| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/third_party/quiche/src/quic/core/quic_sent_packet_manager.h" |
| |
| #include <memory> |
| |
| #include "net/third_party/quiche/src/quic/core/quic_pending_retransmission.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_arraysize.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_string_piece.h" |
| #include "net/third_party/quiche/src/quic/platform/api/quic_test.h" |
| #include "net/third_party/quiche/src/quic/test_tools/quic_config_peer.h" |
| #include "net/third_party/quiche/src/quic/test_tools/quic_sent_packet_manager_peer.h" |
| #include "net/third_party/quiche/src/quic/test_tools/quic_test_utils.h" |
| |
| using testing::_; |
| using testing::AnyNumber; |
| using testing::Invoke; |
| using testing::InvokeWithoutArgs; |
| using testing::IsEmpty; |
| using testing::Not; |
| using testing::Pointwise; |
| using testing::Return; |
| using testing::StrictMock; |
| using testing::WithArgs; |
| |
| namespace quic { |
| namespace test { |
| namespace { |
| // Default packet length. |
| const uint32_t kDefaultLength = 1000; |
| |
| // Stream ID for data sent in CreatePacket(). |
| const QuicStreamId kStreamId = 7; |
| |
| // Matcher to check that the packet number matches the second argument. |
| MATCHER(PacketNumberEq, "") { |
| return ::testing::get<0>(arg).packet_number == |
| QuicPacketNumber(::testing::get<1>(arg)); |
| } |
| |
| class MockDebugDelegate : public QuicSentPacketManager::DebugDelegate { |
| public: |
| MOCK_METHOD2(OnSpuriousPacketRetransmission, |
| void(TransmissionType transmission_type, |
| QuicByteCount byte_size)); |
| MOCK_METHOD3(OnPacketLoss, |
| void(QuicPacketNumber lost_packet_number, |
| TransmissionType transmission_type, |
| QuicTime detection_time)); |
| }; |
| |
| class QuicSentPacketManagerTest : public QuicTestWithParam<bool> { |
| public: |
| void RetransmitCryptoPacket(uint64_t packet_number) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number), |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)); |
| SerializedPacket packet(CreatePacket(packet_number, false)); |
| packet.retransmittable_frames.push_back( |
| QuicFrame(QuicStreamFrame(1, false, 0, QuicStringPiece()))); |
| packet.has_crypto_handshake = IS_HANDSHAKE; |
| manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(), |
| HANDSHAKE_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA); |
| } |
| |
| void RetransmitDataPacket(uint64_t packet_number, |
| TransmissionType type, |
| EncryptionLevel level) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number), |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)); |
| SerializedPacket packet(CreatePacket(packet_number, true)); |
| packet.encryption_level = level; |
| manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(), type, |
| HAS_RETRANSMITTABLE_DATA); |
| } |
| |
| void RetransmitDataPacket(uint64_t packet_number, TransmissionType type) { |
| RetransmitDataPacket(packet_number, type, ENCRYPTION_INITIAL); |
| } |
| |
| protected: |
| QuicSentPacketManagerTest() |
| : manager_(Perspective::IS_SERVER, |
| &clock_, |
| QuicRandom::GetInstance(), |
| &stats_, |
| kCubicBytes, |
| kNack), |
| send_algorithm_(new StrictMock<MockSendAlgorithm>), |
| network_change_visitor_(new StrictMock<MockNetworkChangeVisitor>) { |
| QuicSentPacketManagerPeer::SetSendAlgorithm(&manager_, send_algorithm_); |
| // Disable tail loss probes for most tests. |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 0); |
| // Advance the time 1s so the send times are never QuicTime::Zero. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1000)); |
| manager_.SetNetworkChangeVisitor(network_change_visitor_.get()); |
| manager_.SetSessionNotifier(¬ifier_); |
| manager_.SetSessionDecideWhatToWrite(GetParam()); |
| |
| EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate()) |
| .Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) |
| .Times(AnyNumber()) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); |
| EXPECT_CALL(*network_change_visitor_, OnPathMtuIncreased(1000)) |
| .Times(AnyNumber()); |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()) |
| .WillRepeatedly(Return(false)); |
| EXPECT_CALL(notifier_, OnStreamFrameRetransmitted(_)).Times(AnyNumber()); |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)).WillRepeatedly(Return(true)); |
| } |
| |
| ~QuicSentPacketManagerTest() override {} |
| |
| QuicByteCount BytesInFlight() { return manager_.GetBytesInFlight(); } |
| void VerifyUnackedPackets(uint64_t* packets, size_t num_packets) { |
