QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1 | // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #include "net/third_party/quiche/src/quic/core/quic_data_writer.h" |
| 6 | |
| 7 | #include <algorithm> |
| 8 | #include <limits> |
| 9 | |
| 10 | #include "net/third_party/quiche/src/quic/core/crypto/quic_random.h" |
danzh | 4fbea5d | 2019-03-20 10:31:44 -0700 | [diff] [blame] | 11 | #include "net/third_party/quiche/src/quic/core/quic_constants.h" |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 12 | #include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h" |
| 13 | #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" |
| 14 | #include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h" |
| 15 | |
| 16 | namespace quic { |
| 17 | |
| 18 | QuicDataWriter::QuicDataWriter(size_t size, char* buffer) |
| 19 | : QuicDataWriter(size, buffer, NETWORK_BYTE_ORDER) {} |
| 20 | |
| 21 | QuicDataWriter::QuicDataWriter(size_t size, char* buffer, Endianness endianness) |
| 22 | : buffer_(buffer), capacity_(size), length_(0), endianness_(endianness) {} |
| 23 | |
| 24 | QuicDataWriter::~QuicDataWriter() {} |
| 25 | |
| 26 | char* QuicDataWriter::data() { |
| 27 | return buffer_; |
| 28 | } |
| 29 | |
| 30 | bool QuicDataWriter::WriteUInt8(uint8_t value) { |
| 31 | return WriteBytes(&value, sizeof(value)); |
| 32 | } |
| 33 | |
| 34 | bool QuicDataWriter::WriteUInt16(uint16_t value) { |
| 35 | if (endianness_ == NETWORK_BYTE_ORDER) { |
| 36 | value = QuicEndian::HostToNet16(value); |
| 37 | } |
| 38 | return WriteBytes(&value, sizeof(value)); |
| 39 | } |
| 40 | |
| 41 | bool QuicDataWriter::WriteUInt32(uint32_t value) { |
| 42 | if (endianness_ == NETWORK_BYTE_ORDER) { |
| 43 | value = QuicEndian::HostToNet32(value); |
| 44 | } |
| 45 | return WriteBytes(&value, sizeof(value)); |
| 46 | } |
| 47 | |
| 48 | bool QuicDataWriter::WriteUInt64(uint64_t value) { |
| 49 | if (endianness_ == NETWORK_BYTE_ORDER) { |
| 50 | value = QuicEndian::HostToNet64(value); |
| 51 | } |
| 52 | return WriteBytes(&value, sizeof(value)); |
| 53 | } |
| 54 | |
| 55 | bool QuicDataWriter::WriteBytesToUInt64(size_t num_bytes, uint64_t value) { |
| 56 | if (num_bytes > sizeof(value)) { |
| 57 | return false; |
| 58 | } |
| 59 | if (endianness_ == HOST_BYTE_ORDER) { |
| 60 | return WriteBytes(&value, num_bytes); |
| 61 | } |
| 62 | |
| 63 | value = QuicEndian::HostToNet64(value); |
| 64 | return WriteBytes(reinterpret_cast<char*>(&value) + sizeof(value) - num_bytes, |
| 65 | num_bytes); |
| 66 | } |
| 67 | |
| 68 | bool QuicDataWriter::WriteUFloat16(uint64_t value) { |
| 69 | uint16_t result; |
| 70 | if (value < (UINT64_C(1) << kUFloat16MantissaEffectiveBits)) { |
| 71 | // Fast path: either the value is denormalized, or has exponent zero. |
| 72 | // Both cases are represented by the value itself. |
| 73 | result = static_cast<uint16_t>(value); |
| 74 | } else if (value >= kUFloat16MaxValue) { |
| 75 | // Value is out of range; clamp it to the maximum representable. |
| 76 | result = std::numeric_limits<uint16_t>::max(); |
| 77 | } else { |
| 78 | // The highest bit is between position 13 and 42 (zero-based), which |
| 79 | // corresponds to exponent 1-30. In the output, mantissa is from 0 to 10, |
| 80 | // hidden bit is 11 and exponent is 11 to 15. Shift the highest bit to 11 |
