blob: 4fce40f1859871f1ecfd3ca849c5020c60c370ec [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/third_party/quiche/src/quic/core/quic_sent_packet_manager.h"
#include <memory>
#include "net/third_party/quiche/src/quic/core/quic_pending_retransmission.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_arraysize.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_flags.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_string_piece.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_test.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_config_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_sent_packet_manager_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_test_utils.h"
using testing::_;
using testing::AnyNumber;
using testing::Invoke;
using testing::InvokeWithoutArgs;
using testing::IsEmpty;
using testing::Not;
using testing::Pointwise;
using testing::Return;
using testing::StrictMock;
using testing::WithArgs;
namespace quic {
namespace test {
namespace {
// Default packet length.
const uint32_t kDefaultLength = 1000;
// Stream ID for data sent in CreatePacket().
const QuicStreamId kStreamId = 7;
// Matcher to check that the packet number matches the second argument.
MATCHER(PacketNumberEq, "") {
return ::testing::get<0>(arg).packet_number ==
QuicPacketNumber(::testing::get<1>(arg));
}
class MockDebugDelegate : public QuicSentPacketManager::DebugDelegate {
public:
MOCK_METHOD2(OnSpuriousPacketRetransmission,
void(TransmissionType transmission_type,
QuicByteCount byte_size));
MOCK_METHOD3(OnPacketLoss,
void(QuicPacketNumber lost_packet_number,
TransmissionType transmission_type,
QuicTime detection_time));
};
class QuicSentPacketManagerTest : public QuicTestWithParam<bool> {
public:
void RetransmitCryptoPacket(uint64_t packet_number) {
EXPECT_CALL(
*send_algorithm_,
OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number),
kDefaultLength, HAS_RETRANSMITTABLE_DATA));
SerializedPacket packet(CreatePacket(packet_number, false));
packet.retransmittable_frames.push_back(
QuicFrame(QuicStreamFrame(1, false, 0, QuicStringPiece())));
packet.has_crypto_handshake = IS_HANDSHAKE;
manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(),
HANDSHAKE_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA);
}
void RetransmitDataPacket(uint64_t packet_number,
TransmissionType type,
EncryptionLevel level) {
EXPECT_CALL(
*send_algorithm_,
OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number),
kDefaultLength, HAS_RETRANSMITTABLE_DATA));
SerializedPacket packet(CreatePacket(packet_number, true));
packet.encryption_level = level;
manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(), type,
HAS_RETRANSMITTABLE_DATA);
}
void RetransmitDataPacket(uint64_t packet_number, TransmissionType type) {
RetransmitDataPacket(packet_number, type, ENCRYPTION_INITIAL);
}
protected:
QuicSentPacketManagerTest()
: manager_(Perspective::IS_SERVER,
&clock_,
QuicRandom::GetInstance(),
&stats_,
kCubicBytes,
kNack),
send_algorithm_(new StrictMock<MockSendAlgorithm>),
network_change_visitor_(new StrictMock<MockNetworkChangeVisitor>) {
QuicSentPacketManagerPeer::SetSendAlgorithm(&manager_, send_algorithm_);
// Disable tail loss probes for most tests.
QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 0);
// Advance the time 1s so the send times are never QuicTime::Zero.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1000));
manager_.SetNetworkChangeVisitor(network_change_visitor_.get());
manager_.SetSessionNotifier(&notifier_);
manager_.SetSessionDecideWhatToWrite(GetParam());
EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate())
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
.Times(AnyNumber())
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
EXPECT_CALL(*network_change_visitor_, OnPathMtuIncreased(1000))
.Times(AnyNumber());
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(true));
EXPECT_CALL(notifier_, HasUnackedCryptoData())
.WillRepeatedly(Return(false));
EXPECT_CALL(notifier_, OnStreamFrameRetransmitted(_)).Times(AnyNumber());
EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)).WillRepeatedly(Return(true));
}
~QuicSentPacketManagerTest() override {}
QuicByteCount BytesInFlight() { return manager_.GetBytesInFlight(); }
void VerifyUnackedPackets(uint64_t* packets, size_t num_packets) {
if (num_packets == 0) {
EXPECT_TRUE(manager_.unacked_packets().empty());
EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetNumRetransmittablePackets(
&manager_));
return;
}
EXPECT_FALSE(manager_.unacked_packets().empty());
EXPECT_EQ(QuicPacketNumber(packets[0]), manager_.GetLeastUnacked());
for (size_t i = 0; i < num_packets; ++i) {
EXPECT_TRUE(
manager_.unacked_packets().IsUnacked(QuicPacketNumber(packets[i])))
<< packets[i];
}
}
void VerifyRetransmittablePackets(uint64_t* packets, size_t num_packets) {
EXPECT_EQ(
num_packets,
QuicSentPacketManagerPeer::GetNumRetransmittablePackets(&manager_));
for (size_t i = 0; i < num_packets; ++i) {
EXPECT_TRUE(QuicSentPacketManagerPeer::HasRetransmittableFrames(
&manager_, packets[i]))
<< " packets[" << i << "]:" << packets[i];
}
}
void ExpectAck(uint64_t largest_observed) {
EXPECT_CALL(
*send_algorithm_,
// Ensure the AckedPacketVector argument contains largest_observed.
OnCongestionEvent(true, _, _,
Pointwise(PacketNumberEq(), {largest_observed}),
IsEmpty()));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
}
void ExpectUpdatedRtt(uint64_t /*largest_observed*/) {
EXPECT_CALL(*send_algorithm_,
OnCongestionEvent(true, _, _, IsEmpty(), IsEmpty()));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
}
void ExpectAckAndLoss(bool rtt_updated,
uint64_t largest_observed,
uint64_t lost_packet) {
EXPECT_CALL(
*send_algorithm_,
OnCongestionEvent(rtt_updated, _, _,
Pointwise(PacketNumberEq(), {largest_observed}),
Pointwise(PacketNumberEq(), {lost_packet})));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
}
// |packets_acked| and |packets_lost| should be in packet number order.
void ExpectAcksAndLosses(bool rtt_updated,
uint64_t* packets_acked,
size_t num_packets_acked,
uint64_t* packets_lost,
size_t num_packets_lost) {
std::vector<QuicPacketNumber> ack_vector;
for (size_t i = 0; i < num_packets_acked; ++i) {
ack_vector.push_back(QuicPacketNumber(packets_acked[i]));
}
std::vector<QuicPacketNumber> lost_vector;
for (size_t i = 0; i < num_packets_lost; ++i) {
lost_vector.push_back(QuicPacketNumber(packets_lost[i]));
}
EXPECT_CALL(*send_algorithm_,
OnCongestionEvent(rtt_updated, _, _,
Pointwise(PacketNumberEq(), ack_vector),
Pointwise(PacketNumberEq(), lost_vector)));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange())
.Times(AnyNumber());
}
void RetransmitAndSendPacket(uint64_t old_packet_number,
uint64_t new_packet_number) {
RetransmitAndSendPacket(old_packet_number, new_packet_number,
TLP_RETRANSMISSION);
}
void RetransmitAndSendPacket(uint64_t old_packet_number,
uint64_t new_packet_number,
TransmissionType transmission_type) {
bool is_lost = false;
if (manager_.session_decides_what_to_write()) {
if (transmission_type == HANDSHAKE_RETRANSMISSION ||
transmission_type == TLP_RETRANSMISSION ||
transmission_type == RTO_RETRANSMISSION ||
transmission_type == PROBING_RETRANSMISSION) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(
Invoke([this, new_packet_number](TransmissionType type) {
RetransmitDataPacket(new_packet_number, type);
})));
} else {
EXPECT_CALL(notifier_, OnFrameLost(_)).Times(1);
is_lost = true;
}
}
QuicSentPacketManagerPeer::MarkForRetransmission(
&manager_, old_packet_number, transmission_type);
if (manager_.session_decides_what_to_write()) {
if (!is_lost) {
return;
}
EXPECT_CALL(
*send_algorithm_,
OnPacketSent(_, BytesInFlight(), QuicPacketNumber(new_packet_number),
kDefaultLength, HAS_RETRANSMITTABLE_DATA));
SerializedPacket packet(CreatePacket(new_packet_number, true));
manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(),
transmission_type, HAS_RETRANSMITTABLE_DATA);
return;
}
EXPECT_TRUE(manager_.HasPendingRetransmissions());
QuicPendingRetransmission next_retransmission =
manager_.NextPendingRetransmission();
EXPECT_EQ(QuicPacketNumber(old_packet_number),
next_retransmission.packet_number);
EXPECT_EQ(transmission_type, next_retransmission.transmission_type);
EXPECT_CALL(
*send_algorithm_,
OnPacketSent(_, BytesInFlight(), QuicPacketNumber(new_packet_number),
kDefaultLength, HAS_RETRANSMITTABLE_DATA));
SerializedPacket packet(CreatePacket(new_packet_number, false));
manager_.OnPacketSent(&packet, QuicPacketNumber(old_packet_number),
clock_.Now(), transmission_type,
HAS_RETRANSMITTABLE_DATA);
EXPECT_TRUE(QuicSentPacketManagerPeer::IsRetransmission(&manager_,
new_packet_number));
}
SerializedPacket CreateDataPacket(uint64_t packet_number) {
return CreatePacket(packet_number, true);
}
SerializedPacket CreatePacket(uint64_t packet_number, bool retransmittable) {
SerializedPacket packet(QuicPacketNumber(packet_number),
PACKET_4BYTE_PACKET_NUMBER, nullptr, kDefaultLength,
false, false);
if (retransmittable) {
packet.retransmittable_frames.push_back(
QuicFrame(QuicStreamFrame(kStreamId, false, 0, QuicStringPiece())));
}
return packet;
}
SerializedPacket CreatePingPacket(uint64_t packet_number) {
SerializedPacket packet(QuicPacketNumber(packet_number),
PACKET_4BYTE_PACKET_NUMBER, nullptr, kDefaultLength,
false, false);
packet.retransmittable_frames.push_back(QuicFrame(QuicPingFrame()));
return packet;
}
void SendDataPacket(uint64_t packet_number) {
SendDataPacket(packet_number, ENCRYPTION_INITIAL);
}
void SendDataPacket(uint64_t packet_number,
EncryptionLevel encryption_level) {
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, BytesInFlight(),
QuicPacketNumber(packet_number), _, _));
SerializedPacket packet(CreateDataPacket(packet_number));
packet.encryption_level = encryption_level;
manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(),
NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA);
}
void SendPingPacket(uint64_t packet_number,
EncryptionLevel encryption_level) {
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, BytesInFlight(),
QuicPacketNumber(packet_number), _, _));
SerializedPacket packet(CreatePingPacket(packet_number));
packet.encryption_level = encryption_level;
manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(),
NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA);
}
void SendCryptoPacket(uint64_t packet_number) {
EXPECT_CALL(
*send_algorithm_,
OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number),
kDefaultLength, HAS_RETRANSMITTABLE_DATA));
SerializedPacket packet(CreatePacket(packet_number, false));
packet.retransmittable_frames.push_back(
QuicFrame(QuicStreamFrame(1, false, 0, QuicStringPiece())));
packet.has_crypto_handshake = IS_HANDSHAKE;
manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(),
NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA);
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, HasUnackedCryptoData())
.WillRepeatedly(Return(true));
}
}
void SendAckPacket(uint64_t packet_number, uint64_t largest_acked) {
SendAckPacket(packet_number, largest_acked, ENCRYPTION_INITIAL);
}
void SendAckPacket(uint64_t packet_number,
uint64_t largest_acked,
EncryptionLevel level) {
EXPECT_CALL(
*send_algorithm_,
OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number),
kDefaultLength, NO_RETRANSMITTABLE_DATA));
SerializedPacket packet(CreatePacket(packet_number, false));
packet.largest_acked = QuicPacketNumber(largest_acked);
packet.encryption_level = level;
manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(),
NOT_RETRANSMISSION, NO_RETRANSMITTABLE_DATA);
}
// Based on QuicConnection's WritePendingRetransmissions.
