blob: 57951192394cd40a632e9772886983a684b01c96 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef QUICHE_QUIC_CORE_CRYPTO_CRYPTO_PROTOCOL_H_
#define QUICHE_QUIC_CORE_CRYPTO_CRYPTO_PROTOCOL_H_
#include <cstddef>
#include "net/third_party/quiche/src/quic/core/quic_tag.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_string.h"
// Version and Crypto tags are written to the wire with a big-endian
// representation of the name of the tag. For example
// the client hello tag (CHLO) will be written as the
// following 4 bytes: 'C' 'H' 'L' 'O'. Since it is
// stored in memory as a little endian uint32_t, we need
// to reverse the order of the bytes.
//
// We use a macro to ensure that no static initialisers are created. Use the
// MakeQuicTag function in normal code.
#define TAG(a, b, c, d) \
static_cast<QuicTag>((d << 24) + (c << 16) + (b << 8) + a)
namespace quic {
typedef QuicString ServerConfigID;
// clang-format off
const QuicTag kCHLO = TAG('C', 'H', 'L', 'O'); // Client hello
const QuicTag kSHLO = TAG('S', 'H', 'L', 'O'); // Server hello
const QuicTag kSCFG = TAG('S', 'C', 'F', 'G'); // Server config
const QuicTag kREJ = TAG('R', 'E', 'J', '\0'); // Reject
const QuicTag kSREJ = TAG('S', 'R', 'E', 'J'); // Stateless reject
const QuicTag kCETV = TAG('C', 'E', 'T', 'V'); // Client encrypted tag-value
// pairs
const QuicTag kPRST = TAG('P', 'R', 'S', 'T'); // Public reset
const QuicTag kSCUP = TAG('S', 'C', 'U', 'P'); // Server config update
const QuicTag kALPN = TAG('A', 'L', 'P', 'N'); // Application-layer protocol
// Key exchange methods
const QuicTag kP256 = TAG('P', '2', '5', '6'); // ECDH, Curve P-256
const QuicTag kC255 = TAG('C', '2', '5', '5'); // ECDH, Curve25519
// AEAD algorithms
const QuicTag kAESG = TAG('A', 'E', 'S', 'G'); // AES128 + GCM-12
const QuicTag kCC20 = TAG('C', 'C', '2', '0'); // ChaCha20 + Poly1305 RFC7539
// Congestion control feedback types
const QuicTag kQBIC = TAG('Q', 'B', 'I', 'C'); // TCP cubic
// Connection options (COPT) values
const QuicTag kAFCW = TAG('A', 'F', 'C', 'W'); // Auto-tune flow control
// receive windows.
const QuicTag kIFW5 = TAG('I', 'F', 'W', '5'); // Set initial size
// of stream flow control
// receive window to
// 32KB. (2^5 KB).
const QuicTag kIFW6 = TAG('I', 'F', 'W', '6'); // Set initial size
// of stream flow control
// receive window to
// 64KB. (2^6 KB).
const QuicTag kIFW7 = TAG('I', 'F', 'W', '7'); // Set initial size
// of stream flow control
// receive window to
// 128KB. (2^7 KB).
const QuicTag kIFW8 = TAG('I', 'F', 'W', '8'); // Set initial size
// of stream flow control
// receive window to
// 256KB. (2^8 KB).
const QuicTag kIFW9 = TAG('I', 'F', 'W', '9'); // Set initial size
// of stream flow control
// receive window to
// 512KB. (2^9 KB).
const QuicTag kIFWA = TAG('I', 'F', 'W', 'a'); // Set initial size
// of stream flow control
// receive window to
// 1MB. (2^0xa KB).
