| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/third_party/quiche/src/quic/core/quic_connection.h" |
| |
| #include <string.h> |
| #include <sys/types.h> |
| |
| #include <algorithm> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <set> |
| #include <string> |
| #include <utility> |
| |
| #include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h" |
| #include "net/third_party/quiche/src/quic/core/crypto/crypto_utils.h" |
| #include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h" |
| #include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h" |
| #include "net/third_party/quiche/src/quic/core/proto/cached_network_parameters_proto.h" |
| #include "net/third_party/quiche/src/quic/core/quic_bandwidth.h" |
| #include "net/third_party/quiche/src/quic/core/quic_config.h" |
| #include "net/third_party/quiche/src/quic/core/quic_connection_id.h" |
| #include "net/third_party/quiche/src/quic/core/quic_error_codes.h" |
| #include "net/third_party/quiche/src/quic/core/quic_packet_generator.h" |
| #include "net/third_party/quiche/src/quic/core/quic_pending_retransmission.h" |
| #include "net/third_party/quiche/src/quic/core/quic_types.h" |
| #include "net/third_party/quiche/src/quic/core/quic_utils.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_client_stats.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_error_code_wrappers.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_exported_stats.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_flag_utils.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_logging.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_string_utils.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_text_utils.h" |
| |
| namespace quic { |
| |
| class QuicDecrypter; |
| class QuicEncrypter; |
| |
| namespace { |
| |
| // Maximum number of consecutive sent nonretransmittable packets. |
| const QuicPacketCount kMaxConsecutiveNonRetransmittablePackets = 19; |
| |
| // The minimum release time into future in ms. |
| const int kMinReleaseTimeIntoFutureMs = 1; |
| |
| // An alarm that is scheduled to send an ack if a timeout occurs. |
| class AckAlarmDelegate : public QuicAlarm::Delegate { |
| public: |
| explicit AckAlarmDelegate(QuicConnection* connection) |
| : connection_(connection) {} |
| AckAlarmDelegate(const AckAlarmDelegate&) = delete; |
| AckAlarmDelegate& operator=(const AckAlarmDelegate&) = delete; |
| |
| void OnAlarm() override { |
| DCHECK(connection_->ack_frame_updated()); |
| QuicConnection::ScopedPacketFlusher flusher(connection_); |
| if (connection_->SupportsMultiplePacketNumberSpaces()) { |
| connection_->SendAllPendingAcks(); |
| } else { |
| DCHECK(!connection_->GetUpdatedAckFrame().ack_frame->packets.Empty()); |
| connection_->SendAck(); |
| } |
| } |
| |
| private: |
| QuicConnection* connection_; |
| }; |
| |
| // This alarm will be scheduled any time a data-bearing packet is sent out. |
| // When the alarm goes off, the connection checks to see if the oldest packets |
| // have been acked, and retransmit them if they have not. |
| class RetransmissionAlarmDelegate : public QuicAlarm::Delegate { |
| public: |
| explicit RetransmissionAlarmDelegate(QuicConnection* connection) |
| : connection_(connection) {} |
| RetransmissionAlarmDelegate(const RetransmissionAlarmDelegate&) = delete; |
| RetransmissionAlarmDelegate& operator=(const RetransmissionAlarmDelegate&) = |
| delete; |
| |
| void OnAlarm() override { connection_->OnRetransmissionTimeout(); } |
| |
| private: |
| QuicConnection* connection_; |
| }; |
| |
| // An alarm that is scheduled when the SentPacketManager requires a delay |
| // before sending packets and fires when the packet may be sent. |
| class SendAlarmDelegate : public QuicAlarm::Delegate { |
| public: |
| explicit SendAlarmDelegate(QuicConnection* connection) |
| : connection_(connection) {} |
| SendAlarmDelegate(const SendAlarmDelegate&) = delete; |
| SendAlarmDelegate& operator=(const SendAlarmDelegate&) = delete; |
| |
| void OnAlarm() override { connection_->WriteAndBundleAcksIfNotBlocked(); } |
| |
| private: |
| QuicConnection* connection_; |
| }; |
| |
| class PathDegradingAlarmDelegate : public QuicAlarm::Delegate { |
| public: |
| explicit PathDegradingAlarmDelegate(QuicConnection* connection) |
| : connection_(connection) {} |
| PathDegradingAlarmDelegate(const PathDegradingAlarmDelegate&) = delete; |
| PathDegradingAlarmDelegate& operator=(const PathDegradingAlarmDelegate&) = |
| delete; |
| |
| void OnAlarm() override { connection_->OnPathDegradingTimeout(); } |
| |
| private: |
| QuicConnection* connection_; |
| }; |
| |
| class TimeoutAlarmDelegate : public QuicAlarm::Delegate { |
| public: |
| explicit TimeoutAlarmDelegate(QuicConnection* connection) |
| : connection_(connection) {} |
| TimeoutAlarmDelegate(const TimeoutAlarmDelegate&) = delete; |
| TimeoutAlarmDelegate& operator=(const TimeoutAlarmDelegate&) = delete; |
| |
| void OnAlarm() override { connection_->CheckForTimeout(); } |
| |
| private: |
| QuicConnection* connection_; |
| }; |
| |
| class PingAlarmDelegate : public QuicAlarm::Delegate { |
| public: |
| explicit PingAlarmDelegate(QuicConnection* connection) |
| : connection_(connection) {} |
| PingAlarmDelegate(const PingAlarmDelegate&) = delete; |
| PingAlarmDelegate& operator=(const PingAlarmDelegate&) = delete; |
| |
| void OnAlarm() override { connection_->OnPingTimeout(); } |
| |
| private: |
| QuicConnection* connection_; |
| }; |
| |
| class MtuDiscoveryAlarmDelegate : public QuicAlarm::Delegate { |
| public: |
| explicit MtuDiscoveryAlarmDelegate(QuicConnection* connection) |
| : connection_(connection) {} |
| MtuDiscoveryAlarmDelegate(const MtuDiscoveryAlarmDelegate&) = delete; |
| MtuDiscoveryAlarmDelegate& operator=(const MtuDiscoveryAlarmDelegate&) = |
| delete; |
| |
| void OnAlarm() override { connection_->DiscoverMtu(); } |
| |
| private: |
| QuicConnection* connection_; |
| }; |
| |
| class ProcessUndecryptablePacketsAlarmDelegate : public QuicAlarm::Delegate { |
| public: |
| explicit ProcessUndecryptablePacketsAlarmDelegate(QuicConnection* connection) |
| : connection_(connection) {} |
| ProcessUndecryptablePacketsAlarmDelegate( |
| const ProcessUndecryptablePacketsAlarmDelegate&) = delete; |
| ProcessUndecryptablePacketsAlarmDelegate& operator=( |
| const ProcessUndecryptablePacketsAlarmDelegate&) = delete; |
| |
| void OnAlarm() override { |
| QuicConnection::ScopedPacketFlusher flusher(connection_); |
| connection_->MaybeProcessUndecryptablePackets(); |
| } |
| |
| private: |
| QuicConnection* connection_; |
| }; |
| |
| // Whether this incoming packet is allowed to replace our connection ID. |
| bool PacketCanReplaceConnectionId(const QuicPacketHeader& header, |
| Perspective perspective) { |
| return perspective == Perspective::IS_CLIENT && |
| header.form == IETF_QUIC_LONG_HEADER_PACKET && |
| QuicUtils::VariableLengthConnectionIdAllowedForVersion( |
| header.version.transport_version) && |
| (header.long_packet_type == INITIAL || |
| header.long_packet_type == RETRY); |
| } |
| |
| CongestionControlType GetDefaultCongestionControlType() { |
| if (GetQuicReloadableFlag(quic_default_to_bbr_v2)) { |
| return kBBRv2; |
| } |
| |
| if (GetQuicReloadableFlag(quic_default_to_bbr)) { |
| return kBBR; |
| } |
| |
| return kCubicBytes; |
| } |
| |
| } // namespace |
| |
| #define ENDPOINT \ |
| (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") |
| |
| QuicConnection::QuicConnection( |
| QuicConnectionId server_connection_id, |
| QuicSocketAddress initial_peer_address, |
| QuicConnectionHelperInterface* helper, |
| QuicAlarmFactory* alarm_factory, |
| QuicPacketWriter* writer, |
| bool owns_writer, |
| Perspective perspective, |
| const ParsedQuicVersionVector& supported_versions) |
| : framer_(supported_versions, |
| helper->GetClock()->ApproximateNow(), |
| perspective, |
| server_connection_id.length()), |
| current_packet_content_(NO_FRAMES_RECEIVED), |
| is_current_packet_connectivity_probing_(false), |
| current_effective_peer_migration_type_(NO_CHANGE), |
| helper_(helper), |
| alarm_factory_(alarm_factory), |
| per_packet_options_(nullptr), |
| writer_(writer), |
| owns_writer_(owns_writer), |
| encryption_level_(ENCRYPTION_INITIAL), |
| clock_(helper->GetClock()), |
| random_generator_(helper->GetRandomGenerator()), |
| server_connection_id_(server_connection_id), |
| client_connection_id_(EmptyQuicConnectionId()), |
| client_connection_id_is_set_(false), |
| peer_address_(initial_peer_address), |
| direct_peer_address_(initial_peer_address), |
| active_effective_peer_migration_type_(NO_CHANGE), |
| last_packet_decrypted_(false), |
| last_size_(0), |
| current_packet_data_(nullptr), |
| last_decrypted_packet_level_(ENCRYPTION_INITIAL), |
| should_last_packet_instigate_acks_(false), |
| max_undecryptable_packets_(0), |
| max_tracked_packets_(GetQuicFlag(FLAGS_quic_max_tracked_packet_count)), |
| pending_version_negotiation_packet_(false), |
| send_ietf_version_negotiation_packet_(false), |
| send_version_negotiation_packet_with_prefixed_lengths_(false), |
| idle_timeout_connection_close_behavior_( |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET), |
| close_connection_after_five_rtos_(false), |
| uber_received_packet_manager_(&stats_), |
| stop_waiting_count_(0), |
| pending_retransmission_alarm_(false), |
| defer_send_in_response_to_packets_(false), |
| ping_timeout_(QuicTime::Delta::FromSeconds(kPingTimeoutSecs)), |
| initial_retransmittable_on_wire_timeout_(QuicTime::Delta::Infinite()), |
| consecutive_retransmittable_on_wire_ping_count_(0), |
| arena_(), |
| ack_alarm_(alarm_factory_->CreateAlarm(arena_.New<AckAlarmDelegate>(this), |
| &arena_)), |
| retransmission_alarm_(alarm_factory_->CreateAlarm( |
| arena_.New<RetransmissionAlarmDelegate>(this), |
| &arena_)), |
| send_alarm_( |
| alarm_factory_->CreateAlarm(arena_.New<SendAlarmDelegate>(this), |
| &arena_)), |
| timeout_alarm_( |
| alarm_factory_->CreateAlarm(arena_.New<TimeoutAlarmDelegate>(this), |
| &arena_)), |
| ping_alarm_( |
| alarm_factory_->CreateAlarm(arena_.New<PingAlarmDelegate>(this), |
| &arena_)), |
| mtu_discovery_alarm_(alarm_factory_->CreateAlarm( |
| arena_.New<MtuDiscoveryAlarmDelegate>(this), |
| &arena_)), |
| path_degrading_alarm_(alarm_factory_->CreateAlarm( |
| arena_.New<PathDegradingAlarmDelegate>(this), |
| &arena_)), |
| process_undecryptable_packets_alarm_(alarm_factory_->CreateAlarm( |
| arena_.New<ProcessUndecryptablePacketsAlarmDelegate>(this), |
| &arena_)), |
| visitor_(nullptr), |
| debug_visitor_(nullptr), |
| packet_generator_(server_connection_id_, |
| &framer_, |
| random_generator_, |
| this), |
| idle_network_timeout_(QuicTime::Delta::Infinite()), |
| handshake_timeout_(QuicTime::Delta::Infinite()), |
| time_of_first_packet_sent_after_receiving_(QuicTime::Zero()), |
| time_of_last_received_packet_(clock_->ApproximateNow()), |
| sent_packet_manager_(perspective, |
| clock_, |
| random_generator_, |
| &stats_, |
| GetDefaultCongestionControlType(), |
| kNack), |
| version_negotiated_(false), |
| perspective_(perspective), |
| connected_(true), |
| can_truncate_connection_ids_(perspective == Perspective::IS_SERVER), |
| mtu_discovery_target_(0), |
| mtu_probe_count_(0), |
| packets_between_mtu_probes_(kPacketsBetweenMtuProbesBase), |
| next_mtu_probe_at_(kPacketsBetweenMtuProbesBase), |
| largest_received_packet_size_(0), |
| write_error_occurred_(false), |
| no_stop_waiting_frames_( |
| VersionHasIetfInvariantHeader(transport_version())), |
| consecutive_num_packets_with_no_retransmittable_frames_(0), |
| max_consecutive_num_packets_with_no_retransmittable_frames_( |
| kMaxConsecutiveNonRetransmittablePackets), |
| fill_up_link_during_probing_(false), |
| probing_retransmission_pending_(false), |
| stateless_reset_token_received_(false), |
| received_stateless_reset_token_(0), |
| last_control_frame_id_(kInvalidControlFrameId), |
| is_path_degrading_(false), |
| processing_ack_frame_(false), |
| supports_release_time_(false), |
| release_time_into_future_(QuicTime::Delta::Zero()), |
| retry_has_been_parsed_(false), |
| max_consecutive_ptos_(0), |
| bytes_received_before_address_validation_(0), |
| bytes_sent_before_address_validation_(0), |
| address_validated_(false), |
| skip_packet_number_for_pto_(false), |
| treat_queued_packets_as_sent_( |
| GetQuicReloadableFlag(quic_treat_queued_packets_as_sent)), |
| mtu_discovery_v2_(GetQuicReloadableFlag(quic_mtu_discovery_v2)) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Created connection with server connection ID " |
| << server_connection_id |
| << " and version: " << ParsedQuicVersionToString(version()); |
| |
| QUIC_BUG_IF(!QuicUtils::IsConnectionIdValidForVersion(server_connection_id, |
| transport_version())) |
| << "QuicConnection: attempted to use server connection ID " |
| << server_connection_id << " which is invalid with version " |
| << QuicVersionToString(transport_version()); |
| |
| framer_.set_visitor(this); |
| stats_.connection_creation_time = clock_->ApproximateNow(); |
| // TODO(ianswett): Supply the NetworkChangeVisitor as a constructor argument |
| // and make it required non-null, because it's always used. |
| sent_packet_manager_.SetNetworkChangeVisitor(this); |
| if (GetQuicRestartFlag(quic_offload_pacing_to_usps2)) { |
| sent_packet_manager_.SetPacingAlarmGranularity(QuicTime::Delta::Zero()); |
| release_time_into_future_ = |
| QuicTime::Delta::FromMilliseconds(kMinReleaseTimeIntoFutureMs); |
| } |
| // Allow the packet writer to potentially reduce the packet size to a value |
| // even smaller than kDefaultMaxPacketSize. |
| SetMaxPacketLength(perspective_ == Perspective::IS_SERVER |
| ? kDefaultServerMaxPacketSize |
| : kDefaultMaxPacketSize); |
| uber_received_packet_manager_.set_max_ack_ranges(255); |
| MaybeEnableSessionDecidesWhatToWrite(); |
| MaybeEnableMultiplePacketNumberSpacesSupport(); |
| DCHECK(perspective_ == Perspective::IS_CLIENT || |
| supported_versions.size() == 1); |
| InstallInitialCrypters(server_connection_id_); |
| } |
| |
| void QuicConnection::InstallInitialCrypters(QuicConnectionId connection_id) { |
| if (!framer_.framer_doesnt_create_initial_encrypter() && |
| !version().UsesInitialObfuscators() && |
| version().handshake_protocol != PROTOCOL_TLS1_3) { |
| // Initial crypters are currently only supported with TLS. |
| return; |
| } |
| CrypterPair crypters; |
| CryptoUtils::CreateInitialObfuscators(perspective_, version(), connection_id, |
| &crypters); |
| SetEncrypter(ENCRYPTION_INITIAL, std::move(crypters.encrypter)); |
| if (version().KnowsWhichDecrypterToUse()) { |
| InstallDecrypter(ENCRYPTION_INITIAL, std::move(crypters.decrypter)); |
| } else { |
| SetDecrypter(ENCRYPTION_INITIAL, std::move(crypters.decrypter)); |
| } |
| } |
| |
| QuicConnection::~QuicConnection() { |
| if (owns_writer_) { |
| delete writer_; |
| } |
| ClearQueuedPackets(); |
| } |
| |
| void QuicConnection::ClearQueuedPackets() { |
| for (auto it = queued_packets_.begin(); it != queued_packets_.end(); ++it) { |
| // Delete the buffer before calling ClearSerializedPacket, which sets |
| // encrypted_buffer to nullptr. |
| DCHECK(!treat_queued_packets_as_sent_); |
| delete[] it->encrypted_buffer; |
| ClearSerializedPacket(&(*it)); |
| } |
| queued_packets_.clear(); |
| |
| buffered_packets_.clear(); |
| } |
| |
| void QuicConnection::SetFromConfig(const QuicConfig& config) { |
| if (config.negotiated()) { |
| // Handshake complete, set handshake timeout to Infinite. |
| SetNetworkTimeouts(QuicTime::Delta::Infinite(), |
| config.IdleNetworkTimeout()); |
| if (config.SilentClose()) { |
| idle_timeout_connection_close_behavior_ = |
| ConnectionCloseBehavior::SILENT_CLOSE; |
| } |
| } else { |
| SetNetworkTimeouts(config.max_time_before_crypto_handshake(), |
| config.max_idle_time_before_crypto_handshake()); |
| } |
| |
| sent_packet_manager_.SetFromConfig(config); |
| if (config.HasReceivedBytesForConnectionId() && |
| can_truncate_connection_ids_) { |
| packet_generator_.SetServerConnectionIdLength( |
| config.ReceivedBytesForConnectionId()); |
| } |
| max_undecryptable_packets_ = config.max_undecryptable_packets(); |
| |
| if (config.HasClientSentConnectionOption(kMTUH, perspective_)) { |
| SetMtuDiscoveryTarget(kMtuDiscoveryTargetPacketSizeHigh); |
| } |
| if (config.HasClientSentConnectionOption(kMTUL, perspective_)) { |
| SetMtuDiscoveryTarget(kMtuDiscoveryTargetPacketSizeLow); |
| } |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnSetFromConfig(config); |
| } |
| uber_received_packet_manager_.SetFromConfig(config, perspective_); |
| if (config.HasClientSentConnectionOption(k5RTO, perspective_)) { |
| close_connection_after_five_rtos_ = true; |
| } |
| if (sent_packet_manager_.pto_enabled()) { |
| if (config.HasClientSentConnectionOption(k6PTO, perspective_)) { |
| max_consecutive_ptos_ = 5; |
| QUIC_CODE_COUNT(quic_close_connection_6pto); |
| } |
| if (config.HasClientSentConnectionOption(k7PTO, perspective_)) { |
| max_consecutive_ptos_ = 6; |
| QUIC_RELOADABLE_FLAG_COUNT_N(quic_enable_pto, 3, 4); |
| } |
| if (config.HasClientSentConnectionOption(k8PTO, perspective_)) { |
| max_consecutive_ptos_ = 7; |
| QUIC_RELOADABLE_FLAG_COUNT_N(quic_enable_pto, 4, 4); |
| } |
| if (GetQuicReloadableFlag(quic_skip_packet_number_for_pto) && |
| config.HasClientSentConnectionOption(kPTOS, perspective_)) { |
| QUIC_RELOADABLE_FLAG_COUNT(quic_skip_packet_number_for_pto); |
| skip_packet_number_for_pto_ = true; |
| } |
| } |
| if (config.HasClientSentConnectionOption(kNSTP, perspective_)) { |
| no_stop_waiting_frames_ = true; |
| } |
| if (config.HasReceivedStatelessResetToken()) { |
| stateless_reset_token_received_ = true; |
| received_stateless_reset_token_ = config.ReceivedStatelessResetToken(); |
| } |
| if (config.HasReceivedAckDelayExponent()) { |
| framer_.set_peer_ack_delay_exponent(config.ReceivedAckDelayExponent()); |
| } |
| if (GetQuicReloadableFlag(quic_send_timestamps) && |
| config.HasClientSentConnectionOption(kSTMP, perspective_)) { |
| QUIC_RELOADABLE_FLAG_COUNT(quic_send_timestamps); |
| framer_.set_process_timestamps(true); |
| uber_received_packet_manager_.set_save_timestamps(true); |
| } |
| |
| supports_release_time_ = |
| writer_ != nullptr && writer_->SupportsReleaseTime() && |
| !config.HasClientSentConnectionOption(kNPCO, perspective_); |
| |
| if (supports_release_time_) { |
| UpdateReleaseTimeIntoFuture(); |
| } |
| } |
| |
| void QuicConnection::OnSendConnectionState( |
| const CachedNetworkParameters& cached_network_params) { |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnSendConnectionState(cached_network_params); |
| } |
| } |
| |
| void QuicConnection::OnReceiveConnectionState( |
| const CachedNetworkParameters& cached_network_params) { |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnReceiveConnectionState(cached_network_params); |
| } |
| } |
| |
| void QuicConnection::ResumeConnectionState( |
| const CachedNetworkParameters& cached_network_params, |
| bool max_bandwidth_resumption) { |
| sent_packet_manager_.ResumeConnectionState(cached_network_params, |
| max_bandwidth_resumption); |
| } |
| |
| void QuicConnection::SetMaxPacingRate(QuicBandwidth max_pacing_rate) { |
| sent_packet_manager_.SetMaxPacingRate(max_pacing_rate); |
| } |
| |
