| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "quiche/quic/core/quic_sent_packet_manager.h" |
| |
| #include <algorithm> |
| #include <memory> |
| #include <optional> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/base/macros.h" |
| #include "absl/strings/string_view.h" |
| #include "quiche/quic/core/frames/quic_ack_frequency_frame.h" |
| #include "quiche/quic/core/quic_time.h" |
| #include "quiche/quic/core/quic_types.h" |
| #include "quiche/quic/platform/api/quic_expect_bug.h" |
| #include "quiche/quic/platform/api/quic_flags.h" |
| #include "quiche/quic/platform/api/quic_test.h" |
| #include "quiche/quic/test_tools/quic_config_peer.h" |
| #include "quiche/quic/test_tools/quic_sent_packet_manager_peer.h" |
| #include "quiche/quic/test_tools/quic_test_utils.h" |
| #include "quiche/common/platform/api/quiche_mem_slice.h" |
| |
| using testing::_; |
| using testing::AnyNumber; |
| using testing::Invoke; |
| using testing::InvokeWithoutArgs; |
| using testing::IsEmpty; |
| using testing::Not; |
| using testing::Pointwise; |
| using testing::Return; |
| using testing::StrictMock; |
| using testing::WithArgs; |
| |
| namespace quic { |
| namespace test { |
| namespace { |
| // Default packet length. |
| const uint32_t kDefaultLength = 1000; |
| |
| // Stream ID for data sent in CreatePacket(). |
| const QuicStreamId kStreamId = 7; |
| |
| // The compiler won't allow std::nullopt as an argument. |
| const std::optional<QuicEcnCounts> kEmptyCounts = std::nullopt; |
| |
| // Matcher to check that the packet number matches the second argument. |
| MATCHER(PacketNumberEq, "") { |
| return std::get<0>(arg).packet_number == QuicPacketNumber(std::get<1>(arg)); |
| } |
| |
| class MockDebugDelegate : public QuicSentPacketManager::DebugDelegate { |
| public: |
| MOCK_METHOD(void, OnSpuriousPacketRetransmission, |
| (TransmissionType transmission_type, QuicByteCount byte_size), |
| (override)); |
| MOCK_METHOD(void, OnPacketLoss, |
| (QuicPacketNumber lost_packet_number, |
| EncryptionLevel encryption_level, |
| TransmissionType transmission_type, QuicTime detection_time), |
| (override)); |
| }; |
| |
| class QuicSentPacketManagerTest : public QuicTest { |
| public: |
| bool RetransmitCryptoPacket(uint64_t packet_number) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number), |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)); |
| SerializedPacket packet(CreatePacket(packet_number, false)); |
| packet.retransmittable_frames.push_back( |
| QuicFrame(QuicStreamFrame(1, false, 0, absl::string_view()))); |
| packet.has_crypto_handshake = IS_HANDSHAKE; |
| manager_.OnPacketSent(&packet, clock_.Now(), HANDSHAKE_RETRANSMISSION, |
| HAS_RETRANSMITTABLE_DATA, true, ECN_NOT_ECT); |
| return true; |
| } |
| |
| bool RetransmitDataPacket(uint64_t packet_number, TransmissionType type, |
| EncryptionLevel level) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number), |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)); |
| SerializedPacket packet(CreatePacket(packet_number, true)); |
| packet.encryption_level = level; |
| manager_.OnPacketSent(&packet, clock_.Now(), type, HAS_RETRANSMITTABLE_DATA, |
| true, ECN_NOT_ECT); |
| return true; |
| } |
| |
| bool RetransmitDataPacket(uint64_t packet_number, TransmissionType type) { |
| return RetransmitDataPacket(packet_number, type, ENCRYPTION_INITIAL); |
| } |
| |
| protected: |
| const CongestionControlType kInitialCongestionControlType = kCubicBytes; |
| QuicSentPacketManagerTest() |
| : manager_(Perspective::IS_SERVER, &clock_, QuicRandom::GetInstance(), |
| &stats_, kInitialCongestionControlType), |
| send_algorithm_(new StrictMock<MockSendAlgorithm>), |
| network_change_visitor_(new StrictMock<MockNetworkChangeVisitor>) { |
| QuicSentPacketManagerPeer::SetSendAlgorithm(&manager_, send_algorithm_); |
| // Advance the time 1s so the send times are never QuicTime::Zero. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1000)); |
| manager_.SetNetworkChangeVisitor(network_change_visitor_.get()); |
| manager_.SetSessionNotifier(¬ifier_); |
| |
| EXPECT_CALL(*send_algorithm_, GetCongestionControlType()) |
| .WillRepeatedly(Return(kInitialCongestionControlType)); |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) |
| .Times(AnyNumber()) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, OnPacketNeutered(_)).Times(AnyNumber()); |
| EXPECT_CALL(*network_change_visitor_, OnPathMtuIncreased(1000)) |
| .Times(AnyNumber()); |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()) |
| .WillRepeatedly(Return(false)); |
| EXPECT_CALL(notifier_, OnStreamFrameRetransmitted(_)).Times(AnyNumber()); |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)).WillRepeatedly(Return(true)); |
| } |
| |
| ~QuicSentPacketManagerTest() override {} |
| |
| QuicByteCount BytesInFlight() { return manager_.GetBytesInFlight(); } |
| void VerifyUnackedPackets(uint64_t* packets, size_t num_packets) { |
| if (num_packets == 0) { |
| EXPECT_TRUE(manager_.unacked_packets().empty()); |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetNumRetransmittablePackets( |
| &manager_)); |
| return; |
| } |
| |
| EXPECT_FALSE(manager_.unacked_packets().empty()); |
| EXPECT_EQ(QuicPacketNumber(packets[0]), manager_.GetLeastUnacked()); |
| for (size_t i = 0; i < num_packets; ++i) { |
| EXPECT_TRUE( |
| manager_.unacked_packets().IsUnacked(QuicPacketNumber(packets[i]))) |
| << packets[i]; |
| } |
| } |
| |
| void VerifyRetransmittablePackets(uint64_t* packets, size_t num_packets) { |
| EXPECT_EQ( |
| num_packets, |
| QuicSentPacketManagerPeer::GetNumRetransmittablePackets(&manager_)); |
| for (size_t i = 0; i < num_packets; ++i) { |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasRetransmittableFrames( |
| &manager_, packets[i])) |
| << " packets[" << i << "]:" << packets[i]; |
| } |
| } |
| |
| void ExpectAck(uint64_t largest_observed) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| // Ensure the AckedPacketVector argument contains largest_observed. |
| OnCongestionEvent(true, _, _, |
| Pointwise(PacketNumberEq(), {largest_observed}), |
| IsEmpty(), _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| } |
| |
| void ExpectUpdatedRtt(uint64_t /*largest_observed*/) { |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(true, _, _, IsEmpty(), IsEmpty(), _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| } |
| |
| void ExpectAckAndLoss(bool rtt_updated, uint64_t largest_observed, |
| uint64_t lost_packet) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnCongestionEvent(rtt_updated, _, _, |
| Pointwise(PacketNumberEq(), {largest_observed}), |
| Pointwise(PacketNumberEq(), {lost_packet}), _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| } |
| |
| // |packets_acked| and |packets_lost| should be in packet number order. |
| void ExpectAcksAndLosses(bool rtt_updated, uint64_t* packets_acked, |
| size_t num_packets_acked, uint64_t* packets_lost, |
| size_t num_packets_lost) { |
| std::vector<QuicPacketNumber> ack_vector; |
| for (size_t i = 0; i < num_packets_acked; ++i) { |
| ack_vector.push_back(QuicPacketNumber(packets_acked[i])); |
| } |
| std::vector<QuicPacketNumber> lost_vector; |
| for (size_t i = 0; i < num_packets_lost; ++i) { |
| lost_vector.push_back(QuicPacketNumber(packets_lost[i])); |
| } |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent( |
| rtt_updated, _, _, Pointwise(PacketNumberEq(), ack_vector), |
| Pointwise(PacketNumberEq(), lost_vector), _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()) |
| .Times(AnyNumber()); |
| } |
| |
| void RetransmitAndSendPacket(uint64_t old_packet_number, |
| uint64_t new_packet_number) { |
| RetransmitAndSendPacket(old_packet_number, new_packet_number, |
| PTO_RETRANSMISSION); |
| } |
| |
| void RetransmitAndSendPacket(uint64_t old_packet_number, |
| uint64_t new_packet_number, |
| TransmissionType transmission_type) { |
| bool is_lost = false; |
| if (transmission_type == HANDSHAKE_RETRANSMISSION || |
| transmission_type == PTO_RETRANSMISSION) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>( |
| Invoke([this, new_packet_number](TransmissionType type) { |
| return RetransmitDataPacket(new_packet_number, type); |
| }))); |
| } else { |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(1); |
| is_lost = true; |
| } |
| QuicSentPacketManagerPeer::MarkForRetransmission( |
| &manager_, old_packet_number, transmission_type); |
| if (!is_lost) { |
| return; |
| } |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(new_packet_number), |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)); |
| SerializedPacket packet(CreatePacket(new_packet_number, true)); |
| manager_.OnPacketSent(&packet, clock_.Now(), transmission_type, |
| HAS_RETRANSMITTABLE_DATA, true, ECN_NOT_ECT); |
| } |
| |
| SerializedPacket CreateDataPacket(uint64_t packet_number) { |
| return CreatePacket(packet_number, true); |
| } |
| |
| SerializedPacket CreatePacket(uint64_t packet_number, bool retransmittable) { |
| SerializedPacket packet(QuicPacketNumber(packet_number), |
| PACKET_4BYTE_PACKET_NUMBER, nullptr, kDefaultLength, |
| false, false); |
| if (retransmittable) { |
| packet.retransmittable_frames.push_back( |
| QuicFrame(QuicStreamFrame(kStreamId, false, 0, absl::string_view()))); |
| } |
| return packet; |
| } |
| |
| SerializedPacket CreatePingPacket(uint64_t packet_number) { |
| SerializedPacket packet(QuicPacketNumber(packet_number), |
| PACKET_4BYTE_PACKET_NUMBER, nullptr, kDefaultLength, |
| false, false); |
| packet.retransmittable_frames.push_back(QuicFrame(QuicPingFrame())); |
| return packet; |
| } |
| |
| void SendDataPacket(uint64_t packet_number) { |
| SendDataPacket(packet_number, ENCRYPTION_INITIAL, ECN_NOT_ECT); |
| } |
| |
| void SendDataPacket(uint64_t packet_number, |
| EncryptionLevel encryption_level) { |
| SendDataPacket(packet_number, encryption_level, ECN_NOT_ECT); |
| } |
| |
| void SendDataPacket(uint64_t packet_number, EncryptionLevel encryption_level, |
| QuicEcnCodepoint ecn_codepoint) { |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), |
| QuicPacketNumber(packet_number), _, _)); |
| SerializedPacket packet(CreateDataPacket(packet_number)); |
| packet.encryption_level = encryption_level; |
| manager_.OnPacketSent(&packet, clock_.Now(), NOT_RETRANSMISSION, |
| HAS_RETRANSMITTABLE_DATA, true, ecn_codepoint); |
| } |
| |
| void SendPingPacket(uint64_t packet_number, |
| EncryptionLevel encryption_level) { |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), |
| QuicPacketNumber(packet_number), _, _)); |
