|  | // Copyright (c) 2019 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #ifndef QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_ | 
|  | #define QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_ | 
|  |  | 
|  | // QuicIntervalSet<T> is a data structure used to represent a sorted set of | 
|  | // non-empty, non-adjacent, and mutually disjoint intervals. Mutations to an | 
|  | // interval set preserve these properties, altering the set as needed. For | 
|  | // example, adding [2, 3) to a set containing only [1, 2) would result in the | 
|  | // set containing the single interval [1, 3). | 
|  | // | 
|  | // Supported operations include testing whether an Interval is contained in the | 
|  | // QuicIntervalSet, comparing two QuicIntervalSets, and performing | 
|  | // QuicIntervalSet union, intersection, and difference. | 
|  | // | 
|  | // QuicIntervalSet maintains the minimum number of entries needed to represent | 
|  | // the set of underlying intervals. When the QuicIntervalSet is modified (e.g. | 
|  | // due to an Add operation), other interval entries may be coalesced, removed, | 
|  | // or otherwise modified in order to maintain this invariant. The intervals are | 
|  | // maintained in sorted order, by ascending min() value. | 
|  | // | 
|  | // The reader is cautioned to beware of the terminology used here: this library | 
|  | // uses the terms "min" and "max" rather than "begin" and "end" as is | 
|  | // conventional for the STL. The terminology [min, max) refers to the half-open | 
|  | // interval which (if the interval is not empty) contains min but does not | 
|  | // contain max. An interval is considered empty if min >= max. | 
|  | // | 
|  | // T is required to be default- and copy-constructible, to have an assignment | 
|  | // operator, a difference operator (operator-()), and the full complement of | 
|  | // comparison operators (<, <=, ==, !=, >=, >). These requirements are inherited | 
|  | // from value_type. | 
|  | // | 
|  | // QuicIntervalSet has constant-time move operations. | 
|  | // | 
|  | // | 
|  | // Examples: | 
|  | //   QuicIntervalSet<int> intervals; | 
|  | //   intervals.Add(Interval<int>(10, 20)); | 
|  | //   intervals.Add(Interval<int>(30, 40)); | 
|  | //   // intervals contains [10,20) and [30,40). | 
|  | //   intervals.Add(Interval<int>(15, 35)); | 
|  | //   // intervals has been coalesced. It now contains the single range [10,40). | 
|  | //   EXPECT_EQ(1, intervals.Size()); | 
|  | //   EXPECT_TRUE(intervals.Contains(Interval<int>(10, 40))); | 
|  | // | 
|  | //   intervals.Difference(Interval<int>(10, 20)); | 
|  | //   // intervals should now contain the single range [20, 40). | 
|  | //   EXPECT_EQ(1, intervals.Size()); | 
|  | //   EXPECT_TRUE(intervals.Contains(Interval<int>(20, 40))); | 
|  |  | 
|  | #include <stddef.h> | 
|  | #include <algorithm> | 
|  | #include <initializer_list> | 
|  | #include <set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include <string> | 
|  |  | 
|  | #include "net/third_party/quiche/src/quic/core/quic_interval.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_logging.h" | 
|  |  | 
|  | namespace quic { | 
|  |  | 
|  | template <typename T> | 
|  | class QUIC_NO_EXPORT QuicIntervalSet { | 
|  | public: | 
|  | typedef QuicInterval<T> value_type; | 
|  |  | 
|  | private: | 
|  | struct QUIC_NO_EXPORT IntervalLess { | 
|  | bool operator()(const value_type& a, const value_type& b) const; | 
|  | }; | 
|  | // TODO(wub): Switch to absl::btree_set when it is available in Chromium. | 
|  | typedef std::set<value_type, IntervalLess> Set; | 
|  |  | 
|  | public: | 
|  | typedef typename Set::const_iterator const_iterator; | 
|  | typedef typename Set::const_reverse_iterator const_reverse_iterator; | 
|  |  | 
|  | // Instantiates an empty QuicIntervalSet. | 
|  | QuicIntervalSet() {} | 
|  |  | 
|  | // Instantiates an QuicIntervalSet containing exactly one initial half-open | 
|  | // interval [min, max), unless the given interval is empty, in which case the | 
|  | // QuicIntervalSet will be empty. | 
|  | explicit QuicIntervalSet(const value_type& interval) { Add(interval); } | 
|  |  | 
|  | // Instantiates an QuicIntervalSet containing the half-open interval [min, | 
|  | // max). | 
|  | QuicIntervalSet(const T& min, const T& max) { Add(min, max); } | 
|  |  | 
|  | QuicIntervalSet(std::initializer_list<value_type> il) { assign(il); } | 
|  |  | 
|  | // Clears this QuicIntervalSet. | 
|  | void Clear() { intervals_.clear(); } | 
|  |  | 
|  | // Returns the number of disjoint intervals contained in this QuicIntervalSet. | 
|  | size_t Size() const { return intervals_.size(); } | 
|  |  | 
|  | // Returns the smallest interval that contains all intervals in this | 
|  | // QuicIntervalSet, or the empty interval if the set is empty. | 
|  | value_type SpanningInterval() const; | 
|  |  | 
|  | // Adds "interval" to this QuicIntervalSet. Adding the empty interval has no | 
|  | // effect. | 
|  | void Add(const value_type& interval); | 
|  |  | 
|  | // Adds the interval [min, max) to this QuicIntervalSet. Adding the empty | 
|  | // interval has no effect. | 
|  | void Add(const T& min, const T& max) { Add(value_type(min, max)); } | 
|  |  | 
|  | // Same semantics as Add(const value_type&), but optimized for the case where | 