| void QuicConnection::AdjustNetworkParameters(QuicBandwidth bandwidth, |
| QuicTime::Delta rtt, |
| bool allow_cwnd_to_decrease) { |
| sent_packet_manager_.AdjustNetworkParameters(bandwidth, rtt, |
| allow_cwnd_to_decrease); |
| } |
| |
| QuicBandwidth QuicConnection::MaxPacingRate() const { |
| return sent_packet_manager_.MaxPacingRate(); |
| } |
| |
| bool QuicConnection::SelectMutualVersion( |
| const ParsedQuicVersionVector& available_versions) { |
| // Try to find the highest mutual version by iterating over supported |
| // versions, starting with the highest, and breaking out of the loop once we |
| // find a matching version in the provided available_versions vector. |
| const ParsedQuicVersionVector& supported_versions = |
| framer_.supported_versions(); |
| for (size_t i = 0; i < supported_versions.size(); ++i) { |
| const ParsedQuicVersion& version = supported_versions[i]; |
| if (QuicContainsValue(available_versions, version)) { |
| framer_.set_version(version); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| void QuicConnection::OnError(QuicFramer* framer) { |
| // Packets that we can not or have not decrypted are dropped. |
| // TODO(rch): add stats to measure this. |
| if (!connected_ || last_packet_decrypted_ == false) { |
| return; |
| } |
| CloseConnection(framer->error(), framer->detailed_error(), |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| } |
| |
| void QuicConnection::OnPacket() { |
| last_packet_decrypted_ = false; |
| } |
| |
| void QuicConnection::OnPublicResetPacket(const QuicPublicResetPacket& packet) { |
| // Check that any public reset packet with a different connection ID that was |
| // routed to this QuicConnection has been redirected before control reaches |
| // here. (Check for a bug regression.) |
| DCHECK_EQ(server_connection_id_, packet.connection_id); |
| DCHECK_EQ(perspective_, Perspective::IS_CLIENT); |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnPublicResetPacket(packet); |
| } |
| std::string error_details = "Received public reset."; |
| if (perspective_ == Perspective::IS_CLIENT && !packet.endpoint_id.empty()) { |
| QuicStrAppend(&error_details, " From ", packet.endpoint_id, "."); |
| } |
| QUIC_DLOG(INFO) << ENDPOINT << error_details; |
| QUIC_CODE_COUNT(quic_tear_down_local_connection_on_public_reset); |
| TearDownLocalConnectionState(QUIC_PUBLIC_RESET, error_details, |
| ConnectionCloseSource::FROM_PEER); |
| } |
| |
| bool QuicConnection::OnProtocolVersionMismatch( |
| ParsedQuicVersion received_version) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Received packet with mismatched version " |
| << ParsedQuicVersionToString(received_version); |
| if (perspective_ == Perspective::IS_CLIENT) { |
| const std::string error_details = "Protocol version mismatch."; |
| QUIC_BUG << ENDPOINT << error_details; |
| CloseConnection(QUIC_INTERNAL_ERROR, error_details, |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| } |
| |
| // Server drops old packets that were sent by the client before the version |
| // was negotiated. |
| return false; |
| } |
| |
| // Handles version negotiation for client connection. |
| void QuicConnection::OnVersionNegotiationPacket( |
| const QuicVersionNegotiationPacket& packet) { |
| // Check that any public reset packet with a different connection ID that was |
| // routed to this QuicConnection has been redirected before control reaches |
| // here. (Check for a bug regression.) |
| DCHECK_EQ(server_connection_id_, packet.connection_id); |
| if (perspective_ == Perspective::IS_SERVER) { |
| const std::string error_details = |
| "Server received version negotiation packet."; |
| QUIC_BUG << error_details; |
| QUIC_CODE_COUNT(quic_tear_down_local_connection_on_version_negotiation); |
| CloseConnection(QUIC_INTERNAL_ERROR, error_details, |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| return; |
| } |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnVersionNegotiationPacket(packet); |
| } |
| |
| if (version_negotiated_) { |
| // Possibly a duplicate version negotiation packet. |
| return; |
| } |
| |
| if (QuicContainsValue(packet.versions, version())) { |
| const std::string error_details = QuicStrCat( |
| "Server already supports client's version ", |
| ParsedQuicVersionToString(version()), |
| " and should have accepted the connection instead of sending {", |
| ParsedQuicVersionVectorToString(packet.versions), "}."); |
| QUIC_DLOG(WARNING) << error_details; |
| CloseConnection(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, error_details, |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| return; |
| } |
| |
| server_supported_versions_ = packet.versions; |
| CloseConnection( |
| QUIC_INVALID_VERSION, |
| QuicStrCat( |
| "Client may support one of the versions in the server's list, but " |
| "it's going to close the connection anyway. Supported versions: {", |
| ParsedQuicVersionVectorToString(framer_.supported_versions()), |
| "}, peer supported versions: {", |
| ParsedQuicVersionVectorToString(packet.versions), "}"), |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| } |
| |
| // Handles retry for client connection. |
| void QuicConnection::OnRetryPacket(QuicConnectionId original_connection_id, |
| QuicConnectionId new_connection_id, |
| QuicStringPiece retry_token) { |
| DCHECK_EQ(Perspective::IS_CLIENT, perspective_); |
| if (original_connection_id != server_connection_id_) { |
| QUIC_DLOG(ERROR) << "Ignoring RETRY with original connection ID " |
| << original_connection_id << " not matching expected " |
| << server_connection_id_ << " token " |
| << QuicTextUtils::HexEncode(retry_token); |
| return; |
| } |
| if (retry_has_been_parsed_) { |
| QUIC_DLOG(ERROR) << "Ignoring non-first RETRY with token " |
| << QuicTextUtils::HexEncode(retry_token); |
| return; |
| } |
| retry_has_been_parsed_ = true; |
| stats_.retry_packet_processed = true; |
| QUIC_DLOG(INFO) << "Received RETRY, replacing connection ID " |
| << server_connection_id_ << " with " << new_connection_id |
| << ", received token " |
| << QuicTextUtils::HexEncode(retry_token); |
| server_connection_id_ = new_connection_id; |
| packet_generator_.SetServerConnectionId(server_connection_id_); |
| packet_generator_.SetRetryToken(retry_token); |
| |
| // Reinstall initial crypters because the connection ID changed. |
| InstallInitialCrypters(server_connection_id_); |
| } |
| |
| bool QuicConnection::HasIncomingConnectionId(QuicConnectionId connection_id) { |
| for (QuicConnectionId const& incoming_connection_id : |
| incoming_connection_ids_) { |
| if (incoming_connection_id == connection_id) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void QuicConnection::AddIncomingConnectionId(QuicConnectionId connection_id) { |
| if (HasIncomingConnectionId(connection_id)) { |
| return; |
| } |
| incoming_connection_ids_.push_back(connection_id); |
| } |
| |
| bool QuicConnection::OnUnauthenticatedPublicHeader( |
| const QuicPacketHeader& header) { |
| QuicConnectionId server_connection_id = |
| GetServerConnectionIdAsRecipient(header, perspective_); |
| |
| if (server_connection_id != server_connection_id_ && |
| !HasIncomingConnectionId(server_connection_id)) { |
| if (PacketCanReplaceConnectionId(header, perspective_)) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Accepting packet with new connection ID " |
| << server_connection_id << " instead of " |
| << server_connection_id_; |
| return true; |
| } |
| |
| ++stats_.packets_dropped; |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "Ignoring packet from unexpected server connection ID " |
| << server_connection_id << " instead of " |
| << server_connection_id_; |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnIncorrectConnectionId(server_connection_id); |
| } |
| // If this is a server, the dispatcher routes each packet to the |
| // QuicConnection responsible for the packet's connection ID. So if control |
| // arrives here and this is a server, the dispatcher must be malfunctioning. |
| DCHECK_NE(Perspective::IS_SERVER, perspective_); |
| return false; |
| } |
| |
| if (!version().SupportsClientConnectionIds()) { |
| return true; |
| } |
| |
| QuicConnectionId client_connection_id = |
| GetClientConnectionIdAsRecipient(header, perspective_); |
| |
| if (client_connection_id == client_connection_id_) { |
| return true; |
| } |
| |
| if (!client_connection_id_is_set_ && perspective_ == Perspective::IS_SERVER) { |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "Setting client connection ID from first packet to " |
| << client_connection_id; |
| set_client_connection_id(client_connection_id); |
| return true; |
| } |
| |
| ++stats_.packets_dropped; |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "Ignoring packet from unexpected client connection ID " |
| << client_connection_id << " instead of " |
| << client_connection_id_; |
| return false; |
| } |
| |
| bool QuicConnection::OnUnauthenticatedHeader(const QuicPacketHeader& header) { |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnUnauthenticatedHeader(header); |
| } |
| |
| // Check that any public reset packet with a different connection ID that was |
| // routed to this QuicConnection has been redirected before control reaches |
| // here. |
| DCHECK(GetServerConnectionIdAsRecipient(header, perspective_) == |
| server_connection_id_ || |
| HasIncomingConnectionId( |
| GetServerConnectionIdAsRecipient(header, perspective_)) || |
| PacketCanReplaceConnectionId(header, perspective_)); |
| |
| if (packet_generator_.HasPendingFrames()) { |
| // Incoming packets may change a queued ACK frame. |
| const std::string error_details = |
| "Pending frames must be serialized before incoming packets are " |
| "processed."; |
| QUIC_BUG << error_details << ", received header: " << header; |
| CloseConnection(QUIC_INTERNAL_ERROR, error_details, |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return false; |
| } |
| |
| if (!version_negotiated_ && perspective_ == Perspective::IS_SERVER) { |
| if (!header.version_flag) { |
| // Packets should have the version flag till version negotiation is |
| // done. |
| std::string error_details = |
| QuicStrCat(ENDPOINT, "Packet ", header.packet_number.ToUint64(), |
| " without version flag before version negotiated."); |
| QUIC_DLOG(WARNING) << error_details; |
| CloseConnection(QUIC_INVALID_VERSION, error_details, |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return false; |
| } else { |
| DCHECK_EQ(header.version, version()); |
| version_negotiated_ = true; |
| framer_.InferPacketHeaderTypeFromVersion(); |
| visitor_->OnSuccessfulVersionNegotiation(version()); |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnSuccessfulVersionNegotiation(version()); |
| } |
| } |
| DCHECK(version_negotiated_); |
| } |
| |
| return true; |
| } |
| |
| void QuicConnection::OnDecryptedPacket(EncryptionLevel level) { |
| last_decrypted_packet_level_ = level; |
| last_packet_decrypted_ = true; |
| if (EnforceAntiAmplificationLimit() && |
| last_decrypted_packet_level_ >= ENCRYPTION_HANDSHAKE) { |
| // Address is validated by successfully processing a HANDSHAKE packet. |
| address_validated_ = true; |
| } |
| |
| // Once the server receives a forward secure packet, the handshake is |
| // confirmed. |
| if (level == ENCRYPTION_FORWARD_SECURE && |
| perspective_ == Perspective::IS_SERVER) { |
| OnHandshakeComplete(); |
| } |
| } |
| |
| QuicSocketAddress QuicConnection::GetEffectivePeerAddressFromCurrentPacket() |
| const { |
| // By default, the connection is not proxied, and the effective peer address |
| // is the packet's source address, i.e. the direct peer address. |
| return last_packet_source_address_; |
| } |
| |
| bool QuicConnection::OnPacketHeader(const QuicPacketHeader& header) { |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnPacketHeader(header); |
| } |
| |
| // Will be decremented below if we fall through to return true. |
| ++stats_.packets_dropped; |
| |
| if (!ProcessValidatedPacket(header)) { |
| return false; |
| } |
| |
| // Initialize the current packet content state. |
| current_packet_content_ = NO_FRAMES_RECEIVED; |
| is_current_packet_connectivity_probing_ = false; |
| current_effective_peer_migration_type_ = NO_CHANGE; |
| |
| if (perspective_ == Perspective::IS_CLIENT) { |
| if (!GetLargestReceivedPacket().IsInitialized() || |
| header.packet_number > GetLargestReceivedPacket()) { |
| // Update peer_address_ and effective_peer_address_ immediately for |
| // client connections. |
| // TODO(fayang): only change peer addresses in application data packet |
| // number space. |
| direct_peer_address_ = last_packet_source_address_; |
| effective_peer_address_ = GetEffectivePeerAddressFromCurrentPacket(); |
| } |
| } else { |
| // At server, remember the address change type of effective_peer_address |
| // in current_effective_peer_migration_type_. But this variable alone |
| // doesn't necessarily starts a migration. A migration will be started |
| // later, once the current packet is confirmed to meet the following |
| // conditions: |
| // 1) current_effective_peer_migration_type_ is not NO_CHANGE. |
| // 2) The current packet is not a connectivity probing. |
| // 3) The current packet is not reordered, i.e. its packet number is the |
| // largest of this connection so far. |
| // Once the above conditions are confirmed, a new migration will start |
| // even if there is an active migration underway. |
| current_effective_peer_migration_type_ = |
| QuicUtils::DetermineAddressChangeType( |
| effective_peer_address_, |
| GetEffectivePeerAddressFromCurrentPacket()); |
| |
| QUIC_DLOG_IF(INFO, current_effective_peer_migration_type_ != NO_CHANGE) |
| << ENDPOINT << "Effective peer's ip:port changed from " |
| << effective_peer_address_.ToString() << " to " |
| << GetEffectivePeerAddressFromCurrentPacket().ToString() |
| << ", active_effective_peer_migration_type is " |
| << active_effective_peer_migration_type_; |
| } |
| |
| --stats_.packets_dropped; |
| QUIC_DVLOG(1) << ENDPOINT << "Received packet header: " << header; |
| last_header_ = header; |
| |
| // Record packet receipt to populate ack info before processing stream |
| // frames, since the processing may result in sending a bundled ack. |
| uber_received_packet_manager_.RecordPacketReceived( |
| last_decrypted_packet_level_, last_header_, |
| time_of_last_received_packet_); |
| DCHECK(connected_); |
| return true; |
| } |
| |
| bool QuicConnection::OnStreamFrame(const QuicStreamFrame& frame) { |
| DCHECK(connected_); |
| |
| // Since a stream frame was received, this is not a connectivity probe. |
| // A probe only contains a PING and full padding. |
| UpdatePacketContent(NOT_PADDED_PING); |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnStreamFrame(frame); |
| } |
| if (!QuicUtils::IsCryptoStreamId(transport_version(), frame.stream_id) && |
| last_decrypted_packet_level_ == ENCRYPTION_INITIAL) { |
| if (MaybeConsiderAsMemoryCorruption(frame)) { |
| CloseConnection(QUIC_MAYBE_CORRUPTED_MEMORY, |
| "Received crypto frame on non crypto stream.", |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return false; |
| } |
| |
| QUIC_PEER_BUG << ENDPOINT |
| << "Received an unencrypted data frame: closing connection" |
| << " packet_number:" << last_header_.packet_number |
| << " stream_id:" << frame.stream_id |
| << " received_packets:" << ack_frame(); |
| CloseConnection(QUIC_UNENCRYPTED_STREAM_DATA, |
| "Unencrypted stream data seen.", |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return false; |
| } |
| visitor_->OnStreamFrame(frame); |
| stats_.stream_bytes_received += frame.data_length; |
| should_last_packet_instigate_acks_ = true; |
| consecutive_retransmittable_on_wire_ping_count_ = 0; |
| return connected_; |
| } |
| |
| bool QuicConnection::OnCryptoFrame(const QuicCryptoFrame& frame) { |
| DCHECK(connected_); |
| |
| // Since a CRYPTO frame was received, this is not a connectivity probe. |
| // A probe only contains a PING and full padding. |
| UpdatePacketContent(NOT_PADDED_PING); |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnCryptoFrame(frame); |
| } |
| visitor_->OnCryptoFrame(frame); |
| should_last_packet_instigate_acks_ = true; |
| return connected_; |
| } |
| |
| bool QuicConnection::OnAckFrameStart(QuicPacketNumber largest_acked, |
| QuicTime::Delta ack_delay_time) { |
| DCHECK(connected_); |
| |
| if (processing_ack_frame_) { |
| CloseConnection(QUIC_INVALID_ACK_DATA, |
| "Received a new ack while processing an ack frame.", |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return false; |
| } |
| |
| // Since an ack frame was received, this is not a connectivity probe. |
| // A probe only contains a PING and full padding. |
| UpdatePacketContent(NOT_PADDED_PING); |
| |
| QUIC_DVLOG(1) << ENDPOINT |
| << "OnAckFrameStart, largest_acked: " << largest_acked; |
| |
| if (GetLargestReceivedPacketWithAck().IsInitialized() && |
| last_header_.packet_number <= GetLargestReceivedPacketWithAck()) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Received an old ack frame: ignoring"; |
| return true; |
| } |
| |
| if (!GetLargestSentPacket().IsInitialized() || |
| largest_acked > GetLargestSentPacket()) { |
| QUIC_DLOG(WARNING) << ENDPOINT |
| << "Peer's observed unsent packet:" << largest_acked |
| << " vs " << GetLargestSentPacket(); |
| // We got an ack for data we have not sent. |
| CloseConnection(QUIC_INVALID_ACK_DATA, "Largest observed too high.", |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return false; |
| } |
| |
| if (!GetLargestAckedPacket().IsInitialized() || |
| largest_acked > GetLargestAckedPacket()) { |
| visitor_->OnForwardProgressConfirmed(); |
| } |
| processing_ack_frame_ = true; |
| sent_packet_manager_.OnAckFrameStart(largest_acked, ack_delay_time, |
| time_of_last_received_packet_); |
| return true; |
| } |
| |
| bool QuicConnection::OnAckRange(QuicPacketNumber start, QuicPacketNumber end) { |
| DCHECK(connected_); |
| QUIC_DVLOG(1) << ENDPOINT << "OnAckRange: [" << start << ", " << end << ")"; |
| |
| if (GetLargestReceivedPacketWithAck().IsInitialized() && |
| last_header_.packet_number <= GetLargestReceivedPacketWithAck()) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Received an old ack frame: ignoring"; |
| return true; |
| } |
| |
| sent_packet_manager_.OnAckRange(start, end); |
| return true; |
| } |
| |
| bool QuicConnection::OnAckTimestamp(QuicPacketNumber packet_number, |
| QuicTime timestamp) { |
| DCHECK(connected_); |
| QUIC_DVLOG(1) << ENDPOINT << "OnAckTimestamp: [" << packet_number << ", " |
| << timestamp.ToDebuggingValue() << ")"; |
| |
| if (GetLargestReceivedPacketWithAck().IsInitialized() && |
| last_header_.packet_number <= GetLargestReceivedPacketWithAck()) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Received an old ack frame: ignoring"; |
| return true; |
| } |
| |
| sent_packet_manager_.OnAckTimestamp(packet_number, timestamp); |
| return true; |
| } |
| |
| bool QuicConnection::OnAckFrameEnd(QuicPacketNumber start) { |
| DCHECK(connected_); |
| QUIC_DVLOG(1) << ENDPOINT << "OnAckFrameEnd, start: " << start; |
| |
| if (GetLargestReceivedPacketWithAck().IsInitialized() && |
| last_header_.packet_number <= GetLargestReceivedPacketWithAck()) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Received an old ack frame: ignoring"; |
