QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 1 | // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #include "net/third_party/quiche/src/quic/core/quic_utils.h" |
| 6 | |
| 7 | #include <algorithm> |
| 8 | #include <cstdint> |
vasilvv | 872e7a3 | 2019-03-12 16:42:44 -0700 | [diff] [blame] | 9 | #include <string> |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 10 | |
QUICHE team | c65d1d1 | 2019-03-19 20:58:04 -0700 | [diff] [blame] | 11 | #include "net/third_party/quiche/src/quic/core/quic_connection_id.h" |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 12 | #include "net/third_party/quiche/src/quic/core/quic_constants.h" |
| 13 | #include "net/third_party/quiche/src/quic/core/quic_types.h" |
| 14 | #include "net/third_party/quiche/src/quic/platform/api/quic_aligned.h" |
| 15 | #include "net/third_party/quiche/src/quic/platform/api/quic_arraysize.h" |
| 16 | #include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h" |
| 17 | #include "net/third_party/quiche/src/quic/platform/api/quic_endian.h" |
dschinazi | 8eb45e9 | 2019-05-10 11:36:15 -0700 | [diff] [blame] | 18 | #include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h" |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 19 | #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" |
| 20 | #include "net/third_party/quiche/src/quic/platform/api/quic_prefetch.h" |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 21 | #include "net/third_party/quiche/src/quic/platform/api/quic_uint128.h" |
| 22 | |
| 23 | namespace quic { |
| 24 | namespace { |
| 25 | |
| 26 | // We know that >= GCC 4.8 and Clang have a __uint128_t intrinsic. Other |
| 27 | // compilers don't necessarily, notably MSVC. |
| 28 | #if defined(__x86_64__) && \ |
| 29 | ((defined(__GNUC__) && \ |
| 30 | (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) || \ |
| 31 | defined(__clang__)) |
| 32 | #define QUIC_UTIL_HAS_UINT128 1 |
| 33 | #endif |
| 34 | |
| 35 | #ifdef QUIC_UTIL_HAS_UINT128 |
| 36 | QuicUint128 IncrementalHashFast(QuicUint128 uhash, QuicStringPiece data) { |
| 37 | // This code ends up faster than the naive implementation for 2 reasons: |
| 38 | // 1. QuicUint128 is sufficiently complicated that the compiler |
| 39 | // cannot transform the multiplication by kPrime into a shift-multiply-add; |
| 40 | // it has go through all of the instructions for a 128-bit multiply. |
| 41 | // 2. Because there are so fewer instructions (around 13), the hot loop fits |
| 42 | // nicely in the instruction queue of many Intel CPUs. |
| 43 | // kPrime = 309485009821345068724781371 |
| 44 | static const QuicUint128 kPrime = |
| 45 | (static_cast<QuicUint128>(16777216) << 64) + 315; |
| 46 | auto hi = QuicUint128High64(uhash); |
| 47 | auto lo = QuicUint128Low64(uhash); |
| 48 | QuicUint128 xhash = (static_cast<QuicUint128>(hi) << 64) + lo; |
| 49 | const uint8_t* octets = reinterpret_cast<const uint8_t*>(data.data()); |
| 50 | for (size_t i = 0; i < data.length(); ++i) { |
| 51 | xhash = (xhash ^ static_cast<uint32_t>(octets[i])) * kPrime; |
| 52 | } |
| 53 | return MakeQuicUint128(QuicUint128High64(xhash), QuicUint128Low64(xhash)); |
| 54 | } |
| 55 | #endif |
| 56 | |
| 57 | #ifndef QUIC_UTIL_HAS_UINT128 |
| 58 | // Slow implementation of IncrementalHash. In practice, only used by Chromium. |
| 59 | QuicUint128 IncrementalHashSlow(QuicUint128 hash, QuicStringPiece data) { |
| 60 | // kPrime = 309485009821345068724781371 |
| 61 | static const QuicUint128 kPrime = MakeQuicUint128(16777216, 315); |