| SerializedPacket packet(CreatePingPacket(packet_number)); |
| packet.encryption_level = encryption_level; |
| manager_.OnPacketSent(&packet, clock_.Now(), NOT_RETRANSMISSION, |
| HAS_RETRANSMITTABLE_DATA, true, ECN_NOT_ECT); |
| } |
| |
| void SendCryptoPacket(uint64_t packet_number) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number), |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)); |
| SerializedPacket packet(CreatePacket(packet_number, false)); |
| packet.retransmittable_frames.push_back( |
| QuicFrame(QuicStreamFrame(1, false, 0, absl::string_view()))); |
| packet.has_crypto_handshake = IS_HANDSHAKE; |
| manager_.OnPacketSent(&packet, clock_.Now(), NOT_RETRANSMISSION, |
| HAS_RETRANSMITTABLE_DATA, true, ECN_NOT_ECT); |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()).WillRepeatedly(Return(true)); |
| } |
| |
| void SendAckPacket(uint64_t packet_number, uint64_t largest_acked) { |
| SendAckPacket(packet_number, largest_acked, ENCRYPTION_INITIAL); |
| } |
| |
| void SendAckPacket(uint64_t packet_number, uint64_t largest_acked, |
| EncryptionLevel level) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number), |
| kDefaultLength, NO_RETRANSMITTABLE_DATA)); |
| SerializedPacket packet(CreatePacket(packet_number, false)); |
| packet.largest_acked = QuicPacketNumber(largest_acked); |
| packet.encryption_level = level; |
| manager_.OnPacketSent(&packet, clock_.Now(), NOT_RETRANSMISSION, |
| NO_RETRANSMITTABLE_DATA, true, ECN_NOT_ECT); |
| } |
| |
| quiche::SimpleBufferAllocator allocator_; |
| QuicSentPacketManager manager_; |
| MockClock clock_; |
| QuicConnectionStats stats_; |
| MockSendAlgorithm* send_algorithm_; |
| std::unique_ptr<MockNetworkChangeVisitor> network_change_visitor_; |
| StrictMock<MockSessionNotifier> notifier_; |
| }; |
| |
| TEST_F(QuicSentPacketManagerTest, IsUnacked) { |
| VerifyUnackedPackets(nullptr, 0); |
| SendDataPacket(1); |
| |
| uint64_t unacked[] = {1}; |
| VerifyUnackedPackets(unacked, ABSL_ARRAYSIZE(unacked)); |
| uint64_t retransmittable[] = {1}; |
| VerifyRetransmittablePackets(retransmittable, |
| ABSL_ARRAYSIZE(retransmittable)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, IsUnAckedRetransmit) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| |
| EXPECT_TRUE(QuicSentPacketManagerPeer::IsRetransmission(&manager_, 2)); |
| uint64_t unacked[] = {1, 2}; |
| VerifyUnackedPackets(unacked, ABSL_ARRAYSIZE(unacked)); |
| std::vector<uint64_t> retransmittable = {1, 2}; |
| VerifyRetransmittablePackets(&retransmittable[0], retransmittable.size()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmitThenAck) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| |
| // Ack 2 but not 1. |
| ExpectAck(2); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| // Packet 1 is unacked, pending, but not retransmittable. |
| uint64_t unacked[] = {1}; |
| VerifyUnackedPackets(unacked, ABSL_ARRAYSIZE(unacked)); |
| EXPECT_TRUE(manager_.HasInFlightPackets()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmitThenAckBeforeSend) { |
| SendDataPacket(1); |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| return RetransmitDataPacket(2, type); |
| }))); |
| QuicSentPacketManagerPeer::MarkForRetransmission(&manager_, 1, |
| PTO_RETRANSMISSION); |
| // Ack 1. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| uint64_t unacked[] = {2}; |
| VerifyUnackedPackets(unacked, ABSL_ARRAYSIZE(unacked)); |
| // We do not know packet 2 is a spurious retransmission until it gets acked. |
| VerifyRetransmittablePackets(nullptr, 0); |
| EXPECT_EQ(0u, stats_.packets_spuriously_retransmitted); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmitThenStopRetransmittingBeforeSend) { |
| SendDataPacket(1); |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)).WillRepeatedly(Return(true)); |
| QuicSentPacketManagerPeer::MarkForRetransmission(&manager_, 1, |
| PTO_RETRANSMISSION); |
| |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| |
| uint64_t unacked[] = {1}; |
| VerifyUnackedPackets(unacked, ABSL_ARRAYSIZE(unacked)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| EXPECT_EQ(0u, stats_.packets_spuriously_retransmitted); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmitThenAckPrevious) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15); |
| clock_.AdvanceTime(rtt); |
| |
| // Ack 1 but not 2. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| // 2 remains unacked, but no packets have retransmittable data. |
| uint64_t unacked[] = {2}; |
| VerifyUnackedPackets(unacked, ABSL_ARRAYSIZE(unacked)); |
| EXPECT_TRUE(manager_.HasInFlightPackets()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| // Ack 2 causes 2 be considered as spurious retransmission. |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)).WillOnce(Return(false)); |
| ExpectAck(2); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| EXPECT_EQ(1u, stats_.packets_spuriously_retransmitted); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmitThenAckPreviousThenNackRetransmit) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15); |
| clock_.AdvanceTime(rtt); |
| |
| // First, ACK packet 1 which makes packet 2 non-retransmittable. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| SendDataPacket(3); |
| SendDataPacket(4); |
| SendDataPacket(5); |
| clock_.AdvanceTime(rtt); |
| |
| // Next, NACK packet 2 three times. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(1); |
| ExpectAckAndLoss(true, 3, 2); |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(4)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| ExpectAck(4); |
| manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(5)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| ExpectAck(5); |
| manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(4), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| uint64_t unacked[] = {2}; |
| VerifyUnackedPackets(unacked, ABSL_ARRAYSIZE(unacked)); |
| EXPECT_FALSE(manager_.HasInFlightPackets()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| // Verify that the retransmission alarm would not fire, |
| // since there is no retransmittable data outstanding. |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| DISABLED_RetransmitTwiceThenAckPreviousBeforeSend) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| |
| // Fire the RTO, which will mark 2 for retransmission (but will not send it). |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.OnRetransmissionTimeout(); |
| |
| // Ack 1 but not 2, before 2 is able to be sent. |
| // Since 1 has been retransmitted, it has already been lost, and so the |
| // send algorithm is not informed that it has been ACK'd. |
| ExpectUpdatedRtt(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| // Since 2 was marked for retransmit, when 1 is acked, 2 is kept for RTT. |
| uint64_t unacked[] = {2}; |
| VerifyUnackedPackets(unacked, ABSL_ARRAYSIZE(unacked)); |
| EXPECT_FALSE(manager_.HasInFlightPackets()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| // Verify that the retransmission alarm would not fire, |
| // since there is no retransmittable data outstanding. |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmitTwiceThenAckFirst) { |
| StrictMock<MockDebugDelegate> debug_delegate; |
| EXPECT_CALL(debug_delegate, OnSpuriousPacketRetransmission(PTO_RETRANSMISSION, |
| kDefaultLength)) |
| .Times(1); |
| manager_.SetDebugDelegate(&debug_delegate); |
| |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| RetransmitAndSendPacket(2, 3); |
| QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15); |
| clock_.AdvanceTime(rtt); |
| |
| // Ack 1 but not 2 or 3. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| // Frames in packets 2 and 3 are acked. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)) |
| .Times(2) |
| .WillRepeatedly(Return(false)); |
| |
| // 2 and 3 remain unacked, but no packets have retransmittable data. |
| uint64_t unacked[] = {2, 3}; |
| VerifyUnackedPackets(unacked, ABSL_ARRAYSIZE(unacked)); |
| EXPECT_TRUE(manager_.HasInFlightPackets()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| // Ensure packet 2 is lost when 4 is sent and 3 and 4 are acked. |
| SendDataPacket(4); |
| // No new data gets acked in packet 3. |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)) |
| .WillOnce(Return(false)) |
| .WillRepeatedly(Return(true)); |
| uint64_t acked[] = {3, 4}; |
| ExpectAcksAndLosses(true, acked, ABSL_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(5)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| uint64_t unacked2[] = {2}; |
| VerifyUnackedPackets(unacked2, ABSL_ARRAYSIZE(unacked2)); |
| EXPECT_TRUE(manager_.HasInFlightPackets()); |
| |
| SendDataPacket(5); |
| ExpectAckAndLoss(true, 5, 2); |
| EXPECT_CALL(debug_delegate, |
| OnPacketLoss(QuicPacketNumber(2), _, LOSS_RETRANSMISSION, _)); |
| // Frames in all packets are acked. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| // Notify session that stream frame in packet 2 gets lost although it is |
| // not outstanding. |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| uint64_t unacked3[] = {2}; |
| VerifyUnackedPackets(unacked3, ABSL_ARRAYSIZE(unacked3)); |
| EXPECT_FALSE(manager_.HasInFlightPackets()); |
| // Spurious retransmission is detected when packet 3 gets acked. We cannot |
| // know packet 2 is a spurious until it gets acked. |
| EXPECT_EQ(1u, stats_.packets_spuriously_retransmitted); |
| EXPECT_EQ(1u, stats_.packets_lost); |
| EXPECT_LT(0.0, stats_.total_loss_detection_response_time); |
| EXPECT_LE(1u, stats_.sent_packets_max_sequence_reordering); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, AckOriginalTransmission) { |
| auto loss_algorithm = std::make_unique<MockLossAlgorithm>(); |
| QuicSentPacketManagerPeer::SetLossAlgorithm(&manager_, loss_algorithm.get()); |
| |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| |
| // Ack original transmission, but that wasn't lost via fast retransmit, |
| // so no call on OnSpuriousRetransmission is expected. |
| { |
| ExpectAck(1); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| } |
| |
| SendDataPacket(3); |
| SendDataPacket(4); |
| // Ack 4, which causes 3 to be retransmitted. |
| { |
| ExpectAck(4); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(5)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| RetransmitAndSendPacket(3, 5, LOSS_RETRANSMISSION); |
| } |
| |
| // Ack 3, which causes SpuriousRetransmitDetected to be called. |
| { |
| uint64_t acked[] = {3}; |
