Bence Béky | bac0405 | 2022-04-07 15:44:29 -0400 | [diff] [blame] | 1 | // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #include "quiche/quic/core/quic_framer.h" |
| 6 | |
| 7 | #include <cstddef> |
| 8 | #include <cstdint> |
| 9 | #include <limits> |
| 10 | #include <memory> |
| 11 | #include <string> |
| 12 | #include <utility> |
| 13 | |
| 14 | #include "absl/base/attributes.h" |
| 15 | #include "absl/base/macros.h" |
| 16 | #include "absl/base/optimization.h" |
| 17 | #include "absl/strings/escaping.h" |
| 18 | #include "absl/strings/numbers.h" |
| 19 | #include "absl/strings/str_cat.h" |
| 20 | #include "absl/strings/str_split.h" |
| 21 | #include "absl/strings/string_view.h" |
| 22 | #include "quiche/quic/core/crypto/crypto_framer.h" |
| 23 | #include "quiche/quic/core/crypto/crypto_handshake.h" |
| 24 | #include "quiche/quic/core/crypto/crypto_handshake_message.h" |
| 25 | #include "quiche/quic/core/crypto/crypto_protocol.h" |
| 26 | #include "quiche/quic/core/crypto/crypto_utils.h" |
| 27 | #include "quiche/quic/core/crypto/null_decrypter.h" |
| 28 | #include "quiche/quic/core/crypto/null_encrypter.h" |
| 29 | #include "quiche/quic/core/crypto/quic_decrypter.h" |
| 30 | #include "quiche/quic/core/crypto/quic_encrypter.h" |
| 31 | #include "quiche/quic/core/crypto/quic_random.h" |
| 32 | #include "quiche/quic/core/frames/quic_ack_frequency_frame.h" |
| 33 | #include "quiche/quic/core/quic_connection_id.h" |
| 34 | #include "quiche/quic/core/quic_constants.h" |
| 35 | #include "quiche/quic/core/quic_data_reader.h" |
| 36 | #include "quiche/quic/core/quic_data_writer.h" |
| 37 | #include "quiche/quic/core/quic_error_codes.h" |
| 38 | #include "quiche/quic/core/quic_packets.h" |
| 39 | #include "quiche/quic/core/quic_socket_address_coder.h" |
| 40 | #include "quiche/quic/core/quic_stream_frame_data_producer.h" |
| 41 | #include "quiche/quic/core/quic_time.h" |
| 42 | #include "quiche/quic/core/quic_types.h" |
| 43 | #include "quiche/quic/core/quic_utils.h" |
| 44 | #include "quiche/quic/core/quic_versions.h" |
| 45 | #include "quiche/quic/platform/api/quic_bug_tracker.h" |
| 46 | #include "quiche/quic/platform/api/quic_client_stats.h" |
| 47 | #include "quiche/quic/platform/api/quic_flag_utils.h" |
| 48 | #include "quiche/quic/platform/api/quic_flags.h" |
| 49 | #include "quiche/quic/platform/api/quic_ip_address_family.h" |
| 50 | #include "quiche/quic/platform/api/quic_logging.h" |
| 51 | #include "quiche/quic/platform/api/quic_stack_trace.h" |
| 52 | #include "quiche/common/quiche_text_utils.h" |
| 53 | |
| 54 | namespace quic { |
| 55 | |
| 56 | namespace { |
| 57 | |
| 58 | #define ENDPOINT \ |
| 59 | (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") |
| 60 | |
| 61 | // Number of bits the packet number length bits are shifted from the right |
| 62 | // edge of the header. |
| 63 | const uint8_t kPublicHeaderSequenceNumberShift = 4; |
| 64 | |
| 65 | // There are two interpretations for the Frame Type byte in the QUIC protocol, |
| 66 | // resulting in two Frame Types: Special Frame Types and Regular Frame Types. |
| 67 | // |
| 68 | // Regular Frame Types use the Frame Type byte simply. Currently defined |
| 69 | // Regular Frame Types are: |
| 70 | // Padding : 0b 00000000 (0x00) |
| 71 | // ResetStream : 0b 00000001 (0x01) |
| 72 | // ConnectionClose : 0b 00000010 (0x02) |
| 73 | // GoAway : 0b 00000011 (0x03) |
| 74 | // WindowUpdate : 0b 00000100 (0x04) |
| 75 | // Blocked : 0b 00000101 (0x05) |
| 76 | // |
| 77 | // Special Frame Types encode both a Frame Type and corresponding flags |
| 78 | // all in the Frame Type byte. Currently defined Special Frame Types |
| 79 | // are: |
| 80 | // Stream : 0b 1xxxxxxx |
| 81 | // Ack : 0b 01xxxxxx |
| 82 | // |
| 83 | // Semantics of the flag bits above (the x bits) depends on the frame type. |
| 84 | |
| 85 | // Masks to determine if the frame type is a special use |
| 86 | // and for specific special frame types. |
| 87 | const uint8_t kQuicFrameTypeBrokenMask = 0xE0; // 0b 11100000 |
| 88 | const uint8_t kQuicFrameTypeSpecialMask = 0xC0; // 0b 11000000 |
| 89 | const uint8_t kQuicFrameTypeStreamMask = 0x80; |
| 90 | const uint8_t kQuicFrameTypeAckMask = 0x40; |
| 91 | static_assert(kQuicFrameTypeSpecialMask == |
| 92 | (kQuicFrameTypeStreamMask | kQuicFrameTypeAckMask), |
| 93 | "Invalid kQuicFrameTypeSpecialMask"); |
| 94 | |
| 95 | // The stream type format is 1FDOOOSS, where |
| 96 | // F is the fin bit. |
| 97 | // D is the data length bit (0 or 2 bytes). |
| 98 | // OO/OOO are the size of the offset. |
| 99 | // SS is the size of the stream ID. |
| 100 | // Note that the stream encoding can not be determined by inspection. It can |
| 101 | // be determined only by knowing the QUIC Version. |
| 102 | // Stream frame relative shifts and masks for interpreting the stream flags. |
| 103 | // StreamID may be 1, 2, 3, or 4 bytes. |
| 104 | const uint8_t kQuicStreamIdShift = 2; |
| 105 | const uint8_t kQuicStreamIDLengthMask = 0x03; |
| 106 | |
| 107 | // Offset may be 0, 2, 4, or 8 bytes. |
| 108 | const uint8_t kQuicStreamShift = 3; |
| 109 | const uint8_t kQuicStreamOffsetMask = 0x07; |
| 110 | |
| 111 | // Data length may be 0 or 2 bytes. |
| 112 | const uint8_t kQuicStreamDataLengthShift = 1; |
| 113 | const uint8_t kQuicStreamDataLengthMask = 0x01; |
| 114 | |
| 115 | // Fin bit may be set or not. |
| 116 | const uint8_t kQuicStreamFinShift = 1; |
| 117 | const uint8_t kQuicStreamFinMask = 0x01; |
| 118 | |
| 119 | // The format is 01M0LLOO, where |
| 120 | // M if set, there are multiple ack blocks in the frame. |
| 121 | // LL is the size of the largest ack field. |
| 122 | // OO is the size of the ack blocks offset field. |
| 123 | // packet number size shift used in AckFrames. |
| 124 | const uint8_t kQuicSequenceNumberLengthNumBits = 2; |
| 125 | const uint8_t kActBlockLengthOffset = 0; |
| 126 | const uint8_t kLargestAckedOffset = 2; |
| 127 | |
| 128 | // Acks may have only one ack block. |
| 129 | const uint8_t kQuicHasMultipleAckBlocksOffset = 5; |
| 130 | |
| 131 | // Timestamps are 4 bytes followed by 2 bytes. |
| 132 | const uint8_t kQuicNumTimestampsLength = 1; |
| 133 | const uint8_t kQuicFirstTimestampLength = 4; |
| 134 | const uint8_t kQuicTimestampLength = 2; |
| 135 | // Gaps between packet numbers are 1 byte. |
| 136 | const uint8_t kQuicTimestampPacketNumberGapLength = 1; |
| 137 | |
| 138 | // Maximum length of encoded error strings. |
| 139 | const int kMaxErrorStringLength = 256; |
| 140 | |
| 141 | const uint8_t kConnectionIdLengthAdjustment = 3; |
| 142 | const uint8_t kDestinationConnectionIdLengthMask = 0xF0; |
| 143 | const uint8_t kSourceConnectionIdLengthMask = 0x0F; |
| 144 | |
| 145 | // Returns the absolute value of the difference between |a| and |b|. |
| 146 | uint64_t Delta(uint64_t a, uint64_t b) { |
| 147 | // Since these are unsigned numbers, we can't just return abs(a - b) |
| 148 | if (a < b) { |
| 149 | return b - a; |
| 150 | } |
| 151 | return a - b; |
| 152 | } |
| 153 | |
| 154 | uint64_t ClosestTo(uint64_t target, uint64_t a, uint64_t b) { |
| 155 | return (Delta(target, a) < Delta(target, b)) ? a : b; |
| 156 | } |
| 157 | |
| 158 | QuicPacketNumberLength ReadSequenceNumberLength(uint8_t flags) { |
| 159 | switch (flags & PACKET_FLAGS_8BYTE_PACKET) { |
| 160 | case PACKET_FLAGS_8BYTE_PACKET: |
| 161 | return PACKET_6BYTE_PACKET_NUMBER; |
| 162 | case PACKET_FLAGS_4BYTE_PACKET: |
| 163 | return PACKET_4BYTE_PACKET_NUMBER; |
| 164 | case PACKET_FLAGS_2BYTE_PACKET: |
| 165 | return PACKET_2BYTE_PACKET_NUMBER; |
| 166 | case PACKET_FLAGS_1BYTE_PACKET: |
| 167 | return PACKET_1BYTE_PACKET_NUMBER; |
| 168 | default: |
| 169 | QUIC_BUG(quic_bug_10850_1) << "Unreachable case statement."; |
| 170 | return PACKET_6BYTE_PACKET_NUMBER; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | QuicPacketNumberLength ReadAckPacketNumberLength(uint8_t flags) { |
| 175 | switch (flags & PACKET_FLAGS_8BYTE_PACKET) { |
| 176 | case PACKET_FLAGS_8BYTE_PACKET: |
| 177 | return PACKET_6BYTE_PACKET_NUMBER; |
| 178 | case PACKET_FLAGS_4BYTE_PACKET: |
| 179 | return PACKET_4BYTE_PACKET_NUMBER; |
| 180 | case PACKET_FLAGS_2BYTE_PACKET: |
| 181 | return PACKET_2BYTE_PACKET_NUMBER; |
| 182 | case PACKET_FLAGS_1BYTE_PACKET: |
| 183 | return PACKET_1BYTE_PACKET_NUMBER; |
| 184 | default: |
| 185 | QUIC_BUG(quic_bug_10850_2) << "Unreachable case statement."; |
| 186 | return PACKET_6BYTE_PACKET_NUMBER; |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | uint8_t PacketNumberLengthToOnWireValue( |
| 191 | QuicPacketNumberLength packet_number_length) { |
| 192 | return packet_number_length - 1; |
| 193 | } |
| 194 | |
| 195 | QuicPacketNumberLength GetShortHeaderPacketNumberLength(uint8_t type) { |
| 196 | QUICHE_DCHECK(!(type & FLAGS_LONG_HEADER)); |
| 197 | return static_cast<QuicPacketNumberLength>((type & 0x03) + 1); |
| 198 | } |
| 199 | |
| 200 | uint8_t LongHeaderTypeToOnWireValue(QuicLongHeaderType type, |
| 201 | const ParsedQuicVersion& version) { |
| 202 | switch (type) { |
| 203 | case INITIAL: |
| 204 | return version.UsesV2PacketTypes() ? (1 << 4) : 0; |
| 205 | case ZERO_RTT_PROTECTED: |
| 206 | return version.UsesV2PacketTypes() ? (2 << 4) : (1 << 4); |
| 207 | case HANDSHAKE: |
| 208 | return version.UsesV2PacketTypes() ? (3 << 4) : (2 << 4); |
| 209 | case RETRY: |
| 210 | return version.UsesV2PacketTypes() ? 0 : (3 << 4); |
| 211 | case VERSION_NEGOTIATION: |
| 212 | return 0xF0; // Value does not matter |
| 213 | default: |
| 214 | QUIC_BUG(quic_bug_10850_3) << "Invalid long header type: " << type; |
| 215 | return 0xFF; |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | QuicLongHeaderType GetLongHeaderType(uint8_t type, |
| 220 | const ParsedQuicVersion& version) { |
| 221 | QUICHE_DCHECK((type & FLAGS_LONG_HEADER)); |
| 222 | switch ((type & 0x30) >> 4) { |
| 223 | case 0: |
| 224 | return version.UsesV2PacketTypes() ? RETRY : INITIAL; |
| 225 | case 1: |
| 226 | return version.UsesV2PacketTypes() ? INITIAL : ZERO_RTT_PROTECTED; |
| 227 | case 2: |
| 228 | return version.UsesV2PacketTypes() ? ZERO_RTT_PROTECTED : HANDSHAKE; |
| 229 | case 3: |
| 230 | return version.UsesV2PacketTypes() ? HANDSHAKE : RETRY; |
| 231 | default: |
| 232 | QUIC_BUG(quic_bug_10850_4) << "Unreachable statement"; |
| 233 | return INVALID_PACKET_TYPE; |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | QuicPacketNumberLength GetLongHeaderPacketNumberLength(uint8_t type) { |
| 238 | return static_cast<QuicPacketNumberLength>((type & 0x03) + 1); |
| 239 | } |
| 240 | |
| 241 | // Used to get packet number space before packet gets decrypted. |
| 242 | PacketNumberSpace GetPacketNumberSpace(const QuicPacketHeader& header) { |
| 243 | switch (header.form) { |
| 244 | case GOOGLE_QUIC_PACKET: |
| 245 | QUIC_BUG(quic_bug_10850_5) |
| 246 | << "Try to get packet number space of Google QUIC packet"; |
| 247 | break; |
| 248 | case IETF_QUIC_SHORT_HEADER_PACKET: |
| 249 | return APPLICATION_DATA; |
| 250 | case IETF_QUIC_LONG_HEADER_PACKET: |
| 251 | switch (header.long_packet_type) { |
| 252 | case INITIAL: |
| 253 | return INITIAL_DATA; |
| 254 | case HANDSHAKE: |
| 255 | return HANDSHAKE_DATA; |
| 256 | case ZERO_RTT_PROTECTED: |
| 257 | return APPLICATION_DATA; |
| 258 | case VERSION_NEGOTIATION: |
| 259 | case RETRY: |
| 260 | case INVALID_PACKET_TYPE: |
| 261 | QUIC_BUG(quic_bug_10850_6) |
| 262 | << "Try to get packet number space of long header type: " |
| 263 | << QuicUtils::QuicLongHeaderTypetoString(header.long_packet_type); |
| 264 | break; |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | return NUM_PACKET_NUMBER_SPACES; |
| 269 | } |
| 270 | |
| 271 | EncryptionLevel GetEncryptionLevel(const QuicPacketHeader& header) { |
| 272 | switch (header.form) { |
| 273 | case GOOGLE_QUIC_PACKET: |
| 274 | QUIC_BUG(quic_bug_10850_7) |
| 275 | << "Cannot determine EncryptionLevel from Google QUIC header"; |
| 276 | break; |
| 277 | case IETF_QUIC_SHORT_HEADER_PACKET: |
| 278 | return ENCRYPTION_FORWARD_SECURE; |
| 279 | case IETF_QUIC_LONG_HEADER_PACKET: |
| 280 | switch (header.long_packet_type) { |
| 281 | case INITIAL: |
| 282 | return ENCRYPTION_INITIAL; |
| 283 | case HANDSHAKE: |
| 284 | return ENCRYPTION_HANDSHAKE; |
| 285 | case ZERO_RTT_PROTECTED: |
| 286 | return ENCRYPTION_ZERO_RTT; |
| 287 | case VERSION_NEGOTIATION: |
| 288 | case RETRY: |
| 289 | case INVALID_PACKET_TYPE: |
| 290 | QUIC_BUG(quic_bug_10850_8) |
| 291 | << "No encryption used with type " |
| 292 | << QuicUtils::QuicLongHeaderTypetoString(header.long_packet_type); |
| 293 | } |
| 294 | } |
| 295 | return NUM_ENCRYPTION_LEVELS; |
| 296 | } |
| 297 | |
| 298 | absl::string_view TruncateErrorString(absl::string_view error) { |
| 299 | if (error.length() <= kMaxErrorStringLength) { |
| 300 | return error; |
| 301 | } |
| 302 | return absl::string_view(error.data(), kMaxErrorStringLength); |
| 303 | } |
| 304 | |
| 305 | size_t TruncatedErrorStringSize(const absl::string_view& error) { |
| 306 | if (error.length() < kMaxErrorStringLength) { |
| 307 | return error.length(); |
| 308 | } |
| 309 | return kMaxErrorStringLength; |
| 310 | } |
| 311 | |
| 312 | uint8_t GetConnectionIdLengthValue(QuicConnectionIdLength length) { |
| 313 | if (length == 0) { |
| 314 | return 0; |
| 315 | } |
| 316 | return static_cast<uint8_t>(length - kConnectionIdLengthAdjustment); |
| 317 | } |
| 318 | |
| 319 | bool IsValidPacketNumberLength(QuicPacketNumberLength packet_number_length) { |
| 320 | size_t length = packet_number_length; |
| 321 | return length == 1 || length == 2 || length == 4 || length == 6 || |
| 322 | length == 8; |
| 323 | } |
| 324 | |
| 325 | bool IsValidFullPacketNumber(uint64_t full_packet_number, |
| 326 | ParsedQuicVersion version) { |
| 327 | return full_packet_number > 0 || version.HasIetfQuicFrames(); |
| 328 | } |
| 329 | |
| 330 | bool AppendIetfConnectionIds(bool version_flag, bool use_length_prefix, |
| 331 | QuicConnectionId destination_connection_id, |
| 332 | QuicConnectionId source_connection_id, |
| 333 | QuicDataWriter* writer) { |
| 334 | if (!version_flag) { |
| 335 | return writer->WriteConnectionId(destination_connection_id); |
| 336 | } |
| 337 | |
| 338 | if (use_length_prefix) { |
| 339 | return writer->WriteLengthPrefixedConnectionId(destination_connection_id) && |
| 340 | writer->WriteLengthPrefixedConnectionId(source_connection_id); |
| 341 | } |
| 342 | |
| 343 | // Compute connection ID length byte. |
| 344 | uint8_t dcil = GetConnectionIdLengthValue( |
| 345 | static_cast<QuicConnectionIdLength>(destination_connection_id.length())); |
| 346 | uint8_t scil = GetConnectionIdLengthValue( |
| 347 | static_cast<QuicConnectionIdLength>(source_connection_id.length())); |
| 348 | uint8_t connection_id_length = dcil << 4 | scil; |
| 349 | |
| 350 | return writer->WriteUInt8(connection_id_length) && |
| 351 | writer->WriteConnectionId(destination_connection_id) && |
| 352 | writer->WriteConnectionId(source_connection_id); |
| 353 | } |
| 354 | |
| 355 | enum class DroppedPacketReason { |
| 356 | // General errors |
| 357 | INVALID_PUBLIC_HEADER, |
| 358 | VERSION_MISMATCH, |
| 359 | // Version negotiation packet errors |
| 360 | INVALID_VERSION_NEGOTIATION_PACKET, |
| 361 | // Public reset packet errors, pre-v44 |
| 362 | INVALID_PUBLIC_RESET_PACKET, |
| 363 | // Data packet errors |
| 364 | INVALID_PACKET_NUMBER, |
| 365 | INVALID_DIVERSIFICATION_NONCE, |
| 366 | DECRYPTION_FAILURE, |
| 367 | NUM_REASONS, |
| 368 | }; |
| 369 | |
| 370 | void RecordDroppedPacketReason(DroppedPacketReason reason) { |
| 371 | QUIC_CLIENT_HISTOGRAM_ENUM("QuicDroppedPacketReason", reason, |
| 372 | DroppedPacketReason::NUM_REASONS, |
| 373 | "The reason a packet was not processed. Recorded " |
| 374 | "each time such a packet is dropped"); |
| 375 | } |
| 376 | |
| 377 | PacketHeaderFormat GetIetfPacketHeaderFormat(uint8_t type_byte) { |
| 378 | return type_byte & FLAGS_LONG_HEADER ? IETF_QUIC_LONG_HEADER_PACKET |
| 379 | : IETF_QUIC_SHORT_HEADER_PACKET; |
| 380 | } |
| 381 | |
| 382 | std::string GenerateErrorString(std::string initial_error_string, |
| 383 | QuicErrorCode quic_error_code) { |
| 384 | if (quic_error_code == QUIC_IETF_GQUIC_ERROR_MISSING) { |
| 385 | // QUIC_IETF_GQUIC_ERROR_MISSING is special -- it means not to encode |
| 386 | // the error value in the string. |
| 387 | return initial_error_string; |
| 388 | } |
| 389 | return absl::StrCat(std::to_string(static_cast<unsigned>(quic_error_code)), |
| 390 | ":", initial_error_string); |
| 391 | } |
| 392 | |
| 393 | } // namespace |
| 394 | |
| 395 | QuicFramer::QuicFramer(const ParsedQuicVersionVector& supported_versions, |
| 396 | QuicTime creation_time, Perspective perspective, |
| 397 | uint8_t expected_server_connection_id_length) |
| 398 | : visitor_(nullptr), |
| 399 | error_(QUIC_NO_ERROR), |
| 400 | last_serialized_server_connection_id_(EmptyQuicConnectionId()), |
| 401 | last_serialized_client_connection_id_(EmptyQuicConnectionId()), |
| 402 | version_(ParsedQuicVersion::Unsupported()), |
| 403 | supported_versions_(supported_versions), |
| 404 | decrypter_level_(ENCRYPTION_INITIAL), |
| 405 | alternative_decrypter_level_(NUM_ENCRYPTION_LEVELS), |
| 406 | alternative_decrypter_latch_(false), |
| 407 | perspective_(perspective), |
| 408 | validate_flags_(true), |
| 409 | process_timestamps_(false), |
| 410 | max_receive_timestamps_per_ack_(std::numeric_limits<uint32_t>::max()), |
| 411 | receive_timestamps_exponent_(0), |
| 412 | creation_time_(creation_time), |
| 413 | last_timestamp_(QuicTime::Delta::Zero()), |
| 414 | support_key_update_for_connection_(false), |
| 415 | current_key_phase_bit_(false), |
| 416 | potential_peer_key_update_attempt_count_(0), |
| 417 | first_sending_packet_number_(FirstSendingPacketNumber()), |
| 418 | data_producer_(nullptr), |
| 419 | infer_packet_header_type_from_version_(perspective == |
| 420 | Perspective::IS_CLIENT), |
| 421 | expected_server_connection_id_length_( |
| 422 | expected_server_connection_id_length), |
| 423 | expected_client_connection_id_length_(0), |
| 424 | supports_multiple_packet_number_spaces_(false), |
| 425 | last_written_packet_number_length_(0), |
| 426 | peer_ack_delay_exponent_(kDefaultAckDelayExponent), |
| 427 | local_ack_delay_exponent_(kDefaultAckDelayExponent), |
| 428 | current_received_frame_type_(0), |
| 429 | previously_received_frame_type_(0) { |
| 430 | QUICHE_DCHECK(!supported_versions.empty()); |
| 431 | version_ = supported_versions_[0]; |
| 432 | QUICHE_DCHECK(version_.IsKnown()) |
| 433 | << ParsedQuicVersionVectorToString(supported_versions_); |
| 434 | } |
| 435 | |
| 436 | QuicFramer::~QuicFramer() {} |
| 437 | |
| 438 | // static |
| 439 | size_t QuicFramer::GetMinStreamFrameSize(QuicTransportVersion version, |
| 440 | QuicStreamId stream_id, |
| 441 | QuicStreamOffset offset, |
| 442 | bool last_frame_in_packet, |
| 443 | size_t data_length) { |
| 444 | if (VersionHasIetfQuicFrames(version)) { |
| 445 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(stream_id) + |
| 446 | (last_frame_in_packet |
| 447 | ? 0 |
| 448 | : QuicDataWriter::GetVarInt62Len(data_length)) + |
| 449 | (offset != 0 ? QuicDataWriter::GetVarInt62Len(offset) : 0); |
| 450 | } |
| 451 | return kQuicFrameTypeSize + GetStreamIdSize(stream_id) + |
| 452 | GetStreamOffsetSize(offset) + |
| 453 | (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize); |
| 454 | } |
| 455 | |
| 456 | // static |
| 457 | size_t QuicFramer::GetMinCryptoFrameSize(QuicStreamOffset offset, |
| 458 | QuicPacketLength data_length) { |
| 459 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(offset) + |
| 460 | QuicDataWriter::GetVarInt62Len(data_length); |
| 461 | } |
| 462 | |
| 463 | // static |
| 464 | size_t QuicFramer::GetMessageFrameSize(QuicTransportVersion version, |
| 465 | bool last_frame_in_packet, |
| 466 | QuicByteCount length) { |
| 467 | QUIC_BUG_IF(quic_bug_12975_1, !VersionSupportsMessageFrames(version)) |
| 468 | << "Try to serialize MESSAGE frame in " << version; |
| 469 | return kQuicFrameTypeSize + |
| 470 | (last_frame_in_packet ? 0 : QuicDataWriter::GetVarInt62Len(length)) + |
| 471 | length; |
| 472 | } |
| 473 | |
| 474 | // static |
| 475 | size_t QuicFramer::GetMinAckFrameSize( |
| 476 | QuicTransportVersion version, const QuicAckFrame& ack_frame, |
| 477 | uint32_t local_ack_delay_exponent, |
| 478 | bool use_ietf_ack_with_receive_timestamp) { |
| 479 | if (VersionHasIetfQuicFrames(version)) { |
| 480 | // The minimal ack frame consists of the following fields: Largest |
| 481 | // Acknowledged, ACK Delay, 0 ACK Block Count, First ACK Block and either 0 |
| 482 | // Timestamp Range Count or ECN counts. |
| 483 | // Type byte + largest acked. |
| 484 | size_t min_size = |
| 485 | kQuicFrameTypeSize + |
| 486 | QuicDataWriter::GetVarInt62Len(LargestAcked(ack_frame).ToUint64()); |
| 487 | // Ack delay. |
| 488 | min_size += QuicDataWriter::GetVarInt62Len( |
| 489 | ack_frame.ack_delay_time.ToMicroseconds() >> local_ack_delay_exponent); |
| 490 | // 0 ack block count. |
| 491 | min_size += QuicDataWriter::GetVarInt62Len(0); |
| 492 | // First ack block. |
| 493 | min_size += QuicDataWriter::GetVarInt62Len( |
| 494 | ack_frame.packets.Empty() ? 0 |
| 495 | : ack_frame.packets.rbegin()->Length() - 1); |
| 496 | |
| 497 | if (use_ietf_ack_with_receive_timestamp) { |
| 498 | // 0 Timestamp Range Count. |
| 499 | min_size += QuicDataWriter::GetVarInt62Len(0); |
| 500 | } else if (ack_frame.ecn_counters_populated && |
| 501 | (ack_frame.ect_0_count || ack_frame.ect_1_count || |
| 502 | ack_frame.ecn_ce_count)) { |
| 503 | // ECN counts. |
| 504 | min_size += (QuicDataWriter::GetVarInt62Len(ack_frame.ect_0_count) + |
| 505 | QuicDataWriter::GetVarInt62Len(ack_frame.ect_1_count) + |
| 506 | QuicDataWriter::GetVarInt62Len(ack_frame.ecn_ce_count)); |
| 507 | } |
| 508 | return min_size; |
| 509 | } |
| 510 | return kQuicFrameTypeSize + |
| 511 | GetMinPacketNumberLength(LargestAcked(ack_frame)) + |
| 512 | kQuicDeltaTimeLargestObservedSize + kQuicNumTimestampsSize; |
| 513 | } |
| 514 | |
| 515 | // static |
| 516 | size_t QuicFramer::GetStopWaitingFrameSize( |
| 517 | QuicPacketNumberLength packet_number_length) { |
| 518 | size_t min_size = kQuicFrameTypeSize + packet_number_length; |
| 519 | return min_size; |
| 520 | } |
| 521 | |
| 522 | // static |
| 523 | size_t QuicFramer::GetRstStreamFrameSize(QuicTransportVersion version, |
| 524 | const QuicRstStreamFrame& frame) { |
| 525 | if (VersionHasIetfQuicFrames(version)) { |
| 526 | return QuicDataWriter::GetVarInt62Len(frame.stream_id) + |
| 527 | QuicDataWriter::GetVarInt62Len(frame.byte_offset) + |
| 528 | kQuicFrameTypeSize + |
| 529 | QuicDataWriter::GetVarInt62Len(frame.ietf_error_code); |
| 530 | } |
| 531 | return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize + |
| 532 | kQuicErrorCodeSize; |
| 533 | } |
| 534 | |
| 535 | // static |
| 536 | size_t QuicFramer::GetConnectionCloseFrameSize( |
| 537 | QuicTransportVersion version, const QuicConnectionCloseFrame& frame) { |
| 538 | if (!VersionHasIetfQuicFrames(version)) { |
| 539 | // Not IETF QUIC, return Google QUIC CONNECTION CLOSE frame size. |
| 540 | return kQuicFrameTypeSize + kQuicErrorCodeSize + |
| 541 | kQuicErrorDetailsLengthSize + |
| 542 | TruncatedErrorStringSize(frame.error_details); |
| 543 | } |
| 544 | |
| 545 | // Prepend the extra error information to the string and get the result's |
| 546 | // length. |
| 547 | const size_t truncated_error_string_size = TruncatedErrorStringSize( |
| 548 | GenerateErrorString(frame.error_details, frame.quic_error_code)); |
| 549 | |
| 550 | const size_t frame_size = |
| 551 | truncated_error_string_size + |
| 552 | QuicDataWriter::GetVarInt62Len(truncated_error_string_size) + |
| 553 | kQuicFrameTypeSize + |
| 554 | QuicDataWriter::GetVarInt62Len(frame.wire_error_code); |
| 555 | if (frame.close_type == IETF_QUIC_APPLICATION_CONNECTION_CLOSE) { |
| 556 | return frame_size; |
| 557 | } |
| 558 | // The Transport close frame has the transport_close_frame_type, so include |
| 559 | // its length. |
| 560 | return frame_size + |
| 561 | QuicDataWriter::GetVarInt62Len(frame.transport_close_frame_type); |
| 562 | } |
| 563 | |
| 564 | // static |
| 565 | size_t QuicFramer::GetMinGoAwayFrameSize() { |
| 566 | return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize + |
| 567 | kQuicMaxStreamIdSize; |
| 568 | } |
| 569 | |
| 570 | // static |
| 571 | size_t QuicFramer::GetWindowUpdateFrameSize( |
| 572 | QuicTransportVersion version, const QuicWindowUpdateFrame& frame) { |
| 573 | if (!VersionHasIetfQuicFrames(version)) { |
| 574 | return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize; |
| 575 | } |
| 576 | if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { |
| 577 | // Frame would be a MAX DATA frame, which has only a Maximum Data field. |
| 578 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.max_data); |
| 579 | } |
| 580 | // Frame would be MAX STREAM DATA, has Maximum Stream Data and Stream ID |
| 581 | // fields. |
| 582 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.max_data) + |
| 583 | QuicDataWriter::GetVarInt62Len(frame.stream_id); |
| 584 | } |
| 585 | |
| 586 | // static |
| 587 | size_t QuicFramer::GetMaxStreamsFrameSize(QuicTransportVersion version, |
| 588 | const QuicMaxStreamsFrame& frame) { |
| 589 | if (!VersionHasIetfQuicFrames(version)) { |
| 590 | QUIC_BUG(quic_bug_10850_9) |
| 591 | << "In version " << version |
| 592 | << ", which does not support IETF Frames, and tried to serialize " |
| 593 | "MaxStreams Frame."; |
| 594 | } |
| 595 | return kQuicFrameTypeSize + |
| 596 | QuicDataWriter::GetVarInt62Len(frame.stream_count); |
| 597 | } |
| 598 | |
| 599 | // static |
| 600 | size_t QuicFramer::GetStreamsBlockedFrameSize( |
| 601 | QuicTransportVersion version, const QuicStreamsBlockedFrame& frame) { |
| 602 | if (!VersionHasIetfQuicFrames(version)) { |
| 603 | QUIC_BUG(quic_bug_10850_10) |
| 604 | << "In version " << version |
| 605 | << ", which does not support IETF frames, and tried to serialize " |
| 606 | "StreamsBlocked Frame."; |
| 607 | } |
| 608 | |
| 609 | return kQuicFrameTypeSize + |
| 610 | QuicDataWriter::GetVarInt62Len(frame.stream_count); |
| 611 | } |
| 612 | |
| 613 | // static |
| 614 | size_t QuicFramer::GetBlockedFrameSize(QuicTransportVersion version, |
| 615 | const QuicBlockedFrame& frame) { |
| 616 | if (!VersionHasIetfQuicFrames(version)) { |
| 617 | return kQuicFrameTypeSize + kQuicMaxStreamIdSize; |
| 618 | } |
| 619 | if (frame.stream_id == QuicUtils::GetInvalidStreamId(version)) { |
| 620 | // return size of IETF QUIC Blocked frame |
| 621 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset); |
| 622 | } |
| 623 | // return size of IETF QUIC Stream Blocked frame. |
| 624 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.offset) + |
| 625 | QuicDataWriter::GetVarInt62Len(frame.stream_id); |
| 626 | } |
| 627 | |
| 628 | // static |
| 629 | size_t QuicFramer::GetStopSendingFrameSize(const QuicStopSendingFrame& frame) { |
| 630 | return kQuicFrameTypeSize + QuicDataWriter::GetVarInt62Len(frame.stream_id) + |
| 631 | QuicDataWriter::GetVarInt62Len(frame.ietf_error_code); |
| 632 | } |
| 633 | |
| 634 | // static |
| 635 | size_t QuicFramer::GetAckFrequencyFrameSize( |
| 636 | const QuicAckFrequencyFrame& frame) { |
| 637 | return QuicDataWriter::GetVarInt62Len(IETF_ACK_FREQUENCY) + |
| 638 | QuicDataWriter::GetVarInt62Len(frame.sequence_number) + |
| 639 | QuicDataWriter::GetVarInt62Len(frame.packet_tolerance) + |
| 640 | QuicDataWriter::GetVarInt62Len(frame.max_ack_delay.ToMicroseconds()) + |
| 641 | // One byte for encoding boolean |
| 642 | 1; |
| 643 | } |
| 644 | |
| 645 | // static |
| 646 | size_t QuicFramer::GetPathChallengeFrameSize( |
| 647 | const QuicPathChallengeFrame& frame) { |
| 648 | return kQuicFrameTypeSize + sizeof(frame.data_buffer); |
| 649 | } |
| 650 | |
| 651 | // static |
| 652 | size_t QuicFramer::GetPathResponseFrameSize( |
| 653 | const QuicPathResponseFrame& frame) { |
| 654 | return kQuicFrameTypeSize + sizeof(frame.data_buffer); |
| 655 | } |
| 656 | |
| 657 | // static |
| 658 | size_t QuicFramer::GetRetransmittableControlFrameSize( |
| 659 | QuicTransportVersion version, const QuicFrame& frame) { |
| 660 | switch (frame.type) { |
| 661 | case PING_FRAME: |
| 662 | // Ping has no payload. |
| 663 | return kQuicFrameTypeSize; |
| 664 | case RST_STREAM_FRAME: |
| 665 | return GetRstStreamFrameSize(version, *frame.rst_stream_frame); |
| 666 | case CONNECTION_CLOSE_FRAME: |
| 667 | return GetConnectionCloseFrameSize(version, |
| 668 | *frame.connection_close_frame); |
| 669 | case GOAWAY_FRAME: |
| 670 | return GetMinGoAwayFrameSize() + |
| 671 | TruncatedErrorStringSize(frame.goaway_frame->reason_phrase); |
| 672 | case WINDOW_UPDATE_FRAME: |
| 673 | // For IETF QUIC, this could be either a MAX DATA or MAX STREAM DATA. |
| 674 | // GetWindowUpdateFrameSize figures this out and returns the correct |
| 675 | // length. |
| 676 | return GetWindowUpdateFrameSize(version, frame.window_update_frame); |
| 677 | case BLOCKED_FRAME: |
| 678 | return GetBlockedFrameSize(version, frame.blocked_frame); |
| 679 | case NEW_CONNECTION_ID_FRAME: |
| 680 | return GetNewConnectionIdFrameSize(*frame.new_connection_id_frame); |
| 681 | case RETIRE_CONNECTION_ID_FRAME: |
| 682 | return GetRetireConnectionIdFrameSize(*frame.retire_connection_id_frame); |
| 683 | case NEW_TOKEN_FRAME: |
| 684 | return GetNewTokenFrameSize(*frame.new_token_frame); |
| 685 | case MAX_STREAMS_FRAME: |
| 686 | return GetMaxStreamsFrameSize(version, frame.max_streams_frame); |
| 687 | case STREAMS_BLOCKED_FRAME: |
| 688 | return GetStreamsBlockedFrameSize(version, frame.streams_blocked_frame); |
| 689 | case PATH_RESPONSE_FRAME: |
wub | d0152ca | 2022-04-08 08:26:44 -0700 | [diff] [blame] | 690 | return GetPathResponseFrameSize(frame.path_response_frame); |
Bence Béky | bac0405 | 2022-04-07 15:44:29 -0400 | [diff] [blame] | 691 | case PATH_CHALLENGE_FRAME: |
wub | d0152ca | 2022-04-08 08:26:44 -0700 | [diff] [blame] | 692 | return GetPathChallengeFrameSize(frame.path_challenge_frame); |
Bence Béky | bac0405 | 2022-04-07 15:44:29 -0400 | [diff] [blame] | 693 | case STOP_SENDING_FRAME: |
| 694 | return GetStopSendingFrameSize(frame.stop_sending_frame); |
| 695 | case HANDSHAKE_DONE_FRAME: |
| 696 | // HANDSHAKE_DONE has no payload. |
| 697 | return kQuicFrameTypeSize; |
| 698 | case ACK_FREQUENCY_FRAME: |
| 699 | return GetAckFrequencyFrameSize(*frame.ack_frequency_frame); |
| 700 | case STREAM_FRAME: |
| 701 | case ACK_FRAME: |
| 702 | case STOP_WAITING_FRAME: |
| 703 | case MTU_DISCOVERY_FRAME: |
| 704 | case PADDING_FRAME: |
| 705 | case MESSAGE_FRAME: |
| 706 | case CRYPTO_FRAME: |
| 707 | case NUM_FRAME_TYPES: |
| 708 | QUICHE_DCHECK(false); |
| 709 | return 0; |
| 710 | } |
| 711 | |
| 712 | // Not reachable, but some Chrome compilers can't figure that out. *sigh* |
| 713 | QUICHE_DCHECK(false); |
| 714 | return 0; |
| 715 | } |
| 716 | |
| 717 | // static |
| 718 | size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) { |
| 719 | // Sizes are 1 through 4 bytes. |
| 720 | for (int i = 1; i <= 4; ++i) { |
| 721 | stream_id >>= 8; |
| 722 | if (stream_id == 0) { |
| 723 | return i; |
| 724 | } |
| 725 | } |
| 726 | QUIC_BUG(quic_bug_10850_11) << "Failed to determine StreamIDSize."; |
| 727 | return 4; |
| 728 | } |
| 729 | |
| 730 | // static |
| 731 | size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) { |
| 732 | // 0 is a special case. |
| 733 | if (offset == 0) { |
| 734 | return 0; |
| 735 | } |
| 736 | // 2 through 8 are the remaining sizes. |
| 737 | offset >>= 8; |
| 738 | for (int i = 2; i <= 8; ++i) { |
| 739 | offset >>= 8; |
| 740 | if (offset == 0) { |
| 741 | return i; |
| 742 | } |
| 743 | } |
| 744 | QUIC_BUG(quic_bug_10850_12) << "Failed to determine StreamOffsetSize."; |
| 745 | return 8; |
| 746 | } |
| 747 | |
| 748 | // static |
| 749 | size_t QuicFramer::GetNewConnectionIdFrameSize( |
| 750 | const QuicNewConnectionIdFrame& frame) { |
| 751 | return kQuicFrameTypeSize + |
| 752 | QuicDataWriter::GetVarInt62Len(frame.sequence_number) + |
| 753 | QuicDataWriter::GetVarInt62Len(frame.retire_prior_to) + |
| 754 | kConnectionIdLengthSize + frame.connection_id.length() + |
| 755 | sizeof(frame.stateless_reset_token); |
| 756 | } |
| 757 | |
| 758 | // static |
| 759 | size_t QuicFramer::GetRetireConnectionIdFrameSize( |
| 760 | const QuicRetireConnectionIdFrame& frame) { |
| 761 | return kQuicFrameTypeSize + |
| 762 | QuicDataWriter::GetVarInt62Len(frame.sequence_number); |
| 763 | } |
| 764 | |
| 765 | // static |
| 766 | size_t QuicFramer::GetNewTokenFrameSize(const QuicNewTokenFrame& frame) { |
| 767 | return kQuicFrameTypeSize + |
| 768 | QuicDataWriter::GetVarInt62Len(frame.token.length()) + |
| 769 | frame.token.length(); |
| 770 | } |
| 771 | |
| 772 | // TODO(nharper): Change this method to take a ParsedQuicVersion. |
| 773 | bool QuicFramer::IsSupportedTransportVersion( |
| 774 | const QuicTransportVersion version) const { |
| 775 | for (const ParsedQuicVersion& supported_version : supported_versions_) { |
| 776 | if (version == supported_version.transport_version) { |
| 777 | return true; |
| 778 | } |
| 779 | } |
| 780 | return false; |
| 781 | } |
| 782 | |
| 783 | bool QuicFramer::IsSupportedVersion(const ParsedQuicVersion version) const { |
| 784 | for (const ParsedQuicVersion& supported_version : supported_versions_) { |
| 785 | if (version == supported_version) { |
| 786 | return true; |
| 787 | } |
| 788 | } |
| 789 | return false; |
| 790 | } |
| 791 | |
| 792 | size_t QuicFramer::GetSerializedFrameLength( |
| 793 | const QuicFrame& frame, size_t free_bytes, bool first_frame, |
| 794 | bool last_frame, QuicPacketNumberLength packet_number_length) { |
| 795 | // Prevent a rare crash reported in b/19458523. |
| 796 | if (frame.type == ACK_FRAME && frame.ack_frame == nullptr) { |
| 797 | QUIC_BUG(quic_bug_10850_13) |
| 798 | << "Cannot compute the length of a null ack frame. free_bytes:" |
| 799 | << free_bytes << " first_frame:" << first_frame |
| 800 | << " last_frame:" << last_frame |
| 801 | << " seq num length:" << packet_number_length; |
| 802 | set_error(QUIC_INTERNAL_ERROR); |
| 803 | visitor_->OnError(this); |
| 804 | return 0; |
| 805 | } |
| 806 | if (frame.type == PADDING_FRAME) { |
| 807 | if (frame.padding_frame.num_padding_bytes == -1) { |
| 808 | // Full padding to the end of the packet. |
| 809 | return free_bytes; |
| 810 | } else { |
| 811 | // Lite padding. |
| 812 | return free_bytes < |
| 813 | static_cast<size_t>(frame.padding_frame.num_padding_bytes) |
| 814 | ? free_bytes |
| 815 | : frame.padding_frame.num_padding_bytes; |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | size_t frame_len = |
| 820 | ComputeFrameLength(frame, last_frame, packet_number_length); |
| 821 | if (frame_len <= free_bytes) { |
| 822 | // Frame fits within packet. Note that acks may be truncated. |
| 823 | return frame_len; |
| 824 | } |
| 825 | // Only truncate the first frame in a packet, so if subsequent ones go |
| 826 | // over, stop including more frames. |
| 827 | if (!first_frame) { |
| 828 | return 0; |
| 829 | } |
| 830 | bool can_truncate = |
| 831 | frame.type == ACK_FRAME && |
| 832 | free_bytes >= |
| 833 | GetMinAckFrameSize(version_.transport_version, *frame.ack_frame, |
| 834 | local_ack_delay_exponent_, |
| 835 | UseIetfAckWithReceiveTimestamp(*frame.ack_frame)); |
| 836 | if (can_truncate) { |
| 837 | // Truncate the frame so the packet will not exceed kMaxOutgoingPacketSize. |
| 838 | // Note that we may not use every byte of the writer in this case. |
| 839 | QUIC_DLOG(INFO) << ENDPOINT |
| 840 | << "Truncating large frame, free bytes: " << free_bytes; |
| 841 | return free_bytes; |
| 842 | } |
| 843 | return 0; |
| 844 | } |
| 845 | |
| 846 | QuicFramer::AckFrameInfo::AckFrameInfo() |
| 847 | : max_block_length(0), first_block_length(0), num_ack_blocks(0) {} |
| 848 | |
| 849 | QuicFramer::AckFrameInfo::AckFrameInfo(const AckFrameInfo& other) = default; |
| 850 | |
| 851 | QuicFramer::AckFrameInfo::~AckFrameInfo() {} |
| 852 | |
| 853 | bool QuicFramer::WriteIetfLongHeaderLength(const QuicPacketHeader& header, |
| 854 | QuicDataWriter* writer, |
| 855 | size_t length_field_offset, |
| 856 | EncryptionLevel level) { |
| 857 | if (!QuicVersionHasLongHeaderLengths(transport_version()) || |
| 858 | !header.version_flag || length_field_offset == 0) { |
| 859 | return true; |
| 860 | } |
| 861 | if (writer->length() < length_field_offset || |
| 862 | writer->length() - length_field_offset < |
| 863 | kQuicDefaultLongHeaderLengthLength) { |
| 864 | set_detailed_error("Invalid length_field_offset."); |
| 865 | QUIC_BUG(quic_bug_10850_14) << "Invalid length_field_offset."; |
| 866 | return false; |
| 867 | } |
| 868 | size_t length_to_write = writer->length() - length_field_offset - |
| 869 | kQuicDefaultLongHeaderLengthLength; |
| 870 | // Add length of auth tag. |
| 871 | length_to_write = GetCiphertextSize(level, length_to_write); |
| 872 | |
| 873 | QuicDataWriter length_writer(writer->length() - length_field_offset, |
| 874 | writer->data() + length_field_offset); |
| 875 | if (!length_writer.WriteVarInt62(length_to_write, |
| 876 | kQuicDefaultLongHeaderLengthLength)) { |
| 877 | set_detailed_error("Failed to overwrite long header length."); |
| 878 | QUIC_BUG(quic_bug_10850_15) << "Failed to overwrite long header length."; |
| 879 | return false; |
| 880 | } |
| 881 | return true; |
| 882 | } |
| 883 | |
| 884 | size_t QuicFramer::BuildDataPacket(const QuicPacketHeader& header, |
| 885 | const QuicFrames& frames, char* buffer, |
| 886 | size_t packet_length, |
| 887 | EncryptionLevel level) { |
| 888 | QUIC_BUG_IF(quic_bug_12975_2, |
| 889 | header.version_flag && version().HasIetfInvariantHeader() && |
| 890 | header.long_packet_type == RETRY && !frames.empty()) |
| 891 | << "IETF RETRY packets cannot contain frames " << header; |
| 892 | QuicDataWriter writer(packet_length, buffer); |
| 893 | size_t length_field_offset = 0; |
| 894 | if (!AppendPacketHeader(header, &writer, &length_field_offset)) { |
| 895 | QUIC_BUG(quic_bug_10850_16) << "AppendPacketHeader failed"; |
| 896 | return 0; |
| 897 | } |
| 898 | |
| 899 | if (VersionHasIetfQuicFrames(transport_version())) { |
| 900 | if (AppendIetfFrames(frames, &writer) == 0) { |
| 901 | return 0; |
| 902 | } |
| 903 | if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset, |
| 904 | level)) { |
| 905 | return 0; |
| 906 | } |
| 907 | return writer.length(); |
| 908 | } |
| 909 | |
| 910 | size_t i = 0; |
| 911 | for (const QuicFrame& frame : frames) { |
| 912 | // Determine if we should write stream frame length in header. |
| 913 | const bool last_frame_in_packet = i == frames.size() - 1; |