| 62 | const uint8_t* octets = reinterpret_cast<const uint8_t*>(data.data()); |
| 63 | for (size_t i = 0; i < data.length(); ++i) { |
| 64 | hash = hash ^ MakeQuicUint128(0, octets[i]); |
| 65 | hash = hash * kPrime; |
| 66 | } |
| 67 | return hash; |
| 68 | } |
| 69 | #endif |
| 70 | |
| 71 | QuicUint128 IncrementalHash(QuicUint128 hash, QuicStringPiece data) { |
| 72 | #ifdef QUIC_UTIL_HAS_UINT128 |
| 73 | return IncrementalHashFast(hash, data); |
| 74 | #else |
| 75 | return IncrementalHashSlow(hash, data); |
| 76 | #endif |
| 77 | } |
| 78 | |
| 79 | } // namespace |
| 80 | |
| 81 | // static |
| 82 | uint64_t QuicUtils::FNV1a_64_Hash(QuicStringPiece data) { |
| 83 | static const uint64_t kOffset = UINT64_C(14695981039346656037); |
| 84 | static const uint64_t kPrime = UINT64_C(1099511628211); |
| 85 | |
| 86 | const uint8_t* octets = reinterpret_cast<const uint8_t*>(data.data()); |
| 87 | |
| 88 | uint64_t hash = kOffset; |
| 89 | |
| 90 | for (size_t i = 0; i < data.length(); ++i) { |
| 91 | hash = hash ^ octets[i]; |
| 92 | hash = hash * kPrime; |
| 93 | } |
| 94 | |
| 95 | return hash; |
| 96 | } |
| 97 | |
| 98 | // static |
| 99 | QuicUint128 QuicUtils::FNV1a_128_Hash(QuicStringPiece data) { |
| 100 | return FNV1a_128_Hash_Three(data, QuicStringPiece(), QuicStringPiece()); |
| 101 | } |
| 102 | |
| 103 | // static |
| 104 | QuicUint128 QuicUtils::FNV1a_128_Hash_Two(QuicStringPiece data1, |
| 105 | QuicStringPiece data2) { |
| 106 | return FNV1a_128_Hash_Three(data1, data2, QuicStringPiece()); |
| 107 | } |
| 108 | |
| 109 | // static |
| 110 | QuicUint128 QuicUtils::FNV1a_128_Hash_Three(QuicStringPiece data1, |
| 111 | QuicStringPiece data2, |
| 112 | QuicStringPiece data3) { |
| 113 | // The two constants are defined as part of the hash algorithm. |
| 114 | // see http://www.isthe.com/chongo/tech/comp/fnv/ |
| 115 | // kOffset = 144066263297769815596495629667062367629 |
| 116 | const QuicUint128 kOffset = MakeQuicUint128(UINT64_C(7809847782465536322), |
| 117 | UINT64_C(7113472399480571277)); |
| 118 | |
| 119 | QuicUint128 hash = IncrementalHash(kOffset, data1); |
| 120 | if (data2.empty()) { |
| 121 | return hash; |
| 122 | } |
| 123 | |
| 124 | hash = IncrementalHash(hash, data2); |
| 125 | if (data3.empty()) { |
| 126 | return hash; |
| 127 | } |
| 128 | return IncrementalHash(hash, data3); |
| 129 | } |
| 130 | |
| 131 | // static |
| 132 | void QuicUtils::SerializeUint128Short(QuicUint128 v, uint8_t* out) { |
| 133 | const uint64_t lo = QuicUint128Low64(v); |
| 134 | const uint64_t hi = QuicUint128High64(v); |
| 135 | // This assumes that the system is little-endian. |
| 136 | memcpy(out, &lo, sizeof(lo)); |
| 137 | memcpy(out + sizeof(lo), &hi, sizeof(hi) / 2); |
| 138 | } |
| 139 | |
| 140 | #define RETURN_STRING_LITERAL(x) \ |
| 141 | case x: \ |
| 142 | return #x; |
| 143 | |
| 144 | // static |
| 145 | const char* QuicUtils::EncryptionLevelToString(EncryptionLevel level) { |
| 146 | switch (level) { |
QUICHE team | 6987b4a | 2019-03-15 16:23:04 -0700 | [diff] [blame] | 147 | RETURN_STRING_LITERAL(ENCRYPTION_INITIAL); |
QUICHE team | 88ea008 | 2019-03-15 10:05:26 -0700 | [diff] [blame] | 148 | RETURN_STRING_LITERAL(ENCRYPTION_HANDSHAKE); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 149 | RETURN_STRING_LITERAL(ENCRYPTION_ZERO_RTT); |
| 150 | RETURN_STRING_LITERAL(ENCRYPTION_FORWARD_SECURE); |
| 151 | RETURN_STRING_LITERAL(NUM_ENCRYPTION_LEVELS); |
| 152 | } |
| 153 | return "INVALID_ENCRYPTION_LEVEL"; |
| 154 | } |