|  | // rbegin()->min() <= |interval|.min() <= rbegin()->max(). | 
|  | void AddOptimizedForAppend(const value_type& interval) { | 
|  | if (Empty()) { | 
|  | Add(interval); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const_reverse_iterator last_interval = intervals_.rbegin(); | 
|  |  | 
|  | // If interval.min() is outside of [last_interval->min, last_interval->max], | 
|  | // we can not simply extend last_interval->max. | 
|  | if (interval.min() < last_interval->min() || | 
|  | interval.min() > last_interval->max()) { | 
|  | Add(interval); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (interval.max() <= last_interval->max()) { | 
|  | // interval is fully contained by last_interval. | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Extend last_interval.max to interval.max, in place. | 
|  | // | 
|  | // Set does not allow in-place updates due to the potential of violating its | 
|  | // ordering requirements. But we know setting the max of the last interval | 
|  | // is safe w.r.t set ordering and other invariants of QuicIntervalSet, so we | 
|  | // force an in-place update for performance. | 
|  | const_cast<value_type*>(&(*last_interval))->SetMax(interval.max()); | 
|  | } | 
|  |  | 
|  | // Same semantics as Add(const T&, const T&), but optimized for the case where | 
|  | // rbegin()->max() == |min|. | 
|  | void AddOptimizedForAppend(const T& min, const T& max) { | 
|  | AddOptimizedForAppend(value_type(min, max)); | 
|  | } | 
|  |  | 
|  | // TODO(wub): Similar to AddOptimizedForAppend, we can also have a | 
|  | // AddOptimizedForPrepend if there is a use case. | 
|  |  | 
|  | // Remove the first interval. | 
|  | // REQUIRES: !Empty() | 
|  | void PopFront() { | 
|  | DCHECK(!Empty()); | 
|  | intervals_.erase(intervals_.begin()); | 
|  | } | 
|  |  | 
|  | // Trim all values that is smaller than |value|. Which means | 
|  | // a) If all values in an interval is smaller than |value|, the entire | 
|  | //    interval is removed. | 
|  | // b) If some but not all values in an interval is smaller than |value|, the | 
|  | //    min of that interval is raised to |value|. | 
|  | // Returns true if some intervals are trimmed. | 
|  | bool TrimLessThan(const T& value) { | 
|  | // Number of intervals that are fully or partially trimmed. | 
|  | size_t num_intervals_trimmed = 0; | 
|  |  | 
|  | while (!intervals_.empty()) { | 
|  | const_iterator first_interval = intervals_.begin(); | 
|  | if (first_interval->min() >= value) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | ++num_intervals_trimmed; | 
|  |  | 
|  | if (first_interval->max() <= value) { | 
|  | // a) Trim the entire interval. | 
|  | intervals_.erase(first_interval); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // b) Trim a prefix of the interval. | 
|  | // | 
|  | // Set does not allow in-place updates due to the potential of violating | 
|  | // its ordering requirements. But increasing the min of the first interval | 
|  | // will not break the ordering, hence the const_cast. | 
|  | const_cast<value_type*>(&(*first_interval))->SetMin(value); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return num_intervals_trimmed != 0; | 
|  | } | 
|  |  | 
|  | // Returns true if this QuicIntervalSet is empty. | 
|  | bool Empty() const { return intervals_.empty(); } | 
|  |  | 
|  | // Returns true if any interval in this QuicIntervalSet contains the indicated | 
|  | // value. | 
|  | bool Contains(const T& value) const; | 
|  |  | 
|  | // Returns true if there is some interval in this QuicIntervalSet that wholly | 
|  | // contains the given interval. An interval O "wholly contains" a non-empty | 
|  | // interval I if O.Contains(p) is true for every p in I. This is the same | 
|  | // definition used by value_type::Contains(). This method returns false on | 
|  | // the empty interval, due to a (perhaps unintuitive) convention inherited | 
|  | // from value_type. | 
|  | // Example: | 
|  | //   Assume an QuicIntervalSet containing the entries { [10,20), [30,40) }. | 
|  | //   Contains(Interval(15, 16)) returns true, because [10,20) contains | 
|  | //   [15,16). However, Contains(Interval(15, 35)) returns false. | 
|  | bool Contains(const value_type& interval) const; | 
|  |  | 
|  | // Returns true if for each interval in "other", there is some (possibly | 
|  | // different) interval in this QuicIntervalSet which wholly contains it. See | 
|  | // Contains(const value_type& interval) for the meaning of "wholly contains". | 
|  | // Perhaps unintuitively, this method returns false if "other" is the empty | 
|  | // set. The algorithmic complexity of this method is O(other.Size() * | 
|  | // log(this->Size())). The method could be rewritten to run in O(other.Size() | 
|  | // + this->Size()), and this alternative could be implemented as a free | 
|  | // function using the public API. | 
|  | bool Contains(const QuicIntervalSet<T>& other) const; | 
|  |  | 
|  | // Returns true if there is some interval in this QuicIntervalSet that wholly | 
|  | // contains the interval [min, max). See Contains(const value_type&). | 
|  | bool Contains(const T& min, const T& max) const { | 
|  | return Contains(value_type(min, max)); | 
|  | } | 
|  |  | 