| ExpectAcksAndLosses(false, acked, ABSL_ARRAYSIZE(acked), nullptr, 0); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*loss_algorithm, |
| SpuriousLossDetected(_, _, _, QuicPacketNumber(3), |
| QuicPacketNumber(4))); |
| manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(5)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(0u, stats_.packet_spuriously_detected_lost); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(1u, stats_.packet_spuriously_detected_lost); |
| // Ack 3 will not cause 5 be considered as a spurious retransmission. Ack |
| // 5 will cause 5 be considered as a spurious retransmission as no new |
| // data gets acked. |
| ExpectAck(5); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)).WillOnce(Return(false)); |
| manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(4), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| } |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetLeastUnacked) { |
| EXPECT_EQ(QuicPacketNumber(1u), manager_.GetLeastUnacked()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetLeastUnackedUnacked) { |
| SendDataPacket(1); |
| EXPECT_EQ(QuicPacketNumber(1u), manager_.GetLeastUnacked()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, AckAckAndUpdateRtt) { |
| EXPECT_FALSE(manager_.largest_packet_peer_knows_is_acked().IsInitialized()); |
| SendDataPacket(1); |
| SendAckPacket(2, 1); |
| |
| // Now ack the ack and expect an RTT update. |
| uint64_t acked[] = {1, 2}; |
| ExpectAcksAndLosses(true, acked, ABSL_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), |
| QuicTime::Delta::FromMilliseconds(5), clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(QuicPacketNumber(1), manager_.largest_packet_peer_knows_is_acked()); |
| |
| SendAckPacket(3, 3); |
| |
| // Now ack the ack and expect only an RTT update. |
| uint64_t acked2[] = {3}; |
| ExpectAcksAndLosses(true, acked2, ABSL_ARRAYSIZE(acked2), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(QuicPacketNumber(3u), |
| manager_.largest_packet_peer_knows_is_acked()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, Rtt) { |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(20); |
| SendDataPacket(1); |
| clock_.AdvanceTime(expected_rtt); |
| |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RttWithInvalidDelta) { |
| // Expect that the RTT is equal to the local time elapsed, since the |
| // ack_delay_time is larger than the local time elapsed |
| // and is hence invalid. |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10); |
| SendDataPacket(1); |
| clock_.AdvanceTime(expected_rtt); |
| |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), |
| QuicTime::Delta::FromMilliseconds(11), clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RttWithInfiniteDelta) { |
| // Expect that the RTT is equal to the local time elapsed, since the |
| // ack_delay_time is infinite, and is hence invalid. |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10); |
| SendDataPacket(1); |
| clock_.AdvanceTime(expected_rtt); |
| |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RttWithDeltaExceedingLimit) { |
| // Initialize min and smoothed rtt to 10ms. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(10), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| |
| QuicTime::Delta send_delta = QuicTime::Delta::FromMilliseconds(100); |
| QuicTime::Delta ack_delay = |
| QuicTime::Delta::FromMilliseconds(5) + manager_.peer_max_ack_delay(); |
| ASSERT_GT(send_delta - rtt_stats->min_rtt(), ack_delay); |
| SendDataPacket(1); |
| clock_.AdvanceTime(send_delta); |
| |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), ack_delay, clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_FORWARD_SECURE, kEmptyCounts)); |
| |
| QuicTime::Delta expected_rtt_sample = |
| send_delta - manager_.peer_max_ack_delay(); |
| EXPECT_EQ(expected_rtt_sample, manager_.GetRttStats()->latest_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RttZeroDelta) { |
| // Expect that the RTT is the time between send and receive since the |
| // ack_delay_time is zero. |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10); |
| SendDataPacket(1); |
| clock_.AdvanceTime(expected_rtt); |
| |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Zero(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, CryptoHandshakeTimeout) { |
| // Send 2 crypto packets and 3 data packets. |
| const size_t kNumSentCryptoPackets = 2; |
| for (size_t i = 1; i <= kNumSentCryptoPackets; ++i) { |
| SendCryptoPacket(i); |
| } |
| const size_t kNumSentDataPackets = 3; |
| for (size_t i = 1; i <= kNumSentDataPackets; ++i) { |
| SendDataPacket(kNumSentCryptoPackets + i); |
| } |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| EXPECT_EQ(5 * kDefaultLength, manager_.GetBytesInFlight()); |
| |
| // The first retransmits 2 packets. |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(2) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(6); })) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(7); })); |
| manager_.OnRetransmissionTimeout(); |
| // Expect all 4 handshake packets to be in flight and 3 data packets. |
| EXPECT_EQ(7 * kDefaultLength, manager_.GetBytesInFlight()); |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // The second retransmits 2 packets. |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(2) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(8); })) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(9); })); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(9 * kDefaultLength, manager_.GetBytesInFlight()); |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Now ack the two crypto packets and the speculatively encrypted request, |
| // and ensure the first four crypto packets get abandoned, but not lost. |
| // Crypto packets remain in flight, so any that aren't acked will be lost. |
| uint64_t acked[] = {3, 4, 5, 8, 9}; |
| uint64_t lost[] = {1, 2, 6}; |
| ExpectAcksAndLosses(true, acked, ABSL_ARRAYSIZE(acked), lost, |
| ABSL_ARRAYSIZE(lost)); |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(3); |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()).WillRepeatedly(Return(false)); |
| manager_.OnAckFrameStart(QuicPacketNumber(9), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(8), QuicPacketNumber(10)); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| EXPECT_FALSE(manager_.HasUnackedCryptoPackets()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, CryptoHandshakeSpuriousRetransmission) { |
| // Send 1 crypto packet. |
| SendCryptoPacket(1); |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Retransmit the crypto packet as 2. |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(2); })); |
| manager_.OnRetransmissionTimeout(); |
| |
| // Retransmit the crypto packet as 3. |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(3); })); |
| manager_.OnRetransmissionTimeout(); |
| |
| // Now ack the second crypto packet, and ensure the first gets removed, but |
| // the third does not. |
| uint64_t acked[] = {2}; |
| ExpectAcksAndLosses(true, acked, ABSL_ARRAYSIZE(acked), nullptr, 0); |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| EXPECT_FALSE(manager_.HasUnackedCryptoPackets()); |
| uint64_t unacked[] = {1, 3}; |
| VerifyUnackedPackets(unacked, ABSL_ARRAYSIZE(unacked)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, CryptoHandshakeTimeoutUnsentDataPacket) { |
| // Send 2 crypto packets and 1 data packet. |
| const size_t kNumSentCryptoPackets = 2; |
| for (size_t i = 1; i <= kNumSentCryptoPackets; ++i) { |
| SendCryptoPacket(i); |
| } |
| SendDataPacket(3); |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Retransmit 2 crypto packets, but not the serialized packet. |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(2) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(4); })) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(5); })); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| CryptoHandshakeRetransmissionThenNeuterAndAck) { |
| // Send 1 crypto packet. |
| SendCryptoPacket(1); |
| |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Retransmit the crypto packet as 2. |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(2); })); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Retransmit the crypto packet as 3. |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(3); })); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Now neuter all unacked unencrypted packets, which occurs when the |
| // connection goes forward secure. |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| manager_.NeuterUnencryptedPackets(); |
| EXPECT_FALSE(manager_.HasUnackedCryptoPackets()); |
| uint64_t unacked[] = {1, 2, 3}; |
| VerifyUnackedPackets(unacked, ABSL_ARRAYSIZE(unacked)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| EXPECT_FALSE(manager_.HasUnackedCryptoPackets()); |
| EXPECT_FALSE(manager_.HasInFlightPackets()); |
| |
| // Ensure both packets get discarded when packet 2 is acked. |
| uint64_t acked[] = {3}; |
| ExpectAcksAndLosses(true, acked, ABSL_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| VerifyUnackedPackets(nullptr, 0); |
| VerifyRetransmittablePackets(nullptr, 0); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetTransmissionTime) { |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetTransmissionTimeCryptoHandshake) { |
| QuicTime crypto_packet_send_time = clock_.Now(); |
| SendCryptoPacket(1); |
| |
| // Check the min. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(1)); |
| EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(10), |
| manager_.GetRetransmissionTime()); |
| |
| // Test with a standard smoothed RTT. |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100)); |
| |
| QuicTime::Delta srtt = rtt_stats->initial_rtt(); |
| QuicTime expected_time = clock_.Now() + 1.5 * srtt; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Retransmit the packet by invoking the retransmission timeout. |
| clock_.AdvanceTime(1.5 * srtt); |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(2); })); |
| // When session decides what to write, crypto_packet_send_time gets updated. |
| crypto_packet_send_time = clock_.Now(); |
| manager_.OnRetransmissionTimeout(); |
| |
| // The retransmission time should now be twice as far in the future. |
| expected_time = crypto_packet_send_time + srtt * 2 * 1.5; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Retransmit the packet for the 2nd time. |
| clock_.AdvanceTime(2 * 1.5 * srtt); |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(3); })); |
| // When session decides what to write, crypto_packet_send_time gets updated. |