| 155 | |
| 156 | // static |
| 157 | const char* QuicUtils::TransmissionTypeToString(TransmissionType type) { |
| 158 | switch (type) { |
| 159 | RETURN_STRING_LITERAL(NOT_RETRANSMISSION); |
| 160 | RETURN_STRING_LITERAL(HANDSHAKE_RETRANSMISSION); |
| 161 | RETURN_STRING_LITERAL(LOSS_RETRANSMISSION); |
| 162 | RETURN_STRING_LITERAL(ALL_UNACKED_RETRANSMISSION); |
| 163 | RETURN_STRING_LITERAL(ALL_INITIAL_RETRANSMISSION); |
| 164 | RETURN_STRING_LITERAL(RTO_RETRANSMISSION); |
| 165 | RETURN_STRING_LITERAL(TLP_RETRANSMISSION); |
| 166 | RETURN_STRING_LITERAL(PROBING_RETRANSMISSION); |
| 167 | } |
| 168 | return "INVALID_TRANSMISSION_TYPE"; |
| 169 | } |
| 170 | |
vasilvv | c48c871 | 2019-03-11 13:38:16 -0700 | [diff] [blame] | 171 | std::string QuicUtils::AddressChangeTypeToString(AddressChangeType type) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 172 | switch (type) { |
| 173 | RETURN_STRING_LITERAL(NO_CHANGE); |
| 174 | RETURN_STRING_LITERAL(PORT_CHANGE); |
| 175 | RETURN_STRING_LITERAL(IPV4_SUBNET_CHANGE); |
| 176 | RETURN_STRING_LITERAL(IPV4_TO_IPV6_CHANGE); |
| 177 | RETURN_STRING_LITERAL(IPV6_TO_IPV4_CHANGE); |
| 178 | RETURN_STRING_LITERAL(IPV6_TO_IPV6_CHANGE); |
| 179 | RETURN_STRING_LITERAL(IPV4_TO_IPV4_CHANGE); |
| 180 | } |
| 181 | return "INVALID_ADDRESS_CHANGE_TYPE"; |
| 182 | } |
| 183 | |
| 184 | const char* QuicUtils::SentPacketStateToString(SentPacketState state) { |
| 185 | switch (state) { |
| 186 | RETURN_STRING_LITERAL(OUTSTANDING); |
| 187 | RETURN_STRING_LITERAL(NEVER_SENT); |
| 188 | RETURN_STRING_LITERAL(ACKED); |
| 189 | RETURN_STRING_LITERAL(UNACKABLE); |
| 190 | RETURN_STRING_LITERAL(HANDSHAKE_RETRANSMITTED); |
| 191 | RETURN_STRING_LITERAL(LOST); |
| 192 | RETURN_STRING_LITERAL(TLP_RETRANSMITTED); |
| 193 | RETURN_STRING_LITERAL(RTO_RETRANSMITTED); |
| 194 | RETURN_STRING_LITERAL(PROBE_RETRANSMITTED); |
| 195 | } |
| 196 | return "INVALID_SENT_PACKET_STATE"; |
| 197 | } |
| 198 | |
| 199 | // static |
| 200 | const char* QuicUtils::QuicLongHeaderTypetoString(QuicLongHeaderType type) { |
| 201 | switch (type) { |
| 202 | RETURN_STRING_LITERAL(VERSION_NEGOTIATION); |
| 203 | RETURN_STRING_LITERAL(INITIAL); |
| 204 | RETURN_STRING_LITERAL(RETRY); |
| 205 | RETURN_STRING_LITERAL(HANDSHAKE); |
| 206 | RETURN_STRING_LITERAL(ZERO_RTT_PROTECTED); |
| 207 | default: |
| 208 | return "INVALID_PACKET_TYPE"; |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | // static |
fayang | 3eb8221 | 2019-04-16 12:05:46 -0700 | [diff] [blame] | 213 | const char* QuicUtils::AckResultToString(AckResult result) { |
| 214 | switch (result) { |
| 215 | RETURN_STRING_LITERAL(PACKETS_NEWLY_ACKED); |
| 216 | RETURN_STRING_LITERAL(NO_PACKETS_NEWLY_ACKED); |
| 217 | RETURN_STRING_LITERAL(UNSENT_PACKETS_ACKED); |
| 218 | RETURN_STRING_LITERAL(UNACKABLE_PACKETS_ACKED); |
| 219 | RETURN_STRING_LITERAL(PACKETS_ACKED_IN_WRONG_PACKET_NUMBER_SPACE); |
| 220 | } |
| 221 | return "INVALID_ACK_RESULT"; |
| 222 | } |
| 223 | |
| 224 | // static |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 225 | AddressChangeType QuicUtils::DetermineAddressChangeType( |
| 226 | const QuicSocketAddress& old_address, |
| 227 | const QuicSocketAddress& new_address) { |
| 228 | if (!old_address.IsInitialized() || !new_address.IsInitialized() || |
| 229 | old_address == new_address) { |
| 230 | return NO_CHANGE; |
| 231 | } |
| 232 | |
| 233 | if (old_address.host() == new_address.host()) { |
| 234 | return PORT_CHANGE; |
| 235 | } |
| 236 | |