const QuicTag kTBBR = TAG('T', 'B', 'B', 'R'); // Reduced Buffer Bloat TCP
const QuicTag k1RTT = TAG('1', 'R', 'T', 'T'); // STARTUP in BBR for 1 RTT
const QuicTag k2RTT = TAG('2', 'R', 'T', 'T'); // STARTUP in BBR for 2 RTTs
const QuicTag kLRTT = TAG('L', 'R', 'T', 'T'); // Exit STARTUP in BBR on loss
const QuicTag kBBS1 = TAG('B', 'B', 'S', '1'); // Rate-based recovery in
// BBR STARTUP
const QuicTag kBBS2 = TAG('B', 'B', 'S', '2'); // More aggressive packet
// conservation in BBR STARTUP
const QuicTag kBBS3 = TAG('B', 'B', 'S', '3'); // Slowstart packet
// conservation in BBR STARTUP
const QuicTag kBBS4 = TAG('B', 'B', 'S', '4'); // Reduce rate in STARTUP by
// bytes_lost / CWND.
const QuicTag kBBS5 = TAG('B', 'B', 'S', '5'); // Reduce rate in STARTUP by
// 2 * bytes_lost / CWND.
const QuicTag kBBRR = TAG('B', 'B', 'R', 'R'); // Rate-based recovery in BBR
const QuicTag kBBR1 = TAG('B', 'B', 'R', '1'); // DEPRECATED
const QuicTag kBBR2 = TAG('B', 'B', 'R', '2'); // DEPRECATED
const QuicTag kBBR3 = TAG('B', 'B', 'R', '3'); // Fully drain the queue once
// per cycle
const QuicTag kBBR4 = TAG('B', 'B', 'R', '4'); // 20 RTT ack aggregation
const QuicTag kBBR5 = TAG('B', 'B', 'R', '5'); // 40 RTT ack aggregation
const QuicTag kBBR6 = TAG('B', 'B', 'R', '6'); // PROBE_RTT with 0.75 * BDP
const QuicTag kBBR7 = TAG('B', 'B', 'R', '7'); // Skip PROBE_RTT if rtt has
// not changed 12.5%
const QuicTag kBBR8 = TAG('B', 'B', 'R', '8'); // Disable PROBE_RTT when
// recently app-limited
const QuicTag kBBR9 = TAG('B', 'B', 'R', '9'); // Ignore app-limited calls in
// BBR if enough inflight.
const QuicTag kBBRS = TAG('B', 'B', 'R', 'S'); // Use 1.5x pacing in startup
// after a loss has occurred.
const QuicTag kBBQ1 = TAG('B', 'B', 'Q', '1'); // BBR with lower 2.77 STARTUP
// pacing and CWND gain.
const QuicTag kBBQ2 = TAG('B', 'B', 'Q', '2'); // BBR with lower 2.0 STARTUP
// CWND gain.
const QuicTag kBBQ3 = TAG('B', 'B', 'Q', '3'); // BBR with ack aggregation
// compensation in STARTUP.
const QuicTag kBBQ4 = TAG('B', 'B', 'Q', '4'); // Drain gain of 0.75.
const QuicTag kBBQ5 = TAG('B', 'B', 'Q', '5'); // Expire ack aggregation upon
// bandwidth increase in
// STARTUP.
const QuicTag kRENO = TAG('R', 'E', 'N', 'O'); // Reno Congestion Control
const QuicTag kTPCC = TAG('P', 'C', 'C', '\0'); // Performance-Oriented
// Congestion Control
const QuicTag kBYTE = TAG('B', 'Y', 'T', 'E'); // TCP cubic or reno in bytes
const QuicTag kIW03 = TAG('I', 'W', '0', '3'); // Force ICWND to 3
const QuicTag kIW10 = TAG('I', 'W', '1', '0'); // Force ICWND to 10
const QuicTag kIW20 = TAG('I', 'W', '2', '0'); // Force ICWND to 20
const QuicTag kIW50 = TAG('I', 'W', '5', '0'); // Force ICWND to 50
const QuicTag k1CON = TAG('1', 'C', 'O', 'N'); // Emulate a single connection
const QuicTag kNTLP = TAG('N', 'T', 'L', 'P'); // No tail loss probe
const QuicTag k1TLP = TAG('1', 'T', 'L', 'P'); // 1 tail loss probe
const QuicTag k1RTO = TAG('1', 'R', 'T', 'O'); // Send 1 packet upon RTO
const QuicTag kNCON = TAG('N', 'C', 'O', 'N'); // N Connection Congestion Ctrl
const QuicTag kNRTO = TAG('N', 'R', 'T', 'O'); // CWND reduction on loss
const QuicTag kTIME = TAG('T', 'I', 'M', 'E'); // Time based loss detection
const QuicTag kATIM = TAG('A', 'T', 'I', 'M'); // Adaptive time loss detection
const QuicTag kMIN1 = TAG('M', 'I', 'N', '1'); // Min CWND of 1 packet
const QuicTag kMIN4 = TAG('M', 'I', 'N', '4'); // Min CWND of 4 packets,
// with a min rate of 1 BDP.