| return true; |
| } |
| const AckResult ack_result = sent_packet_manager_.OnAckFrameEnd( |
| time_of_last_received_packet_, last_header_.packet_number, |
| last_decrypted_packet_level_); |
| if (ack_result != PACKETS_NEWLY_ACKED && |
| ack_result != NO_PACKETS_NEWLY_ACKED) { |
| // Error occurred (e.g., this ACK tries to ack packets in wrong packet |
| // number space), and this would cause the connection to be closed. |
| QUIC_DLOG(ERROR) << ENDPOINT |
| << "Error occurred when processing an ACK frame: " |
| << QuicUtils::AckResultToString(ack_result); |
| return false; |
| } |
| // Cancel the send alarm because new packets likely have been acked, which |
| // may change the congestion window and/or pacing rate. Canceling the alarm |
| // causes CanWrite to recalculate the next send time. |
| if (send_alarm_->IsSet()) { |
| send_alarm_->Cancel(); |
| } |
| if (supports_release_time_) { |
| // Update pace time into future because smoothed RTT is likely updated. |
| UpdateReleaseTimeIntoFuture(); |
| } |
| SetLargestReceivedPacketWithAck(last_header_.packet_number); |
| // If the incoming ack's packets set expresses missing packets: peer is still |
| // waiting for a packet lower than a packet that we are no longer planning to |
| // send. |
| // If the incoming ack's packets set expresses received packets: peer is still |
| // acking packets which we never care about. |
| // Send an ack to raise the high water mark. |
| bool send_stop_waiting = GetLeastUnacked() > start; |
| if (GetQuicReloadableFlag(quic_simplify_stop_waiting) && |
| no_stop_waiting_frames_) { |
| QUIC_RELOADABLE_FLAG_COUNT(quic_simplify_stop_waiting); |
| send_stop_waiting = false; |
| } |
| PostProcessAfterAckFrame(send_stop_waiting, |
| ack_result == PACKETS_NEWLY_ACKED); |
| processing_ack_frame_ = false; |
| |
| return connected_; |
| } |
| |
| bool QuicConnection::OnStopWaitingFrame(const QuicStopWaitingFrame& frame) { |
| DCHECK(connected_); |
| |
| // Since a stop waiting frame was received, this is not a connectivity probe. |
| // A probe only contains a PING and full padding. |
| UpdatePacketContent(NOT_PADDED_PING); |
| |
| if (no_stop_waiting_frames_) { |
| return true; |
| } |
| if (largest_seen_packet_with_stop_waiting_.IsInitialized() && |
| last_header_.packet_number <= largest_seen_packet_with_stop_waiting_) { |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "Received an old stop waiting frame: ignoring"; |
| return true; |
| } |
| |
| const char* error = ValidateStopWaitingFrame(frame); |
| if (error != nullptr) { |
| CloseConnection(QUIC_INVALID_STOP_WAITING_DATA, error, |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return false; |
| } |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnStopWaitingFrame(frame); |
| } |
| |
| largest_seen_packet_with_stop_waiting_ = last_header_.packet_number; |
| uber_received_packet_manager_.DontWaitForPacketsBefore( |
| last_decrypted_packet_level_, frame.least_unacked); |
| return connected_; |
| } |
| |
| bool QuicConnection::OnPaddingFrame(const QuicPaddingFrame& frame) { |
| DCHECK(connected_); |
| UpdatePacketContent(SECOND_FRAME_IS_PADDING); |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnPaddingFrame(frame); |
| } |
| return true; |
| } |
| |
| bool QuicConnection::OnPingFrame(const QuicPingFrame& frame) { |
| DCHECK(connected_); |
| UpdatePacketContent(FIRST_FRAME_IS_PING); |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnPingFrame(frame); |
| } |
| should_last_packet_instigate_acks_ = true; |
| return true; |
| } |
| |
| const char* QuicConnection::ValidateStopWaitingFrame( |
| const QuicStopWaitingFrame& stop_waiting) { |
| const QuicPacketNumber peer_least_packet_awaiting_ack = |
| uber_received_packet_manager_.peer_least_packet_awaiting_ack(); |
| if (peer_least_packet_awaiting_ack.IsInitialized() && |
| stop_waiting.least_unacked < peer_least_packet_awaiting_ack) { |
| QUIC_DLOG(ERROR) << ENDPOINT << "Peer's sent low least_unacked: " |
| << stop_waiting.least_unacked << " vs " |
| << peer_least_packet_awaiting_ack; |
| // We never process old ack frames, so this number should only increase. |
| return "Least unacked too small."; |
| } |
| |
| if (stop_waiting.least_unacked > last_header_.packet_number) { |
| QUIC_DLOG(ERROR) << ENDPOINT |
| << "Peer sent least_unacked:" << stop_waiting.least_unacked |
| << " greater than the enclosing packet number:" |
| << last_header_.packet_number; |
| return "Least unacked too large."; |
| } |
| |
| return nullptr; |
| } |
| |
| bool QuicConnection::OnRstStreamFrame(const QuicRstStreamFrame& frame) { |
| DCHECK(connected_); |
| |
| // Since a reset stream frame was received, this is not a connectivity probe. |
| // A probe only contains a PING and full padding. |
| UpdatePacketContent(NOT_PADDED_PING); |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnRstStreamFrame(frame); |
| } |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "RST_STREAM_FRAME received for stream: " << frame.stream_id |
| << " with error: " |
| << QuicRstStreamErrorCodeToString(frame.error_code); |
| visitor_->OnRstStream(frame); |
| should_last_packet_instigate_acks_ = true; |
| return connected_; |
| } |
| |
| bool QuicConnection::OnStopSendingFrame(const QuicStopSendingFrame& frame) { |
| DCHECK(connected_); |
| |
| // Since a reset stream frame was received, this is not a connectivity probe. |
| // A probe only contains a PING and full padding. |
| UpdatePacketContent(NOT_PADDED_PING); |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnStopSendingFrame(frame); |
| } |
| |
| QUIC_DLOG(INFO) << ENDPOINT << "STOP_SENDING frame received for stream: " |
| << frame.stream_id |
| << " with error: " << frame.application_error_code; |
| |
| visitor_->OnStopSendingFrame(frame); |
| return connected_; |
| } |
| |
| bool QuicConnection::OnPathChallengeFrame(const QuicPathChallengeFrame& frame) { |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnPathChallengeFrame(frame); |
| } |
| // Save the path challenge's payload, for later use in generating the |
| // response. |
| received_path_challenge_payloads_.push_back(frame.data_buffer); |
| |
| // For VERSION 99 we define a "Padded PATH CHALLENGE" to be the same thing |
| // as a PADDED PING -- it will start a connectivity check and prevent |
| // connection migration. Insofar as the connectivity check and connection |
| // migration are concerned, logically the PATH CHALLENGE is the same as the |
| // PING, so as a stopgap, tell the FSM that determines whether we have a |
| // Padded PING or not that we received a PING. |
| UpdatePacketContent(FIRST_FRAME_IS_PING); |
| should_last_packet_instigate_acks_ = true; |
| return true; |
| } |
| |
| bool QuicConnection::OnPathResponseFrame(const QuicPathResponseFrame& frame) { |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnPathResponseFrame(frame); |
| } |
| should_last_packet_instigate_acks_ = true; |
| if (!transmitted_connectivity_probe_payload_ || |
| *transmitted_connectivity_probe_payload_ != frame.data_buffer) { |
| // Is not for the probe we sent, ignore it. |
| return true; |
| } |
| // Have received the matching PATH RESPONSE, saved payload no longer valid. |
| transmitted_connectivity_probe_payload_ = nullptr; |
| UpdatePacketContent(FIRST_FRAME_IS_PING); |
| return true; |
| } |
| |
| bool QuicConnection::OnConnectionCloseFrame( |
| const QuicConnectionCloseFrame& frame) { |
| DCHECK(connected_); |
| |
| // Since a connection close frame was received, this is not a connectivity |
| // probe. A probe only contains a PING and full padding. |
| UpdatePacketContent(NOT_PADDED_PING); |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnConnectionCloseFrame(frame); |
| } |
| switch (frame.close_type) { |
| case GOOGLE_QUIC_CONNECTION_CLOSE: |
| QUIC_DLOG(INFO) << ENDPOINT << "Received ConnectionClose for connection: " |
| << connection_id() << ", with error: " |
| << QuicErrorCodeToString(frame.extracted_error_code) |
| << " (" << frame.error_details << ")"; |
| break; |
| case IETF_QUIC_TRANSPORT_CONNECTION_CLOSE: |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "Received Transport ConnectionClose for connection: " |
| << connection_id() << ", with error: " |
| << QuicErrorCodeToString(frame.extracted_error_code) |
| << " (" << frame.error_details << ")" |
| << ", transport error code: " |
| << frame.transport_error_code << ", error frame type: " |
| << frame.transport_close_frame_type; |
| break; |
| case IETF_QUIC_APPLICATION_CONNECTION_CLOSE: |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "Received Application ConnectionClose for connection: " |
| << connection_id() << ", with error: " |
| << QuicErrorCodeToString(frame.extracted_error_code) |
| << " (" << frame.error_details << ")" |
| << ", application error code: " |
| << frame.application_error_code; |
| break; |
| } |
| |
| if (frame.extracted_error_code == QUIC_BAD_MULTIPATH_FLAG) { |
| QUIC_LOG_FIRST_N(ERROR, 10) << "Unexpected QUIC_BAD_MULTIPATH_FLAG error." |
| << " last_received_header: " << last_header_ |
| << " encryption_level: " << encryption_level_; |
| } |
| TearDownLocalConnectionState(frame, ConnectionCloseSource::FROM_PEER); |
| return connected_; |
| } |
| |
| bool QuicConnection::OnMaxStreamsFrame(const QuicMaxStreamsFrame& frame) { |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnMaxStreamsFrame(frame); |
| } |
| return visitor_->OnMaxStreamsFrame(frame); |
| } |
| |
| bool QuicConnection::OnStreamsBlockedFrame( |
| const QuicStreamsBlockedFrame& frame) { |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnStreamsBlockedFrame(frame); |
| } |
| return visitor_->OnStreamsBlockedFrame(frame); |
| } |
| |
| bool QuicConnection::OnGoAwayFrame(const QuicGoAwayFrame& frame) { |
| DCHECK(connected_); |
| |
| // Since a go away frame was received, this is not a connectivity probe. |
| // A probe only contains a PING and full padding. |
| UpdatePacketContent(NOT_PADDED_PING); |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnGoAwayFrame(frame); |
| } |
| QUIC_DLOG(INFO) << ENDPOINT << "GOAWAY_FRAME received with last good stream: " |
| << frame.last_good_stream_id |
| << " and error: " << QuicErrorCodeToString(frame.error_code) |
| << " and reason: " << frame.reason_phrase; |
| |
| visitor_->OnGoAway(frame); |
| should_last_packet_instigate_acks_ = true; |
| return connected_; |
| } |
| |
| bool QuicConnection::OnWindowUpdateFrame(const QuicWindowUpdateFrame& frame) { |
| DCHECK(connected_); |
| |
| // Since a window update frame was received, this is not a connectivity probe. |
| // A probe only contains a PING and full padding. |
| UpdatePacketContent(NOT_PADDED_PING); |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnWindowUpdateFrame(frame, time_of_last_received_packet_); |
| } |
| QUIC_DVLOG(1) << ENDPOINT << "WINDOW_UPDATE_FRAME received for stream: " |
| << frame.stream_id |
| << " with byte offset: " << frame.byte_offset; |
| visitor_->OnWindowUpdateFrame(frame); |
| should_last_packet_instigate_acks_ = true; |
| return connected_; |
| } |
| |
| bool QuicConnection::OnNewConnectionIdFrame( |
| const QuicNewConnectionIdFrame& frame) { |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnNewConnectionIdFrame(frame); |
| } |
| return true; |
| } |
| |
| bool QuicConnection::OnRetireConnectionIdFrame( |
| const QuicRetireConnectionIdFrame& frame) { |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnRetireConnectionIdFrame(frame); |
| } |
| return true; |
| } |
| |
| bool QuicConnection::OnNewTokenFrame(const QuicNewTokenFrame& frame) { |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnNewTokenFrame(frame); |
| } |
| return true; |
| } |
| |
| bool QuicConnection::OnMessageFrame(const QuicMessageFrame& frame) { |
| DCHECK(connected_); |
| |
| // Since a message frame was received, this is not a connectivity probe. |
| // A probe only contains a PING and full padding. |
| UpdatePacketContent(NOT_PADDED_PING); |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnMessageFrame(frame); |
| } |
| visitor_->OnMessageReceived( |
| QuicStringPiece(frame.data, frame.message_length)); |
| should_last_packet_instigate_acks_ = true; |
| return connected_; |
| } |
| |
| bool QuicConnection::OnBlockedFrame(const QuicBlockedFrame& frame) { |
| DCHECK(connected_); |
| |
| // Since a blocked frame was received, this is not a connectivity probe. |
| // A probe only contains a PING and full padding. |
| UpdatePacketContent(NOT_PADDED_PING); |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnBlockedFrame(frame); |
| } |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "BLOCKED_FRAME received for stream: " << frame.stream_id; |
| visitor_->OnBlockedFrame(frame); |
| stats_.blocked_frames_received++; |
| should_last_packet_instigate_acks_ = true; |
| return connected_; |
| } |
| |
| void QuicConnection::OnPacketComplete() { |
| // Don't do anything if this packet closed the connection. |
| if (!connected_) { |
| ClearLastFrames(); |
| return; |
| } |
| |
| if (IsCurrentPacketConnectivityProbing()) { |
| ++stats_.num_connectivity_probing_received; |
| } |
| |
| QUIC_DVLOG(1) << ENDPOINT << "Got" |
| << (SupportsMultiplePacketNumberSpaces() |
| ? (" " + EncryptionLevelToString( |
| last_decrypted_packet_level_)) |
| : "") |
| << " packet " << last_header_.packet_number << " for " |
| << GetServerConnectionIdAsRecipient(last_header_, perspective_); |
| |
| QUIC_DLOG_IF(INFO, current_packet_content_ == SECOND_FRAME_IS_PADDING) |
| << ENDPOINT << "Received a padded PING packet. is_probing: " |
| << IsCurrentPacketConnectivityProbing(); |
| |
| if (IsCurrentPacketConnectivityProbing()) { |
| QUIC_DVLOG(1) << ENDPOINT << "Received a connectivity probing packet for " |
| << GetServerConnectionIdAsRecipient(last_header_, |
| perspective_) |
| << " from ip:port: " << last_packet_source_address_.ToString() |
| << " to ip:port: " |
| << last_packet_destination_address_.ToString(); |
| visitor_->OnPacketReceived(last_packet_destination_address_, |
| last_packet_source_address_, |
| /*is_connectivity_probe=*/true); |
| } else if (perspective_ == Perspective::IS_CLIENT) { |
| // This node is a client, notify that a speculative connectivity probing |
| // packet has been received anyway. |
| QUIC_DVLOG(1) << ENDPOINT |
| << "Received a speculative connectivity probing packet for " |
| << GetServerConnectionIdAsRecipient(last_header_, |
| perspective_) |
| << " from ip:port: " << last_packet_source_address_.ToString() |
| << " to ip:port: " |
| << last_packet_destination_address_.ToString(); |
| visitor_->OnPacketReceived(last_packet_destination_address_, |
| last_packet_source_address_, |
| /*is_connectivity_probe=*/false); |
| } else { |
| // This node is not a client (is a server) AND the received packet was |
| // NOT connectivity-probing. If the packet had PATH CHALLENGES, send |
| // appropriate RESPONSE. Then deal with possible peer migration. |
| if (VersionHasIetfQuicFrames(transport_version()) && |
| !received_path_challenge_payloads_.empty()) { |
| // If a PATH CHALLENGE was in a "Padded PING (or PATH CHALLENGE)" |
| // then it is taken care of above. This handles the case where a PATH |
| // CHALLENGE appeared someplace else (eg, the peer randomly added a PATH |
| // CHALLENGE frame to some other packet. |
| // There was at least one PATH CHALLENGE in the received packet, |
| // Generate the required PATH RESPONSE. |
| SendGenericPathProbePacket(nullptr, last_packet_source_address_, |
| /* is_response= */ true); |
| } |
| |
| if (last_header_.packet_number == GetLargestReceivedPacket()) { |
| direct_peer_address_ = last_packet_source_address_; |
| if (current_effective_peer_migration_type_ != NO_CHANGE) { |
| // TODO(fayang): When multiple packet number spaces is supported, only |
| // start peer migration for the application data. |
| StartEffectivePeerMigration(current_effective_peer_migration_type_); |
| } |
| } |
| } |
| |
| current_effective_peer_migration_type_ = NO_CHANGE; |
| |
| // Some encryption levels share a packet number space, it is therefore |
| // possible for us to want to ack some packets even though we do not yet |
| // have the appropriate keys to encrypt the acks. In this scenario we |
| // do not update the ACK timeout. This can happen for example with |
| // IETF QUIC on the server when we receive 0-RTT packets and do not yet |
| // have 1-RTT keys (0-RTT packets are acked at the 1-RTT level). |
| // Note that this could cause slight performance degradations in the edge |
| // case where one packet is received, then the encrypter is installed, |
| // then a second packet is received; as that could cause the ACK for the |
| // second packet to be delayed instead of immediate. This is currently |
| // considered to be small enough of an edge case to not be optimized for. |
| if (!SupportsMultiplePacketNumberSpaces() || |
| framer_.HasEncrypterOfEncryptionLevel(QuicUtils::GetEncryptionLevel( |
| QuicUtils::GetPacketNumberSpace(last_decrypted_packet_level_)))) { |
| uber_received_packet_manager_.MaybeUpdateAckTimeout( |
| should_last_packet_instigate_acks_, last_decrypted_packet_level_, |
| last_header_.packet_number, time_of_last_received_packet_, |
| clock_->ApproximateNow(), sent_packet_manager_.GetRttStats()); |
| } else { |
| QUIC_DLOG(INFO) << ENDPOINT << "Not updating ACK timeout for " |
| << EncryptionLevelToString(last_decrypted_packet_level_) |
| << " as we do not have the corresponding encrypter"; |
| } |
| |
| ClearLastFrames(); |
| CloseIfTooManyOutstandingSentPackets(); |
| } |
| |
| bool QuicConnection::IsValidStatelessResetToken(QuicUint128 token) const { |
| return stateless_reset_token_received_ && |
| token == received_stateless_reset_token_; |
| } |
| |
| void QuicConnection::OnAuthenticatedIetfStatelessResetPacket( |
| const QuicIetfStatelessResetPacket& /*packet*/) { |
| // TODO(fayang): Add OnAuthenticatedIetfStatelessResetPacket to |
| // debug_visitor_. |
| const std::string error_details = "Received stateless reset."; |
| QUIC_CODE_COUNT(quic_tear_down_local_connection_on_stateless_reset); |
| TearDownLocalConnectionState(QUIC_PUBLIC_RESET, error_details, |
| ConnectionCloseSource::FROM_PEER); |
| } |
| |
| void QuicConnection::ClearLastFrames() { |
| should_last_packet_instigate_acks_ = false; |
| } |
| |
| void QuicConnection::CloseIfTooManyOutstandingSentPackets() { |
| // This occurs if we don't discard old packets we've seen fast enough. It's |
| // possible largest observed is less than leaset unacked. |
| if (sent_packet_manager_.GetLargestObserved().IsInitialized() && |
| sent_packet_manager_.GetLargestObserved() > |
| sent_packet_manager_.GetLeastUnacked() + max_tracked_packets_) { |
| CloseConnection( |
| QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS, |
| QuicStrCat("More than ", max_tracked_packets_, |
| " outstanding, least_unacked: ", |
| sent_packet_manager_.GetLeastUnacked().ToUint64(), |
| ", packets_processed: ", stats_.packets_processed, |
| ", last_decrypted_packet_level: ", |
| EncryptionLevelToString(last_decrypted_packet_level_)), |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| } |
| } |
| |
| const QuicFrame QuicConnection::GetUpdatedAckFrame() { |
| return uber_received_packet_manager_.GetUpdatedAckFrame( |
| QuicUtils::GetPacketNumberSpace(encryption_level_), |
| clock_->ApproximateNow()); |
| } |