| 237 | bool old_ip_is_ipv4 = old_address.host().IsIPv4() ? true : false; |
| 238 | bool migrating_ip_is_ipv4 = new_address.host().IsIPv4() ? true : false; |
| 239 | if (old_ip_is_ipv4 && !migrating_ip_is_ipv4) { |
| 240 | return IPV4_TO_IPV6_CHANGE; |
| 241 | } |
| 242 | |
| 243 | if (!old_ip_is_ipv4) { |
| 244 | return migrating_ip_is_ipv4 ? IPV6_TO_IPV4_CHANGE : IPV6_TO_IPV6_CHANGE; |
| 245 | } |
| 246 | |
| 247 | const int kSubnetMaskLength = 24; |
| 248 | if (old_address.host().InSameSubnet(new_address.host(), kSubnetMaskLength)) { |
| 249 | // Subnet part does not change (here, we use /24), which is considered to be |
| 250 | // caused by NATs. |
| 251 | return IPV4_SUBNET_CHANGE; |
| 252 | } |
| 253 | |
| 254 | return IPV4_TO_IPV4_CHANGE; |
| 255 | } |
| 256 | |
| 257 | // static |
| 258 | void QuicUtils::CopyToBuffer(const struct iovec* iov, |
| 259 | int iov_count, |
| 260 | size_t iov_offset, |
| 261 | size_t buffer_length, |
| 262 | char* buffer) { |
| 263 | int iovnum = 0; |
| 264 | while (iovnum < iov_count && iov_offset >= iov[iovnum].iov_len) { |
| 265 | iov_offset -= iov[iovnum].iov_len; |
| 266 | ++iovnum; |
| 267 | } |
| 268 | DCHECK_LE(iovnum, iov_count); |
| 269 | DCHECK_LE(iov_offset, iov[iovnum].iov_len); |
| 270 | if (iovnum >= iov_count || buffer_length == 0) { |
| 271 | return; |
| 272 | } |
| 273 | |
| 274 | // Unroll the first iteration that handles iov_offset. |
| 275 | const size_t iov_available = iov[iovnum].iov_len - iov_offset; |
| 276 | size_t copy_len = std::min(buffer_length, iov_available); |
| 277 | |
| 278 | // Try to prefetch the next iov if there is at least one more after the |
| 279 | // current. Otherwise, it looks like an irregular access that the hardware |
| 280 | // prefetcher won't speculatively prefetch. Only prefetch one iov because |
| 281 | // generally, the iov_offset is not 0, input iov consists of 2K buffers and |
| 282 | // the output buffer is ~1.4K. |
| 283 | if (copy_len == iov_available && iovnum + 1 < iov_count) { |
| 284 | char* next_base = static_cast<char*>(iov[iovnum + 1].iov_base); |
| 285 | // Prefetch 2 cachelines worth of data to get the prefetcher started; leave |
| 286 | // it to the hardware prefetcher after that. |
| 287 | QuicPrefetchT0(next_base); |
| 288 | if (iov[iovnum + 1].iov_len >= 64) { |
| 289 | QuicPrefetchT0(next_base + QUIC_CACHELINE_SIZE); |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | const char* src = static_cast<char*>(iov[iovnum].iov_base) + iov_offset; |
| 294 | while (true) { |
| 295 | memcpy(buffer, src, copy_len); |
| 296 | buffer_length -= copy_len; |
| 297 | buffer += copy_len; |
| 298 | if (buffer_length == 0 || ++iovnum >= iov_count) { |
| 299 | break; |
| 300 | } |
| 301 | src = static_cast<char*>(iov[iovnum].iov_base); |
| 302 | copy_len = std::min(buffer_length, iov[iovnum].iov_len); |
| 303 | } |
| 304 | QUIC_BUG_IF(buffer_length > 0) << "Failed to copy entire length to buffer."; |
| 305 | } |
| 306 | |
| 307 | // static |
| 308 | struct iovec QuicUtils::MakeIovec(QuicStringPiece data) { |
| 309 | struct iovec iov = {const_cast<char*>(data.data()), |
| 310 | static_cast<size_t>(data.size())}; |
| 311 | return iov; |
| 312 | } |
| 313 | |
| 314 | // static |
| 315 | bool QuicUtils::IsAckable(SentPacketState state) { |
| 316 | return state != NEVER_SENT && state != ACKED && state != UNACKABLE; |
| 317 | } |
| 318 | |
| 319 | // static |
| 320 | bool QuicUtils::IsRetransmittableFrame(QuicFrameType type) { |
| 321 | switch (type) { |
| 322 | case ACK_FRAME: |
