blob: 7da2ea07553240e442a369eece3776eaad355dac [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "quiche/quic/core/quic_utils.h"
#include <string>
#include "absl/base/macros.h"
#include "absl/numeric/int128.h"
#include "absl/strings/string_view.h"
#include "quiche/quic/core/quic_connection_id.h"
#include "quiche/quic/core/quic_types.h"
#include "quiche/quic/platform/api/quic_test.h"
#include "quiche/quic/test_tools/quic_test_utils.h"
namespace quic {
namespace test {
namespace {
class QuicUtilsTest : public QuicTest {};
TEST_F(QuicUtilsTest, DetermineAddressChangeType) {
const std::string kIPv4String1 = "1.2.3.4";
const std::string kIPv4String2 = "1.2.3.5";
const std::string kIPv4String3 = "1.1.3.5";
const std::string kIPv6String1 = "2001:700:300:1800::f";
const std::string kIPv6String2 = "2001:700:300:1800:1:1:1:f";
QuicSocketAddress old_address;
QuicSocketAddress new_address;
QuicIpAddress address;
EXPECT_EQ(NO_CHANGE,
QuicUtils::DetermineAddressChangeType(old_address, new_address));
ASSERT_TRUE(address.FromString(kIPv4String1));
old_address = QuicSocketAddress(address, 1234);
EXPECT_EQ(NO_CHANGE,
QuicUtils::DetermineAddressChangeType(old_address, new_address));
new_address = QuicSocketAddress(address, 1234);
EXPECT_EQ(NO_CHANGE,
QuicUtils::DetermineAddressChangeType(old_address, new_address));
new_address = QuicSocketAddress(address, 5678);
EXPECT_EQ(PORT_CHANGE,
QuicUtils::DetermineAddressChangeType(old_address, new_address));
ASSERT_TRUE(address.FromString(kIPv6String1));
old_address = QuicSocketAddress(address, 1234);
new_address = QuicSocketAddress(address, 5678);
EXPECT_EQ(PORT_CHANGE,
QuicUtils::DetermineAddressChangeType(old_address, new_address));
ASSERT_TRUE(address.FromString(kIPv4String1));
old_address = QuicSocketAddress(address, 1234);
ASSERT_TRUE(address.FromString(kIPv6String1));
new_address = QuicSocketAddress(address, 1234);
EXPECT_EQ(IPV4_TO_IPV6_CHANGE,
QuicUtils::DetermineAddressChangeType(old_address, new_address));
old_address = QuicSocketAddress(address, 1234);
ASSERT_TRUE(address.FromString(kIPv4String1));
new_address = QuicSocketAddress(address, 1234);
EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
QuicUtils::DetermineAddressChangeType(old_address, new_address));
ASSERT_TRUE(address.FromString(kIPv6String2));
new_address = QuicSocketAddress(address, 1234);
EXPECT_EQ(IPV6_TO_IPV6_CHANGE,
QuicUtils::DetermineAddressChangeType(old_address, new_address));
ASSERT_TRUE(address.FromString(kIPv4String1));
old_address = QuicSocketAddress(address, 1234);
ASSERT_TRUE(address.FromString(kIPv4String2));
new_address = QuicSocketAddress(address, 1234);
EXPECT_EQ(IPV4_SUBNET_CHANGE,
QuicUtils::DetermineAddressChangeType(old_address, new_address));
ASSERT_TRUE(address.FromString(kIPv4String3));
new_address = QuicSocketAddress(address, 1234);
EXPECT_EQ(IPV4_TO_IPV4_CHANGE,
QuicUtils::DetermineAddressChangeType(old_address, new_address));
}
absl::uint128 IncrementalHashReference(const void* data, size_t len) {
// The two constants are defined as part of the hash algorithm.