| 914 | if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) { |
| 915 | QUIC_BUG(quic_bug_10850_17) << "AppendTypeByte failed"; |
| 916 | return 0; |
| 917 | } |
| 918 | |
| 919 | switch (frame.type) { |
| 920 | case PADDING_FRAME: |
| 921 | if (!AppendPaddingFrame(frame.padding_frame, &writer)) { |
| 922 | QUIC_BUG(quic_bug_10850_18) |
| 923 | << "AppendPaddingFrame of " |
| 924 | << frame.padding_frame.num_padding_bytes << " failed"; |
| 925 | return 0; |
| 926 | } |
| 927 | break; |
| 928 | case STREAM_FRAME: |
| 929 | if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, |
| 930 | &writer)) { |
| 931 | QUIC_BUG(quic_bug_10850_19) << "AppendStreamFrame failed"; |
| 932 | return 0; |
| 933 | } |
| 934 | break; |
| 935 | case ACK_FRAME: |
| 936 | if (!AppendAckFrameAndTypeByte(*frame.ack_frame, &writer)) { |
| 937 | QUIC_BUG(quic_bug_10850_20) |
| 938 | << "AppendAckFrameAndTypeByte failed: " << detailed_error_; |
| 939 | return 0; |
| 940 | } |
| 941 | break; |
| 942 | case STOP_WAITING_FRAME: |
| 943 | if (!AppendStopWaitingFrame(header, frame.stop_waiting_frame, |
| 944 | &writer)) { |
| 945 | QUIC_BUG(quic_bug_10850_21) << "AppendStopWaitingFrame failed"; |
| 946 | return 0; |
| 947 | } |
| 948 | break; |
| 949 | case MTU_DISCOVERY_FRAME: |
| 950 | // MTU discovery frames are serialized as ping frames. |
| 951 | ABSL_FALLTHROUGH_INTENDED; |
| 952 | case PING_FRAME: |
| 953 | // Ping has no payload. |
| 954 | break; |
| 955 | case RST_STREAM_FRAME: |
| 956 | if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) { |
| 957 | QUIC_BUG(quic_bug_10850_22) << "AppendRstStreamFrame failed"; |
| 958 | return 0; |
| 959 | } |
| 960 | break; |
| 961 | case CONNECTION_CLOSE_FRAME: |
| 962 | if (!AppendConnectionCloseFrame(*frame.connection_close_frame, |
| 963 | &writer)) { |
| 964 | QUIC_BUG(quic_bug_10850_23) << "AppendConnectionCloseFrame failed"; |
| 965 | return 0; |
| 966 | } |
| 967 | break; |
| 968 | case GOAWAY_FRAME: |
| 969 | if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) { |
| 970 | QUIC_BUG(quic_bug_10850_24) << "AppendGoAwayFrame failed"; |
| 971 | return 0; |
| 972 | } |
| 973 | break; |
| 974 | case WINDOW_UPDATE_FRAME: |
| 975 | if (!AppendWindowUpdateFrame(frame.window_update_frame, &writer)) { |
| 976 | QUIC_BUG(quic_bug_10850_25) << "AppendWindowUpdateFrame failed"; |
| 977 | return 0; |
| 978 | } |
| 979 | break; |
| 980 | case BLOCKED_FRAME: |
| 981 | if (!AppendBlockedFrame(frame.blocked_frame, &writer)) { |
| 982 | QUIC_BUG(quic_bug_10850_26) << "AppendBlockedFrame failed"; |
| 983 | return 0; |
| 984 | } |
| 985 | break; |
| 986 | case NEW_CONNECTION_ID_FRAME: |
| 987 | set_detailed_error( |
| 988 | "Attempt to append NEW_CONNECTION_ID frame and not in IETF QUIC."); |
| 989 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 990 | case RETIRE_CONNECTION_ID_FRAME: |
| 991 | set_detailed_error( |
| 992 | "Attempt to append RETIRE_CONNECTION_ID frame and not in IETF " |
| 993 | "QUIC."); |
| 994 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 995 | case NEW_TOKEN_FRAME: |
| 996 | set_detailed_error( |
| 997 | "Attempt to append NEW_TOKEN_ID frame and not in IETF QUIC."); |
| 998 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 999 | case MAX_STREAMS_FRAME: |
| 1000 | set_detailed_error( |
| 1001 | "Attempt to append MAX_STREAMS frame and not in IETF QUIC."); |
| 1002 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1003 | case STREAMS_BLOCKED_FRAME: |
| 1004 | set_detailed_error( |
| 1005 | "Attempt to append STREAMS_BLOCKED frame and not in IETF QUIC."); |
| 1006 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1007 | case PATH_RESPONSE_FRAME: |
| 1008 | set_detailed_error( |
| 1009 | "Attempt to append PATH_RESPONSE frame and not in IETF QUIC."); |
| 1010 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1011 | case PATH_CHALLENGE_FRAME: |
| 1012 | set_detailed_error( |
| 1013 | "Attempt to append PATH_CHALLENGE frame and not in IETF QUIC."); |
| 1014 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1015 | case STOP_SENDING_FRAME: |
| 1016 | set_detailed_error( |
| 1017 | "Attempt to append STOP_SENDING frame and not in IETF QUIC."); |
| 1018 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1019 | case MESSAGE_FRAME: |
| 1020 | if (!AppendMessageFrameAndTypeByte(*frame.message_frame, |
| 1021 | last_frame_in_packet, &writer)) { |
| 1022 | QUIC_BUG(quic_bug_10850_27) << "AppendMessageFrame failed"; |
| 1023 | return 0; |
| 1024 | } |
| 1025 | break; |
| 1026 | case CRYPTO_FRAME: |
| 1027 | if (!QuicVersionUsesCryptoFrames(version_.transport_version)) { |
| 1028 | set_detailed_error( |
| 1029 | "Attempt to append CRYPTO frame in version prior to 47."); |
| 1030 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 1031 | } |
| 1032 | if (!AppendCryptoFrame(*frame.crypto_frame, &writer)) { |
| 1033 | QUIC_BUG(quic_bug_10850_28) << "AppendCryptoFrame failed"; |
| 1034 | return 0; |
| 1035 | } |
| 1036 | break; |
| 1037 | case HANDSHAKE_DONE_FRAME: |
| 1038 | // HANDSHAKE_DONE has no payload. |
| 1039 | break; |
| 1040 | default: |
| 1041 | RaiseError(QUIC_INVALID_FRAME_DATA); |
| 1042 | QUIC_BUG(quic_bug_10850_29) << "QUIC_INVALID_FRAME_DATA"; |
| 1043 | return 0; |
| 1044 | } |
| 1045 | ++i; |
| 1046 | } |
| 1047 | |
| 1048 | if (!WriteIetfLongHeaderLength(header, &writer, length_field_offset, level)) { |
| 1049 | return 0; |
| 1050 | } |
| 1051 | |
| 1052 | return writer.length(); |
| 1053 | } |
| 1054 | |
| 1055 | size_t QuicFramer::AppendIetfFrames(const QuicFrames& frames, |
| 1056 | QuicDataWriter* writer) { |
| 1057 | size_t i = 0; |
| 1058 | for (const QuicFrame& frame : frames) { |
| 1059 | // Determine if we should write stream frame length in header. |
| 1060 | const bool last_frame_in_packet = i == frames.size() - 1; |
| 1061 | if (!AppendIetfFrameType(frame, last_frame_in_packet, writer)) { |
| 1062 | QUIC_BUG(quic_bug_10850_30) |
| 1063 | << "AppendIetfFrameType failed: " << detailed_error(); |
| 1064 | return 0; |
| 1065 | } |
| 1066 | |
| 1067 | switch (frame.type) { |
| 1068 | case PADDING_FRAME: |
| 1069 | if (!AppendPaddingFrame(frame.padding_frame, writer)) { |
| 1070 | QUIC_BUG(quic_bug_10850_31) << "AppendPaddingFrame of " |
| 1071 | << frame.padding_frame.num_padding_bytes |
| 1072 | << " failed: " << detailed_error(); |
| 1073 | return 0; |
| 1074 | } |
| 1075 | break; |
| 1076 | case STREAM_FRAME: |
| 1077 | if (!AppendStreamFrame(frame.stream_frame, last_frame_in_packet, |
| 1078 | writer)) { |
| 1079 | QUIC_BUG(quic_bug_10850_32) |
| 1080 | << "AppendStreamFrame " << frame.stream_frame |
| 1081 | << " failed: " << detailed_error(); |
| 1082 | return 0; |
| 1083 | } |
| 1084 | break; |
| 1085 | case ACK_FRAME: |
| 1086 | if (!AppendIetfAckFrameAndTypeByte(*frame.ack_frame, writer)) { |
| 1087 | QUIC_BUG(quic_bug_10850_33) |
| 1088 | << "AppendIetfAckFrameAndTypeByte failed: " << detailed_error(); |
| 1089 | return 0; |
| 1090 | } |
| 1091 | break; |
| 1092 | case STOP_WAITING_FRAME: |
| 1093 | set_detailed_error( |
| 1094 | "Attempt to append STOP WAITING frame in IETF QUIC."); |
| 1095 | RaiseError(QUIC_INTERNAL_ERROR); |
| 1096 | QUIC_BUG(quic_bug_10850_34) << detailed_error(); |
| 1097 | return 0; |
| 1098 | case MTU_DISCOVERY_FRAME: |
| 1099 | // MTU discovery frames are serialized as ping frames. |
| 1100 | ABSL_FALLTHROUGH_INTENDED; |
| 1101 | case PING_FRAME: |
| 1102 | // Ping has no payload. |
| 1103 | break; |
| 1104 | case RST_STREAM_FRAME: |
| 1105 | if (!AppendRstStreamFrame(*frame.rst_stream_frame, writer)) { |
| 1106 | QUIC_BUG(quic_bug_10850_35) |
| 1107 | << "AppendRstStreamFrame failed: " << detailed_error(); |
| 1108 | return 0; |
| 1109 | } |
| 1110 | break; |
| 1111 | case CONNECTION_CLOSE_FRAME: |
| 1112 | if (!AppendIetfConnectionCloseFrame(*frame.connection_close_frame, |
| 1113 | writer)) { |
| 1114 | QUIC_BUG(quic_bug_10850_36) |
| 1115 | << "AppendIetfConnectionCloseFrame failed: " << detailed_error(); |
| 1116 | return 0; |
| 1117 | } |
| 1118 | break; |
| 1119 | case GOAWAY_FRAME: |
| 1120 | set_detailed_error("Attempt to append GOAWAY frame in IETF QUIC."); |
| 1121 | RaiseError(QUIC_INTERNAL_ERROR); |
| 1122 | QUIC_BUG(quic_bug_10850_37) << detailed_error(); |
| 1123 | return 0; |
| 1124 | case WINDOW_UPDATE_FRAME: |
| 1125 | // Depending on whether there is a stream ID or not, will be either a |
| 1126 | // MAX STREAM DATA frame or a MAX DATA frame. |
| 1127 | if (frame.window_update_frame.stream_id == |
| 1128 | QuicUtils::GetInvalidStreamId(transport_version())) { |
| 1129 | if (!AppendMaxDataFrame(frame.window_update_frame, writer)) { |
| 1130 | QUIC_BUG(quic_bug_10850_38) |
| 1131 | << "AppendMaxDataFrame failed: " << detailed_error(); |
| 1132 | return 0; |
| 1133 | } |
| 1134 | } else { |
| 1135 | if (!AppendMaxStreamDataFrame(frame.window_update_frame, writer)) { |
| 1136 | QUIC_BUG(quic_bug_10850_39) |
| 1137 | << "AppendMaxStreamDataFrame failed: " << detailed_error(); |
| 1138 | return 0; |
| 1139 | } |
| 1140 | } |
| 1141 | break; |
| 1142 | case BLOCKED_FRAME: |
| 1143 | if (!AppendBlockedFrame(frame.blocked_frame, writer)) { |
| 1144 | QUIC_BUG(quic_bug_10850_40) |
| 1145 | << "AppendBlockedFrame failed: " << detailed_error(); |
| 1146 | return 0; |
| 1147 | } |
| 1148 | break; |
| 1149 | case MAX_STREAMS_FRAME: |
| 1150 | if (!AppendMaxStreamsFrame(frame.max_streams_frame, writer)) { |
| 1151 | QUIC_BUG(quic_bug_10850_41) |
| 1152 | << "AppendMaxStreamsFrame failed: " << detailed_error(); |
| 1153 | return 0; |
| 1154 | } |
| 1155 | break; |
| 1156 | case STREAMS_BLOCKED_FRAME: |
| 1157 | if (!AppendStreamsBlockedFrame(frame.streams_blocked_frame, writer)) { |
| 1158 | QUIC_BUG(quic_bug_10850_42) |
| 1159 | << "AppendStreamsBlockedFrame failed: " << detailed_error(); |
| 1160 | return 0; |
| 1161 | } |
| 1162 | break; |
| 1163 | case NEW_CONNECTION_ID_FRAME: |
| 1164 | if (!AppendNewConnectionIdFrame(*frame.new_connection_id_frame, |
| 1165 | writer)) { |
| 1166 | QUIC_BUG(quic_bug_10850_43) |
| 1167 | << "AppendNewConnectionIdFrame failed: " << detailed_error(); |
| 1168 | return 0; |
| 1169 | } |
| 1170 | break; |
| 1171 | case RETIRE_CONNECTION_ID_FRAME: |
| 1172 | if (!AppendRetireConnectionIdFrame(*frame.retire_connection_id_frame, |
| 1173 | writer)) { |
| 1174 | QUIC_BUG(quic_bug_10850_44) |
| 1175 | << "AppendRetireConnectionIdFrame failed: " << detailed_error(); |
| 1176 | return 0; |
| 1177 | } |
| 1178 | break; |
| 1179 | case NEW_TOKEN_FRAME: |
| 1180 | if (!AppendNewTokenFrame(*frame.new_token_frame, writer)) { |
| 1181 | QUIC_BUG(quic_bug_10850_45) |
| 1182 | << "AppendNewTokenFrame failed: " << detailed_error(); |
| 1183 | return 0; |
| 1184 | } |
| 1185 | break; |
| 1186 | case STOP_SENDING_FRAME: |
| 1187 | if (!AppendStopSendingFrame(frame.stop_sending_frame, writer)) { |
| 1188 | QUIC_BUG(quic_bug_10850_46) |
| 1189 | << "AppendStopSendingFrame failed: " << detailed_error(); |
| 1190 | return 0; |
| 1191 | } |
| 1192 | break; |
| 1193 | case PATH_CHALLENGE_FRAME: |
wub | d0152ca | 2022-04-08 08:26:44 -0700 | [diff] [blame] | 1194 | if (!AppendPathChallengeFrame(frame.path_challenge_frame, writer)) { |
Bence Béky | bac0405 | 2022-04-07 15:44:29 -0400 | [diff] [blame] | 1195 | QUIC_BUG(quic_bug_10850_47) |
| 1196 | << "AppendPathChallengeFrame failed: " << detailed_error(); |
| 1197 | return 0; |
| 1198 | } |
| 1199 | break; |
| 1200 | case PATH_RESPONSE_FRAME: |
wub | d0152ca | 2022-04-08 08:26:44 -0700 | [diff] [blame] | 1201 | if (!AppendPathResponseFrame(frame.path_response_frame, writer)) { |
Bence Béky | bac0405 | 2022-04-07 15:44:29 -0400 | [diff] [blame] | 1202 | QUIC_BUG(quic_bug_10850_48) |
| 1203 | << "AppendPathResponseFrame failed: " << detailed_error(); |
| 1204 | return 0; |
| 1205 | } |
| 1206 | break; |
| 1207 | case MESSAGE_FRAME: |
| 1208 | if (!AppendMessageFrameAndTypeByte(*frame.message_frame, |
| 1209 | last_frame_in_packet, writer)) { |
| 1210 | QUIC_BUG(quic_bug_10850_49) |
| 1211 | << "AppendMessageFrame failed: " << detailed_error(); |
| 1212 | return 0; |
| 1213 | } |
| 1214 | break; |
| 1215 | case CRYPTO_FRAME: |
| 1216 | if (!AppendCryptoFrame(*frame.crypto_frame, writer)) { |
| 1217 | QUIC_BUG(quic_bug_10850_50) |
| 1218 | << "AppendCryptoFrame failed: " << detailed_error(); |
| 1219 | return 0; |
| 1220 | } |
| 1221 | break; |
| 1222 | case HANDSHAKE_DONE_FRAME: |
| 1223 | // HANDSHAKE_DONE has no payload. |
| 1224 | break; |
| 1225 | case ACK_FREQUENCY_FRAME: |
| 1226 | if (!AppendAckFrequencyFrame(*frame.ack_frequency_frame, writer)) { |
| 1227 | QUIC_BUG(quic_bug_10850_51) |
| 1228 | << "AppendAckFrequencyFrame failed: " << detailed_error(); |
| 1229 | return 0; |
| 1230 | } |
| 1231 | break; |
| 1232 | default: |
| 1233 | set_detailed_error("Tried to append unknown frame type."); |
| 1234 | RaiseError(QUIC_INVALID_FRAME_DATA); |
| 1235 | QUIC_BUG(quic_bug_10850_52) |
| 1236 | << "QUIC_INVALID_FRAME_DATA: " << frame.type; |
| 1237 | return 0; |
| 1238 | } |
| 1239 | ++i; |
| 1240 | } |
| 1241 | |
| 1242 | return writer->length(); |
| 1243 | } |
| 1244 | |
| 1245 | // static |
| 1246 | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildPublicResetPacket( |
| 1247 | const QuicPublicResetPacket& packet) { |
| 1248 | CryptoHandshakeMessage reset; |
| 1249 | reset.set_tag(kPRST); |
| 1250 | reset.SetValue(kRNON, packet.nonce_proof); |
| 1251 | if (packet.client_address.host().address_family() != |
| 1252 | IpAddressFamily::IP_UNSPEC) { |
| 1253 | // packet.client_address is non-empty. |
| 1254 | QuicSocketAddressCoder address_coder(packet.client_address); |
| 1255 | std::string serialized_address = address_coder.Encode(); |
| 1256 | if (serialized_address.empty()) { |
| 1257 | return nullptr; |
| 1258 | } |
| 1259 | reset.SetStringPiece(kCADR, serialized_address); |
| 1260 | } |
| 1261 | if (!packet.endpoint_id.empty()) { |
| 1262 | reset.SetStringPiece(kEPID, packet.endpoint_id); |
| 1263 | } |
| 1264 | const QuicData& reset_serialized = reset.GetSerialized(); |
| 1265 | |
| 1266 | size_t len = kPublicFlagsSize + packet.connection_id.length() + |
| 1267 | reset_serialized.length(); |
| 1268 | std::unique_ptr<char[]> buffer(new char[len]); |
| 1269 | QuicDataWriter writer(len, buffer.get()); |
| 1270 | |
| 1271 | uint8_t flags = static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_RST | |
| 1272 | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID); |
| 1273 | // This hack makes post-v33 public reset packet look like pre-v33 packets. |
| 1274 | flags |= static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); |
| 1275 | if (!writer.WriteUInt8(flags)) { |
| 1276 | return nullptr; |
| 1277 | } |
| 1278 | |
| 1279 | if (!writer.WriteConnectionId(packet.connection_id)) { |
| 1280 | return nullptr; |
| 1281 | } |
| 1282 | |
| 1283 | if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) { |
| 1284 | return nullptr; |
| 1285 | } |
| 1286 | |
| 1287 | return std::make_unique<QuicEncryptedPacket>(buffer.release(), len, true); |
| 1288 | } |
| 1289 | |
| 1290 | // static |
| 1291 | size_t QuicFramer::GetMinStatelessResetPacketLength() { |
| 1292 | // 5 bytes (40 bits) = 2 Fixed Bits (01) + 38 Unpredictable bits |
| 1293 | return 5 + kStatelessResetTokenLength; |
| 1294 | } |
| 1295 | |
| 1296 | // static |
| 1297 | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildIetfStatelessResetPacket( |
| 1298 | QuicConnectionId /*connection_id*/, size_t received_packet_length, |
| 1299 | StatelessResetToken stateless_reset_token) { |
| 1300 | QUIC_DVLOG(1) << "Building IETF stateless reset packet."; |
| 1301 | if (received_packet_length <= GetMinStatelessResetPacketLength()) { |
| 1302 | QUICHE_DLOG(ERROR) |
| 1303 | << "Tried to build stateless reset packet with received packet " |
| 1304 | "length " |
| 1305 | << received_packet_length; |
| 1306 | return nullptr; |
| 1307 | } |
| 1308 | // To ensure stateless reset is indistinguishable from a valid packet, |
| 1309 | // include the max connection ID length. |
| 1310 | size_t len = std::min(received_packet_length - 1, |
| 1311 | GetMinStatelessResetPacketLength() + 1 + |
| 1312 | kQuicMaxConnectionIdWithLengthPrefixLength); |
| 1313 | std::unique_ptr<char[]> buffer(new char[len]); |
| 1314 | QuicDataWriter writer(len, buffer.get()); |
| 1315 | // Append random bytes. This randomness only exists to prevent middleboxes |
| 1316 | // from comparing the entire packet to a known value. Therefore it has no |
| 1317 | // cryptographic use, and does not need a secure cryptographic pseudo-random |
| 1318 | // number generator. It's therefore safe to use WriteInsecureRandomBytes. |
| 1319 | if (!writer.WriteInsecureRandomBytes(QuicRandom::GetInstance(), |
| 1320 | len - kStatelessResetTokenLength)) { |
| 1321 | QUIC_BUG(362045737_2) << "Failed to append random bytes of length: " |
| 1322 | << len - kStatelessResetTokenLength; |
| 1323 | return nullptr; |
| 1324 | } |
| 1325 | // Change first 2 fixed bits to 01. |
| 1326 | buffer[0] &= ~FLAGS_LONG_HEADER; |
| 1327 | buffer[0] |= FLAGS_FIXED_BIT; |
| 1328 | |
| 1329 | // Append stateless reset token. |
| 1330 | if (!writer.WriteBytes(&stateless_reset_token, |
| 1331 | sizeof(stateless_reset_token))) { |
| 1332 | QUIC_BUG(362045737_3) << "Failed to write stateless reset token"; |
| 1333 | return nullptr; |
| 1334 | } |
| 1335 | return std::make_unique<QuicEncryptedPacket>(buffer.release(), len, |
| 1336 | /*owns_buffer=*/true); |
| 1337 | } |
| 1338 | |
| 1339 | // static |
| 1340 | std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildVersionNegotiationPacket( |
| 1341 | QuicConnectionId server_connection_id, |
| 1342 | QuicConnectionId client_connection_id, bool ietf_quic, |
| 1343 | bool use_length_prefix, const ParsedQuicVersionVector& versions) { |
| 1344 | QUIC_CODE_COUNT(quic_build_version_negotiation); |
| 1345 | if (use_length_prefix) { |
| 1346 | QUICHE_DCHECK(ietf_quic); |
| 1347 | QUIC_CODE_COUNT(quic_build_version_negotiation_ietf); |
| 1348 | } else if (ietf_quic) { |
| 1349 | QUIC_CODE_COUNT(quic_build_version_negotiation_old_ietf); |
| 1350 | } else { |
| 1351 | QUIC_CODE_COUNT(quic_build_version_negotiation_old_gquic); |
| 1352 | } |
| 1353 | ParsedQuicVersionVector wire_versions = versions; |
| 1354 | // Add a version reserved for negotiation as suggested by the |
| 1355 | // "Using Reserved Versions" section of draft-ietf-quic-transport. |
| 1356 | if (wire_versions.empty()) { |
| 1357 | // Ensure that version negotiation packets we send have at least two |
| 1358 | // versions. This guarantees that, under all circumstances, all QUIC |
| 1359 | // packets we send are at least 14 bytes long. |
| 1360 | wire_versions = {QuicVersionReservedForNegotiation(), |
| 1361 | QuicVersionReservedForNegotiation()}; |
| 1362 | } else { |
| 1363 | // This is not uniformely distributed but is acceptable since no security |
| 1364 | // depends on this randomness. |
| 1365 | size_t version_index = 0; |
| 1366 | const bool disable_randomness = |
| 1367 | GetQuicFlag(FLAGS_quic_disable_version_negotiation_grease_randomness); |
| 1368 | if (!disable_randomness) { |
| 1369 | version_index = |
| 1370 | QuicRandom::GetInstance()->RandUint64() % (wire_versions.size() + 1); |
| 1371 | } |
| 1372 | wire_versions.insert(wire_versions.begin() + version_index, |
| 1373 | QuicVersionReservedForNegotiation()); |
| 1374 | } |
| 1375 | if (ietf_quic) { |
| 1376 | return BuildIetfVersionNegotiationPacket( |
| 1377 | use_length_prefix, server_connection_id, client_connection_id, |
| 1378 | wire_versions); |
| 1379 | } |
| 1380 | |
| 1381 | // The GQUIC encoding does not support encoding client connection IDs. |
| 1382 | QUICHE_DCHECK(client_connection_id.IsEmpty()); |
| 1383 | // The GQUIC encoding does not support length-prefixed connection IDs. |
| 1384 | QUICHE_DCHECK(!use_length_prefix); |
| 1385 | |
| 1386 | QUICHE_DCHECK(!wire_versions.empty()); |
| 1387 | size_t len = kPublicFlagsSize + server_connection_id.length() + |
| 1388 | wire_versions.size() * kQuicVersionSize; |
| 1389 | std::unique_ptr<char[]> buffer(new char[len]); |
| 1390 | QuicDataWriter writer(len, buffer.get()); |
| 1391 | |
| 1392 | uint8_t flags = static_cast<uint8_t>( |
| 1393 | PACKET_PUBLIC_FLAGS_VERSION | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID | |
| 1394 | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); |
| 1395 | if (!writer.WriteUInt8(flags)) { |
| 1396 | return nullptr; |
| 1397 | } |
| 1398 | |
| 1399 | if (!writer.WriteConnectionId(server_connection_id)) { |
| 1400 | return nullptr; |
| 1401 | } |
| 1402 | |
| 1403 | for (const ParsedQuicVersion& version : wire_versions) { |
| 1404 | if (!writer.WriteUInt32(CreateQuicVersionLabel(version))) { |
| 1405 | return nullptr; |
| 1406 | } |
| 1407 | } |
| 1408 | |
| 1409 | return std::make_unique<QuicEncryptedPacket>(buffer.release(), len, true); |
| 1410 | } |
| 1411 | |
| 1412 | // static |
| 1413 | std::unique_ptr<QuicEncryptedPacket> |
| 1414 | QuicFramer::BuildIetfVersionNegotiationPacket( |
| 1415 | bool use_length_prefix, QuicConnectionId server_connection_id, |
| 1416 | QuicConnectionId client_connection_id, |
| 1417 | const ParsedQuicVersionVector& versions) { |
| 1418 | QUIC_DVLOG(1) << "Building IETF version negotiation packet with" |
| 1419 | << (use_length_prefix ? "" : "out") |
| 1420 | << " length prefix, server_connection_id " |
| 1421 | << server_connection_id << " client_connection_id " |
| 1422 | << client_connection_id << " versions " |
| 1423 | << ParsedQuicVersionVectorToString(versions); |
| 1424 | QUICHE_DCHECK(!versions.empty()); |
| 1425 | size_t len = kPacketHeaderTypeSize + kConnectionIdLengthSize + |
| 1426 | client_connection_id.length() + server_connection_id.length() + |
| 1427 | (versions.size() + 1) * kQuicVersionSize; |
| 1428 | if (use_length_prefix) { |
| 1429 | // When using length-prefixed connection IDs, packets carry two lengths |
| 1430 | // instead of one. |
| 1431 | len += kConnectionIdLengthSize; |
| 1432 | } |
| 1433 | std::unique_ptr<char[]> buffer(new char[len]); |
| 1434 | QuicDataWriter writer(len, buffer.get()); |
| 1435 | |
| 1436 | // TODO(fayang): Randomly select a value for the type. |
| 1437 | uint8_t type = static_cast<uint8_t>(FLAGS_LONG_HEADER | FLAGS_FIXED_BIT); |
| 1438 | if (!writer.WriteUInt8(type)) { |
| 1439 | return nullptr; |
| 1440 | } |
| 1441 | |
| 1442 | if (!writer.WriteUInt32(0)) { |
| 1443 | return nullptr; |
| 1444 | } |
| 1445 | |
| 1446 | if (!AppendIetfConnectionIds(true, use_length_prefix, client_connection_id, |
| 1447 | server_connection_id, &writer)) { |
| 1448 | return nullptr; |
| 1449 | } |
| 1450 | |
| 1451 | for (const ParsedQuicVersion& version : versions) { |
| 1452 | if (!writer.WriteUInt32(CreateQuicVersionLabel(version))) { |
| 1453 | return nullptr; |
| 1454 | } |
| 1455 | } |
| 1456 | |
| 1457 | return std::make_unique<QuicEncryptedPacket>(buffer.release(), len, true); |
| 1458 | } |
| 1459 | |
| 1460 | bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) { |
| 1461 | QUICHE_DCHECK(!is_processing_packet_) << ENDPOINT << "Nested ProcessPacket"; |
| 1462 | is_processing_packet_ = true; |
| 1463 | bool result = ProcessPacketInternal(packet); |
| 1464 | is_processing_packet_ = false; |
| 1465 | return result; |
| 1466 | } |
| 1467 | |
| 1468 | bool QuicFramer::ProcessPacketInternal(const QuicEncryptedPacket& packet) { |
| 1469 | QuicDataReader reader(packet.data(), packet.length()); |
| 1470 | |
| 1471 | bool packet_has_ietf_packet_header = false; |
| 1472 | if (infer_packet_header_type_from_version_) { |
| 1473 | packet_has_ietf_packet_header = version_.HasIetfInvariantHeader(); |
| 1474 | } else if (!reader.IsDoneReading()) { |
| 1475 | uint8_t type = reader.PeekByte(); |
| 1476 | packet_has_ietf_packet_header = QuicUtils::IsIetfPacketHeader(type); |
| 1477 | } |
| 1478 | if (packet_has_ietf_packet_header) { |
| 1479 | QUIC_DVLOG(1) << ENDPOINT << "Processing IETF QUIC packet."; |
| 1480 | } |
| 1481 | |
| 1482 | visitor_->OnPacket(); |
| 1483 | |
| 1484 | QuicPacketHeader header; |
| 1485 | if (!ProcessPublicHeader(&reader, packet_has_ietf_packet_header, &header)) { |
| 1486 | QUICHE_DCHECK_NE("", detailed_error_); |
| 1487 | QUIC_DVLOG(1) << ENDPOINT << "Unable to process public header. Error: " |
| 1488 | << detailed_error_; |
| 1489 | QUICHE_DCHECK_NE("", detailed_error_); |
| 1490 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_HEADER); |
| 1491 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1492 | } |
| 1493 | |
| 1494 | if (!visitor_->OnUnauthenticatedPublicHeader(header)) { |
| 1495 | // The visitor suppresses further processing of the packet. |
| 1496 | return true; |
| 1497 | } |
| 1498 | |
| 1499 | if (IsVersionNegotiation(header, packet_has_ietf_packet_header)) { |
| 1500 | if (perspective_ == Perspective::IS_CLIENT) { |
| 1501 | QUIC_DVLOG(1) << "Client received version negotiation packet"; |
| 1502 | return ProcessVersionNegotiationPacket(&reader, header); |
| 1503 | } else { |
| 1504 | QUIC_DLOG(ERROR) << "Server received version negotiation packet"; |
| 1505 | set_detailed_error("Server received version negotiation packet."); |
| 1506 | return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); |
| 1507 | } |
| 1508 | } |
| 1509 | |
| 1510 | if (header.version_flag && header.version != version_) { |
| 1511 | if (perspective_ == Perspective::IS_SERVER) { |
| 1512 | if (!visitor_->OnProtocolVersionMismatch(header.version)) { |
| 1513 | RecordDroppedPacketReason(DroppedPacketReason::VERSION_MISMATCH); |
| 1514 | return true; |
| 1515 | } |
| 1516 | } else { |
| 1517 | // A client received a packet of a different version but that packet is |
| 1518 | // not a version negotiation packet. It is therefore invalid and dropped. |
| 1519 | QUIC_DLOG(ERROR) << "Client received unexpected version " |
| 1520 | << ParsedQuicVersionToString(header.version) |
| 1521 | << " instead of " << ParsedQuicVersionToString(version_); |
| 1522 | set_detailed_error("Client received unexpected version."); |
| 1523 | return RaiseError(QUIC_PACKET_WRONG_VERSION); |
| 1524 | } |
| 1525 | } |
| 1526 | |
| 1527 | bool rv; |
| 1528 | if (header.long_packet_type == RETRY) { |
| 1529 | rv = ProcessRetryPacket(&reader, header); |
| 1530 | } else if (header.reset_flag) { |
| 1531 | rv = ProcessPublicResetPacket(&reader, header); |
| 1532 | } else if (packet.length() <= kMaxIncomingPacketSize) { |
| 1533 | // The optimized decryption algorithm implementations run faster when |
| 1534 | // operating on aligned memory. |
| 1535 | ABSL_CACHELINE_ALIGNED char buffer[kMaxIncomingPacketSize]; |
| 1536 | if (packet_has_ietf_packet_header) { |
| 1537 | rv = ProcessIetfDataPacket(&reader, &header, packet, buffer, |
| 1538 | ABSL_ARRAYSIZE(buffer)); |
| 1539 | } else { |
| 1540 | rv = ProcessDataPacket(&reader, &header, packet, buffer, |
| 1541 | ABSL_ARRAYSIZE(buffer)); |
| 1542 | } |
| 1543 | } else { |
| 1544 | std::unique_ptr<char[]> large_buffer(new char[packet.length()]); |
| 1545 | if (packet_has_ietf_packet_header) { |
| 1546 | rv = ProcessIetfDataPacket(&reader, &header, packet, large_buffer.get(), |
| 1547 | packet.length()); |
| 1548 | } else { |
| 1549 | rv = ProcessDataPacket(&reader, &header, packet, large_buffer.get(), |
| 1550 | packet.length()); |
| 1551 | } |
| 1552 | QUIC_BUG_IF(quic_bug_10850_53, rv) |
| 1553 | << "QUIC should never successfully process packets larger" |
| 1554 | << "than kMaxIncomingPacketSize. packet size:" << packet.length(); |
| 1555 | } |
| 1556 | return rv; |
| 1557 | } |
| 1558 | |
| 1559 | bool QuicFramer::ProcessVersionNegotiationPacket( |
| 1560 | QuicDataReader* reader, const QuicPacketHeader& header) { |
| 1561 | QUICHE_DCHECK_EQ(Perspective::IS_CLIENT, perspective_); |
| 1562 | |
| 1563 | QuicVersionNegotiationPacket packet( |
| 1564 | GetServerConnectionIdAsRecipient(header, perspective_)); |
| 1565 | // Try reading at least once to raise error if the packet is invalid. |
| 1566 | do { |
| 1567 | QuicVersionLabel version_label; |
| 1568 | if (!ProcessVersionLabel(reader, &version_label)) { |
| 1569 | set_detailed_error("Unable to read supported version in negotiation."); |
| 1570 | RecordDroppedPacketReason( |
| 1571 | DroppedPacketReason::INVALID_VERSION_NEGOTIATION_PACKET); |
| 1572 | return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); |
| 1573 | } |
| 1574 | ParsedQuicVersion parsed_version = ParseQuicVersionLabel(version_label); |
| 1575 | if (parsed_version != UnsupportedQuicVersion()) { |
| 1576 | packet.versions.push_back(parsed_version); |
| 1577 | } |
| 1578 | } while (!reader->IsDoneReading()); |
| 1579 | |
| 1580 | QUIC_DLOG(INFO) << ENDPOINT << "parsed version negotiation: " |
| 1581 | << ParsedQuicVersionVectorToString(packet.versions); |
| 1582 | |
| 1583 | visitor_->OnVersionNegotiationPacket(packet); |
| 1584 | return true; |
| 1585 | } |
| 1586 | |
| 1587 | bool QuicFramer::ProcessRetryPacket(QuicDataReader* reader, |
| 1588 | const QuicPacketHeader& header) { |
| 1589 | QUICHE_DCHECK_EQ(Perspective::IS_CLIENT, perspective_); |
| 1590 | if (drop_incoming_retry_packets_) { |
| 1591 | QUIC_DLOG(INFO) << "Ignoring received RETRY packet"; |
| 1592 | return true; |
| 1593 | } |
| 1594 | |
| 1595 | if (version_.UsesTls()) { |
| 1596 | QUICHE_DCHECK(version_.HasLengthPrefixedConnectionIds()) << version_; |
| 1597 | const size_t bytes_remaining = reader->BytesRemaining(); |
| 1598 | if (bytes_remaining <= kRetryIntegrityTagLength) { |
| 1599 | set_detailed_error("Retry packet too short to parse integrity tag."); |
| 1600 | return false; |
| 1601 | } |
| 1602 | const size_t retry_token_length = |
| 1603 | bytes_remaining - kRetryIntegrityTagLength; |
| 1604 | QUICHE_DCHECK_GT(retry_token_length, 0u); |
| 1605 | absl::string_view retry_token; |
| 1606 | if (!reader->ReadStringPiece(&retry_token, retry_token_length)) { |
| 1607 | set_detailed_error("Failed to read retry token."); |
| 1608 | return false; |
| 1609 | } |
| 1610 | absl::string_view retry_without_tag = reader->PreviouslyReadPayload(); |
| 1611 | absl::string_view integrity_tag = reader->ReadRemainingPayload(); |
| 1612 | QUICHE_DCHECK_EQ(integrity_tag.length(), kRetryIntegrityTagLength); |
| 1613 | visitor_->OnRetryPacket(EmptyQuicConnectionId(), |
| 1614 | header.source_connection_id, retry_token, |
| 1615 | integrity_tag, retry_without_tag); |
| 1616 | return true; |
| 1617 | } |
| 1618 | |
| 1619 | QuicConnectionId original_destination_connection_id; |
| 1620 | if (version_.HasLengthPrefixedConnectionIds()) { |
| 1621 | // Parse Original Destination Connection ID. |
| 1622 | if (!reader->ReadLengthPrefixedConnectionId( |
| 1623 | &original_destination_connection_id)) { |
| 1624 | set_detailed_error("Unable to read Original Destination ConnectionId."); |
| 1625 | return false; |
| 1626 | } |
| 1627 | } else { |
| 1628 | // Parse Original Destination Connection ID Length. |
| 1629 | uint8_t odcil = header.type_byte & 0xf; |
| 1630 | if (odcil != 0) { |
| 1631 | odcil += kConnectionIdLengthAdjustment; |
| 1632 | } |
| 1633 | |
| 1634 | // Parse Original Destination Connection ID. |
| 1635 | if (!reader->ReadConnectionId(&original_destination_connection_id, odcil)) { |
| 1636 | set_detailed_error("Unable to read Original Destination ConnectionId."); |
| 1637 | return false; |
| 1638 | } |
| 1639 | } |
| 1640 | |
| 1641 | if (!QuicUtils::IsConnectionIdValidForVersion( |
| 1642 | original_destination_connection_id, transport_version())) { |
| 1643 | set_detailed_error( |
| 1644 | "Received Original Destination ConnectionId with invalid length."); |
| 1645 | return false; |
| 1646 | } |
| 1647 | |
| 1648 | absl::string_view retry_token = reader->ReadRemainingPayload(); |
| 1649 | visitor_->OnRetryPacket(original_destination_connection_id, |
| 1650 | header.source_connection_id, retry_token, |
| 1651 | /*retry_integrity_tag=*/absl::string_view(), |
| 1652 | /*retry_without_tag=*/absl::string_view()); |
| 1653 | return true; |
| 1654 | } |
| 1655 | |
| 1656 | // Seeks the current packet to check for a coalesced packet at the end. |
| 1657 | // If the IETF length field only spans part of the outer packet, |
| 1658 | // then there is a coalesced packet after this one. |
| 1659 | void QuicFramer::MaybeProcessCoalescedPacket( |
| 1660 | const QuicDataReader& encrypted_reader, uint64_t remaining_bytes_length, |
| 1661 | const QuicPacketHeader& header) { |
| 1662 | if (header.remaining_packet_length >= remaining_bytes_length) { |
| 1663 | // There is no coalesced packet. |
| 1664 | return; |
| 1665 | } |
| 1666 | |
| 1667 | absl::string_view remaining_data = encrypted_reader.PeekRemainingPayload(); |
| 1668 | QUICHE_DCHECK_EQ(remaining_data.length(), remaining_bytes_length); |
| 1669 | |
| 1670 | const char* coalesced_data = |
| 1671 | remaining_data.data() + header.remaining_packet_length; |
| 1672 | uint64_t coalesced_data_length = |
| 1673 | remaining_bytes_length - header.remaining_packet_length; |
| 1674 | QuicDataReader coalesced_reader(coalesced_data, coalesced_data_length); |
| 1675 | |
| 1676 | QuicPacketHeader coalesced_header; |
| 1677 | if (!ProcessIetfPacketHeader(&coalesced_reader, &coalesced_header)) { |
| 1678 | // Some implementations pad their INITIAL packets by sending random invalid |
| 1679 | // data after the INITIAL, and that is allowed by the specification. If we |
| 1680 | // fail to parse a subsequent coalesced packet, simply ignore it. |
| 1681 | QUIC_DLOG(INFO) << ENDPOINT |
| 1682 | << "Failed to parse received coalesced header of length " |
| 1683 | << coalesced_data_length |
| 1684 | << " with error: " << detailed_error_ << ": " |
| 1685 | << absl::BytesToHexString(absl::string_view( |
| 1686 | coalesced_data, coalesced_data_length)) |
| 1687 | << " previous header was " << header; |
| 1688 | return; |
| 1689 | } |
| 1690 | |
| 1691 | if (coalesced_header.destination_connection_id != |
| 1692 | header.destination_connection_id) { |
| 1693 | // Drop coalesced packets with mismatched connection IDs. |
| 1694 | QUIC_DLOG(INFO) << ENDPOINT << "Received mismatched coalesced header " |
| 1695 | << coalesced_header << " previous header was " << header; |
| 1696 | QUIC_CODE_COUNT( |
| 1697 | quic_received_coalesced_packets_with_mismatched_connection_id); |
| 1698 | return; |
| 1699 | } |
| 1700 | |
| 1701 | QuicEncryptedPacket coalesced_packet(coalesced_data, coalesced_data_length, |
| 1702 | /*owns_buffer=*/false); |
| 1703 | visitor_->OnCoalescedPacket(coalesced_packet); |
| 1704 | } |
| 1705 | |
| 1706 | bool QuicFramer::MaybeProcessIetfLength(QuicDataReader* encrypted_reader, |
| 1707 | QuicPacketHeader* header) { |
| 1708 | if (!QuicVersionHasLongHeaderLengths(header->version.transport_version) || |
| 1709 | header->form != IETF_QUIC_LONG_HEADER_PACKET || |
| 1710 | (header->long_packet_type != INITIAL && |
| 1711 | header->long_packet_type != HANDSHAKE && |
| 1712 | header->long_packet_type != ZERO_RTT_PROTECTED)) { |
| 1713 | return true; |
| 1714 | } |
| 1715 | header->length_length = encrypted_reader->PeekVarInt62Length(); |
| 1716 | if (!encrypted_reader->ReadVarInt62(&header->remaining_packet_length)) { |
| 1717 | set_detailed_error("Unable to read long header payload length."); |
| 1718 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1719 | } |
| 1720 | uint64_t remaining_bytes_length = encrypted_reader->BytesRemaining(); |
| 1721 | if (header->remaining_packet_length > remaining_bytes_length) { |
| 1722 | set_detailed_error("Long header payload length longer than packet."); |
| 1723 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1724 | } |
| 1725 | |
| 1726 | MaybeProcessCoalescedPacket(*encrypted_reader, remaining_bytes_length, |
| 1727 | *header); |
| 1728 | |
| 1729 | if (!encrypted_reader->TruncateRemaining(header->remaining_packet_length)) { |
| 1730 | set_detailed_error("Length TruncateRemaining failed."); |
| 1731 | QUIC_BUG(quic_bug_10850_54) << "Length TruncateRemaining failed."; |
| 1732 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1733 | } |
| 1734 | return true; |
| 1735 | } |
| 1736 | |
| 1737 | bool QuicFramer::ProcessIetfDataPacket(QuicDataReader* encrypted_reader, |
| 1738 | QuicPacketHeader* header, |
| 1739 | const QuicEncryptedPacket& packet, |
| 1740 | char* decrypted_buffer, |
| 1741 | size_t buffer_length) { |
| 1742 | QUICHE_DCHECK_NE(GOOGLE_QUIC_PACKET, header->form); |
| 1743 | QUICHE_DCHECK(!header->has_possible_stateless_reset_token); |
| 1744 | header->length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; |
| 1745 | header->remaining_packet_length = 0; |
| 1746 | if (header->form == IETF_QUIC_SHORT_HEADER_PACKET && |
| 1747 | perspective_ == Perspective::IS_CLIENT) { |
| 1748 | // Peek possible stateless reset token. Will only be used on decryption |
| 1749 | // failure. |
| 1750 | absl::string_view remaining = encrypted_reader->PeekRemainingPayload(); |
| 1751 | if (remaining.length() >= sizeof(header->possible_stateless_reset_token)) { |
| 1752 | header->has_possible_stateless_reset_token = true; |
| 1753 | memcpy(&header->possible_stateless_reset_token, |
| 1754 | &remaining.data()[remaining.length() - |
| 1755 | sizeof(header->possible_stateless_reset_token)], |
| 1756 | sizeof(header->possible_stateless_reset_token)); |
| 1757 | } |
| 1758 | } |
| 1759 | |
| 1760 | if (!MaybeProcessIetfLength(encrypted_reader, header)) { |
| 1761 | return false; |
| 1762 | } |
| 1763 | |
| 1764 | absl::string_view associated_data; |
| 1765 | std::vector<char> ad_storage; |
| 1766 | QuicPacketNumber base_packet_number; |
| 1767 | if (header->form == IETF_QUIC_SHORT_HEADER_PACKET || |
| 1768 | header->long_packet_type != VERSION_NEGOTIATION) { |
| 1769 | QUICHE_DCHECK(header->form == IETF_QUIC_SHORT_HEADER_PACKET || |
| 1770 | header->long_packet_type == INITIAL || |
| 1771 | header->long_packet_type == HANDSHAKE || |
| 1772 | header->long_packet_type == ZERO_RTT_PROTECTED); |
| 1773 | // Process packet number. |
| 1774 | if (supports_multiple_packet_number_spaces_) { |
| 1775 | PacketNumberSpace pn_space = GetPacketNumberSpace(*header); |
| 1776 | if (pn_space == NUM_PACKET_NUMBER_SPACES) { |
| 1777 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1778 | } |
| 1779 | base_packet_number = largest_decrypted_packet_numbers_[pn_space]; |
| 1780 | } else { |
| 1781 | base_packet_number = largest_packet_number_; |
| 1782 | } |
| 1783 | uint64_t full_packet_number; |
| 1784 | bool hp_removal_failed = false; |
| 1785 | if (version_.HasHeaderProtection()) { |
| 1786 | if (!RemoveHeaderProtection(encrypted_reader, packet, header, |
| 1787 | &full_packet_number, &ad_storage)) { |
| 1788 | hp_removal_failed = true; |
| 1789 | } |
| 1790 | associated_data = absl::string_view(ad_storage.data(), ad_storage.size()); |
| 1791 | } else if (!ProcessAndCalculatePacketNumber( |
| 1792 | encrypted_reader, header->packet_number_length, |
| 1793 | base_packet_number, &full_packet_number)) { |
| 1794 | set_detailed_error("Unable to read packet number."); |