| |
| void QuicConnection::PopulateStopWaitingFrame( |
| QuicStopWaitingFrame* stop_waiting) { |
| stop_waiting->least_unacked = GetLeastUnacked(); |
| } |
| |
| QuicPacketNumber QuicConnection::GetLeastUnacked() const { |
| return sent_packet_manager_.GetLeastUnacked(); |
| } |
| |
| bool QuicConnection::HandleWriteBlocked() { |
| if (!writer_->IsWriteBlocked()) { |
| return false; |
| } |
| |
| visitor_->OnWriteBlocked(); |
| return true; |
| } |
| |
| void QuicConnection::MaybeSendInResponseToPacket() { |
| if (!connected_) { |
| return; |
| } |
| |
| // If the writer is blocked, don't attempt to send packets now or in the send |
| // alarm. When the writer unblocks, OnCanWrite() will be called for this |
| // connection to send. |
| if (HandleWriteBlocked()) { |
| return; |
| } |
| |
| // Now that we have received an ack, we might be able to send packets which |
| // are queued locally, or drain streams which are blocked. |
| if (defer_send_in_response_to_packets_) { |
| send_alarm_->Update(clock_->ApproximateNow(), QuicTime::Delta::Zero()); |
| } else { |
| WriteAndBundleAcksIfNotBlocked(); |
| } |
| } |
| |
| void QuicConnection::SendVersionNegotiationPacket(bool ietf_quic, |
| bool has_length_prefix) { |
| pending_version_negotiation_packet_ = true; |
| send_ietf_version_negotiation_packet_ = ietf_quic; |
| send_version_negotiation_packet_with_prefixed_lengths_ = has_length_prefix; |
| |
| if (HandleWriteBlocked()) { |
| return; |
| } |
| |
| QUIC_DLOG(INFO) << ENDPOINT << "Sending version negotiation packet: {" |
| << ParsedQuicVersionVectorToString( |
| framer_.supported_versions()) |
| << "}, " << (ietf_quic ? "" : "!") << "ietf_quic"; |
| std::unique_ptr<QuicEncryptedPacket> version_packet( |
| packet_generator_.SerializeVersionNegotiationPacket( |
| ietf_quic, has_length_prefix, framer_.supported_versions())); |
| QUIC_DVLOG(2) << ENDPOINT << "Sending version negotiation packet: {" |
| << ParsedQuicVersionVectorToString(framer_.supported_versions()) |
| << "}, " << (ietf_quic ? "" : "!") << "ietf_quic:" << std::endl |
| << QuicTextUtils::HexDump(QuicStringPiece( |
| version_packet->data(), version_packet->length())); |
| WriteResult result = writer_->WritePacket( |
| version_packet->data(), version_packet->length(), self_address().host(), |
| peer_address(), per_packet_options_); |
| |
| if (IsWriteError(result.status)) { |
| OnWriteError(result.error_code); |
| return; |
| } |
| if (IsWriteBlockedStatus(result.status)) { |
| visitor_->OnWriteBlocked(); |
| if (result.status == WRITE_STATUS_BLOCKED_DATA_BUFFERED) { |
| pending_version_negotiation_packet_ = false; |
| } |
| return; |
| } |
| |
| pending_version_negotiation_packet_ = false; |
| } |
| |
| size_t QuicConnection::SendCryptoData(EncryptionLevel level, |
| size_t write_length, |
| QuicStreamOffset offset) { |
| if (write_length == 0) { |
| QUIC_BUG << "Attempt to send empty crypto frame"; |
| return 0; |
| } |
| if (!ShouldGeneratePacket(HAS_RETRANSMITTABLE_DATA, IS_HANDSHAKE)) { |
| return 0; |
| } |
| ScopedPacketFlusher flusher(this); |
| return packet_generator_.ConsumeCryptoData(level, write_length, offset); |
| } |
| |
| QuicConsumedData QuicConnection::SendStreamData(QuicStreamId id, |
| size_t write_length, |
| QuicStreamOffset offset, |
| StreamSendingState state) { |
| if (state == NO_FIN && write_length == 0) { |
| QUIC_BUG << "Attempt to send empty stream frame"; |
| return QuicConsumedData(0, false); |
| } |
| |
| // Opportunistically bundle an ack with every outgoing packet. |
| // Particularly, we want to bundle with handshake packets since we don't know |
| // which decrypter will be used on an ack packet following a handshake |
| // packet (a handshake packet from client to server could result in a REJ or a |
| // SHLO from the server, leading to two different decrypters at the server.) |
| ScopedPacketFlusher flusher(this); |
| return packet_generator_.ConsumeData(id, write_length, offset, state); |
| } |
| |
| bool QuicConnection::SendControlFrame(const QuicFrame& frame) { |
| if (SupportsMultiplePacketNumberSpaces() && |
| (encryption_level_ == ENCRYPTION_INITIAL || |
| encryption_level_ == ENCRYPTION_HANDSHAKE) && |
| frame.type != PING_FRAME) { |
| // Allow PING frame to be sent without APPLICATION key. For example, when |
| // anti-amplification limit is used, client needs to send something to avoid |
| // handshake deadlock. |
| QUIC_DVLOG(1) << ENDPOINT << "Failed to send control frame: " << frame |
| << " at encryption level: " |
| << EncryptionLevelToString(encryption_level_); |
| return false; |
| } |
| ScopedPacketFlusher flusher(this); |
| const bool consumed = |
| packet_generator_.ConsumeRetransmittableControlFrame(frame); |
| if (!consumed) { |
| QUIC_DVLOG(1) << ENDPOINT << "Failed to send control frame: " << frame; |
| return false; |
| } |
| if (frame.type == PING_FRAME) { |
| // Flush PING frame immediately. |
| packet_generator_.FlushAllQueuedFrames(); |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnPingSent(); |
| } |
| } |
| if (frame.type == BLOCKED_FRAME) { |
| stats_.blocked_frames_sent++; |
| } |
| return true; |
| } |
| |
| void QuicConnection::OnStreamReset(QuicStreamId id, |
| QuicRstStreamErrorCode error) { |
| if (error == QUIC_STREAM_NO_ERROR) { |
| // All data for streams which are reset with QUIC_STREAM_NO_ERROR must |
| // be received by the peer. |
| return; |
| } |
| // Flush stream frames of reset stream. |
| if (packet_generator_.HasPendingStreamFramesOfStream(id)) { |
| ScopedPacketFlusher flusher(this); |
| packet_generator_.FlushAllQueuedFrames(); |
| } |
| |
| sent_packet_manager_.CancelRetransmissionsForStream(id); |
| // Remove all queued packets which only contain data for the reset stream. |
| // TODO(fayang): consider removing this because it should be rarely executed. |
| auto packet_iterator = queued_packets_.begin(); |
| while (packet_iterator != queued_packets_.end()) { |
| QuicFrames* retransmittable_frames = |
| &packet_iterator->retransmittable_frames; |
| if (retransmittable_frames->empty()) { |
| ++packet_iterator; |
| continue; |
| } |
| // NOTE THAT RemoveFramesForStream removes only STREAM frames |
| // for the specified stream. |
| RemoveFramesForStream(retransmittable_frames, id); |
| if (!retransmittable_frames->empty()) { |
| ++packet_iterator; |
| continue; |
| } |
| delete[] packet_iterator->encrypted_buffer; |
| ClearSerializedPacket(&(*packet_iterator)); |
| packet_iterator = queued_packets_.erase(packet_iterator); |
| } |
| // TODO(ianswett): Consider checking for 3 RTOs when the last stream is |
| // cancelled as well. |
| } |
| |
| const QuicConnectionStats& QuicConnection::GetStats() { |
| const RttStats* rtt_stats = sent_packet_manager_.GetRttStats(); |
| |
| // Update rtt and estimated bandwidth. |
| QuicTime::Delta min_rtt = rtt_stats->min_rtt(); |
| if (min_rtt.IsZero()) { |
| // If min RTT has not been set, use initial RTT instead. |
| min_rtt = rtt_stats->initial_rtt(); |
| } |
| stats_.min_rtt_us = min_rtt.ToMicroseconds(); |
| |
| QuicTime::Delta srtt = rtt_stats->SmoothedOrInitialRtt(); |
| stats_.srtt_us = srtt.ToMicroseconds(); |
| |
| stats_.estimated_bandwidth = sent_packet_manager_.BandwidthEstimate(); |
| stats_.max_packet_size = packet_generator_.GetCurrentMaxPacketLength(); |
| stats_.max_received_packet_size = largest_received_packet_size_; |
| return stats_; |
| } |
| |
| void QuicConnection::OnCoalescedPacket(const QuicEncryptedPacket& packet) { |
| QueueCoalescedPacket(packet); |
| } |
| |
| void QuicConnection::OnUndecryptablePacket(const QuicEncryptedPacket& packet, |
| EncryptionLevel decryption_level, |
| bool has_decryption_key) { |
| QUIC_DVLOG(1) << ENDPOINT << "Received undecryptable packet of length " |
| << packet.length() << " with" |
| << (has_decryption_key ? "" : "out") << " key at level " |
| << EncryptionLevelToString(decryption_level) |
| << " while connection is at encryption level " |
| << EncryptionLevelToString(encryption_level_); |
| DCHECK(EncryptionLevelIsValid(decryption_level)); |
| if (encryption_level_ != ENCRYPTION_FORWARD_SECURE) { |
| ++stats_.undecryptable_packets_received_before_handshake_complete; |
| } |
| |
| bool should_enqueue = true; |
| if (encryption_level_ == ENCRYPTION_FORWARD_SECURE) { |
| // We do not expect to install any further keys. |
| should_enqueue = false; |
| } else if (undecryptable_packets_.size() >= max_undecryptable_packets_) { |
| // We do not queue more than max_undecryptable_packets_ packets. |
| should_enqueue = false; |
| } else if (has_decryption_key) { |
| // We already have the key for this decryption level, therefore no |
| // future keys will allow it be decrypted. |
| should_enqueue = false; |
| } else if (version().KnowsWhichDecrypterToUse() && |
| decryption_level <= encryption_level_) { |
| // On versions that know which decrypter to use, we install keys in order |
| // so we will not get newer keys for lower encryption levels. |
| should_enqueue = false; |
| } |
| |
| if (should_enqueue) { |
| QueueUndecryptablePacket(packet); |
| } else if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnUndecryptablePacket(); |
| } |
| } |
| |
| void QuicConnection::ProcessUdpPacket(const QuicSocketAddress& self_address, |
| const QuicSocketAddress& peer_address, |
| const QuicReceivedPacket& packet) { |
| if (!connected_) { |
| return; |
| } |
| QUIC_DVLOG(2) << ENDPOINT << "Received encrypted " << packet.length() |
| << " bytes:" << std::endl |
| << QuicTextUtils::HexDump( |
| QuicStringPiece(packet.data(), packet.length())); |
| QUIC_BUG_IF(current_packet_data_ != nullptr) |
| << "ProcessUdpPacket must not be called while processing a packet."; |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnPacketReceived(self_address, peer_address, packet); |
| } |
| last_size_ = packet.length(); |
| current_packet_data_ = packet.data(); |
| |
| last_packet_destination_address_ = self_address; |
| last_packet_source_address_ = peer_address; |
| if (!self_address_.IsInitialized()) { |
| self_address_ = last_packet_destination_address_; |
| } |
| |
| if (!direct_peer_address_.IsInitialized()) { |
| direct_peer_address_ = last_packet_source_address_; |
| } |
| |
| if (!effective_peer_address_.IsInitialized()) { |
| const QuicSocketAddress effective_peer_addr = |
| GetEffectivePeerAddressFromCurrentPacket(); |
| |
| // effective_peer_address_ must be initialized at the beginning of the |
| // first packet processed(here). If effective_peer_addr is uninitialized, |
| // just set effective_peer_address_ to the direct peer address. |
| effective_peer_address_ = effective_peer_addr.IsInitialized() |
| ? effective_peer_addr |
| : direct_peer_address_; |
| } |
| |
| stats_.bytes_received += packet.length(); |
| ++stats_.packets_received; |
| if (EnforceAntiAmplificationLimit()) { |
| bytes_received_before_address_validation_ += last_size_; |
| } |
| |
| // Ensure the time coming from the packet reader is within 2 minutes of now. |
| if (std::abs((packet.receipt_time() - clock_->ApproximateNow()).ToSeconds()) > |
| 2 * 60) { |
| QUIC_BUG << "Packet receipt time:" |
| << packet.receipt_time().ToDebuggingValue() |
| << " too far from current time:" |
| << clock_->ApproximateNow().ToDebuggingValue(); |
| } |
| time_of_last_received_packet_ = packet.receipt_time(); |
| QUIC_DVLOG(1) << ENDPOINT << "time of last received packet: " |
| << time_of_last_received_packet_.ToDebuggingValue(); |
| |
| ScopedPacketFlusher flusher(this); |
| if (!framer_.ProcessPacket(packet)) { |
| // If we are unable to decrypt this packet, it might be |
| // because the CHLO or SHLO packet was lost. |
| QUIC_DVLOG(1) << ENDPOINT |
| << "Unable to process packet. Last packet processed: " |
| << last_header_.packet_number; |
| current_packet_data_ = nullptr; |
| is_current_packet_connectivity_probing_ = false; |
| |
| MaybeProcessCoalescedPackets(); |
| return; |
| } |
| |
| ++stats_.packets_processed; |
| |
| QUIC_DLOG_IF(INFO, active_effective_peer_migration_type_ != NO_CHANGE) |
| << "sent_packet_manager_.GetLargestObserved() = " |
| << sent_packet_manager_.GetLargestObserved() |
| << ", highest_packet_sent_before_effective_peer_migration_ = " |
| << highest_packet_sent_before_effective_peer_migration_; |
| if (active_effective_peer_migration_type_ != NO_CHANGE && |
| sent_packet_manager_.GetLargestObserved().IsInitialized() && |
| (!highest_packet_sent_before_effective_peer_migration_.IsInitialized() || |
| sent_packet_manager_.GetLargestObserved() > |
| highest_packet_sent_before_effective_peer_migration_)) { |
| if (perspective_ == Perspective::IS_SERVER) { |
| OnEffectivePeerMigrationValidated(); |
| } |
| } |
| |
| MaybeProcessCoalescedPackets(); |
| MaybeProcessUndecryptablePackets(); |
| MaybeSendInResponseToPacket(); |
| SetPingAlarm(); |
| current_packet_data_ = nullptr; |
| is_current_packet_connectivity_probing_ = false; |
| } |
| |
| void QuicConnection::OnBlockedWriterCanWrite() { |
| writer_->SetWritable(); |
| OnCanWrite(); |
| } |
| |
| void QuicConnection::OnCanWrite() { |
| if (!connected_) { |
| return; |
| } |
| DCHECK(!writer_->IsWriteBlocked()); |
| |
| // Add a flusher to ensure the connection is marked app-limited. |
| ScopedPacketFlusher flusher(this); |
| |
| WriteQueuedPackets(); |
| const QuicTime ack_timeout = |
| uber_received_packet_manager_.GetEarliestAckTimeout(); |
| if (ack_timeout.IsInitialized() && ack_timeout <= clock_->ApproximateNow()) { |
| // Send an ACK now because either 1) we were write blocked when we last |
| // tried to send an ACK, or 2) both ack alarm and send alarm were set to |
| // go off together. |
| if (SupportsMultiplePacketNumberSpaces()) { |
| SendAllPendingAcks(); |
| } else { |
| SendAck(); |
| } |
| } |
| if (!session_decides_what_to_write()) { |
| WritePendingRetransmissions(); |
| } |
| |
| WriteNewData(); |
| } |
| |
| void QuicConnection::WriteNewData() { |
| // Sending queued packets may have caused the socket to become write blocked, |
| // or the congestion manager to prohibit sending. If we've sent everything |
| // we had queued and we're still not blocked, let the visitor know it can |
| // write more. |
| if (!CanWrite(HAS_RETRANSMITTABLE_DATA)) { |
| return; |
| } |
| |
| { |
| ScopedPacketFlusher flusher(this); |
| visitor_->OnCanWrite(); |
| } |
| |
| // After the visitor writes, it may have caused the socket to become write |
| // blocked or the congestion manager to prohibit sending, so check again. |
| if (visitor_->WillingAndAbleToWrite() && !send_alarm_->IsSet() && |
| CanWrite(HAS_RETRANSMITTABLE_DATA)) { |
| // We're not write blocked, but some stream didn't write out all of its |
| // bytes. Register for 'immediate' resumption so we'll keep writing after |
| // other connections and events have had a chance to use the thread. |
| send_alarm_->Set(clock_->ApproximateNow()); |
| } |
| } |
| |
| void QuicConnection::WriteIfNotBlocked() { |
| if (!HandleWriteBlocked()) { |
| OnCanWrite(); |
| } |
| } |
| |
| void QuicConnection::WriteAndBundleAcksIfNotBlocked() { |
| if (!HandleWriteBlocked()) { |
| ScopedPacketFlusher flusher(this); |
| WriteIfNotBlocked(); |
| } |
| } |
| |
| bool QuicConnection::ProcessValidatedPacket(const QuicPacketHeader& header) { |
| if (perspective_ == Perspective::IS_SERVER && self_address_.IsInitialized() && |
| last_packet_destination_address_.IsInitialized() && |
| self_address_ != last_packet_destination_address_) { |
| // Allow change between pure IPv4 and equivalent mapped IPv4 address. |
| if (self_address_.port() != last_packet_destination_address_.port() || |
| self_address_.host().Normalized() != |
| last_packet_destination_address_.host().Normalized()) { |
| if (!visitor_->AllowSelfAddressChange()) { |
| CloseConnection( |
| QUIC_ERROR_MIGRATING_ADDRESS, |
| "Self address migration is not supported at the server.", |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return false; |
| } |
| } |
| self_address_ = last_packet_destination_address_; |
| } |
| |
| if (PacketCanReplaceConnectionId(header, perspective_) && |
| server_connection_id_ != header.source_connection_id) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Replacing connection ID " |
| << server_connection_id_ << " with " |
| << header.source_connection_id; |
| server_connection_id_ = header.source_connection_id; |
| packet_generator_.SetServerConnectionId(server_connection_id_); |
| } |
| |
| if (!ValidateReceivedPacketNumber(header.packet_number)) { |
| return false; |
| } |
| |
| if (!version_negotiated_) { |
| if (perspective_ == Perspective::IS_CLIENT) { |
| DCHECK(!header.version_flag || header.form != GOOGLE_QUIC_PACKET); |
| if (!VersionHasIetfInvariantHeader(framer_.transport_version())) { |
| // If the client gets a packet without the version flag from the server |
| // it should stop sending version since the version negotiation is done. |
| // IETF QUIC stops sending version once encryption level switches to |
| // forward secure. |
| packet_generator_.StopSendingVersion(); |
| } |
| version_negotiated_ = true; |
| visitor_->OnSuccessfulVersionNegotiation(version()); |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnSuccessfulVersionNegotiation(version()); |
| } |
| } |
| } |
| |
| if (last_size_ > largest_received_packet_size_) { |
| largest_received_packet_size_ = last_size_; |
| } |
| |
| if (perspective_ == Perspective::IS_SERVER && |
| encryption_level_ == ENCRYPTION_INITIAL && |
| last_size_ > packet_generator_.GetCurrentMaxPacketLength()) { |
| SetMaxPacketLength(last_size_); |
| } |
| return true; |
| } |
| |
| bool QuicConnection::ValidateReceivedPacketNumber( |
| QuicPacketNumber packet_number) { |
| // If this packet has already been seen, or the sender has told us that it |
| // will not be retransmitted, then stop processing the packet. |
| if (!uber_received_packet_manager_.IsAwaitingPacket( |
| last_decrypted_packet_level_, packet_number)) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Packet " << packet_number |
| << " no longer being waited for at level " |
| << static_cast<int>(last_decrypted_packet_level_) |
| << ". Discarding."; |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnDuplicatePacket(packet_number); |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void QuicConnection::WriteQueuedPackets() { |
| DCHECK(!writer_->IsWriteBlocked()); |
| |
| if (pending_version_negotiation_packet_) { |
| SendVersionNegotiationPacket( |
| send_ietf_version_negotiation_packet_, |
| send_version_negotiation_packet_with_prefixed_lengths_); |
| } |
| |
| QUIC_CLIENT_HISTOGRAM_COUNTS("QuicSession.NumQueuedPacketsBeforeWrite", |
| queued_packets_.size(), 1, 1000, 50, ""); |
| while (!queued_packets_.empty()) { |
| DCHECK(!treat_queued_packets_as_sent_); |
| // WritePacket() can potentially clear all queued packets, so we need to |
| // save the first queued packet to a local variable before calling it. |
| SerializedPacket packet(std::move(queued_packets_.front())); |
| queued_packets_.pop_front(); |
| |
| const bool write_result = WritePacket(&packet); |
| |
| if (connected_ && !write_result) { |
| // Write failed but connection is open, re-insert |packet| into the |
| // front of the queue, it will be retried later. |
| queued_packets_.emplace_front(std::move(packet)); |
| break; |
| } |
| |
| delete[] packet.encrypted_buffer; |