| if (num_packets == 0) { |
| EXPECT_TRUE(manager_.unacked_packets().empty()); |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetNumRetransmittablePackets( |
| &manager_)); |
| return; |
| } |
| |
| EXPECT_FALSE(manager_.unacked_packets().empty()); |
| EXPECT_EQ(QuicPacketNumber(packets[0]), manager_.GetLeastUnacked()); |
| for (size_t i = 0; i < num_packets; ++i) { |
| EXPECT_TRUE( |
| manager_.unacked_packets().IsUnacked(QuicPacketNumber(packets[i]))) |
| << packets[i]; |
| } |
| } |
| |
| void VerifyRetransmittablePackets(uint64_t* packets, size_t num_packets) { |
| EXPECT_EQ( |
| num_packets, |
| QuicSentPacketManagerPeer::GetNumRetransmittablePackets(&manager_)); |
| for (size_t i = 0; i < num_packets; ++i) { |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasRetransmittableFrames( |
| &manager_, packets[i])) |
| << " packets[" << i << "]:" << packets[i]; |
| } |
| } |
| |
| void ExpectAck(uint64_t largest_observed) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| // Ensure the AckedPacketVector argument contains largest_observed. |
| OnCongestionEvent(true, _, _, |
| Pointwise(PacketNumberEq(), {largest_observed}), |
| IsEmpty())); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| } |
| |
| void ExpectUpdatedRtt(uint64_t /*largest_observed*/) { |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(true, _, _, IsEmpty(), IsEmpty())); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| } |
| |
| void ExpectAckAndLoss(bool rtt_updated, |
| uint64_t largest_observed, |
| uint64_t lost_packet) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnCongestionEvent(rtt_updated, _, _, |
| Pointwise(PacketNumberEq(), {largest_observed}), |
| Pointwise(PacketNumberEq(), {lost_packet}))); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| } |
| |
| // |packets_acked| and |packets_lost| should be in packet number order. |
| void ExpectAcksAndLosses(bool rtt_updated, |
| uint64_t* packets_acked, |
| size_t num_packets_acked, |
| uint64_t* packets_lost, |
| size_t num_packets_lost) { |
| std::vector<QuicPacketNumber> ack_vector; |
| for (size_t i = 0; i < num_packets_acked; ++i) { |
| ack_vector.push_back(QuicPacketNumber(packets_acked[i])); |
| } |
| std::vector<QuicPacketNumber> lost_vector; |
| for (size_t i = 0; i < num_packets_lost; ++i) { |
| lost_vector.push_back(QuicPacketNumber(packets_lost[i])); |
| } |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(rtt_updated, _, _, |
| Pointwise(PacketNumberEq(), ack_vector), |
| Pointwise(PacketNumberEq(), lost_vector))); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()) |
| .Times(AnyNumber()); |
| } |
| |
| void RetransmitAndSendPacket(uint64_t old_packet_number, |
| uint64_t new_packet_number) { |
| RetransmitAndSendPacket(old_packet_number, new_packet_number, |
| TLP_RETRANSMISSION); |
| } |
| |
| void RetransmitAndSendPacket(uint64_t old_packet_number, |
| uint64_t new_packet_number, |
| TransmissionType transmission_type) { |
| bool is_lost = false; |
| if (manager_.session_decides_what_to_write()) { |
| if (transmission_type == HANDSHAKE_RETRANSMISSION || |
| transmission_type == TLP_RETRANSMISSION || |
| transmission_type == RTO_RETRANSMISSION || |
| transmission_type == PROBING_RETRANSMISSION) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>( |
| Invoke([this, new_packet_number](TransmissionType type) { |
| RetransmitDataPacket(new_packet_number, type); |
| }))); |
| } else { |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(1); |
| is_lost = true; |
| } |
| } |
| QuicSentPacketManagerPeer::MarkForRetransmission( |
| &manager_, old_packet_number, transmission_type); |
| if (manager_.session_decides_what_to_write()) { |
| if (!is_lost) { |
| return; |
| } |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(new_packet_number), |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)); |
| SerializedPacket packet(CreatePacket(new_packet_number, true)); |
| manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(), |
| transmission_type, HAS_RETRANSMITTABLE_DATA); |
| return; |
| } |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| QuicPendingRetransmission next_retransmission = |
| manager_.NextPendingRetransmission(); |
| EXPECT_EQ(QuicPacketNumber(old_packet_number), |
| next_retransmission.packet_number); |
| EXPECT_EQ(transmission_type, next_retransmission.transmission_type); |
| |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(new_packet_number), |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)); |
| SerializedPacket packet(CreatePacket(new_packet_number, false)); |
