| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "quiche/quic/core/quic_data_writer.h" |
| |
| #include <algorithm> |
| #include <limits> |
| |
| #include "absl/strings/string_view.h" |
| #include "quiche/quic/core/crypto/quic_random.h" |
| #include "quiche/quic/core/quic_constants.h" |
| #include "quiche/quic/platform/api/quic_bug_tracker.h" |
| #include "quiche/quic/platform/api/quic_flags.h" |
| #include "quiche/common/quiche_endian.h" |
| |
| namespace quic { |
| |
| QuicDataWriter::QuicDataWriter(size_t size, char* buffer) |
| : quiche::QuicheDataWriter(size, buffer) {} |
| |
| QuicDataWriter::QuicDataWriter(size_t size, char* buffer, |
| quiche::Endianness endianness) |
| : quiche::QuicheDataWriter(size, buffer, endianness) {} |
| |
| QuicDataWriter::~QuicDataWriter() {} |
| |
| bool QuicDataWriter::WriteUFloat16(uint64_t value) { |
| uint16_t result; |
| if (value < (UINT64_C(1) << kUFloat16MantissaEffectiveBits)) { |
| // Fast path: either the value is denormalized, or has exponent zero. |
| // Both cases are represented by the value itself. |
| result = static_cast<uint16_t>(value); |
| } else if (value >= kUFloat16MaxValue) { |
| // Value is out of range; clamp it to the maximum representable. |
| result = std::numeric_limits<uint16_t>::max(); |
| } else { |
| // The highest bit is between position 13 and 42 (zero-based), which |
| // corresponds to exponent 1-30. In the output, mantissa is from 0 to 10, |
| // hidden bit is 11 and exponent is 11 to 15. Shift the highest bit to 11 |
| // and count the shifts. |
| uint16_t exponent = 0; |
| for (uint16_t offset = 16; offset > 0; offset /= 2) { |
| // Right-shift the value until the highest bit is in position 11. |
| // For offset of 16, 8, 4, 2 and 1 (binary search over 1-30), |
| // shift if the bit is at or above 11 + offset. |
| if (value >= (UINT64_C(1) << (kUFloat16MantissaBits + offset))) { |
| exponent += offset; |
| value >>= offset; |
| } |
| } |
| |
| QUICHE_DCHECK_GE(exponent, 1); |
| QUICHE_DCHECK_LE(exponent, kUFloat16MaxExponent); |
| QUICHE_DCHECK_GE(value, UINT64_C(1) << kUFloat16MantissaBits); |
| QUICHE_DCHECK_LT(value, UINT64_C(1) << kUFloat16MantissaEffectiveBits); |
| |
| // Hidden bit (position 11) is set. We should remove it and increment the |
| // exponent. Equivalently, we just add it to the exponent. |
| // This hides the bit. |
| result = static_cast<uint16_t>(value + (exponent << kUFloat16MantissaBits)); |
| } |
| |
| if (endianness() == quiche::NETWORK_BYTE_ORDER) { |
| result = quiche::QuicheEndian::HostToNet16(result); |
| } |
| return WriteBytes(&result, sizeof(result)); |
| } |
| |
| bool QuicDataWriter::WriteConnectionId(QuicConnectionId connection_id) { |
| if (connection_id.IsEmpty()) { |
| return true; |
| } |
| return WriteBytes(connection_id.data(), connection_id.length()); |
| } |
| |
| bool QuicDataWriter::WriteLengthPrefixedConnectionId( |
| QuicConnectionId connection_id) { |
| return WriteUInt8(connection_id.length()) && WriteConnectionId(connection_id); |
| } |
| |
| bool QuicDataWriter::WriteRandomBytes(QuicRandom* random, size_t length) { |
| char* dest = BeginWrite(length); |
| if (!dest) { |
| return false; |
| } |
| |
| random->RandBytes(dest, length); |
| IncreaseLength(length); |
| return true; |
| } |
| |
| bool QuicDataWriter::WriteInsecureRandomBytes(QuicRandom* random, |
| size_t length) { |
| char* dest = BeginWrite(length); |
| if (!dest) { |
| return false; |
| } |
| |
| random->InsecureRandBytes(dest, length); |
| IncreaseLength(length); |
| return true; |
| } |
| |
| } // namespace quic |