| ClearSerializedPacket(&packet); |
| if (!connected_) { |
| DCHECK(queued_packets_.empty()) << "Queued packets should have been " |
| "cleared while closing connection"; |
| break; |
| } |
| |
| // Continue to send the next packet in queue. |
| } |
| |
| while (!buffered_packets_.empty()) { |
| DCHECK(treat_queued_packets_as_sent_); |
| QUIC_RELOADABLE_FLAG_COUNT_N(quic_treat_queued_packets_as_sent, 1, 3); |
| if (HandleWriteBlocked()) { |
| break; |
| } |
| const BufferedPacket& packet = buffered_packets_.front(); |
| WriteResult result = writer_->WritePacket( |
| packet.encrypted_buffer.data(), packet.encrypted_buffer.length(), |
| packet.self_address.host(), packet.peer_address, per_packet_options_); |
| QUIC_DVLOG(1) << ENDPOINT << "Sending buffered packet, result: " << result; |
| if (IsMsgTooBig(result) && |
| packet.encrypted_buffer.length() > long_term_mtu_) { |
| // When MSG_TOO_BIG is returned, the system typically knows what the |
| // actual MTU is, so there is no need to probe further. |
| // TODO(wub): Reduce max packet size to a safe default, or the actual MTU. |
| mtu_discoverer_.Disable(); |
| mtu_discovery_alarm_->Cancel(); |
| continue; |
| } |
| if (IsWriteError(result.status)) { |
| OnWriteError(result.error_code); |
| break; |
| } |
| if (result.status == WRITE_STATUS_OK || |
| result.status == WRITE_STATUS_BLOCKED_DATA_BUFFERED) { |
| buffered_packets_.pop_front(); |
| } |
| if (IsWriteBlockedStatus(result.status)) { |
| visitor_->OnWriteBlocked(); |
| break; |
| } |
| } |
| } |
| |
| void QuicConnection::WritePendingRetransmissions() { |
| DCHECK(!session_decides_what_to_write()); |
| // Keep writing as long as there's a pending retransmission which can be |
| // written. |
| while (sent_packet_manager_.HasPendingRetransmissions() && |
| CanWrite(HAS_RETRANSMITTABLE_DATA)) { |
| const QuicPendingRetransmission pending = |
| sent_packet_manager_.NextPendingRetransmission(); |
| |
| // Re-packetize the frames with a new packet number for retransmission. |
| // Retransmitted packets use the same packet number length as the |
| // original. |
| // Flush the packet generator before making a new packet. |
| // TODO(ianswett): Implement ReserializeAllFrames as a separate path that |
| // does not require the creator to be flushed. |
| // TODO(fayang): FlushAllQueuedFrames should only be called once, and should |
| // be moved outside of the loop. Also, CanWrite is not checked after the |
| // generator is flushed. |
| { |
| ScopedPacketFlusher flusher(this); |
| packet_generator_.FlushAllQueuedFrames(); |
| } |
| DCHECK(!packet_generator_.HasPendingFrames()); |
| char buffer[kMaxOutgoingPacketSize]; |
| packet_generator_.ReserializeAllFrames(pending, buffer, |
| kMaxOutgoingPacketSize); |
| } |
| } |
| |
| void QuicConnection::SendProbingRetransmissions() { |
| while (sent_packet_manager_.GetSendAlgorithm()->ShouldSendProbingPacket() && |
| CanWrite(HAS_RETRANSMITTABLE_DATA)) { |
| if (!visitor_->SendProbingData()) { |
| QUIC_DVLOG(1) |
| << "Cannot send probing retransmissions: nothing to retransmit."; |
| break; |
| } |
| |
| if (!session_decides_what_to_write()) { |
| DCHECK(sent_packet_manager_.HasPendingRetransmissions()); |
| WritePendingRetransmissions(); |
| } |
| } |
| } |
| |
| void QuicConnection::RetransmitUnackedPackets( |
| TransmissionType retransmission_type) { |
| sent_packet_manager_.RetransmitUnackedPackets(retransmission_type); |
| |
| WriteIfNotBlocked(); |
| } |
| |
| void QuicConnection::NeuterUnencryptedPackets() { |
| sent_packet_manager_.NeuterUnencryptedPackets(); |
| // This may have changed the retransmission timer, so re-arm it. |
| SetRetransmissionAlarm(); |
| } |
| |
| bool QuicConnection::ShouldGeneratePacket( |
| HasRetransmittableData retransmittable, |
| IsHandshake handshake) { |
| // We should serialize handshake packets immediately to ensure that they |
| // end up sent at the right encryption level. |
| if (handshake == IS_HANDSHAKE) { |
| if (LimitedByAmplificationFactor()) { |
| // Server is constrained by the amplification restriction. |
| QUIC_DVLOG(1) << ENDPOINT << "Constrained by amplification restriction"; |
| return false; |
| } |
| return true; |
| } |
| |
| return CanWrite(retransmittable); |
| } |
| |
| const QuicFrames QuicConnection::MaybeBundleAckOpportunistically() { |
| QuicFrames frames; |
| const bool has_pending_ack = |
| uber_received_packet_manager_ |
| .GetAckTimeout(QuicUtils::GetPacketNumberSpace(encryption_level_)) |
| .IsInitialized(); |
| if (!has_pending_ack && stop_waiting_count_ <= 1) { |
| // No need to send an ACK. |
| return frames; |
| } |
| ResetAckStates(); |
| |
| QUIC_DVLOG(1) << ENDPOINT << "Bundle an ACK opportunistically"; |
| QuicFrame updated_ack_frame = GetUpdatedAckFrame(); |
| QUIC_BUG_IF(updated_ack_frame.ack_frame->packets.Empty()) |
| << ENDPOINT << "Attempted to opportunistically bundle an empty " |
| << EncryptionLevelToString(encryption_level_) << " ACK, " |
| << (has_pending_ack ? "" : "!") << "has_pending_ack, stop_waiting_count_ " |
| << stop_waiting_count_; |
| frames.push_back(updated_ack_frame); |
| |
| if (!no_stop_waiting_frames_) { |
| QuicStopWaitingFrame stop_waiting; |
| PopulateStopWaitingFrame(&stop_waiting); |
| frames.push_back(QuicFrame(stop_waiting)); |
| } |
| return frames; |
| } |
| |
| bool QuicConnection::CanWrite(HasRetransmittableData retransmittable) { |
| if (!connected_) { |
| return false; |
| } |
| |
| if (session_decides_what_to_write() && |
| sent_packet_manager_.pending_timer_transmission_count() > 0) { |
| // Force sending the retransmissions for HANDSHAKE, TLP, RTO, PROBING cases. |
| return true; |
| } |
| |
| if (HandleWriteBlocked()) { |
| return false; |
| } |
| |
| // Allow acks to be sent immediately. |
| if (retransmittable == NO_RETRANSMITTABLE_DATA) { |
| return true; |
| } |
| // If the send alarm is set, wait for it to fire. |
| if (send_alarm_->IsSet()) { |
| return false; |
| } |
| |
| QuicTime now = clock_->Now(); |
| QuicTime::Delta delay = sent_packet_manager_.TimeUntilSend(now); |
| if (delay.IsInfinite()) { |
| send_alarm_->Cancel(); |
| return false; |
| } |
| |
| // Scheduler requires a delay. |
| if (!delay.IsZero()) { |
| if (delay <= release_time_into_future_) { |
| // Required delay is within pace time into future, send now. |
| return true; |
| } |
| // Cannot send packet now because delay is too far in the future. |
| send_alarm_->Update(now + delay, QuicTime::Delta::FromMilliseconds(1)); |
| QUIC_DVLOG(1) << ENDPOINT << "Delaying sending " << delay.ToMilliseconds() |
| << "ms"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool QuicConnection::WritePacket(SerializedPacket* packet) { |
| if (ShouldDiscardPacket(*packet)) { |
| ++stats_.packets_discarded; |
| return true; |
| } |
| if (sent_packet_manager_.GetLargestSentPacket().IsInitialized() && |
| packet->packet_number < sent_packet_manager_.GetLargestSentPacket()) { |
| QUIC_BUG << "Attempt to write packet:" << packet->packet_number |
| << " after:" << sent_packet_manager_.GetLargestSentPacket(); |
| QUIC_CLIENT_HISTOGRAM_COUNTS("QuicSession.NumQueuedPacketsAtOutOfOrder", |
| queued_packets_.size(), 1, 1000, 50, ""); |
| CloseConnection(QUIC_INTERNAL_ERROR, "Packet written out of order.", |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return true; |
| } |
| SerializedPacketFate fate = DeterminePacketFate(); |
| // Termination packets are encrypted and saved, so don't exit early. |
| const bool is_termination_packet = IsTerminationPacket(*packet); |
| if (!treat_queued_packets_as_sent_ && HandleWriteBlocked() && |
| !is_termination_packet) { |
| return false; |
| } |
| |
| QuicPacketNumber packet_number = packet->packet_number; |
| |
| QuicPacketLength encrypted_length = packet->encrypted_length; |
| // Termination packets are eventually owned by TimeWaitListManager. |
| // Others are deleted at the end of this call. |
| if (is_termination_packet) { |
| if (termination_packets_ == nullptr) { |
| termination_packets_.reset( |
| new std::vector<std::unique_ptr<QuicEncryptedPacket>>); |
| } |
| // Copy the buffer so it's owned in the future. |
| char* buffer_copy = CopyBuffer(*packet); |
| termination_packets_->emplace_back( |
| new QuicEncryptedPacket(buffer_copy, encrypted_length, true)); |
| // This assures we won't try to write *forced* packets when blocked. |
| // Return true to stop processing. |
| if (!treat_queued_packets_as_sent_ && HandleWriteBlocked()) { |
| return true; |
| } |
| } |
| |
| const bool looks_like_mtu_probe = packet->retransmittable_frames.empty() && |
| packet->encrypted_length > long_term_mtu_; |
| DCHECK_LE(encrypted_length, kMaxOutgoingPacketSize); |
| if (!looks_like_mtu_probe) { |
| DCHECK_LE(encrypted_length, packet_generator_.GetCurrentMaxPacketLength()); |
| } |
| QUIC_DVLOG(1) << ENDPOINT << "Sending packet " << packet_number << " : " |
| << (IsRetransmittable(*packet) == HAS_RETRANSMITTABLE_DATA |
| ? "data bearing " |
| : " ack only ") |
| << ", encryption level: " |
| << EncryptionLevelToString(packet->encryption_level) |
| << ", encrypted length:" << encrypted_length; |
| QUIC_DVLOG(2) << ENDPOINT << "packet(" << packet_number << "): " << std::endl |
| << QuicTextUtils::HexDump(QuicStringPiece( |
| packet->encrypted_buffer, encrypted_length)); |
| |
| // Measure the RTT from before the write begins to avoid underestimating the |
| // min_rtt_, especially in cases where the thread blocks or gets swapped out |
| // during the WritePacket below. |
| QuicTime packet_send_time = clock_->Now(); |
| if (supports_release_time_ && per_packet_options_ != nullptr) { |
| QuicTime next_release_time = sent_packet_manager_.GetNextReleaseTime(); |
| QuicTime::Delta release_time_delay = QuicTime::Delta::Zero(); |
| QuicTime now = packet_send_time; |
| if (next_release_time > now) { |
| release_time_delay = next_release_time - now; |
| // Set packet_send_time to the future to make the RTT estimation accurate. |
| packet_send_time = next_release_time; |
| } |
| per_packet_options_->release_time_delay = release_time_delay; |
| } |
| WriteResult result(WRITE_STATUS_OK, encrypted_length); |
| switch (fate) { |
| case COALESCE: |
| DCHECK(false); |
| break; |
| case BUFFER: |
| DCHECK(treat_queued_packets_as_sent_); |
| QUIC_RELOADABLE_FLAG_COUNT_N(quic_treat_queued_packets_as_sent, 2, 3); |
| QUIC_DVLOG(1) << ENDPOINT << "Adding packet: " << packet->packet_number |
| << " to buffered packets"; |
| buffered_packets_.emplace_back(*packet, self_address(), peer_address()); |
| break; |
| case SEND_TO_WRITER: |
| result = writer_->WritePacket(packet->encrypted_buffer, encrypted_length, |
| self_address().host(), peer_address(), |
| per_packet_options_); |
| break; |
| default: |
| DCHECK(false); |
| break; |
| } |
| |
| QUIC_HISTOGRAM_ENUM( |
| "QuicConnection.WritePacketStatus", result.status, |
| WRITE_STATUS_NUM_VALUES, |
| "Status code returned by writer_->WritePacket() in QuicConnection."); |
| |
| if (IsWriteBlockedStatus(result.status)) { |
| // Ensure the writer is still write blocked, otherwise QUIC may continue |
| // trying to write when it will not be able to. |
| DCHECK(writer_->IsWriteBlocked()); |
| visitor_->OnWriteBlocked(); |
| // If the socket buffers the data, then the packet should not |
| // be queued and sent again, which would result in an unnecessary |
| // duplicate packet being sent. The helper must call OnCanWrite |
| // when the write completes, and OnWriteError if an error occurs. |
| if (result.status != WRITE_STATUS_BLOCKED_DATA_BUFFERED) { |
| if (treat_queued_packets_as_sent_) { |
| QUIC_RELOADABLE_FLAG_COUNT_N(quic_treat_queued_packets_as_sent, 3, 3); |
| QUIC_DVLOG(1) << ENDPOINT << "Adding packet: " << packet->packet_number |
| << " to buffered packets"; |
| buffered_packets_.emplace_back(*packet, self_address(), peer_address()); |
| } else { |
| return false; |
| } |
| } |
| } |
| |
| // In some cases, an MTU probe can cause EMSGSIZE. This indicates that the |
| // MTU discovery is permanently unsuccessful. |
| if (IsMsgTooBig(result) && looks_like_mtu_probe) { |
| if (mtu_discovery_v2_) { |
| // When MSG_TOO_BIG is returned, the system typically knows what the |
| // actual MTU is, so there is no need to probe further. |
| // TODO(wub): Reduce max packet size to a safe default, or the actual MTU. |
| QUIC_DVLOG(1) << ENDPOINT << " MTU probe packet too big, size:" |
| << packet->encrypted_length |
| << ", long_term_mtu_:" << long_term_mtu_; |
| mtu_discoverer_.Disable(); |
| } else { |
| mtu_discovery_target_ = 0; |
| } |
| mtu_discovery_alarm_->Cancel(); |
| // The write failed, but the writer is not blocked, so return true. |
| return true; |
| } |
| |
| if (IsWriteError(result.status)) { |
| OnWriteError(result.error_code); |
| QUIC_LOG_FIRST_N(ERROR, 10) |
| << ENDPOINT << "failed writing packet " << packet_number << " of " |
| << encrypted_length << " bytes from " << self_address().host() << " to " |
| << peer_address() << ", with error code " << result.error_code; |
| return false; |
| } |
| |
| if (debug_visitor_ != nullptr) { |
| // Pass the write result to the visitor. |
| debug_visitor_->OnPacketSent(*packet, packet->original_packet_number, |
| packet->transmission_type, packet_send_time); |
| } |
| if (IsRetransmittable(*packet) == HAS_RETRANSMITTABLE_DATA) { |
| if (!is_path_degrading_ && !path_degrading_alarm_->IsSet()) { |
| // This is the first retransmittable packet on the working path. |
| // Start the path degrading alarm to detect new path degrading. |
| SetPathDegradingAlarm(); |
| } |
| |
| // Update |time_of_first_packet_sent_after_receiving_| if this is the |
| // first packet sent after the last packet was received. If it were |
| // updated on every sent packet, then sending into a black hole might |
| // never timeout. |
| if (time_of_first_packet_sent_after_receiving_ < |
| time_of_last_received_packet_) { |
| time_of_first_packet_sent_after_receiving_ = packet_send_time; |
| } |
| } |
| |
| MaybeSetMtuAlarm(packet_number); |
| QUIC_DVLOG(1) << ENDPOINT << "time we began writing last sent packet: " |
| << packet_send_time.ToDebuggingValue(); |
| |
| if (EnforceAntiAmplificationLimit()) { |
| // Include bytes sent even if they are not in flight. |
| bytes_sent_before_address_validation_ += packet->encrypted_length; |
| } |
| |
| const bool in_flight = sent_packet_manager_.OnPacketSent( |
| packet, packet->original_packet_number, packet_send_time, |
| packet->transmission_type, IsRetransmittable(*packet)); |
| |
| if (in_flight || !retransmission_alarm_->IsSet()) { |
| SetRetransmissionAlarm(); |
| } |
| SetPingAlarm(); |
| |
| // The packet number length must be updated after OnPacketSent, because it |
| // may change the packet number length in packet. |
| packet_generator_.UpdatePacketNumberLength( |
| sent_packet_manager_.GetLeastUnacked(), |
| sent_packet_manager_.EstimateMaxPacketsInFlight(max_packet_length())); |
| |
| stats_.bytes_sent += result.bytes_written; |
| ++stats_.packets_sent; |
| if (packet->transmission_type != NOT_RETRANSMISSION) { |
| stats_.bytes_retransmitted += result.bytes_written; |
| ++stats_.packets_retransmitted; |
| } |
| |
| return true; |
| } |
| |
| void QuicConnection::FlushPackets() { |
| if (!connected_) { |
| return; |
| } |
| |
| if (!writer_->IsBatchMode()) { |
| return; |
| } |
| |
| if (HandleWriteBlocked()) { |
| QUIC_DLOG(INFO) << ENDPOINT << "FlushPackets called while blocked."; |
| return; |
| } |
| |
| WriteResult result = writer_->Flush(); |
| |
| if (HandleWriteBlocked()) { |
| DCHECK_EQ(WRITE_STATUS_BLOCKED, result.status) |
| << "Unexpected flush result:" << result; |
| QUIC_DLOG(INFO) << ENDPOINT << "Write blocked in FlushPackets."; |
| return; |
| } |
| |
| if (IsWriteError(result.status)) { |
| OnWriteError(result.error_code); |
| } |
| } |
| |
| bool QuicConnection::IsMsgTooBig(const WriteResult& result) { |
| return (result.status == WRITE_STATUS_MSG_TOO_BIG) || |
| (IsWriteError(result.status) && result.error_code == QUIC_EMSGSIZE); |
| } |
| |
| bool QuicConnection::ShouldDiscardPacket(const SerializedPacket& packet) { |
| if (!connected_) { |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "Not sending packet as connection is disconnected."; |
| return true; |
| } |
| |
| QuicPacketNumber packet_number = packet.packet_number; |
| if (encryption_level_ == ENCRYPTION_FORWARD_SECURE && |
| packet.encryption_level == ENCRYPTION_INITIAL) { |
| // Drop packets that are NULL encrypted since the peer won't accept them |
| // anymore. |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "Dropping NULL encrypted packet: " << packet_number |
| << " since the connection is forward secure."; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void QuicConnection::OnWriteError(int error_code) { |
| if (write_error_occurred_) { |
| // A write error already occurred. The connection is being closed. |
| return; |
| } |
| write_error_occurred_ = true; |
| |
| const std::string error_details = QuicStrCat( |
| "Write failed with error: ", error_code, " (", strerror(error_code), ")"); |
| QUIC_LOG_FIRST_N(ERROR, 2) << ENDPOINT << error_details; |
| switch (error_code) { |
| case QUIC_EMSGSIZE: |
| CloseConnection(QUIC_PACKET_WRITE_ERROR, error_details, |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| break; |
| default: |
| // We can't send an error as the socket is presumably borked. |
| if (VersionHasIetfInvariantHeader(transport_version())) { |
| QUIC_CODE_COUNT(quic_tear_down_local_connection_on_write_error_ietf); |
| } else { |
| QUIC_CODE_COUNT( |
| quic_tear_down_local_connection_on_write_error_non_ietf); |
| } |
| CloseConnection(QUIC_PACKET_WRITE_ERROR, error_details, |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| } |
| } |
| |
| char* QuicConnection::GetPacketBuffer() { |
| return writer_->GetNextWriteLocation(self_address().host(), peer_address()); |
| } |
| |
| void QuicConnection::OnSerializedPacket(SerializedPacket* serialized_packet) { |
| if (serialized_packet->encrypted_buffer == nullptr) { |
| // We failed to serialize the packet, so close the connection. |
| // Specify that the close is silent, that no packet be sent, so no infinite |
| // loop here. |
| // TODO(ianswett): This is actually an internal error, not an |
| // encryption failure. |
| if (VersionHasIetfInvariantHeader(transport_version())) { |
| QUIC_CODE_COUNT( |
| quic_tear_down_local_connection_on_serialized_packet_ietf); |
| } else { |
| QUIC_CODE_COUNT( |
| quic_tear_down_local_connection_on_serialized_packet_non_ietf); |
| } |
| CloseConnection(QUIC_ENCRYPTION_FAILURE, |
| "Serialized packet does not have an encrypted buffer.", |
| ConnectionCloseBehavior::SILENT_CLOSE); |
| return; |
| } |
| |
| if (serialized_packet->retransmittable_frames.empty() && |
| !serialized_packet->original_packet_number.IsInitialized()) { |
| // Increment consecutive_num_packets_with_no_retransmittable_frames_ if |
| // this packet is a new transmission with no retransmittable frames. |
| ++consecutive_num_packets_with_no_retransmittable_frames_; |
| } else { |
| consecutive_num_packets_with_no_retransmittable_frames_ = 0; |
| } |
| SendOrQueuePacket(serialized_packet); |
| } |
| |
| void QuicConnection::OnUnrecoverableError(QuicErrorCode error, |
| const std::string& error_details) { |
| // The packet creator or generator encountered an unrecoverable error: tear |