| manager_.OnPacketSent(&packet, QuicPacketNumber(old_packet_number), |
| clock_.Now(), transmission_type, |
| HAS_RETRANSMITTABLE_DATA); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::IsRetransmission(&manager_, |
| new_packet_number)); |
| } |
| |
| SerializedPacket CreateDataPacket(uint64_t packet_number) { |
| return CreatePacket(packet_number, true); |
| } |
| |
| SerializedPacket CreatePacket(uint64_t packet_number, bool retransmittable) { |
| SerializedPacket packet(QuicPacketNumber(packet_number), |
| PACKET_4BYTE_PACKET_NUMBER, nullptr, kDefaultLength, |
| false, false); |
| if (retransmittable) { |
| packet.retransmittable_frames.push_back( |
| QuicFrame(QuicStreamFrame(kStreamId, false, 0, QuicStringPiece()))); |
| } |
| return packet; |
| } |
| |
| SerializedPacket CreatePingPacket(uint64_t packet_number) { |
| SerializedPacket packet(QuicPacketNumber(packet_number), |
| PACKET_4BYTE_PACKET_NUMBER, nullptr, kDefaultLength, |
| false, false); |
| packet.retransmittable_frames.push_back(QuicFrame(QuicPingFrame())); |
| return packet; |
| } |
| |
| void SendDataPacket(uint64_t packet_number) { |
| SendDataPacket(packet_number, ENCRYPTION_INITIAL); |
| } |
| |
| void SendDataPacket(uint64_t packet_number, |
| EncryptionLevel encryption_level) { |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), |
| QuicPacketNumber(packet_number), _, _)); |
| SerializedPacket packet(CreateDataPacket(packet_number)); |
| packet.encryption_level = encryption_level; |
| manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(), |
| NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA); |
| } |
| |
| void SendPingPacket(uint64_t packet_number, |
| EncryptionLevel encryption_level) { |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), |
| QuicPacketNumber(packet_number), _, _)); |
| SerializedPacket packet(CreatePingPacket(packet_number)); |
| packet.encryption_level = encryption_level; |
| manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(), |
| NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA); |
| } |
| |
| void SendCryptoPacket(uint64_t packet_number) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number), |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)); |
| SerializedPacket packet(CreatePacket(packet_number, false)); |
| packet.retransmittable_frames.push_back( |
| QuicFrame(QuicStreamFrame(1, false, 0, QuicStringPiece()))); |
| packet.has_crypto_handshake = IS_HANDSHAKE; |
| manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(), |
| NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()) |
| .WillRepeatedly(Return(true)); |
| } |
| } |
| |
| void SendAckPacket(uint64_t packet_number, uint64_t largest_acked) { |
| SendAckPacket(packet_number, largest_acked, ENCRYPTION_INITIAL); |
| } |
| |
| void SendAckPacket(uint64_t packet_number, |
| uint64_t largest_acked, |
| EncryptionLevel level) { |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(packet_number), |
| kDefaultLength, NO_RETRANSMITTABLE_DATA)); |
| SerializedPacket packet(CreatePacket(packet_number, false)); |
| packet.largest_acked = QuicPacketNumber(largest_acked); |
| packet.encryption_level = level; |
| manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(), |
| NOT_RETRANSMISSION, NO_RETRANSMITTABLE_DATA); |
| } |
| |
| // Based on QuicConnection's WritePendingRetransmissions. |
| void RetransmitNextPacket(uint64_t retransmission_packet_number) { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_CALL( |
| *send_algorithm_, |
| OnPacketSent(_, _, QuicPacketNumber(retransmission_packet_number), |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)); |
| const QuicPendingRetransmission pending = |
| manager_.NextPendingRetransmission(); |
| SerializedPacket packet(CreatePacket(retransmission_packet_number, false)); |
| manager_.OnPacketSent(&packet, pending.packet_number, clock_.Now(), |
| pending.transmission_type, HAS_RETRANSMITTABLE_DATA); |
| } |
| |
| QuicSentPacketManager manager_; |
| MockClock clock_; |
| QuicConnectionStats stats_; |
| MockSendAlgorithm* send_algorithm_; |
| std::unique_ptr<MockNetworkChangeVisitor> network_change_visitor_; |
| StrictMock<MockSessionNotifier> notifier_; |
| }; |
| |
| INSTANTIATE_TEST_SUITE_P(Tests, QuicSentPacketManagerTest, testing::Bool()); |
| |
| TEST_P(QuicSentPacketManagerTest, IsUnacked) { |
| VerifyUnackedPackets(nullptr, 0); |
| SendDataPacket(1); |
| |
| uint64_t unacked[] = {1}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| uint64_t retransmittable[] = {1}; |