| 1795 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); |
| 1796 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1797 | } |
| 1798 | |
| 1799 | if (hp_removal_failed || |
| 1800 | !IsValidFullPacketNumber(full_packet_number, version())) { |
| 1801 | if (IsIetfStatelessResetPacket(*header)) { |
| 1802 | // This is a stateless reset packet. |
| 1803 | QuicIetfStatelessResetPacket packet( |
| 1804 | *header, header->possible_stateless_reset_token); |
| 1805 | visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); |
| 1806 | return true; |
| 1807 | } |
| 1808 | if (hp_removal_failed) { |
| 1809 | const EncryptionLevel decryption_level = GetEncryptionLevel(*header); |
| 1810 | const bool has_decryption_key = decrypter_[decryption_level] != nullptr; |
| 1811 | visitor_->OnUndecryptablePacket( |
| 1812 | QuicEncryptedPacket(encrypted_reader->FullPayload()), |
| 1813 | decryption_level, has_decryption_key); |
| 1814 | RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); |
| 1815 | set_detailed_error(absl::StrCat( |
| 1816 | "Unable to decrypt ", EncryptionLevelToString(decryption_level), |
| 1817 | " header protection", has_decryption_key ? "" : " (missing key)", |
| 1818 | ".")); |
| 1819 | return RaiseError(QUIC_DECRYPTION_FAILURE); |
| 1820 | } |
| 1821 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); |
| 1822 | set_detailed_error("packet numbers cannot be 0."); |
| 1823 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1824 | } |
| 1825 | header->packet_number = QuicPacketNumber(full_packet_number); |
| 1826 | } |
| 1827 | |
| 1828 | // A nonce should only present in SHLO from the server to the client when |
| 1829 | // using QUIC crypto. |
| 1830 | if (header->form == IETF_QUIC_LONG_HEADER_PACKET && |
| 1831 | header->long_packet_type == ZERO_RTT_PROTECTED && |
| 1832 | perspective_ == Perspective::IS_CLIENT && |
| 1833 | version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { |
| 1834 | if (!encrypted_reader->ReadBytes( |
| 1835 | reinterpret_cast<uint8_t*>(last_nonce_.data()), |
| 1836 | last_nonce_.size())) { |
| 1837 | set_detailed_error("Unable to read nonce."); |
| 1838 | RecordDroppedPacketReason( |
| 1839 | DroppedPacketReason::INVALID_DIVERSIFICATION_NONCE); |
| 1840 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 1841 | } |
| 1842 | |
| 1843 | header->nonce = &last_nonce_; |
| 1844 | } else { |
| 1845 | header->nonce = nullptr; |
| 1846 | } |
| 1847 | |
| 1848 | if (!visitor_->OnUnauthenticatedHeader(*header)) { |
| 1849 | set_detailed_error( |
| 1850 | "Visitor asked to stop processing of unauthenticated header."); |
| 1851 | return false; |
| 1852 | } |
| 1853 | |
| 1854 | absl::string_view encrypted = encrypted_reader->ReadRemainingPayload(); |
| 1855 | if (!version_.HasHeaderProtection()) { |
| 1856 | associated_data = GetAssociatedDataFromEncryptedPacket( |
| 1857 | version_.transport_version, packet, |
| 1858 | GetIncludedDestinationConnectionIdLength(*header), |
| 1859 | GetIncludedSourceConnectionIdLength(*header), header->version_flag, |
| 1860 | header->nonce != nullptr, header->packet_number_length, |
| 1861 | header->retry_token_length_length, header->retry_token.length(), |
| 1862 | header->length_length); |
| 1863 | } |
| 1864 | |
| 1865 | size_t decrypted_length = 0; |
| 1866 | EncryptionLevel decrypted_level; |
| 1867 | if (!DecryptPayload(packet.length(), encrypted, associated_data, *header, |
| 1868 | decrypted_buffer, buffer_length, &decrypted_length, |
| 1869 | &decrypted_level)) { |
| 1870 | if (IsIetfStatelessResetPacket(*header)) { |
| 1871 | // This is a stateless reset packet. |
| 1872 | QuicIetfStatelessResetPacket packet( |
| 1873 | *header, header->possible_stateless_reset_token); |
| 1874 | visitor_->OnAuthenticatedIetfStatelessResetPacket(packet); |
| 1875 | return true; |
| 1876 | } |
| 1877 | const EncryptionLevel decryption_level = GetEncryptionLevel(*header); |
| 1878 | const bool has_decryption_key = version_.KnowsWhichDecrypterToUse() && |
| 1879 | decrypter_[decryption_level] != nullptr; |
| 1880 | visitor_->OnUndecryptablePacket( |
| 1881 | QuicEncryptedPacket(encrypted_reader->FullPayload()), decryption_level, |
| 1882 | has_decryption_key); |
| 1883 | set_detailed_error(absl::StrCat( |
| 1884 | "Unable to decrypt ", EncryptionLevelToString(decryption_level), |
| 1885 | " payload with reconstructed packet number ", |
| 1886 | header->packet_number.ToString(), " (largest decrypted was ", |
| 1887 | base_packet_number.ToString(), ")", |
| 1888 | has_decryption_key || !version_.KnowsWhichDecrypterToUse() |
| 1889 | ? "" |
| 1890 | : " (missing key)", |
| 1891 | ".")); |
| 1892 | RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); |
| 1893 | return RaiseError(QUIC_DECRYPTION_FAILURE); |
| 1894 | } |
| 1895 | QuicDataReader reader(decrypted_buffer, decrypted_length); |
| 1896 | |
| 1897 | // Update the largest packet number after we have decrypted the packet |
| 1898 | // so we are confident is not attacker controlled. |
| 1899 | if (supports_multiple_packet_number_spaces_) { |
| 1900 | largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace( |
| 1901 | decrypted_level)] |
| 1902 | .UpdateMax(header->packet_number); |
| 1903 | } else { |
| 1904 | largest_packet_number_.UpdateMax(header->packet_number); |
| 1905 | } |
| 1906 | |
| 1907 | if (!visitor_->OnPacketHeader(*header)) { |
| 1908 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); |
| 1909 | // The visitor suppresses further processing of the packet. |
| 1910 | return true; |
| 1911 | } |
| 1912 | |
| 1913 | if (packet.length() > kMaxIncomingPacketSize) { |
| 1914 | set_detailed_error("Packet too large."); |
| 1915 | return RaiseError(QUIC_PACKET_TOO_LARGE); |
| 1916 | } |
| 1917 | |
| 1918 | // Handle the payload. |
| 1919 | if (VersionHasIetfQuicFrames(version_.transport_version)) { |
| 1920 | current_received_frame_type_ = 0; |
| 1921 | previously_received_frame_type_ = 0; |
| 1922 | if (!ProcessIetfFrameData(&reader, *header, decrypted_level)) { |
| 1923 | current_received_frame_type_ = 0; |
| 1924 | previously_received_frame_type_ = 0; |
| 1925 | QUICHE_DCHECK_NE(QUIC_NO_ERROR, |
| 1926 | error_); // ProcessIetfFrameData sets the error. |
| 1927 | QUICHE_DCHECK_NE("", detailed_error_); |
| 1928 | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " |
| 1929 | << detailed_error_; |
| 1930 | return false; |
| 1931 | } |
| 1932 | current_received_frame_type_ = 0; |
| 1933 | previously_received_frame_type_ = 0; |
| 1934 | } else { |
| 1935 | if (!ProcessFrameData(&reader, *header)) { |
| 1936 | QUICHE_DCHECK_NE(QUIC_NO_ERROR, |
| 1937 | error_); // ProcessFrameData sets the error. |
| 1938 | QUICHE_DCHECK_NE("", detailed_error_); |
| 1939 | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " |
| 1940 | << detailed_error_; |
| 1941 | return false; |
| 1942 | } |
| 1943 | } |
| 1944 | |
| 1945 | visitor_->OnPacketComplete(); |
| 1946 | return true; |
| 1947 | } |
| 1948 | |
| 1949 | bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader, |
| 1950 | QuicPacketHeader* header, |
| 1951 | const QuicEncryptedPacket& packet, |
| 1952 | char* decrypted_buffer, |
| 1953 | size_t buffer_length) { |
| 1954 | if (!ProcessUnauthenticatedHeader(encrypted_reader, header)) { |
| 1955 | QUICHE_DCHECK_NE("", detailed_error_); |
| 1956 | QUIC_DVLOG(1) |
| 1957 | << ENDPOINT |
| 1958 | << "Unable to process packet header. Stopping parsing. Error: " |
| 1959 | << detailed_error_; |
| 1960 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PACKET_NUMBER); |
| 1961 | return false; |
| 1962 | } |
| 1963 | |
| 1964 | absl::string_view encrypted = encrypted_reader->ReadRemainingPayload(); |
| 1965 | absl::string_view associated_data = GetAssociatedDataFromEncryptedPacket( |
| 1966 | version_.transport_version, packet, |
| 1967 | GetIncludedDestinationConnectionIdLength(*header), |
| 1968 | GetIncludedSourceConnectionIdLength(*header), header->version_flag, |
| 1969 | header->nonce != nullptr, header->packet_number_length, |
| 1970 | header->retry_token_length_length, header->retry_token.length(), |
| 1971 | header->length_length); |
| 1972 | |
| 1973 | size_t decrypted_length = 0; |
| 1974 | EncryptionLevel decrypted_level; |
| 1975 | if (!DecryptPayload(packet.length(), encrypted, associated_data, *header, |
| 1976 | decrypted_buffer, buffer_length, &decrypted_length, |
| 1977 | &decrypted_level)) { |
| 1978 | const EncryptionLevel decryption_level = decrypter_level_; |
| 1979 | // This version uses trial decryption so we always report to our visitor |
| 1980 | // that we are not certain we have the correct decryption key. |
| 1981 | const bool has_decryption_key = false; |
| 1982 | visitor_->OnUndecryptablePacket( |
| 1983 | QuicEncryptedPacket(encrypted_reader->FullPayload()), decryption_level, |
| 1984 | has_decryption_key); |
| 1985 | RecordDroppedPacketReason(DroppedPacketReason::DECRYPTION_FAILURE); |
| 1986 | set_detailed_error(absl::StrCat("Unable to decrypt ", |
| 1987 | EncryptionLevelToString(decryption_level), |
| 1988 | " payload.")); |
| 1989 | return RaiseError(QUIC_DECRYPTION_FAILURE); |
| 1990 | } |
| 1991 | |
| 1992 | QuicDataReader reader(decrypted_buffer, decrypted_length); |
| 1993 | |
| 1994 | // Update the largest packet number after we have decrypted the packet |
| 1995 | // so we are confident is not attacker controlled. |
| 1996 | if (supports_multiple_packet_number_spaces_) { |
| 1997 | largest_decrypted_packet_numbers_[QuicUtils::GetPacketNumberSpace( |
| 1998 | decrypted_level)] |
| 1999 | .UpdateMax(header->packet_number); |
| 2000 | } else { |
| 2001 | largest_packet_number_.UpdateMax(header->packet_number); |
| 2002 | } |
| 2003 | |
| 2004 | if (!visitor_->OnPacketHeader(*header)) { |
| 2005 | // The visitor suppresses further processing of the packet. |
| 2006 | return true; |
| 2007 | } |
| 2008 | |
| 2009 | if (packet.length() > kMaxIncomingPacketSize) { |
| 2010 | set_detailed_error("Packet too large."); |
| 2011 | return RaiseError(QUIC_PACKET_TOO_LARGE); |
| 2012 | } |
| 2013 | |
| 2014 | // Handle the payload. |
| 2015 | if (!ProcessFrameData(&reader, *header)) { |
| 2016 | QUICHE_DCHECK_NE(QUIC_NO_ERROR, |
| 2017 | error_); // ProcessFrameData sets the error. |
| 2018 | QUICHE_DCHECK_NE("", detailed_error_); |
| 2019 | QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " |
| 2020 | << detailed_error_; |
| 2021 | return false; |
| 2022 | } |
| 2023 | |
| 2024 | visitor_->OnPacketComplete(); |
| 2025 | return true; |
| 2026 | } |
| 2027 | |
| 2028 | bool QuicFramer::ProcessPublicResetPacket(QuicDataReader* reader, |
| 2029 | const QuicPacketHeader& header) { |
| 2030 | QuicPublicResetPacket packet( |
| 2031 | GetServerConnectionIdAsRecipient(header, perspective_)); |
| 2032 | |
| 2033 | std::unique_ptr<CryptoHandshakeMessage> reset( |
| 2034 | CryptoFramer::ParseMessage(reader->ReadRemainingPayload())); |
| 2035 | if (!reset) { |
| 2036 | set_detailed_error("Unable to read reset message."); |
| 2037 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); |
| 2038 | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); |
| 2039 | } |
| 2040 | if (reset->tag() != kPRST) { |
| 2041 | set_detailed_error("Incorrect message tag."); |
| 2042 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); |
| 2043 | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); |
| 2044 | } |
| 2045 | |
| 2046 | if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) { |
| 2047 | set_detailed_error("Unable to read nonce proof."); |
| 2048 | RecordDroppedPacketReason(DroppedPacketReason::INVALID_PUBLIC_RESET_PACKET); |
| 2049 | return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); |
| 2050 | } |
| 2051 | // TODO(satyamshekhar): validate nonce to protect against DoS. |
| 2052 | |
| 2053 | absl::string_view address; |
| 2054 | if (reset->GetStringPiece(kCADR, &address)) { |
| 2055 | QuicSocketAddressCoder address_coder; |
| 2056 | if (address_coder.Decode(address.data(), address.length())) { |
| 2057 | packet.client_address = |
| 2058 | QuicSocketAddress(address_coder.ip(), address_coder.port()); |
| 2059 | } |
| 2060 | } |
| 2061 | |
| 2062 | absl::string_view endpoint_id; |
| 2063 | if (perspective_ == Perspective::IS_CLIENT && |
| 2064 | reset->GetStringPiece(kEPID, &endpoint_id)) { |
| 2065 | packet.endpoint_id = std::string(endpoint_id); |
| 2066 | packet.endpoint_id += '\0'; |
| 2067 | } |
| 2068 | |
| 2069 | visitor_->OnPublicResetPacket(packet); |
| 2070 | return true; |
| 2071 | } |
| 2072 | |
| 2073 | bool QuicFramer::IsIetfStatelessResetPacket( |
| 2074 | const QuicPacketHeader& header) const { |
| 2075 | QUIC_BUG_IF(quic_bug_12975_3, header.has_possible_stateless_reset_token && |
| 2076 | perspective_ != Perspective::IS_CLIENT) |
| 2077 | << "has_possible_stateless_reset_token can only be true at client side."; |
| 2078 | return header.form == IETF_QUIC_SHORT_HEADER_PACKET && |
| 2079 | header.has_possible_stateless_reset_token && |
| 2080 | visitor_->IsValidStatelessResetToken( |
| 2081 | header.possible_stateless_reset_token); |
| 2082 | } |
| 2083 | |
| 2084 | bool QuicFramer::HasEncrypterOfEncryptionLevel(EncryptionLevel level) const { |
| 2085 | return encrypter_[level] != nullptr; |
| 2086 | } |
| 2087 | |
| 2088 | bool QuicFramer::HasDecrypterOfEncryptionLevel(EncryptionLevel level) const { |
| 2089 | return decrypter_[level] != nullptr; |
| 2090 | } |
| 2091 | |
| 2092 | bool QuicFramer::HasAnEncrypterForSpace(PacketNumberSpace space) const { |
| 2093 | switch (space) { |
| 2094 | case INITIAL_DATA: |
| 2095 | return HasEncrypterOfEncryptionLevel(ENCRYPTION_INITIAL); |
| 2096 | case HANDSHAKE_DATA: |
| 2097 | return HasEncrypterOfEncryptionLevel(ENCRYPTION_HANDSHAKE); |
| 2098 | case APPLICATION_DATA: |
| 2099 | return HasEncrypterOfEncryptionLevel(ENCRYPTION_ZERO_RTT) || |
| 2100 | HasEncrypterOfEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| 2101 | case NUM_PACKET_NUMBER_SPACES: |
| 2102 | break; |
| 2103 | } |
| 2104 | QUIC_BUG(quic_bug_10850_55) |
| 2105 | << ENDPOINT |
| 2106 | << "Try to send data of space: " << PacketNumberSpaceToString(space); |
| 2107 | return false; |
| 2108 | } |
| 2109 | |
| 2110 | EncryptionLevel QuicFramer::GetEncryptionLevelToSendApplicationData() const { |
| 2111 | if (!HasAnEncrypterForSpace(APPLICATION_DATA)) { |
| 2112 | QUIC_BUG(quic_bug_12975_4) |
| 2113 | << "Tried to get encryption level to send application data with no " |
| 2114 | "encrypter available."; |
| 2115 | return NUM_ENCRYPTION_LEVELS; |
| 2116 | } |
| 2117 | if (HasEncrypterOfEncryptionLevel(ENCRYPTION_FORWARD_SECURE)) { |
| 2118 | return ENCRYPTION_FORWARD_SECURE; |
| 2119 | } |
| 2120 | QUICHE_DCHECK(HasEncrypterOfEncryptionLevel(ENCRYPTION_ZERO_RTT)); |
| 2121 | return ENCRYPTION_ZERO_RTT; |
| 2122 | } |
| 2123 | |
| 2124 | bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header, |
| 2125 | QuicDataWriter* writer, |
| 2126 | size_t* length_field_offset) { |
| 2127 | if (version().HasIetfInvariantHeader()) { |
| 2128 | return AppendIetfPacketHeader(header, writer, length_field_offset); |
| 2129 | } |
| 2130 | QUIC_DVLOG(1) << ENDPOINT << "Appending header: " << header; |
| 2131 | uint8_t public_flags = 0; |
| 2132 | if (header.reset_flag) { |
| 2133 | public_flags |= PACKET_PUBLIC_FLAGS_RST; |
| 2134 | } |
| 2135 | if (header.version_flag) { |
| 2136 | public_flags |= PACKET_PUBLIC_FLAGS_VERSION; |
| 2137 | } |
| 2138 | |
| 2139 | public_flags |= GetPacketNumberFlags(header.packet_number_length) |
| 2140 | << kPublicHeaderSequenceNumberShift; |
| 2141 | |
| 2142 | if (header.nonce != nullptr) { |
| 2143 | QUICHE_DCHECK_EQ(Perspective::IS_SERVER, perspective_); |
| 2144 | public_flags |= PACKET_PUBLIC_FLAGS_NONCE; |
| 2145 | } |
| 2146 | |
| 2147 | QuicConnectionId server_connection_id = |
| 2148 | GetServerConnectionIdAsSender(header, perspective_); |
| 2149 | QuicConnectionIdIncluded server_connection_id_included = |
| 2150 | GetServerConnectionIdIncludedAsSender(header, perspective_); |
| 2151 | QUICHE_DCHECK_EQ(CONNECTION_ID_ABSENT, |
| 2152 | GetClientConnectionIdIncludedAsSender(header, perspective_)) |
| 2153 | << ENDPOINT << ParsedQuicVersionToString(version_) |
| 2154 | << " invalid header: " << header; |
| 2155 | |
| 2156 | switch (server_connection_id_included) { |
| 2157 | case CONNECTION_ID_ABSENT: |
| 2158 | if (!writer->WriteUInt8(public_flags | |
| 2159 | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) { |
| 2160 | return false; |
| 2161 | } |
| 2162 | break; |
| 2163 | case CONNECTION_ID_PRESENT: |
| 2164 | QUIC_BUG_IF(quic_bug_12975_5, |
| 2165 | !QuicUtils::IsConnectionIdValidForVersion( |
| 2166 | server_connection_id, transport_version())) |
| 2167 | << "AppendPacketHeader: attempted to use connection ID " |
| 2168 | << server_connection_id << " which is invalid with version " |
| 2169 | << version(); |
| 2170 | |
| 2171 | public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID; |
| 2172 | if (perspective_ == Perspective::IS_CLIENT) { |
| 2173 | public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD; |
| 2174 | } |
| 2175 | if (!writer->WriteUInt8(public_flags) || |
| 2176 | !writer->WriteConnectionId(server_connection_id)) { |
| 2177 | return false; |
| 2178 | } |
| 2179 | break; |
| 2180 | } |
| 2181 | last_serialized_server_connection_id_ = server_connection_id; |
| 2182 | |
| 2183 | if (header.version_flag) { |
| 2184 | QUICHE_DCHECK_EQ(Perspective::IS_CLIENT, perspective_); |
| 2185 | QuicVersionLabel version_label = CreateQuicVersionLabel(version_); |
| 2186 | if (!writer->WriteUInt32(version_label)) { |
| 2187 | return false; |
| 2188 | } |
| 2189 | |
| 2190 | QUIC_DVLOG(1) << ENDPOINT << "label = '" |
| 2191 | << QuicVersionLabelToString(version_label) << "'"; |
| 2192 | } |
| 2193 | |
| 2194 | if (header.nonce != nullptr && |
| 2195 | !writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { |
| 2196 | return false; |
| 2197 | } |
| 2198 | |
| 2199 | if (!AppendPacketNumber(header.packet_number_length, header.packet_number, |
| 2200 | writer)) { |
| 2201 | return false; |
| 2202 | } |
| 2203 | |
| 2204 | return true; |
| 2205 | } |
| 2206 | |
| 2207 | bool QuicFramer::AppendIetfHeaderTypeByte(const QuicPacketHeader& header, |
| 2208 | QuicDataWriter* writer) { |
| 2209 | uint8_t type = 0; |
| 2210 | if (header.version_flag) { |
| 2211 | type = static_cast<uint8_t>( |
| 2212 | FLAGS_LONG_HEADER | FLAGS_FIXED_BIT | |
| 2213 | LongHeaderTypeToOnWireValue(header.long_packet_type, version_) | |
| 2214 | PacketNumberLengthToOnWireValue(header.packet_number_length)); |
| 2215 | } else { |
| 2216 | type = static_cast<uint8_t>( |
| 2217 | FLAGS_FIXED_BIT | (current_key_phase_bit_ ? FLAGS_KEY_PHASE_BIT : 0) | |
| 2218 | PacketNumberLengthToOnWireValue(header.packet_number_length)); |
| 2219 | } |
| 2220 | return writer->WriteUInt8(type); |
| 2221 | } |
| 2222 | |
| 2223 | bool QuicFramer::AppendIetfPacketHeader(const QuicPacketHeader& header, |
| 2224 | QuicDataWriter* writer, |
| 2225 | size_t* length_field_offset) { |
| 2226 | QUIC_DVLOG(1) << ENDPOINT << "Appending IETF header: " << header; |
| 2227 | QuicConnectionId server_connection_id = |
| 2228 | GetServerConnectionIdAsSender(header, perspective_); |
| 2229 | QUIC_BUG_IF(quic_bug_12975_6, !QuicUtils::IsConnectionIdValidForVersion( |
| 2230 | server_connection_id, transport_version())) |
| 2231 | << "AppendIetfPacketHeader: attempted to use connection ID " |
| 2232 | << server_connection_id << " which is invalid with version " << version(); |
| 2233 | if (!AppendIetfHeaderTypeByte(header, writer)) { |
| 2234 | return false; |
| 2235 | } |
| 2236 | |
| 2237 | if (header.version_flag) { |
| 2238 | QUICHE_DCHECK_NE(VERSION_NEGOTIATION, header.long_packet_type) |
| 2239 | << "QuicFramer::AppendIetfPacketHeader does not support sending " |
| 2240 | "version negotiation packets, use " |
| 2241 | "QuicFramer::BuildVersionNegotiationPacket instead " |
| 2242 | << header; |
| 2243 | // Append version for long header. |
| 2244 | QuicVersionLabel version_label = CreateQuicVersionLabel(version_); |
| 2245 | if (!writer->WriteUInt32(version_label)) { |
| 2246 | return false; |
| 2247 | } |
| 2248 | } |
| 2249 | |
| 2250 | // Append connection ID. |
| 2251 | if (!AppendIetfConnectionIds( |
| 2252 | header.version_flag, version_.HasLengthPrefixedConnectionIds(), |
| 2253 | header.destination_connection_id_included != CONNECTION_ID_ABSENT |
| 2254 | ? header.destination_connection_id |
| 2255 | : EmptyQuicConnectionId(), |
| 2256 | header.source_connection_id_included != CONNECTION_ID_ABSENT |
| 2257 | ? header.source_connection_id |
| 2258 | : EmptyQuicConnectionId(), |
| 2259 | writer)) { |
| 2260 | return false; |
| 2261 | } |
| 2262 | |
| 2263 | last_serialized_server_connection_id_ = server_connection_id; |
| 2264 | if (version_.SupportsClientConnectionIds()) { |
| 2265 | last_serialized_client_connection_id_ = |
| 2266 | GetClientConnectionIdAsSender(header, perspective_); |
| 2267 | } |
| 2268 | |
| 2269 | // TODO(b/141924462) Remove this QUIC_BUG once we do support sending RETRY. |
| 2270 | QUIC_BUG_IF(quic_bug_12975_7, |
| 2271 | header.version_flag && header.long_packet_type == RETRY) |
| 2272 | << "Sending IETF RETRY packets is not currently supported " << header; |
| 2273 | |
| 2274 | if (QuicVersionHasLongHeaderLengths(transport_version()) && |
| 2275 | header.version_flag) { |
| 2276 | if (header.long_packet_type == INITIAL) { |
| 2277 | QUICHE_DCHECK_NE(VARIABLE_LENGTH_INTEGER_LENGTH_0, |
| 2278 | header.retry_token_length_length) |
| 2279 | << ENDPOINT << ParsedQuicVersionToString(version_) |
| 2280 | << " bad retry token length length in header: " << header; |
| 2281 | // Write retry token length. |
| 2282 | if (!writer->WriteVarInt62(header.retry_token.length(), |
| 2283 | header.retry_token_length_length)) { |
| 2284 | return false; |
| 2285 | } |
| 2286 | // Write retry token. |
| 2287 | if (!header.retry_token.empty() && |
| 2288 | !writer->WriteStringPiece(header.retry_token)) { |
| 2289 | return false; |
| 2290 | } |
| 2291 | } |
| 2292 | if (length_field_offset != nullptr) { |
| 2293 | *length_field_offset = writer->length(); |
| 2294 | } |
| 2295 | // Add fake length to reserve two bytes to add length in later. |
| 2296 | writer->WriteVarInt62(256); |
| 2297 | } else if (length_field_offset != nullptr) { |
| 2298 | *length_field_offset = 0; |
| 2299 | } |
| 2300 | |
| 2301 | // Append packet number. |
| 2302 | if (!AppendPacketNumber(header.packet_number_length, header.packet_number, |
| 2303 | writer)) { |
| 2304 | return false; |
| 2305 | } |
| 2306 | last_written_packet_number_length_ = header.packet_number_length; |
| 2307 | |
| 2308 | if (!header.version_flag) { |
| 2309 | return true; |
| 2310 | } |
| 2311 | |
| 2312 | if (header.nonce != nullptr) { |
| 2313 | QUICHE_DCHECK(header.version_flag); |
| 2314 | QUICHE_DCHECK_EQ(ZERO_RTT_PROTECTED, header.long_packet_type); |
| 2315 | QUICHE_DCHECK_EQ(Perspective::IS_SERVER, perspective_); |
| 2316 | if (!writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { |
| 2317 | return false; |
| 2318 | } |
| 2319 | } |
| 2320 | |
| 2321 | return true; |
| 2322 | } |
| 2323 | |
| 2324 | const QuicTime::Delta QuicFramer::CalculateTimestampFromWire( |
| 2325 | uint32_t time_delta_us) { |
| 2326 | // The new time_delta might have wrapped to the next epoch, or it |
| 2327 | // might have reverse wrapped to the previous epoch, or it might |
| 2328 | // remain in the same epoch. Select the time closest to the previous |
| 2329 | // time. |
| 2330 | // |
| 2331 | // epoch_delta is the delta between epochs. A delta is 4 bytes of |
| 2332 | // microseconds. |
| 2333 | const uint64_t epoch_delta = UINT64_C(1) << 32; |
| 2334 | uint64_t epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1); |
| 2335 | // Wrapping is safe here because a wrapped value will not be ClosestTo below. |
| 2336 | uint64_t prev_epoch = epoch - epoch_delta; |
| 2337 | uint64_t next_epoch = epoch + epoch_delta; |
| 2338 | |
| 2339 | uint64_t time = ClosestTo( |
| 2340 | last_timestamp_.ToMicroseconds(), epoch + time_delta_us, |
| 2341 | ClosestTo(last_timestamp_.ToMicroseconds(), prev_epoch + time_delta_us, |
| 2342 | next_epoch + time_delta_us)); |
| 2343 | |
| 2344 | return QuicTime::Delta::FromMicroseconds(time); |
| 2345 | } |
| 2346 | |
| 2347 | uint64_t QuicFramer::CalculatePacketNumberFromWire( |
| 2348 | QuicPacketNumberLength packet_number_length, |
| 2349 | QuicPacketNumber base_packet_number, uint64_t packet_number) const { |
| 2350 | // The new packet number might have wrapped to the next epoch, or |
| 2351 | // it might have reverse wrapped to the previous epoch, or it might |
| 2352 | // remain in the same epoch. Select the packet number closest to the |
| 2353 | // next expected packet number, the previous packet number plus 1. |
| 2354 | |
| 2355 | // epoch_delta is the delta between epochs the packet number was serialized |
| 2356 | // with, so the correct value is likely the same epoch as the last sequence |
| 2357 | // number or an adjacent epoch. |
| 2358 | if (!base_packet_number.IsInitialized()) { |
| 2359 | return packet_number; |
| 2360 | } |
| 2361 | const uint64_t epoch_delta = UINT64_C(1) << (8 * packet_number_length); |
| 2362 | uint64_t next_packet_number = base_packet_number.ToUint64() + 1; |
| 2363 | uint64_t epoch = base_packet_number.ToUint64() & ~(epoch_delta - 1); |
| 2364 | uint64_t prev_epoch = epoch - epoch_delta; |
| 2365 | uint64_t next_epoch = epoch + epoch_delta; |
| 2366 | |
| 2367 | return ClosestTo(next_packet_number, epoch + packet_number, |
| 2368 | ClosestTo(next_packet_number, prev_epoch + packet_number, |
| 2369 | next_epoch + packet_number)); |
| 2370 | } |
| 2371 | |
| 2372 | bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader, |
| 2373 | bool packet_has_ietf_packet_header, |
| 2374 | QuicPacketHeader* header) { |
| 2375 | if (packet_has_ietf_packet_header) { |
| 2376 | return ProcessIetfPacketHeader(reader, header); |
| 2377 | } |
| 2378 | uint8_t public_flags; |
| 2379 | if (!reader->ReadBytes(&public_flags, 1)) { |
| 2380 | set_detailed_error("Unable to read public flags."); |
| 2381 | return false; |
| 2382 | } |
| 2383 | |
| 2384 | header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0; |
| 2385 | header->version_flag = (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0; |
| 2386 | |
| 2387 | if (validate_flags_ && !header->version_flag && |
| 2388 | public_flags > PACKET_PUBLIC_FLAGS_MAX) { |
| 2389 | set_detailed_error("Illegal public flags value."); |
| 2390 | return false; |
| 2391 | } |
| 2392 | |
| 2393 | if (header->reset_flag && header->version_flag) { |
| 2394 | set_detailed_error("Got version flag in reset packet"); |
| 2395 | return false; |
| 2396 | } |
| 2397 | |
| 2398 | QuicConnectionId* header_connection_id = &header->destination_connection_id; |
| 2399 | QuicConnectionIdIncluded* header_connection_id_included = |
| 2400 | &header->destination_connection_id_included; |
| 2401 | if (perspective_ == Perspective::IS_CLIENT) { |
| 2402 | header_connection_id = &header->source_connection_id; |
| 2403 | header_connection_id_included = &header->source_connection_id_included; |
| 2404 | } |
| 2405 | switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) { |
| 2406 | case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID: |
| 2407 | if (!reader->ReadConnectionId(header_connection_id, |
| 2408 | kQuicDefaultConnectionIdLength)) { |
| 2409 | set_detailed_error("Unable to read ConnectionId."); |
| 2410 | return false; |
| 2411 | } |
| 2412 | *header_connection_id_included = CONNECTION_ID_PRESENT; |
| 2413 | break; |
| 2414 | case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID: |
| 2415 | *header_connection_id_included = CONNECTION_ID_ABSENT; |
| 2416 | *header_connection_id = last_serialized_server_connection_id_; |
| 2417 | break; |
| 2418 | } |
| 2419 | |
| 2420 | header->packet_number_length = ReadSequenceNumberLength( |
| 2421 | public_flags >> kPublicHeaderSequenceNumberShift); |
| 2422 | |
| 2423 | // Read the version only if the packet is from the client. |
| 2424 | // version flag from the server means version negotiation packet. |
| 2425 | if (header->version_flag && perspective_ == Perspective::IS_SERVER) { |
| 2426 | QuicVersionLabel version_label; |
| 2427 | if (!ProcessVersionLabel(reader, &version_label)) { |
| 2428 | set_detailed_error("Unable to read protocol version."); |
| 2429 | return false; |
| 2430 | } |
| 2431 | // If the version from the new packet is the same as the version of this |
| 2432 | // framer, then the public flags should be set to something we understand. |
| 2433 | // If not, this raises an error. |
| 2434 | ParsedQuicVersion version = ParseQuicVersionLabel(version_label); |
| 2435 | if (version == version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) { |
| 2436 | set_detailed_error("Illegal public flags value."); |
| 2437 | return false; |
| 2438 | } |
| 2439 | header->version = version; |
| 2440 | } |
| 2441 | |
| 2442 | // A nonce should only be present in packets from the server to the client, |
| 2443 | // which are neither version negotiation nor public reset packets. |
| 2444 | if (public_flags & PACKET_PUBLIC_FLAGS_NONCE && |
| 2445 | !(public_flags & PACKET_PUBLIC_FLAGS_VERSION) && |
| 2446 | !(public_flags & PACKET_PUBLIC_FLAGS_RST) && |
| 2447 | // The nonce flag from a client is ignored and is assumed to be an older |
| 2448 | // client indicating an eight-byte connection ID. |
| 2449 | perspective_ == Perspective::IS_CLIENT) { |
| 2450 | if (!reader->ReadBytes(reinterpret_cast<uint8_t*>(last_nonce_.data()), |
| 2451 | last_nonce_.size())) { |
| 2452 | set_detailed_error("Unable to read nonce."); |
| 2453 | return false; |
| 2454 | } |
| 2455 | header->nonce = &last_nonce_; |
| 2456 | } else { |
| 2457 | header->nonce = nullptr; |
| 2458 | } |
| 2459 | |
| 2460 | return true; |
| 2461 | } |
| 2462 | |
| 2463 | // static |
| 2464 | QuicPacketNumberLength QuicFramer::GetMinPacketNumberLength( |
| 2465 | QuicPacketNumber packet_number) { |
| 2466 | QUICHE_DCHECK(packet_number.IsInitialized()); |
| 2467 | if (packet_number < QuicPacketNumber(1 << (PACKET_1BYTE_PACKET_NUMBER * 8))) { |
| 2468 | return PACKET_1BYTE_PACKET_NUMBER; |
| 2469 | } else if (packet_number < |
| 2470 | QuicPacketNumber(1 << (PACKET_2BYTE_PACKET_NUMBER * 8))) { |
| 2471 | return PACKET_2BYTE_PACKET_NUMBER; |
| 2472 | } else if (packet_number < |
| 2473 | QuicPacketNumber(UINT64_C(1) |
| 2474 | << (PACKET_4BYTE_PACKET_NUMBER * 8))) { |
| 2475 | return PACKET_4BYTE_PACKET_NUMBER; |
| 2476 | } else { |
| 2477 | return PACKET_6BYTE_PACKET_NUMBER; |
| 2478 | } |
| 2479 | } |
| 2480 | |
| 2481 | // static |
| 2482 | uint8_t QuicFramer::GetPacketNumberFlags( |
| 2483 | QuicPacketNumberLength packet_number_length) { |
| 2484 | switch (packet_number_length) { |
| 2485 | case PACKET_1BYTE_PACKET_NUMBER: |
| 2486 | return PACKET_FLAGS_1BYTE_PACKET; |
| 2487 | case PACKET_2BYTE_PACKET_NUMBER: |
| 2488 | return PACKET_FLAGS_2BYTE_PACKET; |
| 2489 | case PACKET_4BYTE_PACKET_NUMBER: |
| 2490 | return PACKET_FLAGS_4BYTE_PACKET; |
| 2491 | case PACKET_6BYTE_PACKET_NUMBER: |
| 2492 | case PACKET_8BYTE_PACKET_NUMBER: |
| 2493 | return PACKET_FLAGS_8BYTE_PACKET; |
| 2494 | default: |
| 2495 | QUIC_BUG(quic_bug_10850_56) << "Unreachable case statement."; |
| 2496 | return PACKET_FLAGS_8BYTE_PACKET; |
| 2497 | } |
| 2498 | } |
| 2499 | |
| 2500 | // static |
| 2501 | QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo( |
| 2502 | const QuicAckFrame& frame) { |
| 2503 | AckFrameInfo new_ack_info; |
| 2504 | if (frame.packets.Empty()) { |
| 2505 | return new_ack_info; |
| 2506 | } |
| 2507 | // The first block is the last interval. It isn't encoded with the gap-length |
| 2508 | // encoding, so skip it. |
| 2509 | new_ack_info.first_block_length = frame.packets.LastIntervalLength(); |
| 2510 | auto itr = frame.packets.rbegin(); |
| 2511 | QuicPacketNumber previous_start = itr->min(); |
| 2512 | new_ack_info.max_block_length = itr->Length(); |
| 2513 | ++itr; |
| 2514 | |
| 2515 | // Don't do any more work after getting information for 256 ACK blocks; any |
| 2516 | // more can't be encoded anyway. |
| 2517 | for (; itr != frame.packets.rend() && |
| 2518 | new_ack_info.num_ack_blocks < std::numeric_limits<uint8_t>::max(); |
| 2519 | previous_start = itr->min(), ++itr) { |
| 2520 | const auto& interval = *itr; |
| 2521 | const QuicPacketCount total_gap = previous_start - interval.max(); |
| 2522 | new_ack_info.num_ack_blocks += |
| 2523 | (total_gap + std::numeric_limits<uint8_t>::max() - 1) / |
| 2524 | std::numeric_limits<uint8_t>::max(); |
| 2525 | new_ack_info.max_block_length = |
| 2526 | std::max(new_ack_info.max_block_length, interval.Length()); |
| 2527 | } |
| 2528 | return new_ack_info; |
| 2529 | } |
| 2530 | |
| 2531 | bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader, |
| 2532 | QuicPacketHeader* header) { |
| 2533 | QuicPacketNumber base_packet_number; |
| 2534 | if (supports_multiple_packet_number_spaces_) { |
| 2535 | PacketNumberSpace pn_space = GetPacketNumberSpace(*header); |
| 2536 | if (pn_space == NUM_PACKET_NUMBER_SPACES) { |
| 2537 | set_detailed_error("Unable to determine packet number space."); |
| 2538 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 2539 | } |
| 2540 | base_packet_number = largest_decrypted_packet_numbers_[pn_space]; |
| 2541 | } else { |
| 2542 | base_packet_number = largest_packet_number_; |
| 2543 | } |
| 2544 | uint64_t full_packet_number; |
| 2545 | if (!ProcessAndCalculatePacketNumber( |
| 2546 | encrypted_reader, header->packet_number_length, base_packet_number, |
| 2547 | &full_packet_number)) { |
| 2548 | set_detailed_error("Unable to read packet number."); |
| 2549 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 2550 | } |
| 2551 | |
| 2552 | if (!IsValidFullPacketNumber(full_packet_number, version())) { |
| 2553 | set_detailed_error("packet numbers cannot be 0."); |
| 2554 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 2555 | } |
| 2556 | header->packet_number = QuicPacketNumber(full_packet_number); |
| 2557 | |
| 2558 | if (!visitor_->OnUnauthenticatedHeader(*header)) { |
| 2559 | set_detailed_error( |
| 2560 | "Visitor asked to stop processing of unauthenticated header."); |
| 2561 | return false; |
| 2562 | } |
| 2563 | // The function we are in is called because the framer believes that it is |
| 2564 | // processing a packet that uses the non-IETF (i.e. Google QUIC) packet header |
| 2565 | // type. Usually, the framer makes that decision based on the framer's |
| 2566 | // version, but when the framer is used with Perspective::IS_SERVER, then |
| 2567 | // before version negotiation is complete (specifically, before |
| 2568 | // InferPacketHeaderTypeFromVersion is called), this decision is made based on |
| 2569 | // the type byte of the packet. |
| 2570 | // |
| 2571 | // If the framer's version KnowsWhichDecrypterToUse, then that version expects |
| 2572 | // to use the IETF packet header type. If that's the case and we're in this |
| 2573 | // function, then the packet received is invalid: the framer was expecting an |
| 2574 | // IETF packet header and didn't get one. |
| 2575 | if (version().KnowsWhichDecrypterToUse()) { |
| 2576 | set_detailed_error("Invalid public header type for expected version."); |
| 2577 | return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| 2578 | } |
| 2579 | return true; |
| 2580 | } |
| 2581 | |
| 2582 | bool QuicFramer::ProcessIetfHeaderTypeByte(QuicDataReader* reader, |
| 2583 | QuicPacketHeader* header) { |
| 2584 | uint8_t type; |
| 2585 | if (!reader->ReadBytes(&type, 1)) { |
| 2586 | set_detailed_error("Unable to read first byte."); |
| 2587 | return false; |
| 2588 | } |
| 2589 | header->type_byte = type; |
| 2590 | // Determine whether this is a long or short header. |
| 2591 | header->form = GetIetfPacketHeaderFormat(type); |
| 2592 | if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { |
| 2593 | // Version is always present in long headers. |
| 2594 | header->version_flag = true; |
| 2595 | // In versions that do not support client connection IDs, we mark the |
| 2596 | // corresponding connection ID as absent. |
| 2597 | header->destination_connection_id_included = |
| 2598 | (perspective_ == Perspective::IS_SERVER || |
| 2599 | version_.SupportsClientConnectionIds()) |
| 2600 | ? CONNECTION_ID_PRESENT |
| 2601 | : CONNECTION_ID_ABSENT; |
| 2602 | header->source_connection_id_included = |
| 2603 | (perspective_ == Perspective::IS_CLIENT || |
| 2604 | version_.SupportsClientConnectionIds()) |
| 2605 | ? CONNECTION_ID_PRESENT |
| 2606 | : CONNECTION_ID_ABSENT; |
| 2607 | // Read version tag. |
| 2608 | QuicVersionLabel version_label; |
| 2609 | if (!ProcessVersionLabel(reader, &version_label)) { |
| 2610 | set_detailed_error("Unable to read protocol version."); |
| 2611 | return false; |
| 2612 | } |
| 2613 | if (!version_label) { |
| 2614 | // Version label is 0 indicating this is a version negotiation packet. |
| 2615 | header->long_packet_type = VERSION_NEGOTIATION; |
| 2616 | } else { |
| 2617 | header->version = ParseQuicVersionLabel(version_label); |
| 2618 | if (header->version.IsKnown()) { |
| 2619 | if (!(type & FLAGS_FIXED_BIT)) { |
| 2620 | set_detailed_error("Fixed bit is 0 in long header."); |
| 2621 | return false; |
| 2622 | } |
| 2623 | header->long_packet_type = GetLongHeaderType(type, header->version); |
| 2624 | switch (header->long_packet_type) { |
| 2625 | case INVALID_PACKET_TYPE: |
| 2626 | set_detailed_error("Illegal long header type value."); |
| 2627 | return false; |
| 2628 | case RETRY: |
| 2629 | if (!version().SupportsRetry()) { |
| 2630 | set_detailed_error("RETRY not supported in this version."); |
| 2631 | return false; |
| 2632 | } |
| 2633 | if (perspective_ == Perspective::IS_SERVER) { |
| 2634 | set_detailed_error("Client-initiated RETRY is invalid."); |
| 2635 | return false; |
| 2636 | } |
| 2637 | break; |
| 2638 | default: |
| 2639 | if (!header->version.HasHeaderProtection()) { |
| 2640 | header->packet_number_length = |
| 2641 | GetLongHeaderPacketNumberLength(type); |
| 2642 | } |
| 2643 | break; |
| 2644 | } |
| 2645 | } |
| 2646 | } |
| 2647 | |
| 2648 | QUIC_DVLOG(1) << ENDPOINT << "Received IETF long header: " |
| 2649 | << QuicUtils::QuicLongHeaderTypetoString( |
| 2650 | header->long_packet_type); |
| 2651 | return true; |
| 2652 | } |
| 2653 | |
| 2654 | QUIC_DVLOG(1) << ENDPOINT << "Received IETF short header"; |
| 2655 | // Version is not present in short headers. |
| 2656 | header->version_flag = false; |
| 2657 | // In versions that do not support client connection IDs, the client will not |
| 2658 | // receive destination connection IDs. |
| 2659 | header->destination_connection_id_included = |
| 2660 | (perspective_ == Perspective::IS_SERVER || |