| // down local connection state immediately. |
| if (VersionHasIetfInvariantHeader(transport_version())) { |
| QUIC_CODE_COUNT( |
| quic_tear_down_local_connection_on_unrecoverable_error_ietf); |
| } else { |
| QUIC_CODE_COUNT( |
| quic_tear_down_local_connection_on_unrecoverable_error_non_ietf); |
| } |
| CloseConnection(error, error_details, ConnectionCloseBehavior::SILENT_CLOSE); |
| } |
| |
| void QuicConnection::OnCongestionChange() { |
| visitor_->OnCongestionWindowChange(clock_->ApproximateNow()); |
| |
| // Uses the connection's smoothed RTT. If zero, uses initial_rtt. |
| QuicTime::Delta rtt = sent_packet_manager_.GetRttStats()->smoothed_rtt(); |
| if (rtt.IsZero()) { |
| rtt = sent_packet_manager_.GetRttStats()->initial_rtt(); |
| } |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnRttChanged(rtt); |
| } |
| } |
| |
| void QuicConnection::OnPathMtuIncreased(QuicPacketLength packet_size) { |
| if (packet_size > max_packet_length()) { |
| const QuicByteCount old_max_packet_length = max_packet_length(); |
| SetMaxPacketLength(packet_size); |
| if (mtu_discovery_v2_) { |
| mtu_discoverer_.OnMaxPacketLengthUpdated(old_max_packet_length, |
| max_packet_length()); |
| } |
| } |
| } |
| |
| void QuicConnection::OnHandshakeComplete() { |
| sent_packet_manager_.SetHandshakeConfirmed(); |
| // This may have changed the retransmission timer, so re-arm it. |
| SetRetransmissionAlarm(); |
| // The client should immediately ack the SHLO to confirm the handshake is |
| // complete with the server. |
| if (perspective_ == Perspective::IS_CLIENT && ack_frame_updated()) { |
| ack_alarm_->Update(clock_->ApproximateNow(), QuicTime::Delta::Zero()); |
| } |
| } |
| |
| void QuicConnection::SendOrQueuePacket(SerializedPacket* packet) { |
| // The caller of this function is responsible for checking CanWrite(). |
| if (packet->encrypted_buffer == nullptr) { |
| QUIC_BUG << "packet.encrypted_buffer == nullptr in to SendOrQueuePacket"; |
| return; |
| } |
| // If there are already queued packets, queue this one immediately to ensure |
| // it's written in sequence number order. |
| if (!queued_packets_.empty() || !WritePacket(packet)) { |
| if (!treat_queued_packets_as_sent_) { |
| // Take ownership of the underlying encrypted packet. |
| packet->encrypted_buffer = CopyBuffer(*packet); |
| queued_packets_.push_back(*packet); |
| packet->retransmittable_frames.clear(); |
| } |
| } |
| |
| ClearSerializedPacket(packet); |
| } |
| |
| void QuicConnection::OnPingTimeout() { |
| if (!retransmission_alarm_->IsSet()) { |
| visitor_->SendPing(); |
| } |
| } |
| |
| void QuicConnection::SendAck() { |
| DCHECK(!SupportsMultiplePacketNumberSpaces()); |
| QUIC_DVLOG(1) << ENDPOINT << "Sending an ACK proactively"; |
| QuicFrames frames; |
| frames.push_back(GetUpdatedAckFrame()); |
| if (!no_stop_waiting_frames_) { |
| QuicStopWaitingFrame stop_waiting; |
| PopulateStopWaitingFrame(&stop_waiting); |
| frames.push_back(QuicFrame(stop_waiting)); |
| } |
| if (!packet_generator_.FlushAckFrame(frames)) { |
| return; |
| } |
| ResetAckStates(); |
| if (consecutive_num_packets_with_no_retransmittable_frames_ < |
| max_consecutive_num_packets_with_no_retransmittable_frames_) { |
| return; |
| } |
| consecutive_num_packets_with_no_retransmittable_frames_ = 0; |
| if (packet_generator_.HasRetransmittableFrames() || |
| visitor_->WillingAndAbleToWrite()) { |
| // There are pending retransmittable frames. |
| return; |
| } |
| |
| visitor_->OnAckNeedsRetransmittableFrame(); |
| } |
| |
| void QuicConnection::OnPathDegradingTimeout() { |
| is_path_degrading_ = true; |
| visitor_->OnPathDegrading(); |
| } |
| |
| void QuicConnection::OnRetransmissionTimeout() { |
| DCHECK(!sent_packet_manager_.unacked_packets().empty() || |
| (sent_packet_manager_.handshake_mode_disabled() && |
| !sent_packet_manager_.handshake_confirmed())); |
| const QuicPacketNumber previous_created_packet_number = |
| packet_generator_.packet_number(); |
| if (close_connection_after_five_rtos_ && |
| sent_packet_manager_.GetConsecutiveRtoCount() >= 4) { |
| // Close on the 5th consecutive RTO, so after 4 previous RTOs have occurred. |
| CloseConnection(QUIC_TOO_MANY_RTOS, "5 consecutive retransmission timeouts", |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return; |
| } |
| if (sent_packet_manager_.pto_enabled() && max_consecutive_ptos_ > 0 && |
| sent_packet_manager_.GetConsecutivePtoCount() >= max_consecutive_ptos_) { |
| CloseConnection(QUIC_TOO_MANY_RTOS, |
| QuicStrCat(max_consecutive_ptos_ + 1, |
| "consecutive retransmission timeouts"), |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return; |
| } |
| |
| const auto retransmission_mode = |
| sent_packet_manager_.OnRetransmissionTimeout(); |
| if (skip_packet_number_for_pto_ && |
| retransmission_mode == QuicSentPacketManager::PTO_MODE && |
| sent_packet_manager_.pending_timer_transmission_count() == 1) { |
| // Skip a packet number when a single PTO packet is sent to elicit an |
| // immediate ACK. |
| packet_generator_.SkipNPacketNumbers( |
| 1, sent_packet_manager_.GetLeastUnacked(), |
| sent_packet_manager_.EstimateMaxPacketsInFlight(max_packet_length())); |
| } |
| WriteIfNotBlocked(); |
| |
| // A write failure can result in the connection being closed, don't attempt to |
| // write further packets, or to set alarms. |
| if (!connected_) { |
| return; |
| } |
| |
| // In the PTO and TLP cases, the SentPacketManager gives the connection the |
| // opportunity to send new data before retransmitting. |
| if (sent_packet_manager_.pto_enabled()) { |
| sent_packet_manager_.MaybeSendProbePackets(); |
| } else if (sent_packet_manager_.MaybeRetransmitTailLossProbe()) { |
| // Send the pending retransmission now that it's been queued. |
| WriteIfNotBlocked(); |
| } |
| |
| if (session_decides_what_to_write()) { |
| if (packet_generator_.packet_number() == previous_created_packet_number && |
| (retransmission_mode == QuicSentPacketManager::TLP_MODE || |
| retransmission_mode == QuicSentPacketManager::RTO_MODE || |
| retransmission_mode == QuicSentPacketManager::PTO_MODE) && |
| !visitor_->WillingAndAbleToWrite()) { |
| // Send PING if timer fires in RTO or PTO mode but there is no data to |
| // send. |
| // When TLP fires, either new data or tail loss probe should be sent. |
| // There is corner case where TLP fires after RTO because packets get |
| // acked. Two packets are marked RTO_RETRANSMITTED, but the first packet |
| // is retransmitted as two packets because of packet number length |
| // increases (please see QuicConnectionTest.RtoPacketAsTwo). |
| QUIC_DLOG_IF(WARNING, |
| retransmission_mode == QuicSentPacketManager::TLP_MODE && |
| stats_.rto_count == 0) |
| << "No packet gets sent when timer fires in TLP mode, sending PING"; |
| DCHECK_LT(0u, sent_packet_manager_.pending_timer_transmission_count()); |
| visitor_->SendPing(); |
| } |
| if (retransmission_mode == QuicSentPacketManager::PTO_MODE) { |
| sent_packet_manager_.AdjustPendingTimerTransmissions(); |
| } |
| if (retransmission_mode != QuicSentPacketManager::LOSS_MODE) { |
| // When timer fires in TLP or RTO mode, ensure 1) at least one packet is |
| // created, or there is data to send and available credit (such that |
| // packets will be sent eventually). |
| QUIC_BUG_IF( |
| packet_generator_.packet_number() == previous_created_packet_number && |
| (!visitor_->WillingAndAbleToWrite() || |
| sent_packet_manager_.pending_timer_transmission_count() == 0u)) |
| << "retransmission_mode: " << retransmission_mode |
| << ", packet_number: " << packet_generator_.packet_number() |
| << ", session has data to write: " |
| << visitor_->WillingAndAbleToWrite() |
| << ", writer is blocked: " << writer_->IsWriteBlocked() |
| << ", pending_timer_transmission_count: " |
| << sent_packet_manager_.pending_timer_transmission_count(); |
| } |
| } |
| |
| // Ensure the retransmission alarm is always set if there are unacked packets |
| // and nothing waiting to be sent. |
| // This happens if the loss algorithm invokes a timer based loss, but the |
| // packet doesn't need to be retransmitted. |
| if (!HasQueuedData() && !retransmission_alarm_->IsSet()) { |
| SetRetransmissionAlarm(); |
| } |
| } |
| |
| void QuicConnection::SetEncrypter(EncryptionLevel level, |
| std::unique_ptr<QuicEncrypter> encrypter) { |
| packet_generator_.SetEncrypter(level, std::move(encrypter)); |
| } |
| |
| void QuicConnection::SetDiversificationNonce( |
| const DiversificationNonce& nonce) { |
| DCHECK_EQ(Perspective::IS_SERVER, perspective_); |
| packet_generator_.SetDiversificationNonce(nonce); |
| } |
| |
| void QuicConnection::SetDefaultEncryptionLevel(EncryptionLevel level) { |
| QUIC_DVLOG(1) << ENDPOINT << "Setting default encryption level from " |
| << EncryptionLevelToString(encryption_level_) << " to " |
| << EncryptionLevelToString(level); |
| if (level != encryption_level_ && packet_generator_.HasPendingFrames()) { |
| // Flush all queued frames when encryption level changes. |
| ScopedPacketFlusher flusher(this); |
| packet_generator_.FlushAllQueuedFrames(); |
| } |
| encryption_level_ = level; |
| packet_generator_.set_encryption_level(level); |
| } |
| |
| void QuicConnection::SetDecrypter(EncryptionLevel level, |
| std::unique_ptr<QuicDecrypter> decrypter) { |
| framer_.SetDecrypter(level, std::move(decrypter)); |
| |
| if (!undecryptable_packets_.empty() && |
| !process_undecryptable_packets_alarm_->IsSet()) { |
| process_undecryptable_packets_alarm_->Set(clock_->ApproximateNow()); |
| } |
| } |
| |
| void QuicConnection::SetAlternativeDecrypter( |
| EncryptionLevel level, |
| std::unique_ptr<QuicDecrypter> decrypter, |
| bool latch_once_used) { |
| framer_.SetAlternativeDecrypter(level, std::move(decrypter), latch_once_used); |
| |
| if (!undecryptable_packets_.empty() && |
| !process_undecryptable_packets_alarm_->IsSet()) { |
| process_undecryptable_packets_alarm_->Set(clock_->ApproximateNow()); |
| } |
| } |
| |
| void QuicConnection::InstallDecrypter( |
| EncryptionLevel level, |
| std::unique_ptr<QuicDecrypter> decrypter) { |
| framer_.InstallDecrypter(level, std::move(decrypter)); |
| if (!undecryptable_packets_.empty() && |
| !process_undecryptable_packets_alarm_->IsSet()) { |
| process_undecryptable_packets_alarm_->Set(clock_->ApproximateNow()); |
| } |
| } |
| |
| void QuicConnection::RemoveDecrypter(EncryptionLevel level) { |
| framer_.RemoveDecrypter(level); |
| } |
| |
| const QuicDecrypter* QuicConnection::decrypter() const { |
| return framer_.decrypter(); |
| } |
| |
| const QuicDecrypter* QuicConnection::alternative_decrypter() const { |
| return framer_.alternative_decrypter(); |
| } |
| |
| void QuicConnection::QueueUndecryptablePacket( |
| const QuicEncryptedPacket& packet) { |
| for (const auto& saved_packet : undecryptable_packets_) { |
| if (packet.data() == saved_packet->data() && |
| packet.length() == saved_packet->length()) { |
| QUIC_DVLOG(1) << ENDPOINT << "Not queueing known undecryptable packet"; |
| return; |
| } |
| } |
| QUIC_DVLOG(1) << ENDPOINT << "Queueing undecryptable packet."; |
| undecryptable_packets_.push_back(packet.Clone()); |
| } |
| |
| void QuicConnection::MaybeProcessUndecryptablePackets() { |
| process_undecryptable_packets_alarm_->Cancel(); |
| |
| if (undecryptable_packets_.empty() || |
| encryption_level_ == ENCRYPTION_INITIAL) { |
| return; |
| } |
| |
| while (connected_ && !undecryptable_packets_.empty()) { |
| // Making sure there is no pending frames when processing next undecrypted |
| // packet because the queued ack frame may change. |
| packet_generator_.FlushAllQueuedFrames(); |
| if (!connected_) { |
| return; |
| } |
| QUIC_DVLOG(1) << ENDPOINT << "Attempting to process undecryptable packet"; |
| QuicEncryptedPacket* packet = undecryptable_packets_.front().get(); |
| if (!framer_.ProcessPacket(*packet) && |
| framer_.error() == QUIC_DECRYPTION_FAILURE) { |
| QUIC_DVLOG(1) << ENDPOINT << "Unable to process undecryptable packet..."; |
| break; |
| } |
| QUIC_DVLOG(1) << ENDPOINT << "Processed undecryptable packet!"; |
| ++stats_.packets_processed; |
| undecryptable_packets_.pop_front(); |
| } |
| |
| // Once forward secure encryption is in use, there will be no |
| // new keys installed and hence any undecryptable packets will |
| // never be able to be decrypted. |
| if (encryption_level_ == ENCRYPTION_FORWARD_SECURE) { |
| if (debug_visitor_ != nullptr) { |
| // TODO(rtenneti): perhaps more efficient to pass the number of |
| // undecryptable packets as the argument to OnUndecryptablePacket so that |
| // we just need to call OnUndecryptablePacket once? |
| for (size_t i = 0; i < undecryptable_packets_.size(); ++i) { |
| debug_visitor_->OnUndecryptablePacket(); |
| } |
| } |
| undecryptable_packets_.clear(); |
| } |
| } |
| |
| void QuicConnection::QueueCoalescedPacket(const QuicEncryptedPacket& packet) { |
| QUIC_DVLOG(1) << ENDPOINT << "Queueing coalesced packet."; |
| coalesced_packets_.push_back(packet.Clone()); |
| } |
| |
| void QuicConnection::MaybeProcessCoalescedPackets() { |
| bool processed = false; |
| while (connected_ && !coalesced_packets_.empty()) { |
| // Making sure there are no pending frames when processing the next |
| // coalesced packet because the queued ack frame may change. |
| packet_generator_.FlushAllQueuedFrames(); |
| if (!connected_) { |
| return; |
| } |
| |
| std::unique_ptr<QuicEncryptedPacket> packet = |
| std::move(coalesced_packets_.front()); |
| coalesced_packets_.pop_front(); |
| |
| QUIC_DVLOG(1) << ENDPOINT << "Processing coalesced packet"; |
| if (framer_.ProcessPacket(*packet)) { |
| processed = true; |
| } else { |
| // If we are unable to decrypt this packet, it might be |
| // because the CHLO or SHLO packet was lost. |
| } |
| } |
| if (processed) { |
| MaybeProcessUndecryptablePackets(); |
| } |
| } |
| |
| void QuicConnection::CloseConnection( |
| QuicErrorCode error, |
| const std::string& error_details, |
| ConnectionCloseBehavior connection_close_behavior) { |
| DCHECK(!error_details.empty()); |
| if (!connected_) { |
| QUIC_DLOG(INFO) << "Connection is already closed."; |
| return; |
| } |
| |
| QUIC_DLOG(INFO) << ENDPOINT << "Closing connection: " << connection_id() |
| << ", with error: " << QuicErrorCodeToString(error) << " (" |
| << error << "), and details: " << error_details; |
| |
| if (connection_close_behavior != ConnectionCloseBehavior::SILENT_CLOSE) { |
| SendConnectionClosePacket(error, error_details); |
| } |
| |
| TearDownLocalConnectionState(error, error_details, |
| ConnectionCloseSource::FROM_SELF); |
| } |
| |
| void QuicConnection::SendConnectionClosePacket(QuicErrorCode error, |
| const std::string& details) { |
| if (!GetQuicReloadableFlag(quic_close_all_encryptions_levels)) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Sending connection close packet."; |
| SetDefaultEncryptionLevel(GetConnectionCloseEncryptionLevel()); |
| ClearQueuedPackets(); |
| // If there was a packet write error, write the smallest close possible. |
| ScopedPacketFlusher flusher(this); |
| // When multiple packet number spaces is supported, an ACK frame will be |
| // bundled when connection is not write blocked. |
| if (!SupportsMultiplePacketNumberSpaces() && |
| error != QUIC_PACKET_WRITE_ERROR && |
| !GetUpdatedAckFrame().ack_frame->packets.Empty()) { |
| SendAck(); |
| } |
| QuicConnectionCloseFrame* frame; |
| |
| frame = new QuicConnectionCloseFrame(transport_version(), error, details, |
| framer_.current_received_frame_type()); |
| packet_generator_.ConsumeRetransmittableControlFrame(QuicFrame(frame)); |
| packet_generator_.FlushAllQueuedFrames(); |
| ClearQueuedPackets(); |
| return; |
| } |
| const EncryptionLevel current_encryption_level = encryption_level_; |
| ScopedPacketFlusher flusher(this); |
| QUIC_RELOADABLE_FLAG_COUNT(quic_close_all_encryptions_levels); |
| for (EncryptionLevel level : |
| {ENCRYPTION_INITIAL, ENCRYPTION_HANDSHAKE, ENCRYPTION_ZERO_RTT, |
| ENCRYPTION_FORWARD_SECURE}) { |
| if (!framer_.HasEncrypterOfEncryptionLevel(level)) { |
| continue; |
| } |
| QUIC_DLOG(INFO) << ENDPOINT << "Sending connection close packet at level: " |
| << EncryptionLevelToString(level); |
| SetDefaultEncryptionLevel(level); |
| ClearQueuedPackets(); |
| // If there was a packet write error, write the smallest close possible. |
| // When multiple packet number spaces are supported, an ACK frame will |
| // be bundled by the ScopedPacketFlusher. Otherwise, an ACK must be sent |
| // explicitly. |
| if (!SupportsMultiplePacketNumberSpaces() && |
| error != QUIC_PACKET_WRITE_ERROR && |
| !GetUpdatedAckFrame().ack_frame->packets.Empty()) { |
| SendAck(); |
| } |
| auto* frame = |
| new QuicConnectionCloseFrame(transport_version(), error, details, |
| framer_.current_received_frame_type()); |
| packet_generator_.ConsumeRetransmittableControlFrame(QuicFrame(frame)); |
| packet_generator_.FlushAllQueuedFrames(); |
| ClearQueuedPackets(); |
| } |
| SetDefaultEncryptionLevel(current_encryption_level); |
| } |
| |
| void QuicConnection::TearDownLocalConnectionState( |
| QuicErrorCode error, |
| const std::string& error_details, |
| ConnectionCloseSource source) { |
| QuicConnectionCloseFrame frame(transport_version(), error, error_details, |
| framer_.current_received_frame_type()); |
| return TearDownLocalConnectionState(frame, source); |
| } |
| |
| void QuicConnection::TearDownLocalConnectionState( |
| const QuicConnectionCloseFrame& frame, |
| ConnectionCloseSource source) { |
| if (!connected_) { |
| QUIC_DLOG(INFO) << "Connection is already closed."; |
| return; |
| } |
| |
| // If we are using a batch writer, flush packets queued in it, if any. |
| FlushPackets(); |
| connected_ = false; |
| DCHECK(visitor_ != nullptr); |
| visitor_->OnConnectionClosed(frame, source); |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnConnectionClosed(frame, source); |
| } |
| // Cancel the alarms so they don't trigger any action now that the |
| // connection is closed. |
| CancelAllAlarms(); |
| } |
| |
| void QuicConnection::CancelAllAlarms() { |
| QUIC_DVLOG(1) << "Cancelling all QuicConnection alarms."; |
| |
| ack_alarm_->Cancel(); |
| ping_alarm_->Cancel(); |
| retransmission_alarm_->Cancel(); |
| send_alarm_->Cancel(); |
| timeout_alarm_->Cancel(); |
| mtu_discovery_alarm_->Cancel(); |
| path_degrading_alarm_->Cancel(); |
| process_undecryptable_packets_alarm_->Cancel(); |
| } |
| |
| QuicByteCount QuicConnection::max_packet_length() const { |
| return packet_generator_.GetCurrentMaxPacketLength(); |
| } |
| |
| void QuicConnection::SetMaxPacketLength(QuicByteCount length) { |
| long_term_mtu_ = length; |
| packet_generator_.SetMaxPacketLength(GetLimitedMaxPacketSize(length)); |
| } |
| |
| bool QuicConnection::HasQueuedData() const { |
| return pending_version_negotiation_packet_ || !queued_packets_.empty() || |
| packet_generator_.HasPendingFrames() || !buffered_packets_.empty(); |
| } |
| |
| bool QuicConnection::CanWriteStreamData() { |
| // Don't write stream data if there are negotiation or queued data packets |
| // to send. Otherwise, continue and bundle as many frames as possible. |
| if (pending_version_negotiation_packet_ || !queued_packets_.empty() || |
| !buffered_packets_.empty()) { |
| return false; |
| } |
| |
| IsHandshake pending_handshake = |