| 323 | case PADDING_FRAME: |
| 324 | case STOP_WAITING_FRAME: |
| 325 | case MTU_DISCOVERY_FRAME: |
| 326 | return false; |
| 327 | default: |
| 328 | return true; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | // static |
| 333 | bool QuicUtils::IsHandshakeFrame(const QuicFrame& frame, |
| 334 | QuicTransportVersion transport_version) { |
QUICHE team | ea74008 | 2019-03-11 17:58:43 -0700 | [diff] [blame] | 335 | if (!QuicVersionUsesCryptoFrames(transport_version)) { |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 336 | return frame.type == STREAM_FRAME && |
| 337 | frame.stream_frame.stream_id == GetCryptoStreamId(transport_version); |
| 338 | } else { |
| 339 | return frame.type == CRYPTO_FRAME; |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | // static |
| 344 | SentPacketState QuicUtils::RetransmissionTypeToPacketState( |
| 345 | TransmissionType retransmission_type) { |
| 346 | switch (retransmission_type) { |
| 347 | case ALL_UNACKED_RETRANSMISSION: |
| 348 | case ALL_INITIAL_RETRANSMISSION: |
| 349 | return UNACKABLE; |
| 350 | case HANDSHAKE_RETRANSMISSION: |
| 351 | return HANDSHAKE_RETRANSMITTED; |
| 352 | case LOSS_RETRANSMISSION: |
| 353 | return LOST; |
| 354 | case TLP_RETRANSMISSION: |
| 355 | return TLP_RETRANSMITTED; |
| 356 | case RTO_RETRANSMISSION: |
| 357 | return RTO_RETRANSMITTED; |
| 358 | case PROBING_RETRANSMISSION: |
| 359 | return PROBE_RETRANSMITTED; |
| 360 | default: |
| 361 | QUIC_BUG << QuicUtils::TransmissionTypeToString(retransmission_type) |
| 362 | << " is not a retransmission_type"; |
| 363 | return UNACKABLE; |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | // static |
| 368 | bool QuicUtils::IsIetfPacketHeader(uint8_t first_byte) { |
| 369 | return (first_byte & FLAGS_LONG_HEADER) || (first_byte & FLAGS_FIXED_BIT) || |
| 370 | !(first_byte & FLAGS_DEMULTIPLEXING_BIT); |
| 371 | } |
| 372 | |
| 373 | // static |
| 374 | bool QuicUtils::IsIetfPacketShortHeader(uint8_t first_byte) { |
| 375 | return IsIetfPacketHeader(first_byte) && !(first_byte & FLAGS_LONG_HEADER); |
| 376 | } |
| 377 | |
| 378 | // static |
| 379 | QuicStreamId QuicUtils::GetInvalidStreamId(QuicTransportVersion version) { |
fkastenholz | 305e173 | 2019-06-18 05:01:22 -0700 | [diff] [blame] | 380 | return VersionHasIetfQuicFrames(version) |
| 381 | ? std::numeric_limits<QuicStreamId>::max() |
| 382 | : 0; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 383 | } |
| 384 | |
| 385 | // static |
| 386 | QuicStreamId QuicUtils::GetCryptoStreamId(QuicTransportVersion version) { |
nharper | 46833c3 | 2019-05-15 21:33:05 -0700 | [diff] [blame] | 387 | QUIC_BUG_IF(QuicVersionUsesCryptoFrames(version)) |
| 388 | << "CRYPTO data aren't in stream frames; they have no stream ID."; |
| 389 | return QuicVersionUsesCryptoFrames(version) ? GetInvalidStreamId(version) : 1; |
| 390 | } |
| 391 | |
| 392 | // static |
| 393 | bool QuicUtils::IsCryptoStreamId(QuicTransportVersion version, |
| 394 | QuicStreamId stream_id) { |
| 395 | if (QuicVersionUsesCryptoFrames(version)) { |
| 396 | return false; |
| 397 | } |
| 398 | return stream_id == GetCryptoStreamId(version); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 399 | } |
| 400 | |
| 401 | // static |
| 402 | QuicStreamId QuicUtils::GetHeadersStreamId(QuicTransportVersion version) { |
dschinazi | 552accc | 2019-06-17 17:07:34 -0700 | [diff] [blame] | 403 | if (version == QUIC_VERSION_99) { |
| 404 | // TODO(b/130659182) Turn this into a QUIC_BUG once we've fully removed |