| 2661 | version_.SupportsClientConnectionIds()) |
| 2662 | ? CONNECTION_ID_PRESENT |
| 2663 | : CONNECTION_ID_ABSENT; |
| 2664 | header->source_connection_id_included = CONNECTION_ID_ABSENT; |
| 2665 | if (!(type & FLAGS_FIXED_BIT)) { |
| 2666 | set_detailed_error("Fixed bit is 0 in short header."); |
| 2667 | return false; |
| 2668 | } |
| 2669 | if (!version_.HasHeaderProtection()) { |
| 2670 | header->packet_number_length = GetShortHeaderPacketNumberLength(type); |
| 2671 | } |
| 2672 | QUIC_DVLOG(1) << "packet_number_length = " << header->packet_number_length; |
| 2673 | return true; |
| 2674 | } |
| 2675 | |
| 2676 | // static |
| 2677 | bool QuicFramer::ProcessVersionLabel(QuicDataReader* reader, |
| 2678 | QuicVersionLabel* version_label) { |
| 2679 | if (!reader->ReadUInt32(version_label)) { |
| 2680 | return false; |
| 2681 | } |
| 2682 | return true; |
| 2683 | } |
| 2684 | |
| 2685 | // static |
| 2686 | bool QuicFramer::ProcessAndValidateIetfConnectionIdLength( |
| 2687 | QuicDataReader* reader, ParsedQuicVersion version, Perspective perspective, |
| 2688 | bool should_update_expected_server_connection_id_length, |
| 2689 | uint8_t* expected_server_connection_id_length, |
| 2690 | uint8_t* destination_connection_id_length, |
| 2691 | uint8_t* source_connection_id_length, std::string* detailed_error) { |
| 2692 | uint8_t connection_id_lengths_byte; |
| 2693 | if (!reader->ReadBytes(&connection_id_lengths_byte, 1)) { |
| 2694 | *detailed_error = "Unable to read ConnectionId length."; |
| 2695 | return false; |
| 2696 | } |
| 2697 | uint8_t dcil = |
| 2698 | (connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4; |
| 2699 | if (dcil != 0) { |
| 2700 | dcil += kConnectionIdLengthAdjustment; |
| 2701 | } |
| 2702 | uint8_t scil = connection_id_lengths_byte & kSourceConnectionIdLengthMask; |
| 2703 | if (scil != 0) { |
| 2704 | scil += kConnectionIdLengthAdjustment; |
| 2705 | } |
| 2706 | if (should_update_expected_server_connection_id_length) { |
| 2707 | uint8_t server_connection_id_length = |
| 2708 | perspective == Perspective::IS_SERVER ? dcil : scil; |
| 2709 | if (*expected_server_connection_id_length != server_connection_id_length) { |
| 2710 | QUIC_DVLOG(1) << "Updating expected_server_connection_id_length: " |
| 2711 | << static_cast<int>(*expected_server_connection_id_length) |
| 2712 | << " -> " << static_cast<int>(server_connection_id_length); |
| 2713 | *expected_server_connection_id_length = server_connection_id_length; |
| 2714 | } |
| 2715 | } |
| 2716 | if (!should_update_expected_server_connection_id_length && |
| 2717 | (dcil != *destination_connection_id_length || |
| 2718 | scil != *source_connection_id_length) && |
| 2719 | version.IsKnown() && !version.AllowsVariableLengthConnectionIds()) { |
| 2720 | QUIC_DVLOG(1) << "dcil: " << static_cast<uint32_t>(dcil) |
| 2721 | << ", scil: " << static_cast<uint32_t>(scil); |
| 2722 | *detailed_error = "Invalid ConnectionId length."; |
| 2723 | return false; |
| 2724 | } |
| 2725 | *destination_connection_id_length = dcil; |
| 2726 | *source_connection_id_length = scil; |
| 2727 | return true; |
| 2728 | } |
| 2729 | |
| 2730 | bool QuicFramer::ValidateReceivedConnectionIds(const QuicPacketHeader& header) { |
| 2731 | bool skip_server_connection_id_validation = |
| 2732 | perspective_ == Perspective::IS_CLIENT && |
| 2733 | header.form == IETF_QUIC_SHORT_HEADER_PACKET; |
| 2734 | if (!skip_server_connection_id_validation && |
| 2735 | !QuicUtils::IsConnectionIdValidForVersion( |
| 2736 | GetServerConnectionIdAsRecipient(header, perspective_), |
| 2737 | transport_version())) { |
| 2738 | set_detailed_error("Received server connection ID with invalid length."); |
| 2739 | return false; |
| 2740 | } |
| 2741 | |
| 2742 | bool skip_client_connection_id_validation = |
| 2743 | perspective_ == Perspective::IS_SERVER && |
| 2744 | header.form == IETF_QUIC_SHORT_HEADER_PACKET; |
| 2745 | if (!skip_client_connection_id_validation && |
| 2746 | version_.SupportsClientConnectionIds() && |
| 2747 | !QuicUtils::IsConnectionIdValidForVersion( |
| 2748 | GetClientConnectionIdAsRecipient(header, perspective_), |
| 2749 | transport_version())) { |
| 2750 | set_detailed_error("Received client connection ID with invalid length."); |
| 2751 | return false; |
| 2752 | } |
| 2753 | return true; |
| 2754 | } |
| 2755 | |
| 2756 | bool QuicFramer::ProcessIetfPacketHeader(QuicDataReader* reader, |
| 2757 | QuicPacketHeader* header) { |
| 2758 | if (version_.HasLengthPrefixedConnectionIds()) { |
| 2759 | uint8_t expected_destination_connection_id_length = |
| 2760 | perspective_ == Perspective::IS_CLIENT |
| 2761 | ? expected_client_connection_id_length_ |
| 2762 | : expected_server_connection_id_length_; |
| 2763 | QuicVersionLabel version_label; |
| 2764 | bool has_length_prefix; |
| 2765 | std::string detailed_error; |
| 2766 | QuicErrorCode parse_result = QuicFramer::ParsePublicHeader( |
| 2767 | reader, expected_destination_connection_id_length, |
| 2768 | version_.HasIetfInvariantHeader(), &header->type_byte, &header->form, |
| 2769 | &header->version_flag, &has_length_prefix, &version_label, |
| 2770 | &header->version, &header->destination_connection_id, |
| 2771 | &header->source_connection_id, &header->long_packet_type, |
| 2772 | &header->retry_token_length_length, &header->retry_token, |
| 2773 | &detailed_error); |
| 2774 | if (parse_result != QUIC_NO_ERROR) { |
| 2775 | set_detailed_error(detailed_error); |
| 2776 | return false; |
| 2777 | } |
| 2778 | header->destination_connection_id_included = CONNECTION_ID_PRESENT; |
| 2779 | header->source_connection_id_included = |
| 2780 | header->version_flag ? CONNECTION_ID_PRESENT : CONNECTION_ID_ABSENT; |
| 2781 | |
| 2782 | if (!ValidateReceivedConnectionIds(*header)) { |
| 2783 | return false; |
| 2784 | } |
| 2785 | |
| 2786 | if (header->version_flag && |
| 2787 | header->long_packet_type != VERSION_NEGOTIATION && |
| 2788 | !(header->type_byte & FLAGS_FIXED_BIT)) { |
| 2789 | set_detailed_error("Fixed bit is 0 in long header."); |
| 2790 | return false; |
| 2791 | } |
| 2792 | if (!header->version_flag && !(header->type_byte & FLAGS_FIXED_BIT)) { |
| 2793 | set_detailed_error("Fixed bit is 0 in short header."); |
| 2794 | return false; |
| 2795 | } |
| 2796 | if (!header->version_flag) { |
| 2797 | if (!version_.HasHeaderProtection()) { |
| 2798 | header->packet_number_length = |
| 2799 | GetShortHeaderPacketNumberLength(header->type_byte); |
| 2800 | } |
| 2801 | return true; |
| 2802 | } |
| 2803 | if (header->long_packet_type == RETRY) { |
| 2804 | if (!version().SupportsRetry()) { |
| 2805 | set_detailed_error("RETRY not supported in this version."); |
| 2806 | return false; |
| 2807 | } |
| 2808 | if (perspective_ == Perspective::IS_SERVER) { |
| 2809 | set_detailed_error("Client-initiated RETRY is invalid."); |
| 2810 | return false; |
| 2811 | } |
| 2812 | return true; |
| 2813 | } |
| 2814 | if (header->version.IsKnown() && !header->version.HasHeaderProtection()) { |
| 2815 | header->packet_number_length = |
| 2816 | GetLongHeaderPacketNumberLength(header->type_byte); |
| 2817 | } |
| 2818 | |
| 2819 | return true; |
| 2820 | } |
| 2821 | |
| 2822 | if (!ProcessIetfHeaderTypeByte(reader, header)) { |
| 2823 | return false; |
| 2824 | } |
| 2825 | |
| 2826 | uint8_t destination_connection_id_length = |
| 2827 | header->destination_connection_id_included == CONNECTION_ID_PRESENT |
| 2828 | ? (perspective_ == Perspective::IS_SERVER |
| 2829 | ? expected_server_connection_id_length_ |
| 2830 | : expected_client_connection_id_length_) |
| 2831 | : 0; |
| 2832 | uint8_t source_connection_id_length = |
| 2833 | header->source_connection_id_included == CONNECTION_ID_PRESENT |
| 2834 | ? (perspective_ == Perspective::IS_CLIENT |
| 2835 | ? expected_server_connection_id_length_ |
| 2836 | : expected_client_connection_id_length_) |
| 2837 | : 0; |
| 2838 | if (header->form == IETF_QUIC_LONG_HEADER_PACKET) { |
| 2839 | if (!ProcessAndValidateIetfConnectionIdLength( |
| 2840 | reader, header->version, perspective_, |
| 2841 | /*should_update_expected_server_connection_id_length=*/false, |
| 2842 | &expected_server_connection_id_length_, |
| 2843 | &destination_connection_id_length, &source_connection_id_length, |
| 2844 | &detailed_error_)) { |
| 2845 | return false; |
| 2846 | } |
| 2847 | } |
| 2848 | |
| 2849 | // Read connection ID. |
| 2850 | if (!reader->ReadConnectionId(&header->destination_connection_id, |
| 2851 | destination_connection_id_length)) { |
| 2852 | set_detailed_error("Unable to read destination connection ID."); |
| 2853 | return false; |
| 2854 | } |
| 2855 | |
| 2856 | if (!reader->ReadConnectionId(&header->source_connection_id, |
| 2857 | source_connection_id_length)) { |
| 2858 | set_detailed_error("Unable to read source connection ID."); |
| 2859 | return false; |
| 2860 | } |
| 2861 | |
| 2862 | if (header->source_connection_id_included == CONNECTION_ID_ABSENT) { |
| 2863 | if (!header->source_connection_id.IsEmpty()) { |
| 2864 | QUICHE_DCHECK(!version_.SupportsClientConnectionIds()); |
| 2865 | set_detailed_error("Client connection ID not supported in this version."); |
| 2866 | return false; |
| 2867 | } |
| 2868 | } |
| 2869 | |
| 2870 | return ValidateReceivedConnectionIds(*header); |
| 2871 | } |
| 2872 | |
| 2873 | bool QuicFramer::ProcessAndCalculatePacketNumber( |
| 2874 | QuicDataReader* reader, QuicPacketNumberLength packet_number_length, |
| 2875 | QuicPacketNumber base_packet_number, uint64_t* packet_number) { |
| 2876 | uint64_t wire_packet_number; |
| 2877 | if (!reader->ReadBytesToUInt64(packet_number_length, &wire_packet_number)) { |
| 2878 | return false; |
| 2879 | } |
| 2880 | |
| 2881 | // TODO(ianswett): Explore the usefulness of trying multiple packet numbers |
| 2882 | // in case the first guess is incorrect. |
| 2883 | *packet_number = CalculatePacketNumberFromWire( |
| 2884 | packet_number_length, base_packet_number, wire_packet_number); |
| 2885 | return true; |
| 2886 | } |
| 2887 | |
| 2888 | bool QuicFramer::ProcessFrameData(QuicDataReader* reader, |
| 2889 | const QuicPacketHeader& header) { |
| 2890 | QUICHE_DCHECK(!VersionHasIetfQuicFrames(version_.transport_version)) |
| 2891 | << "IETF QUIC Framing negotiated but attempting to process frames as " |
| 2892 | "non-IETF QUIC."; |
| 2893 | if (reader->IsDoneReading()) { |
| 2894 | set_detailed_error("Packet has no frames."); |
| 2895 | return RaiseError(QUIC_MISSING_PAYLOAD); |
| 2896 | } |
| 2897 | QUIC_DVLOG(2) << ENDPOINT << "Processing packet with header " << header; |
| 2898 | while (!reader->IsDoneReading()) { |
| 2899 | uint8_t frame_type; |
| 2900 | if (!reader->ReadBytes(&frame_type, 1)) { |
| 2901 | set_detailed_error("Unable to read frame type."); |
| 2902 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 2903 | } |
| 2904 | const uint8_t special_mask = version_.HasIetfInvariantHeader() |
| 2905 | ? kQuicFrameTypeSpecialMask |
| 2906 | : kQuicFrameTypeBrokenMask; |
| 2907 | if (frame_type & special_mask) { |
| 2908 | // Stream Frame |
| 2909 | if (frame_type & kQuicFrameTypeStreamMask) { |
| 2910 | QuicStreamFrame frame; |
| 2911 | if (!ProcessStreamFrame(reader, frame_type, &frame)) { |
| 2912 | return RaiseError(QUIC_INVALID_STREAM_DATA); |
| 2913 | } |
| 2914 | QUIC_DVLOG(2) << ENDPOINT << "Processing stream frame " << frame; |
| 2915 | if (!visitor_->OnStreamFrame(frame)) { |
| 2916 | QUIC_DVLOG(1) << ENDPOINT |
| 2917 | << "Visitor asked to stop further processing."; |
| 2918 | // Returning true since there was no parsing error. |
| 2919 | return true; |
| 2920 | } |
| 2921 | continue; |
| 2922 | } |
| 2923 | |
| 2924 | // Ack Frame |
| 2925 | if (frame_type & kQuicFrameTypeAckMask) { |
| 2926 | if (!ProcessAckFrame(reader, frame_type)) { |
| 2927 | return RaiseError(QUIC_INVALID_ACK_DATA); |
| 2928 | } |
| 2929 | QUIC_DVLOG(2) << ENDPOINT << "Processing ACK frame"; |
| 2930 | continue; |
| 2931 | } |
| 2932 | |
| 2933 | // This was a special frame type that did not match any |
| 2934 | // of the known ones. Error. |
| 2935 | set_detailed_error("Illegal frame type."); |
| 2936 | QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " |
| 2937 | << static_cast<int>(frame_type); |
| 2938 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 2939 | } |
| 2940 | |
| 2941 | switch (frame_type) { |
| 2942 | case PADDING_FRAME: { |
| 2943 | QuicPaddingFrame frame; |
| 2944 | ProcessPaddingFrame(reader, &frame); |
| 2945 | QUIC_DVLOG(2) << ENDPOINT << "Processing padding frame " << frame; |
| 2946 | if (!visitor_->OnPaddingFrame(frame)) { |
| 2947 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2948 | // Returning true since there was no parsing error. |
| 2949 | return true; |
| 2950 | } |
| 2951 | continue; |
| 2952 | } |
| 2953 | |
| 2954 | case RST_STREAM_FRAME: { |
| 2955 | QuicRstStreamFrame frame; |
| 2956 | if (!ProcessRstStreamFrame(reader, &frame)) { |
| 2957 | return RaiseError(QUIC_INVALID_RST_STREAM_DATA); |
| 2958 | } |
| 2959 | QUIC_DVLOG(2) << ENDPOINT << "Processing reset stream frame " << frame; |
| 2960 | if (!visitor_->OnRstStreamFrame(frame)) { |
| 2961 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 2962 | // Returning true since there was no parsing error. |
| 2963 | return true; |
| 2964 | } |
| 2965 | continue; |
| 2966 | } |
| 2967 | |
| 2968 | case CONNECTION_CLOSE_FRAME: { |
| 2969 | QuicConnectionCloseFrame frame; |
| 2970 | if (!ProcessConnectionCloseFrame(reader, &frame)) { |
| 2971 | return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); |
| 2972 | } |
| 2973 | |
| 2974 | QUIC_DVLOG(2) << ENDPOINT << "Processing connection close frame " |
| 2975 | << frame; |
| 2976 | if (!visitor_->OnConnectionCloseFrame(frame)) { |
| 2977 | QUIC_DVLOG(1) << ENDPOINT |
| 2978 | << "Visitor asked to stop further processing."; |
| 2979 | // Returning true since there was no parsing error. |
| 2980 | return true; |
| 2981 | } |
| 2982 | continue; |
| 2983 | } |
| 2984 | |
| 2985 | case GOAWAY_FRAME: { |
| 2986 | QuicGoAwayFrame goaway_frame; |
| 2987 | if (!ProcessGoAwayFrame(reader, &goaway_frame)) { |
| 2988 | return RaiseError(QUIC_INVALID_GOAWAY_DATA); |
| 2989 | } |
| 2990 | QUIC_DVLOG(2) << ENDPOINT << "Processing go away frame " |
| 2991 | << goaway_frame; |
| 2992 | if (!visitor_->OnGoAwayFrame(goaway_frame)) { |
| 2993 | QUIC_DVLOG(1) << ENDPOINT |
| 2994 | << "Visitor asked to stop further processing."; |
| 2995 | // Returning true since there was no parsing error. |
| 2996 | return true; |
| 2997 | } |
| 2998 | continue; |
| 2999 | } |
| 3000 | |
| 3001 | case WINDOW_UPDATE_FRAME: { |
| 3002 | QuicWindowUpdateFrame window_update_frame; |
| 3003 | if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) { |
| 3004 | return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA); |
| 3005 | } |
| 3006 | QUIC_DVLOG(2) << ENDPOINT << "Processing window update frame " |
| 3007 | << window_update_frame; |
| 3008 | if (!visitor_->OnWindowUpdateFrame(window_update_frame)) { |
| 3009 | QUIC_DVLOG(1) << ENDPOINT |
| 3010 | << "Visitor asked to stop further processing."; |
| 3011 | // Returning true since there was no parsing error. |
| 3012 | return true; |
| 3013 | } |
| 3014 | continue; |
| 3015 | } |
| 3016 | |
| 3017 | case BLOCKED_FRAME: { |
| 3018 | QuicBlockedFrame blocked_frame; |
| 3019 | if (!ProcessBlockedFrame(reader, &blocked_frame)) { |
| 3020 | return RaiseError(QUIC_INVALID_BLOCKED_DATA); |
| 3021 | } |
| 3022 | QUIC_DVLOG(2) << ENDPOINT << "Processing blocked frame " |
| 3023 | << blocked_frame; |
| 3024 | if (!visitor_->OnBlockedFrame(blocked_frame)) { |
| 3025 | QUIC_DVLOG(1) << ENDPOINT |
| 3026 | << "Visitor asked to stop further processing."; |
| 3027 | // Returning true since there was no parsing error. |
| 3028 | return true; |
| 3029 | } |
| 3030 | continue; |
| 3031 | } |
| 3032 | |
| 3033 | case STOP_WAITING_FRAME: { |
| 3034 | QuicStopWaitingFrame stop_waiting_frame; |
| 3035 | if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) { |
| 3036 | return RaiseError(QUIC_INVALID_STOP_WAITING_DATA); |
| 3037 | } |
| 3038 | QUIC_DVLOG(2) << ENDPOINT << "Processing stop waiting frame " |
| 3039 | << stop_waiting_frame; |
| 3040 | if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) { |
| 3041 | QUIC_DVLOG(1) << ENDPOINT |
| 3042 | << "Visitor asked to stop further processing."; |
| 3043 | // Returning true since there was no parsing error. |
| 3044 | return true; |
| 3045 | } |
| 3046 | continue; |
| 3047 | } |
| 3048 | case PING_FRAME: { |
| 3049 | // Ping has no payload. |
| 3050 | QuicPingFrame ping_frame; |
| 3051 | if (!visitor_->OnPingFrame(ping_frame)) { |
| 3052 | QUIC_DVLOG(1) << ENDPOINT |
| 3053 | << "Visitor asked to stop further processing."; |
| 3054 | // Returning true since there was no parsing error. |
| 3055 | return true; |
| 3056 | } |
| 3057 | QUIC_DVLOG(2) << ENDPOINT << "Processing ping frame " << ping_frame; |
| 3058 | continue; |
| 3059 | } |
| 3060 | case IETF_EXTENSION_MESSAGE_NO_LENGTH: |
| 3061 | ABSL_FALLTHROUGH_INTENDED; |
| 3062 | case IETF_EXTENSION_MESSAGE: { |
| 3063 | QuicMessageFrame message_frame; |
| 3064 | if (!ProcessMessageFrame(reader, |
| 3065 | frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH, |
| 3066 | &message_frame)) { |
| 3067 | return RaiseError(QUIC_INVALID_MESSAGE_DATA); |
| 3068 | } |
| 3069 | QUIC_DVLOG(2) << ENDPOINT << "Processing message frame " |
| 3070 | << message_frame; |
| 3071 | if (!visitor_->OnMessageFrame(message_frame)) { |
| 3072 | QUIC_DVLOG(1) << ENDPOINT |
| 3073 | << "Visitor asked to stop further processing."; |
| 3074 | // Returning true since there was no parsing error. |
| 3075 | return true; |
| 3076 | } |
| 3077 | break; |
| 3078 | } |
| 3079 | case CRYPTO_FRAME: { |
| 3080 | if (!QuicVersionUsesCryptoFrames(version_.transport_version)) { |
| 3081 | set_detailed_error("Illegal frame type."); |
| 3082 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 3083 | } |
| 3084 | QuicCryptoFrame frame; |
| 3085 | if (!ProcessCryptoFrame(reader, GetEncryptionLevel(header), &frame)) { |
| 3086 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 3087 | } |
| 3088 | QUIC_DVLOG(2) << ENDPOINT << "Processing crypto frame " << frame; |
| 3089 | if (!visitor_->OnCryptoFrame(frame)) { |
| 3090 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3091 | // Returning true since there was no parsing error. |
| 3092 | return true; |
| 3093 | } |
| 3094 | break; |
| 3095 | } |
| 3096 | case HANDSHAKE_DONE_FRAME: { |
| 3097 | // HANDSHAKE_DONE has no payload. |
| 3098 | QuicHandshakeDoneFrame handshake_done_frame; |
| 3099 | QUIC_DVLOG(2) << ENDPOINT << "Processing handshake done frame " |
| 3100 | << handshake_done_frame; |
| 3101 | if (!visitor_->OnHandshakeDoneFrame(handshake_done_frame)) { |
| 3102 | QUIC_DVLOG(1) << ENDPOINT |
| 3103 | << "Visitor asked to stop further processing."; |
| 3104 | // Returning true since there was no parsing error. |
| 3105 | return true; |
| 3106 | } |
| 3107 | break; |
| 3108 | } |
| 3109 | |
| 3110 | default: |
| 3111 | set_detailed_error("Illegal frame type."); |
| 3112 | QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " |
| 3113 | << static_cast<int>(frame_type); |
| 3114 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 3115 | } |
| 3116 | } |
| 3117 | |
| 3118 | return true; |
| 3119 | } |
| 3120 | |
| 3121 | // static |
| 3122 | bool QuicFramer::IsIetfFrameTypeExpectedForEncryptionLevel( |
| 3123 | uint64_t frame_type, EncryptionLevel level) { |
haoyuewang | 3d173d5 | 2022-04-27 12:20:25 -0700 | [diff] [blame^] | 3124 | // IETF_CRYPTO is allowed for any level here and is separately checked in |
| 3125 | // QuicCryptoStream::OnCryptoFrame. |
Bence Béky | bac0405 | 2022-04-07 15:44:29 -0400 | [diff] [blame] | 3126 | switch (level) { |
| 3127 | case ENCRYPTION_INITIAL: |
| 3128 | case ENCRYPTION_HANDSHAKE: |
| 3129 | return frame_type == IETF_CRYPTO || frame_type == IETF_ACK || |
| 3130 | frame_type == IETF_ACK_ECN || |
| 3131 | frame_type == IETF_ACK_RECEIVE_TIMESTAMPS || |
| 3132 | frame_type == IETF_PING || frame_type == IETF_PADDING || |
| 3133 | frame_type == IETF_CONNECTION_CLOSE; |
| 3134 | case ENCRYPTION_ZERO_RTT: |
| 3135 | return !(frame_type == IETF_ACK || frame_type == IETF_ACK_ECN || |
| 3136 | frame_type == IETF_ACK_RECEIVE_TIMESTAMPS || |
haoyuewang | 3d173d5 | 2022-04-27 12:20:25 -0700 | [diff] [blame^] | 3137 | frame_type == IETF_HANDSHAKE_DONE || |
Bence Béky | bac0405 | 2022-04-07 15:44:29 -0400 | [diff] [blame] | 3138 | frame_type == IETF_NEW_TOKEN || |
| 3139 | frame_type == IETF_PATH_RESPONSE || |
| 3140 | frame_type == IETF_RETIRE_CONNECTION_ID); |
| 3141 | case ENCRYPTION_FORWARD_SECURE: |
| 3142 | return true; |
| 3143 | default: |
| 3144 | QUIC_BUG(quic_bug_10850_57) << "Unknown encryption level: " << level; |
| 3145 | } |
| 3146 | return false; |
| 3147 | } |
| 3148 | |
| 3149 | bool QuicFramer::ProcessIetfFrameData(QuicDataReader* reader, |
| 3150 | const QuicPacketHeader& header, |
| 3151 | EncryptionLevel decrypted_level) { |
| 3152 | QUICHE_DCHECK(VersionHasIetfQuicFrames(version_.transport_version)) |
| 3153 | << "Attempt to process frames as IETF frames but version (" |
| 3154 | << version_.transport_version << ") does not support IETF Framing."; |
| 3155 | |
| 3156 | if (reader->IsDoneReading()) { |
| 3157 | set_detailed_error("Packet has no frames."); |
| 3158 | return RaiseError(QUIC_MISSING_PAYLOAD); |
| 3159 | } |
| 3160 | |
| 3161 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF packet with header " << header; |
| 3162 | while (!reader->IsDoneReading()) { |
| 3163 | uint64_t frame_type; |
| 3164 | // Will be the number of bytes into which frame_type was encoded. |
| 3165 | size_t encoded_bytes = reader->BytesRemaining(); |
| 3166 | if (!reader->ReadVarInt62(&frame_type)) { |
| 3167 | set_detailed_error("Unable to read frame type."); |
| 3168 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 3169 | } |
| 3170 | if (!IsIetfFrameTypeExpectedForEncryptionLevel(frame_type, |
| 3171 | decrypted_level)) { |
| 3172 | set_detailed_error(absl::StrCat( |
| 3173 | "IETF frame type ", |
| 3174 | QuicIetfFrameTypeString(static_cast<QuicIetfFrameType>(frame_type)), |
| 3175 | " is unexpected at encryption level ", |
| 3176 | EncryptionLevelToString(decrypted_level))); |
| 3177 | return RaiseError(IETF_QUIC_PROTOCOL_VIOLATION); |
| 3178 | } |
| 3179 | previously_received_frame_type_ = current_received_frame_type_; |
| 3180 | current_received_frame_type_ = frame_type; |
| 3181 | |
| 3182 | // Is now the number of bytes into which the frame type was encoded. |
| 3183 | encoded_bytes -= reader->BytesRemaining(); |
| 3184 | |
| 3185 | // Check that the frame type is minimally encoded. |
| 3186 | if (encoded_bytes != |
| 3187 | static_cast<size_t>(QuicDataWriter::GetVarInt62Len(frame_type))) { |
| 3188 | // The frame type was not minimally encoded. |
| 3189 | set_detailed_error("Frame type not minimally encoded."); |
| 3190 | return RaiseError(IETF_QUIC_PROTOCOL_VIOLATION); |
| 3191 | } |
| 3192 | |
| 3193 | if (IS_IETF_STREAM_FRAME(frame_type)) { |
| 3194 | QuicStreamFrame frame; |
| 3195 | if (!ProcessIetfStreamFrame(reader, frame_type, &frame)) { |
| 3196 | return RaiseError(QUIC_INVALID_STREAM_DATA); |
| 3197 | } |
| 3198 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stream frame " << frame; |
| 3199 | if (!visitor_->OnStreamFrame(frame)) { |
| 3200 | QUIC_DVLOG(1) << ENDPOINT |
| 3201 | << "Visitor asked to stop further processing."; |
| 3202 | // Returning true since there was no parsing error. |
| 3203 | return true; |
| 3204 | } |
| 3205 | } else { |
| 3206 | switch (frame_type) { |
| 3207 | case IETF_PADDING: { |
| 3208 | QuicPaddingFrame frame; |
| 3209 | ProcessPaddingFrame(reader, &frame); |
| 3210 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF padding frame " |
| 3211 | << frame; |
| 3212 | if (!visitor_->OnPaddingFrame(frame)) { |
| 3213 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3214 | // Returning true since there was no parsing error. |
| 3215 | return true; |
| 3216 | } |
| 3217 | break; |
| 3218 | } |
| 3219 | case IETF_RST_STREAM: { |
| 3220 | QuicRstStreamFrame frame; |
| 3221 | if (!ProcessIetfResetStreamFrame(reader, &frame)) { |
| 3222 | return RaiseError(QUIC_INVALID_RST_STREAM_DATA); |
| 3223 | } |
| 3224 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF reset stream frame " |
| 3225 | << frame; |
| 3226 | if (!visitor_->OnRstStreamFrame(frame)) { |
| 3227 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3228 | // Returning true since there was no parsing error. |
| 3229 | return true; |
| 3230 | } |
| 3231 | break; |
| 3232 | } |
| 3233 | case IETF_APPLICATION_CLOSE: |
| 3234 | case IETF_CONNECTION_CLOSE: { |
| 3235 | QuicConnectionCloseFrame frame; |
| 3236 | if (!ProcessIetfConnectionCloseFrame( |
| 3237 | reader, |
| 3238 | (frame_type == IETF_CONNECTION_CLOSE) |
| 3239 | ? IETF_QUIC_TRANSPORT_CONNECTION_CLOSE |
| 3240 | : IETF_QUIC_APPLICATION_CONNECTION_CLOSE, |
| 3241 | &frame)) { |
| 3242 | return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); |
| 3243 | } |
| 3244 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF connection close frame " |
| 3245 | << frame; |
| 3246 | if (!visitor_->OnConnectionCloseFrame(frame)) { |
| 3247 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3248 | // Returning true since there was no parsing error. |
| 3249 | return true; |
| 3250 | } |
| 3251 | break; |
| 3252 | } |
| 3253 | case IETF_MAX_DATA: { |
| 3254 | QuicWindowUpdateFrame frame; |
| 3255 | if (!ProcessMaxDataFrame(reader, &frame)) { |
| 3256 | return RaiseError(QUIC_INVALID_MAX_DATA_FRAME_DATA); |
| 3257 | } |
| 3258 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max data frame " |
| 3259 | << frame; |
| 3260 | if (!visitor_->OnWindowUpdateFrame(frame)) { |
| 3261 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3262 | // Returning true since there was no parsing error. |
| 3263 | return true; |
| 3264 | } |
| 3265 | break; |
| 3266 | } |
| 3267 | case IETF_MAX_STREAM_DATA: { |
| 3268 | QuicWindowUpdateFrame frame; |
| 3269 | if (!ProcessMaxStreamDataFrame(reader, &frame)) { |
| 3270 | return RaiseError(QUIC_INVALID_MAX_STREAM_DATA_FRAME_DATA); |
| 3271 | } |
| 3272 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max stream data frame " |
| 3273 | << frame; |
| 3274 | if (!visitor_->OnWindowUpdateFrame(frame)) { |
| 3275 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3276 | // Returning true since there was no parsing error. |
| 3277 | return true; |
| 3278 | } |
| 3279 | break; |
| 3280 | } |
| 3281 | case IETF_MAX_STREAMS_BIDIRECTIONAL: |
| 3282 | case IETF_MAX_STREAMS_UNIDIRECTIONAL: { |
| 3283 | QuicMaxStreamsFrame frame; |
| 3284 | if (!ProcessMaxStreamsFrame(reader, &frame, frame_type)) { |
| 3285 | return RaiseError(QUIC_MAX_STREAMS_DATA); |
| 3286 | } |
| 3287 | QUIC_CODE_COUNT_N(quic_max_streams_received, 1, 2); |
| 3288 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF max streams frame " |
| 3289 | << frame; |
| 3290 | if (!visitor_->OnMaxStreamsFrame(frame)) { |
| 3291 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3292 | // Returning true since there was no parsing error. |
| 3293 | return true; |
| 3294 | } |
| 3295 | break; |
| 3296 | } |
| 3297 | case IETF_PING: { |
| 3298 | // Ping has no payload. |
| 3299 | QuicPingFrame ping_frame; |
| 3300 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF ping frame " |
| 3301 | << ping_frame; |
| 3302 | if (!visitor_->OnPingFrame(ping_frame)) { |
| 3303 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3304 | // Returning true since there was no parsing error. |
| 3305 | return true; |
| 3306 | } |
| 3307 | break; |
| 3308 | } |
| 3309 | case IETF_DATA_BLOCKED: { |
| 3310 | QuicBlockedFrame frame; |
| 3311 | if (!ProcessDataBlockedFrame(reader, &frame)) { |
| 3312 | return RaiseError(QUIC_INVALID_BLOCKED_DATA); |
| 3313 | } |
| 3314 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF blocked frame " |
| 3315 | << frame; |
| 3316 | if (!visitor_->OnBlockedFrame(frame)) { |
| 3317 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3318 | // Returning true since there was no parsing error. |
| 3319 | return true; |
| 3320 | } |
| 3321 | break; |
| 3322 | } |
| 3323 | case IETF_STREAM_DATA_BLOCKED: { |
| 3324 | QuicBlockedFrame frame; |
| 3325 | if (!ProcessStreamDataBlockedFrame(reader, &frame)) { |
| 3326 | return RaiseError(QUIC_INVALID_STREAM_BLOCKED_DATA); |
| 3327 | } |
| 3328 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stream blocked frame " |
| 3329 | << frame; |
| 3330 | if (!visitor_->OnBlockedFrame(frame)) { |
| 3331 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3332 | // Returning true since there was no parsing error. |
| 3333 | return true; |
| 3334 | } |
| 3335 | break; |
| 3336 | } |
| 3337 | case IETF_STREAMS_BLOCKED_UNIDIRECTIONAL: |
| 3338 | case IETF_STREAMS_BLOCKED_BIDIRECTIONAL: { |
| 3339 | QuicStreamsBlockedFrame frame; |
| 3340 | if (!ProcessStreamsBlockedFrame(reader, &frame, frame_type)) { |
| 3341 | return RaiseError(QUIC_STREAMS_BLOCKED_DATA); |
| 3342 | } |
| 3343 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF streams blocked frame " |
| 3344 | << frame; |
| 3345 | if (!visitor_->OnStreamsBlockedFrame(frame)) { |
| 3346 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3347 | // Returning true since there was no parsing error. |
| 3348 | return true; |
| 3349 | } |
| 3350 | break; |
| 3351 | } |
| 3352 | case IETF_NEW_CONNECTION_ID: { |
| 3353 | QuicNewConnectionIdFrame frame; |
| 3354 | if (!ProcessNewConnectionIdFrame(reader, &frame)) { |
| 3355 | return RaiseError(QUIC_INVALID_NEW_CONNECTION_ID_DATA); |
| 3356 | } |
| 3357 | QUIC_DVLOG(2) << ENDPOINT |
| 3358 | << "Processing IETF new connection ID frame " << frame; |
| 3359 | if (!visitor_->OnNewConnectionIdFrame(frame)) { |
| 3360 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3361 | // Returning true since there was no parsing error. |
| 3362 | return true; |
| 3363 | } |
| 3364 | break; |
| 3365 | } |
| 3366 | case IETF_RETIRE_CONNECTION_ID: { |
| 3367 | QuicRetireConnectionIdFrame frame; |
| 3368 | if (!ProcessRetireConnectionIdFrame(reader, &frame)) { |
| 3369 | return RaiseError(QUIC_INVALID_RETIRE_CONNECTION_ID_DATA); |
| 3370 | } |
| 3371 | QUIC_DVLOG(2) << ENDPOINT |
| 3372 | << "Processing IETF retire connection ID frame " |
| 3373 | << frame; |
| 3374 | if (!visitor_->OnRetireConnectionIdFrame(frame)) { |
| 3375 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3376 | // Returning true since there was no parsing error. |
| 3377 | return true; |
| 3378 | } |
| 3379 | break; |
| 3380 | } |
| 3381 | case IETF_NEW_TOKEN: { |
| 3382 | QuicNewTokenFrame frame; |
| 3383 | if (!ProcessNewTokenFrame(reader, &frame)) { |
| 3384 | return RaiseError(QUIC_INVALID_NEW_TOKEN); |
| 3385 | } |
| 3386 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF new token frame " |
| 3387 | << frame; |
| 3388 | if (!visitor_->OnNewTokenFrame(frame)) { |
| 3389 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3390 | // Returning true since there was no parsing error. |
| 3391 | return true; |
| 3392 | } |
| 3393 | break; |
| 3394 | } |
| 3395 | case IETF_STOP_SENDING: { |
| 3396 | QuicStopSendingFrame frame; |
| 3397 | if (!ProcessStopSendingFrame(reader, &frame)) { |
| 3398 | return RaiseError(QUIC_INVALID_STOP_SENDING_FRAME_DATA); |
| 3399 | } |
| 3400 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF stop sending frame " |
| 3401 | << frame; |
| 3402 | if (!visitor_->OnStopSendingFrame(frame)) { |
| 3403 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3404 | // Returning true since there was no parsing error. |
| 3405 | return true; |
| 3406 | } |
| 3407 | break; |
| 3408 | } |
| 3409 | case IETF_ACK_RECEIVE_TIMESTAMPS: |
| 3410 | if (!process_timestamps_) { |
| 3411 | set_detailed_error("Unsupported frame type."); |
| 3412 | QUIC_DLOG(WARNING) |
| 3413 | << ENDPOINT << "IETF_ACK_RECEIVE_TIMESTAMPS not supported"; |
| 3414 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 3415 | } |
| 3416 | ABSL_FALLTHROUGH_INTENDED; |
| 3417 | case IETF_ACK_ECN: |
| 3418 | case IETF_ACK: { |
| 3419 | QuicAckFrame frame; |
| 3420 | if (!ProcessIetfAckFrame(reader, frame_type, &frame)) { |
| 3421 | return RaiseError(QUIC_INVALID_ACK_DATA); |
| 3422 | } |
| 3423 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF ACK frame " << frame; |
| 3424 | break; |
| 3425 | } |
| 3426 | case IETF_PATH_CHALLENGE: { |
| 3427 | QuicPathChallengeFrame frame; |
| 3428 | if (!ProcessPathChallengeFrame(reader, &frame)) { |
| 3429 | return RaiseError(QUIC_INVALID_PATH_CHALLENGE_DATA); |
| 3430 | } |
| 3431 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF path challenge frame " |
| 3432 | << frame; |
| 3433 | if (!visitor_->OnPathChallengeFrame(frame)) { |
| 3434 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3435 | // Returning true since there was no parsing error. |
| 3436 | return true; |
| 3437 | } |
| 3438 | break; |
| 3439 | } |
| 3440 | case IETF_PATH_RESPONSE: { |
| 3441 | QuicPathResponseFrame frame; |
| 3442 | if (!ProcessPathResponseFrame(reader, &frame)) { |
| 3443 | return RaiseError(QUIC_INVALID_PATH_RESPONSE_DATA); |
| 3444 | } |
| 3445 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF path response frame " |
| 3446 | << frame; |
| 3447 | if (!visitor_->OnPathResponseFrame(frame)) { |
| 3448 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3449 | // Returning true since there was no parsing error. |
| 3450 | return true; |
| 3451 | } |
| 3452 | break; |
| 3453 | } |
| 3454 | case IETF_EXTENSION_MESSAGE_NO_LENGTH_V99: |
| 3455 | ABSL_FALLTHROUGH_INTENDED; |
| 3456 | case IETF_EXTENSION_MESSAGE_V99: { |
| 3457 | QuicMessageFrame message_frame; |
| 3458 | if (!ProcessMessageFrame( |
| 3459 | reader, frame_type == IETF_EXTENSION_MESSAGE_NO_LENGTH_V99, |
| 3460 | &message_frame)) { |
| 3461 | return RaiseError(QUIC_INVALID_MESSAGE_DATA); |
| 3462 | } |
| 3463 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF message frame " |
| 3464 | << message_frame; |
| 3465 | if (!visitor_->OnMessageFrame(message_frame)) { |
| 3466 | QUIC_DVLOG(1) << ENDPOINT |
| 3467 | << "Visitor asked to stop further processing."; |
| 3468 | // Returning true since there was no parsing error. |
| 3469 | return true; |
| 3470 | } |
| 3471 | break; |
| 3472 | } |
| 3473 | case IETF_CRYPTO: { |
| 3474 | QuicCryptoFrame frame; |
| 3475 | if (!ProcessCryptoFrame(reader, GetEncryptionLevel(header), &frame)) { |
| 3476 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 3477 | } |
| 3478 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF crypto frame " << frame; |
| 3479 | if (!visitor_->OnCryptoFrame(frame)) { |
| 3480 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3481 | // Returning true since there was no parsing error. |
| 3482 | return true; |
| 3483 | } |
| 3484 | break; |
| 3485 | } |
| 3486 | case IETF_HANDSHAKE_DONE: { |
| 3487 | // HANDSHAKE_DONE has no payload. |
| 3488 | QuicHandshakeDoneFrame handshake_done_frame; |
| 3489 | if (!visitor_->OnHandshakeDoneFrame(handshake_done_frame)) { |
| 3490 | QUIC_DVLOG(1) << ENDPOINT |
| 3491 | << "Visitor asked to stop further processing."; |
| 3492 | // Returning true since there was no parsing error. |
| 3493 | return true; |
| 3494 | } |
| 3495 | QUIC_DVLOG(2) << ENDPOINT << "Processing handshake done frame " |
| 3496 | << handshake_done_frame; |
| 3497 | break; |
| 3498 | } |
| 3499 | case IETF_ACK_FREQUENCY: { |
| 3500 | QuicAckFrequencyFrame frame; |
| 3501 | if (!ProcessAckFrequencyFrame(reader, &frame)) { |
| 3502 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 3503 | } |
| 3504 | QUIC_DVLOG(2) << ENDPOINT << "Processing IETF ack frequency frame " |
| 3505 | << frame; |
| 3506 | if (!visitor_->OnAckFrequencyFrame(frame)) { |
| 3507 | QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| 3508 | // Returning true since there was no parsing error. |
| 3509 | return true; |
| 3510 | } |
| 3511 | break; |
| 3512 | } |
| 3513 | default: |
| 3514 | set_detailed_error("Illegal frame type."); |
| 3515 | QUIC_DLOG(WARNING) |
| 3516 | << ENDPOINT |
| 3517 | << "Illegal frame type: " << static_cast<int>(frame_type); |
| 3518 | return RaiseError(QUIC_INVALID_FRAME_DATA); |
| 3519 | } |
| 3520 | } |
| 3521 | } |
| 3522 | return true; |
| 3523 | } |
| 3524 | |
| 3525 | namespace { |
| 3526 | // Create a mask that sets the last |num_bits| to 1 and the rest to 0. |
| 3527 | inline uint8_t GetMaskFromNumBits(uint8_t num_bits) { |
| 3528 | return (1u << num_bits) - 1; |
| 3529 | } |
| 3530 | |
| 3531 | // Extract |num_bits| from |flags| offset by |offset|. |
| 3532 | uint8_t ExtractBits(uint8_t flags, uint8_t num_bits, uint8_t offset) { |
| 3533 | return (flags >> offset) & GetMaskFromNumBits(num_bits); |
| 3534 | } |
| 3535 | |
| 3536 | // Extract the bit at position |offset| from |flags| as a bool. |
| 3537 | bool ExtractBit(uint8_t flags, uint8_t offset) { |
| 3538 | return ((flags >> offset) & GetMaskFromNumBits(1)) != 0; |
| 3539 | } |
| 3540 | |
| 3541 | // Set |num_bits|, offset by |offset| to |val| in |flags|. |
| 3542 | void SetBits(uint8_t* flags, uint8_t val, uint8_t num_bits, uint8_t offset) { |
| 3543 | QUICHE_DCHECK_LE(val, GetMaskFromNumBits(num_bits)); |
| 3544 | *flags |= val << offset; |
| 3545 | } |
| 3546 | |
| 3547 | // Set the bit at position |offset| to |val| in |flags|. |
| 3548 | void SetBit(uint8_t* flags, bool val, uint8_t offset) { |
| 3549 | SetBits(flags, val ? 1 : 0, 1, offset); |
| 3550 | } |
| 3551 | } // namespace |
| 3552 | |
| 3553 | bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader, uint8_t frame_type, |
| 3554 | QuicStreamFrame* frame) { |
| 3555 | uint8_t stream_flags = frame_type; |
| 3556 | |
| 3557 | uint8_t stream_id_length = 0; |
| 3558 | uint8_t offset_length = 4; |
| 3559 | bool has_data_length = true; |
| 3560 | stream_flags &= ~kQuicFrameTypeStreamMask; |
| 3561 | |
| 3562 | // Read from right to left: StreamID, Offset, Data Length, Fin. |
| 3563 | stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1; |
| 3564 | stream_flags >>= kQuicStreamIdShift; |
| 3565 | |
| 3566 | offset_length = (stream_flags & kQuicStreamOffsetMask); |
| 3567 | // There is no encoding for 1 byte, only 0 and 2 through 8. |
| 3568 | if (offset_length > 0) { |
| 3569 | offset_length += 1; |
| 3570 | } |
| 3571 | stream_flags >>= kQuicStreamShift; |
| 3572 | |
| 3573 | has_data_length = |
| 3574 | (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask; |
| 3575 | stream_flags >>= kQuicStreamDataLengthShift; |
| 3576 | |
| 3577 | frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift; |
| 3578 | |
| 3579 | uint64_t stream_id; |
| 3580 | if (!reader->ReadBytesToUInt64(stream_id_length, &stream_id)) { |
| 3581 | set_detailed_error("Unable to read stream_id."); |
| 3582 | return false; |