|  | // Returns true if for some interval in "other", there is some interval in | 
|  | // this QuicIntervalSet that intersects with it. See value_type::Intersects() | 
|  | // for the definition of interval intersection. | 
|  | bool Intersects(const QuicIntervalSet& other) const; | 
|  |  | 
|  | // Returns an iterator to the value_type in the QuicIntervalSet that contains | 
|  | // the given value. In other words, returns an iterator to the unique interval | 
|  | // [min, max) in the QuicIntervalSet that has the property min <= value < max. | 
|  | // If there is no such interval, this method returns end(). | 
|  | const_iterator Find(const T& value) const; | 
|  |  | 
|  | // Returns an iterator to the value_type in the QuicIntervalSet that wholly | 
|  | // contains the given interval. In other words, returns an iterator to the | 
|  | // unique interval outer in the QuicIntervalSet that has the property that | 
|  | // outer.Contains(interval). If there is no such interval, or if interval is | 
|  | // empty, returns end(). | 
|  | const_iterator Find(const value_type& interval) const; | 
|  |  | 
|  | // Returns an iterator to the value_type in the QuicIntervalSet that wholly | 
|  | // contains [min, max). In other words, returns an iterator to the unique | 
|  | // interval outer in the QuicIntervalSet that has the property that | 
|  | // outer.Contains(Interval<T>(min, max)). If there is no such interval, or if | 
|  | // interval is empty, returns end(). | 
|  | const_iterator Find(const T& min, const T& max) const { | 
|  | return Find(value_type(min, max)); | 
|  | } | 
|  |  | 
|  | // Returns an iterator pointing to the first value_type which contains or | 
|  | // goes after the given value. | 
|  | // | 
|  | // Example: | 
|  | //   [10, 20)  [30, 40) | 
|  | //   ^                    LowerBound(10) | 
|  | //   ^                    LowerBound(15) | 
|  | //             ^          LowerBound(20) | 
|  | //             ^          LowerBound(25) | 
|  | const_iterator LowerBound(const T& value) const; | 
|  |  | 
|  | // Returns an iterator pointing to the first value_type which goes after | 
|  | // the given value. | 
|  | // | 
|  | // Example: | 
|  | //   [10, 20)  [30, 40) | 
|  | //             ^          UpperBound(10) | 
|  | //             ^          UpperBound(15) | 
|  | //             ^          UpperBound(20) | 
|  | //             ^          UpperBound(25) | 
|  | const_iterator UpperBound(const T& value) const; | 
|  |  | 
|  | // Returns true if every value within the passed interval is not Contained | 
|  | // within the QuicIntervalSet. | 
|  | // Note that empty intervals are always considered disjoint from the | 
|  | // QuicIntervalSet (even though the QuicIntervalSet doesn't `Contain` them). | 
|  | bool IsDisjoint(const value_type& interval) const; | 
|  |  | 
|  | // Merges all the values contained in "other" into this QuicIntervalSet. | 
|  | void Union(const QuicIntervalSet& other); | 
|  |  | 
|  | // Modifies this QuicIntervalSet so that it contains only those values that | 
|  | // are currently present both in *this and in the QuicIntervalSet "other". | 
|  | void Intersection(const QuicIntervalSet& other); | 
|  |  | 
|  | // Mutates this QuicIntervalSet so that it contains only those values that are | 
|  | // currently in *this but not in "interval". | 
|  | void Difference(const value_type& interval); | 
|  |  | 
|  | // Mutates this QuicIntervalSet so that it contains only those values that are | 
|  | // currently in *this but not in the interval [min, max). | 
|  | void Difference(const T& min, const T& max); | 
|  |  | 
|  | // Mutates this QuicIntervalSet so that it contains only those values that are | 
|  | // currently in *this but not in the QuicIntervalSet "other". | 
|  | void Difference(const QuicIntervalSet& other); | 
|  |  | 
|  | // Mutates this QuicIntervalSet so that it contains only those values that are | 
|  | // in [min, max) but not currently in *this. | 
|  | void Complement(const T& min, const T& max); | 
|  |  | 
|  | // QuicIntervalSet's begin() iterator. The invariants of QuicIntervalSet | 
|  | // guarantee that for each entry e in the set, e.min() < e.max() (because the | 
|  | // entries are non-empty) and for each entry f that appears later in the set, | 
|  | // e.max() < f.min() (because the entries are ordered, pairwise-disjoint, and | 
|  | // non-adjacent). Modifications to this QuicIntervalSet invalidate these | 
|  | // iterators. | 
|  | const_iterator begin() const { return intervals_.begin(); } | 
|  |  | 
|  | // QuicIntervalSet's end() iterator. | 
|  | const_iterator end() const { return intervals_.end(); } | 
|  |  | 
|  | // QuicIntervalSet's rbegin() and rend() iterators. Iterator invalidation | 
|  | // semantics are the same as those for begin() / end(). | 
|  | const_reverse_iterator rbegin() const { return intervals_.rbegin(); } | 
|  |  | 
|  | const_reverse_iterator rend() const { return intervals_.rend(); } | 
|  |  | 
|  | template <typename Iter> | 
|  | void assign(Iter first, Iter last) { | 
|  | Clear(); | 
|  | for (; first != last; ++first) | 
|  | Add(*first); | 
|  | } | 
|  |  | 
|  | void assign(std::initializer_list<value_type> il) { | 
|  | assign(il.begin(), il.end()); | 
|  | } | 
|  |  | 
