| // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "quiche/quic/core/quic_utils.h" |
| |
| #include <string> |
| |
| #include "absl/base/macros.h" |
| #include "absl/numeric/int128.h" |
| #include "absl/strings/string_view.h" |
| #include "quiche/quic/core/crypto/crypto_protocol.h" |
| #include "quiche/quic/core/quic_connection_id.h" |
| #include "quiche/quic/core/quic_types.h" |
| #include "quiche/quic/platform/api/quic_test.h" |
| #include "quiche/quic/test_tools/quic_test_utils.h" |
| |
| namespace quic { |
| namespace test { |
| namespace { |
| |
| class QuicUtilsTest : public QuicTest {}; |
| |
| TEST_F(QuicUtilsTest, DetermineAddressChangeType) { |
| const std::string kIPv4String1 = "1.2.3.4"; |
| const std::string kIPv4String2 = "1.2.3.5"; |
| const std::string kIPv4String3 = "1.1.3.5"; |
| const std::string kIPv6String1 = "2001:700:300:1800::f"; |
| const std::string kIPv6String2 = "2001:700:300:1800:1:1:1:f"; |
| QuicSocketAddress old_address; |
| QuicSocketAddress new_address; |
| QuicIpAddress address; |
| |
| EXPECT_EQ(NO_CHANGE, |
| QuicUtils::DetermineAddressChangeType(old_address, new_address)); |
| ASSERT_TRUE(address.FromString(kIPv4String1)); |
| old_address = QuicSocketAddress(address, 1234); |
| EXPECT_EQ(NO_CHANGE, |
| QuicUtils::DetermineAddressChangeType(old_address, new_address)); |
| new_address = QuicSocketAddress(address, 1234); |
| EXPECT_EQ(NO_CHANGE, |
| QuicUtils::DetermineAddressChangeType(old_address, new_address)); |
| |
| new_address = QuicSocketAddress(address, 5678); |
| EXPECT_EQ(PORT_CHANGE, |
| QuicUtils::DetermineAddressChangeType(old_address, new_address)); |
| ASSERT_TRUE(address.FromString(kIPv6String1)); |
| old_address = QuicSocketAddress(address, 1234); |
| new_address = QuicSocketAddress(address, 5678); |
| EXPECT_EQ(PORT_CHANGE, |
| QuicUtils::DetermineAddressChangeType(old_address, new_address)); |
| |
| ASSERT_TRUE(address.FromString(kIPv4String1)); |
| old_address = QuicSocketAddress(address, 1234); |
| ASSERT_TRUE(address.FromString(kIPv6String1)); |
| new_address = QuicSocketAddress(address, 1234); |
| EXPECT_EQ(IPV4_TO_IPV6_CHANGE, |
| QuicUtils::DetermineAddressChangeType(old_address, new_address)); |
| |
| old_address = QuicSocketAddress(address, 1234); |
| ASSERT_TRUE(address.FromString(kIPv4String1)); |
| new_address = QuicSocketAddress(address, 1234); |
| EXPECT_EQ(IPV6_TO_IPV4_CHANGE, |
| QuicUtils::DetermineAddressChangeType(old_address, new_address)); |
| |
| ASSERT_TRUE(address.FromString(kIPv6String2)); |
| new_address = QuicSocketAddress(address, 1234); |
| EXPECT_EQ(IPV6_TO_IPV6_CHANGE, |
| QuicUtils::DetermineAddressChangeType(old_address, new_address)); |
| |
| ASSERT_TRUE(address.FromString(kIPv4String1)); |
| old_address = QuicSocketAddress(address, 1234); |
| ASSERT_TRUE(address.FromString(kIPv4String2)); |
| new_address = QuicSocketAddress(address, 1234); |
| EXPECT_EQ(IPV4_SUBNET_CHANGE, |
| QuicUtils::DetermineAddressChangeType(old_address, new_address)); |