| 405 | // the headers stream in those versions. |
| 406 | return GetQuicFlag(FLAGS_quic_headers_stream_id_in_v99); |
| 407 | } |
nharper | cd820e0 | 2019-05-16 15:12:07 -0700 | [diff] [blame] | 408 | return GetFirstBidirectionalStreamId(version, Perspective::IS_CLIENT); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 409 | } |
| 410 | |
| 411 | // static |
| 412 | bool QuicUtils::IsClientInitiatedStreamId(QuicTransportVersion version, |
| 413 | QuicStreamId id) { |
| 414 | if (id == GetInvalidStreamId(version)) { |
| 415 | return false; |
| 416 | } |
fkastenholz | 305e173 | 2019-06-18 05:01:22 -0700 | [diff] [blame] | 417 | return VersionHasIetfQuicFrames(version) ? id % 2 == 0 : id % 2 != 0; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 418 | } |
| 419 | |
| 420 | // static |
| 421 | bool QuicUtils::IsServerInitiatedStreamId(QuicTransportVersion version, |
| 422 | QuicStreamId id) { |
| 423 | if (id == GetInvalidStreamId(version)) { |
| 424 | return false; |
| 425 | } |
fkastenholz | 305e173 | 2019-06-18 05:01:22 -0700 | [diff] [blame] | 426 | return VersionHasIetfQuicFrames(version) ? id % 2 != 0 : id % 2 == 0; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 427 | } |
| 428 | |
| 429 | // static |
| 430 | bool QuicUtils::IsBidirectionalStreamId(QuicStreamId id) { |
| 431 | return id % 4 < 2; |
| 432 | } |
| 433 | |
| 434 | // static |
| 435 | StreamType QuicUtils::GetStreamType(QuicStreamId id, |
| 436 | Perspective perspective, |
| 437 | bool peer_initiated) { |
| 438 | if (IsBidirectionalStreamId(id)) { |
| 439 | return BIDIRECTIONAL; |
| 440 | } |
| 441 | |
| 442 | if (peer_initiated) { |
| 443 | if (perspective == Perspective::IS_SERVER) { |
| 444 | DCHECK_EQ(2u, id % 4); |
| 445 | } else { |
| 446 | DCHECK_EQ(Perspective::IS_CLIENT, perspective); |
| 447 | DCHECK_EQ(3u, id % 4); |
| 448 | } |
| 449 | return READ_UNIDIRECTIONAL; |
| 450 | } |
| 451 | |
| 452 | if (perspective == Perspective::IS_SERVER) { |
| 453 | DCHECK_EQ(3u, id % 4); |
| 454 | } else { |
| 455 | DCHECK_EQ(Perspective::IS_CLIENT, perspective); |
| 456 | DCHECK_EQ(2u, id % 4); |
| 457 | } |
| 458 | return WRITE_UNIDIRECTIONAL; |
| 459 | } |
| 460 | |
| 461 | // static |
| 462 | QuicStreamId QuicUtils::StreamIdDelta(QuicTransportVersion version) { |
fkastenholz | 305e173 | 2019-06-18 05:01:22 -0700 | [diff] [blame] | 463 | return VersionHasIetfQuicFrames(version) ? 4 : 2; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 464 | } |
| 465 | |
| 466 | // static |
| 467 | QuicStreamId QuicUtils::GetFirstBidirectionalStreamId( |
| 468 | QuicTransportVersion version, |
| 469 | Perspective perspective) { |
fkastenholz | 305e173 | 2019-06-18 05:01:22 -0700 | [diff] [blame] | 470 | if (VersionHasIetfQuicFrames(version)) { |
nharper | cd820e0 | 2019-05-16 15:12:07 -0700 | [diff] [blame] | 471 | return perspective == Perspective::IS_CLIENT ? 0 : 1; |
| 472 | } else if (QuicVersionUsesCryptoFrames(version)) { |
| 473 | return perspective == Perspective::IS_CLIENT ? 1 : 2; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 474 | } |
nharper | cd820e0 | 2019-05-16 15:12:07 -0700 | [diff] [blame] | 475 | return perspective == Perspective::IS_CLIENT ? 3 : 2; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 476 | } |
| 477 | |
| 478 | // static |
| 479 | QuicStreamId QuicUtils::GetFirstUnidirectionalStreamId( |
| 480 | QuicTransportVersion version, |
| 481 | Perspective perspective) { |
fkastenholz | 305e173 | 2019-06-18 05:01:22 -0700 | [diff] [blame] | 482 | if (VersionHasIetfQuicFrames(version)) { |