const QuicTag kTLPR = TAG('T', 'L', 'P', 'R'); // Tail loss probe delay of
// 0.5RTT.
const QuicTag kMAD0 = TAG('M', 'A', 'D', '0'); // Ignore ack delay
const QuicTag kMAD1 = TAG('M', 'A', 'D', '1'); // 25ms initial max ack delay
const QuicTag kMAD2 = TAG('M', 'A', 'D', '2'); // No min TLP
const QuicTag kMAD3 = TAG('M', 'A', 'D', '3'); // No min RTO
const QuicTag kMAD4 = TAG('M', 'A', 'D', '4'); // IETF style TLP
const QuicTag kMAD5 = TAG('M', 'A', 'D', '5'); // IETF style TLP with 2x mult
const QuicTag kACD0 = TAG('A', 'D', 'D', '0'); // Disable ack decimation
const QuicTag kACKD = TAG('A', 'C', 'K', 'D'); // Ack decimation style acking.
const QuicTag kAKD2 = TAG('A', 'K', 'D', '2'); // Ack decimation tolerating
// out of order packets.
const QuicTag kAKD3 = TAG('A', 'K', 'D', '3'); // Ack decimation style acking
// with 1/8 RTT acks.
const QuicTag kAKD4 = TAG('A', 'K', 'D', '4'); // Ack decimation with 1/8 RTT
// tolerating out of order.
const QuicTag kAKDU = TAG('A', 'K', 'D', 'U'); // Unlimited number of packets
// received before acking
const QuicTag kACKQ = TAG('A', 'C', 'K', 'Q'); // Send an immediate ack after
// 1 RTT of not receiving.
const QuicTag kSSLR = TAG('S', 'S', 'L', 'R'); // Slow Start Large Reduction.
const QuicTag kNPRR = TAG('N', 'P', 'R', 'R'); // Pace at unity instead of PRR
const QuicTag k5RTO = TAG('5', 'R', 'T', 'O'); // Close connection on 5 RTOs
const QuicTag kCONH = TAG('C', 'O', 'N', 'H'); // Conservative Handshake
// Retransmissions.
const QuicTag kLFAK = TAG('L', 'F', 'A', 'K'); // Don't invoke FACK on the
// first ack.
const QuicTag kSTMP = TAG('S', 'T', 'M', 'P'); // Send and process timestamps
// TODO(fayang): Remove this connection option when QUIC_VERSION_35, is removed
// Since MAX_HEADER_LIST_SIZE settings frame is supported instead.
const QuicTag kSMHL = TAG('S', 'M', 'H', 'L'); // Support MAX_HEADER_LIST_SIZE
// settings frame.
const QuicTag kNSTP = TAG('N', 'S', 'T', 'P'); // No stop waiting frames.
const QuicTag kNRTT = TAG('N', 'R', 'T', 'T'); // Ignore initial RTT
// Optional support of truncated Connection IDs. If sent by a peer, the value
// is the minimum number of bytes allowed for the connection ID sent to the
// peer.
const QuicTag kTCID = TAG('T', 'C', 'I', 'D'); // Connection ID truncation.