| crypto_packet_send_time = clock_.Now(); |
| manager_.OnRetransmissionTimeout(); |
| |
| // Verify exponential backoff of the retransmission timeout. |
| expected_time = crypto_packet_send_time + srtt * 4 * 1.5; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| GetConservativeTransmissionTimeCryptoHandshake) { |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kCONH); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| // Calling SetFromConfig requires mocking out some send algorithm methods. |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| |
| QuicTime crypto_packet_send_time = clock_.Now(); |
| SendCryptoPacket(1); |
| |
| // Check the min. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(1)); |
| EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(25), |
| manager_.GetRetransmissionTime()); |
| |
| // Test with a standard smoothed RTT. |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100)); |
| |
| QuicTime::Delta srtt = rtt_stats->initial_rtt(); |
| QuicTime expected_time = clock_.Now() + 2 * srtt; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Retransmit the packet by invoking the retransmission timeout. |
| clock_.AdvanceTime(2 * srtt); |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce( |
| InvokeWithoutArgs([this]() { return RetransmitCryptoPacket(2); })); |
| crypto_packet_send_time = clock_.Now(); |
| manager_.OnRetransmissionTimeout(); |
| |
| // The retransmission time should now be twice as far in the future. |
| expected_time = crypto_packet_send_time + srtt * 2 * 2; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetLossDelay) { |
| auto loss_algorithm = std::make_unique<MockLossAlgorithm>(); |
| QuicSentPacketManagerPeer::SetLossAlgorithm(&manager_, loss_algorithm.get()); |
| |
| EXPECT_CALL(*loss_algorithm, GetLossTimeout()) |
| .WillRepeatedly(Return(QuicTime::Zero())); |
| SendDataPacket(1); |
| SendDataPacket(2); |
| |
| // Handle an ack which causes the loss algorithm to be evaluated and |
| // set the loss timeout. |
| ExpectAck(2); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| QuicTime timeout(clock_.Now() + QuicTime::Delta::FromMilliseconds(10)); |
| EXPECT_CALL(*loss_algorithm, GetLossTimeout()) |
| .WillRepeatedly(Return(timeout)); |
| EXPECT_EQ(timeout, manager_.GetRetransmissionTime()); |
| |
| // Fire the retransmission timeout and ensure the loss detection algorithm |
| // is invoked. |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| manager_.OnRetransmissionTimeout(); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NegotiateIetfLossDetectionFromOptions) { |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::AdaptiveReorderingThresholdEnabled(&manager_)); |
| EXPECT_FALSE( |
| QuicSentPacketManagerPeer::AdaptiveTimeThresholdEnabled(&manager_)); |
| EXPECT_EQ(kDefaultLossDelayShift, |
| QuicSentPacketManagerPeer::GetReorderingShift(&manager_)); |
| |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kILD0); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_EQ(3, QuicSentPacketManagerPeer::GetReorderingShift(&manager_)); |
| EXPECT_FALSE( |
| QuicSentPacketManagerPeer::AdaptiveReorderingThresholdEnabled(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| NegotiateIetfLossDetectionOneFourthRttFromOptions) { |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::AdaptiveReorderingThresholdEnabled(&manager_)); |
| EXPECT_FALSE( |
| QuicSentPacketManagerPeer::AdaptiveTimeThresholdEnabled(&manager_)); |
| EXPECT_EQ(kDefaultLossDelayShift, |
| QuicSentPacketManagerPeer::GetReorderingShift(&manager_)); |
| |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kILD1); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_EQ(kDefaultLossDelayShift, |
| QuicSentPacketManagerPeer::GetReorderingShift(&manager_)); |
| EXPECT_FALSE( |
| QuicSentPacketManagerPeer::AdaptiveReorderingThresholdEnabled(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| NegotiateIetfLossDetectionAdaptiveReorderingThreshold) { |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::AdaptiveReorderingThresholdEnabled(&manager_)); |
| EXPECT_FALSE( |
| QuicSentPacketManagerPeer::AdaptiveTimeThresholdEnabled(&manager_)); |
| EXPECT_EQ(kDefaultLossDelayShift, |
| QuicSentPacketManagerPeer::GetReorderingShift(&manager_)); |
| |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kILD2); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_EQ(3, QuicSentPacketManagerPeer::GetReorderingShift(&manager_)); |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::AdaptiveReorderingThresholdEnabled(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| NegotiateIetfLossDetectionAdaptiveReorderingThreshold2) { |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::AdaptiveReorderingThresholdEnabled(&manager_)); |
| EXPECT_FALSE( |
| QuicSentPacketManagerPeer::AdaptiveTimeThresholdEnabled(&manager_)); |
| EXPECT_EQ(kDefaultLossDelayShift, |
| QuicSentPacketManagerPeer::GetReorderingShift(&manager_)); |
| |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kILD3); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kDefaultLossDelayShift, |
| QuicSentPacketManagerPeer::GetReorderingShift(&manager_)); |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::AdaptiveReorderingThresholdEnabled(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| NegotiateIetfLossDetectionAdaptiveReorderingAndTimeThreshold) { |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::AdaptiveReorderingThresholdEnabled(&manager_)); |
| EXPECT_FALSE( |
| QuicSentPacketManagerPeer::AdaptiveTimeThresholdEnabled(&manager_)); |
| EXPECT_EQ(kDefaultLossDelayShift, |
| QuicSentPacketManagerPeer::GetReorderingShift(&manager_)); |
| |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kILD4); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_EQ(kDefaultLossDelayShift, |
| QuicSentPacketManagerPeer::GetReorderingShift(&manager_)); |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::AdaptiveReorderingThresholdEnabled(&manager_)); |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::AdaptiveTimeThresholdEnabled(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NegotiateCongestionControlFromOptions) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kRENO); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| |
| options.clear(); |
| options.push_back(kTBBR); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kBBR, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| |
| options.clear(); |
| options.push_back(kBYTE); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kCubicBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| options.clear(); |
| options.push_back(kRENO); |
| options.push_back(kBYTE); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NegotiateClientCongestionControlFromOptions) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| // No change if the server receives client options. |
| const SendAlgorithmInterface* mock_sender = |
| QuicSentPacketManagerPeer::GetSendAlgorithm(manager_); |
| options.push_back(kRENO); |
| config.SetClientConnectionOptions(options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(mock_sender, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_)); |
| |
| // Change the congestion control on the client with client options. |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| |
| options.clear(); |
| options.push_back(kTBBR); |
| config.SetClientConnectionOptions(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kBBR, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| |
| options.clear(); |
| options.push_back(kBYTE); |
| config.SetClientConnectionOptions(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kCubicBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| |
| options.clear(); |
| options.push_back(kRENO); |
| options.push_back(kBYTE); |
| config.SetClientConnectionOptions(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, UseInitialRoundTripTimeToSend) { |
| QuicTime::Delta initial_rtt = QuicTime::Delta::FromMilliseconds(325); |
| EXPECT_NE(initial_rtt, manager_.GetRttStats()->smoothed_rtt()); |
| |
| QuicConfig config; |
| config.SetInitialRoundTripTimeUsToSend(initial_rtt.ToMicroseconds()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.GetRttStats()->smoothed_rtt()); |
| EXPECT_EQ(initial_rtt, manager_.GetRttStats()->initial_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, ResumeConnectionState) { |
| // The sent packet manager should use the RTT from CachedNetworkParameters if |
| // it is provided. |
| const QuicTime::Delta kRtt = QuicTime::Delta::FromMilliseconds(123); |
| CachedNetworkParameters cached_network_params; |
| cached_network_params.set_min_rtt_ms(kRtt.ToMilliseconds()); |
| |
| SendAlgorithmInterface::NetworkParams params; |
| params.bandwidth = QuicBandwidth::Zero(); |
| params.allow_cwnd_to_decrease = false; |
| params.rtt = kRtt; |
| params.is_rtt_trusted = true; |
| |
| EXPECT_CALL(*send_algorithm_, AdjustNetworkParameters(params)); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .Times(testing::AnyNumber()); |
| manager_.ResumeConnectionState(cached_network_params, false); |
| EXPECT_EQ(kRtt, manager_.GetRttStats()->initial_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, ConnectionMigrationUnspecifiedChange) { |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt(); |
| rtt_stats->set_initial_rtt(default_init_rtt * 2); |
| EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt()); |
| |
| QuicSentPacketManagerPeer::SetConsecutivePtoCount(&manager_, 1); |
| EXPECT_EQ(1u, manager_.GetConsecutivePtoCount()); |
| |
| EXPECT_CALL(*send_algorithm_, OnConnectionMigration()); |
| EXPECT_EQ(nullptr, |
| manager_.OnConnectionMigration(/*reset_send_algorithm=*/false)); |
| |
| EXPECT_EQ(default_init_rtt, rtt_stats->initial_rtt()); |
| EXPECT_EQ(0u, manager_.GetConsecutivePtoCount()); |
| } |
| |
| // Tests that ResetCongestionControlUponPeerAddressChange() resets send |
| // algorithm and RTT. And unACK'ed packets are handled correctly. |
| TEST_F(QuicSentPacketManagerTest, |
| ConnectionMigrationUnspecifiedChangeResetSendAlgorithm) { |
| auto loss_algorithm = std::make_unique<MockLossAlgorithm>(); |
| QuicSentPacketManagerPeer::SetLossAlgorithm(&manager_, loss_algorithm.get()); |
| |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt(); |
| rtt_stats->set_initial_rtt(default_init_rtt * 2); |
| EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt()); |
| |
| QuicSentPacketManagerPeer::SetConsecutivePtoCount(&manager_, 1); |