void RetransmitNextPacket(uint64_t retransmission_packet_number) {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
EXPECT_CALL(
*send_algorithm_,
OnPacketSent(_, _, QuicPacketNumber(retransmission_packet_number),
kDefaultLength, HAS_RETRANSMITTABLE_DATA));
const QuicPendingRetransmission pending =
manager_.NextPendingRetransmission();
SerializedPacket packet(CreatePacket(retransmission_packet_number, false));
manager_.OnPacketSent(&packet, pending.packet_number, clock_.Now(),
pending.transmission_type, HAS_RETRANSMITTABLE_DATA);
}
QuicSentPacketManager manager_;
MockClock clock_;
QuicConnectionStats stats_;
MockSendAlgorithm* send_algorithm_;
std::unique_ptr<MockNetworkChangeVisitor> network_change_visitor_;
StrictMock<MockSessionNotifier> notifier_;
};
INSTANTIATE_TEST_SUITE_P(Tests, QuicSentPacketManagerTest, testing::Bool());
TEST_P(QuicSentPacketManagerTest, IsUnacked) {
VerifyUnackedPackets(nullptr, 0);
SendDataPacket(1);
uint64_t unacked[] = {1};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
uint64_t retransmittable[] = {1};
VerifyRetransmittablePackets(retransmittable,
QUIC_ARRAYSIZE(retransmittable));
}
TEST_P(QuicSentPacketManagerTest, IsUnAckedRetransmit) {
SendDataPacket(1);
RetransmitAndSendPacket(1, 2);
EXPECT_TRUE(QuicSentPacketManagerPeer::IsRetransmission(&manager_, 2));
uint64_t unacked[] = {1, 2};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
std::vector<uint64_t> retransmittable;
if (manager_.session_decides_what_to_write()) {
retransmittable = {1, 2};
} else {
retransmittable = {2};
}
VerifyRetransmittablePackets(&retransmittable[0], retransmittable.size());
}
TEST_P(QuicSentPacketManagerTest, RetransmitThenAck) {
SendDataPacket(1);
RetransmitAndSendPacket(1, 2);
// Ack 2 but not 1.
ExpectAck(2);
manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false));
}
// Packet 1 is unacked, pending, but not retransmittable.
uint64_t unacked[] = {1};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
EXPECT_TRUE(manager_.HasInFlightPackets());
VerifyRetransmittablePackets(nullptr, 0);
}
TEST_P(QuicSentPacketManagerTest, RetransmitThenAckBeforeSend) {
SendDataPacket(1);
if (manager_.session_decides_what_to_write()) {
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) {
RetransmitDataPacket(2, type);
})));
}
}
QuicSentPacketManagerPeer::MarkForRetransmission(&manager_, 1,
TLP_RETRANSMISSION);
if (!manager_.session_decides_what_to_write()) {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
}
// Ack 1.
ExpectAck(1);
manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
// There should no longer be a pending retransmission.
EXPECT_FALSE(manager_.HasPendingRetransmissions());
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false));
uint64_t unacked[] = {2};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
// We do not know packet 2 is a spurious retransmission until it gets acked.
} else {
// No unacked packets remain.
VerifyUnackedPackets(nullptr, 0);
}
VerifyRetransmittablePackets(nullptr, 0);
EXPECT_EQ(0u, stats_.packets_spuriously_retransmitted);
}
TEST_P(QuicSentPacketManagerTest, RetransmitThenStopRetransmittingBeforeSend) {
SendDataPacket(1);
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _));
}
QuicSentPacketManagerPeer::MarkForRetransmission(&manager_, 1,
TLP_RETRANSMISSION);
if (!manager_.session_decides_what_to_write()) {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
}
manager_.CancelRetransmissionsForStream(kStreamId);
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false));
}
// There should no longer be a pending retransmission.
EXPECT_FALSE(manager_.HasPendingRetransmissions());
uint64_t unacked[] = {1};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
VerifyRetransmittablePackets(nullptr, 0);
EXPECT_EQ(0u, stats_.packets_spuriously_retransmitted);
}
TEST_P(QuicSentPacketManagerTest, RetransmitThenAckPrevious) {
SendDataPacket(1);
RetransmitAndSendPacket(1, 2);
QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15);
clock_.AdvanceTime(rtt);
// Ack 1 but not 2.
ExpectAck(1);
manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false));
}
// 2 remains unacked, but no packets have retransmittable data.
uint64_t unacked[] = {2};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
EXPECT_TRUE(manager_.HasInFlightPackets());
VerifyRetransmittablePackets(nullptr, 0);
if (manager_.session_decides_what_to_write()) {
// Ack 2 causes 2 be considered as spurious retransmission.
EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)).WillOnce(Return(false));
ExpectAck(2);
manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(3));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2),
ENCRYPTION_INITIAL));
}
EXPECT_EQ(1u, stats_.packets_spuriously_retransmitted);
}
TEST_P(QuicSentPacketManagerTest, RetransmitThenAckPreviousThenNackRetransmit) {
SendDataPacket(1);
RetransmitAndSendPacket(1, 2);
QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15);
clock_.AdvanceTime(rtt);
// First, ACK packet 1 which makes packet 2 non-retransmittable.
ExpectAck(1);
manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
SendDataPacket(3);
SendDataPacket(4);
SendDataPacket(5);
clock_.AdvanceTime(rtt);
// Next, NACK packet 2 three times.
ExpectAck(3);
manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(4));
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2),
ENCRYPTION_INITIAL));
ExpectAck(4);
manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(5));
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3),
ENCRYPTION_INITIAL));
ExpectAckAndLoss(true, 5, 2);
if (manager_.session_decides_what_to_write()) {
// Frames in all packets are acked.
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false));
// Notify session that stream frame in packet 2 gets lost although it is
// not outstanding.
EXPECT_CALL(notifier_, OnFrameLost(_)).Times(1);
}
manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6));
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(4),
ENCRYPTION_INITIAL));
if (manager_.session_decides_what_to_write()) {
uint64_t unacked[] = {2};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
} else {
// No packets remain unacked.
VerifyUnackedPackets(nullptr, 0);
}
EXPECT_FALSE(manager_.HasInFlightPackets());
VerifyRetransmittablePackets(nullptr, 0);
// Verify that the retransmission alarm would not fire,
// since there is no retransmittable data outstanding.
EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime());
}
TEST_P(QuicSentPacketManagerTest,
DISABLED_RetransmitTwiceThenAckPreviousBeforeSend) {
SendDataPacket(1);
RetransmitAndSendPacket(1, 2);
// Fire the RTO, which will mark 2 for retransmission (but will not send it).
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.OnRetransmissionTimeout();
EXPECT_TRUE(manager_.HasPendingRetransmissions());
// Ack 1 but not 2, before 2 is able to be sent.
// Since 1 has been retransmitted, it has already been lost, and so the
// send algorithm is not informed that it has been ACK'd.
ExpectUpdatedRtt(1);
EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout());
manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
// Since 2 was marked for retransmit, when 1 is acked, 2 is kept for RTT.
uint64_t unacked[] = {2};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
EXPECT_FALSE(manager_.HasInFlightPackets());
VerifyRetransmittablePackets(nullptr, 0);
// Verify that the retransmission alarm would not fire,
// since there is no retransmittable data outstanding.
EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime());
}
TEST_P(QuicSentPacketManagerTest, RetransmitTwiceThenAckFirst) {
StrictMock<MockDebugDelegate> debug_delegate;
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(debug_delegate, OnSpuriousPacketRetransmission(
TLP_RETRANSMISSION, kDefaultLength))
.Times(1);
} else {
EXPECT_CALL(debug_delegate, OnSpuriousPacketRetransmission(
TLP_RETRANSMISSION, kDefaultLength))
.Times(2);
}
manager_.SetDebugDelegate(&debug_delegate);
SendDataPacket(1);
RetransmitAndSendPacket(1, 2);
RetransmitAndSendPacket(2, 3);
QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15);
clock_.AdvanceTime(rtt);
// Ack 1 but not 2 or 3.
ExpectAck(1);
manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
if (manager_.session_decides_what_to_write()) {
// Frames in packets 2 and 3 are acked.
EXPECT_CALL(notifier_, IsFrameOutstanding(_))
.Times(2)
.WillRepeatedly(Return(false));
}
// 2 and 3 remain unacked, but no packets have retransmittable data.
uint64_t unacked[] = {2, 3};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
EXPECT_TRUE(manager_.HasInFlightPackets());
VerifyRetransmittablePackets(nullptr, 0);
// Ensure packet 2 is lost when 4 is sent and 3 and 4 are acked.
SendDataPacket(4);
if (manager_.session_decides_what_to_write()) {
// No new data gets acked in packet 3.
EXPECT_CALL(notifier_, OnFrameAcked(_, _, _))
.WillOnce(Return(false))
.WillRepeatedly(Return(true));
}
uint64_t acked[] = {3, 4};
ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0);
manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(5));
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2),
ENCRYPTION_INITIAL));
uint64_t unacked2[] = {2};
VerifyUnackedPackets(unacked2, QUIC_ARRAYSIZE(unacked2));
EXPECT_TRUE(manager_.HasInFlightPackets());
SendDataPacket(5);
ExpectAckAndLoss(true, 5, 2);
EXPECT_CALL(debug_delegate,
OnPacketLoss(QuicPacketNumber(2), LOSS_RETRANSMISSION, _));
if (manager_.session_decides_what_to_write()) {
// Frames in all packets are acked.
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false));
// Notify session that stream frame in packet 2 gets lost although it is
// not outstanding.
EXPECT_CALL(notifier_, OnFrameLost(_)).Times(1);
}
manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6));
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3),
ENCRYPTION_INITIAL));
if (manager_.session_decides_what_to_write()) {
uint64_t unacked[] = {2};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
} else {
VerifyUnackedPackets(nullptr, 0);
}
EXPECT_FALSE(manager_.HasInFlightPackets());
if (manager_.session_decides_what_to_write()) {
// Spurious retransmission is detected when packet 3 gets acked. We cannot
// know packet 2 is a spurious until it gets acked.
EXPECT_EQ(1u, stats_.packets_spuriously_retransmitted);
} else {
EXPECT_EQ(2u, stats_.packets_spuriously_retransmitted);
}
}
TEST_P(QuicSentPacketManagerTest, AckOriginalTransmission) {
auto loss_algorithm = QuicMakeUnique<MockLossAlgorithm>();
QuicSentPacketManagerPeer::SetLossAlgorithm(&manager_, loss_algorithm.get());
SendDataPacket(1);
RetransmitAndSendPacket(1, 2);
// Ack original transmission, but that wasn't lost via fast retransmit,
// so no call on OnSpuriousRetransmission is expected.
{
ExpectAck(1);
EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _));
manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
}
SendDataPacket(3);
SendDataPacket(4);
// Ack 4, which causes 3 to be retransmitted.
{
ExpectAck(4);
EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _));
manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(5));
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2),
ENCRYPTION_INITIAL));
RetransmitAndSendPacket(3, 5, LOSS_RETRANSMISSION);
}
// Ack 3, which causes SpuriousRetransmitDetected to be called.
{
uint64_t acked[] = {3};
ExpectAcksAndLosses(false, acked, QUIC_ARRAYSIZE(acked), nullptr, 0);
EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(*loss_algorithm,
SpuriousRetransmitDetected(_, _, _, QuicPacketNumber(5)));
manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(5));
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3),
ENCRYPTION_INITIAL));
if (manager_.session_decides_what_to_write()) {
// Ack 3 will not cause 5 be considered as a spurious retransmission. Ack
// 5 will cause 5 be considered as a spurious retransmission as no new
// data gets acked.
ExpectAck(5);
EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _));
EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)).WillOnce(Return(false));
manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6));
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(4),
ENCRYPTION_INITIAL));
}
}
}
TEST_P(QuicSentPacketManagerTest, GetLeastUnacked) {
EXPECT_EQ(QuicPacketNumber(1u), manager_.GetLeastUnacked());
}
TEST_P(QuicSentPacketManagerTest, GetLeastUnackedUnacked) {
SendDataPacket(1);
EXPECT_EQ(QuicPacketNumber(1u), manager_.GetLeastUnacked());
}
TEST_P(QuicSentPacketManagerTest, AckAckAndUpdateRtt) {
EXPECT_FALSE(manager_.largest_packet_peer_knows_is_acked().IsInitialized());
SendDataPacket(1);
SendAckPacket(2, 1);
// Now ack the ack and expect an RTT update.
uint64_t acked[] = {1, 2};
ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0);
manager_.OnAckFrameStart(QuicPacketNumber(2),
QuicTime::Delta::FromMilliseconds(5), clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(3));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
EXPECT_EQ(QuicPacketNumber(1), manager_.largest_packet_peer_knows_is_acked());
SendAckPacket(3, 3);
// Now ack the ack and expect only an RTT update.
uint64_t acked2[] = {3};
ExpectAcksAndLosses(true, acked2, QUIC_ARRAYSIZE(acked2), nullptr, 0);
manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(4));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2),
ENCRYPTION_INITIAL));
EXPECT_EQ(QuicPacketNumber(3u),
manager_.largest_packet_peer_knows_is_acked());
}
TEST_P(QuicSentPacketManagerTest, Rtt) {
QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(20);
SendDataPacket(1);
clock_.AdvanceTime(expected_rtt);
ExpectAck(1);
manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt());
}
TEST_P(QuicSentPacketManagerTest, RttWithInvalidDelta) {
// Expect that the RTT is equal to the local time elapsed, since the
// ack_delay_time is larger than the local time elapsed
// and is hence invalid.
QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10);
SendDataPacket(1);
clock_.AdvanceTime(expected_rtt);
ExpectAck(1);
manager_.OnAckFrameStart(QuicPacketNumber(1),
QuicTime::Delta::FromMilliseconds(11), clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt());
}
TEST_P(QuicSentPacketManagerTest, RttWithInfiniteDelta) {
// Expect that the RTT is equal to the local time elapsed, since the
// ack_delay_time is infinite, and is hence invalid.
QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10);
SendDataPacket(1);
clock_.AdvanceTime(expected_rtt);
ExpectAck(1);
manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt());
}
TEST_P(QuicSentPacketManagerTest, RttZeroDelta) {
// Expect that the RTT is the time between send and receive since the
// ack_delay_time is zero.
QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10);
SendDataPacket(1);
clock_.AdvanceTime(expected_rtt);
ExpectAck(1);
manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Zero(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt());
}
TEST_P(QuicSentPacketManagerTest, TailLossProbeTimeout) {
QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2);
// Send 1 packet.
SendDataPacket(1);
// The first tail loss probe retransmits 1 packet.
manager_.OnRetransmissionTimeout();
EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke(
[this](TransmissionType type) { RetransmitDataPacket(2, type); })));
}
manager_.MaybeRetransmitTailLossProbe();
if (!manager_.session_decides_what_to_write()) {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
RetransmitNextPacket(2);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
// The second tail loss probe retransmits 1 packet.
manager_.OnRetransmissionTimeout();
EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke(
[this](TransmissionType type) { RetransmitDataPacket(3, type); })));
}
manager_.MaybeRetransmitTailLossProbe();
if (!manager_.session_decides_what_to_write()) {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
RetransmitNextPacket(3);
}
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
// Ack the third and ensure the first two are still pending.
ExpectAck(3);
manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(4));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
EXPECT_TRUE(manager_.HasInFlightPackets());
// Acking two more packets will lose both of them due to nacks.
SendDataPacket(4);
SendDataPacket(5);
uint64_t acked[] = {4, 5};
uint64_t lost[] = {1, 2};
ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), lost,
QUIC_ARRAYSIZE(lost));
if (manager_.session_decides_what_to_write()) {
// Frames in all packets are acked.
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false));
// Notify session that stream frame in packets 1 and 2 get lost although
// they are not outstanding.
EXPECT_CALL(notifier_, OnFrameLost(_)).Times(2);
}
manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2),
ENCRYPTION_INITIAL));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
EXPECT_FALSE(manager_.HasInFlightPackets());
EXPECT_EQ(2u, stats_.tlp_count);
EXPECT_EQ(0u, stats_.rto_count);
}
TEST_P(QuicSentPacketManagerTest, TailLossProbeThenRTO) {
QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2);
// Send 100 packets.
const size_t kNumSentPackets = 100;
for (size_t i = 1; i <= kNumSentPackets; ++i) {
SendDataPacket(i);
}
QuicTime rto_packet_time = clock_.Now();
// Advance the time.
clock_.AdvanceTime(manager_.GetRetransmissionTime() - clock_.Now());
// The first tail loss probe retransmits 1 packet.
manager_.OnRetransmissionTimeout();
EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) {
RetransmitDataPacket(101, type);
})));
}
manager_.MaybeRetransmitTailLossProbe();
if (!manager_.session_decides_what_to_write()) {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
RetransmitNextPacket(101);
}
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
clock_.AdvanceTime(manager_.GetRetransmissionTime() - clock_.Now());
// The second tail loss probe retransmits 1 packet.
manager_.OnRetransmissionTimeout();
EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) {
RetransmitDataPacket(102, type);
})));
}
EXPECT_TRUE(manager_.MaybeRetransmitTailLossProbe());
if (!manager_.session_decides_what_to_write()) {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
RetransmitNextPacket(102);
}
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now()));
// Ensure the RTO is set based on the correct packet.
rto_packet_time = clock_.Now();
EXPECT_EQ(rto_packet_time + QuicTime::Delta::FromMilliseconds(500),
manager_.GetRetransmissionTime());
// Advance the time enough to ensure all packets are RTO'd.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1000));
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.Times(2)
.WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) {
RetransmitDataPacket(103, type);
})))
.WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) {
RetransmitDataPacket(104, type);
})));
}
manager_.OnRetransmissionTimeout();
EXPECT_EQ(2u, stats_.tlp_count);
EXPECT_EQ(1u, stats_.rto_count);
if (manager_.session_decides_what_to_write()) {
// There are 2 RTO retransmissions.