// Multipath option.
const QuicTag kMPTH = TAG('M', 'P', 'T', 'H'); // Enable multipath.
const QuicTag kNCMR = TAG('N', 'C', 'M', 'R'); // Do not attempt connection
// migration.
// Disable Pacing offload option.
const QuicTag kNPCO = TAG('N', 'P', 'C', 'O'); // No pacing offload.
// Enable bandwidth resumption experiment.
const QuicTag kBWRE = TAG('B', 'W', 'R', 'E'); // Bandwidth resumption.
const QuicTag kBWMX = TAG('B', 'W', 'M', 'X'); // Max bandwidth resumption.
const QuicTag kBWRS = TAG('B', 'W', 'R', 'S'); // Server bandwidth resumption.
const QuicTag kBWS2 = TAG('B', 'W', 'S', '2'); // Server bw resumption v2.
// Enable path MTU discovery experiment.
const QuicTag kMTUH = TAG('M', 'T', 'U', 'H'); // High-target MTU discovery.
const QuicTag kMTUL = TAG('M', 'T', 'U', 'L'); // Low-target MTU discovery.
// Proof types (i.e. certificate types)
// NOTE: although it would be silly to do so, specifying both kX509 and kX59R
// is allowed and is equivalent to specifying only kX509.
const QuicTag kX509 = TAG('X', '5', '0', '9'); // X.509 certificate, all key
// types
const QuicTag kX59R = TAG('X', '5', '9', 'R'); // X.509 certificate, RSA keys
// only
const QuicTag kCHID = TAG('C', 'H', 'I', 'D'); // Channel ID.
// Client hello tags
const QuicTag kVER = TAG('V', 'E', 'R', '\0'); // Version
const QuicTag kNONC = TAG('N', 'O', 'N', 'C'); // The client's nonce
const QuicTag kNONP = TAG('N', 'O', 'N', 'P'); // The client's proof nonce
const QuicTag kKEXS = TAG('K', 'E', 'X', 'S'); // Key exchange methods
const QuicTag kAEAD = TAG('A', 'E', 'A', 'D'); // Authenticated
// encryption algorithms
const QuicTag kCOPT = TAG('C', 'O', 'P', 'T'); // Connection options
const QuicTag kCLOP = TAG('C', 'L', 'O', 'P'); // Client connection options
const QuicTag kICSL = TAG('I', 'C', 'S', 'L'); // Idle network timeout
const QuicTag kSCLS = TAG('S', 'C', 'L', 'S'); // Silently close on timeout
const QuicTag kMIDS = TAG('M', 'I', 'D', 'S'); // Max incoming dynamic streams
const QuicTag kIRTT = TAG('I', 'R', 'T', 'T'); // Estimated initial RTT in us.
const QuicTag kSNI = TAG('S', 'N', 'I', '\0'); // Server name
// indication
const QuicTag kPUBS = TAG('P', 'U', 'B', 'S'); // Public key values
const QuicTag kSCID = TAG('S', 'C', 'I', 'D'); // Server config id
const QuicTag kORBT = TAG('O', 'B', 'I', 'T'); // Server orbit.
const QuicTag kPDMD = TAG('P', 'D', 'M', 'D'); // Proof demand.
const QuicTag kPROF = TAG('P', 'R', 'O', 'F'); // Proof (signature).
const QuicTag kCCS = TAG('C', 'C', 'S', 0); // Common certificate set
const QuicTag kCCRT = TAG('C', 'C', 'R', 'T'); // Cached certificate
const QuicTag kEXPY = TAG('E', 'X', 'P', 'Y'); // Expiry
const QuicTag kSTTL = TAG('S', 'T', 'T', 'L'); // Server Config TTL
const QuicTag kSFCW = TAG('S', 'F', 'C', 'W'); // Initial stream flow control
// receive window.
const QuicTag kCFCW = TAG('C', 'F', 'C', 'W'); // Initial session/connection
// flow control receive window.
const QuicTag kUAID = TAG('U', 'A', 'I', 'D'); // Client's User Agent ID.
const QuicTag kXLCT = TAG('X', 'L', 'C', 'T'); // Expected leaf certificate.
const QuicTag kTBKP = TAG('T', 'B', 'K', 'P'); // Token Binding key params.