| EXPECT_EQ(1u, manager_.GetConsecutivePtoCount()); |
| |
| SendDataPacket(1, ENCRYPTION_FORWARD_SECURE); |
| |
| RttStats old_rtt_stats; |
| old_rtt_stats.CloneFrom(*manager_.GetRttStats()); |
| |
| // Packet1 will be mark for retransmission upon migration. |
| EXPECT_CALL(notifier_, OnFrameLost(_)); |
| std::unique_ptr<SendAlgorithmInterface> old_send_algorithm = |
| manager_.OnConnectionMigration(/*reset_send_algorithm=*/true); |
| |
| EXPECT_NE(old_send_algorithm.get(), manager_.GetSendAlgorithm()); |
| EXPECT_EQ(old_send_algorithm->GetCongestionControlType(), |
| manager_.GetSendAlgorithm()->GetCongestionControlType()); |
| EXPECT_EQ(default_init_rtt, rtt_stats->initial_rtt()); |
| EXPECT_EQ(0u, manager_.GetConsecutivePtoCount()); |
| // Packets sent earlier shouldn't be regarded as in flight. |
| EXPECT_EQ(0u, BytesInFlight()); |
| |
| // Replace the new send algorithm with the mock object. |
| manager_.SetSendAlgorithm(old_send_algorithm.release()); |
| |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| // Application retransmit the data as LOSS_RETRANSMISSION. |
| RetransmitDataPacket(2, LOSS_RETRANSMISSION, ENCRYPTION_FORWARD_SECURE); |
| EXPECT_EQ(kDefaultLength, BytesInFlight()); |
| |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| // Receiving an ACK for packet1 20s later shouldn't update the RTT, and |
| // shouldn't be treated as spurious retransmission. |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnCongestionEvent(/*rtt_updated=*/false, kDefaultLength, _, _, _, _, _)) |
| .WillOnce(testing::WithArg<3>( |
| Invoke([](const AckedPacketVector& acked_packets) { |
| EXPECT_EQ(1u, acked_packets.size()); |
| EXPECT_EQ(QuicPacketNumber(1), acked_packets[0].packet_number); |
| // The bytes in packet1 shouldn't contribute to congestion control. |
| EXPECT_EQ(0u, acked_packets[0].bytes_acked); |
| }))); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*loss_algorithm, SpuriousLossDetected(_, _, _, _, _)).Times(0u); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_FORWARD_SECURE, kEmptyCounts)); |
| EXPECT_TRUE(manager_.GetRttStats()->latest_rtt().IsZero()); |
| |
| // Receiving an ACK for packet2 should update RTT and congestion control. |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3)); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnCongestionEvent(/*rtt_updated=*/true, kDefaultLength, _, _, _, _, _)) |
| .WillOnce(testing::WithArg<3>( |
| Invoke([](const AckedPacketVector& acked_packets) { |
| EXPECT_EQ(1u, acked_packets.size()); |
| EXPECT_EQ(QuicPacketNumber(2), acked_packets[0].packet_number); |
| // The bytes in packet2 should contribute to congestion control. |
| EXPECT_EQ(kDefaultLength, acked_packets[0].bytes_acked); |
| }))); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_FORWARD_SECURE, kEmptyCounts)); |
| EXPECT_EQ(0u, BytesInFlight()); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(10), |
| manager_.GetRttStats()->latest_rtt()); |
| |
| SendDataPacket(3, ENCRYPTION_FORWARD_SECURE); |
| // Trigger loss timeout and mark packet3 for retransmission. |
| EXPECT_CALL(*loss_algorithm, GetLossTimeout()) |
| .WillOnce(Return(clock_.Now() + QuicTime::Delta::FromMilliseconds(10))); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)) |
| .WillOnce(WithArgs<5>(Invoke([](LostPacketVector* packet_lost) { |
| packet_lost->emplace_back(QuicPacketNumber(3u), kDefaultLength); |
| return LossDetectionInterface::DetectionStats(); |
| }))); |
| EXPECT_CALL(notifier_, OnFrameLost(_)); |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(false, kDefaultLength, _, _, _, _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(0u, BytesInFlight()); |
| |
| // Migrate again with unACK'ed but not in-flight packet. |
| // Packet3 shouldn't be marked for retransmission again as it is not in |
| // flight. |
| old_send_algorithm = |
| manager_.OnConnectionMigration(/*reset_send_algorithm=*/true); |
| |
| EXPECT_NE(old_send_algorithm.get(), manager_.GetSendAlgorithm()); |
| EXPECT_EQ(old_send_algorithm->GetCongestionControlType(), |
| manager_.GetSendAlgorithm()->GetCongestionControlType()); |
| EXPECT_EQ(default_init_rtt, rtt_stats->initial_rtt()); |
| EXPECT_EQ(0u, manager_.GetConsecutivePtoCount()); |
| EXPECT_EQ(0u, BytesInFlight()); |
| EXPECT_TRUE(manager_.GetRttStats()->latest_rtt().IsZero()); |
| |
| manager_.SetSendAlgorithm(old_send_algorithm.release()); |
| |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(30)); |
| // Receiving an ACK for packet3 shouldn't update RTT. Though packet 3 was |
| // marked lost, this spurious retransmission shouldn't be reported to the loss |
| // algorithm. |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(4)); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*loss_algorithm, SpuriousLossDetected(_, _, _, _, _)).Times(0u); |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(/*rtt_updated=*/false, 0, _, _, _, _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3), |
| ENCRYPTION_FORWARD_SECURE, kEmptyCounts)); |
| EXPECT_EQ(0u, BytesInFlight()); |
| EXPECT_TRUE(manager_.GetRttStats()->latest_rtt().IsZero()); |
| |
| SendDataPacket(4, ENCRYPTION_FORWARD_SECURE); |
| // Trigger loss timeout and mark packet4 for retransmission. |
| EXPECT_CALL(*loss_algorithm, GetLossTimeout()) |
| .WillOnce(Return(clock_.Now() + QuicTime::Delta::FromMilliseconds(10))); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)) |
| .WillOnce(WithArgs<5>(Invoke([](LostPacketVector* packet_lost) { |
| packet_lost->emplace_back(QuicPacketNumber(4u), kDefaultLength); |
| return LossDetectionInterface::DetectionStats(); |
| }))); |
| EXPECT_CALL(notifier_, OnFrameLost(_)); |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(false, kDefaultLength, _, _, _, _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(0u, BytesInFlight()); |
| |
| // Application retransmit the data as LOSS_RETRANSMISSION. |
| RetransmitDataPacket(5, LOSS_RETRANSMISSION, ENCRYPTION_FORWARD_SECURE); |
| EXPECT_EQ(kDefaultLength, BytesInFlight()); |
| |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(30)); |
| // Receiving an ACK for packet4 should update RTT, but not bytes in flight. |
| // This spurious retransmission should be reported to the loss algorithm. |
| manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(5)); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*loss_algorithm, SpuriousLossDetected(_, _, _, _, _)); |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnCongestionEvent(/*rtt_updated=*/true, kDefaultLength, _, _, _, _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3), |
| ENCRYPTION_FORWARD_SECURE, kEmptyCounts)); |
| EXPECT_EQ(kDefaultLength, BytesInFlight()); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(30), |
| manager_.GetRttStats()->latest_rtt()); |
| |
| // Migrate again with in-flight packet5 whose retransmittable frames are all |
| // ACKed. Packet5 should be marked for retransmission but nothing to |
| // retransmit. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillOnce(Return(false)); |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(0u); |
| old_send_algorithm = |
| manager_.OnConnectionMigration(/*reset_send_algorithm=*/true); |
| EXPECT_EQ(default_init_rtt, rtt_stats->initial_rtt()); |
| EXPECT_EQ(0u, manager_.GetConsecutivePtoCount()); |
| EXPECT_EQ(0u, BytesInFlight()); |
| EXPECT_TRUE(manager_.GetRttStats()->latest_rtt().IsZero()); |
| |
| manager_.SetSendAlgorithm(old_send_algorithm.release()); |
| |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| // Receiving an ACK for packet5 shouldn't update RTT. Though packet 5 was |
| // marked for retransmission, this spurious retransmission shouldn't be |
| // reported to the loss algorithm. |
| manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(5), QuicPacketNumber(6)); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*loss_algorithm, SpuriousLossDetected(_, _, _, _, _)).Times(0u); |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(/*rtt_updated=*/false, 0, _, _, _, _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3), |
| ENCRYPTION_FORWARD_SECURE, kEmptyCounts)); |
| EXPECT_EQ(0u, BytesInFlight()); |
| EXPECT_TRUE(manager_.GetRttStats()->latest_rtt().IsZero()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, PathMtuIncreased) { |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(1), _, _)); |
| SerializedPacket packet(QuicPacketNumber(1), PACKET_4BYTE_PACKET_NUMBER, |
| nullptr, kDefaultLength + 100, false, false); |
| manager_.OnPacketSent(&packet, clock_.Now(), NOT_RETRANSMISSION, |
| HAS_RETRANSMITTABLE_DATA, true, ECN_NOT_ECT); |
| |
| // Ack the large packet and expect the path MTU to increase. |
| ExpectAck(1); |
| EXPECT_CALL(*network_change_visitor_, |
| OnPathMtuIncreased(kDefaultLength + 100)); |
| QuicAckFrame ack_frame = InitAckFrame(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, OnAckRangeSlowPath) { |
| // Send packets 1 - 20. |
| for (size_t i = 1; i <= 20; ++i) { |
| SendDataPacket(i); |
| } |
| // Ack [5, 7), [10, 12), [15, 17). |
| uint64_t acked1[] = {5, 6, 10, 11, 15, 16}; |
| uint64_t lost1[] = {1, 2, 3, 4, 7, 8, 9, 12, 13}; |
| ExpectAcksAndLosses(true, acked1, ABSL_ARRAYSIZE(acked1), lost1, |
| ABSL_ARRAYSIZE(lost1)); |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(AnyNumber()); |
| manager_.OnAckFrameStart(QuicPacketNumber(16), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(15), QuicPacketNumber(17)); |
| manager_.OnAckRange(QuicPacketNumber(10), QuicPacketNumber(12)); |
| manager_.OnAckRange(QuicPacketNumber(5), QuicPacketNumber(7)); |
| // Make sure empty range does not harm. |
| manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| // Ack [4, 8), [9, 13), [14, 21). |
| uint64_t acked2[] = {4, 7, 9, 12, 14, 17, 18, 19, 20}; |
| ExpectAcksAndLosses(true, acked2, ABSL_ARRAYSIZE(acked2), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(20), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(14), QuicPacketNumber(21)); |
| manager_.OnAckRange(QuicPacketNumber(9), QuicPacketNumber(13)); |
| manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(8)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, TolerateReneging) { |
| // Send packets 1 - 20. |
| for (size_t i = 1; i <= 20; ++i) { |
| SendDataPacket(i); |
| } |
| // Ack [5, 7), [10, 12), [15, 17). |
| uint64_t acked1[] = {5, 6, 10, 11, 15, 16}; |
| uint64_t lost1[] = {1, 2, 3, 4, 7, 8, 9, 12, 13}; |
| ExpectAcksAndLosses(true, acked1, ABSL_ARRAYSIZE(acked1), lost1, |
| ABSL_ARRAYSIZE(lost1)); |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(AnyNumber()); |