| 3583 | } |
| 3584 | frame->stream_id = static_cast<QuicStreamId>(stream_id); |
| 3585 | |
| 3586 | if (!reader->ReadBytesToUInt64(offset_length, &frame->offset)) { |
| 3587 | set_detailed_error("Unable to read offset."); |
| 3588 | return false; |
| 3589 | } |
| 3590 | |
| 3591 | // TODO(ianswett): Don't use absl::string_view as an intermediary. |
| 3592 | absl::string_view data; |
| 3593 | if (has_data_length) { |
| 3594 | if (!reader->ReadStringPiece16(&data)) { |
| 3595 | set_detailed_error("Unable to read frame data."); |
| 3596 | return false; |
| 3597 | } |
| 3598 | } else { |
| 3599 | if (!reader->ReadStringPiece(&data, reader->BytesRemaining())) { |
| 3600 | set_detailed_error("Unable to read frame data."); |
| 3601 | return false; |
| 3602 | } |
| 3603 | } |
| 3604 | frame->data_buffer = data.data(); |
| 3605 | frame->data_length = static_cast<uint16_t>(data.length()); |
| 3606 | |
| 3607 | return true; |
| 3608 | } |
| 3609 | |
| 3610 | bool QuicFramer::ProcessIetfStreamFrame(QuicDataReader* reader, |
| 3611 | uint8_t frame_type, |
| 3612 | QuicStreamFrame* frame) { |
| 3613 | // Read stream id from the frame. It's always present. |
| 3614 | if (!ReadUint32FromVarint62(reader, IETF_STREAM, &frame->stream_id)) { |
| 3615 | return false; |
| 3616 | } |
| 3617 | |
| 3618 | // If we have a data offset, read it. If not, set to 0. |
| 3619 | if (frame_type & IETF_STREAM_FRAME_OFF_BIT) { |
| 3620 | if (!reader->ReadVarInt62(&frame->offset)) { |
| 3621 | set_detailed_error("Unable to read stream data offset."); |
| 3622 | return false; |
| 3623 | } |
| 3624 | } else { |
| 3625 | // no offset in the frame, ensure it's 0 in the Frame. |
| 3626 | frame->offset = 0; |
| 3627 | } |
| 3628 | |
| 3629 | // If we have a data length, read it. If not, set to 0. |
| 3630 | if (frame_type & IETF_STREAM_FRAME_LEN_BIT) { |
| 3631 | uint64_t length; |
| 3632 | if (!reader->ReadVarInt62(&length)) { |
| 3633 | set_detailed_error("Unable to read stream data length."); |
| 3634 | return false; |
| 3635 | } |
| 3636 | if (length > std::numeric_limits<decltype(frame->data_length)>::max()) { |
| 3637 | set_detailed_error("Stream data length is too large."); |
| 3638 | return false; |
| 3639 | } |
| 3640 | frame->data_length = length; |
| 3641 | } else { |
| 3642 | // no length in the frame, it is the number of bytes remaining in the |
| 3643 | // packet. |
| 3644 | frame->data_length = reader->BytesRemaining(); |
| 3645 | } |
| 3646 | |
| 3647 | if (frame_type & IETF_STREAM_FRAME_FIN_BIT) { |
| 3648 | frame->fin = true; |
| 3649 | } else { |
| 3650 | frame->fin = false; |
| 3651 | } |
| 3652 | |
| 3653 | // TODO(ianswett): Don't use absl::string_view as an intermediary. |
| 3654 | absl::string_view data; |
| 3655 | if (!reader->ReadStringPiece(&data, frame->data_length)) { |
| 3656 | set_detailed_error("Unable to read frame data."); |
| 3657 | return false; |
| 3658 | } |
| 3659 | frame->data_buffer = data.data(); |
| 3660 | QUICHE_DCHECK_EQ(frame->data_length, data.length()); |
| 3661 | |
| 3662 | return true; |
| 3663 | } |
| 3664 | |
| 3665 | bool QuicFramer::ProcessCryptoFrame(QuicDataReader* reader, |
| 3666 | EncryptionLevel encryption_level, |
| 3667 | QuicCryptoFrame* frame) { |
| 3668 | frame->level = encryption_level; |
| 3669 | if (!reader->ReadVarInt62(&frame->offset)) { |
| 3670 | set_detailed_error("Unable to read crypto data offset."); |
| 3671 | return false; |
| 3672 | } |
| 3673 | uint64_t len; |
| 3674 | if (!reader->ReadVarInt62(&len) || |
| 3675 | len > std::numeric_limits<QuicPacketLength>::max()) { |
| 3676 | set_detailed_error("Invalid data length."); |
| 3677 | return false; |
| 3678 | } |
| 3679 | frame->data_length = len; |
| 3680 | |
| 3681 | // TODO(ianswett): Don't use absl::string_view as an intermediary. |
| 3682 | absl::string_view data; |
| 3683 | if (!reader->ReadStringPiece(&data, frame->data_length)) { |
| 3684 | set_detailed_error("Unable to read frame data."); |
| 3685 | return false; |
| 3686 | } |
| 3687 | frame->data_buffer = data.data(); |
| 3688 | return true; |
| 3689 | } |
| 3690 | |
| 3691 | bool QuicFramer::ProcessAckFrequencyFrame(QuicDataReader* reader, |
| 3692 | QuicAckFrequencyFrame* frame) { |
| 3693 | if (!reader->ReadVarInt62(&frame->sequence_number)) { |
| 3694 | set_detailed_error("Unable to read sequence number."); |
| 3695 | return false; |
| 3696 | } |
| 3697 | |
| 3698 | if (!reader->ReadVarInt62(&frame->packet_tolerance)) { |
| 3699 | set_detailed_error("Unable to read packet tolerance."); |
| 3700 | return false; |
| 3701 | } |
| 3702 | if (frame->packet_tolerance == 0) { |
| 3703 | set_detailed_error("Invalid packet tolerance."); |
| 3704 | return false; |
| 3705 | } |
| 3706 | uint64_t max_ack_delay_us; |
| 3707 | if (!reader->ReadVarInt62(&max_ack_delay_us)) { |
| 3708 | set_detailed_error("Unable to read max_ack_delay_us."); |
| 3709 | return false; |
| 3710 | } |
| 3711 | constexpr uint64_t kMaxAckDelayUsBound = 1u << 24; |
| 3712 | if (max_ack_delay_us > kMaxAckDelayUsBound) { |
| 3713 | set_detailed_error("Invalid max_ack_delay_us."); |
| 3714 | return false; |
| 3715 | } |
| 3716 | frame->max_ack_delay = QuicTime::Delta::FromMicroseconds(max_ack_delay_us); |
| 3717 | |
| 3718 | uint8_t ignore_order; |
| 3719 | if (!reader->ReadUInt8(&ignore_order)) { |
| 3720 | set_detailed_error("Unable to read ignore_order."); |
| 3721 | return false; |
| 3722 | } |
| 3723 | if (ignore_order > 1) { |
| 3724 | set_detailed_error("Invalid ignore_order."); |
| 3725 | return false; |
| 3726 | } |
| 3727 | frame->ignore_order = ignore_order; |
| 3728 | |
| 3729 | return true; |
| 3730 | } |
| 3731 | |
| 3732 | bool QuicFramer::ProcessAckFrame(QuicDataReader* reader, uint8_t frame_type) { |
| 3733 | const bool has_ack_blocks = |
| 3734 | ExtractBit(frame_type, kQuicHasMultipleAckBlocksOffset); |
| 3735 | uint8_t num_ack_blocks = 0; |
| 3736 | uint8_t num_received_packets = 0; |
| 3737 | |
| 3738 | // Determine the two lengths from the frame type: largest acked length, |
| 3739 | // ack block length. |
| 3740 | const QuicPacketNumberLength ack_block_length = |
| 3741 | ReadAckPacketNumberLength(ExtractBits( |
| 3742 | frame_type, kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset)); |
| 3743 | const QuicPacketNumberLength largest_acked_length = |
| 3744 | ReadAckPacketNumberLength(ExtractBits( |
| 3745 | frame_type, kQuicSequenceNumberLengthNumBits, kLargestAckedOffset)); |
| 3746 | |
| 3747 | uint64_t largest_acked; |
| 3748 | if (!reader->ReadBytesToUInt64(largest_acked_length, &largest_acked)) { |
| 3749 | set_detailed_error("Unable to read largest acked."); |
| 3750 | return false; |
| 3751 | } |
| 3752 | |
| 3753 | if (largest_acked < first_sending_packet_number_.ToUint64()) { |
| 3754 | // Connection always sends packet starting from kFirstSendingPacketNumber > |
| 3755 | // 0, peer has observed an unsent packet. |
| 3756 | set_detailed_error("Largest acked is 0."); |
| 3757 | return false; |
| 3758 | } |
| 3759 | |
| 3760 | uint64_t ack_delay_time_us; |
| 3761 | if (!reader->ReadUFloat16(&ack_delay_time_us)) { |
| 3762 | set_detailed_error("Unable to read ack delay time."); |
| 3763 | return false; |
| 3764 | } |
| 3765 | |
| 3766 | if (!visitor_->OnAckFrameStart( |
| 3767 | QuicPacketNumber(largest_acked), |
| 3768 | ack_delay_time_us == kUFloat16MaxValue |
| 3769 | ? QuicTime::Delta::Infinite() |
| 3770 | : QuicTime::Delta::FromMicroseconds(ack_delay_time_us))) { |
| 3771 | // The visitor suppresses further processing of the packet. Although this is |
| 3772 | // not a parsing error, returns false as this is in middle of processing an |
| 3773 | // ack frame, |
| 3774 | set_detailed_error("Visitor suppresses further processing of ack frame."); |
| 3775 | return false; |
| 3776 | } |
| 3777 | |
| 3778 | if (has_ack_blocks && !reader->ReadUInt8(&num_ack_blocks)) { |
| 3779 | set_detailed_error("Unable to read num of ack blocks."); |
| 3780 | return false; |
| 3781 | } |
| 3782 | |
| 3783 | uint64_t first_block_length; |
| 3784 | if (!reader->ReadBytesToUInt64(ack_block_length, &first_block_length)) { |
| 3785 | set_detailed_error("Unable to read first ack block length."); |
| 3786 | return false; |
| 3787 | } |
| 3788 | |
| 3789 | if (first_block_length == 0) { |
| 3790 | set_detailed_error("First block length is zero."); |
| 3791 | return false; |
| 3792 | } |
| 3793 | bool first_ack_block_underflow = first_block_length > largest_acked + 1; |
| 3794 | if (first_block_length + first_sending_packet_number_.ToUint64() > |
| 3795 | largest_acked + 1) { |
| 3796 | first_ack_block_underflow = true; |
| 3797 | } |
| 3798 | if (first_ack_block_underflow) { |
| 3799 | set_detailed_error(absl::StrCat("Underflow with first ack block length ", |
| 3800 | first_block_length, " largest acked is ", |
| 3801 | largest_acked, ".") |
| 3802 | .c_str()); |
| 3803 | return false; |
| 3804 | } |
| 3805 | |
| 3806 | uint64_t first_received = largest_acked + 1 - first_block_length; |
| 3807 | if (!visitor_->OnAckRange(QuicPacketNumber(first_received), |
| 3808 | QuicPacketNumber(largest_acked + 1))) { |
| 3809 | // The visitor suppresses further processing of the packet. Although |
| 3810 | // this is not a parsing error, returns false as this is in middle |
| 3811 | // of processing an ack frame, |
| 3812 | set_detailed_error("Visitor suppresses further processing of ack frame."); |
| 3813 | return false; |
| 3814 | } |
| 3815 | |
| 3816 | if (num_ack_blocks > 0) { |
| 3817 | for (size_t i = 0; i < num_ack_blocks; ++i) { |
| 3818 | uint8_t gap = 0; |
| 3819 | if (!reader->ReadUInt8(&gap)) { |
| 3820 | set_detailed_error("Unable to read gap to next ack block."); |
| 3821 | return false; |
| 3822 | } |
| 3823 | uint64_t current_block_length; |
| 3824 | if (!reader->ReadBytesToUInt64(ack_block_length, ¤t_block_length)) { |
| 3825 | set_detailed_error("Unable to ack block length."); |
| 3826 | return false; |
| 3827 | } |
| 3828 | bool ack_block_underflow = first_received < gap + current_block_length; |
| 3829 | if (first_received < gap + current_block_length + |
| 3830 | first_sending_packet_number_.ToUint64()) { |
| 3831 | ack_block_underflow = true; |
| 3832 | } |
| 3833 | if (ack_block_underflow) { |
| 3834 | set_detailed_error(absl::StrCat("Underflow with ack block length ", |
| 3835 | current_block_length, |
| 3836 | ", end of block is ", |
| 3837 | first_received - gap, ".") |
| 3838 | .c_str()); |
| 3839 | return false; |
| 3840 | } |
| 3841 | |
| 3842 | first_received -= (gap + current_block_length); |
| 3843 | if (current_block_length > 0) { |
| 3844 | if (!visitor_->OnAckRange( |
| 3845 | QuicPacketNumber(first_received), |
| 3846 | QuicPacketNumber(first_received) + current_block_length)) { |
| 3847 | // The visitor suppresses further processing of the packet. Although |
| 3848 | // this is not a parsing error, returns false as this is in middle |
| 3849 | // of processing an ack frame, |
| 3850 | set_detailed_error( |
| 3851 | "Visitor suppresses further processing of ack frame."); |
| 3852 | return false; |
| 3853 | } |
| 3854 | } |
| 3855 | } |
| 3856 | } |
| 3857 | |
| 3858 | if (!reader->ReadUInt8(&num_received_packets)) { |
| 3859 | set_detailed_error("Unable to read num received packets."); |
| 3860 | return false; |
| 3861 | } |
| 3862 | |
| 3863 | if (!ProcessTimestampsInAckFrame(num_received_packets, |
| 3864 | QuicPacketNumber(largest_acked), reader)) { |
| 3865 | return false; |
| 3866 | } |
| 3867 | |
| 3868 | // Done processing the ACK frame. |
| 3869 | if (!visitor_->OnAckFrameEnd(QuicPacketNumber(first_received))) { |
| 3870 | set_detailed_error( |
| 3871 | "Error occurs when visitor finishes processing the ACK frame."); |
| 3872 | return false; |
| 3873 | } |
| 3874 | |
| 3875 | return true; |
| 3876 | } |
| 3877 | |
| 3878 | bool QuicFramer::ProcessTimestampsInAckFrame(uint8_t num_received_packets, |
| 3879 | QuicPacketNumber largest_acked, |
| 3880 | QuicDataReader* reader) { |
| 3881 | if (num_received_packets == 0) { |
| 3882 | return true; |
| 3883 | } |
| 3884 | uint8_t delta_from_largest_observed; |
| 3885 | if (!reader->ReadUInt8(&delta_from_largest_observed)) { |
| 3886 | set_detailed_error("Unable to read sequence delta in received packets."); |
| 3887 | return false; |
| 3888 | } |
| 3889 | |
| 3890 | if (largest_acked.ToUint64() <= delta_from_largest_observed) { |
| 3891 | set_detailed_error( |
| 3892 | absl::StrCat("delta_from_largest_observed too high: ", |
| 3893 | delta_from_largest_observed, |
| 3894 | ", largest_acked: ", largest_acked.ToUint64()) |
| 3895 | .c_str()); |
| 3896 | return false; |
| 3897 | } |
| 3898 | |
| 3899 | // Time delta from the framer creation. |
| 3900 | uint32_t time_delta_us; |
| 3901 | if (!reader->ReadUInt32(&time_delta_us)) { |
| 3902 | set_detailed_error("Unable to read time delta in received packets."); |
| 3903 | return false; |
| 3904 | } |
| 3905 | |
| 3906 | QuicPacketNumber seq_num = largest_acked - delta_from_largest_observed; |
| 3907 | if (process_timestamps_) { |
| 3908 | last_timestamp_ = CalculateTimestampFromWire(time_delta_us); |
| 3909 | |
| 3910 | visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); |
| 3911 | } |
| 3912 | |
| 3913 | for (uint8_t i = 1; i < num_received_packets; ++i) { |
| 3914 | if (!reader->ReadUInt8(&delta_from_largest_observed)) { |
| 3915 | set_detailed_error("Unable to read sequence delta in received packets."); |
| 3916 | return false; |
| 3917 | } |
| 3918 | if (largest_acked.ToUint64() <= delta_from_largest_observed) { |
| 3919 | set_detailed_error( |
| 3920 | absl::StrCat("delta_from_largest_observed too high: ", |
| 3921 | delta_from_largest_observed, |
| 3922 | ", largest_acked: ", largest_acked.ToUint64()) |
| 3923 | .c_str()); |
| 3924 | return false; |
| 3925 | } |
| 3926 | seq_num = largest_acked - delta_from_largest_observed; |
| 3927 | |
| 3928 | // Time delta from the previous timestamp. |
| 3929 | uint64_t incremental_time_delta_us; |
| 3930 | if (!reader->ReadUFloat16(&incremental_time_delta_us)) { |
| 3931 | set_detailed_error( |
| 3932 | "Unable to read incremental time delta in received packets."); |
| 3933 | return false; |
| 3934 | } |
| 3935 | |
| 3936 | if (process_timestamps_) { |
| 3937 | last_timestamp_ = last_timestamp_ + QuicTime::Delta::FromMicroseconds( |
| 3938 | incremental_time_delta_us); |
| 3939 | visitor_->OnAckTimestamp(seq_num, creation_time_ + last_timestamp_); |
| 3940 | } |
| 3941 | } |
| 3942 | return true; |
| 3943 | } |
| 3944 | |
| 3945 | bool QuicFramer::ProcessIetfAckFrame(QuicDataReader* reader, |
| 3946 | uint64_t frame_type, |
| 3947 | QuicAckFrame* ack_frame) { |
| 3948 | uint64_t largest_acked; |
| 3949 | if (!reader->ReadVarInt62(&largest_acked)) { |
| 3950 | set_detailed_error("Unable to read largest acked."); |
| 3951 | return false; |
| 3952 | } |
| 3953 | if (largest_acked < first_sending_packet_number_.ToUint64()) { |
| 3954 | // Connection always sends packet starting from kFirstSendingPacketNumber > |
| 3955 | // 0, peer has observed an unsent packet. |
| 3956 | set_detailed_error("Largest acked is 0."); |
| 3957 | return false; |
| 3958 | } |
| 3959 | ack_frame->largest_acked = static_cast<QuicPacketNumber>(largest_acked); |
| 3960 | uint64_t ack_delay_time_in_us; |
| 3961 | if (!reader->ReadVarInt62(&ack_delay_time_in_us)) { |
| 3962 | set_detailed_error("Unable to read ack delay time."); |
| 3963 | return false; |
| 3964 | } |
| 3965 | |
| 3966 | if (ack_delay_time_in_us >= (kVarInt62MaxValue >> peer_ack_delay_exponent_)) { |
| 3967 | ack_frame->ack_delay_time = QuicTime::Delta::Infinite(); |
| 3968 | } else { |
| 3969 | ack_delay_time_in_us = (ack_delay_time_in_us << peer_ack_delay_exponent_); |
| 3970 | ack_frame->ack_delay_time = |
| 3971 | QuicTime::Delta::FromMicroseconds(ack_delay_time_in_us); |
| 3972 | } |
| 3973 | if (!visitor_->OnAckFrameStart(QuicPacketNumber(largest_acked), |
| 3974 | ack_frame->ack_delay_time)) { |
| 3975 | // The visitor suppresses further processing of the packet. Although this is |
| 3976 | // not a parsing error, returns false as this is in middle of processing an |
| 3977 | // ACK frame. |
| 3978 | set_detailed_error("Visitor suppresses further processing of ACK frame."); |
| 3979 | return false; |
| 3980 | } |
| 3981 | |
| 3982 | // Get number of ACK blocks from the packet. |
| 3983 | uint64_t ack_block_count; |
| 3984 | if (!reader->ReadVarInt62(&ack_block_count)) { |
| 3985 | set_detailed_error("Unable to read ack block count."); |
| 3986 | return false; |
| 3987 | } |
| 3988 | // There always is a first ACK block, which is the (number of packets being |
| 3989 | // acked)-1, up to and including the packet at largest_acked. Therefore if the |
| 3990 | // value is 0, then only largest is acked. If it is 1, then largest-1, |
| 3991 | // largest] are acked, etc |
| 3992 | uint64_t ack_block_value; |
| 3993 | if (!reader->ReadVarInt62(&ack_block_value)) { |
| 3994 | set_detailed_error("Unable to read first ack block length."); |
| 3995 | return false; |
| 3996 | } |
| 3997 | // Calculate the packets being acked in the first block. |
| 3998 | // +1 because AddRange implementation requires [low,high) |
| 3999 | uint64_t block_high = largest_acked + 1; |
| 4000 | uint64_t block_low = largest_acked - ack_block_value; |
| 4001 | |
| 4002 | // ack_block_value is the number of packets preceding the |
| 4003 | // largest_acked packet which are in the block being acked. Thus, |
| 4004 | // its maximum value is largest_acked-1. Test this, reporting an |
| 4005 | // error if the value is wrong. |
| 4006 | if (ack_block_value + first_sending_packet_number_.ToUint64() > |
| 4007 | largest_acked) { |
| 4008 | set_detailed_error(absl::StrCat("Underflow with first ack block length ", |
| 4009 | ack_block_value + 1, " largest acked is ", |
| 4010 | largest_acked, ".") |
| 4011 | .c_str()); |
| 4012 | return false; |
| 4013 | } |
| 4014 | |
| 4015 | if (!visitor_->OnAckRange(QuicPacketNumber(block_low), |
| 4016 | QuicPacketNumber(block_high))) { |
| 4017 | // The visitor suppresses further processing of the packet. Although |
| 4018 | // this is not a parsing error, returns false as this is in middle |
| 4019 | // of processing an ACK frame. |
| 4020 | set_detailed_error("Visitor suppresses further processing of ACK frame."); |
| 4021 | return false; |
| 4022 | } |
| 4023 | |
| 4024 | while (ack_block_count != 0) { |
| 4025 | uint64_t gap_block_value; |
| 4026 | // Get the sizes of the gap and ack blocks, |
| 4027 | if (!reader->ReadVarInt62(&gap_block_value)) { |
| 4028 | set_detailed_error("Unable to read gap block value."); |
| 4029 | return false; |
| 4030 | } |
| 4031 | // It's an error if the gap is larger than the space from packet |
| 4032 | // number 0 to the start of the block that's just been acked, PLUS |
| 4033 | // there must be space for at least 1 packet to be acked. For |
| 4034 | // example, if block_low is 10 and gap_block_value is 9, it means |
| 4035 | // the gap block is 10 packets long, leaving no room for a packet |
| 4036 | // to be acked. Thus, gap_block_value+2 can not be larger than |
| 4037 | // block_low. |
| 4038 | // The test is written this way to detect wrap-arounds. |
| 4039 | if ((gap_block_value + 2) > block_low) { |
| 4040 | set_detailed_error( |
| 4041 | absl::StrCat("Underflow with gap block length ", gap_block_value + 1, |
| 4042 | " previous ack block start is ", block_low, ".") |
| 4043 | .c_str()); |
| 4044 | return false; |
| 4045 | } |
| 4046 | |
| 4047 | // Adjust block_high to be the top of the next ack block. |
| 4048 | // There is a gap of |gap_block_value| packets between the bottom |
| 4049 | // of ack block N and top of block N+1. Note that gap_block_value |
| 4050 | // is he size of the gap minus 1 (per the QUIC protocol), and |
| 4051 | // block_high is the packet number of the first packet of the gap |
| 4052 | // (per the implementation of OnAckRange/AddAckRange, below). |
| 4053 | block_high = block_low - 1 - gap_block_value; |
| 4054 | |
| 4055 | if (!reader->ReadVarInt62(&ack_block_value)) { |
| 4056 | set_detailed_error("Unable to read ack block value."); |
| 4057 | return false; |
| 4058 | } |
| 4059 | if (ack_block_value + first_sending_packet_number_.ToUint64() > |
| 4060 | (block_high - 1)) { |
| 4061 | set_detailed_error( |
| 4062 | absl::StrCat("Underflow with ack block length ", ack_block_value + 1, |
| 4063 | " latest ack block end is ", block_high - 1, ".") |
| 4064 | .c_str()); |
| 4065 | return false; |
| 4066 | } |
| 4067 | // Calculate the low end of the new nth ack block. The +1 is |
| 4068 | // because the encoded value is the blocksize-1. |
| 4069 | block_low = block_high - 1 - ack_block_value; |
| 4070 | if (!visitor_->OnAckRange(QuicPacketNumber(block_low), |
| 4071 | QuicPacketNumber(block_high))) { |
| 4072 | // The visitor suppresses further processing of the packet. Although |
| 4073 | // this is not a parsing error, returns false as this is in middle |
| 4074 | // of processing an ACK frame. |
| 4075 | set_detailed_error("Visitor suppresses further processing of ACK frame."); |
| 4076 | return false; |
| 4077 | } |
| 4078 | |
| 4079 | // Another one done. |
| 4080 | ack_block_count--; |
| 4081 | } |
| 4082 | |
| 4083 | if (frame_type == IETF_ACK_RECEIVE_TIMESTAMPS) { |
| 4084 | QUICHE_DCHECK(process_timestamps_); |
| 4085 | if (!ProcessIetfTimestampsInAckFrame(ack_frame->largest_acked, reader)) { |
| 4086 | return false; |
| 4087 | } |
| 4088 | } else if (frame_type == IETF_ACK_ECN) { |
| 4089 | ack_frame->ecn_counters_populated = true; |
| 4090 | if (!reader->ReadVarInt62(&ack_frame->ect_0_count)) { |
| 4091 | set_detailed_error("Unable to read ack ect_0_count."); |
| 4092 | return false; |
| 4093 | } |
| 4094 | if (!reader->ReadVarInt62(&ack_frame->ect_1_count)) { |
| 4095 | set_detailed_error("Unable to read ack ect_1_count."); |
| 4096 | return false; |
| 4097 | } |
| 4098 | if (!reader->ReadVarInt62(&ack_frame->ecn_ce_count)) { |
| 4099 | set_detailed_error("Unable to read ack ecn_ce_count."); |
| 4100 | return false; |
| 4101 | } |
| 4102 | } else { |
| 4103 | ack_frame->ecn_counters_populated = false; |
| 4104 | ack_frame->ect_0_count = 0; |
| 4105 | ack_frame->ect_1_count = 0; |
| 4106 | ack_frame->ecn_ce_count = 0; |
| 4107 | } |
| 4108 | // TODO(fayang): Report ECN counts to visitor when they are actually used. |
| 4109 | if (!visitor_->OnAckFrameEnd(QuicPacketNumber(block_low))) { |
| 4110 | set_detailed_error( |
| 4111 | "Error occurs when visitor finishes processing the ACK frame."); |
| 4112 | return false; |
| 4113 | } |
| 4114 | |
| 4115 | return true; |
| 4116 | } |
| 4117 | |
| 4118 | bool QuicFramer::ProcessIetfTimestampsInAckFrame(QuicPacketNumber largest_acked, |
| 4119 | QuicDataReader* reader) { |
| 4120 | uint64_t timestamp_range_count; |
| 4121 | if (!reader->ReadVarInt62(×tamp_range_count)) { |
| 4122 | set_detailed_error("Unable to read receive timestamp range count."); |
| 4123 | return false; |
| 4124 | } |
| 4125 | if (timestamp_range_count == 0) { |
| 4126 | return true; |
| 4127 | } |
| 4128 | |
| 4129 | QuicPacketNumber packet_number = largest_acked; |
| 4130 | |
| 4131 | // Iterate through all timestamp ranges, each of which represents a block of |
| 4132 | // contiguous packets for which receive timestamps are being reported. Each |
| 4133 | // range is of the form: |
| 4134 | // |
| 4135 | // Timestamp Range { |
| 4136 | // Gap (i), |
| 4137 | // Timestamp Delta Count (i), |
| 4138 | // Timestamp Delta (i) ..., |
| 4139 | // } |
| 4140 | for (uint64_t i = 0; i < timestamp_range_count; i++) { |
| 4141 | uint64_t gap; |
| 4142 | if (!reader->ReadVarInt62(&gap)) { |
| 4143 | set_detailed_error("Unable to read receive timestamp gap."); |
| 4144 | return false; |
| 4145 | } |
| 4146 | if (packet_number.ToUint64() < gap) { |
| 4147 | set_detailed_error("Receive timestamp gap too high."); |
| 4148 | return false; |
| 4149 | } |
| 4150 | packet_number = packet_number - gap; |
| 4151 | uint64_t timestamp_count; |
| 4152 | if (!reader->ReadVarInt62(×tamp_count)) { |
| 4153 | set_detailed_error("Unable to read receive timestamp count."); |
| 4154 | return false; |
| 4155 | } |
| 4156 | if (packet_number.ToUint64() < timestamp_count) { |
| 4157 | set_detailed_error("Receive timestamp count too high."); |
| 4158 | return false; |
| 4159 | } |
| 4160 | for (uint64_t j = 0; j < timestamp_count; j++) { |
| 4161 | uint64_t timestamp_delta; |
| 4162 | if (!reader->ReadVarInt62(×tamp_delta)) { |
| 4163 | set_detailed_error("Unable to read receive timestamp delta."); |
| 4164 | return false; |
| 4165 | } |
| 4166 | // The first timestamp delta is relative to framer creation time; whereas |
| 4167 | // subsequent deltas are relative to the previous delta in decreasing |
| 4168 | // packet order. |
| 4169 | timestamp_delta = timestamp_delta << receive_timestamps_exponent_; |
| 4170 | if (i == 0 && j == 0) { |
| 4171 | last_timestamp_ = QuicTime::Delta::FromMicroseconds(timestamp_delta); |
| 4172 | } else { |
| 4173 | last_timestamp_ = last_timestamp_ - |
| 4174 | QuicTime::Delta::FromMicroseconds(timestamp_delta); |
| 4175 | if (last_timestamp_ < QuicTime::Delta::Zero()) { |
| 4176 | set_detailed_error("Receive timestamp delta too high."); |
| 4177 | return false; |
| 4178 | } |
| 4179 | } |
| 4180 | visitor_->OnAckTimestamp(packet_number, creation_time_ + last_timestamp_); |
| 4181 | packet_number--; |
| 4182 | } |
| 4183 | packet_number--; |
| 4184 | } |
| 4185 | return true; |
| 4186 | } |
| 4187 | |
| 4188 | bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader, |
| 4189 | const QuicPacketHeader& header, |
| 4190 | QuicStopWaitingFrame* stop_waiting) { |
| 4191 | uint64_t least_unacked_delta; |
| 4192 | if (!reader->ReadBytesToUInt64(header.packet_number_length, |
| 4193 | &least_unacked_delta)) { |
| 4194 | set_detailed_error("Unable to read least unacked delta."); |
| 4195 | return false; |
| 4196 | } |
| 4197 | if (header.packet_number.ToUint64() <= least_unacked_delta) { |
| 4198 | set_detailed_error("Invalid unacked delta."); |
| 4199 | return false; |
| 4200 | } |
| 4201 | stop_waiting->least_unacked = header.packet_number - least_unacked_delta; |
| 4202 | |
| 4203 | return true; |
| 4204 | } |
| 4205 | |
| 4206 | bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader, |
| 4207 | QuicRstStreamFrame* frame) { |
| 4208 | if (!reader->ReadUInt32(&frame->stream_id)) { |
| 4209 | set_detailed_error("Unable to read stream_id."); |
| 4210 | return false; |
| 4211 | } |
| 4212 | |
| 4213 | if (!reader->ReadUInt64(&frame->byte_offset)) { |
| 4214 | set_detailed_error("Unable to read rst stream sent byte offset."); |
| 4215 | return false; |
| 4216 | } |
| 4217 | |
| 4218 | uint32_t error_code; |
| 4219 | if (!reader->ReadUInt32(&error_code)) { |
| 4220 | set_detailed_error("Unable to read rst stream error code."); |
| 4221 | return false; |
| 4222 | } |
| 4223 | |
| 4224 | if (error_code >= QUIC_STREAM_LAST_ERROR) { |
| 4225 | // Ignore invalid stream error code if any. |
| 4226 | error_code = QUIC_STREAM_LAST_ERROR; |
| 4227 | } |
| 4228 | |
| 4229 | frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code); |
| 4230 | |
| 4231 | return true; |
| 4232 | } |
| 4233 | |
| 4234 | bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader, |
| 4235 | QuicConnectionCloseFrame* frame) { |
| 4236 | uint32_t error_code; |
| 4237 | frame->close_type = GOOGLE_QUIC_CONNECTION_CLOSE; |
| 4238 | |
| 4239 | if (!reader->ReadUInt32(&error_code)) { |
| 4240 | set_detailed_error("Unable to read connection close error code."); |
| 4241 | return false; |
| 4242 | } |
| 4243 | |
| 4244 | // For Google QUIC connection closes, |wire_error_code| and |quic_error_code| |
| 4245 | // must have the same value. |
| 4246 | frame->wire_error_code = error_code; |
| 4247 | frame->quic_error_code = static_cast<QuicErrorCode>(error_code); |
| 4248 | |
| 4249 | absl::string_view error_details; |
| 4250 | if (!reader->ReadStringPiece16(&error_details)) { |
| 4251 | set_detailed_error("Unable to read connection close error details."); |
| 4252 | return false; |
| 4253 | } |
| 4254 | frame->error_details = std::string(error_details); |
| 4255 | |
| 4256 | return true; |
| 4257 | } |
| 4258 | |
| 4259 | bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader, |
| 4260 | QuicGoAwayFrame* frame) { |
| 4261 | uint32_t error_code; |
| 4262 | if (!reader->ReadUInt32(&error_code)) { |
| 4263 | set_detailed_error("Unable to read go away error code."); |
| 4264 | return false; |
| 4265 | } |
| 4266 | |
| 4267 | frame->error_code = static_cast<QuicErrorCode>(error_code); |
| 4268 | |
| 4269 | uint32_t stream_id; |
| 4270 | if (!reader->ReadUInt32(&stream_id)) { |
| 4271 | set_detailed_error("Unable to read last good stream id."); |
| 4272 | return false; |
| 4273 | } |
| 4274 | frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id); |
| 4275 | |
| 4276 | absl::string_view reason_phrase; |
| 4277 | if (!reader->ReadStringPiece16(&reason_phrase)) { |
| 4278 | set_detailed_error("Unable to read goaway reason."); |
| 4279 | return false; |
| 4280 | } |
| 4281 | frame->reason_phrase = std::string(reason_phrase); |
| 4282 | |
| 4283 | return true; |
| 4284 | } |
| 4285 | |
| 4286 | bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader, |
| 4287 | QuicWindowUpdateFrame* frame) { |
| 4288 | if (!reader->ReadUInt32(&frame->stream_id)) { |
| 4289 | set_detailed_error("Unable to read stream_id."); |
| 4290 | return false; |
| 4291 | } |
| 4292 | |
| 4293 | if (!reader->ReadUInt64(&frame->max_data)) { |
| 4294 | set_detailed_error("Unable to read window byte_offset."); |
| 4295 | return false; |
| 4296 | } |
| 4297 | |
| 4298 | return true; |
| 4299 | } |
| 4300 | |
| 4301 | bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader, |
| 4302 | QuicBlockedFrame* frame) { |
| 4303 | QUICHE_DCHECK(!VersionHasIetfQuicFrames(version_.transport_version)) |
| 4304 | << "Attempt to process non-IETF QUIC frames in an IETF QUIC version."; |
| 4305 | |
| 4306 | if (!reader->ReadUInt32(&frame->stream_id)) { |
| 4307 | set_detailed_error("Unable to read stream_id."); |
| 4308 | return false; |
| 4309 | } |
| 4310 | |
| 4311 | return true; |
| 4312 | } |
| 4313 | |
| 4314 | void QuicFramer::ProcessPaddingFrame(QuicDataReader* reader, |
| 4315 | QuicPaddingFrame* frame) { |
| 4316 | // Type byte has been read. |
| 4317 | frame->num_padding_bytes = 1; |
| 4318 | uint8_t next_byte; |
| 4319 | while (!reader->IsDoneReading() && reader->PeekByte() == 0x00) { |
| 4320 | reader->ReadBytes(&next_byte, 1); |
| 4321 | QUICHE_DCHECK_EQ(0x00, next_byte); |
| 4322 | ++frame->num_padding_bytes; |
| 4323 | } |
| 4324 | } |
| 4325 | |
| 4326 | bool QuicFramer::ProcessMessageFrame(QuicDataReader* reader, |
| 4327 | bool no_message_length, |
| 4328 | QuicMessageFrame* frame) { |
| 4329 | if (no_message_length) { |
| 4330 | absl::string_view remaining(reader->ReadRemainingPayload()); |
| 4331 | frame->data = remaining.data(); |
| 4332 | frame->message_length = remaining.length(); |
| 4333 | return true; |
| 4334 | } |
| 4335 | |
| 4336 | uint64_t message_length; |
| 4337 | if (!reader->ReadVarInt62(&message_length)) { |
| 4338 | set_detailed_error("Unable to read message length"); |
| 4339 | return false; |
| 4340 | } |
| 4341 | |
| 4342 | absl::string_view message_piece; |
| 4343 | if (!reader->ReadStringPiece(&message_piece, message_length)) { |
| 4344 | set_detailed_error("Unable to read message data"); |
| 4345 | return false; |
| 4346 | } |
| 4347 | |
| 4348 | frame->data = message_piece.data(); |
| 4349 | frame->message_length = message_length; |
| 4350 | |
| 4351 | return true; |
| 4352 | } |
| 4353 | |
| 4354 | // static |
| 4355 | absl::string_view QuicFramer::GetAssociatedDataFromEncryptedPacket( |
| 4356 | QuicTransportVersion version, const QuicEncryptedPacket& encrypted, |
| 4357 | QuicConnectionIdLength destination_connection_id_length, |
| 4358 | QuicConnectionIdLength source_connection_id_length, bool includes_version, |
| 4359 | bool includes_diversification_nonce, |
| 4360 | QuicPacketNumberLength packet_number_length, |
| 4361 | QuicVariableLengthIntegerLength retry_token_length_length, |
| 4362 | uint64_t retry_token_length, |
| 4363 | QuicVariableLengthIntegerLength length_length) { |
| 4364 | // TODO(ianswett): This is identical to QuicData::AssociatedData. |
| 4365 | return absl::string_view( |
| 4366 | encrypted.data(), |
| 4367 | GetStartOfEncryptedData(version, destination_connection_id_length, |
| 4368 | source_connection_id_length, includes_version, |
| 4369 | includes_diversification_nonce, |
| 4370 | packet_number_length, retry_token_length_length, |
| 4371 | retry_token_length, length_length)); |
| 4372 | } |
| 4373 | |
| 4374 | void QuicFramer::SetDecrypter(EncryptionLevel level, |
| 4375 | std::unique_ptr<QuicDecrypter> decrypter) { |
| 4376 | QUICHE_DCHECK_EQ(alternative_decrypter_level_, NUM_ENCRYPTION_LEVELS); |
| 4377 | QUICHE_DCHECK_GE(level, decrypter_level_); |
| 4378 | QUICHE_DCHECK(!version_.KnowsWhichDecrypterToUse()); |
| 4379 | QUIC_DVLOG(1) << ENDPOINT << "Setting decrypter from level " |
| 4380 | << decrypter_level_ << " to " << level; |
| 4381 | decrypter_[decrypter_level_] = nullptr; |
| 4382 | decrypter_[level] = std::move(decrypter); |
| 4383 | decrypter_level_ = level; |
| 4384 | } |
| 4385 | |
| 4386 | void QuicFramer::SetAlternativeDecrypter( |
| 4387 | EncryptionLevel level, std::unique_ptr<QuicDecrypter> decrypter, |
| 4388 | bool latch_once_used) { |
| 4389 | QUICHE_DCHECK_NE(level, decrypter_level_); |
| 4390 | QUICHE_DCHECK(!version_.KnowsWhichDecrypterToUse()); |
| 4391 | QUIC_DVLOG(1) << ENDPOINT << "Setting alternative decrypter from level " |
| 4392 | << alternative_decrypter_level_ << " to " << level; |
| 4393 | if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) { |
| 4394 | decrypter_[alternative_decrypter_level_] = nullptr; |
| 4395 | } |
| 4396 | decrypter_[level] = std::move(decrypter); |
| 4397 | alternative_decrypter_level_ = level; |
| 4398 | alternative_decrypter_latch_ = latch_once_used; |
| 4399 | } |
| 4400 | |
| 4401 | void QuicFramer::InstallDecrypter(EncryptionLevel level, |
| 4402 | std::unique_ptr<QuicDecrypter> decrypter) { |
| 4403 | QUICHE_DCHECK(version_.KnowsWhichDecrypterToUse()); |
| 4404 | QUIC_DVLOG(1) << ENDPOINT << "Installing decrypter at level " << level; |
| 4405 | decrypter_[level] = std::move(decrypter); |
| 4406 | } |
| 4407 | |
| 4408 | void QuicFramer::RemoveDecrypter(EncryptionLevel level) { |
| 4409 | QUICHE_DCHECK(version_.KnowsWhichDecrypterToUse()); |
| 4410 | QUIC_DVLOG(1) << ENDPOINT << "Removing decrypter at level " << level; |
| 4411 | decrypter_[level] = nullptr; |
| 4412 | } |
| 4413 | |
| 4414 | void QuicFramer::SetKeyUpdateSupportForConnection(bool enabled) { |
| 4415 | QUIC_DVLOG(1) << ENDPOINT << "SetKeyUpdateSupportForConnection: " << enabled; |
| 4416 | support_key_update_for_connection_ = enabled; |
| 4417 | } |
| 4418 | |
| 4419 | void QuicFramer::DiscardPreviousOneRttKeys() { |
| 4420 | QUICHE_DCHECK(support_key_update_for_connection_); |
| 4421 | QUIC_DVLOG(1) << ENDPOINT << "Discarding previous set of 1-RTT keys"; |
| 4422 | previous_decrypter_ = nullptr; |
| 4423 | } |
| 4424 | |
| 4425 | bool QuicFramer::DoKeyUpdate(KeyUpdateReason reason) { |
| 4426 | QUICHE_DCHECK(support_key_update_for_connection_); |
| 4427 | if (!next_decrypter_) { |
| 4428 | // If key update is locally initiated, next decrypter might not be created |
| 4429 | // yet. |
| 4430 | next_decrypter_ = visitor_->AdvanceKeysAndCreateCurrentOneRttDecrypter(); |
| 4431 | } |
| 4432 | std::unique_ptr<QuicEncrypter> next_encrypter = |
| 4433 | visitor_->CreateCurrentOneRttEncrypter(); |
| 4434 | if (!next_decrypter_ || !next_encrypter) { |
| 4435 | QUIC_BUG(quic_bug_10850_58) << "Failed to create next crypters"; |
| 4436 | return false; |
| 4437 | } |
| 4438 | key_update_performed_ = true; |
| 4439 | current_key_phase_bit_ = !current_key_phase_bit_; |
| 4440 | QUIC_DLOG(INFO) << ENDPOINT << "DoKeyUpdate: new current_key_phase_bit_=" |
| 4441 | << current_key_phase_bit_; |
| 4442 | current_key_phase_first_received_packet_number_.Clear(); |
| 4443 | previous_decrypter_ = std::move(decrypter_[ENCRYPTION_FORWARD_SECURE]); |
| 4444 | decrypter_[ENCRYPTION_FORWARD_SECURE] = std::move(next_decrypter_); |
| 4445 | encrypter_[ENCRYPTION_FORWARD_SECURE] = std::move(next_encrypter); |
| 4446 | switch (reason) { |
| 4447 | case KeyUpdateReason::kInvalid: |
| 4448 | QUIC_CODE_COUNT(quic_key_update_invalid); |
| 4449 | break; |
| 4450 | case KeyUpdateReason::kRemote: |
| 4451 | QUIC_CODE_COUNT(quic_key_update_remote); |
| 4452 | break; |
| 4453 | case KeyUpdateReason::kLocalForTests: |
| 4454 | QUIC_CODE_COUNT(quic_key_update_local_for_tests); |
| 4455 | break; |
| 4456 | case KeyUpdateReason::kLocalForInteropRunner: |
| 4457 | QUIC_CODE_COUNT(quic_key_update_local_for_interop_runner); |
| 4458 | break; |
| 4459 | case KeyUpdateReason::kLocalAeadConfidentialityLimit: |
| 4460 | QUIC_CODE_COUNT(quic_key_update_local_aead_confidentiality_limit); |
| 4461 | break; |
| 4462 | case KeyUpdateReason::kLocalKeyUpdateLimitOverride: |
| 4463 | QUIC_CODE_COUNT(quic_key_update_local_limit_override); |
| 4464 | break; |
| 4465 | } |
| 4466 | visitor_->OnKeyUpdate(reason); |
| 4467 | return true; |
| 4468 | } |
| 4469 | |
| 4470 | QuicPacketCount QuicFramer::PotentialPeerKeyUpdateAttemptCount() const { |
| 4471 | return potential_peer_key_update_attempt_count_; |
| 4472 | } |
| 4473 | |
| 4474 | const QuicDecrypter* QuicFramer::GetDecrypter(EncryptionLevel level) const { |
| 4475 | QUICHE_DCHECK(version_.KnowsWhichDecrypterToUse()); |
| 4476 | return decrypter_[level].get(); |
| 4477 | } |
| 4478 | |
| 4479 | const QuicDecrypter* QuicFramer::decrypter() const { |
| 4480 | return decrypter_[decrypter_level_].get(); |
| 4481 | } |
| 4482 | |
| 4483 | const QuicDecrypter* QuicFramer::alternative_decrypter() const { |
| 4484 | if (alternative_decrypter_level_ == NUM_ENCRYPTION_LEVELS) { |
| 4485 | return nullptr; |
| 4486 | } |
| 4487 | return decrypter_[alternative_decrypter_level_].get(); |
| 4488 | } |
| 4489 | |
| 4490 | void QuicFramer::SetEncrypter(EncryptionLevel level, |
| 4491 | std::unique_ptr<QuicEncrypter> encrypter) { |
| 4492 | QUICHE_DCHECK_GE(level, 0); |
| 4493 | QUICHE_DCHECK_LT(level, NUM_ENCRYPTION_LEVELS); |
| 4494 | QUIC_DVLOG(1) << ENDPOINT << "Setting encrypter at level " << level; |
| 4495 | encrypter_[level] = std::move(encrypter); |
| 4496 | } |
| 4497 | |
| 4498 | void QuicFramer::RemoveEncrypter(EncryptionLevel level) { |
| 4499 | QUIC_DVLOG(1) << ENDPOINT << "Removing encrypter of " << level; |
| 4500 | encrypter_[level] = nullptr; |
| 4501 | } |
| 4502 | |
| 4503 | void QuicFramer::SetInitialObfuscators(QuicConnectionId connection_id) { |
| 4504 | CrypterPair crypters; |
| 4505 | CryptoUtils::CreateInitialObfuscators(perspective_, version_, connection_id, |