|  | // Returns a human-readable representation of this set. This will typically be | 
|  | // (though is not guaranteed to be) of the form | 
|  | //   "[a1, b1) [a2, b2) ... [an, bn)" | 
|  | // where the intervals are in the same order as given by traversal from | 
|  | // begin() to end(). This representation is intended for human consumption; | 
|  | // computer programs should not rely on the output being in exactly this form. | 
|  | std::string ToString() const; | 
|  |  | 
|  | QuicIntervalSet& operator=(std::initializer_list<value_type> il) { | 
|  | assign(il.begin(), il.end()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Swap this QuicIntervalSet with *other. This is a constant-time operation. | 
|  | void Swap(QuicIntervalSet<T>* other) { intervals_.swap(other->intervals_); } | 
|  |  | 
|  | friend bool operator==(const QuicIntervalSet& a, const QuicIntervalSet& b) { | 
|  | return a.Size() == b.Size() && | 
|  | std::equal(a.begin(), a.end(), b.begin(), NonemptyIntervalEq()); | 
|  | } | 
|  |  | 
|  | friend bool operator!=(const QuicIntervalSet& a, const QuicIntervalSet& b) { | 
|  | return !(a == b); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Simple member-wise equality, since all intervals are non-empty. | 
|  | struct QUIC_NO_EXPORT NonemptyIntervalEq { | 
|  | bool operator()(const value_type& a, const value_type& b) const { | 
|  | return a.min() == b.min() && a.max() == b.max(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Removes overlapping ranges and coalesces adjacent intervals as needed. | 
|  | void Compact(const typename Set::iterator& begin, | 
|  | const typename Set::iterator& end); | 
|  |  | 
|  | // Returns true if this set is valid (i.e. all intervals in it are non-empty, | 
|  | // non-adjacent, and mutually disjoint). Currently this is used as an | 
|  | // integrity check by the Intersection() and Difference() methods, but is only | 
|  | // invoked for debug builds (via DCHECK). | 
|  | bool Valid() const; | 
|  |  | 
|  | // Finds the first interval that potentially intersects 'other'. | 
|  | const_iterator FindIntersectionCandidate(const QuicIntervalSet& other) const; | 
|  |  | 
|  | // Finds the first interval that potentially intersects 'interval'. | 
|  | const_iterator FindIntersectionCandidate(const value_type& interval) const; | 
|  |  | 
|  | // Helper for Intersection() and Difference(): Finds the next pair of | 
|  | // intervals from 'x' and 'y' that intersect. 'mine' is an iterator | 
|  | // over x->intervals_. 'theirs' is an iterator over y.intervals_. 'mine' | 
|  | // and 'theirs' are advanced until an intersecting pair is found. | 
|  | // Non-intersecting intervals (aka "holes") from x->intervals_ can be | 
|  | // optionally erased by "on_hole". | 
|  | template <typename X, typename Func> | 
|  | static bool FindNextIntersectingPairImpl(X* x, | 
|  | const QuicIntervalSet& y, | 
|  | const_iterator* mine, | 
|  | const_iterator* theirs, | 
|  | Func on_hole); | 
|  |  | 
|  | // The variant of the above method that doesn't mutate this QuicIntervalSet. | 
|  | bool FindNextIntersectingPair(const QuicIntervalSet& other, | 
|  | const_iterator* mine, | 
|  | const_iterator* theirs) const { | 
|  | return FindNextIntersectingPairImpl( | 
|  | this, other, mine, theirs, | 
|  | [](const QuicIntervalSet*, const_iterator, const_iterator) {}); | 
|  | } | 
|  |  | 
|  | // The variant of the above method that mutates this QuicIntervalSet by | 
|  | // erasing holes. | 
|  | bool FindNextIntersectingPairAndEraseHoles(const QuicIntervalSet& other, | 
|  | const_iterator* mine, | 
|  | const_iterator* theirs) { | 
|  | return FindNextIntersectingPairImpl( | 
|  | this, other, mine, theirs, | 
|  | [](QuicIntervalSet* x, const_iterator from, const_iterator to) { | 
|  | x->intervals_.erase(from, to); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // The representation for the intervals. The intervals in this set are | 
|  | // non-empty, pairwise-disjoint, non-adjacent and ordered in ascending order | 
|  | // by min(). | 
|  | Set intervals_; | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | auto operator<<(std::ostream& out, const QuicIntervalSet<T>& seq) | 
|  | -> decltype(out << *seq.begin()) { | 
|  | out << "{"; | 
|  | for (const auto& interval : seq) { | 
|  | out << " " << interval; | 
|  | } | 
|  | out << " }"; | 
|  |  | 
|  | return out; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void swap(QuicIntervalSet<T>& x, QuicIntervalSet<T>& y); | 
|  |  | 
|  | //============================================================================== | 
|  | // Implementation details: Clients can stop reading here. | 
|  |  | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::value_type QuicIntervalSet<T>::SpanningInterval() | 
|  | const { | 
|  | value_type result; | 
|  | if (!intervals_.empty()) { | 
|  | result.SetMin(intervals_.begin()->min()); | 
|  | result.SetMax(intervals_.rbegin()->max()); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Add(const value_type& interval) { | 
|  | if (interval.Empty()) | 
|  | return; | 
|  | std::pair<typename Set::iterator, bool> ins = intervals_.insert(interval); | 
|  | if (!ins.second) { | 
|  | // This interval already exists. | 
|  | return; | 
|  | } | 
|  | // Determine the minimal range that will have to be compacted.  We know that | 