EXPECT_EQ(104 * kDefaultLength, manager_.GetBytesInFlight());
}
if (!manager_.session_decides_what_to_write()) {
// Send and Ack the RTO and ensure OnRetransmissionTimeout is called.
EXPECT_EQ(102 * kDefaultLength, manager_.GetBytesInFlight());
EXPECT_TRUE(manager_.HasPendingRetransmissions());
RetransmitNextPacket(103);
}
QuicPacketNumber largest_acked = QuicPacketNumber(103);
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
EXPECT_CALL(*send_algorithm_,
OnCongestionEvent(
true, _, _, Pointwise(PacketNumberEq(), {largest_acked}), _));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
if (manager_.session_decides_what_to_write()) {
// Although frames in packet 3 gets acked, it would be kept for another
// RTT.
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(true));
// Packets [1, 102] are lost, although stream frame in packet 3 is not
// outstanding.
EXPECT_CALL(notifier_, OnFrameLost(_)).Times(102);
}
manager_.OnAckFrameStart(QuicPacketNumber(103), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(103), QuicPacketNumber(104));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
// All packets before 103 should be lost.
if (manager_.session_decides_what_to_write()) {
// Packet 104 is still in flight.
EXPECT_EQ(1000u, manager_.GetBytesInFlight());
} else {
EXPECT_EQ(0u, manager_.GetBytesInFlight());
}
}
TEST_P(QuicSentPacketManagerTest, CryptoHandshakeTimeout) {
// Send 2 crypto packets and 3 data packets.
const size_t kNumSentCryptoPackets = 2;
for (size_t i = 1; i <= kNumSentCryptoPackets; ++i) {
SendCryptoPacket(i);
}
const size_t kNumSentDataPackets = 3;
for (size_t i = 1; i <= kNumSentDataPackets; ++i) {
SendDataPacket(kNumSentCryptoPackets + i);
}
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
EXPECT_EQ(5 * kDefaultLength, manager_.GetBytesInFlight());
// The first retransmits 2 packets.
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.Times(2)
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(6); }))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(7); }));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now()));
RetransmitNextPacket(6);
RetransmitNextPacket(7);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
// Expect all 4 handshake packets to be in flight and 3 data packets.
if (GetQuicReloadableFlag(quic_loss_removes_from_inflight)) {
EXPECT_EQ(7 * kDefaultLength, manager_.GetBytesInFlight());
}
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
// The second retransmits 2 packets.
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.Times(2)
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(8); }))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(9); }));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now()));
RetransmitNextPacket(8);
RetransmitNextPacket(9);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
if (GetQuicReloadableFlag(quic_loss_removes_from_inflight)) {
EXPECT_EQ(9 * kDefaultLength, manager_.GetBytesInFlight());
}
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
// Now ack the two crypto packets and the speculatively encrypted request,
// and ensure the first four crypto packets get abandoned, but not lost.
if (GetQuicReloadableFlag(quic_loss_removes_from_inflight)) {
// Crypto packets remain in flight, so any that aren't acked will be lost.
uint64_t acked[] = {3, 4, 5, 8, 9};
uint64_t lost[] = {1, 2, 6};
ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), lost,
QUIC_ARRAYSIZE(lost));
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, OnFrameLost(_)).Times(3);
}
} else {
uint64_t acked[] = {3, 4, 5, 8, 9};
ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0);
}
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, HasUnackedCryptoData())
.WillRepeatedly(Return(false));
}
manager_.OnAckFrameStart(QuicPacketNumber(9), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(8), QuicPacketNumber(10));
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
EXPECT_FALSE(manager_.HasUnackedCryptoPackets());
}
TEST_P(QuicSentPacketManagerTest, CryptoHandshakeTimeoutVersionNegotiation) {
// Send 2 crypto packets and 3 data packets.
const size_t kNumSentCryptoPackets = 2;
for (size_t i = 1; i <= kNumSentCryptoPackets; ++i) {
SendCryptoPacket(i);
}
const size_t kNumSentDataPackets = 3;
for (size_t i = 1; i <= kNumSentDataPackets; ++i) {
SendDataPacket(kNumSentCryptoPackets + i);
}
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.Times(2)
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(6); }))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(7); }));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(6);
RetransmitNextPacket(7);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
// Now act like a version negotiation packet arrived, which would cause all
// unacked packets to be retransmitted.
if (manager_.session_decides_what_to_write()) {
// Mark packets [1, 7] lost. And the frames in 6 and 7 are same as packets 1
// and 2, respectively.
EXPECT_CALL(notifier_, OnFrameLost(_)).Times(7);
}
manager_.RetransmitUnackedPackets(ALL_UNACKED_RETRANSMISSION);
// Ensure the first two pending packets are the crypto retransmits.
if (manager_.session_decides_what_to_write()) {
RetransmitCryptoPacket(8);
RetransmitCryptoPacket(9);
RetransmitDataPacket(10, ALL_UNACKED_RETRANSMISSION);
RetransmitDataPacket(11, ALL_UNACKED_RETRANSMISSION);
RetransmitDataPacket(12, ALL_UNACKED_RETRANSMISSION);
} else {
ASSERT_TRUE(manager_.HasPendingRetransmissions());
EXPECT_EQ(QuicPacketNumber(6u),
manager_.NextPendingRetransmission().packet_number);
RetransmitNextPacket(8);
EXPECT_EQ(QuicPacketNumber(7u),
manager_.NextPendingRetransmission().packet_number);
RetransmitNextPacket(9);
EXPECT_TRUE(manager_.HasPendingRetransmissions());
// Send 3 more data packets and ensure the least unacked is raised.
RetransmitNextPacket(10);
RetransmitNextPacket(11);
RetransmitNextPacket(12);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
EXPECT_EQ(QuicPacketNumber(1u), manager_.GetLeastUnacked());
// Least unacked isn't raised until an ack is received, so ack the
// crypto packets.
uint64_t acked[] = {8, 9};
ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0);
manager_.OnAckFrameStart(QuicPacketNumber(9), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(8), QuicPacketNumber(10));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, HasUnackedCryptoData())
.WillRepeatedly(Return(false));
}
EXPECT_EQ(QuicPacketNumber(10u), manager_.GetLeastUnacked());
}
TEST_P(QuicSentPacketManagerTest, CryptoHandshakeSpuriousRetransmission) {
// Send 1 crypto packet.
SendCryptoPacket(1);
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
// Retransmit the crypto packet as 2.
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(2); }));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(2);
}
// Retransmit the crypto packet as 3.
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(3); }));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(3);
}
// Now ack the second crypto packet, and ensure the first gets removed, but
// the third does not.
uint64_t acked[] = {2};
ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0);
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, HasUnackedCryptoData())
.WillRepeatedly(Return(false));
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false));
}
manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
EXPECT_FALSE(manager_.HasUnackedCryptoPackets());
if (GetQuicReloadableFlag(quic_loss_removes_from_inflight)) {
uint64_t unacked[] = {1, 3};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
} else {
uint64_t unacked[] = {3};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
}
}
TEST_P(QuicSentPacketManagerTest, CryptoHandshakeTimeoutUnsentDataPacket) {
// Send 2 crypto packets and 1 data packet.
const size_t kNumSentCryptoPackets = 2;
for (size_t i = 1; i <= kNumSentCryptoPackets; ++i) {
SendCryptoPacket(i);
}
SendDataPacket(3);
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
// Retransmit 2 crypto packets, but not the serialized packet.
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.Times(2)
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(4); }))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(5); }));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(4);
RetransmitNextPacket(5);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
}
TEST_P(QuicSentPacketManagerTest,
CryptoHandshakeRetransmissionThenRetransmitAll) {
// Send 1 crypto packet.
SendCryptoPacket(1);
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
// Retransmit the crypto packet as 2.
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(2); }));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(2);
}
// Now retransmit all the unacked packets, which occurs when there is a
// version negotiation.
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, OnFrameLost(_)).Times(2);
}
manager_.RetransmitUnackedPackets(ALL_UNACKED_RETRANSMISSION);
if (manager_.session_decides_what_to_write()) {
// Both packets 1 and 2 are unackable.
EXPECT_FALSE(manager_.unacked_packets().IsUnacked(QuicPacketNumber(1)));
EXPECT_FALSE(manager_.unacked_packets().IsUnacked(QuicPacketNumber(2)));
} else {
// Packet 2 is useful because it does not get retransmitted and still has
// retransmittable frames.
uint64_t unacked[] = {1, 2};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
EXPECT_TRUE(manager_.HasPendingRetransmissions());
}
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
EXPECT_FALSE(manager_.HasInFlightPackets());
}
TEST_P(QuicSentPacketManagerTest,
CryptoHandshakeRetransmissionThenNeuterAndAck) {
// Send 1 crypto packet.
SendCryptoPacket(1);
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
// Retransmit the crypto packet as 2.