| 4506 | &crypters); |
| 4507 | encrypter_[ENCRYPTION_INITIAL] = std::move(crypters.encrypter); |
| 4508 | decrypter_[ENCRYPTION_INITIAL] = std::move(crypters.decrypter); |
| 4509 | } |
| 4510 | |
| 4511 | size_t QuicFramer::EncryptInPlace(EncryptionLevel level, |
| 4512 | QuicPacketNumber packet_number, size_t ad_len, |
| 4513 | size_t total_len, size_t buffer_len, |
| 4514 | char* buffer) { |
| 4515 | QUICHE_DCHECK(packet_number.IsInitialized()); |
| 4516 | if (encrypter_[level] == nullptr) { |
| 4517 | QUIC_BUG(quic_bug_10850_59) |
| 4518 | << ENDPOINT |
| 4519 | << "Attempted to encrypt in place without encrypter at level " << level; |
| 4520 | RaiseError(QUIC_ENCRYPTION_FAILURE); |
| 4521 | return 0; |
| 4522 | } |
| 4523 | |
| 4524 | size_t output_length = 0; |
| 4525 | if (!encrypter_[level]->EncryptPacket( |
| 4526 | packet_number.ToUint64(), |
| 4527 | absl::string_view(buffer, ad_len), // Associated data |
| 4528 | absl::string_view(buffer + ad_len, |
| 4529 | total_len - ad_len), // Plaintext |
| 4530 | buffer + ad_len, // Destination buffer |
| 4531 | &output_length, buffer_len - ad_len)) { |
| 4532 | RaiseError(QUIC_ENCRYPTION_FAILURE); |
| 4533 | return 0; |
| 4534 | } |
| 4535 | if (version_.HasHeaderProtection() && |
| 4536 | !ApplyHeaderProtection(level, buffer, ad_len + output_length, ad_len)) { |
| 4537 | QUIC_DLOG(ERROR) << "Applying header protection failed."; |
| 4538 | RaiseError(QUIC_ENCRYPTION_FAILURE); |
| 4539 | return 0; |
| 4540 | } |
| 4541 | |
| 4542 | return ad_len + output_length; |
| 4543 | } |
| 4544 | |
| 4545 | namespace { |
| 4546 | |
| 4547 | const size_t kHPSampleLen = 16; |
| 4548 | |
| 4549 | constexpr bool IsLongHeader(uint8_t type_byte) { |
| 4550 | return (type_byte & FLAGS_LONG_HEADER) != 0; |
| 4551 | } |
| 4552 | |
| 4553 | } // namespace |
| 4554 | |
| 4555 | bool QuicFramer::ApplyHeaderProtection(EncryptionLevel level, char* buffer, |
| 4556 | size_t buffer_len, size_t ad_len) { |
| 4557 | QuicDataReader buffer_reader(buffer, buffer_len); |
| 4558 | QuicDataWriter buffer_writer(buffer_len, buffer); |
| 4559 | // The sample starts 4 bytes after the start of the packet number. |
| 4560 | if (ad_len < last_written_packet_number_length_) { |
| 4561 | return false; |
| 4562 | } |
| 4563 | size_t pn_offset = ad_len - last_written_packet_number_length_; |
| 4564 | // Sample the ciphertext and generate the mask to use for header protection. |
| 4565 | size_t sample_offset = pn_offset + 4; |
| 4566 | QuicDataReader sample_reader(buffer, buffer_len); |
| 4567 | absl::string_view sample; |
| 4568 | if (!sample_reader.Seek(sample_offset) || |
| 4569 | !sample_reader.ReadStringPiece(&sample, kHPSampleLen)) { |
| 4570 | QUIC_BUG(quic_bug_10850_60) |
| 4571 | << "Not enough bytes to sample: sample_offset " << sample_offset |
| 4572 | << ", sample len: " << kHPSampleLen << ", buffer len: " << buffer_len; |
| 4573 | return false; |
| 4574 | } |
| 4575 | |
| 4576 | if (encrypter_[level] == nullptr) { |
| 4577 | QUIC_BUG(quic_bug_12975_8) |
| 4578 | << ENDPOINT |
| 4579 | << "Attempted to apply header protection without encrypter at level " |
| 4580 | << level << " using " << version_; |
| 4581 | return false; |
| 4582 | } |
| 4583 | |
| 4584 | std::string mask = encrypter_[level]->GenerateHeaderProtectionMask(sample); |
| 4585 | if (mask.empty()) { |
| 4586 | QUIC_BUG(quic_bug_10850_61) << "Unable to generate header protection mask."; |
| 4587 | return false; |
| 4588 | } |
| 4589 | QuicDataReader mask_reader(mask.data(), mask.size()); |
| 4590 | |
| 4591 | // Apply the mask to the 4 or 5 least significant bits of the first byte. |
| 4592 | uint8_t bitmask = 0x1f; |
| 4593 | uint8_t type_byte; |
| 4594 | if (!buffer_reader.ReadUInt8(&type_byte)) { |
| 4595 | return false; |
| 4596 | } |
| 4597 | QuicLongHeaderType header_type; |
| 4598 | if (IsLongHeader(type_byte)) { |
| 4599 | bitmask = 0x0f; |
| 4600 | header_type = GetLongHeaderType(type_byte, version_); |
| 4601 | if (header_type == INVALID_PACKET_TYPE) { |
| 4602 | return false; |
| 4603 | } |
| 4604 | } |
| 4605 | uint8_t mask_byte; |
| 4606 | if (!mask_reader.ReadUInt8(&mask_byte) || |
| 4607 | !buffer_writer.WriteUInt8(type_byte ^ (mask_byte & bitmask))) { |
| 4608 | return false; |
| 4609 | } |
| 4610 | |
| 4611 | // Adjust |pn_offset| to account for the diversification nonce. |
| 4612 | if (IsLongHeader(type_byte) && header_type == ZERO_RTT_PROTECTED && |
| 4613 | perspective_ == Perspective::IS_SERVER && |
| 4614 | version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { |
| 4615 | if (pn_offset <= kDiversificationNonceSize) { |
| 4616 | QUIC_BUG(quic_bug_10850_62) |
| 4617 | << "Expected diversification nonce, but not enough bytes"; |
| 4618 | return false; |
| 4619 | } |
| 4620 | pn_offset -= kDiversificationNonceSize; |
| 4621 | } |
| 4622 | // Advance the reader and writer to the packet number. Both the reader and |
| 4623 | // writer have each read/written one byte. |
| 4624 | if (!buffer_writer.Seek(pn_offset - 1) || |
| 4625 | !buffer_reader.Seek(pn_offset - 1)) { |
| 4626 | return false; |
| 4627 | } |
| 4628 | // Apply the rest of the mask to the packet number. |
| 4629 | for (size_t i = 0; i < last_written_packet_number_length_; ++i) { |
| 4630 | uint8_t buffer_byte; |
| 4631 | uint8_t mask_byte; |
| 4632 | if (!mask_reader.ReadUInt8(&mask_byte) || |
| 4633 | !buffer_reader.ReadUInt8(&buffer_byte) || |
| 4634 | !buffer_writer.WriteUInt8(buffer_byte ^ mask_byte)) { |
| 4635 | return false; |
| 4636 | } |
| 4637 | } |
| 4638 | return true; |
| 4639 | } |
| 4640 | |
| 4641 | bool QuicFramer::RemoveHeaderProtection(QuicDataReader* reader, |
| 4642 | const QuicEncryptedPacket& packet, |
| 4643 | QuicPacketHeader* header, |
| 4644 | uint64_t* full_packet_number, |
| 4645 | std::vector<char>* associated_data) { |
| 4646 | EncryptionLevel expected_decryption_level = GetEncryptionLevel(*header); |
| 4647 | QuicDecrypter* decrypter = decrypter_[expected_decryption_level].get(); |
| 4648 | if (decrypter == nullptr) { |
| 4649 | QUIC_DVLOG(1) |
| 4650 | << ENDPOINT |
| 4651 | << "No decrypter available for removing header protection at level " |
| 4652 | << expected_decryption_level; |
| 4653 | return false; |
| 4654 | } |
| 4655 | |
| 4656 | bool has_diversification_nonce = |
| 4657 | header->form == IETF_QUIC_LONG_HEADER_PACKET && |
| 4658 | header->long_packet_type == ZERO_RTT_PROTECTED && |
| 4659 | perspective_ == Perspective::IS_CLIENT && |
| 4660 | version_.handshake_protocol == PROTOCOL_QUIC_CRYPTO; |
| 4661 | |
| 4662 | // Read a sample from the ciphertext and compute the mask to use for header |
| 4663 | // protection. |
| 4664 | absl::string_view remaining_packet = reader->PeekRemainingPayload(); |
| 4665 | QuicDataReader sample_reader(remaining_packet); |
| 4666 | |
| 4667 | // The sample starts 4 bytes after the start of the packet number. |
| 4668 | absl::string_view pn; |
| 4669 | if (!sample_reader.ReadStringPiece(&pn, 4)) { |
| 4670 | QUIC_DVLOG(1) << "Not enough data to sample"; |
| 4671 | return false; |
| 4672 | } |
| 4673 | if (has_diversification_nonce) { |
| 4674 | // In Google QUIC, the diversification nonce comes between the packet number |
| 4675 | // and the sample. |
| 4676 | if (!sample_reader.Seek(kDiversificationNonceSize)) { |
| 4677 | QUIC_DVLOG(1) << "No diversification nonce to skip over"; |
| 4678 | return false; |
| 4679 | } |
| 4680 | } |
| 4681 | std::string mask = decrypter->GenerateHeaderProtectionMask(&sample_reader); |
| 4682 | QuicDataReader mask_reader(mask.data(), mask.size()); |
| 4683 | if (mask.empty()) { |
| 4684 | QUIC_DVLOG(1) << "Failed to compute mask"; |
| 4685 | return false; |
| 4686 | } |
| 4687 | |
| 4688 | // Unmask the rest of the type byte. |
| 4689 | uint8_t bitmask = 0x1f; |
| 4690 | if (IsLongHeader(header->type_byte)) { |
| 4691 | bitmask = 0x0f; |
| 4692 | } |
| 4693 | uint8_t mask_byte; |
| 4694 | if (!mask_reader.ReadUInt8(&mask_byte)) { |
| 4695 | QUIC_DVLOG(1) << "No first byte to read from mask"; |
| 4696 | return false; |
| 4697 | } |
| 4698 | header->type_byte ^= (mask_byte & bitmask); |
| 4699 | |
| 4700 | // Compute the packet number length. |
| 4701 | header->packet_number_length = |
| 4702 | static_cast<QuicPacketNumberLength>((header->type_byte & 0x03) + 1); |
| 4703 | |
| 4704 | char pn_buffer[IETF_MAX_PACKET_NUMBER_LENGTH] = {}; |
| 4705 | QuicDataWriter pn_writer(ABSL_ARRAYSIZE(pn_buffer), pn_buffer); |
| 4706 | |
| 4707 | // Read the (protected) packet number from the reader and unmask the packet |
| 4708 | // number. |
| 4709 | for (size_t i = 0; i < header->packet_number_length; ++i) { |
| 4710 | uint8_t protected_pn_byte, mask_byte; |
| 4711 | if (!mask_reader.ReadUInt8(&mask_byte) || |
| 4712 | !reader->ReadUInt8(&protected_pn_byte) || |
| 4713 | !pn_writer.WriteUInt8(protected_pn_byte ^ mask_byte)) { |
| 4714 | QUIC_DVLOG(1) << "Failed to unmask packet number"; |
| 4715 | return false; |
| 4716 | } |
| 4717 | } |
| 4718 | QuicDataReader packet_number_reader(pn_writer.data(), pn_writer.length()); |
| 4719 | QuicPacketNumber base_packet_number; |
| 4720 | if (supports_multiple_packet_number_spaces_) { |
| 4721 | PacketNumberSpace pn_space = GetPacketNumberSpace(*header); |
| 4722 | if (pn_space == NUM_PACKET_NUMBER_SPACES) { |
| 4723 | return false; |
| 4724 | } |
| 4725 | base_packet_number = largest_decrypted_packet_numbers_[pn_space]; |
| 4726 | } else { |
| 4727 | base_packet_number = largest_packet_number_; |
| 4728 | } |
| 4729 | if (!ProcessAndCalculatePacketNumber( |
| 4730 | &packet_number_reader, header->packet_number_length, |
| 4731 | base_packet_number, full_packet_number)) { |
| 4732 | return false; |
| 4733 | } |
| 4734 | |
| 4735 | // Get the associated data, and apply the same unmasking operations to it. |
| 4736 | absl::string_view ad = GetAssociatedDataFromEncryptedPacket( |
| 4737 | version_.transport_version, packet, |
| 4738 | GetIncludedDestinationConnectionIdLength(*header), |
| 4739 | GetIncludedSourceConnectionIdLength(*header), header->version_flag, |
| 4740 | has_diversification_nonce, header->packet_number_length, |
| 4741 | header->retry_token_length_length, header->retry_token.length(), |
| 4742 | header->length_length); |
| 4743 | *associated_data = std::vector<char>(ad.begin(), ad.end()); |
| 4744 | QuicDataWriter ad_writer(associated_data->size(), associated_data->data()); |
| 4745 | |
| 4746 | // Apply the unmasked type byte and packet number to |associated_data|. |
| 4747 | if (!ad_writer.WriteUInt8(header->type_byte)) { |
| 4748 | return false; |
| 4749 | } |
| 4750 | // Put the packet number at the end of the AD, or if there's a diversification |
| 4751 | // nonce, before that (which is at the end of the AD). |
| 4752 | size_t seek_len = ad_writer.remaining() - header->packet_number_length; |
| 4753 | if (has_diversification_nonce) { |
| 4754 | seek_len -= kDiversificationNonceSize; |
| 4755 | } |
| 4756 | if (!ad_writer.Seek(seek_len) || |
| 4757 | !ad_writer.WriteBytes(pn_writer.data(), pn_writer.length())) { |
| 4758 | QUIC_DVLOG(1) << "Failed to apply unmasking operations to AD"; |
| 4759 | return false; |
| 4760 | } |
| 4761 | |
| 4762 | return true; |
| 4763 | } |
| 4764 | |
| 4765 | size_t QuicFramer::EncryptPayload(EncryptionLevel level, |
| 4766 | QuicPacketNumber packet_number, |
| 4767 | const QuicPacket& packet, char* buffer, |
| 4768 | size_t buffer_len) { |
| 4769 | QUICHE_DCHECK(packet_number.IsInitialized()); |
| 4770 | if (encrypter_[level] == nullptr) { |
| 4771 | QUIC_BUG(quic_bug_10850_63) |
| 4772 | << ENDPOINT << "Attempted to encrypt without encrypter at level " |
| 4773 | << level; |
| 4774 | RaiseError(QUIC_ENCRYPTION_FAILURE); |
| 4775 | return 0; |
| 4776 | } |
| 4777 | |
| 4778 | absl::string_view associated_data = |
| 4779 | packet.AssociatedData(version_.transport_version); |
| 4780 | // Copy in the header, because the encrypter only populates the encrypted |
| 4781 | // plaintext content. |
| 4782 | const size_t ad_len = associated_data.length(); |
| 4783 | if (packet.length() < ad_len) { |
| 4784 | QUIC_BUG(quic_bug_10850_64) |
| 4785 | << ENDPOINT << "packet is shorter than associated data length. version:" |
| 4786 | << version() << ", packet length:" << packet.length() |
| 4787 | << ", associated data length:" << ad_len; |
| 4788 | RaiseError(QUIC_ENCRYPTION_FAILURE); |
| 4789 | return 0; |
| 4790 | } |
| 4791 | memmove(buffer, associated_data.data(), ad_len); |
| 4792 | // Encrypt the plaintext into the buffer. |
| 4793 | size_t output_length = 0; |
| 4794 | if (!encrypter_[level]->EncryptPacket( |
| 4795 | packet_number.ToUint64(), associated_data, |
| 4796 | packet.Plaintext(version_.transport_version), buffer + ad_len, |
| 4797 | &output_length, buffer_len - ad_len)) { |
| 4798 | RaiseError(QUIC_ENCRYPTION_FAILURE); |
| 4799 | return 0; |
| 4800 | } |
| 4801 | if (version_.HasHeaderProtection() && |
| 4802 | !ApplyHeaderProtection(level, buffer, ad_len + output_length, ad_len)) { |
| 4803 | QUIC_DLOG(ERROR) << "Applying header protection failed."; |
| 4804 | RaiseError(QUIC_ENCRYPTION_FAILURE); |
| 4805 | return 0; |
| 4806 | } |
| 4807 | |
| 4808 | return ad_len + output_length; |
| 4809 | } |
| 4810 | |
| 4811 | size_t QuicFramer::GetCiphertextSize(EncryptionLevel level, |
| 4812 | size_t plaintext_size) const { |
| 4813 | if (encrypter_[level] == nullptr) { |
| 4814 | QUIC_BUG(quic_bug_10850_65) |
| 4815 | << ENDPOINT |
| 4816 | << "Attempted to get ciphertext size without encrypter at level " |
| 4817 | << level << " using " << version_; |
| 4818 | return plaintext_size; |
| 4819 | } |
| 4820 | return encrypter_[level]->GetCiphertextSize(plaintext_size); |
| 4821 | } |
| 4822 | |
| 4823 | size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) { |
| 4824 | // In order to keep the code simple, we don't have the current encryption |
| 4825 | // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12. |
| 4826 | size_t min_plaintext_size = ciphertext_size; |
| 4827 | |
| 4828 | for (int i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; i++) { |
| 4829 | if (encrypter_[i] != nullptr) { |
| 4830 | size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size); |
| 4831 | if (size < min_plaintext_size) { |
| 4832 | min_plaintext_size = size; |
| 4833 | } |
| 4834 | } |
| 4835 | } |
| 4836 | |
| 4837 | return min_plaintext_size; |
| 4838 | } |
| 4839 | |
| 4840 | QuicPacketCount QuicFramer::GetOneRttEncrypterConfidentialityLimit() const { |
| 4841 | if (!encrypter_[ENCRYPTION_FORWARD_SECURE]) { |
| 4842 | QUIC_BUG(quic_bug_10850_66) << "1-RTT encrypter not set"; |
| 4843 | return 0; |
| 4844 | } |
| 4845 | return encrypter_[ENCRYPTION_FORWARD_SECURE]->GetConfidentialityLimit(); |
| 4846 | } |
| 4847 | |
| 4848 | bool QuicFramer::DecryptPayload(size_t udp_packet_length, |
| 4849 | absl::string_view encrypted, |
| 4850 | absl::string_view associated_data, |
| 4851 | const QuicPacketHeader& header, |
| 4852 | char* decrypted_buffer, size_t buffer_length, |
| 4853 | size_t* decrypted_length, |
| 4854 | EncryptionLevel* decrypted_level) { |
| 4855 | if (!EncryptionLevelIsValid(decrypter_level_)) { |
| 4856 | QUIC_BUG(quic_bug_10850_67) |
| 4857 | << "Attempted to decrypt with bad decrypter_level_"; |
| 4858 | return false; |
| 4859 | } |
| 4860 | EncryptionLevel level = decrypter_level_; |
| 4861 | QuicDecrypter* decrypter = decrypter_[level].get(); |
| 4862 | QuicDecrypter* alternative_decrypter = nullptr; |
| 4863 | bool key_phase_parsed = false; |
| 4864 | bool key_phase; |
| 4865 | bool attempt_key_update = false; |
| 4866 | if (version().KnowsWhichDecrypterToUse()) { |
| 4867 | if (header.form == GOOGLE_QUIC_PACKET) { |
| 4868 | QUIC_BUG(quic_bug_10850_68) |
| 4869 | << "Attempted to decrypt GOOGLE_QUIC_PACKET with a version that " |
| 4870 | "knows which decrypter to use"; |
| 4871 | return false; |
| 4872 | } |
| 4873 | level = GetEncryptionLevel(header); |
| 4874 | if (!EncryptionLevelIsValid(level)) { |
| 4875 | QUIC_BUG(quic_bug_10850_69) << "Attempted to decrypt with bad level"; |
| 4876 | return false; |
| 4877 | } |
| 4878 | decrypter = decrypter_[level].get(); |
| 4879 | if (decrypter == nullptr) { |
| 4880 | return false; |
| 4881 | } |
| 4882 | if (level == ENCRYPTION_ZERO_RTT && |
| 4883 | perspective_ == Perspective::IS_CLIENT && header.nonce != nullptr) { |
| 4884 | decrypter->SetDiversificationNonce(*header.nonce); |
| 4885 | } |
| 4886 | if (support_key_update_for_connection_ && |
| 4887 | header.form == IETF_QUIC_SHORT_HEADER_PACKET) { |
| 4888 | QUICHE_DCHECK(version().UsesTls()); |
| 4889 | QUICHE_DCHECK_EQ(level, ENCRYPTION_FORWARD_SECURE); |
| 4890 | key_phase = (header.type_byte & FLAGS_KEY_PHASE_BIT) != 0; |
| 4891 | key_phase_parsed = true; |
| 4892 | QUIC_DVLOG(1) << ENDPOINT << "packet " << header.packet_number |
| 4893 | << " received key_phase=" << key_phase |
| 4894 | << " current_key_phase_bit_=" << current_key_phase_bit_; |
| 4895 | if (key_phase != current_key_phase_bit_) { |
| 4896 | if ((current_key_phase_first_received_packet_number_.IsInitialized() && |
| 4897 | header.packet_number > |
| 4898 | current_key_phase_first_received_packet_number_) || |
| 4899 | (!current_key_phase_first_received_packet_number_.IsInitialized() && |
| 4900 | !key_update_performed_)) { |
| 4901 | if (!next_decrypter_) { |
| 4902 | next_decrypter_ = |
| 4903 | visitor_->AdvanceKeysAndCreateCurrentOneRttDecrypter(); |
| 4904 | if (!next_decrypter_) { |
| 4905 | QUIC_BUG(quic_bug_10850_70) << "Failed to create next_decrypter"; |
| 4906 | return false; |
| 4907 | } |
| 4908 | } |
| 4909 | QUIC_DVLOG(1) << ENDPOINT << "packet " << header.packet_number |
| 4910 | << " attempt_key_update=true"; |
| 4911 | attempt_key_update = true; |
| 4912 | potential_peer_key_update_attempt_count_++; |
| 4913 | decrypter = next_decrypter_.get(); |
| 4914 | } else { |
| 4915 | if (previous_decrypter_) { |
| 4916 | QUIC_DVLOG(1) << ENDPOINT |
| 4917 | << "trying previous_decrypter_ for packet " |
| 4918 | << header.packet_number; |
| 4919 | decrypter = previous_decrypter_.get(); |
| 4920 | } else { |
| 4921 | QUIC_DVLOG(1) << ENDPOINT << "dropping packet " |
| 4922 | << header.packet_number << " with old key phase"; |
| 4923 | return false; |
| 4924 | } |
| 4925 | } |
| 4926 | } |
| 4927 | } |
| 4928 | } else if (alternative_decrypter_level_ != NUM_ENCRYPTION_LEVELS) { |
| 4929 | if (!EncryptionLevelIsValid(alternative_decrypter_level_)) { |
| 4930 | QUIC_BUG(quic_bug_10850_71) |
| 4931 | << "Attempted to decrypt with bad alternative_decrypter_level_"; |
| 4932 | return false; |
| 4933 | } |
| 4934 | alternative_decrypter = decrypter_[alternative_decrypter_level_].get(); |
| 4935 | } |
| 4936 | |
| 4937 | if (decrypter == nullptr) { |
| 4938 | QUIC_BUG(quic_bug_10850_72) |
| 4939 | << "Attempting to decrypt without decrypter, encryption level:" << level |
| 4940 | << " version:" << version(); |
| 4941 | return false; |
| 4942 | } |
| 4943 | |
| 4944 | bool success = decrypter->DecryptPacket( |
| 4945 | header.packet_number.ToUint64(), associated_data, encrypted, |
| 4946 | decrypted_buffer, decrypted_length, buffer_length); |
| 4947 | if (success) { |
| 4948 | visitor_->OnDecryptedPacket(udp_packet_length, level); |
| 4949 | if (level == ENCRYPTION_ZERO_RTT && |
| 4950 | current_key_phase_first_received_packet_number_.IsInitialized() && |
| 4951 | header.packet_number > |
| 4952 | current_key_phase_first_received_packet_number_) { |
| 4953 | set_detailed_error(absl::StrCat( |
| 4954 | "Decrypted a 0-RTT packet with a packet number ", |
| 4955 | header.packet_number.ToString(), |
| 4956 | " which is higher than a 1-RTT packet number ", |
| 4957 | current_key_phase_first_received_packet_number_.ToString())); |
| 4958 | return RaiseError(QUIC_INVALID_0RTT_PACKET_NUMBER_OUT_OF_ORDER); |
| 4959 | } |
| 4960 | *decrypted_level = level; |
| 4961 | potential_peer_key_update_attempt_count_ = 0; |
| 4962 | if (attempt_key_update) { |
| 4963 | if (!DoKeyUpdate(KeyUpdateReason::kRemote)) { |
| 4964 | set_detailed_error("Key update failed due to internal error"); |
| 4965 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 4966 | } |
| 4967 | QUICHE_DCHECK_EQ(current_key_phase_bit_, key_phase); |
| 4968 | } |
| 4969 | if (key_phase_parsed && |
| 4970 | !current_key_phase_first_received_packet_number_.IsInitialized() && |
| 4971 | key_phase == current_key_phase_bit_) { |
| 4972 | // Set packet number for current key phase if it hasn't been initialized |
| 4973 | // yet. This is set outside of attempt_key_update since the key update |
| 4974 | // may have been initiated locally, and in that case we don't know yet |
| 4975 | // which packet number from the remote side to use until we receive a |
| 4976 | // packet with that phase. |
| 4977 | QUIC_DVLOG(1) << ENDPOINT |
| 4978 | << "current_key_phase_first_received_packet_number_ = " |
| 4979 | << header.packet_number; |
| 4980 | current_key_phase_first_received_packet_number_ = header.packet_number; |
| 4981 | visitor_->OnDecryptedFirstPacketInKeyPhase(); |
| 4982 | } |
| 4983 | } else if (alternative_decrypter != nullptr) { |
| 4984 | if (header.nonce != nullptr) { |
| 4985 | QUICHE_DCHECK_EQ(perspective_, Perspective::IS_CLIENT); |
| 4986 | alternative_decrypter->SetDiversificationNonce(*header.nonce); |
| 4987 | } |
| 4988 | bool try_alternative_decryption = true; |
| 4989 | if (alternative_decrypter_level_ == ENCRYPTION_ZERO_RTT) { |
| 4990 | if (perspective_ == Perspective::IS_CLIENT) { |
| 4991 | if (header.nonce == nullptr) { |
| 4992 | // Can not use INITIAL decryption without a diversification nonce. |
| 4993 | try_alternative_decryption = false; |
| 4994 | } |
| 4995 | } else { |
| 4996 | QUICHE_DCHECK(header.nonce == nullptr); |
| 4997 | } |
| 4998 | } |
| 4999 | |
| 5000 | if (try_alternative_decryption) { |
| 5001 | success = alternative_decrypter->DecryptPacket( |
| 5002 | header.packet_number.ToUint64(), associated_data, encrypted, |
| 5003 | decrypted_buffer, decrypted_length, buffer_length); |
| 5004 | } |
| 5005 | if (success) { |
| 5006 | visitor_->OnDecryptedPacket(udp_packet_length, |
| 5007 | alternative_decrypter_level_); |
| 5008 | *decrypted_level = decrypter_level_; |
| 5009 | if (alternative_decrypter_latch_) { |
| 5010 | if (!EncryptionLevelIsValid(alternative_decrypter_level_)) { |
| 5011 | QUIC_BUG(quic_bug_10850_73) |
| 5012 | << "Attempted to latch alternate decrypter with bad " |
| 5013 | "alternative_decrypter_level_"; |
| 5014 | return false; |
| 5015 | } |
| 5016 | // Switch to the alternative decrypter and latch so that we cannot |
| 5017 | // switch back. |
| 5018 | decrypter_level_ = alternative_decrypter_level_; |
| 5019 | alternative_decrypter_level_ = NUM_ENCRYPTION_LEVELS; |
| 5020 | } else { |
| 5021 | // Switch the alternative decrypter so that we use it first next time. |
| 5022 | EncryptionLevel level = alternative_decrypter_level_; |
| 5023 | alternative_decrypter_level_ = decrypter_level_; |
| 5024 | decrypter_level_ = level; |
| 5025 | } |
| 5026 | } |
| 5027 | } |
| 5028 | |
| 5029 | if (!success) { |
| 5030 | QUIC_DVLOG(1) << ENDPOINT << "DecryptPacket failed for: " << header; |
| 5031 | return false; |
| 5032 | } |
| 5033 | |
| 5034 | return true; |
| 5035 | } |
| 5036 | |
| 5037 | size_t QuicFramer::GetIetfAckFrameSize(const QuicAckFrame& frame) { |
| 5038 | // Type byte, largest_acked, and delay_time are straight-forward. |
| 5039 | size_t ack_frame_size = kQuicFrameTypeSize; |
| 5040 | QuicPacketNumber largest_acked = LargestAcked(frame); |
| 5041 | ack_frame_size += QuicDataWriter::GetVarInt62Len(largest_acked.ToUint64()); |
| 5042 | uint64_t ack_delay_time_us; |
| 5043 | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); |
| 5044 | ack_delay_time_us = ack_delay_time_us >> local_ack_delay_exponent_; |
| 5045 | ack_frame_size += QuicDataWriter::GetVarInt62Len(ack_delay_time_us); |
| 5046 | |
| 5047 | if (frame.packets.Empty() || frame.packets.Max() != largest_acked) { |
| 5048 | QUIC_BUG(quic_bug_10850_74) << "Malformed ack frame"; |
| 5049 | // ACK frame serialization will fail and connection will be closed. |
| 5050 | return ack_frame_size; |
| 5051 | } |
| 5052 | |
| 5053 | // Ack block count. |
| 5054 | ack_frame_size += |
| 5055 | QuicDataWriter::GetVarInt62Len(frame.packets.NumIntervals() - 1); |
| 5056 | |
| 5057 | // First Ack range. |
| 5058 | auto iter = frame.packets.rbegin(); |
| 5059 | ack_frame_size += QuicDataWriter::GetVarInt62Len(iter->Length() - 1); |
| 5060 | QuicPacketNumber previous_smallest = iter->min(); |
| 5061 | ++iter; |
| 5062 | |
| 5063 | // Ack blocks. |
| 5064 | for (; iter != frame.packets.rend(); ++iter) { |
| 5065 | const uint64_t gap = previous_smallest - iter->max() - 1; |
| 5066 | const uint64_t ack_range = iter->Length() - 1; |
| 5067 | ack_frame_size += (QuicDataWriter::GetVarInt62Len(gap) + |
| 5068 | QuicDataWriter::GetVarInt62Len(ack_range)); |
| 5069 | previous_smallest = iter->min(); |
| 5070 | } |
| 5071 | |
| 5072 | if (UseIetfAckWithReceiveTimestamp(frame)) { |
| 5073 | ack_frame_size += GetIetfAckFrameTimestampSize(frame); |
| 5074 | } else if (frame.ecn_counters_populated && |
| 5075 | (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { |
| 5076 | // ECN counts. |
| 5077 | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_0_count); |
| 5078 | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ect_1_count); |
| 5079 | ack_frame_size += QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count); |
| 5080 | } |
| 5081 | |
| 5082 | return ack_frame_size; |
| 5083 | } |
| 5084 | |
| 5085 | size_t QuicFramer::GetIetfAckFrameTimestampSize(const QuicAckFrame& ack) { |
| 5086 | QUICHE_DCHECK(!ack.received_packet_times.empty()); |
| 5087 | std::string detailed_error; |
| 5088 | absl::InlinedVector<AckTimestampRange, 2> timestamp_ranges = |
| 5089 | GetAckTimestampRanges(ack, detailed_error); |
| 5090 | if (!detailed_error.empty()) { |
| 5091 | return 0; |
| 5092 | } |
| 5093 | |
| 5094 | int64_t size = |
| 5095 | FrameAckTimestampRanges(ack, timestamp_ranges, /*writer=*/nullptr); |
| 5096 | return std::max<int64_t>(0, size); |
| 5097 | } |
| 5098 | |
| 5099 | size_t QuicFramer::GetAckFrameSize( |
| 5100 | const QuicAckFrame& ack, QuicPacketNumberLength /*packet_number_length*/) { |
| 5101 | QUICHE_DCHECK(!ack.packets.Empty()); |
| 5102 | size_t ack_size = 0; |
| 5103 | |
| 5104 | if (VersionHasIetfQuicFrames(version_.transport_version)) { |
| 5105 | return GetIetfAckFrameSize(ack); |
| 5106 | } |
| 5107 | AckFrameInfo ack_info = GetAckFrameInfo(ack); |
| 5108 | QuicPacketNumberLength ack_block_length = |
| 5109 | GetMinPacketNumberLength(QuicPacketNumber(ack_info.max_block_length)); |
| 5110 | |
| 5111 | ack_size = GetMinAckFrameSize(version_.transport_version, ack, |
| 5112 | local_ack_delay_exponent_, |
| 5113 | UseIetfAckWithReceiveTimestamp(ack)); |
| 5114 | // First ack block length. |
| 5115 | ack_size += ack_block_length; |
| 5116 | if (ack_info.num_ack_blocks != 0) { |
| 5117 | ack_size += kNumberOfAckBlocksSize; |
| 5118 | ack_size += std::min(ack_info.num_ack_blocks, kMaxAckBlocks) * |
| 5119 | (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); |
| 5120 | } |
| 5121 | |
| 5122 | // Include timestamps. |
| 5123 | if (process_timestamps_) { |
| 5124 | ack_size += GetAckFrameTimeStampSize(ack); |
| 5125 | } |
| 5126 | |
| 5127 | return ack_size; |
| 5128 | } |
| 5129 | |
| 5130 | size_t QuicFramer::GetAckFrameTimeStampSize(const QuicAckFrame& ack) { |
| 5131 | if (ack.received_packet_times.empty()) { |
| 5132 | return 0; |
| 5133 | } |
| 5134 | |
| 5135 | return kQuicNumTimestampsLength + kQuicFirstTimestampLength + |
| 5136 | (kQuicTimestampLength + kQuicTimestampPacketNumberGapLength) * |
| 5137 | (ack.received_packet_times.size() - 1); |
| 5138 | } |
| 5139 | |
| 5140 | size_t QuicFramer::ComputeFrameLength( |
| 5141 | const QuicFrame& frame, bool last_frame_in_packet, |
| 5142 | QuicPacketNumberLength packet_number_length) { |
| 5143 | switch (frame.type) { |
| 5144 | case STREAM_FRAME: |
| 5145 | return GetMinStreamFrameSize( |
| 5146 | version_.transport_version, frame.stream_frame.stream_id, |
| 5147 | frame.stream_frame.offset, last_frame_in_packet, |
| 5148 | frame.stream_frame.data_length) + |
| 5149 | frame.stream_frame.data_length; |
| 5150 | case CRYPTO_FRAME: |
| 5151 | return GetMinCryptoFrameSize(frame.crypto_frame->offset, |
| 5152 | frame.crypto_frame->data_length) + |
| 5153 | frame.crypto_frame->data_length; |
| 5154 | case ACK_FRAME: { |
| 5155 | return GetAckFrameSize(*frame.ack_frame, packet_number_length); |
| 5156 | } |
| 5157 | case STOP_WAITING_FRAME: |
| 5158 | return GetStopWaitingFrameSize(packet_number_length); |
| 5159 | case MTU_DISCOVERY_FRAME: |
| 5160 | // MTU discovery frames are serialized as ping frames. |
| 5161 | return kQuicFrameTypeSize; |
| 5162 | case MESSAGE_FRAME: |
| 5163 | return GetMessageFrameSize(version_.transport_version, |
| 5164 | last_frame_in_packet, |
| 5165 | frame.message_frame->message_length); |
| 5166 | case PADDING_FRAME: |
| 5167 | QUICHE_DCHECK(false); |
| 5168 | return 0; |
| 5169 | default: |
| 5170 | return GetRetransmittableControlFrameSize(version_.transport_version, |
| 5171 | frame); |
| 5172 | } |
| 5173 | } |
| 5174 | |
| 5175 | bool QuicFramer::AppendTypeByte(const QuicFrame& frame, |
| 5176 | bool last_frame_in_packet, |
| 5177 | QuicDataWriter* writer) { |
| 5178 | if (VersionHasIetfQuicFrames(version_.transport_version)) { |
| 5179 | return AppendIetfFrameType(frame, last_frame_in_packet, writer); |
| 5180 | } |
| 5181 | uint8_t type_byte = 0; |
| 5182 | switch (frame.type) { |
| 5183 | case STREAM_FRAME: |
| 5184 | type_byte = |
| 5185 | GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); |
| 5186 | break; |
| 5187 | case ACK_FRAME: |
| 5188 | return true; |
| 5189 | case MTU_DISCOVERY_FRAME: |
| 5190 | type_byte = static_cast<uint8_t>(PING_FRAME); |
| 5191 | break; |
| 5192 | case NEW_CONNECTION_ID_FRAME: |
| 5193 | set_detailed_error( |
| 5194 | "Attempt to append NEW_CONNECTION_ID frame and not in IETF QUIC."); |
| 5195 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 5196 | case RETIRE_CONNECTION_ID_FRAME: |
| 5197 | set_detailed_error( |
| 5198 | "Attempt to append RETIRE_CONNECTION_ID frame and not in IETF QUIC."); |
| 5199 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 5200 | case NEW_TOKEN_FRAME: |
| 5201 | set_detailed_error( |
| 5202 | "Attempt to append NEW_TOKEN frame and not in IETF QUIC."); |
| 5203 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 5204 | case MAX_STREAMS_FRAME: |
| 5205 | set_detailed_error( |
| 5206 | "Attempt to append MAX_STREAMS frame and not in IETF QUIC."); |
| 5207 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 5208 | case STREAMS_BLOCKED_FRAME: |
| 5209 | set_detailed_error( |
| 5210 | "Attempt to append STREAMS_BLOCKED frame and not in IETF QUIC."); |
| 5211 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 5212 | case PATH_RESPONSE_FRAME: |
| 5213 | set_detailed_error( |
| 5214 | "Attempt to append PATH_RESPONSE frame and not in IETF QUIC."); |
| 5215 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 5216 | case PATH_CHALLENGE_FRAME: |
| 5217 | set_detailed_error( |
| 5218 | "Attempt to append PATH_CHALLENGE frame and not in IETF QUIC."); |
| 5219 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 5220 | case STOP_SENDING_FRAME: |
| 5221 | set_detailed_error( |
| 5222 | "Attempt to append STOP_SENDING frame and not in IETF QUIC."); |
| 5223 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 5224 | case MESSAGE_FRAME: |
| 5225 | return true; |
| 5226 | |
| 5227 | default: |
| 5228 | type_byte = static_cast<uint8_t>(frame.type); |
| 5229 | break; |
| 5230 | } |
| 5231 | |
| 5232 | return writer->WriteUInt8(type_byte); |
| 5233 | } |
| 5234 | |
| 5235 | bool QuicFramer::AppendIetfFrameType(const QuicFrame& frame, |
| 5236 | bool last_frame_in_packet, |
| 5237 | QuicDataWriter* writer) { |
| 5238 | uint8_t type_byte = 0; |
| 5239 | switch (frame.type) { |
| 5240 | case PADDING_FRAME: |
| 5241 | type_byte = IETF_PADDING; |
| 5242 | break; |
| 5243 | case RST_STREAM_FRAME: |
| 5244 | type_byte = IETF_RST_STREAM; |
| 5245 | break; |
| 5246 | case CONNECTION_CLOSE_FRAME: |
| 5247 | switch (frame.connection_close_frame->close_type) { |
| 5248 | case IETF_QUIC_APPLICATION_CONNECTION_CLOSE: |
| 5249 | type_byte = IETF_APPLICATION_CLOSE; |
| 5250 | break; |
| 5251 | case IETF_QUIC_TRANSPORT_CONNECTION_CLOSE: |
| 5252 | type_byte = IETF_CONNECTION_CLOSE; |
| 5253 | break; |
| 5254 | default: |
| 5255 | set_detailed_error(absl::StrCat( |
| 5256 | "Invalid QuicConnectionCloseFrame type: ", |
| 5257 | static_cast<int>(frame.connection_close_frame->close_type))); |
| 5258 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 5259 | } |
| 5260 | break; |
| 5261 | case GOAWAY_FRAME: |
| 5262 | set_detailed_error( |
| 5263 | "Attempt to create non-IETF QUIC GOAWAY frame in IETF QUIC."); |
| 5264 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 5265 | case WINDOW_UPDATE_FRAME: |
| 5266 | // Depending on whether there is a stream ID or not, will be either a |
| 5267 | // MAX_STREAM_DATA frame or a MAX_DATA frame. |
| 5268 | if (frame.window_update_frame.stream_id == |
| 5269 | QuicUtils::GetInvalidStreamId(transport_version())) { |
| 5270 | type_byte = IETF_MAX_DATA; |
| 5271 | } else { |
| 5272 | type_byte = IETF_MAX_STREAM_DATA; |
| 5273 | } |
| 5274 | break; |
| 5275 | case BLOCKED_FRAME: |
| 5276 | if (frame.blocked_frame.stream_id == |
| 5277 | QuicUtils::GetInvalidStreamId(transport_version())) { |
| 5278 | type_byte = IETF_DATA_BLOCKED; |
| 5279 | } else { |
| 5280 | type_byte = IETF_STREAM_DATA_BLOCKED; |
| 5281 | } |
| 5282 | break; |
| 5283 | case STOP_WAITING_FRAME: |
| 5284 | set_detailed_error( |
| 5285 | "Attempt to append type byte of STOP WAITING frame in IETF QUIC."); |
| 5286 | return RaiseError(QUIC_INTERNAL_ERROR); |
| 5287 | case PING_FRAME: |
| 5288 | type_byte = IETF_PING; |
| 5289 | break; |
| 5290 | case STREAM_FRAME: |
| 5291 | type_byte = |
| 5292 | GetStreamFrameTypeByte(frame.stream_frame, last_frame_in_packet); |
| 5293 | break; |
| 5294 | case ACK_FRAME: |
| 5295 | // Do nothing here, AppendIetfAckFrameAndTypeByte() will put the type byte |
| 5296 | // in the buffer. |
| 5297 | return true; |
| 5298 | case MTU_DISCOVERY_FRAME: |
| 5299 | // The path MTU discovery frame is encoded as a PING frame on the wire. |
| 5300 | type_byte = IETF_PING; |
| 5301 | break; |
| 5302 | case NEW_CONNECTION_ID_FRAME: |
| 5303 | type_byte = IETF_NEW_CONNECTION_ID; |
| 5304 | break; |
| 5305 | case RETIRE_CONNECTION_ID_FRAME: |
| 5306 | type_byte = IETF_RETIRE_CONNECTION_ID; |
| 5307 | break; |
| 5308 | case NEW_TOKEN_FRAME: |
| 5309 | type_byte = IETF_NEW_TOKEN; |
| 5310 | break; |
| 5311 | case MAX_STREAMS_FRAME: |
| 5312 | if (frame.max_streams_frame.unidirectional) { |
| 5313 | type_byte = IETF_MAX_STREAMS_UNIDIRECTIONAL; |
| 5314 | } else { |
| 5315 | type_byte = IETF_MAX_STREAMS_BIDIRECTIONAL; |
| 5316 | } |
| 5317 | break; |
| 5318 | case STREAMS_BLOCKED_FRAME: |
| 5319 | if (frame.streams_blocked_frame.unidirectional) { |
| 5320 | type_byte = IETF_STREAMS_BLOCKED_UNIDIRECTIONAL; |
| 5321 | } else { |
| 5322 | type_byte = IETF_STREAMS_BLOCKED_BIDIRECTIONAL; |
| 5323 | } |
| 5324 | break; |
| 5325 | case PATH_RESPONSE_FRAME: |
| 5326 | type_byte = IETF_PATH_RESPONSE; |
| 5327 | break; |
| 5328 | case PATH_CHALLENGE_FRAME: |
| 5329 | type_byte = IETF_PATH_CHALLENGE; |
| 5330 | break; |
| 5331 | case STOP_SENDING_FRAME: |
| 5332 | type_byte = IETF_STOP_SENDING; |
| 5333 | break; |
| 5334 | case MESSAGE_FRAME: |
| 5335 | return true; |
| 5336 | case CRYPTO_FRAME: |
| 5337 | type_byte = IETF_CRYPTO; |
| 5338 | break; |
| 5339 | case HANDSHAKE_DONE_FRAME: |
| 5340 | type_byte = IETF_HANDSHAKE_DONE; |
| 5341 | break; |
| 5342 | case ACK_FREQUENCY_FRAME: |
| 5343 | type_byte = IETF_ACK_FREQUENCY; |
| 5344 | break; |
| 5345 | default: |
| 5346 | QUIC_BUG(quic_bug_10850_75) |
| 5347 | << "Attempt to generate a frame type for an unsupported value: " |
| 5348 | << frame.type; |
| 5349 | return false; |
| 5350 | } |
| 5351 | return writer->WriteVarInt62(type_byte); |
| 5352 | } |
| 5353 | |
| 5354 | // static |
| 5355 | bool QuicFramer::AppendPacketNumber(QuicPacketNumberLength packet_number_length, |
| 5356 | QuicPacketNumber packet_number, |
| 5357 | QuicDataWriter* writer) { |
| 5358 | QUICHE_DCHECK(packet_number.IsInitialized()); |
| 5359 | if (!IsValidPacketNumberLength(packet_number_length)) { |
| 5360 | QUIC_BUG(quic_bug_10850_76) |
| 5361 | << "Invalid packet_number_length: " << packet_number_length; |
| 5362 | return false; |
| 5363 | } |
| 5364 | return writer->WriteBytesToUInt64(packet_number_length, |
| 5365 | packet_number.ToUint64()); |
| 5366 | } |
| 5367 | |
| 5368 | // static |
| 5369 | bool QuicFramer::AppendStreamId(size_t stream_id_length, QuicStreamId stream_id, |
| 5370 | QuicDataWriter* writer) { |
| 5371 | if (stream_id_length == 0 || stream_id_length > 4) { |
| 5372 | QUIC_BUG(quic_bug_10850_77) |
| 5373 | << "Invalid stream_id_length: " << stream_id_length; |
| 5374 | return false; |
| 5375 | } |
| 5376 | return writer->WriteBytesToUInt64(stream_id_length, stream_id); |
| 5377 | } |
| 5378 | |
| 5379 | // static |
| 5380 | bool QuicFramer::AppendStreamOffset(size_t offset_length, |
| 5381 | QuicStreamOffset offset, |
| 5382 | QuicDataWriter* writer) { |
| 5383 | if (offset_length == 1 || offset_length > 8) { |
| 5384 | QUIC_BUG(quic_bug_10850_78) |
| 5385 | << "Invalid stream_offset_length: " << offset_length; |
| 5386 | return false; |
| 5387 | } |
| 5388 | |
| 5389 | return writer->WriteBytesToUInt64(offset_length, offset); |
| 5390 | } |
| 5391 | |
| 5392 | // static |
| 5393 | bool QuicFramer::AppendAckBlock(uint8_t gap, |
| 5394 | QuicPacketNumberLength length_length, |
| 5395 | uint64_t length, QuicDataWriter* writer) { |
| 5396 | if (length == 0) { |
| 5397 | if (!IsValidPacketNumberLength(length_length)) { |
| 5398 | QUIC_BUG(quic_bug_10850_79) |
| 5399 | << "Invalid packet_number_length: " << length_length; |
| 5400 | return false; |
| 5401 | } |
| 5402 | return writer->WriteUInt8(gap) && |
| 5403 | writer->WriteBytesToUInt64(length_length, length); |
| 5404 | } |
| 5405 | return writer->WriteUInt8(gap) && |
| 5406 | AppendPacketNumber(length_length, QuicPacketNumber(length), writer); |
| 5407 | } |
| 5408 | |
| 5409 | bool QuicFramer::AppendStreamFrame(const QuicStreamFrame& frame, |
| 5410 | bool no_stream_frame_length, |
| 5411 | QuicDataWriter* writer) { |
| 5412 | if (VersionHasIetfQuicFrames(version_.transport_version)) { |
| 5413 | return AppendIetfStreamFrame(frame, no_stream_frame_length, writer); |
| 5414 | } |
| 5415 | if (!AppendStreamId(GetStreamIdSize(frame.stream_id), frame.stream_id, |
| 5416 | writer)) { |