| manager_.OnAckFrameStart(QuicPacketNumber(16), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(15), QuicPacketNumber(17)); |
| manager_.OnAckRange(QuicPacketNumber(10), QuicPacketNumber(12)); |
| manager_.OnAckRange(QuicPacketNumber(5), QuicPacketNumber(7)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| // Making sure reneged ACK does not harm. Ack [4, 8), [9, 13). |
| uint64_t acked2[] = {4, 7, 9, 12}; |
| ExpectAcksAndLosses(true, acked2, ABSL_ARRAYSIZE(acked2), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(12), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(9), QuicPacketNumber(13)); |
| manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(8)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(QuicPacketNumber(16), manager_.GetLargestObserved()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, MultiplePacketNumberSpaces) { |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| const QuicUnackedPacketMap* unacked_packets = |
| QuicSentPacketManagerPeer::GetUnackedPacketMap(&manager_); |
| EXPECT_FALSE( |
| unacked_packets |
| ->GetLargestSentRetransmittableOfPacketNumberSpace(INITIAL_DATA) |
| .IsInitialized()); |
| EXPECT_FALSE( |
| manager_.GetLargestAckedPacket(ENCRYPTION_INITIAL).IsInitialized()); |
| // Send packet 1. |
| SendDataPacket(1, ENCRYPTION_INITIAL); |
| EXPECT_EQ(QuicPacketNumber(1), |
| unacked_packets->GetLargestSentRetransmittableOfPacketNumberSpace( |
| INITIAL_DATA)); |
| EXPECT_FALSE( |
| unacked_packets |
| ->GetLargestSentRetransmittableOfPacketNumberSpace(HANDSHAKE_DATA) |
| .IsInitialized()); |
| // Ack packet 1. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(QuicPacketNumber(1), |
| manager_.GetLargestAckedPacket(ENCRYPTION_INITIAL)); |
| EXPECT_FALSE( |
| manager_.GetLargestAckedPacket(ENCRYPTION_HANDSHAKE).IsInitialized()); |
| // Send packets 2 and 3. |
| SendDataPacket(2, ENCRYPTION_HANDSHAKE); |
| SendDataPacket(3, ENCRYPTION_HANDSHAKE); |
| EXPECT_EQ(QuicPacketNumber(1), |
| unacked_packets->GetLargestSentRetransmittableOfPacketNumberSpace( |
| INITIAL_DATA)); |
| EXPECT_EQ(QuicPacketNumber(3), |
| unacked_packets->GetLargestSentRetransmittableOfPacketNumberSpace( |
| HANDSHAKE_DATA)); |
| EXPECT_FALSE( |
| unacked_packets |
| ->GetLargestSentRetransmittableOfPacketNumberSpace(APPLICATION_DATA) |
| .IsInitialized()); |
| // Ack packet 2. |
| ExpectAck(2); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_HANDSHAKE, kEmptyCounts)); |
| EXPECT_EQ(QuicPacketNumber(2), |
| manager_.GetLargestAckedPacket(ENCRYPTION_HANDSHAKE)); |
| EXPECT_FALSE( |
| manager_.GetLargestAckedPacket(ENCRYPTION_ZERO_RTT).IsInitialized()); |
| // Ack packet 3. |
| ExpectAck(3); |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3), |
| ENCRYPTION_HANDSHAKE, kEmptyCounts)); |
| EXPECT_EQ(QuicPacketNumber(3), |
| manager_.GetLargestAckedPacket(ENCRYPTION_HANDSHAKE)); |
| EXPECT_FALSE( |
| manager_.GetLargestAckedPacket(ENCRYPTION_ZERO_RTT).IsInitialized()); |
| // Send packets 4 and 5. |
| SendDataPacket(4, ENCRYPTION_ZERO_RTT); |
| SendDataPacket(5, ENCRYPTION_ZERO_RTT); |
| EXPECT_EQ(QuicPacketNumber(1), |
| unacked_packets->GetLargestSentRetransmittableOfPacketNumberSpace( |
| INITIAL_DATA)); |
| EXPECT_EQ(QuicPacketNumber(3), |
| unacked_packets->GetLargestSentRetransmittableOfPacketNumberSpace( |
| HANDSHAKE_DATA)); |
| EXPECT_EQ(QuicPacketNumber(5), |
| unacked_packets->GetLargestSentRetransmittableOfPacketNumberSpace( |
| APPLICATION_DATA)); |
| // Ack packet 5. |
| ExpectAck(5); |
| manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(5), QuicPacketNumber(6)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(4), |
| ENCRYPTION_FORWARD_SECURE, kEmptyCounts)); |
| EXPECT_EQ(QuicPacketNumber(3), |
| manager_.GetLargestAckedPacket(ENCRYPTION_HANDSHAKE)); |
| EXPECT_EQ(QuicPacketNumber(5), |
| manager_.GetLargestAckedPacket(ENCRYPTION_ZERO_RTT)); |
| EXPECT_EQ(QuicPacketNumber(5), |
| manager_.GetLargestAckedPacket(ENCRYPTION_FORWARD_SECURE)); |
| |
| // Send packets 6 - 8. |
| SendDataPacket(6, ENCRYPTION_FORWARD_SECURE); |
| SendDataPacket(7, ENCRYPTION_FORWARD_SECURE); |
| SendDataPacket(8, ENCRYPTION_FORWARD_SECURE); |
| EXPECT_EQ(QuicPacketNumber(1), |
| unacked_packets->GetLargestSentRetransmittableOfPacketNumberSpace( |
| INITIAL_DATA)); |
| EXPECT_EQ(QuicPacketNumber(3), |
| unacked_packets->GetLargestSentRetransmittableOfPacketNumberSpace( |
| HANDSHAKE_DATA)); |
| EXPECT_EQ(QuicPacketNumber(8), |
| unacked_packets->GetLargestSentRetransmittableOfPacketNumberSpace( |
| APPLICATION_DATA)); |
| // Ack all packets. |
| uint64_t acked[] = {4, 6, 7, 8}; |
| ExpectAcksAndLosses(true, acked, ABSL_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(8), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(9)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(5), |
| ENCRYPTION_FORWARD_SECURE, kEmptyCounts)); |
| EXPECT_EQ(QuicPacketNumber(3), |
| manager_.GetLargestAckedPacket(ENCRYPTION_HANDSHAKE)); |
| EXPECT_EQ(QuicPacketNumber(8), |
| manager_.GetLargestAckedPacket(ENCRYPTION_ZERO_RTT)); |
| EXPECT_EQ(QuicPacketNumber(8), |
| manager_.GetLargestAckedPacket(ENCRYPTION_FORWARD_SECURE)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, PacketsGetAckedInWrongPacketNumberSpace) { |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| // Send packet 1. |
| SendDataPacket(1, ENCRYPTION_INITIAL); |
| // Send packets 2 and 3. |
| SendDataPacket(2, ENCRYPTION_HANDSHAKE); |
| SendDataPacket(3, ENCRYPTION_HANDSHAKE); |
| |
| // ACK packets 2 and 3 in the wrong packet number space. |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_ACKED_IN_WRONG_PACKET_NUMBER_SPACE, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, PacketsGetAckedInWrongPacketNumberSpace2) { |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| // Send packet 1. |
| SendDataPacket(1, ENCRYPTION_INITIAL); |
| // Send packets 2 and 3. |
| SendDataPacket(2, ENCRYPTION_HANDSHAKE); |
| SendDataPacket(3, ENCRYPTION_HANDSHAKE); |
| |
| // ACK packet 1 in the wrong packet number space. |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_ACKED_IN_WRONG_PACKET_NUMBER_SPACE, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_HANDSHAKE, kEmptyCounts)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| ToleratePacketsGetAckedInWrongPacketNumberSpace) { |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| // Send packet 1. |
| SendDataPacket(1, ENCRYPTION_INITIAL); |
| // Ack packet 1. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| |
| // Send packets 2 and 3. |
| SendDataPacket(2, ENCRYPTION_HANDSHAKE); |
| SendDataPacket(3, ENCRYPTION_HANDSHAKE); |
| |
| // Packet 1 gets acked in the wrong packet number space. Since packet 1 has |
| // been acked in the correct packet number space, tolerate it. |
| uint64_t acked[] = {2, 3}; |
| ExpectAcksAndLosses(true, acked, ABSL_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_HANDSHAKE, kEmptyCounts)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, ComputingProbeTimeout) { |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| QuicTime::Delta srtt = rtt_stats->smoothed_rtt(); |
| |
| SendDataPacket(1, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO is correctly set. |
| QuicTime::Delta expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| QuicTime packet1_sent_time = clock_.Now(); |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(2, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO is set based on left edge. |
| QuicTime deadline = packet1_sent_time + expected_pto_delay; |
| EXPECT_EQ(deadline, manager_.GetRetransmissionTime()); |
| EXPECT_EQ(0u, stats_.pto_count); |
| |
| // Invoke PTO. |
| clock_.AdvanceTime(deadline - clock_.Now()); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_EQ(1u, stats_.pto_count); |
| EXPECT_EQ(0u, stats_.max_consecutive_rto_with_forward_progress); |
| |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| return RetransmitDataPacket(3, type, ENCRYPTION_FORWARD_SECURE); |
| }))); |
| manager_.MaybeSendProbePacket(); |
| // Verify PTO period gets set to twice the current value. |
| QuicTime sent_time = clock_.Now(); |
| EXPECT_EQ(sent_time + expected_pto_delay * 2, |
| manager_.GetRetransmissionTime()); |
| |
| // Received ACK for packets 1 and 2. |
| uint64_t acked[] = {1, 2}; |
| ExpectAcksAndLosses(true, acked, ABSL_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_FORWARD_SECURE, kEmptyCounts)); |
| expected_pto_delay = |
| rtt_stats->SmoothedOrInitialRtt() + |
| std::max(kPtoRttvarMultiplier * rtt_stats->mean_deviation(), |
| QuicTime::Delta::FromMilliseconds(1)) + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| |
| // Verify PTO is correctly re-armed based on sent time of packet 4. |
| EXPECT_EQ(sent_time + expected_pto_delay, manager_.GetRetransmissionTime()); |
| EXPECT_EQ(1u, stats_.max_consecutive_rto_with_forward_progress); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, SendOneProbePacket) { |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| |
| SendDataPacket(1, ENCRYPTION_FORWARD_SECURE); |
| QuicTime packet1_sent_time = clock_.Now(); |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(2, ENCRYPTION_FORWARD_SECURE); |
| |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| QuicTime::Delta srtt = rtt_stats->smoothed_rtt(); |
| // Verify PTO period is correctly set. |
| QuicTime::Delta expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| // Verify PTO is set based on left edge. |
| QuicTime deadline = packet1_sent_time + expected_pto_delay; |
| EXPECT_EQ(deadline, manager_.GetRetransmissionTime()); |
| |
| // Invoke PTO. |
| clock_.AdvanceTime(deadline - clock_.Now()); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| |
| // Verify one probe packet gets sent. |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| return RetransmitDataPacket(3, type, ENCRYPTION_FORWARD_SECURE); |
| }))); |
| manager_.MaybeSendProbePacket(); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, DisableHandshakeModeClient) { |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| // Send CHLO. |
| SendCryptoPacket(1); |
| EXPECT_NE(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| // Ack packet 1. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(0u, manager_.GetBytesInFlight()); |
| // Verify retransmission timeout is not zero because handshake is not |
| // confirmed although there is no in flight packet. |
| EXPECT_NE(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| // Fire PTO. |
| EXPECT_EQ(QuicSentPacketManager::PTO_MODE, |