| 81 | // and count the shifts. |
| 82 | uint16_t exponent = 0; |
| 83 | for (uint16_t offset = 16; offset > 0; offset /= 2) { |
| 84 | // Right-shift the value until the highest bit is in position 11. |
| 85 | // For offset of 16, 8, 4, 2 and 1 (binary search over 1-30), |
| 86 | // shift if the bit is at or above 11 + offset. |
| 87 | if (value >= (UINT64_C(1) << (kUFloat16MantissaBits + offset))) { |
| 88 | exponent += offset; |
| 89 | value >>= offset; |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | DCHECK_GE(exponent, 1); |
| 94 | DCHECK_LE(exponent, kUFloat16MaxExponent); |
| 95 | DCHECK_GE(value, UINT64_C(1) << kUFloat16MantissaBits); |
| 96 | DCHECK_LT(value, UINT64_C(1) << kUFloat16MantissaEffectiveBits); |
| 97 | |
| 98 | // Hidden bit (position 11) is set. We should remove it and increment the |
| 99 | // exponent. Equivalently, we just add it to the exponent. |
| 100 | // This hides the bit. |
| 101 | result = static_cast<uint16_t>(value + (exponent << kUFloat16MantissaBits)); |
| 102 | } |
| 103 | |
| 104 | if (endianness_ == NETWORK_BYTE_ORDER) { |
| 105 | result = QuicEndian::HostToNet16(result); |
| 106 | } |
| 107 | return WriteBytes(&result, sizeof(result)); |
| 108 | } |
| 109 | |
| 110 | bool QuicDataWriter::WriteStringPiece16(QuicStringPiece val) { |
| 111 | if (val.size() > std::numeric_limits<uint16_t>::max()) { |
| 112 | return false; |
| 113 | } |
| 114 | if (!WriteUInt16(static_cast<uint16_t>(val.size()))) { |
| 115 | return false; |
| 116 | } |
| 117 | return WriteBytes(val.data(), val.size()); |
| 118 | } |
| 119 | |
| 120 | bool QuicDataWriter::WriteStringPiece(QuicStringPiece val) { |
| 121 | return WriteBytes(val.data(), val.size()); |
| 122 | } |
| 123 | |
| 124 | char* QuicDataWriter::BeginWrite(size_t length) { |
| 125 | if (length_ > capacity_) { |
| 126 | return nullptr; |
| 127 | } |
| 128 | |
| 129 | if (capacity_ - length_ < length) { |
| 130 | return nullptr; |
| 131 | } |
| 132 | |
| 133 | #ifdef ARCH_CPU_64_BITS |
| 134 | DCHECK_LE(length, std::numeric_limits<uint32_t>::max()); |
| 135 | #endif |
| 136 | |
| 137 | return buffer_ + length_; |
| 138 | } |
| 139 | |
| 140 | bool QuicDataWriter::WriteBytes(const void* data, size_t data_len) { |
| 141 | char* dest = BeginWrite(data_len); |
| 142 | if (!dest) { |
| 143 | return false; |
| 144 | } |
| 145 | |
| 146 | memcpy(dest, data, data_len); |
| 147 | |
| 148 | length_ += data_len; |
| 149 | return true; |
| 150 | } |
| 151 | |
| 152 | bool QuicDataWriter::WriteRepeatedByte(uint8_t byte, size_t count) { |
| 153 | char* dest = BeginWrite(count); |
| 154 | if (!dest) { |
| 155 | return false; |
| 156 | } |
| 157 | |
| 158 | memset(dest, byte, count); |
| 159 | |
| 160 | length_ += count; |
| 161 | return true; |
| 162 | } |
| 163 | |
| 164 | void QuicDataWriter::WritePadding() { |
| 165 | DCHECK_LE(length_, capacity_); |
| 166 | if (length_ > capacity_) { |
| 167 | return; |
| 168 | } |
| 169 | memset(buffer_ + length_, 0x00, capacity_ - length_); |
| 170 | length_ = capacity_; |
| 171 | } |
| 172 | |
| 173 | bool QuicDataWriter::WritePaddingBytes(size_t count) { |
| 174 | return WriteRepeatedByte(0x00, count); |
| 175 | } |
| 176 | |
| 177 | bool QuicDataWriter::WriteConnectionId(QuicConnectionId connection_id) { |
| 178 | if (connection_id.IsEmpty()) { |
| 179 | return true; |
| 180 | } |