nharper | cd820e0 | 2019-05-16 15:12:07 -0700 | [diff] [blame] | 483 | return perspective == Perspective::IS_CLIENT ? 2 : 3; |
| 484 | } else if (QuicVersionUsesCryptoFrames(version)) { |
| 485 | return perspective == Perspective::IS_CLIENT ? 1 : 2; |
| 486 | } |
| 487 | return perspective == Perspective::IS_CLIENT ? 3 : 2; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 488 | } |
| 489 | |
| 490 | // static |
| 491 | QuicConnectionId QuicUtils::CreateRandomConnectionId() { |
QUICHE team | c65d1d1 | 2019-03-19 20:58:04 -0700 | [diff] [blame] | 492 | return CreateRandomConnectionId(kQuicDefaultConnectionIdLength, |
| 493 | QuicRandom::GetInstance()); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 494 | } |
| 495 | |
| 496 | // static |
| 497 | QuicConnectionId QuicUtils::CreateRandomConnectionId(QuicRandom* random) { |
QUICHE team | c65d1d1 | 2019-03-19 20:58:04 -0700 | [diff] [blame] | 498 | return CreateRandomConnectionId(kQuicDefaultConnectionIdLength, random); |
| 499 | } |
| 500 | // static |
| 501 | QuicConnectionId QuicUtils::CreateRandomConnectionId( |
| 502 | uint8_t connection_id_length) { |
| 503 | return CreateRandomConnectionId(connection_id_length, |
| 504 | QuicRandom::GetInstance()); |
| 505 | } |
| 506 | |
| 507 | // static |
| 508 | QuicConnectionId QuicUtils::CreateRandomConnectionId( |
| 509 | uint8_t connection_id_length, |
| 510 | QuicRandom* random) { |
| 511 | if (connection_id_length == 0) { |
| 512 | return EmptyQuicConnectionId(); |
| 513 | } |
| 514 | if (connection_id_length > kQuicMaxConnectionIdLength) { |
| 515 | QUIC_BUG << "Tried to CreateRandomConnectionId of invalid length " |
| 516 | << static_cast<int>(connection_id_length); |
| 517 | connection_id_length = kQuicMaxConnectionIdLength; |
| 518 | } |
| 519 | char connection_id_bytes[kQuicMaxConnectionIdLength]; |
| 520 | random->RandBytes(connection_id_bytes, connection_id_length); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 521 | return QuicConnectionId(static_cast<char*>(connection_id_bytes), |
QUICHE team | c65d1d1 | 2019-03-19 20:58:04 -0700 | [diff] [blame] | 522 | connection_id_length); |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 523 | } |
| 524 | |
| 525 | // static |
| 526 | bool QuicUtils::VariableLengthConnectionIdAllowedForVersion( |
| 527 | QuicTransportVersion version) { |
dschinazi | 8eb45e9 | 2019-05-10 11:36:15 -0700 | [diff] [blame] | 528 | // We allow variable length connection IDs for unsupported versions to |
| 529 | // ensure that IETF version negotiation works when other implementations |
| 530 | // trigger version negotiation with custom connection ID lengths. |
| 531 | return version >= QUIC_VERSION_47 || version == QUIC_VERSION_UNSUPPORTED; |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 532 | } |
| 533 | |
| 534 | // static |
| 535 | QuicConnectionId QuicUtils::CreateZeroConnectionId( |
| 536 | QuicTransportVersion version) { |
| 537 | if (!VariableLengthConnectionIdAllowedForVersion(version)) { |
| 538 | char connection_id_bytes[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 539 | return QuicConnectionId(static_cast<char*>(connection_id_bytes), |
| 540 | QUIC_ARRAYSIZE(connection_id_bytes)); |
| 541 | } |
| 542 | return EmptyQuicConnectionId(); |
| 543 | } |
| 544 | |
| 545 | // static |
| 546 | bool QuicUtils::IsConnectionIdValidForVersion(QuicConnectionId connection_id, |
| 547 | QuicTransportVersion version) { |