| manager_.OnRetransmissionTimeout()); |
| // Send handshake packet. |
| SendDataPacket(2, ENCRYPTION_HANDSHAKE); |
| // Ack packet 2. |
| ExpectAck(2); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_HANDSHAKE, kEmptyCounts)); |
| // Verify retransmission timeout is zero because server has successfully |
| // processed HANDSHAKE packet. |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, DisableHandshakeModeServer) { |
| manager_.EnableIetfPtoAndLossDetection(); |
| // Send SHLO. |
| SendCryptoPacket(1); |
| EXPECT_NE(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| // Ack packet 1. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(0u, manager_.GetBytesInFlight()); |
| // Verify retransmission timeout is not set on server side because there is |
| // nothing in flight. |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, PtoTimeoutRttVarMultiple) { |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| QuicTime::Delta srtt = rtt_stats->smoothed_rtt(); |
| |
| SendDataPacket(1, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO is correctly set based on 2 times rtt var. |
| QuicTime::Delta expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, IW10ForUpAndDown) { |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kBWS5); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*send_algorithm_, SetInitialCongestionWindowInPackets(10)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_EQ(10u, manager_.initial_congestion_window()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, ClientMultiplePacketNumberSpacePtoTimeout) { |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| QuicTime::Delta srtt = rtt_stats->smoothed_rtt(); |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| |
| // Send packet 1. |
| SendDataPacket(1, ENCRYPTION_INITIAL); |
| // Verify PTO is correctly set. |
| QuicTime::Delta expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::Zero(); |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Discard initial key and send packet 2 in handshake. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| manager_.NeuterUnencryptedPackets(); |
| |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(true)); |
| SendDataPacket(2, ENCRYPTION_HANDSHAKE); |
| // Verify PTO is correctly set based on sent time of packet 2. |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| // Invoke PTO. |
| clock_.AdvanceTime(expected_pto_delay); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_EQ(1u, stats_.pto_count); |
| EXPECT_EQ(1u, stats_.crypto_retransmit_count); |
| |
| // Verify probe packet gets sent. |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| return RetransmitDataPacket(3, type, ENCRYPTION_HANDSHAKE); |
| }))); |
| manager_.MaybeSendProbePacket(); |
| // Verify PTO period gets set to twice the current value. |
| const QuicTime packet3_sent_time = clock_.Now(); |
| EXPECT_EQ(packet3_sent_time + expected_pto_delay * 2, |
| manager_.GetRetransmissionTime()); |
| |
| // Send packet 4 in application data with 0-RTT. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(4, ENCRYPTION_ZERO_RTT); |
| const QuicTime packet4_sent_time = clock_.Now(); |
| // Verify PTO timeout is still based on packet 3. |
| EXPECT_EQ(packet3_sent_time + expected_pto_delay * 2, |
| manager_.GetRetransmissionTime()); |
| |
| // Send packet 5 in handshake. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(5, ENCRYPTION_HANDSHAKE); |
| const QuicTime packet5_sent_time = clock_.Now(); |
| // Verify PTO timeout is now based on packet 5 because packet 4 should be |
| // ignored. |
| EXPECT_EQ(clock_.Now() + expected_pto_delay * 2, |
| manager_.GetRetransmissionTime()); |
| |
| // Send packet 6 in 1-RTT. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(6, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO timeout is now based on packet 5. |
| EXPECT_EQ(packet5_sent_time + expected_pto_delay * 2, |
| manager_.GetRetransmissionTime()); |
| |
| // Send packet 7 in handshake. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| const QuicTime packet7_sent_time = clock_.Now(); |
| SendDataPacket(7, ENCRYPTION_HANDSHAKE); |
| |
| expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation(); |
| // Verify PTO timeout is now based on packet 7. |
| EXPECT_EQ(packet7_sent_time + expected_pto_delay * 2, |
| manager_.GetRetransmissionTime()); |
| |
| // Neuter handshake key. |
| manager_.SetHandshakeConfirmed(); |
| // Forward progress has been made, verify PTO counter gets reset. PTO timeout |
| // is armed by left edge. |
| expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| EXPECT_EQ(packet4_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, ServerMultiplePacketNumberSpacePtoTimeout) { |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| QuicTime::Delta srtt = rtt_stats->smoothed_rtt(); |
| |
| // Send packet 1. |
| SendDataPacket(1, ENCRYPTION_INITIAL); |
| const QuicTime packet1_sent_time = clock_.Now(); |
| // Verify PTO is correctly set. |
| QuicTime::Delta expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::Zero(); |
| EXPECT_EQ(packet1_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Send packet 2 in handshake. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(2, ENCRYPTION_HANDSHAKE); |
| const QuicTime packet2_sent_time = clock_.Now(); |
| // Verify PTO timeout is still based on packet 1. |
| EXPECT_EQ(packet1_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Discard initial keys. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| manager_.NeuterUnencryptedPackets(); |
| |
| // Send packet 3 in 1-RTT. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(3, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO timeout is based on packet 2. |
| const QuicTime packet3_sent_time = clock_.Now(); |
| EXPECT_EQ(packet2_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Send packet 4 in handshake. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(4, ENCRYPTION_HANDSHAKE); |
| // Verify PTO timeout is based on packet 4 as application data is ignored. |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Discard handshake keys. |
| manager_.SetHandshakeConfirmed(); |
| expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| // Verify PTO timeout is now based on packet 3 as handshake is |
| // complete/confirmed. |
| EXPECT_EQ(packet3_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, ComputingProbeTimeoutByLeftEdge) { |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| QuicTime::Delta srtt = rtt_stats->smoothed_rtt(); |
| |
| SendDataPacket(1, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO is correctly set. |
| QuicTime::Delta expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| const QuicTime packet1_sent_time = clock_.Now(); |
| EXPECT_EQ(packet1_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(2, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO is still based on packet 1. |
| EXPECT_EQ(packet1_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| EXPECT_EQ(0u, stats_.pto_count); |
| |
| // Invoke PTO. |
| clock_.AdvanceTime(expected_pto_delay); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_EQ(1u, stats_.pto_count); |
| |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| return RetransmitDataPacket(3, type, ENCRYPTION_FORWARD_SECURE); |
| }))); |
| manager_.MaybeSendProbePacket(); |
| // Verify PTO period gets set to twice the current value and based on packet3. |
| QuicTime packet3_sent_time = clock_.Now(); |
| EXPECT_EQ(packet3_sent_time + expected_pto_delay * 2, |
| manager_.GetRetransmissionTime()); |
| |
| // Received ACK for packets 1 and 2. |
| uint64_t acked[] = {1, 2}; |
| ExpectAcksAndLosses(true, acked, ABSL_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_FORWARD_SECURE, kEmptyCounts)); |
| expected_pto_delay = |
| rtt_stats->SmoothedOrInitialRtt() + |
| std::max(kPtoRttvarMultiplier * rtt_stats->mean_deviation(), |
| QuicTime::Delta::FromMilliseconds(1)) + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| |
| // Verify PTO is correctly re-armed based on sent time of packet 4. |
| EXPECT_EQ(packet3_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, ComputingProbeTimeoutByLeftEdge2) { |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| QuicTime::Delta srtt = rtt_stats->smoothed_rtt(); |
| |
| SendDataPacket(1, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO is correctly set. |
| QuicTime::Delta expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| const QuicTime packet1_sent_time = clock_.Now(); |
| EXPECT_EQ(packet1_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Sent a packet 10ms before PTO expiring. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds( |
| expected_pto_delay.ToMilliseconds() - 10)); |
| SendDataPacket(2, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO expands to packet 2 sent time + 1.5 * srtt. |
| expected_pto_delay = kFirstPtoSrttMultiplier * rtt_stats->smoothed_rtt(); |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| EXPECT_EQ(0u, stats_.pto_count); |
| |
| // Invoke PTO. |
| clock_.AdvanceTime(expected_pto_delay); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_EQ(1u, stats_.pto_count); |
| |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| return RetransmitDataPacket(3, type, ENCRYPTION_FORWARD_SECURE); |
| }))); |
| manager_.MaybeSendProbePacket(); |
| // Verify PTO period gets set to twice the expected value and based on |
| // packet3 (right edge). |
| expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| QuicTime packet3_sent_time = clock_.Now(); |
| EXPECT_EQ(packet3_sent_time + expected_pto_delay * 2, |
| manager_.GetRetransmissionTime()); |
| |
| // Received ACK for packets 1 and 2. |
| uint64_t acked[] = {1, 2}; |
| ExpectAcksAndLosses(true, acked, ABSL_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_FORWARD_SECURE, kEmptyCounts)); |
| expected_pto_delay = |
| rtt_stats->SmoothedOrInitialRtt() + |
| std::max(kPtoRttvarMultiplier * rtt_stats->mean_deviation(), |
| QuicTime::Delta::FromMilliseconds(1)) + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| |
| // Verify PTO is correctly re-armed based on sent time of packet 3 (left |
| // edge). |
| EXPECT_EQ(packet3_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| ComputingProbeTimeoutByLeftEdgeMultiplePacketNumberSpaces) { |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| QuicTime::Delta srtt = rtt_stats->smoothed_rtt(); |
| |
| // Send packet 1. |
| SendDataPacket(1, ENCRYPTION_INITIAL); |
| const QuicTime packet1_sent_time = clock_.Now(); |