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(2); }));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(2);
}
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
// Retransmit the crypto packet as 3.
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(3); }));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(3);
}
EXPECT_TRUE(manager_.HasUnackedCryptoPackets());
// Now neuter all unacked unencrypted packets, which occurs when the
// connection goes forward secure.
manager_.NeuterUnencryptedPackets();
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, HasUnackedCryptoData())
.WillRepeatedly(Return(false));
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false));
}
EXPECT_FALSE(manager_.HasUnackedCryptoPackets());
uint64_t unacked[] = {1, 2, 3};
VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked));
VerifyRetransmittablePackets(nullptr, 0);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
EXPECT_FALSE(manager_.HasUnackedCryptoPackets());
EXPECT_FALSE(manager_.HasInFlightPackets());
// Ensure both packets get discarded when packet 2 is acked.
uint64_t acked[] = {3};
ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0);
manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(4));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
VerifyUnackedPackets(nullptr, 0);
VerifyRetransmittablePackets(nullptr, 0);
}
TEST_P(QuicSentPacketManagerTest, RetransmissionTimeout) {
StrictMock<MockDebugDelegate> debug_delegate;
manager_.SetDebugDelegate(&debug_delegate);
// Send 100 packets.
const size_t kNumSentPackets = 100;
for (size_t i = 1; i <= kNumSentPackets; ++i) {
SendDataPacket(i);
}
EXPECT_FALSE(manager_.MaybeRetransmitTailLossProbe());
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.Times(2)
.WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) {
RetransmitDataPacket(101, type);
})))
.WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) {
RetransmitDataPacket(102, type);
})));
}
manager_.OnRetransmissionTimeout();
if (manager_.session_decides_what_to_write()) {
EXPECT_EQ(102 * kDefaultLength, manager_.GetBytesInFlight());
} else {
ASSERT_TRUE(manager_.HasPendingRetransmissions());
EXPECT_EQ(100 * kDefaultLength, manager_.GetBytesInFlight());
RetransmitNextPacket(101);
ASSERT_TRUE(manager_.HasPendingRetransmissions());
RetransmitNextPacket(102);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
// Ack a retransmission.
// Ensure no packets are lost.
QuicPacketNumber largest_acked = QuicPacketNumber(102);
EXPECT_CALL(*send_algorithm_,
OnCongestionEvent(true, _, _,
Pointwise(PacketNumberEq(), {largest_acked}),
/*lost_packets=*/IsEmpty()));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
// RTO's use loss detection instead of immediately declaring retransmitted
// packets lost.
for (int i = 1; i <= 99; ++i) {
EXPECT_CALL(debug_delegate,
OnPacketLoss(QuicPacketNumber(i), LOSS_RETRANSMISSION, _));
}
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(true));
// Packets [1, 99] are considered as lost, although stream frame in packet
// 2 is not outstanding.
EXPECT_CALL(notifier_, OnFrameLost(_)).Times(99);
}
manager_.OnAckFrameStart(QuicPacketNumber(102), QuicTime::Delta::Zero(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(102), QuicPacketNumber(103));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
}
TEST_P(QuicSentPacketManagerTest, RetransmissionTimeoutOnePacket) {
// Set the 1RTO connection option.
QuicConfig client_config;
QuicTagVector options;
options.push_back(k1RTO);
QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT);
client_config.SetConnectionOptionsToSend(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
EXPECT_CALL(*send_algorithm_, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillRepeatedly(Return(10 * kDefaultTCPMSS));
manager_.SetFromConfig(client_config);
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
StrictMock<MockDebugDelegate> debug_delegate;
manager_.SetDebugDelegate(&debug_delegate);
// Send 100 packets.
const size_t kNumSentPackets = 100;
for (size_t i = 1; i <= kNumSentPackets; ++i) {
SendDataPacket(i);
}
EXPECT_FALSE(manager_.MaybeRetransmitTailLossProbe());
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.Times(1)
.WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) {
RetransmitDataPacket(101, type);
})));
}
manager_.OnRetransmissionTimeout();
if (manager_.session_decides_what_to_write()) {
EXPECT_EQ(101 * kDefaultLength, manager_.GetBytesInFlight());
} else {
ASSERT_TRUE(manager_.HasPendingRetransmissions());
EXPECT_EQ(100 * kDefaultLength, manager_.GetBytesInFlight());
RetransmitNextPacket(101);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
}
TEST_P(QuicSentPacketManagerTest, NewRetransmissionTimeout) {
QuicConfig client_config;
QuicTagVector options;
options.push_back(kNRTO);
QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT);
client_config.SetConnectionOptionsToSend(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
EXPECT_CALL(*send_algorithm_, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillRepeatedly(Return(10 * kDefaultTCPMSS));
manager_.SetFromConfig(client_config);
EXPECT_TRUE(QuicSentPacketManagerPeer::GetUseNewRto(&manager_));
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
// Send 100 packets.
const size_t kNumSentPackets = 100;
for (size_t i = 1; i <= kNumSentPackets; ++i) {
SendDataPacket(i);
}
EXPECT_FALSE(manager_.MaybeRetransmitTailLossProbe());
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.Times(2)
.WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) {
RetransmitDataPacket(101, type);
})))
.WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) {
RetransmitDataPacket(102, type);
})));
}
manager_.OnRetransmissionTimeout();
if (manager_.session_decides_what_to_write()) {
EXPECT_EQ(102 * kDefaultLength, manager_.GetBytesInFlight());
} else {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
EXPECT_EQ(100 * kDefaultLength, manager_.GetBytesInFlight());
RetransmitNextPacket(101);
RetransmitNextPacket(102);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
// Ack a retransmission and expect no call to OnRetransmissionTimeout.
// This will include packets in the lost packet map.
QuicPacketNumber largest_acked = QuicPacketNumber(102);
EXPECT_CALL(*send_algorithm_,
OnCongestionEvent(true, _, _,
Pointwise(PacketNumberEq(), {largest_acked}),
/*lost_packets=*/Not(IsEmpty())));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(true));
// Packets [1, 99] are considered as lost, although stream frame in packet
// 2 is not outstanding.
EXPECT_CALL(notifier_, OnFrameLost(_)).Times(99);
}
manager_.OnAckFrameStart(QuicPacketNumber(102), QuicTime::Delta::Zero(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(102), QuicPacketNumber(103));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
}
TEST_P(QuicSentPacketManagerTest, TwoRetransmissionTimeoutsAckSecond) {
// Send 1 packet.
SendDataPacket(1);
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke(
[this](TransmissionType type) { RetransmitDataPacket(2, type); })));
}
manager_.OnRetransmissionTimeout();
if (manager_.session_decides_what_to_write()) {
EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight());
} else {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
EXPECT_EQ(kDefaultLength, manager_.GetBytesInFlight());
RetransmitNextPacket(2);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
// Rto a second time.
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke(
[this](TransmissionType type) { RetransmitDataPacket(3, type); })));
}
manager_.OnRetransmissionTimeout();
if (manager_.session_decides_what_to_write()) {
EXPECT_EQ(3 * kDefaultLength, manager_.GetBytesInFlight());
} else {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight());
RetransmitNextPacket(3);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
// Ack a retransmission and ensure OnRetransmissionTimeout is called.
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
ExpectAck(2);
manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Zero(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
// The original packet and newest should be outstanding.
EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight());
}
TEST_P(QuicSentPacketManagerTest, TwoRetransmissionTimeoutsAckFirst) {
// Send 1 packet.
SendDataPacket(1);
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke(
[this](TransmissionType type) { RetransmitDataPacket(2, type); })));
}
manager_.OnRetransmissionTimeout();
if (manager_.session_decides_what_to_write()) {
EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight());
} else {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
EXPECT_EQ(kDefaultLength, manager_.GetBytesInFlight());
RetransmitNextPacket(2);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
// Rto a second time.
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke(
[this](TransmissionType type) { RetransmitDataPacket(3, type); })));
}
manager_.OnRetransmissionTimeout();
if (manager_.session_decides_what_to_write()) {
EXPECT_EQ(3 * kDefaultLength, manager_.GetBytesInFlight());
} else {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight());
RetransmitNextPacket(3);
EXPECT_FALSE(manager_.HasPendingRetransmissions());
}
// Ack a retransmission and ensure OnRetransmissionTimeout is called.
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
ExpectAck(3);
manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Zero(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(4));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
// The first two packets should still be outstanding.
EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight());
}
TEST_P(QuicSentPacketManagerTest, GetTransmissionTime) {
EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime());
}
TEST_P(QuicSentPacketManagerTest, GetTransmissionTimeCryptoHandshake) {
QuicTime crypto_packet_send_time = clock_.Now();
SendCryptoPacket(1);
// Check the min.
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(1));
EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(10),
manager_.GetRetransmissionTime());
// Test with a standard smoothed RTT.
rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100));
QuicTime::Delta srtt = rtt_stats->initial_rtt();
QuicTime expected_time = clock_.Now() + 1.5 * srtt;
EXPECT_EQ(expected_time, manager_.GetRetransmissionTime());
// Retransmit the packet by invoking the retransmission timeout.
clock_.AdvanceTime(1.5 * srtt);
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(2); }));
// When session decides what to write, crypto_packet_send_time gets updated.
crypto_packet_send_time = clock_.Now();
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(2);
}
// The retransmission time should now be twice as far in the future.
expected_time = crypto_packet_send_time + srtt * 2 * 1.5;
EXPECT_EQ(expected_time, manager_.GetRetransmissionTime());
// Retransmit the packet for the 2nd time.
clock_.AdvanceTime(2 * 1.5 * srtt);
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(3); }));
// When session decides what to write, crypto_packet_send_time gets updated.
crypto_packet_send_time = clock_.Now();
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(3);
}
// Verify exponential backoff of the retransmission timeout.
expected_time = crypto_packet_send_time + srtt * 4 * 1.5;
EXPECT_EQ(expected_time, manager_.GetRetransmissionTime());
}
TEST_P(QuicSentPacketManagerTest,
GetConservativeTransmissionTimeCryptoHandshake) {
QuicConfig config;
QuicTagVector options;
options.push_back(kCONH);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
// Calling SetFromConfig requires mocking out some send algorithm methods.