// see http://www.isthe.com/chongo/tech/comp/fnv/
// hash = 144066263297769815596495629667062367629
absl::uint128 hash = absl::MakeUint128(UINT64_C(7809847782465536322),
UINT64_C(7113472399480571277));
// kPrime = 309485009821345068724781371
const absl::uint128 kPrime = absl::MakeUint128(16777216, 315);
const uint8_t* octets = reinterpret_cast<const uint8_t*>(data);
for (size_t i = 0; i < len; ++i) {
hash = hash ^ absl::MakeUint128(0, octets[i]);
hash = hash * kPrime;
}
return hash;
}
TEST_F(QuicUtilsTest, ReferenceTest) {
std::vector<uint8_t> data(32);
for (size_t i = 0; i < data.size(); ++i) {
data[i] = i % 255;
}
EXPECT_EQ(IncrementalHashReference(data.data(), data.size()),
QuicUtils::FNV1a_128_Hash(absl::string_view(
reinterpret_cast<const char*>(data.data()), data.size())));
}
TEST_F(QuicUtilsTest, IsUnackable) {
for (size_t i = FIRST_PACKET_STATE; i <= LAST_PACKET_STATE; ++i) {
if (i == NEVER_SENT || i == ACKED || i == UNACKABLE) {
EXPECT_FALSE(QuicUtils::IsAckable(static_cast<SentPacketState>(i)));
} else {
EXPECT_TRUE(QuicUtils::IsAckable(static_cast<SentPacketState>(i)));
}
}
}
TEST_F(QuicUtilsTest, RetransmissionTypeToPacketState) {
for (size_t i = FIRST_TRANSMISSION_TYPE; i <= LAST_TRANSMISSION_TYPE; ++i) {
if (i == NOT_RETRANSMISSION) {
continue;
}
SentPacketState state = QuicUtils::RetransmissionTypeToPacketState(
static_cast<TransmissionType>(i));
if (i == HANDSHAKE_RETRANSMISSION) {
EXPECT_EQ(HANDSHAKE_RETRANSMITTED, state);
} else if (i == LOSS_RETRANSMISSION) {
EXPECT_EQ(LOST, state);
} else if (i == ALL_ZERO_RTT_RETRANSMISSION) {
EXPECT_EQ(UNACKABLE, state);
} else if (i == PTO_RETRANSMISSION) {
EXPECT_EQ(PTO_RETRANSMITTED, state);
} else if (i == PATH_RETRANSMISSION) {
EXPECT_EQ(NOT_CONTRIBUTING_RTT, state);
} else if (i == ALL_INITIAL_RETRANSMISSION) {
EXPECT_EQ(UNACKABLE, state);
} else {
QUICHE_DCHECK(false)
<< "No corresponding packet state according to transmission type: "
<< i;
}
}
}
TEST_F(QuicUtilsTest, IsIetfPacketHeader) {
// IETF QUIC short header
uint8_t first_byte = 0;
EXPECT_TRUE(QuicUtils::IsIetfPacketHeader(first_byte));
EXPECT_TRUE(QuicUtils::IsIetfPacketShortHeader(first_byte));
// IETF QUIC long header
first_byte |= (FLAGS_LONG_HEADER | FLAGS_DEMULTIPLEXING_BIT);
EXPECT_TRUE(QuicUtils::IsIetfPacketHeader(first_byte));
EXPECT_FALSE(QuicUtils::IsIetfPacketShortHeader(first_byte));
// IETF QUIC long header, version negotiation.