|  | // the QuicIntervalSet was valid before the addition of the interval, so only | 
|  | // need to start with the interval itself (although Compact takes an open | 
|  | // range so begin needs to be the interval to the left).  We don't know how | 
|  | // many ranges this interval may cover, so we need to find the appropriate | 
|  | // interval to end with on the right. | 
|  | typename Set::iterator begin = ins.first; | 
|  | if (begin != intervals_.begin()) | 
|  | --begin; | 
|  | const value_type target_end(interval.max(), interval.max()); | 
|  | const typename Set::iterator end = intervals_.upper_bound(target_end); | 
|  | Compact(begin, end); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::Contains(const T& value) const { | 
|  | value_type tmp(value, value); | 
|  | // Find the first interval with min() > value, then move back one step | 
|  | const_iterator it = intervals_.upper_bound(tmp); | 
|  | if (it == intervals_.begin()) | 
|  | return false; | 
|  | --it; | 
|  | return it->Contains(value); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::Contains(const value_type& interval) const { | 
|  | // Find the first interval with min() > value, then move back one step. | 
|  | const_iterator it = intervals_.upper_bound(interval); | 
|  | if (it == intervals_.begin()) | 
|  | return false; | 
|  | --it; | 
|  | return it->Contains(interval); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::Contains(const QuicIntervalSet<T>& other) const { | 
|  | if (!SpanningInterval().Contains(other.SpanningInterval())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (const_iterator i = other.begin(); i != other.end(); ++i) { | 
|  | // If we don't contain the interval, can return false now. | 
|  | if (!Contains(*i)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This method finds the interval that Contains() "value", if such an interval | 
|  | // exists in the QuicIntervalSet. The way this is done is to locate the | 
|  | // "candidate interval", the only interval that could *possibly* contain value, | 
|  | // and test it using Contains(). The candidate interval is the interval with the | 
|  | // largest min() having min() <= value. | 
|  | // | 
|  | // Determining the candidate interval takes a couple of steps. First, since the | 
|  | // underlying std::set stores intervals, not values, we need to create a "probe | 
|  | // interval" suitable for use as a search key. The probe interval used is | 
|  | // [value, value). Now we can restate the problem as finding the largest | 
|  | // interval in the QuicIntervalSet that is <= the probe interval. | 
|  | // | 
|  | // This restatement only works if the set's comparator behaves in a certain way. | 
|  | // In particular it needs to order first by ascending min(), and then by | 
|  | // descending max(). The comparator used by this library is defined in exactly | 
|  | // this way. To see why descending max() is required, consider the following | 
|  | // example. Assume an QuicIntervalSet containing these intervals: | 
|  | // | 
|  | //   [0, 5)  [10, 20)  [50, 60) | 
|  | // | 
|  | // Consider searching for the value 15. The probe interval [15, 15) is created, | 
|  | // and [10, 20) is identified as the largest interval in the set <= the probe | 
|  | // interval. This is the correct interval needed for the Contains() test, which | 
|  | // will then return true. | 
|  | // | 
|  | // Now consider searching for the value 30. The probe interval [30, 30) is | 
|  | // created, and again [10, 20] is identified as the largest interval <= the | 
|  | // probe interval. This is again the correct interval needed for the Contains() | 
|  | // test, which in this case returns false. | 
|  | // | 
|  | // Finally, consider searching for the value 10. The probe interval [10, 10) is | 
|  | // created. Here the ordering relationship between [10, 10) and [10, 20) becomes | 
|  | // vitally important. If [10, 10) were to come before [10, 20), then [0, 5) | 
|  | // would be the largest interval <= the probe, leading to the wrong choice of | 
|  | // interval for the Contains() test. Therefore [10, 10) needs to come after | 
|  | // [10, 20). The simplest way to make this work in the general case is to order | 
|  | // by ascending min() but descending max(). In this ordering, the empty interval | 
|  | // is larger than any non-empty interval with the same min(). The comparator | 
|  | // used by this library is careful to induce this ordering. | 
|  | // | 
|  | // Another detail involves the choice of which std::set method to use to try to | 
|  | // find the candidate interval. The most appropriate entry point is | 
|  | // set::upper_bound(), which finds the smallest interval which is > the probe | 
|  | // interval. The semantics of upper_bound() are slightly different from what we | 
|  | // want (namely, to find the largest interval which is <= the probe interval) | 
|  | // but they are close enough; the interval found by upper_bound() will always be | 
|  | // one step past the interval we are looking for (if it exists) or at begin() | 
|  | // (if it does not). Getting to the proper interval is a simple matter of | 
|  | // decrementing the iterator. | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::Find( | 
|  | const T& value) const { | 