EXPECT_CALL(*send_algorithm_, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillRepeatedly(Return(10 * kDefaultTCPMSS));
QuicTime crypto_packet_send_time = clock_.Now();
SendCryptoPacket(1);
// Check the min.
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(1));
EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(25),
manager_.GetRetransmissionTime());
// Test with a standard smoothed RTT.
rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100));
QuicTime::Delta srtt = rtt_stats->initial_rtt();
QuicTime expected_time = clock_.Now() + 2 * srtt;
EXPECT_EQ(expected_time, manager_.GetRetransmissionTime());
// Retransmit the packet by invoking the retransmission timeout.
clock_.AdvanceTime(2 * srtt);
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(2); }));
crypto_packet_send_time = clock_.Now();
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(2);
}
// The retransmission time should now be twice as far in the future.
expected_time = crypto_packet_send_time + srtt * 2 * 2;
EXPECT_EQ(expected_time, manager_.GetRetransmissionTime());
}
TEST_P(QuicSentPacketManagerTest, GetTransmissionTimeTailLossProbe) {
QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2);
SendDataPacket(1);
SendDataPacket(2);
// Check the min.
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(1));
EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(10),
manager_.GetRetransmissionTime());
// Test with a standard smoothed RTT.
rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100));
QuicTime::Delta srtt = rtt_stats->initial_rtt();
QuicTime::Delta expected_tlp_delay = 2 * srtt;
QuicTime expected_time = clock_.Now() + expected_tlp_delay;
EXPECT_EQ(expected_time, manager_.GetRetransmissionTime());
// Retransmit the packet by invoking the retransmission timeout.
clock_.AdvanceTime(expected_tlp_delay);
manager_.OnRetransmissionTimeout();
EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke(
[this](TransmissionType type) { RetransmitDataPacket(3, type); })));
}
EXPECT_TRUE(manager_.MaybeRetransmitTailLossProbe());
if (!manager_.session_decides_what_to_write()) {
EXPECT_TRUE(manager_.HasPendingRetransmissions());
RetransmitNextPacket(3);
}
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
expected_time = clock_.Now() + expected_tlp_delay;
EXPECT_EQ(expected_time, manager_.GetRetransmissionTime());
}
TEST_P(QuicSentPacketManagerTest, TLPRWithPendingStreamData) {
if (!manager_.session_decides_what_to_write()) {
return;
}
QuicConfig config;
QuicTagVector options;
options.push_back(kTLPR);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
EXPECT_CALL(*send_algorithm_, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillOnce(Return(10 * kDefaultTCPMSS));
manager_.SetFromConfig(config);
EXPECT_TRUE(
QuicSentPacketManagerPeer::GetEnableHalfRttTailLossProbe(&manager_));
QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2);
SendDataPacket(1);
SendDataPacket(2);
// Test with a standard smoothed RTT.
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100));
QuicTime::Delta srtt = rtt_stats->initial_rtt();
// With pending stream data, TLPR is used.
QuicTime::Delta expected_tlp_delay = 0.5 * srtt;
EXPECT_CALL(notifier_, HasUnackedStreamData()).WillRepeatedly(Return(true));
EXPECT_EQ(expected_tlp_delay,
manager_.GetRetransmissionTime() - clock_.Now());
// Retransmit the packet by invoking the retransmission timeout.
clock_.AdvanceTime(expected_tlp_delay);
manager_.OnRetransmissionTimeout();
EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke(
[this](TransmissionType type) { RetransmitDataPacket(3, type); })));
EXPECT_TRUE(manager_.MaybeRetransmitTailLossProbe());
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
// 2nd TLP.
expected_tlp_delay = 2 * srtt;
EXPECT_EQ(expected_tlp_delay,
manager_.GetRetransmissionTime() - clock_.Now());
}
TEST_P(QuicSentPacketManagerTest, TLPRWithoutPendingStreamData) {
if (!manager_.session_decides_what_to_write()) {
return;
}
QuicConfig config;
QuicTagVector options;
options.push_back(kTLPR);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
EXPECT_CALL(*send_algorithm_, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillOnce(Return(10 * kDefaultTCPMSS));
manager_.SetFromConfig(config);
EXPECT_TRUE(
QuicSentPacketManagerPeer::GetEnableHalfRttTailLossProbe(&manager_));
QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2);
SendPingPacket(1, ENCRYPTION_INITIAL);
SendPingPacket(2, ENCRYPTION_INITIAL);
// Test with a standard smoothed RTT.
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100));
QuicTime::Delta srtt = rtt_stats->initial_rtt();
QuicTime::Delta expected_tlp_delay = 0.5 * srtt;
if (GetQuicReloadableFlag(quic_ignore_tlpr_if_no_pending_stream_data)) {
// With no pending stream data, TLPR is ignored.
expected_tlp_delay = 2 * srtt;
}
EXPECT_CALL(notifier_, HasUnackedStreamData()).WillRepeatedly(Return(false));
EXPECT_EQ(expected_tlp_delay,
manager_.GetRetransmissionTime() - clock_.Now());
// Retransmit the packet by invoking the retransmission timeout.
clock_.AdvanceTime(expected_tlp_delay);
manager_.OnRetransmissionTimeout();
EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke(
[this](TransmissionType type) { RetransmitDataPacket(3, type); })));
EXPECT_TRUE(manager_.MaybeRetransmitTailLossProbe());
EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now()));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
// 2nd TLP.
expected_tlp_delay = 2 * srtt;
EXPECT_EQ(expected_tlp_delay,
manager_.GetRetransmissionTime() - clock_.Now());
}
TEST_P(QuicSentPacketManagerTest, GetTransmissionTimeSpuriousRTO) {
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100),
QuicTime::Delta::Zero(), QuicTime::Zero());
SendDataPacket(1);
SendDataPacket(2);
SendDataPacket(3);
SendDataPacket(4);
QuicTime::Delta expected_rto_delay =
rtt_stats->smoothed_rtt() + 4 * rtt_stats->mean_deviation();
QuicTime expected_time = clock_.Now() + expected_rto_delay;
EXPECT_EQ(expected_time, manager_.GetRetransmissionTime());
// Retransmit the packet by invoking the retransmission timeout.
clock_.AdvanceTime(expected_rto_delay);
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.Times(2)
.WillOnce(WithArgs<1>(Invoke(
[this](TransmissionType type) { RetransmitDataPacket(5, type); })))
.WillOnce(WithArgs<1>(Invoke(
[this](TransmissionType type) { RetransmitDataPacket(6, type); })));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
// All packets are still considered inflight.
EXPECT_EQ(4 * kDefaultLength, manager_.GetBytesInFlight());
RetransmitNextPacket(5);
RetransmitNextPacket(6);
}
// All previous packets are inflight, plus two rto retransmissions.
EXPECT_EQ(6 * kDefaultLength, manager_.GetBytesInFlight());
EXPECT_FALSE(manager_.HasPendingRetransmissions());
// The delay should double the second time.
expected_time = clock_.Now() + expected_rto_delay + expected_rto_delay;
// Once we always base the timer on the right edge, leaving the older packets
// in flight doesn't change the timeout.
EXPECT_EQ(expected_time, manager_.GetRetransmissionTime());
// Ack a packet before the first RTO and ensure the RTO timeout returns to the
// original value and OnRetransmissionTimeout is not called or reverted.
ExpectAck(2);
manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
EXPECT_FALSE(manager_.HasPendingRetransmissions());
EXPECT_EQ(5 * kDefaultLength, manager_.GetBytesInFlight());
// Wait 2RTTs from now for the RTO, since it's the max of the RTO time
// and the TLP time. In production, there would always be two TLP's first.
// Since retransmission was spurious, smoothed_rtt_ is expired, and replaced
// by the latest RTT sample of 500ms.
expected_time = clock_.Now() + QuicTime::Delta::FromMilliseconds(1000);
// Once we always base the timer on the right edge, leaving the older packets
// in flight doesn't change the timeout.
EXPECT_EQ(expected_time, manager_.GetRetransmissionTime());
}
TEST_P(QuicSentPacketManagerTest, GetTransmissionDelayMin) {
SendDataPacket(1);
// Provide a 1ms RTT sample.
const_cast<RttStats*>(manager_.GetRttStats())
->UpdateRtt(QuicTime::Delta::FromMilliseconds(1), QuicTime::Delta::Zero(),
QuicTime::Zero());
QuicTime::Delta delay = QuicTime::Delta::FromMilliseconds(200);
// If the delay is smaller than the min, ensure it exponentially backs off
// from the min.
for (int i = 0; i < 5; ++i) {
EXPECT_EQ(delay,
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_));
EXPECT_EQ(delay,
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, i));
delay = delay + delay;
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke([this, i](TransmissionType type) {
RetransmitDataPacket(i + 2, type);
})));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(i + 2);
}
}
}
TEST_P(QuicSentPacketManagerTest, GetTransmissionDelayMax) {
SendDataPacket(1);
// Provide a 60s RTT sample.
const_cast<RttStats*>(manager_.GetRttStats())
->UpdateRtt(QuicTime::Delta::FromSeconds(60), QuicTime::Delta::Zero(),
QuicTime::Zero());
EXPECT_EQ(QuicTime::Delta::FromSeconds(60),
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromSeconds(60),
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, 0));
}
TEST_P(QuicSentPacketManagerTest, GetTransmissionDelayExponentialBackoff) {
SendDataPacket(1);
QuicTime::Delta delay = QuicTime::Delta::FromMilliseconds(500);
// Delay should back off exponentially.
for (int i = 0; i < 5; ++i) {
EXPECT_EQ(delay,
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_));
EXPECT_EQ(delay,
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, i));
delay = delay + delay;
if (manager_.session_decides_what_to_write()) {
EXPECT_CALL(notifier_, RetransmitFrames(_, _))
.WillOnce(WithArgs<1>(Invoke([this, i](TransmissionType type) {
RetransmitDataPacket(i + 2, type);
})));
}
manager_.OnRetransmissionTimeout();
if (!manager_.session_decides_what_to_write()) {
RetransmitNextPacket(i + 2);
}
}
}
TEST_P(QuicSentPacketManagerTest, RetransmissionDelay) {
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
const int64_t kRttMs = 250;
const int64_t kDeviationMs = 5;
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs),
QuicTime::Delta::Zero(), clock_.Now());
// Initial value is to set the median deviation to half of the initial rtt,
// the median in then multiplied by a factor of 4 and finally the smoothed rtt
// is added which is the initial rtt.