| // Verify PTO is correctly set. |
| QuicTime::Delta expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::Zero(); |
| EXPECT_EQ(packet1_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Send packet 2 in handshake. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(2, ENCRYPTION_HANDSHAKE); |
| const QuicTime packet2_sent_time = clock_.Now(); |
| // Verify PTO timeout is still based on packet 1. |
| EXPECT_EQ(packet1_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Discard initial keys. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| manager_.NeuterUnencryptedPackets(); |
| |
| // Send packet 3 in 1-RTT. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(3, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO timeout is based on packet 2. |
| const QuicTime packet3_sent_time = clock_.Now(); |
| EXPECT_EQ(packet2_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Send packet 4 in handshake. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(4, ENCRYPTION_HANDSHAKE); |
| // Verify PTO timeout is based on packet 4 as application data is ignored. |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Discard handshake keys. |
| manager_.SetHandshakeConfirmed(); |
| // Verify PTO timeout is now based on packet 3 as handshake is |
| // complete/confirmed. |
| expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| EXPECT_EQ(packet3_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(5, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO timeout is still based on packet 3. |
| EXPECT_EQ(packet3_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| ComputingProbeTimeoutByLeftEdge2MultiplePacketNumberSpaces) { |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| QuicTime::Delta srtt = rtt_stats->smoothed_rtt(); |
| |
| // Send packet 1. |
| SendDataPacket(1, ENCRYPTION_INITIAL); |
| const QuicTime packet1_sent_time = clock_.Now(); |
| // Verify PTO is correctly set. |
| QuicTime::Delta expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::Zero(); |
| EXPECT_EQ(packet1_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Send packet 2 in handshake. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(2, ENCRYPTION_HANDSHAKE); |
| const QuicTime packet2_sent_time = clock_.Now(); |
| // Verify PTO timeout is still based on packet 1. |
| EXPECT_EQ(packet1_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Discard initial keys. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| manager_.NeuterUnencryptedPackets(); |
| |
| // Send packet 3 in 1-RTT. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(3, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO timeout is based on packet 2. |
| const QuicTime packet3_sent_time = clock_.Now(); |
| EXPECT_EQ(packet2_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Send packet 4 in handshake. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendDataPacket(4, ENCRYPTION_HANDSHAKE); |
| // Verify PTO timeout is based on packet 4 as application data is ignored. |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Discard handshake keys. |
| manager_.SetHandshakeConfirmed(); |
| // Verify PTO timeout is now based on packet 3 as handshake is |
| // complete/confirmed. |
| expected_pto_delay = |
| srtt + kPtoRttvarMultiplier * rtt_stats->mean_deviation() + |
| QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); |
| EXPECT_EQ(packet3_sent_time + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Send packet 5 10ms before PTO expiring. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds( |
| expected_pto_delay.ToMilliseconds() - 10)); |
| SendDataPacket(5, ENCRYPTION_FORWARD_SECURE); |
| // Verify PTO timeout expands to packet 5 sent time + 1.5 * srtt. |
| EXPECT_EQ(clock_.Now() + kFirstPtoSrttMultiplier * rtt_stats->smoothed_rtt(), |
| manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, SetHandshakeConfirmed) { |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| |
| SendDataPacket(1, ENCRYPTION_INITIAL); |
| |
| SendDataPacket(2, ENCRYPTION_HANDSHAKE); |
| |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)) |
| .WillOnce( |
| Invoke([](const QuicFrame& /*frame*/, QuicTime::Delta ack_delay_time, |
| QuicTime receive_timestamp) { |
| EXPECT_TRUE(ack_delay_time.IsZero()); |
| EXPECT_EQ(receive_timestamp, QuicTime::Zero()); |
| return true; |
| })); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketNeutered(QuicPacketNumber(2))).Times(1); |
| manager_.SetHandshakeConfirmed(); |
| } |
| |
| // Regresstion test for b/148841700. |
| TEST_F(QuicSentPacketManagerTest, NeuterUnencryptedPackets) { |
| SendCryptoPacket(1); |
| SendPingPacket(2, ENCRYPTION_INITIAL); |
| // Crypto data has been discarded but ping does not. |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)) |
| .Times(2) |
| .WillOnce(Return(false)) |
| .WillOnce(Return(true)); |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketNeutered(QuicPacketNumber(1))).Times(1); |
| manager_.NeuterUnencryptedPackets(); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, MarkInitialPacketsForRetransmission) { |
| SendCryptoPacket(1); |
| SendPingPacket(2, ENCRYPTION_HANDSHAKE); |
| // Only the INITIAL packet will be retransmitted. |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(1); |
| manager_.MarkInitialPacketsForRetransmission(); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NoPacketThresholdDetectionForRuntPackets) { |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::UsePacketThresholdForRuntPackets(&manager_)); |
| |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kRUNT); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_FALSE( |
| QuicSentPacketManagerPeer::UsePacketThresholdForRuntPackets(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetPathDegradingDelayDefaultPTO) { |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| QuicTime::Delta expected_delay = 4 * manager_.GetPtoDelay(); |
| EXPECT_EQ(expected_delay, manager_.GetPathDegradingDelay()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, ClientsIgnorePings) { |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| QuicConfig client_config; |
| QuicTagVector options; |
| QuicTagVector client_options; |
| client_options.push_back(kIGNP); |
| client_config.SetConnectionOptionsToSend(options); |
| client_config.SetClientConnectionOptions(client_options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(client_config); |
| |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); |
| |
| SendPingPacket(1, ENCRYPTION_INITIAL); |
| // Verify PING only packet is not considered in flight. |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| SendDataPacket(2, ENCRYPTION_INITIAL); |
| EXPECT_NE(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| |
| uint64_t acked[] = {1}; |
| ExpectAcksAndLosses(/*rtt_updated=*/false, acked, ABSL_ARRAYSIZE(acked), |
| nullptr, 0); |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(90)); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| // Verify no RTT samples for PING only packet. |
| EXPECT_TRUE(rtt_stats->smoothed_rtt().IsZero()); |
| |
| ExpectAck(2); |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL, kEmptyCounts)); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(100), rtt_stats->smoothed_rtt()); |
| } |
| |
| // Regression test for b/154050235. |
| TEST_F(QuicSentPacketManagerTest, ExponentialBackoffWithNoRttMeasurement) { |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(kInitialRttMs), |
| rtt_stats->initial_rtt()); |
| EXPECT_TRUE(rtt_stats->smoothed_rtt().IsZero()); |
| |
| SendCryptoPacket(1); |
| QuicTime::Delta expected_pto_delay = |
| QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs); |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Invoke PTO. |
| clock_.AdvanceTime(expected_pto_delay); |
| manager_.OnRetransmissionTimeout(); |
| |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce( |
| WithArgs<1>(Invoke([this]() { return RetransmitCryptoPacket(3); }))); |
| manager_.MaybeSendProbePacket(); |
| // Verify exponential backoff of the PTO timeout. |
| EXPECT_EQ(clock_.Now() + 2 * expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, PtoDelayWithTinyInitialRtt) { |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| // Assume client provided a tiny initial RTT. |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMicroseconds(1)); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(1), rtt_stats->initial_rtt()); |
| EXPECT_TRUE(rtt_stats->smoothed_rtt().IsZero()); |
| |
| SendCryptoPacket(1); |
| QuicTime::Delta expected_pto_delay = QuicTime::Delta::FromMilliseconds(10); |
| // Verify kMinHandshakeTimeoutMs is respected. |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Invoke PTO. |
| clock_.AdvanceTime(expected_pto_delay); |
| manager_.OnRetransmissionTimeout(); |
| |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce( |
| WithArgs<1>(Invoke([this]() { return RetransmitCryptoPacket(3); }))); |
| manager_.MaybeSendProbePacket(); |
| // Verify exponential backoff of the PTO timeout. |
| EXPECT_EQ(clock_.Now() + 2 * expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, HandshakeAckCausesInitialKeyDropping) { |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| // Send INITIAL packet 1. |
| SendDataPacket(1, ENCRYPTION_INITIAL); |
| QuicTime::Delta expected_pto_delay = |
| QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs); |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| // Send HANDSHAKE ack. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); |
| SendAckPacket(2, /*largest_acked=*/1, ENCRYPTION_HANDSHAKE); |
| // Sending HANDSHAKE packet causes dropping of INITIAL key. |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| manager_.NeuterUnencryptedPackets(); |
| // There is no in flight packets. |
| EXPECT_FALSE(manager_.HasInFlightPackets()); |
| // Verify PTO timer gets rearmed from now because of anti-amplification. |
| EXPECT_EQ(clock_.Now() + expected_pto_delay, |
| manager_.GetRetransmissionTime()); |
| |
| // Invoke PTO. |
| clock_.AdvanceTime(expected_pto_delay); |
| manager_.OnRetransmissionTimeout(); |
| // Verify nothing to probe (and connection will send PING for current |
| // encryption level). |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)).Times(0); |
| manager_.MaybeSendProbePacket(); |
| } |
| |
| // Regression test for b/156487311 |
| TEST_F(QuicSentPacketManagerTest, ClearLastInflightPacketsSentTime) { |
| manager_.EnableMultiplePacketNumberSpacesSupport(); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
|