutAlarm()->deadline());
// Received an undecryptable packet.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
const uint8_t tag = 0x07;
peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(tag));
ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
// Verify deadline does not get extended.
EXPECT_EQ(initial_deadline, connection_.GetTimeoutAlarm()->deadline());
EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1);
QuicTime::Delta delay = initial_deadline - clock_.ApproximateNow();
clock_.AdvanceTime(delay);
connection_.GetTimeoutAlarm()->Fire();
// Verify connection gets closed.
EXPECT_FALSE(connection_.connected());
}
TEST_P(QuicConnectionTest, BundleAckWithImmediateResponse) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([this]() {
connection_.SendControlFrame(QuicFrame(new QuicWindowUpdateFrame(1, 0, 0)));
}));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
ProcessDataPacket(1);
// Verify ACK is bundled with WINDOW_UPDATE.
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.HasPendingAcks());
}
TEST_P(QuicConnectionTest, AckAlarmFiresEarly) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
}
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
use_tagging_decrypter();
// Receives packet 1000 in initial data.
ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
EXPECT_TRUE(connection_.HasPendingAcks());
peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<TaggingEncrypter>(0x02));
SetDecrypter(ENCRYPTION_ZERO_RTT,
std::make_unique<StrictTaggingDecrypter>(0x02));
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x02));
// Receives packet 1000 in application data.
ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT);
EXPECT_TRUE(connection_.HasPendingAcks());
// Verify ACK deadline does not change.
EXPECT_EQ(clock_.ApproximateNow() + kAlarmGranularity,
connection_.GetAckAlarm()->deadline());
// Ack alarm fires early.
if (GetQuicReloadableFlag(quic_always_send_earliest_ack)) {
// Verify the earliest ACK is flushed.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
} else {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
}
connection_.GetAckAlarm()->Fire();
EXPECT_TRUE(connection_.HasPendingAcks());
if (GetQuicReloadableFlag(quic_always_send_earliest_ack)) {
EXPECT_EQ(clock_.ApproximateNow() + DefaultDelayedAckTime(),
connection_.GetAckAlarm()->deadline());
} else {
// No forward progress has been made.
EXPECT_EQ(clock_.ApproximateNow() + kAlarmGranularity,
connection_.GetAckAlarm()->deadline());
}
}
TEST_P(QuicConnectionTest, ClientOnlyBlackholeDetectionClient) {
if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
return;
}
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(kCBHD);
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_COMPLETE));
EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
// Send stream data.
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
// Verify blackhole detection is in progress.
EXPECT_TRUE(connection_.GetBlackholeDetectorAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, ClientOnlyBlackholeDetectionServer) {
if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
return;
}
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
if (version().SupportsAntiAmplificationLimit()) {
QuicConnectionPeer::SetAddressValidated(&connection_);
}
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(kCBHD);
config.SetInitialReceivedConnectionOptions(connection_options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_COMPLETE));
EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
// Send stream data.
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
// Verify blackhole detection is disabled.
EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, 2RtoBlackholeDetection) {
if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
return;
}
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k2RTO);
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_COMPLETE));
EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
// Send stream data.
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
// Verify blackhole delay is expected.
EXPECT_EQ(clock_.Now() +
connection_.sent_packet_manager().GetNetworkBlackholeDelay(2),
QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
}
TEST_P(QuicConnectionTest, 3RtoBlackholeDetection) {
if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
return;
}
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k3RTO);
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_COMPLETE));
EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
// Send stream data.
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
// Verify blackhole delay is expected.
EXPECT_EQ(clock_.Now() +
connection_.sent_packet_manager().GetNetworkBlackholeDelay(3),
QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
}
TEST_P(QuicConnectionTest, 4RtoBlackholeDetection) {
if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
return;
}
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k4RTO);
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_COMPLETE));
EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
// Send stream data.
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
// Verify blackhole delay is expected.
EXPECT_EQ(clock_.Now() +
connection_.sent_packet_manager().GetNetworkBlackholeDelay(4),
QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
}
TEST_P(QuicConnectionTest, 6RtoBlackholeDetection) {
if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
return;
}
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k6RTO);
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_COMPLETE));
EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
// Send stream data.
SendStreamDataToPeer(
GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
0, FIN, nullptr);
// Verify blackhole delay is expected.
EXPECT_EQ(clock_.Now() +
connection_.sent_packet_manager().GetNetworkBlackholeDelay(6),
QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
}
// Regresstion test for b/158491591.
TEST_P(QuicConnectionTest, MadeForwardProgressOnDiscardingKeys) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
use_tagging_decrypter();
// Send handshake packet.
connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<TaggingEncrypter>(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k5RTO);
config.SetConnectionOptionsToSend(connection_options);
QuicConfigPeer::SetNegotiated(&config, true);
if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
EXPECT_CALL(visitor_, GetHandshakeState())
.WillRepeatedly(Return(HANDSHAKE_COMPLETE));
}
if (connection_.version().AuthenticatesHandshakeConnectionIds()) {
QuicConfigPeer::SetReceivedOriginalConnectionId(
&config, connection_.connection_id());
QuicConfigPeer::SetReceivedInitialSourceConnectionId(
&config, connection_.connection_id());
}
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
connection_.SetFromConfig(config);
connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
// Discard handshake keys.
connection_.OnHandshakeComplete();
if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
// Verify blackhole detection stops.
EXPECT_FALSE(connection_.BlackholeDetectionInProgress());
} else {
// Problematic: although there is nothing in flight, blackhole detection is
// still in progress.
EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
}
}
TEST_P(QuicConnectionTest, ProcessUndecryptablePacketsBasedOnEncryptionLevel) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
// SetFromConfig is always called after construction from InitializeSession.
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber());
QuicConfig config;
connection_.SetFromConfig(config);
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE);
use_tagging_decrypter();
peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<TaggingEncrypter>(0x01));
peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(0x02));
for (uint64_t i = 1; i <= 3; ++i) {
ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
}
ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
for (uint64_t j = 5; j <= 7; ++j) {
ProcessDataPacketAtLevel(j, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
}
EXPECT_EQ(7u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
SetDecrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<StrictTaggingDecrypter>(0x01));
EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<TaggingEncrypter>(0x01));
if (GetQuicReloadableFlag(quic_fix_undecryptable_packets)) {
// Verify all ENCRYPTION_HANDSHAKE packets get processed.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(6);
} else {
// Verify packets before 4 get processed.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3);
}
connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
EXPECT_EQ(4u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
SetDecrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<StrictTaggingDecrypter>(0x02));
EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(0x02));
if (GetQuicReloadableFlag(quic_fix_undecryptable_packets)) {
// Verify the 1-RTT packet gets processed.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
} else {
// Verify all packets get processed.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(4);
}
connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
}
TEST_P(QuicConnectionTest, ServerBundlesInitialDataWithInitialAck) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
set_perspective(Perspective::IS_SERVER);
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
}
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
use_tagging_decrypter();
// Receives packet 1000 in initial data.
ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
EXPECT_TRUE(connection_.HasPendingAcks());
connection_.SetEncrypter(ENCRYPTION_INITIAL,
std::make_unique<TaggingEncrypter>(0x01));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
QuicTime expected_pto_time =
connection_.sent_packet_manager().GetRetransmissionTime();
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<TaggingEncrypter>(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
// Verify PTO time does not change.
EXPECT_EQ(expected_pto_time,
connection_.sent_packet_manager().GetRetransmissionTime());
// Receives packet 1001 in initial data.
ProcessCryptoPacketAtLevel(1001, ENCRYPTION_INITIAL);
EXPECT_TRUE(connection_.HasPendingAcks());
// Receives packet 1002 in initial data.
ProcessCryptoPacketAtLevel(1002, ENCRYPTION_INITIAL);
EXPECT_FALSE(writer_->ack_frames().empty());
// Verify CRYPTO frame is bundled with INITIAL ACK.
EXPECT_FALSE(writer_->crypto_frames().empty());
// Verify PTO time changes.
EXPECT_NE(expected_pto_time,
connection_.sent_packet_manager().GetRetransmissionTime());
}
TEST_P(QuicConnectionTest, ClientBundlesHandshakeDataWithHandshakeAck) {
if (!connection_.SupportsMultiplePacketNumberSpaces()) {
return;
}
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
}
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<TaggingEncrypter>(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
SetDecrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<StrictTaggingDecrypter>(0x02));
peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<TaggingEncrypter>(0x02));
// Receives packet 1000 in handshake data.
ProcessCryptoPacketAtLevel(1000, ENCRYPTION_HANDSHAKE);
EXPECT_TRUE(connection_.HasPendingAcks());
EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(2);
connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
// Receives packet 1001 in handshake data.
ProcessCryptoPacketAtLevel(1001, ENCRYPTION_HANDSHAKE);
EXPECT_TRUE(connection_.HasPendingAcks());
// Receives packet 1002 in handshake data.
ProcessCryptoPacketAtLevel(1002, ENCRYPTION_HANDSHAKE);
EXPECT_FALSE(writer_->ack_frames().empty());
// Verify CRYPTO frame is bundled with HANDSHAKE ACK.
EXPECT_FALSE(writer_->crypto_frames().empty());
}
// Regresstion test for b/156232673.
TEST_P(QuicConnectionTest, CoalescePacketOfLowerEncryptionLevel) {
if (!connection_.version().CanSendCoalescedPackets()) {
return;
}
if (GetQuicReloadableFlag(quic_fix_extra_padding_bytes) ||
GetQuicReloadableFlag(quic_fix_min_crypto_frame_size)) {
EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
} else {
EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(0);
}
{
QuicConnection::ScopedPacketFlusher flusher(&connection_);
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
std::make_unique<TaggingEncrypter>(0x01));
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
std::make_unique<TaggingEncrypter>(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
SendStreamDataToPeer(2, std::string(1286, 'a'), 0, NO_FIN, nullptr);
connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
// Try to coalesce a HANDSHAKE packet after 1-RTT packet.
if (GetQuicReloadableFlag(quic_fix_extra_padding_bytes) ||
GetQuicReloadableFlag(quic_fix_min_crypto_frame_size)) {
// Verify soft max packet length gets resumed and handshake packet gets
// successfully sent.
connection_.SendCryptoDataWithString("a", 0, ENCRYPTION_HANDSHAKE);
} else {
// Problematic: creator thinks there is space to consume 1-byte, however,
// extra paddings make the serialization fail because of
// MinPlaintextPacketSize.
EXPECT_CALL(visitor_,
OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
EXPECT_QUIC_BUG(
connection_.SendCryptoDataWithString("a", 0, ENCRYPTION_HANDSHAKE),
"AppendPaddingFrame of 3 failed");
}
}
}
} // namespace
} // namespace test
} // namespace quic