| ASSERT_TRUE(address.FromString(kIPv4String3)); |
| new_address = QuicSocketAddress(address, 1234); |
| EXPECT_EQ(IPV4_TO_IPV4_CHANGE, |
| QuicUtils::DetermineAddressChangeType(old_address, new_address)); |
| } |
| |
| absl::uint128 IncrementalHashReference(const void* data, size_t len) { |
| // The two constants are defined as part of the hash algorithm. |
| // see http://www.isthe.com/chongo/tech/comp/fnv/ |
| // hash = 144066263297769815596495629667062367629 |
| absl::uint128 hash = absl::MakeUint128(UINT64_C(7809847782465536322), |
| UINT64_C(7113472399480571277)); |
| // kPrime = 309485009821345068724781371 |
| const absl::uint128 kPrime = absl::MakeUint128(16777216, 315); |
| const uint8_t* octets = reinterpret_cast<const uint8_t*>(data); |
| for (size_t i = 0; i < len; ++i) { |
| hash = hash ^ absl::MakeUint128(0, octets[i]); |
| hash = hash * kPrime; |
| } |
| return hash; |
| } |
| |
| TEST_F(QuicUtilsTest, ReferenceTest) { |
| std::vector<uint8_t> data(32); |
| for (size_t i = 0; i < data.size(); ++i) { |
| data[i] = i % 255; |
| } |
| EXPECT_EQ(IncrementalHashReference(data.data(), data.size()), |
| QuicUtils::FNV1a_128_Hash(absl::string_view( |
| reinterpret_cast<const char*>(data.data()), data.size()))); |
| } |
| |
| TEST_F(QuicUtilsTest, IsUnackable) { |
| for (size_t i = FIRST_PACKET_STATE; i <= LAST_PACKET_STATE; ++i) { |
| if (i == NEVER_SENT || i == ACKED || i == UNACKABLE) { |
| EXPECT_FALSE(QuicUtils::IsAckable(static_cast<SentPacketState>(i))); |
| } else { |
| EXPECT_TRUE(QuicUtils::IsAckable(static_cast<SentPacketState>(i))); |
| } |
| } |
| } |
| |
| TEST_F(QuicUtilsTest, RetransmissionTypeToPacketState) { |
| for (size_t i = FIRST_TRANSMISSION_TYPE; i <= LAST_TRANSMISSION_TYPE; ++i) { |
| if (i == NOT_RETRANSMISSION) { |
| continue; |
| } |
| SentPacketState state = QuicUtils::RetransmissionTypeToPacketState( |
| static_cast<TransmissionType>(i)); |
| if (i == HANDSHAKE_RETRANSMISSION) { |
| EXPECT_EQ(HANDSHAKE_RETRANSMITTED, state); |
| } else if (i == LOSS_RETRANSMISSION) { |
| EXPECT_EQ(LOST, state); |
| } else if (i == ALL_ZERO_RTT_RETRANSMISSION) { |
| EXPECT_EQ(UNACKABLE, state); |
| } else if (i == PTO_RETRANSMISSION) { |
| EXPECT_EQ(PTO_RETRANSMITTED, state); |
| } else if (i == PATH_RETRANSMISSION) { |
| EXPECT_EQ(NOT_CONTRIBUTING_RTT, state); |
| } else if (i == ALL_INITIAL_RETRANSMISSION) { |
| EXPECT_EQ(UNACKABLE, state); |
| } else { |
| QUICHE_DCHECK(false) |
| << "No corresponding packet state according to transmission type: " |
| << i; |
| } |
| } |
| } |
| |
| TEST_F(QuicUtilsTest, IsIetfPacketHeader) { |
| // IETF QUIC short header |
| uint8_t first_byte = 0; |
| EXPECT_TRUE(QuicUtils::IsIetfPacketHeader(first_byte)); |
| EXPECT_TRUE(QuicUtils::IsIetfPacketShortHeader(first_byte)); |
| |
| // IETF QUIC long header |
| first_byte |= (FLAGS_LONG_HEADER | FLAGS_DEMULTIPLEXING_BIT); |
| EXPECT_TRUE(QuicUtils::IsIetfPacketHeader(first_byte)); |