| 5417 | QUIC_BUG(quic_bug_10850_80) << "Writing stream id size failed."; |
| 5418 | return false; |
| 5419 | } |
| 5420 | if (!AppendStreamOffset(GetStreamOffsetSize(frame.offset), frame.offset, |
| 5421 | writer)) { |
| 5422 | QUIC_BUG(quic_bug_10850_81) << "Writing offset size failed."; |
| 5423 | return false; |
| 5424 | } |
| 5425 | if (!no_stream_frame_length) { |
| 5426 | static_assert( |
| 5427 | std::numeric_limits<decltype(frame.data_length)>::max() <= |
| 5428 | std::numeric_limits<uint16_t>::max(), |
| 5429 | "If frame.data_length can hold more than a uint16_t than we need to " |
| 5430 | "check that frame.data_length <= std::numeric_limits<uint16_t>::max()"); |
| 5431 | if (!writer->WriteUInt16(static_cast<uint16_t>(frame.data_length))) { |
| 5432 | QUIC_BUG(quic_bug_10850_82) << "Writing stream frame length failed"; |
| 5433 | return false; |
| 5434 | } |
| 5435 | } |
| 5436 | |
| 5437 | if (data_producer_ != nullptr) { |
| 5438 | QUICHE_DCHECK_EQ(nullptr, frame.data_buffer); |
| 5439 | if (frame.data_length == 0) { |
| 5440 | return true; |
| 5441 | } |
| 5442 | if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, |
| 5443 | frame.data_length, |
| 5444 | writer) != WRITE_SUCCESS) { |
| 5445 | QUIC_BUG(quic_bug_10850_83) << "Writing frame data failed."; |
| 5446 | return false; |
| 5447 | } |
| 5448 | return true; |
| 5449 | } |
| 5450 | |
| 5451 | if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { |
| 5452 | QUIC_BUG(quic_bug_10850_84) << "Writing frame data failed."; |
| 5453 | return false; |
| 5454 | } |
| 5455 | return true; |
| 5456 | } |
| 5457 | |
| 5458 | bool QuicFramer::AppendNewTokenFrame(const QuicNewTokenFrame& frame, |
| 5459 | QuicDataWriter* writer) { |
| 5460 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.token.length()))) { |
| 5461 | set_detailed_error("Writing token length failed."); |
| 5462 | return false; |
| 5463 | } |
| 5464 | if (!writer->WriteBytes(frame.token.data(), frame.token.length())) { |
| 5465 | set_detailed_error("Writing token buffer failed."); |
| 5466 | return false; |
| 5467 | } |
| 5468 | return true; |
| 5469 | } |
| 5470 | |
| 5471 | bool QuicFramer::ProcessNewTokenFrame(QuicDataReader* reader, |
| 5472 | QuicNewTokenFrame* frame) { |
| 5473 | uint64_t length; |
| 5474 | if (!reader->ReadVarInt62(&length)) { |
| 5475 | set_detailed_error("Unable to read new token length."); |
| 5476 | return false; |
| 5477 | } |
| 5478 | if (length > kMaxNewTokenTokenLength) { |
| 5479 | set_detailed_error("Token length larger than maximum."); |
| 5480 | return false; |
| 5481 | } |
| 5482 | |
| 5483 | // TODO(ianswett): Don't use absl::string_view as an intermediary. |
| 5484 | absl::string_view data; |
| 5485 | if (!reader->ReadStringPiece(&data, length)) { |
| 5486 | set_detailed_error("Unable to read new token data."); |
| 5487 | return false; |
| 5488 | } |
| 5489 | frame->token = std::string(data); |
| 5490 | return true; |
| 5491 | } |
| 5492 | |
| 5493 | // Add a new ietf-format stream frame. |
| 5494 | // Bits controlling whether there is a frame-length and frame-offset |
| 5495 | // are in the QuicStreamFrame. |
| 5496 | bool QuicFramer::AppendIetfStreamFrame(const QuicStreamFrame& frame, |
| 5497 | bool last_frame_in_packet, |
| 5498 | QuicDataWriter* writer) { |
| 5499 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) { |
| 5500 | set_detailed_error("Writing stream id failed."); |
| 5501 | return false; |
| 5502 | } |
| 5503 | |
| 5504 | if (frame.offset != 0) { |
| 5505 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) { |
| 5506 | set_detailed_error("Writing data offset failed."); |
| 5507 | return false; |
| 5508 | } |
| 5509 | } |
| 5510 | |
| 5511 | if (!last_frame_in_packet) { |
| 5512 | if (!writer->WriteVarInt62(frame.data_length)) { |
| 5513 | set_detailed_error("Writing data length failed."); |
| 5514 | return false; |
| 5515 | } |
| 5516 | } |
| 5517 | |
| 5518 | if (frame.data_length == 0) { |
| 5519 | return true; |
| 5520 | } |
| 5521 | if (data_producer_ == nullptr) { |
| 5522 | if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { |
| 5523 | set_detailed_error("Writing frame data failed."); |
| 5524 | return false; |
| 5525 | } |
| 5526 | } else { |
| 5527 | QUICHE_DCHECK_EQ(nullptr, frame.data_buffer); |
| 5528 | |
| 5529 | if (data_producer_->WriteStreamData(frame.stream_id, frame.offset, |
| 5530 | frame.data_length, |
| 5531 | writer) != WRITE_SUCCESS) { |
| 5532 | set_detailed_error("Writing frame data from producer failed."); |
| 5533 | return false; |
| 5534 | } |
| 5535 | } |
| 5536 | return true; |
| 5537 | } |
| 5538 | |
| 5539 | bool QuicFramer::AppendCryptoFrame(const QuicCryptoFrame& frame, |
| 5540 | QuicDataWriter* writer) { |
| 5541 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.offset))) { |
| 5542 | set_detailed_error("Writing data offset failed."); |
| 5543 | return false; |
| 5544 | } |
| 5545 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.data_length))) { |
| 5546 | set_detailed_error("Writing data length failed."); |
| 5547 | return false; |
| 5548 | } |
| 5549 | if (data_producer_ == nullptr) { |
| 5550 | if (frame.data_buffer == nullptr || |
| 5551 | !writer->WriteBytes(frame.data_buffer, frame.data_length)) { |
| 5552 | set_detailed_error("Writing frame data failed."); |
| 5553 | return false; |
| 5554 | } |
| 5555 | } else { |
| 5556 | QUICHE_DCHECK_EQ(nullptr, frame.data_buffer); |
| 5557 | if (!data_producer_->WriteCryptoData(frame.level, frame.offset, |
| 5558 | frame.data_length, writer)) { |
| 5559 | return false; |
| 5560 | } |
| 5561 | } |
| 5562 | return true; |
| 5563 | } |
| 5564 | |
| 5565 | bool QuicFramer::AppendAckFrequencyFrame(const QuicAckFrequencyFrame& frame, |
| 5566 | QuicDataWriter* writer) { |
| 5567 | if (!writer->WriteVarInt62(frame.sequence_number)) { |
| 5568 | set_detailed_error("Writing sequence number failed."); |
| 5569 | return false; |
| 5570 | } |
| 5571 | if (!writer->WriteVarInt62(frame.packet_tolerance)) { |
| 5572 | set_detailed_error("Writing packet tolerance failed."); |
| 5573 | return false; |
| 5574 | } |
| 5575 | if (!writer->WriteVarInt62( |
| 5576 | static_cast<uint64_t>(frame.max_ack_delay.ToMicroseconds()))) { |
| 5577 | set_detailed_error("Writing max_ack_delay_us failed."); |
| 5578 | return false; |
| 5579 | } |
| 5580 | if (!writer->WriteUInt8(static_cast<uint8_t>(frame.ignore_order))) { |
| 5581 | set_detailed_error("Writing ignore_order failed."); |
| 5582 | return false; |
| 5583 | } |
| 5584 | |
| 5585 | return true; |
| 5586 | } |
| 5587 | |
| 5588 | void QuicFramer::set_version(const ParsedQuicVersion version) { |
| 5589 | QUICHE_DCHECK(IsSupportedVersion(version)) |
| 5590 | << ParsedQuicVersionToString(version); |
| 5591 | version_ = version; |
| 5592 | } |
| 5593 | |
| 5594 | bool QuicFramer::AppendAckFrameAndTypeByte(const QuicAckFrame& frame, |
| 5595 | QuicDataWriter* writer) { |
| 5596 | if (VersionHasIetfQuicFrames(transport_version())) { |
| 5597 | return AppendIetfAckFrameAndTypeByte(frame, writer); |
| 5598 | } |
| 5599 | |
| 5600 | const AckFrameInfo new_ack_info = GetAckFrameInfo(frame); |
| 5601 | QuicPacketNumber largest_acked = LargestAcked(frame); |
| 5602 | QuicPacketNumberLength largest_acked_length = |
| 5603 | GetMinPacketNumberLength(largest_acked); |
| 5604 | QuicPacketNumberLength ack_block_length = |
| 5605 | GetMinPacketNumberLength(QuicPacketNumber(new_ack_info.max_block_length)); |
| 5606 | // Calculate available bytes for timestamps and ack blocks. |
| 5607 | int32_t available_timestamp_and_ack_block_bytes = |
| 5608 | writer->capacity() - writer->length() - ack_block_length - |
| 5609 | GetMinAckFrameSize(version_.transport_version, frame, |
| 5610 | local_ack_delay_exponent_, |
| 5611 | UseIetfAckWithReceiveTimestamp(frame)) - |
| 5612 | (new_ack_info.num_ack_blocks != 0 ? kNumberOfAckBlocksSize : 0); |
| 5613 | QUICHE_DCHECK_LE(0, available_timestamp_and_ack_block_bytes); |
| 5614 | |
| 5615 | uint8_t type_byte = 0; |
| 5616 | SetBit(&type_byte, new_ack_info.num_ack_blocks != 0, |
| 5617 | kQuicHasMultipleAckBlocksOffset); |
| 5618 | |
| 5619 | SetBits(&type_byte, GetPacketNumberFlags(largest_acked_length), |
| 5620 | kQuicSequenceNumberLengthNumBits, kLargestAckedOffset); |
| 5621 | |
| 5622 | SetBits(&type_byte, GetPacketNumberFlags(ack_block_length), |
| 5623 | kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset); |
| 5624 | |
| 5625 | type_byte |= kQuicFrameTypeAckMask; |
| 5626 | |
| 5627 | if (!writer->WriteUInt8(type_byte)) { |
| 5628 | return false; |
| 5629 | } |
| 5630 | |
| 5631 | size_t max_num_ack_blocks = available_timestamp_and_ack_block_bytes / |
| 5632 | (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); |
| 5633 | |
| 5634 | // Number of ack blocks. |
| 5635 | size_t num_ack_blocks = |
| 5636 | std::min(new_ack_info.num_ack_blocks, max_num_ack_blocks); |
| 5637 | if (num_ack_blocks > std::numeric_limits<uint8_t>::max()) { |
| 5638 | num_ack_blocks = std::numeric_limits<uint8_t>::max(); |
| 5639 | } |
| 5640 | |
| 5641 | // Largest acked. |
| 5642 | if (!AppendPacketNumber(largest_acked_length, largest_acked, writer)) { |
| 5643 | return false; |
| 5644 | } |
| 5645 | |
| 5646 | // Largest acked delta time. |
| 5647 | uint64_t ack_delay_time_us = kUFloat16MaxValue; |
| 5648 | if (!frame.ack_delay_time.IsInfinite()) { |
| 5649 | QUICHE_DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); |
| 5650 | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); |
| 5651 | } |
| 5652 | if (!writer->WriteUFloat16(ack_delay_time_us)) { |
| 5653 | return false; |
| 5654 | } |
| 5655 | |
| 5656 | if (num_ack_blocks > 0) { |
| 5657 | if (!writer->WriteBytes(&num_ack_blocks, 1)) { |
| 5658 | return false; |
| 5659 | } |
| 5660 | } |
| 5661 | |
| 5662 | // First ack block length. |
| 5663 | if (!AppendPacketNumber(ack_block_length, |
| 5664 | QuicPacketNumber(new_ack_info.first_block_length), |
| 5665 | writer)) { |
| 5666 | return false; |
| 5667 | } |
| 5668 | |
| 5669 | // Ack blocks. |
| 5670 | if (num_ack_blocks > 0) { |
| 5671 | size_t num_ack_blocks_written = 0; |
| 5672 | // Append, in descending order from the largest ACKed packet, a series of |
| 5673 | // ACK blocks that represents the successfully acknoweldged packets. Each |
| 5674 | // appended gap/block length represents a descending delta from the previous |
| 5675 | // block. i.e.: |
| 5676 | // |--- length ---|--- gap ---|--- length ---|--- gap ---|--- largest ---| |
| 5677 | // For gaps larger than can be represented by a single encoded gap, a 0 |
| 5678 | // length gap of the maximum is used, i.e.: |
| 5679 | // |--- length ---|--- gap ---|- 0 -|--- gap ---|--- largest ---| |
| 5680 | auto itr = frame.packets.rbegin(); |
| 5681 | QuicPacketNumber previous_start = itr->min(); |
| 5682 | ++itr; |
| 5683 | |
| 5684 | for (; |
| 5685 | itr != frame.packets.rend() && num_ack_blocks_written < num_ack_blocks; |
| 5686 | previous_start = itr->min(), ++itr) { |
| 5687 | const auto& interval = *itr; |
| 5688 | const uint64_t total_gap = previous_start - interval.max(); |
| 5689 | const size_t num_encoded_gaps = |
| 5690 | (total_gap + std::numeric_limits<uint8_t>::max() - 1) / |
| 5691 | std::numeric_limits<uint8_t>::max(); |
| 5692 | |
| 5693 | // Append empty ACK blocks because the gap is longer than a single gap. |
| 5694 | for (size_t i = 1; |
| 5695 | i < num_encoded_gaps && num_ack_blocks_written < num_ack_blocks; |
| 5696 | ++i) { |
| 5697 | if (!AppendAckBlock(std::numeric_limits<uint8_t>::max(), |
| 5698 | ack_block_length, 0, writer)) { |
| 5699 | return false; |
| 5700 | } |
| 5701 | ++num_ack_blocks_written; |
| 5702 | } |
| 5703 | if (num_ack_blocks_written >= num_ack_blocks) { |
| 5704 | if (QUIC_PREDICT_FALSE(num_ack_blocks_written != num_ack_blocks)) { |
| 5705 | QUIC_BUG(quic_bug_10850_85) |
| 5706 | << "Wrote " << num_ack_blocks_written << ", expected to write " |
| 5707 | << num_ack_blocks; |
| 5708 | } |
| 5709 | break; |
| 5710 | } |
| 5711 | |
| 5712 | const uint8_t last_gap = |
| 5713 | total_gap - |
| 5714 | (num_encoded_gaps - 1) * std::numeric_limits<uint8_t>::max(); |
| 5715 | // Append the final ACK block with a non-empty size. |
| 5716 | if (!AppendAckBlock(last_gap, ack_block_length, interval.Length(), |
| 5717 | writer)) { |
| 5718 | return false; |
| 5719 | } |
| 5720 | ++num_ack_blocks_written; |
| 5721 | } |
| 5722 | QUICHE_DCHECK_EQ(num_ack_blocks, num_ack_blocks_written); |
| 5723 | } |
| 5724 | // Timestamps. |
| 5725 | // If we don't process timestamps or if we don't have enough available space |
| 5726 | // to append all the timestamps, don't append any of them. |
| 5727 | if (process_timestamps_ && writer->capacity() - writer->length() >= |
| 5728 | GetAckFrameTimeStampSize(frame)) { |
| 5729 | if (!AppendTimestampsToAckFrame(frame, writer)) { |
| 5730 | return false; |
| 5731 | } |
| 5732 | } else { |
| 5733 | uint8_t num_received_packets = 0; |
| 5734 | if (!writer->WriteBytes(&num_received_packets, 1)) { |
| 5735 | return false; |
| 5736 | } |
| 5737 | } |
| 5738 | |
| 5739 | return true; |
| 5740 | } |
| 5741 | |
| 5742 | bool QuicFramer::AppendTimestampsToAckFrame(const QuicAckFrame& frame, |
| 5743 | QuicDataWriter* writer) { |
| 5744 | QUICHE_DCHECK_GE(std::numeric_limits<uint8_t>::max(), |
| 5745 | frame.received_packet_times.size()); |
| 5746 | // num_received_packets is only 1 byte. |
| 5747 | if (frame.received_packet_times.size() > |
| 5748 | std::numeric_limits<uint8_t>::max()) { |
| 5749 | return false; |
| 5750 | } |
| 5751 | |
| 5752 | uint8_t num_received_packets = frame.received_packet_times.size(); |
| 5753 | if (!writer->WriteBytes(&num_received_packets, 1)) { |
| 5754 | return false; |
| 5755 | } |
| 5756 | if (num_received_packets == 0) { |
| 5757 | return true; |
| 5758 | } |
| 5759 | |
| 5760 | auto it = frame.received_packet_times.begin(); |
| 5761 | QuicPacketNumber packet_number = it->first; |
| 5762 | uint64_t delta_from_largest_observed = LargestAcked(frame) - packet_number; |
| 5763 | |
| 5764 | QUICHE_DCHECK_GE(std::numeric_limits<uint8_t>::max(), |
| 5765 | delta_from_largest_observed); |
| 5766 | if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) { |
| 5767 | return false; |
| 5768 | } |
| 5769 | |
| 5770 | if (!writer->WriteUInt8(delta_from_largest_observed)) { |
| 5771 | return false; |
| 5772 | } |
| 5773 | |
| 5774 | // Use the lowest 4 bytes of the time delta from the creation_time_. |
| 5775 | const uint64_t time_epoch_delta_us = UINT64_C(1) << 32; |
| 5776 | uint32_t time_delta_us = |
| 5777 | static_cast<uint32_t>((it->second - creation_time_).ToMicroseconds() & |
| 5778 | (time_epoch_delta_us - 1)); |
| 5779 | if (!writer->WriteUInt32(time_delta_us)) { |
| 5780 | return false; |
| 5781 | } |
| 5782 | |
| 5783 | QuicTime prev_time = it->second; |
| 5784 | |
| 5785 | for (++it; it != frame.received_packet_times.end(); ++it) { |
| 5786 | packet_number = it->first; |
| 5787 | delta_from_largest_observed = LargestAcked(frame) - packet_number; |
| 5788 | |
| 5789 | if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) { |
| 5790 | return false; |
| 5791 | } |
| 5792 | |
| 5793 | if (!writer->WriteUInt8(delta_from_largest_observed)) { |
| 5794 | return false; |
| 5795 | } |
| 5796 | |
| 5797 | uint64_t frame_time_delta_us = (it->second - prev_time).ToMicroseconds(); |
| 5798 | prev_time = it->second; |
| 5799 | if (!writer->WriteUFloat16(frame_time_delta_us)) { |
| 5800 | return false; |
| 5801 | } |
| 5802 | } |
| 5803 | return true; |
| 5804 | } |
| 5805 | |
| 5806 | absl::InlinedVector<QuicFramer::AckTimestampRange, 2> |
| 5807 | QuicFramer::GetAckTimestampRanges(const QuicAckFrame& frame, |
| 5808 | std::string& detailed_error) const { |
| 5809 | detailed_error = ""; |
| 5810 | if (frame.received_packet_times.empty()) { |
| 5811 | return {}; |
| 5812 | } |
| 5813 | |
| 5814 | absl::InlinedVector<AckTimestampRange, 2> timestamp_ranges; |
| 5815 | |
| 5816 | for (size_t r = 0; r < std::min<size_t>(max_receive_timestamps_per_ack_, |
| 5817 | frame.received_packet_times.size()); |
| 5818 | ++r) { |
| 5819 | const size_t i = frame.received_packet_times.size() - 1 - r; |
| 5820 | const QuicPacketNumber packet_number = frame.received_packet_times[i].first; |
| 5821 | const QuicTime receive_timestamp = frame.received_packet_times[i].second; |
| 5822 | |
| 5823 | if (timestamp_ranges.empty()) { |
| 5824 | if (receive_timestamp < creation_time_ || |
| 5825 | LargestAcked(frame) < packet_number) { |
| 5826 | detailed_error = |
| 5827 | "The first packet is either received earlier than framer creation " |
| 5828 | "time, or larger than largest acked packet."; |
| 5829 | QUIC_BUG(quic_framer_ack_ts_first_packet_bad) |
| 5830 | << detailed_error << " receive_timestamp:" << receive_timestamp |
| 5831 | << ", framer_creation_time:" << creation_time_ |
| 5832 | << ", packet_number:" << packet_number |
| 5833 | << ", largest_acked:" << LargestAcked(frame); |
| 5834 | return {}; |
| 5835 | } |
| 5836 | timestamp_ranges.push_back(AckTimestampRange()); |
| 5837 | timestamp_ranges.back().gap = LargestAcked(frame) - packet_number; |
| 5838 | timestamp_ranges.back().range_begin = i; |
| 5839 | timestamp_ranges.back().range_end = i; |
| 5840 | continue; |
| 5841 | } |
| 5842 | |
| 5843 | const size_t prev_i = timestamp_ranges.back().range_end; |
| 5844 | const QuicPacketNumber prev_packet_number = |
| 5845 | frame.received_packet_times[prev_i].first; |
| 5846 | const QuicTime prev_receive_timestamp = |
| 5847 | frame.received_packet_times[prev_i].second; |
| 5848 | |
| 5849 | QUIC_DVLOG(3) << "prev_packet_number:" << prev_packet_number |
| 5850 | << ", packet_number:" << packet_number; |
| 5851 | if (prev_receive_timestamp < receive_timestamp || |
| 5852 | prev_packet_number <= packet_number) { |
| 5853 | detailed_error = "Packet number and/or receive time not in order."; |
| 5854 | QUIC_BUG(quic_framer_ack_ts_packet_out_of_order) |
| 5855 | << detailed_error << " packet_number:" << packet_number |
| 5856 | << ", receive_timestamp:" << receive_timestamp |
| 5857 | << ", prev_packet_number:" << prev_packet_number |
| 5858 | << ", prev_receive_timestamp:" << prev_receive_timestamp; |
| 5859 | return {}; |
| 5860 | } |
| 5861 | |
| 5862 | if (prev_packet_number == packet_number + 1) { |
| 5863 | timestamp_ranges.back().range_end = i; |
| 5864 | } else { |
| 5865 | timestamp_ranges.push_back(AckTimestampRange()); |
| 5866 | timestamp_ranges.back().gap = prev_packet_number - 2 - packet_number; |
| 5867 | timestamp_ranges.back().range_begin = i; |
| 5868 | timestamp_ranges.back().range_end = i; |
| 5869 | } |
| 5870 | } |
| 5871 | |
| 5872 | return timestamp_ranges; |
| 5873 | } |
| 5874 | |
| 5875 | int64_t QuicFramer::FrameAckTimestampRanges( |
| 5876 | const QuicAckFrame& frame, |
| 5877 | const absl::InlinedVector<AckTimestampRange, 2>& timestamp_ranges, |
| 5878 | QuicDataWriter* writer) const { |
| 5879 | int64_t size = 0; |
| 5880 | auto maybe_write_var_int62 = [&](uint64_t value) { |
| 5881 | size += QuicDataWriter::GetVarInt62Len(value); |
| 5882 | if (writer != nullptr && !writer->WriteVarInt62(value)) { |
| 5883 | return false; |
| 5884 | } |
| 5885 | return true; |
| 5886 | }; |
| 5887 | |
| 5888 | if (!maybe_write_var_int62(timestamp_ranges.size())) { |
| 5889 | return -1; |
| 5890 | } |
| 5891 | |
| 5892 | // |effective_prev_time| is the exponent-encoded timestamp of the previous |
| 5893 | // packet. |
| 5894 | absl::optional<QuicTime> effective_prev_time; |
| 5895 | for (const AckTimestampRange& range : timestamp_ranges) { |
| 5896 | QUIC_DVLOG(3) << "Range: gap:" << range.gap << ", beg:" << range.range_begin |
| 5897 | << ", end:" << range.range_end; |
| 5898 | if (!maybe_write_var_int62(range.gap)) { |
| 5899 | return -1; |
| 5900 | } |
| 5901 | |
| 5902 | if (!maybe_write_var_int62(range.range_begin - range.range_end + 1)) { |
| 5903 | return -1; |
| 5904 | } |
| 5905 | |
| 5906 | for (int64_t i = range.range_begin; i >= range.range_end; --i) { |
| 5907 | const QuicTime receive_timestamp = frame.received_packet_times[i].second; |
| 5908 | uint64_t time_delta; |
| 5909 | if (effective_prev_time.has_value()) { |
| 5910 | time_delta = |
| 5911 | (*effective_prev_time - receive_timestamp).ToMicroseconds(); |
| 5912 | QUIC_DVLOG(3) << "time_delta:" << time_delta |
| 5913 | << ", exponent:" << receive_timestamps_exponent_ |
| 5914 | << ", effective_prev_time:" << *effective_prev_time |
| 5915 | << ", recv_time:" << receive_timestamp; |
| 5916 | time_delta = time_delta >> receive_timestamps_exponent_; |
| 5917 | effective_prev_time = effective_prev_time.value() - |
| 5918 | QuicTime::Delta::FromMicroseconds( |
| 5919 | time_delta << receive_timestamps_exponent_); |
| 5920 | } else { |
| 5921 | // The first delta is from framer creation to the current receive |
| 5922 | // timestamp (forward in time), whereas in the common case subsequent |
| 5923 | // deltas move backwards in time. |
| 5924 | time_delta = (receive_timestamp - creation_time_).ToMicroseconds(); |
| 5925 | QUIC_DVLOG(3) << "First time_delta:" << time_delta |
| 5926 | << ", exponent:" << receive_timestamps_exponent_ |
| 5927 | << ", recv_time:" << receive_timestamp |
| 5928 | << ", creation_time:" << creation_time_; |
| 5929 | // Round up the first exponent-encoded time delta so that the next |
| 5930 | // receive timestamp is guaranteed to be decreasing. |
| 5931 | time_delta = ((time_delta - 1) >> receive_timestamps_exponent_) + 1; |
| 5932 | effective_prev_time = |
| 5933 | creation_time_ + QuicTime::Delta::FromMicroseconds( |
| 5934 | time_delta << receive_timestamps_exponent_); |
| 5935 | } |
| 5936 | |
| 5937 | if (!maybe_write_var_int62(time_delta)) { |
| 5938 | return -1; |
| 5939 | } |
| 5940 | } |
| 5941 | } |
| 5942 | |
| 5943 | return size; |
| 5944 | } |
| 5945 | |
| 5946 | bool QuicFramer::AppendIetfTimestampsToAckFrame(const QuicAckFrame& frame, |
| 5947 | QuicDataWriter* writer) { |
| 5948 | QUICHE_DCHECK(!frame.received_packet_times.empty()); |
| 5949 | std::string detailed_error; |
| 5950 | const absl::InlinedVector<AckTimestampRange, 2> timestamp_ranges = |
| 5951 | GetAckTimestampRanges(frame, detailed_error); |
| 5952 | if (!detailed_error.empty()) { |
| 5953 | set_detailed_error(std::move(detailed_error)); |
| 5954 | return false; |
| 5955 | } |
| 5956 | |
| 5957 | // Compute the size first using a null writer. |
| 5958 | int64_t size = |
| 5959 | FrameAckTimestampRanges(frame, timestamp_ranges, /*writer=*/nullptr); |
| 5960 | if (size > static_cast<int64_t>(writer->capacity() - writer->length())) { |
| 5961 | QUIC_DVLOG(1) << "Insufficient room to write IETF ack receive timestamps. " |
| 5962 | "size_remain:" |
| 5963 | << (writer->capacity() - writer->length()) |
| 5964 | << ", size_needed:" << size; |
| 5965 | // Write a Timestamp Range Count of 0. |
| 5966 | return writer->WriteVarInt62(0); |
| 5967 | } |
| 5968 | |
| 5969 | return FrameAckTimestampRanges(frame, timestamp_ranges, writer) > 0; |
| 5970 | } |
| 5971 | |
| 5972 | bool QuicFramer::AppendStopWaitingFrame(const QuicPacketHeader& header, |
| 5973 | const QuicStopWaitingFrame& frame, |
| 5974 | QuicDataWriter* writer) { |
| 5975 | QUICHE_DCHECK(!version_.HasIetfInvariantHeader()); |
| 5976 | QUICHE_DCHECK(frame.least_unacked.IsInitialized()); |
| 5977 | QUICHE_DCHECK_GE(header.packet_number, frame.least_unacked); |
| 5978 | const uint64_t least_unacked_delta = |
| 5979 | header.packet_number - frame.least_unacked; |
| 5980 | const uint64_t length_shift = header.packet_number_length * 8; |
| 5981 | |
| 5982 | if (least_unacked_delta >> length_shift > 0) { |
| 5983 | QUIC_BUG(quic_bug_10850_86) |
| 5984 | << "packet_number_length " << header.packet_number_length |
| 5985 | << " is too small for least_unacked_delta: " << least_unacked_delta |
| 5986 | << " packet_number:" << header.packet_number |
| 5987 | << " least_unacked:" << frame.least_unacked |
| 5988 | << " version:" << version_.transport_version; |
| 5989 | return false; |
| 5990 | } |
| 5991 | if (least_unacked_delta == 0) { |
| 5992 | return writer->WriteBytesToUInt64(header.packet_number_length, |
| 5993 | least_unacked_delta); |
| 5994 | } |
| 5995 | if (!AppendPacketNumber(header.packet_number_length, |
| 5996 | QuicPacketNumber(least_unacked_delta), writer)) { |
| 5997 | QUIC_BUG(quic_bug_10850_87) |
| 5998 | << " seq failed: " << header.packet_number_length; |
| 5999 | return false; |
| 6000 | } |
| 6001 | |
| 6002 | return true; |
| 6003 | } |
| 6004 | |
| 6005 | bool QuicFramer::AppendIetfAckFrameAndTypeByte(const QuicAckFrame& frame, |
| 6006 | QuicDataWriter* writer) { |
| 6007 | uint8_t type = IETF_ACK; |
| 6008 | uint64_t ecn_size = 0; |
| 6009 | if (UseIetfAckWithReceiveTimestamp(frame)) { |
| 6010 | type = IETF_ACK_RECEIVE_TIMESTAMPS; |
| 6011 | } else if (frame.ecn_counters_populated && |
| 6012 | (frame.ect_0_count || frame.ect_1_count || frame.ecn_ce_count)) { |
| 6013 | // Change frame type to ACK_ECN if any ECN count is available. |
| 6014 | type = IETF_ACK_ECN; |
| 6015 | ecn_size = (QuicDataWriter::GetVarInt62Len(frame.ect_0_count) + |
| 6016 | QuicDataWriter::GetVarInt62Len(frame.ect_1_count) + |
| 6017 | QuicDataWriter::GetVarInt62Len(frame.ecn_ce_count)); |
| 6018 | } |
| 6019 | |
| 6020 | if (!writer->WriteVarInt62(type)) { |
| 6021 | set_detailed_error("No room for frame-type"); |
| 6022 | return false; |
| 6023 | } |
| 6024 | |
| 6025 | QuicPacketNumber largest_acked = LargestAcked(frame); |
| 6026 | if (!writer->WriteVarInt62(largest_acked.ToUint64())) { |
| 6027 | set_detailed_error("No room for largest-acked in ack frame"); |
| 6028 | return false; |
| 6029 | } |
| 6030 | |
| 6031 | uint64_t ack_delay_time_us = kVarInt62MaxValue; |
| 6032 | if (!frame.ack_delay_time.IsInfinite()) { |
| 6033 | QUICHE_DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); |
| 6034 | ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); |
| 6035 | ack_delay_time_us = ack_delay_time_us >> local_ack_delay_exponent_; |
| 6036 | } |
| 6037 | |
| 6038 | if (!writer->WriteVarInt62(ack_delay_time_us)) { |
| 6039 | set_detailed_error("No room for ack-delay in ack frame"); |
| 6040 | return false; |
| 6041 | } |
| 6042 | |
| 6043 | if (frame.packets.Empty() || frame.packets.Max() != largest_acked) { |
| 6044 | QUIC_BUG(quic_bug_10850_88) << "Malformed ack frame: " << frame; |
| 6045 | set_detailed_error("Malformed ack frame"); |
| 6046 | return false; |
| 6047 | } |
| 6048 | |
| 6049 | // Latch ack_block_count for potential truncation. |
| 6050 | const uint64_t ack_block_count = frame.packets.NumIntervals() - 1; |
| 6051 | QuicDataWriter count_writer(QuicDataWriter::GetVarInt62Len(ack_block_count), |
| 6052 | writer->data() + writer->length()); |
| 6053 | if (!writer->WriteVarInt62(ack_block_count)) { |
| 6054 | set_detailed_error("No room for ack block count in ack frame"); |
| 6055 | return false; |
| 6056 | } |
| 6057 | auto iter = frame.packets.rbegin(); |
| 6058 | if (!writer->WriteVarInt62(iter->Length() - 1)) { |
| 6059 | set_detailed_error("No room for first ack block in ack frame"); |
| 6060 | return false; |
| 6061 | } |
| 6062 | QuicPacketNumber previous_smallest = iter->min(); |
| 6063 | ++iter; |
| 6064 | // Append remaining ACK blocks. |
| 6065 | uint64_t appended_ack_blocks = 0; |
| 6066 | for (; iter != frame.packets.rend(); ++iter) { |
| 6067 | const uint64_t gap = previous_smallest - iter->max() - 1; |
| 6068 | const uint64_t ack_range = iter->Length() - 1; |
| 6069 | |
| 6070 | if (type == IETF_ACK_RECEIVE_TIMESTAMPS && |
| 6071 | writer->remaining() < |
| 6072 | static_cast<size_t>(QuicDataWriter::GetVarInt62Len(gap) + |
| 6073 | QuicDataWriter::GetVarInt62Len(ack_range) + |
| 6074 | QuicDataWriter::GetVarInt62Len(0))) { |
| 6075 | // If we write this ACK range we won't have space for a timestamp range |
| 6076 | // count of 0. |
| 6077 | break; |
| 6078 | } else if (writer->remaining() < ecn_size || |
| 6079 | writer->remaining() - ecn_size < |
| 6080 | static_cast<size_t>( |
| 6081 | QuicDataWriter::GetVarInt62Len(gap) + |
| 6082 | QuicDataWriter::GetVarInt62Len(ack_range))) { |
| 6083 | // ACK range does not fit, truncate it. |
| 6084 | break; |
| 6085 | } |
| 6086 | const bool success = |
| 6087 | writer->WriteVarInt62(gap) && writer->WriteVarInt62(ack_range); |
| 6088 | QUICHE_DCHECK(success); |
| 6089 | previous_smallest = iter->min(); |
| 6090 | ++appended_ack_blocks; |
| 6091 | } |
| 6092 | |
| 6093 | if (appended_ack_blocks < ack_block_count) { |
| 6094 | // Truncation is needed, rewrite the ack block count. |
| 6095 | if (QuicDataWriter::GetVarInt62Len(appended_ack_blocks) != |
| 6096 | QuicDataWriter::GetVarInt62Len(ack_block_count) || |
| 6097 | !count_writer.WriteVarInt62(appended_ack_blocks)) { |
| 6098 | // This should never happen as ack_block_count is limited by |
| 6099 | // max_ack_ranges_. |
| 6100 | QUIC_BUG(quic_bug_10850_89) |
| 6101 | << "Ack frame truncation fails. ack_block_count: " << ack_block_count |
| 6102 | << ", appended count: " << appended_ack_blocks; |
| 6103 | set_detailed_error("ACK frame truncation fails"); |
| 6104 | return false; |
| 6105 | } |
| 6106 | QUIC_DLOG(INFO) << ENDPOINT << "ACK ranges get truncated from " |
| 6107 | << ack_block_count << " to " << appended_ack_blocks; |
| 6108 | } |
| 6109 | |
| 6110 | if (type == IETF_ACK_ECN) { |
| 6111 | // Encode the ECN counts. |
| 6112 | if (!writer->WriteVarInt62(frame.ect_0_count)) { |
| 6113 | set_detailed_error("No room for ect_0_count in ack frame"); |
| 6114 | return false; |
| 6115 | } |
| 6116 | if (!writer->WriteVarInt62(frame.ect_1_count)) { |
| 6117 | set_detailed_error("No room for ect_1_count in ack frame"); |
| 6118 | return false; |
| 6119 | } |
| 6120 | if (!writer->WriteVarInt62(frame.ecn_ce_count)) { |
| 6121 | set_detailed_error("No room for ecn_ce_count in ack frame"); |
| 6122 | return false; |
| 6123 | } |
| 6124 | } |
| 6125 | |
| 6126 | if (type == IETF_ACK_RECEIVE_TIMESTAMPS) { |
| 6127 | if (!AppendIetfTimestampsToAckFrame(frame, writer)) { |
| 6128 | return false; |
| 6129 | } |
| 6130 | } |
| 6131 | |
| 6132 | return true; |
| 6133 | } |
| 6134 | |
| 6135 | bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame, |
| 6136 | QuicDataWriter* writer) { |
| 6137 | if (VersionHasIetfQuicFrames(version_.transport_version)) { |
| 6138 | return AppendIetfResetStreamFrame(frame, writer); |
| 6139 | } |
| 6140 | if (!writer->WriteUInt32(frame.stream_id)) { |
| 6141 | return false; |
| 6142 | } |
| 6143 | |
| 6144 | if (!writer->WriteUInt64(frame.byte_offset)) { |
| 6145 | return false; |
| 6146 | } |
| 6147 | |
| 6148 | uint32_t error_code = static_cast<uint32_t>(frame.error_code); |
| 6149 | if (!writer->WriteUInt32(error_code)) { |
| 6150 | return false; |
| 6151 | } |
| 6152 | |
| 6153 | return true; |
| 6154 | } |
| 6155 | |
| 6156 | bool QuicFramer::AppendConnectionCloseFrame( |
| 6157 | const QuicConnectionCloseFrame& frame, QuicDataWriter* writer) { |
| 6158 | if (VersionHasIetfQuicFrames(version_.transport_version)) { |
| 6159 | return AppendIetfConnectionCloseFrame(frame, writer); |
| 6160 | } |
| 6161 | uint32_t error_code = static_cast<uint32_t>(frame.wire_error_code); |
| 6162 | if (!writer->WriteUInt32(error_code)) { |
| 6163 | return false; |
| 6164 | } |
| 6165 | if (!writer->WriteStringPiece16(TruncateErrorString(frame.error_details))) { |
| 6166 | return false; |
| 6167 | } |
| 6168 | return true; |
| 6169 | } |
| 6170 | |
| 6171 | bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame, |
| 6172 | QuicDataWriter* writer) { |
| 6173 | uint32_t error_code = static_cast<uint32_t>(frame.error_code); |
| 6174 | if (!writer->WriteUInt32(error_code)) { |
| 6175 | return false; |
| 6176 | } |
| 6177 | uint32_t stream_id = static_cast<uint32_t>(frame.last_good_stream_id); |
| 6178 | if (!writer->WriteUInt32(stream_id)) { |
| 6179 | return false; |
| 6180 | } |
| 6181 | if (!writer->WriteStringPiece16(TruncateErrorString(frame.reason_phrase))) { |
| 6182 | return false; |
| 6183 | } |
| 6184 | return true; |
| 6185 | } |
| 6186 | |
| 6187 | bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame, |
| 6188 | QuicDataWriter* writer) { |
| 6189 | uint32_t stream_id = static_cast<uint32_t>(frame.stream_id); |
| 6190 | if (!writer->WriteUInt32(stream_id)) { |
| 6191 | return false; |
| 6192 | } |
| 6193 | if (!writer->WriteUInt64(frame.max_data)) { |
| 6194 | return false; |
| 6195 | } |
| 6196 | return true; |
| 6197 | } |
| 6198 | |
| 6199 | bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame, |
| 6200 | QuicDataWriter* writer) { |
| 6201 | if (VersionHasIetfQuicFrames(version_.transport_version)) { |
| 6202 | if (frame.stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { |
| 6203 | return AppendDataBlockedFrame(frame, writer); |
| 6204 | } |
| 6205 | return AppendStreamDataBlockedFrame(frame, writer); |
| 6206 | } |
| 6207 | uint32_t stream_id = static_cast<uint32_t>(frame.stream_id); |
| 6208 | if (!writer->WriteUInt32(stream_id)) { |
| 6209 | return false; |
| 6210 | } |
| 6211 | return true; |
| 6212 | } |
| 6213 | |
| 6214 | bool QuicFramer::AppendPaddingFrame(const QuicPaddingFrame& frame, |
| 6215 | QuicDataWriter* writer) { |
| 6216 | if (frame.num_padding_bytes == 0) { |
| 6217 | return false; |
| 6218 | } |
| 6219 | if (frame.num_padding_bytes < 0) { |
| 6220 | QUIC_BUG_IF(quic_bug_12975_9, frame.num_padding_bytes != -1); |
| 6221 | writer->WritePadding(); |
| 6222 | return true; |
| 6223 | } |
| 6224 | // Please note, num_padding_bytes includes type byte which has been written. |
| 6225 | return writer->WritePaddingBytes(frame.num_padding_bytes - 1); |
| 6226 | } |
| 6227 | |
| 6228 | bool QuicFramer::AppendMessageFrameAndTypeByte(const QuicMessageFrame& frame, |
| 6229 | bool last_frame_in_packet, |
| 6230 | QuicDataWriter* writer) { |
| 6231 | uint8_t type_byte; |
| 6232 | if (VersionHasIetfQuicFrames(version_.transport_version)) { |
| 6233 | type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH_V99 |
| 6234 | : IETF_EXTENSION_MESSAGE_V99; |
| 6235 | } else { |
| 6236 | type_byte = last_frame_in_packet ? IETF_EXTENSION_MESSAGE_NO_LENGTH |
| 6237 | : IETF_EXTENSION_MESSAGE; |
| 6238 | } |
| 6239 | if (!writer->WriteUInt8(type_byte)) { |
| 6240 | return false; |
| 6241 | } |
| 6242 | if (!last_frame_in_packet && !writer->WriteVarInt62(frame.message_length)) { |
| 6243 | return false; |
| 6244 | } |
| 6245 | for (const auto& slice : frame.message_data) { |
| 6246 | if (!writer->WriteBytes(slice.data(), slice.length())) { |
| 6247 | return false; |
| 6248 | } |
| 6249 | } |
| 6250 | return true; |
| 6251 | } |
| 6252 | |
| 6253 | bool QuicFramer::RaiseError(QuicErrorCode error) { |
| 6254 | QUIC_DLOG(INFO) << ENDPOINT << "Error: " << QuicErrorCodeToString(error) |
| 6255 | << " detail: " << detailed_error_; |
| 6256 | set_error(error); |
| 6257 | if (visitor_) { |
| 6258 | visitor_->OnError(this); |
| 6259 | } |
| 6260 | return false; |
| 6261 | } |
| 6262 | |
| 6263 | bool QuicFramer::IsVersionNegotiation( |
| 6264 | const QuicPacketHeader& header, bool packet_has_ietf_packet_header) const { |
| 6265 | if (!packet_has_ietf_packet_header && |
| 6266 | perspective_ == Perspective::IS_CLIENT) { |
| 6267 | return header.version_flag; |
| 6268 | } |
| 6269 | if (header.form == IETF_QUIC_SHORT_HEADER_PACKET) { |
| 6270 | return false; |
| 6271 | } |
| 6272 | return header.long_packet_type == VERSION_NEGOTIATION; |
| 6273 | } |
| 6274 | |
| 6275 | bool QuicFramer::AppendIetfConnectionCloseFrame( |
| 6276 | const QuicConnectionCloseFrame& frame, QuicDataWriter* writer) { |
| 6277 | if (frame.close_type != IETF_QUIC_TRANSPORT_CONNECTION_CLOSE && |
| 6278 | frame.close_type != IETF_QUIC_APPLICATION_CONNECTION_CLOSE) { |
| 6279 | QUIC_BUG(quic_bug_10850_90) |
| 6280 | << "Invalid close_type for writing IETF CONNECTION CLOSE."; |
| 6281 | set_detailed_error("Invalid close_type for writing IETF CONNECTION CLOSE."); |
| 6282 | return false; |
| 6283 | } |
| 6284 | |
| 6285 | if (!writer->WriteVarInt62(frame.wire_error_code)) { |
| 6286 | set_detailed_error("Can not write connection close frame error code"); |
| 6287 | return false; |
| 6288 | } |
| 6289 | |
| 6290 | if (frame.close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) { |
| 6291 | // Write the frame-type of the frame causing the error only |
| 6292 | // if it's a CONNECTION_CLOSE/Transport. |
| 6293 | if (!writer->WriteVarInt62(frame.transport_close_frame_type)) { |
| 6294 | set_detailed_error("Writing frame type failed."); |
| 6295 | return false; |
| 6296 | } |
| 6297 | } |
| 6298 | |
| 6299 | // There may be additional error information available in the extracted error |
| 6300 | // code. Encode the error information in the reason phrase and serialize the |
| 6301 | // result. |
| 6302 | std::string final_error_string = |
| 6303 | GenerateErrorString(frame.error_details, frame.quic_error_code); |
| 6304 | if (!writer->WriteStringPieceVarInt62( |
| 6305 | TruncateErrorString(final_error_string))) { |
| 6306 | set_detailed_error("Can not write connection close phrase"); |
| 6307 | return false; |
| 6308 | } |
| 6309 | return true; |
| 6310 | } |
| 6311 | |
| 6312 | bool QuicFramer::ProcessIetfConnectionCloseFrame( |
| 6313 | QuicDataReader* reader, QuicConnectionCloseType type, |
| 6314 | QuicConnectionCloseFrame* frame) { |
| 6315 | frame->close_type = type; |
| 6316 | |
| 6317 | uint64_t error_code; |
| 6318 | if (!reader->ReadVarInt62(&error_code)) { |
| 6319 | set_detailed_error("Unable to read connection close error code."); |
| 6320 | return false; |
| 6321 | } |
| 6322 | |
| 6323 | frame->wire_error_code = error_code; |
| 6324 | |
| 6325 | if (type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE) { |
| 6326 | // The frame-type of the frame causing the error is present only |
| 6327 | // if it's a CONNECTION_CLOSE/Transport. |
| 6328 | if (!reader->ReadVarInt62(&frame->transport_close_frame_type)) { |
| 6329 | set_detailed_error("Unable to read connection close frame type."); |
| 6330 | return false; |
| 6331 | } |
| 6332 | } |
| 6333 | |
| 6334 | uint64_t phrase_length; |
| 6335 | if (!reader->ReadVarInt62(&phrase_length)) { |
| 6336 | set_detailed_error("Unable to read connection close error details."); |
| 6337 | return false; |
| 6338 | } |
| 6339 | |
| 6340 | absl::string_view phrase; |
| 6341 | if (!reader->ReadStringPiece(&phrase, static_cast<size_t>(phrase_length))) { |
| 6342 | set_detailed_error("Unable to read connection close error details."); |
| 6343 | return false; |
| 6344 | } |
| 6345 | frame->error_details = std::string(phrase); |
| 6346 | |
| 6347 | // The frame may have an extracted error code in it. Look for it and |
| 6348 | // extract it. If it's not present, MaybeExtract will return |
| 6349 | // QUIC_IETF_GQUIC_ERROR_MISSING. |
| 6350 | MaybeExtractQuicErrorCode(frame); |
| 6351 | return true; |
| 6352 | } |
| 6353 | |
| 6354 | // IETF Quic Path Challenge/Response frames. |