| VerifyRetransmittablePackets(retransmittable, |
| QUIC_ARRAYSIZE(retransmittable)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, IsUnAckedRetransmit) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| |
| EXPECT_TRUE(QuicSentPacketManagerPeer::IsRetransmission(&manager_, 2)); |
| uint64_t unacked[] = {1, 2}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| std::vector<uint64_t> retransmittable; |
| if (manager_.session_decides_what_to_write()) { |
| retransmittable = {1, 2}; |
| } else { |
| retransmittable = {2}; |
| } |
| VerifyRetransmittablePackets(&retransmittable[0], retransmittable.size()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RetransmitThenAck) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| |
| // Ack 2 but not 1. |
| ExpectAck(2); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| } |
| // Packet 1 is unacked, pending, but not retransmittable. |
| uint64_t unacked[] = {1}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| EXPECT_TRUE(manager_.HasInFlightPackets()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RetransmitThenAckBeforeSend) { |
| SendDataPacket(1); |
| if (manager_.session_decides_what_to_write()) { |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| RetransmitDataPacket(2, type); |
| }))); |
| } |
| } |
| QuicSentPacketManagerPeer::MarkForRetransmission(&manager_, 1, |
| TLP_RETRANSMISSION); |
| if (!manager_.session_decides_what_to_write()) { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| } |
| // Ack 1. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| |
| // There should no longer be a pending retransmission. |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| uint64_t unacked[] = {2}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| // We do not know packet 2 is a spurious retransmission until it gets acked. |
| } else { |
| // No unacked packets remain. |
| VerifyUnackedPackets(nullptr, 0); |
| } |
| VerifyRetransmittablePackets(nullptr, 0); |
| EXPECT_EQ(0u, stats_.packets_spuriously_retransmitted); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RetransmitThenStopRetransmittingBeforeSend) { |
| SendDataPacket(1); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)); |
| } |
| QuicSentPacketManagerPeer::MarkForRetransmission(&manager_, 1, |
| TLP_RETRANSMISSION); |
| if (!manager_.session_decides_what_to_write()) { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| } |
| |
| manager_.CancelRetransmissionsForStream(kStreamId); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| } |
| |
| // There should no longer be a pending retransmission. |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| uint64_t unacked[] = {1}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| EXPECT_EQ(0u, stats_.packets_spuriously_retransmitted); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RetransmitThenAckPrevious) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15); |
| clock_.AdvanceTime(rtt); |
| |
| // Ack 1 but not 2. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| } |
| // 2 remains unacked, but no packets have retransmittable data. |
| uint64_t unacked[] = {2}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| EXPECT_TRUE(manager_.HasInFlightPackets()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| if (manager_.session_decides_what_to_write()) { |
| // Ack 2 causes 2 be considered as spurious retransmission. |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)).WillOnce(Return(false)); |
| ExpectAck(2); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL)); |
| } |
| |
| EXPECT_EQ(1u, stats_.packets_spuriously_retransmitted); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RetransmitThenAckPreviousThenNackRetransmit) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15); |
| clock_.AdvanceTime(rtt); |
| |
| // First, ACK packet 1 which makes packet 2 non-retransmittable. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| |
| SendDataPacket(3); |
| SendDataPacket(4); |
| SendDataPacket(5); |
| clock_.AdvanceTime(rtt); |
| |
| // Next, NACK packet 2 three times. |
| ExpectAck(3); |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(4)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL)); |
| |
| ExpectAck(4); |
| manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(5)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3), |
| ENCRYPTION_INITIAL)); |
| |
| ExpectAckAndLoss(true, 5, 2); |
| if (manager_.session_decides_what_to_write()) { |