first_byte = 0;
first_byte |= FLAGS_LONG_HEADER;
EXPECT_TRUE(QuicUtils::IsIetfPacketHeader(first_byte));
EXPECT_FALSE(QuicUtils::IsIetfPacketShortHeader(first_byte));
// GQUIC
first_byte = 0;
first_byte |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID;
EXPECT_FALSE(QuicUtils::IsIetfPacketHeader(first_byte));
EXPECT_FALSE(QuicUtils::IsIetfPacketShortHeader(first_byte));
}
TEST_F(QuicUtilsTest, RandomConnectionId) {
MockRandom random(33);
QuicConnectionId connection_id = QuicUtils::CreateRandomConnectionId(&random);
EXPECT_EQ(connection_id.length(), sizeof(uint64_t));
char connection_id_bytes[sizeof(uint64_t)];
random.RandBytes(connection_id_bytes, ABSL_ARRAYSIZE(connection_id_bytes));
EXPECT_EQ(connection_id,
QuicConnectionId(static_cast<char*>(connection_id_bytes),
ABSL_ARRAYSIZE(connection_id_bytes)));
EXPECT_NE(connection_id, EmptyQuicConnectionId());
EXPECT_NE(connection_id, TestConnectionId());
EXPECT_NE(connection_id, TestConnectionId(1));
EXPECT_NE(connection_id, TestConnectionIdNineBytesLong(1));
EXPECT_EQ(QuicUtils::CreateRandomConnectionId().length(),
kQuicDefaultConnectionIdLength);
}
TEST_F(QuicUtilsTest, RandomConnectionIdVariableLength) {
MockRandom random(1337);
const uint8_t connection_id_length = 9;
QuicConnectionId connection_id =
QuicUtils::CreateRandomConnectionId(connection_id_length, &random);
EXPECT_EQ(connection_id.length(), connection_id_length);
char connection_id_bytes[connection_id_length];
random.RandBytes(connection_id_bytes, ABSL_ARRAYSIZE(connection_id_bytes));
EXPECT_EQ(connection_id,
QuicConnectionId(static_cast<char*>(connection_id_bytes),
ABSL_ARRAYSIZE(connection_id_bytes)));
EXPECT_NE(connection_id, EmptyQuicConnectionId());
EXPECT_NE(connection_id, TestConnectionId());
EXPECT_NE(connection_id, TestConnectionId(1));
EXPECT_NE(connection_id, TestConnectionIdNineBytesLong(1));
EXPECT_EQ(QuicUtils::CreateRandomConnectionId(connection_id_length).length(),
connection_id_length);
}
TEST_F(QuicUtilsTest, VariableLengthConnectionId) {
EXPECT_FALSE(VersionAllowsVariableLengthConnectionIds(QUIC_VERSION_46));
EXPECT_TRUE(QuicUtils::IsConnectionIdValidForVersion(
QuicUtils::CreateZeroConnectionId(QUIC_VERSION_46), QUIC_VERSION_46));
EXPECT_NE(QuicUtils::CreateZeroConnectionId(QUIC_VERSION_46),
EmptyQuicConnectionId());
EXPECT_FALSE(QuicUtils::IsConnectionIdValidForVersion(EmptyQuicConnectionId(),
QUIC_VERSION_46));
}
TEST_F(QuicUtilsTest, StatelessResetToken) {
QuicConnectionId connection_id1a = test::TestConnectionId(1);
QuicConnectionId connection_id1b = test::TestConnectionId(1);
QuicConnectionId connection_id2 = test::TestConnectionId(2);
StatelessResetToken token1a =
QuicUtils::GenerateStatelessResetToken(connection_id1a);
StatelessResetToken token1b =
QuicUtils::GenerateStatelessResetToken(connection_id1b);
StatelessResetToken token2 =
QuicUtils::GenerateStatelessResetToken(connection_id2);
EXPECT_EQ(token1a, token1b);