| 181 | return WriteBytes(connection_id.data(), connection_id.length()); |
| 182 | } |
| 183 | |
| 184 | bool QuicDataWriter::WriteTag(uint32_t tag) { |
| 185 | return WriteBytes(&tag, sizeof(tag)); |
| 186 | } |
| 187 | |
| 188 | bool QuicDataWriter::WriteRandomBytes(QuicRandom* random, size_t length) { |
| 189 | char* dest = BeginWrite(length); |
| 190 | if (!dest) { |
| 191 | return false; |
| 192 | } |
| 193 | |
| 194 | random->RandBytes(dest, length); |
| 195 | length_ += length; |
| 196 | return true; |
| 197 | } |
| 198 | |
| 199 | // Converts a uint64_t into an IETF/Quic formatted Variable Length |
| 200 | // Integer. IETF Variable Length Integers have 62 significant bits, so |
| 201 | // the value to write must be in the range of 0..(2^62)-1. |
| 202 | // |
| 203 | // Performance notes |
| 204 | // |
| 205 | // Measurements and experiments showed that unrolling the four cases |
| 206 | // like this and dereferencing next_ as we do (*(next_+n)) gains about |
| 207 | // 10% over making a loop and dereferencing it as *(next_++) |
| 208 | // |
| 209 | // Using a register for next didn't help. |
| 210 | // |
| 211 | // Branches are ordered to increase the likelihood of the first being |
| 212 | // taken. |
| 213 | // |
| 214 | // Low-level optimization is useful here because this function will be |
| 215 | // called frequently, leading to outsize benefits. |
| 216 | bool QuicDataWriter::WriteVarInt62(uint64_t value) { |
| 217 | DCHECK_EQ(endianness_, NETWORK_BYTE_ORDER); |
| 218 | |
| 219 | size_t remaining = capacity_ - length_; |
| 220 | char* next = buffer_ + length_; |
| 221 | |
| 222 | if ((value & kVarInt62ErrorMask) == 0) { |
| 223 | // We know the high 2 bits are 0 so |value| is legal. |
| 224 | // We can do the encoding. |
| 225 | if ((value & kVarInt62Mask8Bytes) != 0) { |
| 226 | // Someplace in the high-4 bytes is a 1-bit. Do an 8-byte |
| 227 | // encoding. |
| 228 | if (remaining >= 8) { |
| 229 | *(next + 0) = ((value >> 56) & 0x3f) + 0xc0; |
| 230 | *(next + 1) = (value >> 48) & 0xff; |
| 231 | *(next + 2) = (value >> 40) & 0xff; |
| 232 | *(next + 3) = (value >> 32) & 0xff; |
| 233 | *(next + 4) = (value >> 24) & 0xff; |
| 234 | *(next + 5) = (value >> 16) & 0xff; |
| 235 | *(next + 6) = (value >> 8) & 0xff; |
| 236 | *(next + 7) = value & 0xff; |
| 237 | length_ += 8; |
| 238 | return true; |
| 239 | } |
| 240 | return false; |
| 241 | } |
| 242 | // The high-order-4 bytes are all 0, check for a 1, 2, or 4-byte |
| 243 | // encoding |
| 244 | if ((value & kVarInt62Mask4Bytes) != 0) { |
| 245 | // The encoding will not fit into 2 bytes, Do a 4-byte |
| 246 | // encoding. |
| 247 | if (remaining >= 4) { |
| 248 | *(next + 0) = ((value >> 24) & 0x3f) + 0x80; |
| 249 | *(next + 1) = (value >> 16) & 0xff; |
| 250 | *(next + 2) = (value >> 8) & 0xff; |
| 251 | *(next + 3) = value & 0xff; |
| 252 | length_ += 4; |
| 253 | return true; |
| 254 | } |
| 255 | return false; |
| 256 | } |
| 257 | // The high-order bits are all 0. Check to see if the number |
| 258 | // can be encoded as one or two bytes. One byte encoding has |
| 259 | // only 6 significant bits (bits 0xffffffff ffffffc0 are all 0). |
| 260 | // Two byte encoding has more than 6, but 14 or less significant |
| 261 | // bits (bits 0xffffffff ffffc000 are 0 and 0x00000000 00003fc0 |
| 262 | // are not 0) |