| visitor_->HasPendingHandshake() ? IS_HANDSHAKE : NOT_HANDSHAKE; |
| // Sending queued packets may have caused the socket to become write blocked, |
| // or the congestion manager to prohibit sending. If we've sent everything |
| // we had queued and we're still not blocked, let the visitor know it can |
| // write more. |
| return ShouldGeneratePacket(HAS_RETRANSMITTABLE_DATA, pending_handshake); |
| } |
| |
| void QuicConnection::SetNetworkTimeouts(QuicTime::Delta handshake_timeout, |
| QuicTime::Delta idle_timeout) { |
| QUIC_BUG_IF(idle_timeout > handshake_timeout) |
| << "idle_timeout:" << idle_timeout.ToMilliseconds() |
| << " handshake_timeout:" << handshake_timeout.ToMilliseconds(); |
| // Adjust the idle timeout on client and server to prevent clients from |
| // sending requests to servers which have already closed the connection. |
| if (perspective_ == Perspective::IS_SERVER) { |
| idle_timeout = idle_timeout + QuicTime::Delta::FromSeconds(3); |
| } else if (idle_timeout > QuicTime::Delta::FromSeconds(1)) { |
| idle_timeout = idle_timeout - QuicTime::Delta::FromSeconds(1); |
| } |
| handshake_timeout_ = handshake_timeout; |
| idle_network_timeout_ = idle_timeout; |
| |
| SetTimeoutAlarm(); |
| } |
| |
| void QuicConnection::CheckForTimeout() { |
| QuicTime now = clock_->ApproximateNow(); |
| QuicTime time_of_last_packet = |
| std::max(time_of_last_received_packet_, |
| time_of_first_packet_sent_after_receiving_); |
| |
| // |delta| can be < 0 as |now| is approximate time but |time_of_last_packet| |
| // is accurate time. However, this should not change the behavior of |
| // timeout handling. |
| QuicTime::Delta idle_duration = now - time_of_last_packet; |
| QUIC_DVLOG(1) << ENDPOINT << "last packet " |
| << time_of_last_packet.ToDebuggingValue() |
| << " now:" << now.ToDebuggingValue() |
| << " idle_duration:" << idle_duration.ToMicroseconds() |
| << " idle_network_timeout: " |
| << idle_network_timeout_.ToMicroseconds(); |
| if (idle_duration >= idle_network_timeout_) { |
| const std::string error_details = "No recent network activity."; |
| QUIC_DVLOG(1) << ENDPOINT << error_details; |
| if ((sent_packet_manager_.GetConsecutiveTlpCount() > 0 || |
| sent_packet_manager_.GetConsecutiveRtoCount() > 0 || |
| visitor_->ShouldKeepConnectionAlive())) { |
| CloseConnection(QUIC_NETWORK_IDLE_TIMEOUT, error_details, |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| } else { |
| CloseConnection(QUIC_NETWORK_IDLE_TIMEOUT, error_details, |
| idle_timeout_connection_close_behavior_); |
| } |
| return; |
| } |
| |
| if (!handshake_timeout_.IsInfinite()) { |
| QuicTime::Delta connected_duration = now - stats_.connection_creation_time; |
| QUIC_DVLOG(1) << ENDPOINT |
| << "connection time: " << connected_duration.ToMicroseconds() |
| << " handshake timeout: " |
| << handshake_timeout_.ToMicroseconds(); |
| if (connected_duration >= handshake_timeout_) { |
| const std::string error_details = "Handshake timeout expired."; |
| QUIC_DVLOG(1) << ENDPOINT << error_details; |
| CloseConnection(QUIC_HANDSHAKE_TIMEOUT, error_details, |
| ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); |
| return; |
| } |
| } |
| |
| SetTimeoutAlarm(); |
| } |
| |
| void QuicConnection::SetTimeoutAlarm() { |
| QuicTime time_of_last_packet = |
| std::max(time_of_last_received_packet_, |
| time_of_first_packet_sent_after_receiving_); |
| |
| QuicTime deadline = time_of_last_packet + idle_network_timeout_; |
| if (!handshake_timeout_.IsInfinite()) { |
| deadline = std::min(deadline, |
| stats_.connection_creation_time + handshake_timeout_); |
| } |
| |
| timeout_alarm_->Update(deadline, QuicTime::Delta::Zero()); |
| } |
| |
| void QuicConnection::SetPingAlarm() { |
| if (perspective_ == Perspective::IS_SERVER) { |
| // Only clients send pings to avoid NATs from timing out. |
| return; |
| } |
| if (!visitor_->ShouldKeepConnectionAlive()) { |
| ping_alarm_->Cancel(); |
| // Don't send a ping unless the application (ie: HTTP/3) says to, usually |
| // because it is expecting a response from the server. |
| return; |
| } |
| if (initial_retransmittable_on_wire_timeout_.IsInfinite() || |
| sent_packet_manager_.HasInFlightPackets()) { |
| // Extend the ping alarm. |
| ping_alarm_->Update(clock_->ApproximateNow() + ping_timeout_, |
| QuicTime::Delta::FromSeconds(1)); |
| return; |
| } |
| DCHECK_LT(initial_retransmittable_on_wire_timeout_, ping_timeout_); |
| QuicTime::Delta retransmittable_on_wire_timeout = |
| initial_retransmittable_on_wire_timeout_; |
| int max_aggressive_retransmittable_on_wire_ping_count = |
| GetQuicFlag(FLAGS_quic_max_aggressive_retransmittable_on_wire_ping_count); |
| DCHECK_LE(0, max_aggressive_retransmittable_on_wire_ping_count); |
| if (consecutive_retransmittable_on_wire_ping_count_ > |
| max_aggressive_retransmittable_on_wire_ping_count) { |
| // Exponentially back off the timeout if the number of consecutive |
| // retransmittable on wire pings has exceeds the allowance. |
| int shift = consecutive_retransmittable_on_wire_ping_count_ - |
| max_aggressive_retransmittable_on_wire_ping_count; |
| retransmittable_on_wire_timeout = |
| initial_retransmittable_on_wire_timeout_ * (1 << shift); |
| } |
| // If it's already set to an earlier time, then don't update it. |
| if (ping_alarm_->IsSet() && |
| ping_alarm_->deadline() < |
| clock_->ApproximateNow() + retransmittable_on_wire_timeout) { |
| return; |
| } |
| |
| if (retransmittable_on_wire_timeout < ping_timeout_) { |
| // Use a shorter timeout if there are open streams, but nothing on the wire. |
| ping_alarm_->Update( |
| clock_->ApproximateNow() + retransmittable_on_wire_timeout, |
| QuicTime::Delta::FromMilliseconds(1)); |
| if (max_aggressive_retransmittable_on_wire_ping_count != 0) { |
| consecutive_retransmittable_on_wire_ping_count_++; |
| } |
| return; |
| } |
| |
| ping_alarm_->Update(clock_->ApproximateNow() + ping_timeout_, |
| QuicTime::Delta::FromMilliseconds(1)); |
| } |
| |
| void QuicConnection::SetRetransmissionAlarm() { |
| if (packet_generator_.PacketFlusherAttached()) { |
| pending_retransmission_alarm_ = true; |
| return; |
| } |
| if (LimitedByAmplificationFactor()) { |
| // Do not set retransmission timer if connection is anti-amplification limit |
| // throttled. Otherwise, nothing can be sent when timer fires. |
| retransmission_alarm_->Cancel(); |
| return; |
| } |
| |
| retransmission_alarm_->Update(sent_packet_manager_.GetRetransmissionTime(), |
| QuicTime::Delta::FromMilliseconds(1)); |
| } |
| |
| void QuicConnection::SetPathDegradingAlarm() { |
| if (perspective_ == Perspective::IS_SERVER) { |
| return; |
| } |
| const QuicTime::Delta delay = sent_packet_manager_.GetPathDegradingDelay(); |
| path_degrading_alarm_->Update(clock_->ApproximateNow() + delay, |
| QuicTime::Delta::FromMilliseconds(1)); |
| } |
| |
| void QuicConnection::MaybeSetMtuAlarm(QuicPacketNumber sent_packet_number) { |
| if (mtu_discovery_v2_) { |
| if (mtu_discovery_alarm_->IsSet() || |
| !mtu_discoverer_.ShouldProbeMtu(sent_packet_number)) { |
| return; |
| } |
| mtu_discovery_alarm_->Set(clock_->ApproximateNow()); |
| return; |
| } |
| |
| // Do not set the alarm if the target size is less than the current size. |
| // This covers the case when |mtu_discovery_target_| is at its default value, |
| // zero. |
| if (mtu_discovery_target_ <= max_packet_length()) { |
| return; |
| } |
| |
| if (mtu_probe_count_ >= kMtuDiscoveryAttempts) { |
| return; |
| } |
| |
| if (mtu_discovery_alarm_->IsSet()) { |
| return; |
| } |
| |
| if (sent_packet_number >= next_mtu_probe_at_) { |
| // Use an alarm to send the MTU probe to ensure that no ScopedPacketFlushers |
| // are active. |
| mtu_discovery_alarm_->Set(clock_->ApproximateNow()); |
| } |
| } |
| |
| void QuicConnection::MaybeSetAckAlarmTo(QuicTime time) { |
| if (!ack_alarm_->IsSet() || ack_alarm_->deadline() > time) { |
| ack_alarm_->Update(time, QuicTime::Delta::Zero()); |
| } |
| } |
| |
| QuicConnection::ScopedPacketFlusher::ScopedPacketFlusher( |
| QuicConnection* connection) |
| : connection_(connection), |
| flush_and_set_pending_retransmission_alarm_on_delete_(false) { |
| if (connection_ == nullptr) { |
| return; |
| } |
| |
| if (!connection_->packet_generator_.PacketFlusherAttached()) { |
| flush_and_set_pending_retransmission_alarm_on_delete_ = true; |
| connection->packet_generator_.AttachPacketFlusher(); |
| } |
| } |
| |
| QuicConnection::ScopedPacketFlusher::~ScopedPacketFlusher() { |
| if (connection_ == nullptr || !connection_->connected()) { |
| return; |
| } |
| |
| if (flush_and_set_pending_retransmission_alarm_on_delete_) { |
| const QuicTime ack_timeout = |
| connection_->uber_received_packet_manager_.GetEarliestAckTimeout(); |
| if (ack_timeout.IsInitialized()) { |
| if (ack_timeout <= connection_->clock_->ApproximateNow() && |
| !connection_->CanWrite(NO_RETRANSMITTABLE_DATA)) { |
| // Cancel ACK alarm if connection is write blocked, and ACK will be |
| // sent when connection gets unblocked. |
| connection_->ack_alarm_->Cancel(); |
| } else { |
| connection_->MaybeSetAckAlarmTo(ack_timeout); |
| } |
| } |
| if (connection_->ack_alarm_->IsSet() && |
| connection_->ack_alarm_->deadline() <= |
| connection_->clock_->ApproximateNow()) { |
| // An ACK needs to be sent right now. This ACK did not get bundled |
| // because either there was no data to write or packets were marked as |
| // received after frames were queued in the generator. |
| if (connection_->send_alarm_->IsSet() && |
| connection_->send_alarm_->deadline() <= |
| connection_->clock_->ApproximateNow()) { |
| // If send alarm will go off soon, let send alarm send the ACK. |
| connection_->ack_alarm_->Cancel(); |
| } else if (connection_->SupportsMultiplePacketNumberSpaces()) { |
| connection_->SendAllPendingAcks(); |
| } else { |
| connection_->SendAck(); |
| } |
| } |
| connection_->packet_generator_.Flush(); |
| connection_->FlushPackets(); |
| if (connection_->session_decides_what_to_write()) { |
| // Reset transmission type. |
| connection_->SetTransmissionType(NOT_RETRANSMISSION); |
| } |
| |
| // Once all transmissions are done, check if there is any outstanding data |
| // to send and notify the congestion controller if not. |
| // |
| // Note that this means that the application limited check will happen as |
| // soon as the last flusher gets destroyed, which is typically after a |
| // single stream write is finished. This means that if all the data from a |
| // single write goes through the connection, the application-limited signal |
| // will fire even if the caller does a write operation immediately after. |
| // There are two important approaches to remedy this situation: |
| // (1) Instantiate ScopedPacketFlusher before performing multiple subsequent |
| // writes, thus deferring this check until all writes are done. |
| // (2) Write data in chunks sufficiently large so that they cause the |
| // connection to be limited by the congestion control. Typically, this |
| // would mean writing chunks larger than the product of the current |
| // pacing rate and the pacer granularity. So, for instance, if the |
| // pacing rate of the connection is 1 Gbps, and the pacer granularity is |
| // 1 ms, the caller should send at least 125k bytes in order to not |
| // be marked as application-limited. |
| connection_->CheckIfApplicationLimited(); |
| |
| if (connection_->pending_retransmission_alarm_) { |
| connection_->SetRetransmissionAlarm(); |
| connection_->pending_retransmission_alarm_ = false; |
| } |
| } |
| DCHECK_EQ(flush_and_set_pending_retransmission_alarm_on_delete_, |
| !connection_->packet_generator_.PacketFlusherAttached()); |
| } |
| |
| QuicConnection::BufferedPacket::BufferedPacket( |
| const SerializedPacket& packet, |
| const QuicSocketAddress& self_address, |
| const QuicSocketAddress& peer_address) |
| : encrypted_buffer(CopyBuffer(packet), packet.encrypted_length), |
| self_address(self_address), |
| peer_address(peer_address) {} |
| |
| QuicConnection::BufferedPacket::~BufferedPacket() { |
| delete[] encrypted_buffer.data(); |
| } |
| |
| HasRetransmittableData QuicConnection::IsRetransmittable( |
| const SerializedPacket& packet) { |
| // Retransmitted packets retransmittable frames are owned by the unacked |
| // packet map, but are not present in the serialized packet. |
| if (packet.transmission_type != NOT_RETRANSMISSION || |
| !packet.retransmittable_frames.empty()) { |
| return HAS_RETRANSMITTABLE_DATA; |
| } else { |
| return NO_RETRANSMITTABLE_DATA; |
| } |
| } |
| |
| bool QuicConnection::IsTerminationPacket(const SerializedPacket& packet) { |
| if (packet.retransmittable_frames.empty()) { |
| return false; |
| } |
| for (const QuicFrame& frame : packet.retransmittable_frames) { |
| if (frame.type == CONNECTION_CLOSE_FRAME) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void QuicConnection::SetMtuDiscoveryTarget(QuicByteCount target) { |
| if (mtu_discovery_v2_) { |
| mtu_discoverer_.Disable(); |
| mtu_discoverer_.Enable(max_packet_length(), |
| GetLimitedMaxPacketSize(target)); |
| } else { |
| mtu_discovery_target_ = GetLimitedMaxPacketSize(target); |
| } |
| } |
| |
| QuicByteCount QuicConnection::GetLimitedMaxPacketSize( |
| QuicByteCount suggested_max_packet_size) { |
| if (!peer_address_.IsInitialized()) { |
| QUIC_BUG << "Attempted to use a connection without a valid peer address"; |
| return suggested_max_packet_size; |
| } |
| |
| const QuicByteCount writer_limit = writer_->GetMaxPacketSize(peer_address()); |
| |
| QuicByteCount max_packet_size = suggested_max_packet_size; |
| if (max_packet_size > writer_limit) { |
| max_packet_size = writer_limit; |
| } |
| if (max_packet_size > kMaxOutgoingPacketSize) { |
| max_packet_size = kMaxOutgoingPacketSize; |
| } |
| return max_packet_size; |
| } |
| |
| void QuicConnection::SendMtuDiscoveryPacket(QuicByteCount target_mtu) { |
| // Currently, this limit is ensured by the caller. |
| DCHECK_EQ(target_mtu, GetLimitedMaxPacketSize(target_mtu)); |
| |
| // Send the probe. |
| packet_generator_.GenerateMtuDiscoveryPacket(target_mtu); |
| } |
| |
| // TODO(zhongyi): change this method to generate a connectivity probing packet |
| // and let the caller to call writer to write the packet and handle write |
| // status. |
| bool QuicConnection::SendConnectivityProbingPacket( |
| QuicPacketWriter* probing_writer, |
| const QuicSocketAddress& peer_address) { |
| return SendGenericPathProbePacket(probing_writer, peer_address, |
| /* is_response= */ false); |
| } |
| |
| void QuicConnection::SendConnectivityProbingResponsePacket( |
| const QuicSocketAddress& peer_address) { |
| SendGenericPathProbePacket(nullptr, peer_address, |
| /* is_response= */ true); |
| } |
| |
| bool QuicConnection::SendGenericPathProbePacket( |
| QuicPacketWriter* probing_writer, |
| const QuicSocketAddress& peer_address, |
| bool is_response) { |
| DCHECK(peer_address.IsInitialized()); |
| if (!connected_) { |
| QUIC_BUG << "Not sending connectivity probing packet as connection is " |
| << "disconnected."; |
| return false; |
| } |
| if (perspective_ == Perspective::IS_SERVER && probing_writer == nullptr) { |
| // Server can use default packet writer to write packet. |
| probing_writer = writer_; |
| } |
| DCHECK(probing_writer); |
| |
| if (probing_writer->IsWriteBlocked()) { |
| QUIC_DLOG(INFO) |
| << ENDPOINT |
| << "Writer blocked when sending connectivity probing packet."; |
| if (probing_writer == writer_) { |
| // Visitor should not be write blocked if the probing writer is not the |
| // default packet writer. |
| visitor_->OnWriteBlocked(); |
| } |
| return true; |
| } |
| |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "Sending path probe packet for connection_id = " |
| << server_connection_id_; |
| |
| OwningSerializedPacketPointer probing_packet; |
| if (!VersionHasIetfQuicFrames(transport_version())) { |
| // Non-IETF QUIC, generate a padded ping regardless of whether this is a |
| // request or a response. |
| probing_packet = packet_generator_.SerializeConnectivityProbingPacket(); |
| } else { |
| if (is_response) { |
| // Respond using IETF QUIC PATH_RESPONSE frame |
| if (IsCurrentPacketConnectivityProbing()) { |
| // Pad the response if the request was a google connectivity probe |
| // (padded). |
| probing_packet = |
| packet_generator_.SerializePathResponseConnectivityProbingPacket( |
| received_path_challenge_payloads_, /* is_padded = */ true); |
| received_path_challenge_payloads_.clear(); |
| } else { |
| // Do not pad the response if the path challenge was not a google |
| // connectivity probe. |
| probing_packet = |
| packet_generator_.SerializePathResponseConnectivityProbingPacket( |
| received_path_challenge_payloads_, |
| /* is_padded = */ false); |
| received_path_challenge_payloads_.clear(); |
| } |
| } else { |
| // Request using IETF QUIC PATH_CHALLENGE frame |
| transmitted_connectivity_probe_payload_ = |
| std::make_unique<QuicPathFrameBuffer>(); |
| probing_packet = |
| packet_generator_.SerializePathChallengeConnectivityProbingPacket( |
| transmitted_connectivity_probe_payload_.get()); |
| if (!probing_packet) { |
| transmitted_connectivity_probe_payload_ = nullptr; |
| } |
| } |
| } |
| |
| DCHECK_EQ(IsRetransmittable(*probing_packet), NO_RETRANSMITTABLE_DATA); |
| |
| const QuicTime packet_send_time = clock_->Now(); |
| QUIC_DVLOG(2) << ENDPOINT |
| << "Sending path probe packet for server connection ID " |
| << server_connection_id_ << std::endl |
| << QuicTextUtils::HexDump( |
| QuicStringPiece(probing_packet->encrypted_buffer, |
| probing_packet->encrypted_length)); |
| WriteResult result = probing_writer->WritePacket( |
| probing_packet->encrypted_buffer, probing_packet->encrypted_length, |
| self_address().host(), peer_address, per_packet_options_); |
| |
| // If using a batch writer and the probing packet is buffered, flush it. |
| if (probing_writer->IsBatchMode() && result.status == WRITE_STATUS_OK && |
| result.bytes_written == 0) { |
| result = probing_writer->Flush(); |
| } |
| |
| if (IsWriteError(result.status)) { |
| // Write error for any connectivity probe should not affect the connection |
| // as it is sent on a different path. |
| QUIC_DLOG(INFO) << ENDPOINT << "Write probing packet failed with error = " |
| << result.error_code; |
| return false; |
| } |
| |
| if (debug_visitor_ != nullptr) { |
| debug_visitor_->OnPacketSent( |
| *probing_packet, probing_packet->original_packet_number, |
| probing_packet->transmission_type, packet_send_time); |
| } |
| |
| // Call OnPacketSent regardless of the write result. |
| sent_packet_manager_.OnPacketSent( |
| probing_packet.get(), probing_packet->original_packet_number, |
| packet_send_time, probing_packet->transmission_type, |
| NO_RETRANSMITTABLE_DATA); |
| |
| if (IsWriteBlockedStatus(result.status)) { |
| if (probing_writer == writer_) { |
| // Visitor should not be write blocked if the probing writer is not the |
| // default packet writer. |
| visitor_->OnWriteBlocked(); |
| } |
| if (result.status == WRITE_STATUS_BLOCKED_DATA_BUFFERED) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Write probing packet blocked"; |
| } |
| } |
| |
| return true; |
| } |
| |
| void QuicConnection::DiscoverMtu() { |
| DCHECK(!mtu_discovery_alarm_->IsSet()); |
| |
| if (mtu_discovery_v2_) { |