EXPECT_NE(token1a, token2);
EXPECT_TRUE(QuicUtils::AreStatelessResetTokensEqual(token1a, token1b));
EXPECT_FALSE(QuicUtils::AreStatelessResetTokensEqual(token1a, token2));
}
TEST_F(QuicUtilsTest, EcnCodepointToString) {
EXPECT_EQ(EcnCodepointToString(ECN_NOT_ECT), "Not-ECT");
EXPECT_EQ(EcnCodepointToString(ECN_ECT0), "ECT(0)");
EXPECT_EQ(EcnCodepointToString(ECN_ECT1), "ECT(1)");
EXPECT_EQ(EcnCodepointToString(ECN_CE), "CE");
}
enum class TestEnumClassBit : uint8_t {
BIT_ZERO = 0,
BIT_ONE,
BIT_TWO,
};
enum TestEnumBit {
TEST_BIT_0 = 0,
TEST_BIT_1,
TEST_BIT_2,
};
TEST(QuicBitMaskTest, EnumClass) {
BitMask<TestEnumClassBit> mask(
{TestEnumClassBit::BIT_ZERO, TestEnumClassBit::BIT_TWO});
EXPECT_TRUE(mask.IsSet(TestEnumClassBit::BIT_ZERO));
EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_ONE));
EXPECT_TRUE(mask.IsSet(TestEnumClassBit::BIT_TWO));
mask.ClearAll();
EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_ZERO));
EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_ONE));
EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_TWO));
}
TEST(QuicBitMaskTest, Enum) {
BitMask<TestEnumBit> mask({TEST_BIT_1, TEST_BIT_2});
EXPECT_FALSE(mask.IsSet(TEST_BIT_0));
EXPECT_TRUE(mask.IsSet(TEST_BIT_1));
EXPECT_TRUE(mask.IsSet(TEST_BIT_2));
mask.ClearAll();
EXPECT_FALSE(mask.IsSet(TEST_BIT_0));
EXPECT_FALSE(mask.IsSet(TEST_BIT_1));
EXPECT_FALSE(mask.IsSet(TEST_BIT_2));
}
TEST(QuicBitMaskTest, Integer) {
BitMask<int> mask({1, 3});
EXPECT_EQ(mask.Max(), 3);
mask.Set(3);
mask.Set({5, 7, 9});
EXPECT_EQ(mask.Max(), 9);
EXPECT_FALSE(mask.IsSet(0));
EXPECT_TRUE(mask.IsSet(1));
EXPECT_FALSE(mask.IsSet(2));
EXPECT_TRUE(mask.IsSet(3));
EXPECT_FALSE(mask.IsSet(4));
EXPECT_TRUE(mask.IsSet(5));
EXPECT_FALSE(mask.IsSet(6));
EXPECT_TRUE(mask.IsSet(7));
EXPECT_FALSE(mask.IsSet(8));
EXPECT_TRUE(mask.IsSet(9));
}
TEST(QuicBitMaskTest, NumBits) {
EXPECT_EQ(64u, BitMask<int>::NumBits());
EXPECT_EQ(32u, (BitMask<int, uint32_t>::NumBits()));
}
TEST(QuicBitMaskTest, Constructor) {
BitMask<int> empty_mask;
for (size_t bit = 0; bit < empty_mask.NumBits(); ++bit) {
EXPECT_FALSE(empty_mask.IsSet(bit));
}
BitMask<int> mask({1, 3});
BitMask<int> mask2 = mask;
BitMask<int> mask3(mask2);
for (size_t bit = 0; bit < mask.NumBits(); ++bit) {
EXPECT_EQ(mask.IsSet(bit), mask2.IsSet(bit));
EXPECT_EQ(mask.IsSet(bit), mask3.IsSet(bit));
}
EXPECT_TRUE(std::is_trivially_copyable<BitMask<int>>::value);
}
TEST(QuicBitMaskTest, Any) {
BitMask<int> mask;
EXPECT_FALSE(mask.Any());
mask.Set(3);
EXPECT_TRUE(mask.Any());
mask.Set(2);
EXPECT_TRUE(mask.Any());
mask.ClearAll();
EXPECT_FALSE(mask.Any());
}
TEST(QuicBitMaskTest, And) {
using Mask = BitMask<int>;
EXPECT_EQ(Mask({1, 3, 6}) & Mask({3, 5, 6}), Mask({3, 6}));
EXPECT_EQ(Mask({1, 2, 4}) & Mask({3, 5}), Mask({}));
EXPECT_EQ(Mask({1, 2, 3, 4, 5}) & Mask({}), Mask({}));
}
} // namespace
} // namespace test
} // namespace quic