| 263 | if ((value & kVarInt62Mask2Bytes) != 0) { |
| 264 | // Do 2-byte encoding |
| 265 | if (remaining >= 2) { |
| 266 | *(next + 0) = ((value >> 8) & 0x3f) + 0x40; |
| 267 | *(next + 1) = (value)&0xff; |
| 268 | length_ += 2; |
| 269 | return true; |
| 270 | } |
| 271 | return false; |
| 272 | } |
| 273 | if (remaining >= 1) { |
| 274 | // Do 1-byte encoding |
| 275 | *next = (value & 0x3f); |
| 276 | length_ += 1; |
| 277 | return true; |
| 278 | } |
| 279 | return false; |
| 280 | } |
| 281 | // Can not encode, high 2 bits not 0 |
| 282 | return false; |
| 283 | } |
| 284 | |
| 285 | bool QuicDataWriter::WriteVarInt62( |
| 286 | uint64_t value, |
| 287 | QuicVariableLengthIntegerLength write_length) { |
| 288 | DCHECK_EQ(endianness_, NETWORK_BYTE_ORDER); |
| 289 | |
| 290 | size_t remaining = capacity_ - length_; |
| 291 | if (remaining < write_length) { |
| 292 | return false; |
| 293 | } |
| 294 | |
| 295 | const QuicVariableLengthIntegerLength min_length = GetVarInt62Len(value); |
| 296 | if (write_length < min_length) { |
| 297 | QUIC_BUG << "Cannot write value " << value << " with write_length " |
| 298 | << write_length; |
| 299 | return false; |
| 300 | } |
| 301 | if (write_length == min_length) { |
| 302 | return WriteVarInt62(value); |
| 303 | } |
| 304 | |
| 305 | if (write_length == VARIABLE_LENGTH_INTEGER_LENGTH_2) { |
| 306 | return WriteUInt8(0b01000000) && WriteUInt8(value); |
| 307 | } |
| 308 | if (write_length == VARIABLE_LENGTH_INTEGER_LENGTH_4) { |
| 309 | return WriteUInt8(0b10000000) && WriteUInt8(0) && WriteUInt16(value); |
| 310 | } |
| 311 | if (write_length == VARIABLE_LENGTH_INTEGER_LENGTH_8) { |
| 312 | return WriteUInt8(0b11000000) && WriteUInt8(0) && WriteUInt16(0) && |
| 313 | WriteUInt32(value); |
| 314 | } |
| 315 | |
| 316 | QUIC_BUG << "Invalid write_length " << static_cast<int>(write_length); |
| 317 | return false; |
| 318 | } |
| 319 | |
| 320 | // static |
| 321 | QuicVariableLengthIntegerLength QuicDataWriter::GetVarInt62Len(uint64_t value) { |
| 322 | if ((value & kVarInt62ErrorMask) != 0) { |
| 323 | QUIC_BUG << "Attempted to encode a value, " << value |
| 324 | << ", that is too big for VarInt62"; |
| 325 | return VARIABLE_LENGTH_INTEGER_LENGTH_0; |
| 326 | } |
| 327 | if ((value & kVarInt62Mask8Bytes) != 0) { |
| 328 | return VARIABLE_LENGTH_INTEGER_LENGTH_8; |
| 329 | } |
| 330 | if ((value & kVarInt62Mask4Bytes) != 0) { |
| 331 | return VARIABLE_LENGTH_INTEGER_LENGTH_4; |
| 332 | } |
| 333 | if ((value & kVarInt62Mask2Bytes) != 0) { |
| 334 | return VARIABLE_LENGTH_INTEGER_LENGTH_2; |
| 335 | } |
| 336 | return VARIABLE_LENGTH_INTEGER_LENGTH_1; |
| 337 | } |
| 338 | |
| 339 | bool QuicDataWriter::WriteStringPieceVarInt62( |
| 340 | const QuicStringPiece& string_piece) { |
| 341 | if (!WriteVarInt62(string_piece.size())) { |
| 342 | return false; |
| 343 | } |
| 344 | if (!string_piece.empty()) { |
| 345 | if (!WriteBytes(string_piece.data(), string_piece.size())) { |
| 346 | return false; |
| 347 | } |
| 348 | } |
| 349 | return true; |
| 350 | } |
| 351 | |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 352 | std::string QuicDataWriter::DebugString() const { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 353 | return QuicStrCat(" { capacity: ", capacity_, ", length: ", length_, " }"); |
| 354 | } |
| 355 | |
| 356 | } // namespace quic |