| EXPECT_FALSE(QuicUtils::IsIetfPacketShortHeader(first_byte)); |
| |
| // IETF QUIC long header, version negotiation. |
| first_byte = 0; |
| first_byte |= FLAGS_LONG_HEADER; |
| EXPECT_TRUE(QuicUtils::IsIetfPacketHeader(first_byte)); |
| EXPECT_FALSE(QuicUtils::IsIetfPacketShortHeader(first_byte)); |
| |
| // GQUIC |
| first_byte = 0; |
| first_byte |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID; |
| EXPECT_FALSE(QuicUtils::IsIetfPacketHeader(first_byte)); |
| EXPECT_FALSE(QuicUtils::IsIetfPacketShortHeader(first_byte)); |
| } |
| |
| TEST_F(QuicUtilsTest, RandomConnectionId) { |
| MockRandom random(33); |
| QuicConnectionId connection_id = QuicUtils::CreateRandomConnectionId(&random); |
| EXPECT_EQ(connection_id.length(), sizeof(uint64_t)); |
| char connection_id_bytes[sizeof(uint64_t)]; |
| random.RandBytes(connection_id_bytes, ABSL_ARRAYSIZE(connection_id_bytes)); |
| EXPECT_EQ(connection_id, |
| QuicConnectionId(static_cast<char*>(connection_id_bytes), |
| ABSL_ARRAYSIZE(connection_id_bytes))); |
| EXPECT_NE(connection_id, EmptyQuicConnectionId()); |
| EXPECT_NE(connection_id, TestConnectionId()); |
| EXPECT_NE(connection_id, TestConnectionId(1)); |
| EXPECT_NE(connection_id, TestConnectionIdNineBytesLong(1)); |
| EXPECT_EQ(QuicUtils::CreateRandomConnectionId().length(), |
| kQuicDefaultConnectionIdLength); |
| } |
| |
| TEST_F(QuicUtilsTest, RandomConnectionIdVariableLength) { |
| MockRandom random(1337); |
| const uint8_t connection_id_length = 9; |
| QuicConnectionId connection_id = |
| QuicUtils::CreateRandomConnectionId(connection_id_length, &random); |
| EXPECT_EQ(connection_id.length(), connection_id_length); |
| char connection_id_bytes[connection_id_length]; |
| random.RandBytes(connection_id_bytes, ABSL_ARRAYSIZE(connection_id_bytes)); |
| EXPECT_EQ(connection_id, |
| QuicConnectionId(static_cast<char*>(connection_id_bytes), |
| ABSL_ARRAYSIZE(connection_id_bytes))); |
| EXPECT_NE(connection_id, EmptyQuicConnectionId()); |
| EXPECT_NE(connection_id, TestConnectionId()); |
| EXPECT_NE(connection_id, TestConnectionId(1)); |
| EXPECT_NE(connection_id, TestConnectionIdNineBytesLong(1)); |
| EXPECT_EQ(QuicUtils::CreateRandomConnectionId(connection_id_length).length(), |
| connection_id_length); |
| } |
| |
| TEST_F(QuicUtilsTest, VariableLengthConnectionId) { |
| EXPECT_FALSE(VersionAllowsVariableLengthConnectionIds(QUIC_VERSION_43)); |
| EXPECT_TRUE(QuicUtils::IsConnectionIdValidForVersion( |
| QuicUtils::CreateZeroConnectionId(QUIC_VERSION_43), QUIC_VERSION_43)); |
| EXPECT_TRUE(QuicUtils::IsConnectionIdValidForVersion( |
| QuicUtils::CreateZeroConnectionId(QUIC_VERSION_50), QUIC_VERSION_50)); |
| EXPECT_NE(QuicUtils::CreateZeroConnectionId(QUIC_VERSION_43), |
| EmptyQuicConnectionId()); |
| EXPECT_EQ(QuicUtils::CreateZeroConnectionId(QUIC_VERSION_50), |
| EmptyQuicConnectionId()); |
| EXPECT_FALSE(QuicUtils::IsConnectionIdValidForVersion(EmptyQuicConnectionId(), |
| QUIC_VERSION_43)); |
| } |
| |