|  | value_type tmp(value, value); | 
|  | const_iterator it = intervals_.upper_bound(tmp); | 
|  | if (it == intervals_.begin()) | 
|  | return intervals_.end(); | 
|  | --it; | 
|  | if (it->Contains(value)) | 
|  | return it; | 
|  | else | 
|  | return intervals_.end(); | 
|  | } | 
|  |  | 
|  | // This method finds the interval that Contains() the interval "probe", if such | 
|  | // an interval exists in the QuicIntervalSet. The way this is done is to locate | 
|  | // the "candidate interval", the only interval that could *possibly* contain | 
|  | // "probe", and test it using Contains(). The candidate interval is the largest | 
|  | // interval that is <= the probe interval. | 
|  | // | 
|  | // The search for the candidate interval only works if the comparator used | 
|  | // behaves in a certain way. In particular it needs to order first by ascending | 
|  | // min(), and then by descending max(). The comparator used by this library is | 
|  | // defined in exactly this way. To see why descending max() is required, | 
|  | // consider the following example. Assume an QuicIntervalSet containing these | 
|  | // intervals: | 
|  | // | 
|  | //   [0, 5)  [10, 20)  [50, 60) | 
|  | // | 
|  | // Consider searching for the probe [15, 17). [10, 20) is the largest interval | 
|  | // in the set which is <= the probe interval. This is the correct interval | 
|  | // needed for the Contains() test, which will then return true, because [10, 20) | 
|  | // contains [15, 17). | 
|  | // | 
|  | // Now consider searching for the probe [30, 32). Again [10, 20] is the largest | 
|  | // interval <= the probe interval. This is again the correct interval needed for | 
|  | // the Contains() test, which in this case returns false, because [10, 20) does | 
|  | // not contain [30, 32). | 
|  | // | 
|  | // Finally, consider searching for the probe [10, 12). Here the ordering | 
|  | // relationship between [10, 12) and [10, 20) becomes vitally important. If | 
|  | // [10, 12) were to come before [10, 20), then [0, 5) would be the largest | 
|  | // interval <= the probe, leading to the wrong choice of interval for the | 
|  | // Contains() test. Therefore [10, 12) needs to come after [10, 20). The | 
|  | // simplest way to make this work in the general case is to order by ascending | 
|  | // min() but descending max(). In this ordering, given two intervals with the | 
|  | // same min(), the wider one goes before the narrower one. The comparator used | 
|  | // by this library is careful to induce this ordering. | 
|  | // | 
|  | // Another detail involves the choice of which std::set method to use to try to | 
|  | // find the candidate interval. The most appropriate entry point is | 
|  | // set::upper_bound(), which finds the smallest interval which is > the probe | 
|  | // interval. The semantics of upper_bound() are slightly different from what we | 
|  | // want (namely, to find the largest interval which is <= the probe interval) | 
|  | // but they are close enough; the interval found by upper_bound() will always be | 
|  | // one step past the interval we are looking for (if it exists) or at begin() | 
|  | // (if it does not). Getting to the proper interval is a simple matter of | 
|  | // decrementing the iterator. | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::Find( | 
|  | const value_type& probe) const { | 
|  | const_iterator it = intervals_.upper_bound(probe); | 
|  | if (it == intervals_.begin()) | 
|  | return intervals_.end(); | 
|  | --it; | 
|  | if (it->Contains(probe)) | 
|  | return it; | 
|  | else | 
|  | return intervals_.end(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::LowerBound( | 
|  | const T& value) const { | 
|  | const_iterator it = intervals_.lower_bound(value_type(value, value)); | 
|  | if (it == intervals_.begin()) { | 
|  | return it; | 
|  | } | 
|  |  | 
|  | // The previous intervals_.lower_bound() checking is essentially based on | 
|  | // interval.min(), so we need to check whether the `value` is contained in | 
|  | // the previous interval. | 
|  | --it; | 
|  | if (it->Contains(value)) { | 
|  | return it; | 
|  | } else { | 
|  | return ++it; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::UpperBound( | 
|  | const T& value) const { | 
|  | return intervals_.upper_bound(value_type(value, value)); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::IsDisjoint(const value_type& interval) const { | 
|  | if (interval.Empty()) | 
|  | return true; | 
|  | value_type tmp(interval.min(), interval.min()); | 
|  | // Find the first interval with min() > interval.min() | 
|  | const_iterator it = intervals_.upper_bound(tmp); | 
|  | if (it != intervals_.end() && interval.max() > it->min()) | 
|  | return false; | 
|  | if (it == intervals_.begin()) | 
|  | return true; | 
|  | --it; | 
|  | return it->max() <= interval.min(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Union(const QuicIntervalSet& other) { | 
|  | intervals_.insert(other.begin(), other.end()); | 
|  | Compact(intervals_.begin(), intervals_.end()); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator | 
|  | QuicIntervalSet<T>::FindIntersectionCandidate( | 
|  | const QuicIntervalSet& other) const { | 
|  | return FindIntersectionCandidate(*other.intervals_.begin()); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator | 