| 6355 | bool QuicFramer::ProcessPathChallengeFrame(QuicDataReader* reader, |
| 6356 | QuicPathChallengeFrame* frame) { |
| 6357 | if (!reader->ReadBytes(frame->data_buffer.data(), |
| 6358 | frame->data_buffer.size())) { |
| 6359 | set_detailed_error("Can not read path challenge data."); |
| 6360 | return false; |
| 6361 | } |
| 6362 | return true; |
| 6363 | } |
| 6364 | |
| 6365 | bool QuicFramer::ProcessPathResponseFrame(QuicDataReader* reader, |
| 6366 | QuicPathResponseFrame* frame) { |
| 6367 | if (!reader->ReadBytes(frame->data_buffer.data(), |
| 6368 | frame->data_buffer.size())) { |
| 6369 | set_detailed_error("Can not read path response data."); |
| 6370 | return false; |
| 6371 | } |
| 6372 | return true; |
| 6373 | } |
| 6374 | |
| 6375 | bool QuicFramer::AppendPathChallengeFrame(const QuicPathChallengeFrame& frame, |
| 6376 | QuicDataWriter* writer) { |
| 6377 | if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { |
| 6378 | set_detailed_error("Writing Path Challenge data failed."); |
| 6379 | return false; |
| 6380 | } |
| 6381 | return true; |
| 6382 | } |
| 6383 | |
| 6384 | bool QuicFramer::AppendPathResponseFrame(const QuicPathResponseFrame& frame, |
| 6385 | QuicDataWriter* writer) { |
| 6386 | if (!writer->WriteBytes(frame.data_buffer.data(), frame.data_buffer.size())) { |
| 6387 | set_detailed_error("Writing Path Response data failed."); |
| 6388 | return false; |
| 6389 | } |
| 6390 | return true; |
| 6391 | } |
| 6392 | |
| 6393 | // Add a new ietf-format stream reset frame. |
| 6394 | // General format is |
| 6395 | // stream id |
| 6396 | // application error code |
| 6397 | // final offset |
| 6398 | bool QuicFramer::AppendIetfResetStreamFrame(const QuicRstStreamFrame& frame, |
| 6399 | QuicDataWriter* writer) { |
| 6400 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id))) { |
| 6401 | set_detailed_error("Writing reset-stream stream id failed."); |
| 6402 | return false; |
| 6403 | } |
| 6404 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.ietf_error_code))) { |
| 6405 | set_detailed_error("Writing reset-stream error code failed."); |
| 6406 | return false; |
| 6407 | } |
| 6408 | if (!writer->WriteVarInt62(static_cast<uint64_t>(frame.byte_offset))) { |
| 6409 | set_detailed_error("Writing reset-stream final-offset failed."); |
| 6410 | return false; |
| 6411 | } |
| 6412 | return true; |
| 6413 | } |
| 6414 | |
| 6415 | bool QuicFramer::ProcessIetfResetStreamFrame(QuicDataReader* reader, |
| 6416 | QuicRstStreamFrame* frame) { |
| 6417 | // Get Stream ID from frame. ReadVarIntStreamID returns false |
| 6418 | // if either A) there is a read error or B) the resulting value of |
| 6419 | // the Stream ID is larger than the maximum allowed value. |
| 6420 | if (!ReadUint32FromVarint62(reader, IETF_RST_STREAM, &frame->stream_id)) { |
| 6421 | return false; |
| 6422 | } |
| 6423 | |
| 6424 | if (!reader->ReadVarInt62(&frame->ietf_error_code)) { |
| 6425 | set_detailed_error("Unable to read rst stream error code."); |
| 6426 | return false; |
| 6427 | } |
| 6428 | |
| 6429 | frame->error_code = |
| 6430 | IetfResetStreamErrorCodeToRstStreamErrorCode(frame->ietf_error_code); |
| 6431 | |
| 6432 | if (!reader->ReadVarInt62(&frame->byte_offset)) { |
| 6433 | set_detailed_error("Unable to read rst stream sent byte offset."); |
| 6434 | return false; |
| 6435 | } |
| 6436 | return true; |
| 6437 | } |
| 6438 | |
| 6439 | bool QuicFramer::ProcessStopSendingFrame( |
| 6440 | QuicDataReader* reader, QuicStopSendingFrame* stop_sending_frame) { |
| 6441 | if (!ReadUint32FromVarint62(reader, IETF_STOP_SENDING, |
| 6442 | &stop_sending_frame->stream_id)) { |
| 6443 | return false; |
| 6444 | } |
| 6445 | |
| 6446 | if (!reader->ReadVarInt62(&stop_sending_frame->ietf_error_code)) { |
| 6447 | set_detailed_error("Unable to read stop sending application error code."); |
| 6448 | return false; |
| 6449 | } |
| 6450 | |
| 6451 | stop_sending_frame->error_code = IetfResetStreamErrorCodeToRstStreamErrorCode( |
| 6452 | stop_sending_frame->ietf_error_code); |
| 6453 | return true; |
| 6454 | } |
| 6455 | |
| 6456 | bool QuicFramer::AppendStopSendingFrame( |
| 6457 | const QuicStopSendingFrame& stop_sending_frame, QuicDataWriter* writer) { |
| 6458 | if (!writer->WriteVarInt62(stop_sending_frame.stream_id)) { |
| 6459 | set_detailed_error("Can not write stop sending stream id"); |
| 6460 | return false; |
| 6461 | } |
| 6462 | if (!writer->WriteVarInt62( |
| 6463 | static_cast<uint64_t>(stop_sending_frame.ietf_error_code))) { |
| 6464 | set_detailed_error("Can not write application error code"); |
| 6465 | return false; |
| 6466 | } |
| 6467 | return true; |
| 6468 | } |
| 6469 | |
| 6470 | // Append/process IETF-Format MAX_DATA Frame |
| 6471 | bool QuicFramer::AppendMaxDataFrame(const QuicWindowUpdateFrame& frame, |
| 6472 | QuicDataWriter* writer) { |
| 6473 | if (!writer->WriteVarInt62(frame.max_data)) { |
| 6474 | set_detailed_error("Can not write MAX_DATA byte-offset"); |
| 6475 | return false; |
| 6476 | } |
| 6477 | return true; |
| 6478 | } |
| 6479 | |
| 6480 | bool QuicFramer::ProcessMaxDataFrame(QuicDataReader* reader, |
| 6481 | QuicWindowUpdateFrame* frame) { |
| 6482 | frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); |
| 6483 | if (!reader->ReadVarInt62(&frame->max_data)) { |
| 6484 | set_detailed_error("Can not read MAX_DATA byte-offset"); |
| 6485 | return false; |
| 6486 | } |
| 6487 | return true; |
| 6488 | } |
| 6489 | |
| 6490 | // Append/process IETF-Format MAX_STREAM_DATA Frame |
| 6491 | bool QuicFramer::AppendMaxStreamDataFrame(const QuicWindowUpdateFrame& frame, |
| 6492 | QuicDataWriter* writer) { |
| 6493 | if (!writer->WriteVarInt62(frame.stream_id)) { |
| 6494 | set_detailed_error("Can not write MAX_STREAM_DATA stream id"); |
| 6495 | return false; |
| 6496 | } |
| 6497 | if (!writer->WriteVarInt62(frame.max_data)) { |
| 6498 | set_detailed_error("Can not write MAX_STREAM_DATA byte-offset"); |
| 6499 | return false; |
| 6500 | } |
| 6501 | return true; |
| 6502 | } |
| 6503 | |
| 6504 | bool QuicFramer::ProcessMaxStreamDataFrame(QuicDataReader* reader, |
| 6505 | QuicWindowUpdateFrame* frame) { |
| 6506 | if (!ReadUint32FromVarint62(reader, IETF_MAX_STREAM_DATA, |
| 6507 | &frame->stream_id)) { |
| 6508 | return false; |
| 6509 | } |
| 6510 | if (!reader->ReadVarInt62(&frame->max_data)) { |
| 6511 | set_detailed_error("Can not read MAX_STREAM_DATA byte-count"); |
| 6512 | return false; |
| 6513 | } |
| 6514 | return true; |
| 6515 | } |
| 6516 | |
| 6517 | bool QuicFramer::AppendMaxStreamsFrame(const QuicMaxStreamsFrame& frame, |
| 6518 | QuicDataWriter* writer) { |
| 6519 | if (!writer->WriteVarInt62(frame.stream_count)) { |
| 6520 | set_detailed_error("Can not write MAX_STREAMS stream count"); |
| 6521 | return false; |
| 6522 | } |
| 6523 | return true; |
| 6524 | } |
| 6525 | |
| 6526 | bool QuicFramer::ProcessMaxStreamsFrame(QuicDataReader* reader, |
| 6527 | QuicMaxStreamsFrame* frame, |
| 6528 | uint64_t frame_type) { |
| 6529 | if (!ReadUint32FromVarint62(reader, |
| 6530 | static_cast<QuicIetfFrameType>(frame_type), |
| 6531 | &frame->stream_count)) { |
| 6532 | return false; |
| 6533 | } |
| 6534 | frame->unidirectional = (frame_type == IETF_MAX_STREAMS_UNIDIRECTIONAL); |
| 6535 | return true; |
| 6536 | } |
| 6537 | |
| 6538 | bool QuicFramer::AppendDataBlockedFrame(const QuicBlockedFrame& frame, |
| 6539 | QuicDataWriter* writer) { |
| 6540 | if (!writer->WriteVarInt62(frame.offset)) { |
| 6541 | set_detailed_error("Can not write blocked offset."); |
| 6542 | return false; |
| 6543 | } |
| 6544 | return true; |
| 6545 | } |
| 6546 | |
| 6547 | bool QuicFramer::ProcessDataBlockedFrame(QuicDataReader* reader, |
| 6548 | QuicBlockedFrame* frame) { |
| 6549 | // Indicates that it is a BLOCKED frame (as opposed to STREAM_BLOCKED). |
| 6550 | frame->stream_id = QuicUtils::GetInvalidStreamId(transport_version()); |
| 6551 | if (!reader->ReadVarInt62(&frame->offset)) { |
| 6552 | set_detailed_error("Can not read blocked offset."); |
| 6553 | return false; |
| 6554 | } |
| 6555 | return true; |
| 6556 | } |
| 6557 | |
| 6558 | bool QuicFramer::AppendStreamDataBlockedFrame(const QuicBlockedFrame& frame, |
| 6559 | QuicDataWriter* writer) { |
| 6560 | if (!writer->WriteVarInt62(frame.stream_id)) { |
| 6561 | set_detailed_error("Can not write stream blocked stream id."); |
| 6562 | return false; |
| 6563 | } |
| 6564 | if (!writer->WriteVarInt62(frame.offset)) { |
| 6565 | set_detailed_error("Can not write stream blocked offset."); |
| 6566 | return false; |
| 6567 | } |
| 6568 | return true; |
| 6569 | } |
| 6570 | |
| 6571 | bool QuicFramer::ProcessStreamDataBlockedFrame(QuicDataReader* reader, |
| 6572 | QuicBlockedFrame* frame) { |
| 6573 | if (!ReadUint32FromVarint62(reader, IETF_STREAM_DATA_BLOCKED, |
| 6574 | &frame->stream_id)) { |
| 6575 | return false; |
| 6576 | } |
| 6577 | if (!reader->ReadVarInt62(&frame->offset)) { |
| 6578 | set_detailed_error("Can not read stream blocked offset."); |
| 6579 | return false; |
| 6580 | } |
| 6581 | return true; |
| 6582 | } |
| 6583 | |
| 6584 | bool QuicFramer::AppendStreamsBlockedFrame(const QuicStreamsBlockedFrame& frame, |
| 6585 | QuicDataWriter* writer) { |
| 6586 | if (!writer->WriteVarInt62(frame.stream_count)) { |
| 6587 | set_detailed_error("Can not write STREAMS_BLOCKED stream count"); |
| 6588 | return false; |
| 6589 | } |
| 6590 | return true; |
| 6591 | } |
| 6592 | |
| 6593 | bool QuicFramer::ProcessStreamsBlockedFrame(QuicDataReader* reader, |
| 6594 | QuicStreamsBlockedFrame* frame, |
| 6595 | uint64_t frame_type) { |
| 6596 | if (!ReadUint32FromVarint62(reader, |
| 6597 | static_cast<QuicIetfFrameType>(frame_type), |
| 6598 | &frame->stream_count)) { |
| 6599 | return false; |
| 6600 | } |
| 6601 | if (frame->stream_count > QuicUtils::GetMaxStreamCount()) { |
| 6602 | // If stream count is such that the resulting stream ID would exceed our |
| 6603 | // implementation limit, generate an error. |
| 6604 | set_detailed_error( |
| 6605 | "STREAMS_BLOCKED stream count exceeds implementation limit."); |
| 6606 | return false; |
| 6607 | } |
| 6608 | frame->unidirectional = (frame_type == IETF_STREAMS_BLOCKED_UNIDIRECTIONAL); |
| 6609 | return true; |
| 6610 | } |
| 6611 | |
| 6612 | bool QuicFramer::AppendNewConnectionIdFrame( |
| 6613 | const QuicNewConnectionIdFrame& frame, QuicDataWriter* writer) { |
| 6614 | if (!writer->WriteVarInt62(frame.sequence_number)) { |
| 6615 | set_detailed_error("Can not write New Connection ID sequence number"); |
| 6616 | return false; |
| 6617 | } |
| 6618 | if (!writer->WriteVarInt62(frame.retire_prior_to)) { |
| 6619 | set_detailed_error("Can not write New Connection ID retire_prior_to"); |
| 6620 | return false; |
| 6621 | } |
| 6622 | if (!writer->WriteLengthPrefixedConnectionId(frame.connection_id)) { |
| 6623 | set_detailed_error("Can not write New Connection ID frame connection ID"); |
| 6624 | return false; |
| 6625 | } |
| 6626 | |
| 6627 | if (!writer->WriteBytes( |
| 6628 | static_cast<const void*>(&frame.stateless_reset_token), |
| 6629 | sizeof(frame.stateless_reset_token))) { |
| 6630 | set_detailed_error("Can not write New Connection ID Reset Token"); |
| 6631 | return false; |
| 6632 | } |
| 6633 | return true; |
| 6634 | } |
| 6635 | |
| 6636 | bool QuicFramer::ProcessNewConnectionIdFrame(QuicDataReader* reader, |
| 6637 | QuicNewConnectionIdFrame* frame) { |
| 6638 | if (!reader->ReadVarInt62(&frame->sequence_number)) { |
| 6639 | set_detailed_error( |
| 6640 | "Unable to read new connection ID frame sequence number."); |
| 6641 | return false; |
| 6642 | } |
| 6643 | |
| 6644 | if (!reader->ReadVarInt62(&frame->retire_prior_to)) { |
| 6645 | set_detailed_error( |
| 6646 | "Unable to read new connection ID frame retire_prior_to."); |
| 6647 | return false; |
| 6648 | } |
| 6649 | if (frame->retire_prior_to > frame->sequence_number) { |
| 6650 | set_detailed_error("Retire_prior_to > sequence_number."); |
| 6651 | return false; |
| 6652 | } |
| 6653 | |
| 6654 | if (!reader->ReadLengthPrefixedConnectionId(&frame->connection_id)) { |
| 6655 | set_detailed_error("Unable to read new connection ID frame connection id."); |
| 6656 | return false; |
| 6657 | } |
| 6658 | |
| 6659 | if (!QuicUtils::IsConnectionIdValidForVersion(frame->connection_id, |
| 6660 | transport_version())) { |
| 6661 | set_detailed_error("Invalid new connection ID length for version."); |
| 6662 | return false; |
| 6663 | } |
| 6664 | |
| 6665 | if (!reader->ReadBytes(&frame->stateless_reset_token, |
| 6666 | sizeof(frame->stateless_reset_token))) { |
| 6667 | set_detailed_error("Can not read new connection ID frame reset token."); |
| 6668 | return false; |
| 6669 | } |
| 6670 | return true; |
| 6671 | } |
| 6672 | |
| 6673 | bool QuicFramer::AppendRetireConnectionIdFrame( |
| 6674 | const QuicRetireConnectionIdFrame& frame, QuicDataWriter* writer) { |
| 6675 | if (!writer->WriteVarInt62(frame.sequence_number)) { |
| 6676 | set_detailed_error("Can not write Retire Connection ID sequence number"); |
| 6677 | return false; |
| 6678 | } |
| 6679 | return true; |
| 6680 | } |
| 6681 | |
| 6682 | bool QuicFramer::ProcessRetireConnectionIdFrame( |
| 6683 | QuicDataReader* reader, QuicRetireConnectionIdFrame* frame) { |
| 6684 | if (!reader->ReadVarInt62(&frame->sequence_number)) { |
| 6685 | set_detailed_error( |
| 6686 | "Unable to read retire connection ID frame sequence number."); |
| 6687 | return false; |
| 6688 | } |
| 6689 | return true; |
| 6690 | } |
| 6691 | |
| 6692 | bool QuicFramer::ReadUint32FromVarint62(QuicDataReader* reader, |
| 6693 | QuicIetfFrameType type, |
| 6694 | QuicStreamId* id) { |
| 6695 | uint64_t temp_uint64; |
| 6696 | if (!reader->ReadVarInt62(&temp_uint64)) { |
| 6697 | set_detailed_error("Unable to read " + QuicIetfFrameTypeString(type) + |
| 6698 | " frame stream id/count."); |
| 6699 | return false; |
| 6700 | } |
| 6701 | if (temp_uint64 > kMaxQuicStreamId) { |
| 6702 | set_detailed_error("Stream id/count of " + QuicIetfFrameTypeString(type) + |
| 6703 | "frame is too large."); |
| 6704 | return false; |
| 6705 | } |
| 6706 | *id = static_cast<uint32_t>(temp_uint64); |
| 6707 | return true; |
| 6708 | } |
| 6709 | |
| 6710 | uint8_t QuicFramer::GetStreamFrameTypeByte(const QuicStreamFrame& frame, |
| 6711 | bool last_frame_in_packet) const { |
| 6712 | if (VersionHasIetfQuicFrames(version_.transport_version)) { |
| 6713 | return GetIetfStreamFrameTypeByte(frame, last_frame_in_packet); |
| 6714 | } |
| 6715 | uint8_t type_byte = 0; |
| 6716 | // Fin bit. |
| 6717 | type_byte |= frame.fin ? kQuicStreamFinMask : 0; |
| 6718 | |
| 6719 | // Data Length bit. |
| 6720 | type_byte <<= kQuicStreamDataLengthShift; |
| 6721 | type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask; |
| 6722 | |
| 6723 | // Offset 3 bits. |
| 6724 | type_byte <<= kQuicStreamShift; |
| 6725 | const size_t offset_len = GetStreamOffsetSize(frame.offset); |
| 6726 | if (offset_len > 0) { |
| 6727 | type_byte |= offset_len - 1; |
| 6728 | } |
| 6729 | |
| 6730 | // stream id 2 bits. |
| 6731 | type_byte <<= kQuicStreamIdShift; |
| 6732 | type_byte |= GetStreamIdSize(frame.stream_id) - 1; |
| 6733 | type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1. |
| 6734 | |
| 6735 | return type_byte; |
| 6736 | } |
| 6737 | |
| 6738 | uint8_t QuicFramer::GetIetfStreamFrameTypeByte( |
| 6739 | const QuicStreamFrame& frame, bool last_frame_in_packet) const { |
| 6740 | QUICHE_DCHECK(VersionHasIetfQuicFrames(version_.transport_version)); |
| 6741 | uint8_t type_byte = IETF_STREAM; |
| 6742 | if (!last_frame_in_packet) { |
| 6743 | type_byte |= IETF_STREAM_FRAME_LEN_BIT; |
| 6744 | } |
| 6745 | if (frame.offset != 0) { |
| 6746 | type_byte |= IETF_STREAM_FRAME_OFF_BIT; |
| 6747 | } |
| 6748 | if (frame.fin) { |
| 6749 | type_byte |= IETF_STREAM_FRAME_FIN_BIT; |
| 6750 | } |
| 6751 | return type_byte; |
| 6752 | } |
| 6753 | |
| 6754 | void QuicFramer::InferPacketHeaderTypeFromVersion() { |
| 6755 | // This function should only be called when server connection negotiates the |
| 6756 | // version. |
| 6757 | QUICHE_DCHECK_EQ(perspective_, Perspective::IS_SERVER); |
| 6758 | QUICHE_DCHECK(!infer_packet_header_type_from_version_); |
| 6759 | infer_packet_header_type_from_version_ = true; |
| 6760 | } |
| 6761 | |
| 6762 | void QuicFramer::EnableMultiplePacketNumberSpacesSupport() { |
| 6763 | if (supports_multiple_packet_number_spaces_) { |
| 6764 | QUIC_BUG(quic_bug_10850_91) |
| 6765 | << "Multiple packet number spaces has already been enabled"; |
| 6766 | return; |
| 6767 | } |
| 6768 | if (largest_packet_number_.IsInitialized()) { |
| 6769 | QUIC_BUG(quic_bug_10850_92) |
| 6770 | << "Try to enable multiple packet number spaces support after any " |
| 6771 | "packet has been received."; |
| 6772 | return; |
| 6773 | } |
| 6774 | |
| 6775 | supports_multiple_packet_number_spaces_ = true; |
| 6776 | } |
| 6777 | |
| 6778 | // static |
| 6779 | QuicErrorCode QuicFramer::ParsePublicHeaderDispatcher( |
| 6780 | const QuicEncryptedPacket& packet, |
| 6781 | uint8_t expected_destination_connection_id_length, |
| 6782 | PacketHeaderFormat* format, QuicLongHeaderType* long_packet_type, |
| 6783 | bool* version_present, bool* has_length_prefix, |
| 6784 | QuicVersionLabel* version_label, ParsedQuicVersion* parsed_version, |
| 6785 | QuicConnectionId* destination_connection_id, |
| 6786 | QuicConnectionId* source_connection_id, |
| 6787 | absl::optional<absl::string_view>* retry_token, |
| 6788 | std::string* detailed_error) { |
| 6789 | QuicDataReader reader(packet.data(), packet.length()); |
| 6790 | if (reader.IsDoneReading()) { |
| 6791 | *detailed_error = "Unable to read first byte."; |
| 6792 | return QUIC_INVALID_PACKET_HEADER; |
| 6793 | } |
| 6794 | const uint8_t first_byte = reader.PeekByte(); |
| 6795 | if ((first_byte & FLAGS_LONG_HEADER) == 0 && |
| 6796 | (first_byte & FLAGS_FIXED_BIT) == 0 && |
| 6797 | (first_byte & FLAGS_DEMULTIPLEXING_BIT) == 0) { |
| 6798 | // All versions of Google QUIC up to and including Q043 set |
| 6799 | // FLAGS_DEMULTIPLEXING_BIT to one on all client-to-server packets. Q044 |
| 6800 | // and Q045 were never default-enabled in production. All subsequent |
| 6801 | // versions of Google QUIC (starting with Q046) require FLAGS_FIXED_BIT to |
| 6802 | // be set to one on all packets. All versions of IETF QUIC (since |
| 6803 | // draft-ietf-quic-transport-17 which was earlier than the first IETF QUIC |
| 6804 | // version that was deployed in production by any implementation) also |
| 6805 | // require FLAGS_FIXED_BIT to be set to one on all packets. If a packet |
| 6806 | // has the FLAGS_LONG_HEADER bit set to one, it could be a first flight |
| 6807 | // from an unknown future version that allows the other two bits to be set |
| 6808 | // to zero. Based on this, packets that have all three of those bits set |
| 6809 | // to zero are known to be invalid. |
| 6810 | *detailed_error = "Invalid flags."; |
| 6811 | return QUIC_INVALID_PACKET_HEADER; |
| 6812 | } |
| 6813 | const bool ietf_format = QuicUtils::IsIetfPacketHeader(first_byte); |
| 6814 | uint8_t unused_first_byte; |
| 6815 | QuicVariableLengthIntegerLength retry_token_length_length; |
| 6816 | absl::string_view maybe_retry_token; |
| 6817 | QuicErrorCode error_code = ParsePublicHeader( |
| 6818 | &reader, expected_destination_connection_id_length, ietf_format, |
| 6819 | &unused_first_byte, format, version_present, has_length_prefix, |
| 6820 | version_label, parsed_version, destination_connection_id, |
| 6821 | source_connection_id, long_packet_type, &retry_token_length_length, |
| 6822 | &maybe_retry_token, detailed_error); |
| 6823 | if (retry_token_length_length != VARIABLE_LENGTH_INTEGER_LENGTH_0) { |
| 6824 | *retry_token = maybe_retry_token; |
| 6825 | } else { |
| 6826 | retry_token->reset(); |
| 6827 | } |
| 6828 | return error_code; |
| 6829 | } |
| 6830 | |
| 6831 | // static |
| 6832 | QuicErrorCode QuicFramer::ParsePublicHeaderGoogleQuic( |
| 6833 | QuicDataReader* reader, uint8_t* first_byte, PacketHeaderFormat* format, |
| 6834 | bool* version_present, QuicVersionLabel* version_label, |
| 6835 | ParsedQuicVersion* parsed_version, |
| 6836 | QuicConnectionId* destination_connection_id, std::string* detailed_error) { |
| 6837 | *format = GOOGLE_QUIC_PACKET; |
| 6838 | *version_present = (*first_byte & PACKET_PUBLIC_FLAGS_VERSION) != 0; |
| 6839 | uint8_t destination_connection_id_length = 0; |
| 6840 | if ((*first_byte & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) != 0) { |
| 6841 | destination_connection_id_length = kQuicDefaultConnectionIdLength; |
| 6842 | } |
| 6843 | if (!reader->ReadConnectionId(destination_connection_id, |
| 6844 | destination_connection_id_length)) { |
| 6845 | *detailed_error = "Unable to read ConnectionId."; |
| 6846 | return QUIC_INVALID_PACKET_HEADER; |
| 6847 | } |
| 6848 | if (*version_present) { |
| 6849 | if (!ProcessVersionLabel(reader, version_label)) { |
| 6850 | *detailed_error = "Unable to read protocol version."; |
| 6851 | return QUIC_INVALID_PACKET_HEADER; |
| 6852 | } |
| 6853 | *parsed_version = ParseQuicVersionLabel(*version_label); |
| 6854 | } |
| 6855 | return QUIC_NO_ERROR; |
| 6856 | } |
| 6857 | |
| 6858 | namespace { |
| 6859 | |
| 6860 | const QuicVersionLabel kProxVersionLabel = 0x50524F58; // "PROX" |
| 6861 | |
| 6862 | inline bool PacketHasLengthPrefixedConnectionIds( |
| 6863 | const QuicDataReader& reader, ParsedQuicVersion parsed_version, |
| 6864 | QuicVersionLabel version_label, uint8_t first_byte) { |
| 6865 | if (parsed_version.IsKnown()) { |
| 6866 | return parsed_version.HasLengthPrefixedConnectionIds(); |
| 6867 | } |
| 6868 | |
| 6869 | // Received unsupported version, check known old unsupported versions. |
| 6870 | if (QuicVersionLabelUses4BitConnectionIdLength(version_label)) { |
| 6871 | return false; |
| 6872 | } |
| 6873 | |
| 6874 | // Received unknown version, check connection ID length byte. |
| 6875 | if (reader.IsDoneReading()) { |
| 6876 | // This check is required to safely peek the connection ID length byte. |
| 6877 | return true; |
| 6878 | } |
| 6879 | const uint8_t connection_id_length_byte = reader.PeekByte(); |
| 6880 | |
| 6881 | // Check for packets produced by older versions of |
| 6882 | // QuicFramer::WriteClientVersionNegotiationProbePacket |
| 6883 | if (first_byte == 0xc0 && (connection_id_length_byte & 0x0f) == 0 && |
| 6884 | connection_id_length_byte >= 0x50 && version_label == 0xcabadaba) { |
| 6885 | return false; |
| 6886 | } |
| 6887 | |
| 6888 | // Check for munged packets with version tag PROX. |
| 6889 | if ((connection_id_length_byte & 0x0f) == 0 && |
| 6890 | connection_id_length_byte >= 0x20 && version_label == kProxVersionLabel) { |
| 6891 | return false; |
| 6892 | } |
| 6893 | |
| 6894 | return true; |
| 6895 | } |
| 6896 | |
| 6897 | inline bool ParseLongHeaderConnectionIds( |
| 6898 | QuicDataReader& reader, bool has_length_prefix, |
| 6899 | QuicVersionLabel version_label, QuicConnectionId& destination_connection_id, |
| 6900 | QuicConnectionId& source_connection_id, std::string& detailed_error) { |
| 6901 | if (has_length_prefix) { |
| 6902 | if (!reader.ReadLengthPrefixedConnectionId(&destination_connection_id)) { |
| 6903 | detailed_error = "Unable to read destination connection ID."; |
| 6904 | return false; |
| 6905 | } |
| 6906 | if (!reader.ReadLengthPrefixedConnectionId(&source_connection_id)) { |
| 6907 | if (version_label == kProxVersionLabel) { |
| 6908 | // The "PROX" version does not follow the length-prefixed invariants, |
| 6909 | // and can therefore attempt to read a payload byte and interpret it |
| 6910 | // as the source connection ID length, which could fail to parse. |
| 6911 | // In that scenario we keep the source connection ID empty but mark |
| 6912 | // parsing as successful. |
| 6913 | return true; |
| 6914 | } |
| 6915 | detailed_error = "Unable to read source connection ID."; |
| 6916 | return false; |
| 6917 | } |
| 6918 | } else { |
| 6919 | // Parse connection ID lengths. |
| 6920 | uint8_t connection_id_lengths_byte; |
| 6921 | if (!reader.ReadUInt8(&connection_id_lengths_byte)) { |
| 6922 | detailed_error = "Unable to read connection ID lengths."; |
| 6923 | return false; |
| 6924 | } |
| 6925 | uint8_t destination_connection_id_length = |
| 6926 | (connection_id_lengths_byte & kDestinationConnectionIdLengthMask) >> 4; |
| 6927 | if (destination_connection_id_length != 0) { |
| 6928 | destination_connection_id_length += kConnectionIdLengthAdjustment; |
| 6929 | } |
| 6930 | uint8_t source_connection_id_length = |
| 6931 | connection_id_lengths_byte & kSourceConnectionIdLengthMask; |
| 6932 | if (source_connection_id_length != 0) { |
| 6933 | source_connection_id_length += kConnectionIdLengthAdjustment; |
| 6934 | } |
| 6935 | |
| 6936 | // Read destination connection ID. |
| 6937 | if (!reader.ReadConnectionId(&destination_connection_id, |
| 6938 | destination_connection_id_length)) { |
| 6939 | detailed_error = "Unable to read destination connection ID."; |
| 6940 | return false; |
| 6941 | } |
| 6942 | |
| 6943 | // Read source connection ID. |
| 6944 | if (!reader.ReadConnectionId(&source_connection_id, |
| 6945 | source_connection_id_length)) { |
| 6946 | detailed_error = "Unable to read source connection ID."; |
| 6947 | return false; |
| 6948 | } |
| 6949 | } |
| 6950 | return true; |
| 6951 | } |
| 6952 | |
| 6953 | } // namespace |
| 6954 | |
| 6955 | // static |
| 6956 | QuicErrorCode QuicFramer::ParsePublicHeader( |
| 6957 | QuicDataReader* reader, uint8_t expected_destination_connection_id_length, |
| 6958 | bool ietf_format, uint8_t* first_byte, PacketHeaderFormat* format, |
| 6959 | bool* version_present, bool* has_length_prefix, |
| 6960 | QuicVersionLabel* version_label, ParsedQuicVersion* parsed_version, |
| 6961 | QuicConnectionId* destination_connection_id, |
| 6962 | QuicConnectionId* source_connection_id, |
| 6963 | QuicLongHeaderType* long_packet_type, |
| 6964 | QuicVariableLengthIntegerLength* retry_token_length_length, |
| 6965 | absl::string_view* retry_token, std::string* detailed_error) { |
| 6966 | *version_present = false; |
| 6967 | *has_length_prefix = false; |
| 6968 | *version_label = 0; |
| 6969 | *parsed_version = UnsupportedQuicVersion(); |
| 6970 | *source_connection_id = EmptyQuicConnectionId(); |
| 6971 | *long_packet_type = INVALID_PACKET_TYPE; |
| 6972 | *retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; |
| 6973 | *retry_token = absl::string_view(); |
| 6974 | *detailed_error = ""; |
| 6975 | |
| 6976 | if (!reader->ReadUInt8(first_byte)) { |
| 6977 | *detailed_error = "Unable to read first byte."; |
| 6978 | return QUIC_INVALID_PACKET_HEADER; |
| 6979 | } |
| 6980 | |
| 6981 | if (!ietf_format) { |
| 6982 | return ParsePublicHeaderGoogleQuic( |
| 6983 | reader, first_byte, format, version_present, version_label, |
| 6984 | parsed_version, destination_connection_id, detailed_error); |
| 6985 | } |
| 6986 | |
| 6987 | *format = GetIetfPacketHeaderFormat(*first_byte); |
| 6988 | |
| 6989 | if (*format == IETF_QUIC_SHORT_HEADER_PACKET) { |
| 6990 | // Read destination connection ID using |
| 6991 | // expected_destination_connection_id_length to determine its length. |
| 6992 | if (!reader->ReadConnectionId(destination_connection_id, |
| 6993 | expected_destination_connection_id_length)) { |
| 6994 | *detailed_error = "Unable to read destination connection ID."; |
| 6995 | return QUIC_INVALID_PACKET_HEADER; |
| 6996 | } |
| 6997 | return QUIC_NO_ERROR; |
| 6998 | } |
| 6999 | |
| 7000 | QUICHE_DCHECK_EQ(IETF_QUIC_LONG_HEADER_PACKET, *format); |
| 7001 | *version_present = true; |
| 7002 | if (!ProcessVersionLabel(reader, version_label)) { |
| 7003 | *detailed_error = "Unable to read protocol version."; |
| 7004 | return QUIC_INVALID_PACKET_HEADER; |
| 7005 | } |
| 7006 | |
| 7007 | if (*version_label == 0) { |
| 7008 | *long_packet_type = VERSION_NEGOTIATION; |
| 7009 | } |
| 7010 | |
| 7011 | // Parse version. |
| 7012 | *parsed_version = ParseQuicVersionLabel(*version_label); |
| 7013 | |
| 7014 | // Figure out which IETF QUIC invariants this packet follows. |
| 7015 | *has_length_prefix = PacketHasLengthPrefixedConnectionIds( |
| 7016 | *reader, *parsed_version, *version_label, *first_byte); |
| 7017 | |
| 7018 | // Parse connection IDs. |
| 7019 | if (!ParseLongHeaderConnectionIds(*reader, *has_length_prefix, *version_label, |
| 7020 | *destination_connection_id, |
| 7021 | *source_connection_id, *detailed_error)) { |
| 7022 | return QUIC_INVALID_PACKET_HEADER; |
| 7023 | } |
| 7024 | |
| 7025 | if (!parsed_version->IsKnown()) { |
| 7026 | // Skip parsing of long packet type and retry token for unknown versions. |
| 7027 | return QUIC_NO_ERROR; |
| 7028 | } |
| 7029 | |
| 7030 | // Parse long packet type. |
| 7031 | *long_packet_type = GetLongHeaderType(*first_byte, *parsed_version); |
| 7032 | |
| 7033 | switch (*long_packet_type) { |
| 7034 | case INVALID_PACKET_TYPE: |
| 7035 | *detailed_error = "Unable to parse long packet type."; |
| 7036 | return QUIC_INVALID_PACKET_HEADER; |
| 7037 | case INITIAL: |
| 7038 | if (!parsed_version->SupportsRetry()) { |
| 7039 | // Retry token is only present on initial packets for some versions. |
| 7040 | return QUIC_NO_ERROR; |
| 7041 | } |
| 7042 | break; |
| 7043 | default: |
| 7044 | return QUIC_NO_ERROR; |
| 7045 | } |
| 7046 | |
| 7047 | *retry_token_length_length = reader->PeekVarInt62Length(); |
| 7048 | uint64_t retry_token_length; |
| 7049 | if (!reader->ReadVarInt62(&retry_token_length)) { |
| 7050 | *retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_0; |
| 7051 | *detailed_error = "Unable to read retry token length."; |
| 7052 | return QUIC_INVALID_PACKET_HEADER; |
| 7053 | } |
| 7054 | |
| 7055 | if (!reader->ReadStringPiece(retry_token, retry_token_length)) { |
| 7056 | *detailed_error = "Unable to read retry token."; |
| 7057 | return QUIC_INVALID_PACKET_HEADER; |
| 7058 | } |
| 7059 | |
| 7060 | return QUIC_NO_ERROR; |
| 7061 | } |
| 7062 | |
| 7063 | // static |
| 7064 | bool QuicFramer::WriteClientVersionNegotiationProbePacket( |
| 7065 | char* packet_bytes, QuicByteCount packet_length, |
| 7066 | const char* destination_connection_id_bytes, |
| 7067 | uint8_t destination_connection_id_length) { |
| 7068 | if (packet_bytes == nullptr) { |
| 7069 | QUIC_BUG(quic_bug_10850_93) << "Invalid packet_bytes"; |
| 7070 | return false; |
| 7071 | } |
| 7072 | if (packet_length < kMinPacketSizeForVersionNegotiation || |
| 7073 | packet_length > 65535) { |
| 7074 | QUIC_BUG(quic_bug_10850_94) << "Invalid packet_length"; |
| 7075 | return false; |
| 7076 | } |
| 7077 | if (destination_connection_id_length > kQuicMaxConnectionId4BitLength || |
| 7078 | destination_connection_id_length < kQuicDefaultConnectionIdLength) { |
| 7079 | QUIC_BUG(quic_bug_10850_95) << "Invalid connection_id_length"; |
| 7080 | return false; |
| 7081 | } |
| 7082 | // clang-format off |
| 7083 | const unsigned char packet_start_bytes[] = { |
| 7084 | // IETF long header with fixed bit set, type initial, all-0 encrypted bits. |
| 7085 | 0xc0, |
| 7086 | // Version, part of the IETF space reserved for negotiation. |
| 7087 | // This intentionally differs from QuicVersionReservedForNegotiation() |
| 7088 | // to allow differentiating them over the wire. |
| 7089 | 0xca, 0xba, 0xda, 0xda, |
| 7090 | }; |
| 7091 | // clang-format on |
| 7092 | static_assert(sizeof(packet_start_bytes) == 5, "bad packet_start_bytes size"); |
| 7093 | QuicDataWriter writer(packet_length, packet_bytes); |
| 7094 | if (!writer.WriteBytes(packet_start_bytes, sizeof(packet_start_bytes))) { |
| 7095 | QUIC_BUG(quic_bug_10850_96) << "Failed to write packet start"; |
| 7096 | return false; |
| 7097 | } |
| 7098 | |
| 7099 | QuicConnectionId destination_connection_id(destination_connection_id_bytes, |
| 7100 | destination_connection_id_length); |
| 7101 | if (!AppendIetfConnectionIds( |
| 7102 | /*version_flag=*/true, /*use_length_prefix=*/true, |
| 7103 | destination_connection_id, EmptyQuicConnectionId(), &writer)) { |
| 7104 | QUIC_BUG(quic_bug_10850_97) << "Failed to write connection IDs"; |
| 7105 | return false; |
| 7106 | } |
| 7107 | // Add 8 bytes of zeroes followed by 8 bytes of ones to ensure that this does |
| 7108 | // not parse with any known version. The zeroes make sure that packet numbers, |
| 7109 | // retry token lengths and payload lengths are parsed as zero, and if the |
| 7110 | // zeroes are treated as padding frames, 0xff is known to not parse as a |
| 7111 | // valid frame type. |
| 7112 | if (!writer.WriteUInt64(0) || |
| 7113 | !writer.WriteUInt64(std::numeric_limits<uint64_t>::max())) { |
| 7114 | QUIC_BUG(quic_bug_10850_98) << "Failed to write 18 bytes"; |
| 7115 | return false; |
| 7116 | } |
| 7117 | // Make sure the polite greeting below is padded to a 16-byte boundary to |
| 7118 | // make it easier to read in tcpdump. |
| 7119 | while (writer.length() % 16 != 0) { |
| 7120 | if (!writer.WriteUInt8(0)) { |
| 7121 | QUIC_BUG(quic_bug_10850_99) << "Failed to write padding byte"; |
| 7122 | return false; |
| 7123 | } |
| 7124 | } |
| 7125 | // Add a polite greeting in case a human sees this in tcpdump. |
| 7126 | static const char polite_greeting[] = |
| 7127 | "This packet only exists to trigger IETF QUIC version negotiation. " |
| 7128 | "Please respond with a Version Negotiation packet indicating what " |
| 7129 | "versions you support. Thank you and have a nice day."; |
| 7130 | if (!writer.WriteBytes(polite_greeting, sizeof(polite_greeting))) { |
| 7131 | QUIC_BUG(quic_bug_10850_100) << "Failed to write polite greeting"; |
| 7132 | return false; |
| 7133 | } |
| 7134 | // Fill the rest of the packet with zeroes. |
| 7135 | writer.WritePadding(); |
| 7136 | QUICHE_DCHECK_EQ(0u, writer.remaining()); |
| 7137 | return true; |
| 7138 | } |
| 7139 | |
| 7140 | // static |
| 7141 | bool QuicFramer::ParseServerVersionNegotiationProbeResponse( |
| 7142 | const char* packet_bytes, QuicByteCount packet_length, |
| 7143 | char* source_connection_id_bytes, uint8_t* source_connection_id_length_out, |
| 7144 | std::string* detailed_error) { |
| 7145 | if (detailed_error == nullptr) { |
| 7146 | QUIC_BUG(quic_bug_10850_101) << "Invalid error_details"; |
| 7147 | return false; |
| 7148 | } |
| 7149 | *detailed_error = ""; |
| 7150 | if (packet_bytes == nullptr) { |
| 7151 | *detailed_error = "Invalid packet_bytes"; |
| 7152 | return false; |
| 7153 | } |
| 7154 | if (packet_length < 6) { |
| 7155 | *detailed_error = "Invalid packet_length"; |
| 7156 | return false; |
| 7157 | } |
| 7158 | if (source_connection_id_bytes == nullptr) { |
| 7159 | *detailed_error = "Invalid source_connection_id_bytes"; |
| 7160 | return false; |
| 7161 | } |
| 7162 | if (source_connection_id_length_out == nullptr) { |
| 7163 | *detailed_error = "Invalid source_connection_id_length_out"; |
| 7164 | return false; |
| 7165 | } |
| 7166 | QuicDataReader reader(packet_bytes, packet_length); |
| 7167 | uint8_t type_byte = 0; |
| 7168 | if (!reader.ReadUInt8(&type_byte)) { |
| 7169 | *detailed_error = "Failed to read type byte"; |
| 7170 | return false; |
| 7171 | } |
| 7172 | if ((type_byte & 0x80) == 0) { |
| 7173 | *detailed_error = "Packet does not have long header"; |
| 7174 | return false; |
| 7175 | } |
| 7176 | uint32_t version = 0; |
| 7177 | if (!reader.ReadUInt32(&version)) { |
| 7178 | *detailed_error = "Failed to read version"; |
| 7179 | return false; |
| 7180 | } |
| 7181 | if (version != 0) { |
| 7182 | *detailed_error = "Packet is not a version negotiation packet"; |
| 7183 | return false; |
| 7184 | } |
| 7185 | |
| 7186 | QuicConnectionId destination_connection_id, source_connection_id; |
| 7187 | if (!reader.ReadLengthPrefixedConnectionId(&destination_connection_id)) { |
| 7188 | *detailed_error = "Failed to read destination connection ID"; |
| 7189 | return false; |
| 7190 | } |
| 7191 | if (!reader.ReadLengthPrefixedConnectionId(&source_connection_id)) { |
| 7192 | *detailed_error = "Failed to read source connection ID"; |
| 7193 | return false; |
| 7194 | } |
| 7195 | |
| 7196 | if (destination_connection_id.length() != 0) { |
| 7197 | *detailed_error = "Received unexpected destination connection ID length"; |
| 7198 | return false; |
| 7199 | } |
| 7200 | if (*source_connection_id_length_out < source_connection_id.length()) { |
| 7201 | *detailed_error = |
| 7202 | absl::StrCat("*source_connection_id_length_out too small ", |
| 7203 | static_cast<int>(*source_connection_id_length_out), " < ", |
| 7204 | static_cast<int>(source_connection_id.length())); |
| 7205 | return false; |
| 7206 | } |
| 7207 | |
| 7208 | memcpy(source_connection_id_bytes, source_connection_id.data(), |
| 7209 | source_connection_id.length()); |
| 7210 | *source_connection_id_length_out = source_connection_id.length(); |
| 7211 | |
| 7212 | return true; |
| 7213 | } |
| 7214 | |
| 7215 | // Look for and parse the error code from the "<quic_error_code>:" text that |
| 7216 | // may be present at the start of the CONNECTION_CLOSE error details string. |
| 7217 | // This text, inserted by the peer if it's using Google's QUIC implementation, |
| 7218 | // contains additional error information that narrows down the exact error. If |
| 7219 | // the string is not found, or is not properly formed, it returns |
| 7220 | // ErrorCode::QUIC_IETF_GQUIC_ERROR_MISSING |
| 7221 | void MaybeExtractQuicErrorCode(QuicConnectionCloseFrame* frame) { |
| 7222 | std::vector<absl::string_view> ed = absl::StrSplit(frame->error_details, ':'); |
| 7223 | uint64_t extracted_error_code; |
| 7224 | if (ed.size() < 2 || !quiche::QuicheTextUtils::IsAllDigits(ed[0]) || |
| 7225 | !absl::SimpleAtoi(ed[0], &extracted_error_code)) { |
| 7226 | if (frame->close_type == IETF_QUIC_TRANSPORT_CONNECTION_CLOSE && |
| 7227 | frame->wire_error_code == NO_IETF_QUIC_ERROR) { |
| 7228 | frame->quic_error_code = QUIC_NO_ERROR; |
| 7229 | } else { |
| 7230 | frame->quic_error_code = QUIC_IETF_GQUIC_ERROR_MISSING; |
| 7231 | } |
| 7232 | return; |
| 7233 | } |
| 7234 | // Return the error code (numeric) and the error details string without the |
| 7235 | // error code prefix. Note that Split returns everything up to, but not |
| 7236 | // including, the split character, so the length of ed[0] is just the number |
| 7237 | // of digits in the error number. In removing the prefix, 1 is added to the |
| 7238 | // length to account for the : |
| 7239 | absl::string_view x = absl::string_view(frame->error_details); |
| 7240 | x.remove_prefix(ed[0].length() + 1); |
| 7241 | frame->error_details = std::string(x); |
| 7242 | frame->quic_error_code = static_cast<QuicErrorCode>(extracted_error_code); |
| 7243 | } |
| 7244 | |
| 7245 | #undef ENDPOINT // undef for jumbo builds |
| 7246 | } // namespace quic |