| TEST_F(QuicUtilsTest, StatelessResetToken) { |
| QuicConnectionId connection_id1a = test::TestConnectionId(1); |
| QuicConnectionId connection_id1b = test::TestConnectionId(1); |
| QuicConnectionId connection_id2 = test::TestConnectionId(2); |
| StatelessResetToken token1a = |
| QuicUtils::GenerateStatelessResetToken(connection_id1a); |
| StatelessResetToken token1b = |
| QuicUtils::GenerateStatelessResetToken(connection_id1b); |
| StatelessResetToken token2 = |
| QuicUtils::GenerateStatelessResetToken(connection_id2); |
| EXPECT_EQ(token1a, token1b); |
| EXPECT_NE(token1a, token2); |
| EXPECT_TRUE(QuicUtils::AreStatelessResetTokensEqual(token1a, token1b)); |
| EXPECT_FALSE(QuicUtils::AreStatelessResetTokensEqual(token1a, token2)); |
| } |
| |
| enum class TestEnumClassBit : uint8_t { |
| BIT_ZERO = 0, |
| BIT_ONE, |
| BIT_TWO, |
| }; |
| |
| enum TestEnumBit { |
| TEST_BIT_0 = 0, |
| TEST_BIT_1, |
| TEST_BIT_2, |
| }; |
| |
| TEST(QuicBitMaskTest, EnumClass) { |
| BitMask64 mask(TestEnumClassBit::BIT_ZERO, TestEnumClassBit::BIT_TWO); |
| EXPECT_TRUE(mask.IsSet(TestEnumClassBit::BIT_ZERO)); |
| EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_ONE)); |
| EXPECT_TRUE(mask.IsSet(TestEnumClassBit::BIT_TWO)); |
| |
| mask.ClearAll(); |
| EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_ZERO)); |
| EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_ONE)); |
| EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_TWO)); |
| } |
| |
| TEST(QuicBitMaskTest, Enum) { |
| BitMask64 mask(TEST_BIT_1, TEST_BIT_2); |
| EXPECT_FALSE(mask.IsSet(TEST_BIT_0)); |
| EXPECT_TRUE(mask.IsSet(TEST_BIT_1)); |
| EXPECT_TRUE(mask.IsSet(TEST_BIT_2)); |
| |
| mask.ClearAll(); |
| EXPECT_FALSE(mask.IsSet(TEST_BIT_0)); |
| EXPECT_FALSE(mask.IsSet(TEST_BIT_1)); |
| EXPECT_FALSE(mask.IsSet(TEST_BIT_2)); |
| } |
| |
| TEST(QuicBitMaskTest, Integer) { |
| BitMask64 mask(1, 3); |
| mask.Set(3); |
| mask.Set(5, 7, 9); |
| EXPECT_FALSE(mask.IsSet(0)); |
| EXPECT_TRUE(mask.IsSet(1)); |
| EXPECT_FALSE(mask.IsSet(2)); |
| EXPECT_TRUE(mask.IsSet(3)); |
| EXPECT_FALSE(mask.IsSet(4)); |
| EXPECT_TRUE(mask.IsSet(5)); |
| EXPECT_FALSE(mask.IsSet(6)); |
| EXPECT_TRUE(mask.IsSet(7)); |
| EXPECT_FALSE(mask.IsSet(8)); |
| EXPECT_TRUE(mask.IsSet(9)); |
| } |
| |
| TEST(QuicBitMaskTest, NumBits) { |
| EXPECT_EQ(64u, BitMask64::NumBits()); |
| EXPECT_EQ(32u, BitMask<uint32_t>::NumBits()); |
| } |
| |
| TEST(QuicBitMaskTest, Constructor) { |
| BitMask64 empty_mask; |
| for (size_t bit = 0; bit < empty_mask.NumBits(); ++bit) { |
| EXPECT_FALSE(empty_mask.IsSet(bit)); |
| } |
| |
| BitMask64 mask(1, 3); |
| BitMask64 mask2 = mask; |
| BitMask64 mask3(mask2); |
| |
| for (size_t bit = 0; bit < mask.NumBits(); ++bit) { |
| EXPECT_EQ(mask.IsSet(bit), mask2.IsSet(bit)); |
| EXPECT_EQ(mask.IsSet(bit), mask3.IsSet(bit)); |
| } |
| |
| EXPECT_TRUE(std::is_trivially_copyable<BitMask64>::value); |
| } |
| |
| } // namespace |
| } // namespace test |
| } // namespace quic |