|  | QuicIntervalSet<T>::FindIntersectionCandidate( | 
|  | const value_type& interval) const { | 
|  | // Use upper_bound to efficiently find the first interval in intervals_ | 
|  | // where min() is greater than interval.min().  If the result | 
|  | // isn't the beginning of intervals_ then move backwards one interval since | 
|  | // the interval before it is the first candidate where max() may be | 
|  | // greater than interval.min(). | 
|  | // In other words, no interval before that can possibly intersect with any | 
|  | // of other.intervals_. | 
|  | const_iterator mine = intervals_.upper_bound(interval); | 
|  | if (mine != intervals_.begin()) { | 
|  | --mine; | 
|  | } | 
|  | return mine; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | template <typename X, typename Func> | 
|  | bool QuicIntervalSet<T>::FindNextIntersectingPairImpl(X* x, | 
|  | const QuicIntervalSet& y, | 
|  | const_iterator* mine, | 
|  | const_iterator* theirs, | 
|  | Func on_hole) { | 
|  | CHECK(x != nullptr); | 
|  | if ((*mine == x->intervals_.end()) || (*theirs == y.intervals_.end())) { | 
|  | return false; | 
|  | } | 
|  | while (!(**mine).Intersects(**theirs)) { | 
|  | const_iterator erase_first = *mine; | 
|  | // Skip over intervals in 'mine' that don't reach 'theirs'. | 
|  | while (*mine != x->intervals_.end() && (**mine).max() <= (**theirs).min()) { | 
|  | ++(*mine); | 
|  | } | 
|  | on_hole(x, erase_first, *mine); | 
|  | // We're done if the end of intervals_ is reached. | 
|  | if (*mine == x->intervals_.end()) { | 
|  | return false; | 
|  | } | 
|  | // Skip over intervals 'theirs' that don't reach 'mine'. | 
|  | while (*theirs != y.intervals_.end() && | 
|  | (**theirs).max() <= (**mine).min()) { | 
|  | ++(*theirs); | 
|  | } | 
|  | // If the end of other.intervals_ is reached, we're done. | 
|  | if (*theirs == y.intervals_.end()) { | 
|  | on_hole(x, *mine, x->intervals_.end()); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Intersection(const QuicIntervalSet& other) { | 
|  | if (!SpanningInterval().Intersects(other.SpanningInterval())) { | 
|  | intervals_.clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const_iterator mine = FindIntersectionCandidate(other); | 
|  | // Remove any intervals that cannot possibly intersect with other.intervals_. | 
|  | intervals_.erase(intervals_.begin(), mine); | 
|  | const_iterator theirs = other.FindIntersectionCandidate(*this); | 
|  |  | 
|  | while (FindNextIntersectingPairAndEraseHoles(other, &mine, &theirs)) { | 
|  | // OK, *mine and *theirs intersect.  Now, we find the largest | 
|  | // span of intervals in other (starting at theirs) - say [a..b] | 
|  | // - that intersect *mine, and we replace *mine with (*mine | 
|  | // intersect x) for all x in [a..b] Note that subsequent | 
|  | // intervals in this can't intersect any intervals in [a..b) -- | 
|  | // they may only intersect b or subsequent intervals in other. | 
|  | value_type i(*mine); | 
|  | intervals_.erase(mine); | 
|  | mine = intervals_.end(); | 
|  | value_type intersection; | 
|  | while (theirs != other.intervals_.end() && | 
|  | i.Intersects(*theirs, &intersection)) { | 
|  | std::pair<typename Set::iterator, bool> ins = | 
|  | intervals_.insert(intersection); | 
|  | DCHECK(ins.second); | 
|  | mine = ins.first; | 
|  | ++theirs; | 
|  | } | 
|  | DCHECK(mine != intervals_.end()); | 
|  | --theirs; | 
|  | ++mine; | 
|  | } | 
|  | DCHECK(Valid()); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::Intersects(const QuicIntervalSet& other) const { | 
|  | if (!SpanningInterval().Intersects(other.SpanningInterval())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const_iterator mine = FindIntersectionCandidate(other); | 
|  | if (mine == intervals_.end()) { | 
|  | return false; | 
|  | } | 
|  | const_iterator theirs = other.FindIntersectionCandidate(*mine); | 
|  |  | 
|  | return FindNextIntersectingPair(other, &mine, &theirs); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Difference(const value_type& interval) { | 
|  | if (!SpanningInterval().Intersects(interval)) { | 
|  | return; | 
|  | } | 
|  | Difference(QuicIntervalSet<T>(interval)); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Difference(const T& min, const T& max) { | 
|  | Difference(value_type(min, max)); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Difference(const QuicIntervalSet& other) { | 
|  | if (!SpanningInterval().Intersects(other.SpanningInterval())) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const_iterator mine = FindIntersectionCandidate(other); | 
|  | // If no interval in mine reaches the first interval of theirs then we're | 
|  | // done. | 
|  | if (mine == intervals_.end()) { | 
|  | return; | 
|  | } | 
|  | const_iterator theirs = other.FindIntersectionCandidate(*this); | 
|  |  | 
|  | while (FindNextIntersectingPair(other, &mine, &theirs)) { | 
|  | // At this point *mine and *theirs overlap.  Remove mine from | 
|  | // intervals_ and replace it with the possibly two intervals that are | 
|  | // the difference between mine and theirs. | 
|  | value_type i(*mine); | 
|  | intervals_.erase(mine++); | 
|  | value_type lo; | 
|  | value_type hi; | 
|  | i.Difference(*theirs, &lo, &hi); | 
|  |  | 