| const QuicPacketNumber largest_sent_packet = |
| sent_packet_manager_.GetLargestSentPacket(); |
| if (mtu_discoverer_.ShouldProbeMtu(largest_sent_packet)) { |
| ++mtu_probe_count_; |
| SendMtuDiscoveryPacket( |
| mtu_discoverer_.GetUpdatedMtuProbeSize(largest_sent_packet)); |
| } |
| DCHECK(!mtu_discovery_alarm_->IsSet()); |
| return; |
| } |
| |
| // Check if the MTU has been already increased. |
| if (mtu_discovery_target_ <= max_packet_length()) { |
| return; |
| } |
| |
| // Calculate the packet number of the next probe *before* sending the current |
| // one. Otherwise, when SendMtuDiscoveryPacket() is called, |
| // MaybeSetMtuAlarm() will not realize that the probe has been just sent, and |
| // will reschedule this probe again. |
| packets_between_mtu_probes_ *= 2; |
| next_mtu_probe_at_ = sent_packet_manager_.GetLargestSentPacket() + |
| packets_between_mtu_probes_ + 1; |
| ++mtu_probe_count_; |
| |
| QUIC_DVLOG(2) << "Sending a path MTU discovery packet #" << mtu_probe_count_; |
| SendMtuDiscoveryPacket(mtu_discovery_target_); |
| |
| DCHECK(!mtu_discovery_alarm_->IsSet()); |
| } |
| |
| void QuicConnection::OnEffectivePeerMigrationValidated() { |
| if (active_effective_peer_migration_type_ == NO_CHANGE) { |
| QUIC_BUG << "No migration underway."; |
| return; |
| } |
| highest_packet_sent_before_effective_peer_migration_.Clear(); |
| active_effective_peer_migration_type_ = NO_CHANGE; |
| } |
| |
| void QuicConnection::StartEffectivePeerMigration(AddressChangeType type) { |
| // TODO(fayang): Currently, all peer address change type are allowed. Need to |
| // add a method ShouldAllowPeerAddressChange(PeerAddressChangeType type) to |
| // determine whether |type| is allowed. |
| if (type == NO_CHANGE) { |
| QUIC_BUG << "EffectivePeerMigration started without address change."; |
| return; |
| } |
| QUIC_DLOG(INFO) << ENDPOINT << "Effective peer's ip:port changed from " |
| << effective_peer_address_.ToString() << " to " |
| << GetEffectivePeerAddressFromCurrentPacket().ToString() |
| << ", address change type is " << type |
| << ", migrating connection."; |
| |
| highest_packet_sent_before_effective_peer_migration_ = |
| sent_packet_manager_.GetLargestSentPacket(); |
| effective_peer_address_ = GetEffectivePeerAddressFromCurrentPacket(); |
| active_effective_peer_migration_type_ = type; |
| |
| // TODO(wub): Move these calls to OnEffectivePeerMigrationValidated. |
| OnConnectionMigration(type); |
| } |
| |
| void QuicConnection::OnConnectionMigration(AddressChangeType addr_change_type) { |
| visitor_->OnConnectionMigration(addr_change_type); |
| sent_packet_manager_.OnConnectionMigration(addr_change_type); |
| } |
| |
| bool QuicConnection::IsCurrentPacketConnectivityProbing() const { |
| return is_current_packet_connectivity_probing_; |
| } |
| |
| bool QuicConnection::ack_frame_updated() const { |
| return uber_received_packet_manager_.IsAckFrameUpdated(); |
| } |
| |
| QuicStringPiece QuicConnection::GetCurrentPacket() { |
| if (current_packet_data_ == nullptr) { |
| return QuicStringPiece(); |
| } |
| return QuicStringPiece(current_packet_data_, last_size_); |
| } |
| |
| bool QuicConnection::MaybeConsiderAsMemoryCorruption( |
| const QuicStreamFrame& frame) { |
| if (QuicUtils::IsCryptoStreamId(transport_version(), frame.stream_id) || |
| last_decrypted_packet_level_ != ENCRYPTION_INITIAL) { |
| return false; |
| } |
| |
| if (perspective_ == Perspective::IS_SERVER && |
| frame.data_length >= sizeof(kCHLO) && |
| strncmp(frame.data_buffer, reinterpret_cast<const char*>(&kCHLO), |
| sizeof(kCHLO)) == 0) { |
| return true; |
| } |
| |
| if (perspective_ == Perspective::IS_CLIENT && |
| frame.data_length >= sizeof(kREJ) && |
| strncmp(frame.data_buffer, reinterpret_cast<const char*>(&kREJ), |
| sizeof(kREJ)) == 0) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void QuicConnection::MaybeSendProbingRetransmissions() { |
| DCHECK(fill_up_link_during_probing_); |
| |
| // Don't send probing retransmissions until the handshake has completed. |
| if (!sent_packet_manager_.handshake_confirmed() || |
| sent_packet_manager().HasUnackedCryptoPackets()) { |
| return; |
| } |
| |
| if (probing_retransmission_pending_) { |
| QUIC_BUG << "MaybeSendProbingRetransmissions is called while another call " |
| "to it is already in progress"; |
| return; |
| } |
| |
| probing_retransmission_pending_ = true; |
| SendProbingRetransmissions(); |
| probing_retransmission_pending_ = false; |
| } |
| |
| void QuicConnection::CheckIfApplicationLimited() { |
| if (session_decides_what_to_write() && probing_retransmission_pending_) { |
| return; |
| } |
| |
| bool application_limited = |
| queued_packets_.empty() && buffered_packets_.empty() && |
| !sent_packet_manager_.HasPendingRetransmissions() && |
| !visitor_->WillingAndAbleToWrite(); |
| |
| if (!application_limited) { |
| return; |
| } |
| |
| if (fill_up_link_during_probing_) { |
| MaybeSendProbingRetransmissions(); |
| if (!CanWrite(HAS_RETRANSMITTABLE_DATA)) { |
| return; |
| } |
| } |
| |
| sent_packet_manager_.OnApplicationLimited(); |
| } |
| |
| void QuicConnection::UpdatePacketContent(PacketContent type) { |
| if (current_packet_content_ == NOT_PADDED_PING) { |
| // We have already learned the current packet is not a connectivity |
| // probing packet. Peer migration should have already been started earlier |
| // if needed. |
| return; |
| } |
| |
| if (type == NO_FRAMES_RECEIVED) { |
| return; |
| } |
| |
| if (type == FIRST_FRAME_IS_PING) { |
| if (current_packet_content_ == NO_FRAMES_RECEIVED) { |
| current_packet_content_ = FIRST_FRAME_IS_PING; |
| return; |
| } |
| } |
| |
| // In Google QUIC we look for a packet with just a PING and PADDING. |
| // For IETF QUIC, the packet must consist of just a PATH_CHALLENGE frame, |
| // followed by PADDING. If the condition is met, mark things as |
| // connectivity-probing, causing later processing to generate the correct |
| // response. |
| if (type == SECOND_FRAME_IS_PADDING && |
| current_packet_content_ == FIRST_FRAME_IS_PING) { |
| current_packet_content_ = SECOND_FRAME_IS_PADDING; |
| if (perspective_ == Perspective::IS_SERVER) { |
| is_current_packet_connectivity_probing_ = |
| current_effective_peer_migration_type_ != NO_CHANGE; |
| } else { |
| is_current_packet_connectivity_probing_ = |
| (last_packet_source_address_ != peer_address_) || |
| (last_packet_destination_address_ != self_address_); |
| } |
| return; |
| } |
| |
| current_packet_content_ = NOT_PADDED_PING; |
| if (GetLargestReceivedPacket().IsInitialized() && |
| last_header_.packet_number == GetLargestReceivedPacket()) { |
| direct_peer_address_ = last_packet_source_address_; |
| if (current_effective_peer_migration_type_ != NO_CHANGE) { |
| // Start effective peer migration immediately when the current packet is |
| // confirmed not a connectivity probing packet. |
| // TODO(fayang): When multiple packet number spaces is supported, only |
| // start peer migration for the application data. |
| StartEffectivePeerMigration(current_effective_peer_migration_type_); |
| } |
| } |
| current_effective_peer_migration_type_ = NO_CHANGE; |
| } |
| |
| void QuicConnection::MaybeEnableSessionDecidesWhatToWrite() { |
| sent_packet_manager_.SetSessionDecideWhatToWrite(true); |
| if (version().SupportsAntiAmplificationLimit()) { |
| sent_packet_manager_.EnableIetfPtoAndLossDetection(); |
| } |
| packet_generator_.SetCanSetTransmissionType(true); |
| } |
| |
| void QuicConnection::PostProcessAfterAckFrame(bool send_stop_waiting, |
| bool acked_new_packet) { |
| if (no_stop_waiting_frames_) { |
| uber_received_packet_manager_.DontWaitForPacketsBefore( |
| last_decrypted_packet_level_, |
| SupportsMultiplePacketNumberSpaces() |
| ? sent_packet_manager_.GetLargestPacketPeerKnowsIsAcked( |
| last_decrypted_packet_level_) |
| : sent_packet_manager_.largest_packet_peer_knows_is_acked()); |
| } |
| // Always reset the retransmission alarm when an ack comes in, since we now |
| // have a better estimate of the current rtt than when it was set. |
| SetRetransmissionAlarm(); |
| MaybeSetPathDegradingAlarm(acked_new_packet); |
| |
| if (send_stop_waiting) { |
| ++stop_waiting_count_; |
| } else { |
| stop_waiting_count_ = 0; |
| } |
| } |
| |
| void QuicConnection::MaybeSetPathDegradingAlarm(bool acked_new_packet) { |
| if (!sent_packet_manager_.HasInFlightPackets()) { |
| // There are no retransmittable packets on the wire, so it's impossible to |
| // say if the connection has degraded. |
| path_degrading_alarm_->Cancel(); |
| } else if (acked_new_packet) { |
| // A previously-unacked packet has been acked, which means forward progress |
| // has been made. Unset |is_path_degrading| if the path was considered as |
| // degrading previously. Set/update the path degrading alarm. |
| is_path_degrading_ = false; |
| SetPathDegradingAlarm(); |
| } |
| } |
| |
| void QuicConnection::SetSessionNotifier( |
| SessionNotifierInterface* session_notifier) { |
| sent_packet_manager_.SetSessionNotifier(session_notifier); |
| } |
| |
| void QuicConnection::SetDataProducer( |
| QuicStreamFrameDataProducer* data_producer) { |
| framer_.set_data_producer(data_producer); |
| } |
| |
| void QuicConnection::SetTransmissionType(TransmissionType type) { |
| packet_generator_.SetTransmissionType(type); |
| } |
| |
| bool QuicConnection::session_decides_what_to_write() const { |
| return sent_packet_manager_.session_decides_what_to_write(); |
| } |
| |
| void QuicConnection::UpdateReleaseTimeIntoFuture() { |
| DCHECK(supports_release_time_); |
| |
| release_time_into_future_ = std::max( |
| QuicTime::Delta::FromMilliseconds(kMinReleaseTimeIntoFutureMs), |
| std::min( |
| QuicTime::Delta::FromMilliseconds( |
| GetQuicFlag(FLAGS_quic_max_pace_time_into_future_ms)), |
| sent_packet_manager_.GetRttStats()->SmoothedOrInitialRtt() * |
| GetQuicFlag(FLAGS_quic_pace_time_into_future_srtt_fraction))); |
| } |
| |
| void QuicConnection::ResetAckStates() { |
| ack_alarm_->Cancel(); |
| stop_waiting_count_ = 0; |
| uber_received_packet_manager_.ResetAckStates(encryption_level_); |
| } |
| |
| MessageStatus QuicConnection::SendMessage(QuicMessageId message_id, |
| QuicMemSliceSpan message) { |
| if (!VersionSupportsMessageFrames(transport_version())) { |
| QUIC_BUG << "MESSAGE frame is not supported for version " |
| << transport_version(); |
| return MESSAGE_STATUS_UNSUPPORTED; |
| } |
| if (message.total_length() > GetCurrentLargestMessagePayload()) { |
| return MESSAGE_STATUS_TOO_LARGE; |
| } |
| if (!CanWrite(HAS_RETRANSMITTABLE_DATA)) { |
| return MESSAGE_STATUS_BLOCKED; |
| } |
| ScopedPacketFlusher flusher(this); |
| return packet_generator_.AddMessageFrame(message_id, message); |
| } |
| |
| QuicPacketLength QuicConnection::GetCurrentLargestMessagePayload() const { |
| return packet_generator_.GetCurrentLargestMessagePayload(); |
| } |
| |
| QuicPacketLength QuicConnection::GetGuaranteedLargestMessagePayload() const { |
| return packet_generator_.GetGuaranteedLargestMessagePayload(); |
| } |
| |
| uint32_t QuicConnection::cipher_id() const { |
| if (version().KnowsWhichDecrypterToUse()) { |
| return framer_.GetDecrypter(last_decrypted_packet_level_)->cipher_id(); |
| } |
| return framer_.decrypter()->cipher_id(); |
| } |
| |
| EncryptionLevel QuicConnection::GetConnectionCloseEncryptionLevel() const { |
| if (perspective_ == Perspective::IS_CLIENT) { |
| return encryption_level_; |
| } |
| if (sent_packet_manager_.handshake_confirmed()) { |
| // A forward secure packet has been received. |
| QUIC_BUG_IF(encryption_level_ != ENCRYPTION_FORWARD_SECURE) |
| << ENDPOINT << "Unexpected connection close encryption level " |
| << EncryptionLevelToString(encryption_level_); |
| return ENCRYPTION_FORWARD_SECURE; |
| } |
| if (framer_.HasEncrypterOfEncryptionLevel(ENCRYPTION_ZERO_RTT)) { |
| if (encryption_level_ != ENCRYPTION_ZERO_RTT) { |
| if (VersionHasIetfInvariantHeader(transport_version())) { |
| QUIC_CODE_COUNT(quic_wrong_encryption_level_connection_close_ietf); |
| } else { |
| QUIC_CODE_COUNT(quic_wrong_encryption_level_connection_close); |
| } |
| } |
| return ENCRYPTION_ZERO_RTT; |
| } |
| return ENCRYPTION_INITIAL; |
| } |
| |
| void QuicConnection::SendAllPendingAcks() { |
| DCHECK(SupportsMultiplePacketNumberSpaces()); |
| QUIC_DVLOG(1) << ENDPOINT << "Trying to send all pending ACKs"; |
| ack_alarm_->Cancel(); |
| // Latches current encryption level. |
| const EncryptionLevel current_encryption_level = encryption_level_; |
| for (int8_t i = INITIAL_DATA; i <= APPLICATION_DATA; ++i) { |
| const QuicTime ack_timeout = uber_received_packet_manager_.GetAckTimeout( |
| static_cast<PacketNumberSpace>(i)); |
| if (!ack_timeout.IsInitialized() || |
| ack_timeout > clock_->ApproximateNow()) { |
| continue; |
| } |
| if (!framer_.HasEncrypterOfEncryptionLevel( |
| QuicUtils::GetEncryptionLevel(static_cast<PacketNumberSpace>(i)))) { |
| QUIC_BUG << ENDPOINT << "Cannot send ACKs for packet number space " |
| << PacketNumberSpaceToString(static_cast<PacketNumberSpace>(i)) |
| << " without corresponding encrypter"; |
| continue; |
| } |
| QUIC_DVLOG(1) << ENDPOINT << "Sending ACK of packet number space " |
| << PacketNumberSpaceToString( |
| static_cast<PacketNumberSpace>(i)); |
| // Switch to the appropriate encryption level. |
| SetDefaultEncryptionLevel( |
| QuicUtils::GetEncryptionLevel(static_cast<PacketNumberSpace>(i))); |
| QuicFrames frames; |
| frames.push_back(uber_received_packet_manager_.GetUpdatedAckFrame( |
| static_cast<PacketNumberSpace>(i), clock_->ApproximateNow())); |
| const bool flushed = packet_generator_.FlushAckFrame(frames); |
| if (!flushed) { |
| // Connection is write blocked. |
| QUIC_BUG_IF(!writer_->IsWriteBlocked()) |
| << "Writer not blocked, but ACK not flushed for packet space:" << i; |
| break; |
| } |
| ResetAckStates(); |
| } |
| // Restores encryption level. |
| SetDefaultEncryptionLevel(current_encryption_level); |
| |
| const QuicTime timeout = |
| uber_received_packet_manager_.GetEarliestAckTimeout(); |
| if (timeout.IsInitialized()) { |
| // If there are ACKs pending, re-arm ack alarm. |
| ack_alarm_->Set(timeout); |
| } |
| // Only try to bundle retransmittable data with ACK frame if default |
| // encryption level is forward secure. |
| if (encryption_level_ != ENCRYPTION_FORWARD_SECURE || |
| consecutive_num_packets_with_no_retransmittable_frames_ < |
| max_consecutive_num_packets_with_no_retransmittable_frames_) { |
| return; |
| } |
| consecutive_num_packets_with_no_retransmittable_frames_ = 0; |
| if (packet_generator_.HasRetransmittableFrames() || |
| visitor_->WillingAndAbleToWrite()) { |
| // There are pending retransmittable frames. |
| return; |
| } |
| |
| visitor_->OnAckNeedsRetransmittableFrame(); |
| } |
| |
| void QuicConnection::MaybeEnableMultiplePacketNumberSpacesSupport() { |
| if (version().handshake_protocol != PROTOCOL_TLS1_3) { |
| return; |
| } |
| QUIC_DVLOG(1) << ENDPOINT << "connection " << connection_id() |
| << " supports multiple packet number spaces"; |
| framer_.EnableMultiplePacketNumberSpacesSupport(); |
| sent_packet_manager_.EnableMultiplePacketNumberSpacesSupport(); |
| uber_received_packet_manager_.EnableMultiplePacketNumberSpacesSupport(); |
| } |
| |
| bool QuicConnection::SupportsMultiplePacketNumberSpaces() const { |
| return sent_packet_manager_.supports_multiple_packet_number_spaces(); |
| } |
| |
| void QuicConnection::SetLargestReceivedPacketWithAck( |
| QuicPacketNumber new_value) { |
| if (SupportsMultiplePacketNumberSpaces()) { |
| largest_seen_packets_with_ack_[QuicUtils::GetPacketNumberSpace( |
| last_decrypted_packet_level_)] = new_value; |
| } else { |
| largest_seen_packet_with_ack_ = new_value; |
| } |
| } |
| |
| QuicPacketNumber QuicConnection::GetLargestReceivedPacketWithAck() const { |
| if (SupportsMultiplePacketNumberSpaces()) { |
| return largest_seen_packets_with_ack_[QuicUtils::GetPacketNumberSpace( |
| last_decrypted_packet_level_)]; |
| } |
| return largest_seen_packet_with_ack_; |
| } |
| |
| QuicPacketNumber QuicConnection::GetLargestSentPacket() const { |
| if (SupportsMultiplePacketNumberSpaces()) { |
| return sent_packet_manager_.GetLargestSentPacket( |
| last_decrypted_packet_level_); |
| } |
| return sent_packet_manager_.GetLargestSentPacket(); |
| } |
| |
| QuicPacketNumber QuicConnection::GetLargestAckedPacket() const { |
| if (SupportsMultiplePacketNumberSpaces()) { |
| return sent_packet_manager_.GetLargestAckedPacket( |
| last_decrypted_packet_level_); |
| } |
| return sent_packet_manager_.GetLargestObserved(); |
| } |
| |
| QuicPacketNumber QuicConnection::GetLargestReceivedPacket() const { |
| return uber_received_packet_manager_.GetLargestObserved( |
| last_decrypted_packet_level_); |
| } |
| |
| bool QuicConnection::EnforceAntiAmplificationLimit() const { |
| return version().SupportsAntiAmplificationLimit() && |
| perspective_ == Perspective::IS_SERVER && !address_validated_; |
| } |
| |
| bool QuicConnection::LimitedByAmplificationFactor() const { |
| return EnforceAntiAmplificationLimit() && |
| bytes_sent_before_address_validation_ >= |
| GetQuicFlag(FLAGS_quic_anti_amplification_factor) * |
| bytes_received_before_address_validation_; |
| } |
| |
| QuicConnection::SerializedPacketFate QuicConnection::DeterminePacketFate() { |
| if (treat_queued_packets_as_sent_ && |
| (!buffered_packets_.empty() || HandleWriteBlocked())) { |
| return BUFFER; |
| } |
| return SEND_TO_WRITER; |
| } |
| |
| size_t QuicConnection::min_received_before_ack_decimation() const { |
| return uber_received_packet_manager_.min_received_before_ack_decimation(); |
| } |
| |
| void QuicConnection::set_min_received_before_ack_decimation(size_t new_value) { |
| uber_received_packet_manager_.set_min_received_before_ack_decimation( |
| new_value); |
| } |
| |
| size_t QuicConnection::ack_frequency_before_ack_decimation() const { |
| return uber_received_packet_manager_.ack_frequency_before_ack_decimation(); |
| } |
| |
| void QuicConnection::set_ack_frequency_before_ack_decimation(size_t new_value) { |
| DCHECK_GT(new_value, 0u); |
| uber_received_packet_manager_.set_ack_frequency_before_ack_decimation( |
| new_value); |
| } |
| |
| const QuicAckFrame& QuicConnection::ack_frame() const { |
| if (SupportsMultiplePacketNumberSpaces()) { |
| return uber_received_packet_manager_.GetAckFrame( |
| QuicUtils::GetPacketNumberSpace(last_decrypted_packet_level_)); |
| } |
| return uber_received_packet_manager_.ack_frame(); |
| } |
| |
| void QuicConnection::set_client_connection_id( |
| QuicConnectionId client_connection_id) { |
| if (!version().SupportsClientConnectionIds()) { |
| QUIC_BUG_IF(!client_connection_id.IsEmpty()) |
| << ENDPOINT << "Attempted to use client connection ID " |
| << client_connection_id << " with unsupported version " << version(); |
| return; |
| } |
| client_connection_id_ = client_connection_id; |
| client_connection_id_is_set_ = true; |
| QUIC_DLOG(INFO) << ENDPOINT << "setting client connection ID to " |
| << client_connection_id_ |
| << " for connection with server connection ID " |
| << server_connection_id_; |
| packet_generator_.SetClientConnectionId(client_connection_id_); |
| framer_.SetExpectedClientConnectionIdLength(client_connection_id_.length()); |
| } |
| |
| #undef ENDPOINT // undef for jumbo builds |
| } // namespace quic |