| 548 | if (VariableLengthConnectionIdAllowedForVersion(version)) { |
| 549 | return true; |
| 550 | } |
| 551 | return connection_id.length() == kQuicDefaultConnectionIdLength; |
| 552 | } |
| 553 | |
| 554 | QuicUint128 QuicUtils::GenerateStatelessResetToken( |
| 555 | QuicConnectionId connection_id) { |
| 556 | uint64_t data_bytes[3] = {0, 0, 0}; |
| 557 | static_assert(sizeof(data_bytes) >= kQuicMaxConnectionIdLength, |
| 558 | "kQuicMaxConnectionIdLength changed"); |
| 559 | memcpy(data_bytes, connection_id.data(), connection_id.length()); |
| 560 | // This is designed so that the common case of 64bit connection IDs |
| 561 | // produces a stateless reset token that is equal to the connection ID |
| 562 | // interpreted as a 64bit unsigned integer, to facilitate debugging. |
| 563 | return MakeQuicUint128( |
| 564 | QuicEndian::NetToHost64(sizeof(uint64_t) ^ connection_id.length() ^ |
| 565 | data_bytes[1] ^ data_bytes[2]), |
| 566 | QuicEndian::NetToHost64(data_bytes[0])); |
| 567 | } |
| 568 | |
fkastenholz | 3c4eabf | 2019-04-22 07:49:59 -0700 | [diff] [blame] | 569 | // Returns the maximum value that a stream count may have, taking into account |
| 570 | // the fact that bidirectional, client initiated, streams have one fewer stream |
| 571 | // available than the others. This is because the old crypto streams, with ID == |
| 572 | // 0 are not included in the count. |
| 573 | // The version is not included in the call, nor does the method take the version |
| 574 | // into account, because this is called only from code used for IETF QUIC. |
| 575 | // TODO(fkastenholz): Remove this method and replace calls to it with direct |
| 576 | // references to kMaxQuicStreamIdCount when streamid 0 becomes a normal stream |
| 577 | // id. |
| 578 | // static |
| 579 | QuicStreamCount QuicUtils::GetMaxStreamCount(bool unidirectional, |
| 580 | Perspective perspective) { |
| 581 | if (!unidirectional && perspective == Perspective::IS_CLIENT) { |
| 582 | return kMaxQuicStreamCount >> 2; |
| 583 | } |
| 584 | return (kMaxQuicStreamCount >> 2) + 1; |
| 585 | } |
| 586 | |
QUICHE team | 10b22a1 | 2019-03-21 15:31:42 -0700 | [diff] [blame] | 587 | // static |
| 588 | PacketNumberSpace QuicUtils::GetPacketNumberSpace( |
| 589 | EncryptionLevel encryption_level) { |
| 590 | switch (encryption_level) { |
| 591 | case ENCRYPTION_INITIAL: |
| 592 | return INITIAL_DATA; |
| 593 | case ENCRYPTION_HANDSHAKE: |
| 594 | return HANDSHAKE_DATA; |
| 595 | case ENCRYPTION_ZERO_RTT: |
| 596 | case ENCRYPTION_FORWARD_SECURE: |
| 597 | return APPLICATION_DATA; |
| 598 | default: |
| 599 | QUIC_BUG << "Try to get packet number space of encryption level: " |
| 600 | << EncryptionLevelToString(encryption_level); |
| 601 | return NUM_PACKET_NUMBER_SPACES; |
| 602 | } |
| 603 | } |
| 604 | |
QUICHE team | 1dfa46b | 2019-03-22 10:39:10 -0700 | [diff] [blame] | 605 | // static |
| 606 | EncryptionLevel QuicUtils::GetEncryptionLevel( |
| 607 | PacketNumberSpace packet_number_space) { |
| 608 | switch (packet_number_space) { |
| 609 | case INITIAL_DATA: |
| 610 | return ENCRYPTION_INITIAL; |
| 611 | case HANDSHAKE_DATA: |
| 612 | return ENCRYPTION_HANDSHAKE; |
| 613 | case APPLICATION_DATA: |
| 614 | return ENCRYPTION_FORWARD_SECURE; |
| 615 | default: |
| 616 | DCHECK(false); |
| 617 | return NUM_ENCRYPTION_LEVELS; |
| 618 | } |
| 619 | } |
| 620 | |
QUICHE team | a6ef0a6 | 2019-03-07 20:34:33 -0500 | [diff] [blame] | 621 | #undef RETURN_STRING_LITERAL // undef for jumbo builds |
| 622 | } // namespace quic |