|  | if (!lo.Empty()) { | 
|  | // We have a low end.  This can't intersect anything else. | 
|  | std::pair<typename Set::iterator, bool> ins = intervals_.insert(lo); | 
|  | DCHECK(ins.second); | 
|  | } | 
|  |  | 
|  | if (!hi.Empty()) { | 
|  | std::pair<typename Set::iterator, bool> ins = intervals_.insert(hi); | 
|  | DCHECK(ins.second); | 
|  | mine = ins.first; | 
|  | } | 
|  | } | 
|  | DCHECK(Valid()); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Complement(const T& min, const T& max) { | 
|  | QuicIntervalSet<T> span(min, max); | 
|  | span.Difference(*this); | 
|  | intervals_.swap(span.intervals_); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | std::string QuicIntervalSet<T>::ToString() const { | 
|  | std::ostringstream os; | 
|  | os << *this; | 
|  | return os.str(); | 
|  | } | 
|  |  | 
|  | // This method compacts the QuicIntervalSet, merging pairs of overlapping | 
|  | // intervals into a single interval. In the steady state, the QuicIntervalSet | 
|  | // does not contain any such pairs. However, the way the Union() and Add() | 
|  | // methods work is to temporarily put the QuicIntervalSet into such a state and | 
|  | // then to call Compact() to "fix it up" so that it is no longer in that state. | 
|  | // | 
|  | // Compact() needs the interval set to allow two intervals [a,b) and [a,c) | 
|  | // (having the same min() but different max()) to briefly coexist in the set at | 
|  | // the same time, and be adjacent to each other, so that they can be efficiently | 
|  | // located and merged into a single interval. This state would be impossible | 
|  | // with a comparator which only looked at min(), as such a comparator would | 
|  | // consider such pairs equal. Fortunately, the comparator used by | 
|  | // QuicIntervalSet does exactly what is needed, ordering first by ascending | 
|  | // min(), then by descending max(). | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Compact(const typename Set::iterator& begin, | 
|  | const typename Set::iterator& end) { | 
|  | if (begin == end) | 
|  | return; | 
|  | typename Set::iterator next = begin; | 
|  | typename Set::iterator prev = begin; | 
|  | typename Set::iterator it = begin; | 
|  | ++it; | 
|  | ++next; | 
|  | while (it != end) { | 
|  | ++next; | 
|  | if (prev->max() >= it->min()) { | 
|  | // Overlapping / coalesced range; merge the two intervals. | 
|  | T min = prev->min(); | 
|  | T max = std::max(prev->max(), it->max()); | 
|  | value_type i(min, max); | 
|  | intervals_.erase(prev); | 
|  | intervals_.erase(it); | 
|  | std::pair<typename Set::iterator, bool> ins = intervals_.insert(i); | 
|  | DCHECK(ins.second); | 
|  | prev = ins.first; | 
|  | } else { | 
|  | prev = it; | 
|  | } | 
|  | it = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::Valid() const { | 
|  | const_iterator prev = end(); | 
|  | for (const_iterator it = begin(); it != end(); ++it) { | 
|  | // invalid or empty interval. | 
|  | if (it->min() >= it->max()) | 
|  | return false; | 
|  | // Not sorted, not disjoint, or adjacent. | 
|  | if (prev != end() && prev->max() >= it->min()) | 
|  | return false; | 
|  | prev = it; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void swap(QuicIntervalSet<T>& x, QuicIntervalSet<T>& y) { | 
|  | x.Swap(&y); | 
|  | } | 
|  |  | 
|  | // This comparator orders intervals first by ascending min() and then by | 
|  | // descending max(). Readers who are satisified with that explanation can stop | 
|  | // reading here. The remainder of this comment is for the benefit of future | 
|  | // maintainers of this library. | 
|  | // | 
|  | // The reason for this ordering is that this comparator has to serve two | 
|  | // masters. First, it has to maintain the intervals in its internal set in the | 
|  | // order that clients expect to see them. Clients see these intervals via the | 
|  | // iterators provided by begin()/end() or as a result of invoking Get(). For | 
|  | // this reason, the comparator orders intervals by ascending min(). | 
|  | // | 
|  | // If client iteration were the only consideration, then ordering by ascending | 
|  | // min() would be good enough. This is because the intervals in the | 
|  | // QuicIntervalSet are non-empty, non-adjacent, and mutually disjoint; such | 
|  | // intervals happen to always have disjoint min() values, so such a comparator | 
|  | // would never even have to look at max() in order to work correctly for this | 
|  | // class. | 
|  | // | 
|  | // However, in addition to ordering by ascending min(), this comparator also has | 
|  | // a second responsibility: satisfying the special needs of this library's | 
|  | // peculiar internal implementation. These needs require the comparator to order | 
|  | // first by ascending min() and then by descending max(). The best way to | 
|  | // understand why this is so is to check out the comments associated with the | 
|  | // Find() and Compact() methods. | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::IntervalLess::operator()(const value_type& a, | 
|  | const value_type& b) const { | 
|  | return a.min() < b.min() || (a.min() == b.min() && a.max() > b.max()); | 
|  | } | 
|  |  | 
|  | }  // namespace quic | 
|  |  | 
|  | #endif  // QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_ |