QuicTime::Delta expected_delay =
QuicTime::Delta::FromMilliseconds(kRttMs + kRttMs / 2 * 4);
EXPECT_EQ(expected_delay,
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_));
EXPECT_EQ(expected_delay,
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, 0));
for (int i = 0; i < 100; ++i) {
// Run to make sure that we converge.
rtt_stats->UpdateRtt(
QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs),
QuicTime::Delta::Zero(), clock_.Now());
rtt_stats->UpdateRtt(
QuicTime::Delta::FromMilliseconds(kRttMs - kDeviationMs),
QuicTime::Delta::Zero(), clock_.Now());
}
expected_delay = QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs * 4);
EXPECT_NEAR(kRttMs, rtt_stats->smoothed_rtt().ToMilliseconds(), 1);
EXPECT_NEAR(expected_delay.ToMilliseconds(),
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_)
.ToMilliseconds(),
1);
EXPECT_EQ(QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, 0),
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_));
}
TEST_P(QuicSentPacketManagerTest, GetLossDelay) {
auto loss_algorithm = QuicMakeUnique<MockLossAlgorithm>();
QuicSentPacketManagerPeer::SetLossAlgorithm(&manager_, loss_algorithm.get());
EXPECT_CALL(*loss_algorithm, GetLossTimeout())
.WillRepeatedly(Return(QuicTime::Zero()));
SendDataPacket(1);
SendDataPacket(2);
// Handle an ack which causes the loss algorithm to be evaluated and
// set the loss timeout.
ExpectAck(2);
EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _));
manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
QuicTime timeout(clock_.Now() + QuicTime::Delta::FromMilliseconds(10));
EXPECT_CALL(*loss_algorithm, GetLossTimeout())
.WillRepeatedly(Return(timeout));
EXPECT_EQ(timeout, manager_.GetRetransmissionTime());
// Fire the retransmission timeout and ensure the loss detection algorithm
// is invoked.
EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _));
manager_.OnRetransmissionTimeout();
}
TEST_P(QuicSentPacketManagerTest, NegotiateTimeLossDetectionFromOptions) {
EXPECT_EQ(kNack, QuicSentPacketManagerPeer::GetLossAlgorithm(&manager_)
->GetLossDetectionType());
QuicConfig config;
QuicTagVector options;
options.push_back(kTIME);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
EXPECT_EQ(kTime, QuicSentPacketManagerPeer::GetLossAlgorithm(&manager_)
->GetLossDetectionType());
}
TEST_P(QuicSentPacketManagerTest, NegotiateCongestionControlFromOptions) {
QuicConfig config;
QuicTagVector options;
options.push_back(kRENO);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_)
->GetCongestionControlType());
options.clear();
options.push_back(kTBBR);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
EXPECT_EQ(kBBR, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_)
->GetCongestionControlType());
options.clear();
options.push_back(kBYTE);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
EXPECT_EQ(kCubicBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_)
->GetCongestionControlType());
options.clear();
options.push_back(kRENO);
options.push_back(kBYTE);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_)
->GetCongestionControlType());
}
TEST_P(QuicSentPacketManagerTest, NegotiateClientCongestionControlFromOptions) {
QuicConfig config;
QuicTagVector options;
// No change if the server receives client options.
const SendAlgorithmInterface* mock_sender =
QuicSentPacketManagerPeer::GetSendAlgorithm(manager_);
options.push_back(kRENO);
config.SetClientConnectionOptions(options);
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
EXPECT_EQ(mock_sender, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_));
// Change the congestion control on the client with client options.
QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_)
->GetCongestionControlType());
options.clear();
options.push_back(kTBBR);
config.SetClientConnectionOptions(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
EXPECT_EQ(kBBR, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_)
->GetCongestionControlType());
options.clear();
options.push_back(kBYTE);
config.SetClientConnectionOptions(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
EXPECT_EQ(kCubicBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_)
->GetCongestionControlType());
options.clear();
options.push_back(kRENO);
options.push_back(kBYTE);
config.SetClientConnectionOptions(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_)
->GetCongestionControlType());
}
TEST_P(QuicSentPacketManagerTest, NegotiateNoMinTLPFromOptionsAtServer) {
QuicConfig config;
QuicTagVector options;
options.push_back(kMAD2);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
EXPECT_CALL(*send_algorithm_, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillOnce(Return(10 * kDefaultTCPMSS));
manager_.SetFromConfig(config);
// Set the initial RTT to 1us.
QuicSentPacketManagerPeer::GetRttStats(&manager_)->set_initial_rtt(
QuicTime::Delta::FromMicroseconds(1));
// The TLP with fewer than 2 packets outstanding includes 1/2 min RTO(200ms).
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(100002),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(100002),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0));
// Send two packets, and the TLP should be 2 us.
SendDataPacket(1);
SendDataPacket(2);
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0));
}
TEST_P(QuicSentPacketManagerTest, NegotiateNoMinTLPFromOptionsAtClient) {
QuicConfig client_config;
QuicTagVector options;
options.push_back(kMAD2);
QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT);
client_config.SetConnectionOptionsToSend(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
EXPECT_CALL(*send_algorithm_, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillOnce(Return(10 * kDefaultTCPMSS));
manager_.SetFromConfig(client_config);
// Set the initial RTT to 1us.
QuicSentPacketManagerPeer::GetRttStats(&manager_)->set_initial_rtt(
QuicTime::Delta::FromMicroseconds(1));
// The TLP with fewer than 2 packets outstanding includes 1/2 min RTO(200ms).
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(100002),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(100002),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0));
// Send two packets, and the TLP should be 2 us.
SendDataPacket(1);
SendDataPacket(2);
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0));
}
TEST_P(QuicSentPacketManagerTest, NegotiateIETFTLPFromOptionsAtServer) {
QuicConfig config;
QuicTagVector options;
options.push_back(kMAD4);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(config);
// Provide an RTT measurement of 100ms.
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100),
QuicTime::Delta::Zero(), QuicTime::Zero());
// Expect 1.5x * SRTT + 0ms MAD
EXPECT_EQ(QuicTime::Delta::FromMilliseconds(150),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMilliseconds(150),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0));
// Expect 1.5x * SRTT + 50ms MAD
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(150),
QuicTime::Delta::FromMilliseconds(50), QuicTime::Zero());
EXPECT_EQ(QuicTime::Delta::FromMilliseconds(100), rtt_stats->smoothed_rtt());
EXPECT_EQ(QuicTime::Delta::FromMilliseconds(200),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMilliseconds(200),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0));
}
TEST_P(QuicSentPacketManagerTest, NegotiateIETFTLPFromOptionsAtClient) {
QuicConfig client_config;
QuicTagVector options;
options.push_back(kMAD4);
QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT);
client_config.SetConnectionOptionsToSend(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(client_config);
// Provide an RTT measurement of 100ms.
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100),
QuicTime::Delta::Zero(), QuicTime::Zero());
// Expect 1.5x * SRTT + 0ms MAD
EXPECT_EQ(QuicTime::Delta::FromMilliseconds(150),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMilliseconds(150),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0));
// Expect 1.5x * SRTT + 50ms MAD
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(150),
QuicTime::Delta::FromMilliseconds(50), QuicTime::Zero());
EXPECT_EQ(QuicTime::Delta::FromMilliseconds(100), rtt_stats->smoothed_rtt());
EXPECT_EQ(QuicTime::Delta::FromMilliseconds(200),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMilliseconds(200),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0));
}
TEST_P(QuicSentPacketManagerTest, NegotiateNoMinRTOFromOptionsAtServer) {
QuicConfig config;
QuicTagVector options;
options.push_back(kMAD3);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(config);
// Provide one RTT measurement, because otherwise we use the default of 500ms.
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMicroseconds(1),
QuicTime::Delta::Zero(), QuicTime::Zero());
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(1),
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(1),
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, 0));
// The TLP with fewer than 2 packets outstanding includes 1/2 min RTO(0ms).
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0));
}
TEST_P(QuicSentPacketManagerTest, NegotiateNoMinRTOFromOptionsAtClient) {
QuicConfig client_config;
QuicTagVector options;
options.push_back(kMAD3);
QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT);
client_config.SetConnectionOptionsToSend(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(client_config);
// Provide one RTT measurement, because otherwise we use the default of 500ms.
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMicroseconds(1),
QuicTime::Delta::Zero(), QuicTime::Zero());
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(1),
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(1),
QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, 0));
// The TLP with fewer than 2 packets outstanding includes 1/2 min RTO(0ms).