// Token Binding tags
const QuicTag kTB10 = TAG('T', 'B', '1', '0'); // TB draft 10 with P256.
// Rejection tags
const QuicTag kRREJ = TAG('R', 'R', 'E', 'J'); // Reasons for server sending
// Stateless Reject tags
const QuicTag kRCID = TAG('R', 'C', 'I', 'D'); // Server-designated
// connection ID
// Server hello tags
const QuicTag kCADR = TAG('C', 'A', 'D', 'R'); // Client IP address and port
const QuicTag kASAD = TAG('A', 'S', 'A', 'D'); // Alternate Server IP address
// and port.
const QuicTag kSRST = TAG('S', 'R', 'S', 'T'); // Stateless reset token used
// in IETF public reset packet
// CETV tags
const QuicTag kCIDK = TAG('C', 'I', 'D', 'K'); // ChannelID key
const QuicTag kCIDS = TAG('C', 'I', 'D', 'S'); // ChannelID signature
// Public reset tags
const QuicTag kRNON = TAG('R', 'N', 'O', 'N'); // Public reset nonce proof
const QuicTag kRSEQ = TAG('R', 'S', 'E', 'Q'); // Rejected packet number
// Universal tags
const QuicTag kPAD = TAG('P', 'A', 'D', '\0'); // Padding
// Server push tags
const QuicTag kSPSH = TAG('S', 'P', 'S', 'H'); // Support server push.
// Stats collection tags
const QuicTag kEPID = TAG('E', 'P', 'I', 'D'); // Endpoint identifier.
// clang-format on
// These tags have a special form so that they appear either at the beginning
// or the end of a handshake message. Since handshake messages are sorted by
// tag value, the tags with 0 at the end will sort first and those with 255 at
// the end will sort last.
//
// The certificate chain should have a tag that will cause it to be sorted at
// the end of any handshake messages because it's likely to be large and the
// client might be able to get everything that it needs from the small values at
// the beginning.
//
// Likewise tags with random values should be towards the beginning of the
// message because the server mightn't hold state for a rejected client hello
// and therefore the client may have issues reassembling the rejection message
// in the event that it sent two client hellos.
const QuicTag kServerNonceTag = TAG('S', 'N', 'O', 0); // The server's nonce
const QuicTag kSourceAddressTokenTag =
TAG('S', 'T', 'K', 0); // Source-address token
const QuicTag kCertificateTag = TAG('C', 'R', 'T', 255); // Certificate chain
const QuicTag kCertificateSCTTag =
TAG('C', 'S', 'C', 'T'); // Signed cert timestamp (RFC6962) of leaf cert.
#undef TAG
const size_t kMaxEntries = 128; // Max number of entries in a message.
const size_t kNonceSize = 32; // Size in bytes of the connection nonce.
const size_t kOrbitSize = 8; // Number of bytes in an orbit value.
// kProofSignatureLabel is prepended to the CHLO hash and server configs before
// signing to avoid any cross-protocol attacks on the signature.
const char kProofSignatureLabel[] = "QUIC CHLO and server config signature";
// kClientHelloMinimumSize is the minimum size of a client hello. Client hellos
// will have PAD tags added in order to ensure this minimum is met and client
// hellos smaller than this will be an error. This minimum size reduces the
// amplification factor of any mirror DoS attack.
//
// A client may pad an inchoate client hello to a size larger than
// kClientHelloMinimumSize to make it more likely to receive a complete
// rejection message.
const size_t kClientHelloMinimumSize = 1024;
} // namespace quic
#endif // QUICHE_QUIC_CORE_CRYPTO_CRYPTO_PROTOCOL_H_