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_));
EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2),
QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0));
}
TEST_P(QuicSentPacketManagerTest, NegotiateNoTLPFromOptionsAtServer) {
QuicConfig config;
QuicTagVector options;
options.push_back(kNTLP);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(config);
EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetMaxTailLossProbes(&manager_));
}
TEST_P(QuicSentPacketManagerTest, NegotiateNoTLPFromOptionsAtClient) {
QuicConfig client_config;
QuicTagVector options;
options.push_back(kNTLP);
QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT);
client_config.SetConnectionOptionsToSend(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(client_config);
EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetMaxTailLossProbes(&manager_));
}
TEST_P(QuicSentPacketManagerTest, Negotiate1TLPFromOptionsAtServer) {
QuicConfig config;
QuicTagVector options;
options.push_back(k1TLP);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(config);
EXPECT_EQ(1u, QuicSentPacketManagerPeer::GetMaxTailLossProbes(&manager_));
}
TEST_P(QuicSentPacketManagerTest, Negotiate1TLPFromOptionsAtClient) {
QuicConfig client_config;
QuicTagVector options;
options.push_back(k1TLP);
QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT);
client_config.SetConnectionOptionsToSend(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(client_config);
EXPECT_EQ(1u, QuicSentPacketManagerPeer::GetMaxTailLossProbes(&manager_));
}
TEST_P(QuicSentPacketManagerTest, NegotiateTLPRttFromOptionsAtServer) {
QuicConfig config;
QuicTagVector options;
options.push_back(kTLPR);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(config);
EXPECT_TRUE(
QuicSentPacketManagerPeer::GetEnableHalfRttTailLossProbe(&manager_));
}
TEST_P(QuicSentPacketManagerTest, NegotiateTLPRttFromOptionsAtClient) {
QuicConfig client_config;
QuicTagVector options;
options.push_back(kTLPR);
QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT);
client_config.SetConnectionOptionsToSend(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(client_config);
EXPECT_TRUE(
QuicSentPacketManagerPeer::GetEnableHalfRttTailLossProbe(&manager_));
}
TEST_P(QuicSentPacketManagerTest, NegotiateNewRTOFromOptionsAtServer) {
EXPECT_FALSE(QuicSentPacketManagerPeer::GetUseNewRto(&manager_));
QuicConfig config;
QuicTagVector options;
options.push_back(kNRTO);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(config);
EXPECT_TRUE(QuicSentPacketManagerPeer::GetUseNewRto(&manager_));
}
TEST_P(QuicSentPacketManagerTest, NegotiateNewRTOFromOptionsAtClient) {
EXPECT_FALSE(QuicSentPacketManagerPeer::GetUseNewRto(&manager_));
QuicConfig client_config;
QuicTagVector options;
options.push_back(kNRTO);
QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT);
client_config.SetConnectionOptionsToSend(options);
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
manager_.SetFromConfig(client_config);
EXPECT_TRUE(QuicSentPacketManagerPeer::GetUseNewRto(&manager_));
}
TEST_P(QuicSentPacketManagerTest, UseInitialRoundTripTimeToSend) {
QuicTime::Delta initial_rtt = QuicTime::Delta::FromMilliseconds(325);
EXPECT_NE(initial_rtt, manager_.GetRttStats()->smoothed_rtt());
QuicConfig config;
config.SetInitialRoundTripTimeUsToSend(initial_rtt.ToMicroseconds());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
EXPECT_CALL(*network_change_visitor_, OnCongestionChange());
manager_.SetFromConfig(config);
EXPECT_EQ(QuicTime::Delta::Zero(), manager_.GetRttStats()->smoothed_rtt());
EXPECT_EQ(initial_rtt, manager_.GetRttStats()->initial_rtt());
}
TEST_P(QuicSentPacketManagerTest, ResumeConnectionState) {
// The sent packet manager should use the RTT from CachedNetworkParameters if
// it is provided.
const QuicTime::Delta kRtt = QuicTime::Delta::FromMilliseconds(1234);
CachedNetworkParameters cached_network_params;
cached_network_params.set_min_rtt_ms(kRtt.ToMilliseconds());
EXPECT_CALL(*send_algorithm_,
AdjustNetworkParameters(QuicBandwidth::Zero(), kRtt, false));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.Times(testing::AnyNumber());
manager_.ResumeConnectionState(cached_network_params, false);
EXPECT_EQ(kRtt, manager_.GetRttStats()->initial_rtt());
}
TEST_P(QuicSentPacketManagerTest, ConnectionMigrationUnspecifiedChange) {
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt();
rtt_stats->set_initial_rtt(default_init_rtt * 2);
EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt());
QuicSentPacketManagerPeer::SetConsecutiveRtoCount(&manager_, 1);
EXPECT_EQ(1u, manager_.GetConsecutiveRtoCount());
QuicSentPacketManagerPeer::SetConsecutiveTlpCount(&manager_, 2);
EXPECT_EQ(2u, manager_.GetConsecutiveTlpCount());
EXPECT_CALL(*send_algorithm_, OnConnectionMigration());
manager_.OnConnectionMigration(IPV4_TO_IPV4_CHANGE);
EXPECT_EQ(default_init_rtt, rtt_stats->initial_rtt());
EXPECT_EQ(0u, manager_.GetConsecutiveRtoCount());
EXPECT_EQ(0u, manager_.GetConsecutiveTlpCount());
}
TEST_P(QuicSentPacketManagerTest, ConnectionMigrationIPSubnetChange) {
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt();
rtt_stats->set_initial_rtt(default_init_rtt * 2);
EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt());
QuicSentPacketManagerPeer::SetConsecutiveRtoCount(&manager_, 1);
EXPECT_EQ(1u, manager_.GetConsecutiveRtoCount());
QuicSentPacketManagerPeer::SetConsecutiveTlpCount(&manager_, 2);
EXPECT_EQ(2u, manager_.GetConsecutiveTlpCount());
manager_.OnConnectionMigration(IPV4_SUBNET_CHANGE);
EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt());
EXPECT_EQ(1u, manager_.GetConsecutiveRtoCount());
EXPECT_EQ(2u, manager_.GetConsecutiveTlpCount());
}
TEST_P(QuicSentPacketManagerTest, ConnectionMigrationPortChange) {
RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats());
QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt();
rtt_stats->set_initial_rtt(default_init_rtt * 2);
EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt());
QuicSentPacketManagerPeer::SetConsecutiveRtoCount(&manager_, 1);
EXPECT_EQ(1u, manager_.GetConsecutiveRtoCount());
QuicSentPacketManagerPeer::SetConsecutiveTlpCount(&manager_, 2);
EXPECT_EQ(2u, manager_.GetConsecutiveTlpCount());
manager_.OnConnectionMigration(PORT_CHANGE);
EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt());
EXPECT_EQ(1u, manager_.GetConsecutiveRtoCount());
EXPECT_EQ(2u, manager_.GetConsecutiveTlpCount());
}
TEST_P(QuicSentPacketManagerTest, PathMtuIncreased) {
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, BytesInFlight(), QuicPacketNumber(1), _, _));
SerializedPacket packet(QuicPacketNumber(1), PACKET_4BYTE_PACKET_NUMBER,
nullptr, kDefaultLength + 100, false, false);
manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(),
NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA);
// Ack the large packet and expect the path MTU to increase.
ExpectAck(1);
EXPECT_CALL(*network_change_visitor_,
OnPathMtuIncreased(kDefaultLength + 100));
QuicAckFrame ack_frame = InitAckFrame(1);
manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
}
TEST_P(QuicSentPacketManagerTest, OnAckRangeSlowPath) {
// Send packets 1 - 20.
for (size_t i = 1; i <= 20; ++i) {
SendDataPacket(i);
}
// Ack [5, 7), [10, 12), [15, 17).
uint64_t acked1[] = {5, 6, 10, 11, 15, 16};
uint64_t lost1[] = {1, 2, 3, 4, 7, 8, 9, 12, 13};
ExpectAcksAndLosses(true, acked1, QUIC_ARRAYSIZE(acked1), lost1,
QUIC_ARRAYSIZE(lost1));
EXPECT_CALL(notifier_, OnFrameLost(_)).Times(AnyNumber());
manager_.OnAckFrameStart(QuicPacketNumber(16), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(15), QuicPacketNumber(17));
manager_.OnAckRange(QuicPacketNumber(10), QuicPacketNumber(12));
manager_.OnAckRange(QuicPacketNumber(5), QuicPacketNumber(7));
// Make sure empty range does not harm.
manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(4));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1),
ENCRYPTION_INITIAL));
// Ack [4, 8), [9, 13), [14, 21).
uint64_t acked2[] = {4, 7, 9, 12, 14, 17, 18, 19, 20};
ExpectAcksAndLosses(true, acked2, QUIC_ARRAYSIZE(acked2), nullptr, 0);
manager_.OnAckFrameStart(QuicPacketNumber(20), QuicTime::Delta::Infinite(),
clock_.Now());
manager_.OnAckRange(QuicPacketNumber(14), QuicPacketNumber(21));
manager_.OnAckRange(QuicPacketNumber(9), QuicPacketNumber(13));
manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(8));
EXPECT_EQ(PACKETS_NEWLY_ACKED,
manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2),
ENCRYPTION_INITIAL));
}
TEST_P(QuicSentPacketManagerTest, TolerateReneging) {
// Send packets 1 - 20.
for (size_t i = 1; i <= 20; ++i) {
SendDataPacket(i);
}
// Ack [5, 7), [10, 12), [15, 17).
uint64_t acked1[] = {5, 6, 10, 11, 15, 16};
uint64_t lost1[] = {1, 2, 3, 4, 7, 8, 9, 12, 13};
ExpectAcksAndLosses(true, acked1, QUIC_ARRAYSIZE(acked1), lost1,
QUIC_ARRAYSIZE(lost1));