| // Frames in all packets are acked. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| // Notify session that stream frame in packet 2 gets lost although it is |
| // not outstanding. |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(1); |
| } |
| manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(4), |
| ENCRYPTION_INITIAL)); |
| |
| if (manager_.session_decides_what_to_write()) { |
| uint64_t unacked[] = {2}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| } else { |
| // No packets remain unacked. |
| VerifyUnackedPackets(nullptr, 0); |
| } |
| EXPECT_FALSE(manager_.HasInFlightPackets()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| // Verify that the retransmission alarm would not fire, |
| // since there is no retransmittable data outstanding. |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, |
| DISABLED_RetransmitTwiceThenAckPreviousBeforeSend) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| |
| // Fire the RTO, which will mark 2 for retransmission (but will not send it). |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| |
| // Ack 1 but not 2, before 2 is able to be sent. |
| // Since 1 has been retransmitted, it has already been lost, and so the |
| // send algorithm is not informed that it has been ACK'd. |
| ExpectUpdatedRtt(1); |
| EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| |
| // Since 2 was marked for retransmit, when 1 is acked, 2 is kept for RTT. |
| uint64_t unacked[] = {2}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| EXPECT_FALSE(manager_.HasInFlightPackets()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| // Verify that the retransmission alarm would not fire, |
| // since there is no retransmittable data outstanding. |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RetransmitTwiceThenAckFirst) { |
| StrictMock<MockDebugDelegate> debug_delegate; |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(debug_delegate, OnSpuriousPacketRetransmission( |
| TLP_RETRANSMISSION, kDefaultLength)) |
| .Times(1); |
| } else { |
| EXPECT_CALL(debug_delegate, OnSpuriousPacketRetransmission( |
| TLP_RETRANSMISSION, kDefaultLength)) |
| .Times(2); |
| } |
| manager_.SetDebugDelegate(&debug_delegate); |
| |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| RetransmitAndSendPacket(2, 3); |
| QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15); |
| clock_.AdvanceTime(rtt); |
| |
| // Ack 1 but not 2 or 3. |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| if (manager_.session_decides_what_to_write()) { |
| // Frames in packets 2 and 3 are acked. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)) |
| .Times(2) |
| .WillRepeatedly(Return(false)); |
| } |
| |
| // 2 and 3 remain unacked, but no packets have retransmittable data. |
| uint64_t unacked[] = {2, 3}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| EXPECT_TRUE(manager_.HasInFlightPackets()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| // Ensure packet 2 is lost when 4 is sent and 3 and 4 are acked. |
| SendDataPacket(4); |
| if (manager_.session_decides_what_to_write()) { |
| // No new data gets acked in packet 3. |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)) |
| .WillOnce(Return(false)) |
| .WillRepeatedly(Return(true)); |
| } |
| uint64_t acked[] = {3, 4}; |
| ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(5)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL)); |
| |
| uint64_t unacked2[] = {2}; |
| VerifyUnackedPackets(unacked2, QUIC_ARRAYSIZE(unacked2)); |
| EXPECT_TRUE(manager_.HasInFlightPackets()); |
| |
| SendDataPacket(5); |
| ExpectAckAndLoss(true, 5, 2); |
| EXPECT_CALL(debug_delegate, |
| OnPacketLoss(QuicPacketNumber(2), LOSS_RETRANSMISSION, _)); |
| if (manager_.session_decides_what_to_write()) { |
| // Frames in all packets are acked. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| // Notify session that stream frame in packet 2 gets lost although it is |
| // not outstanding. |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(1); |
| } |
| manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3), |
| ENCRYPTION_INITIAL)); |
| |
| if (manager_.session_decides_what_to_write()) { |
| uint64_t unacked[] = {2}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| } else { |
| VerifyUnackedPackets(nullptr, 0); |
| } |
| EXPECT_FALSE(manager_.HasInFlightPackets()); |
| if (manager_.session_decides_what_to_write()) { |
| // Spurious retransmission is detected when packet 3 gets acked. We cannot |
| // know packet 2 is a spurious until it gets acked. |
| EXPECT_EQ(1u, stats_.packets_spuriously_retransmitted); |
| } else { |
| EXPECT_EQ(2u, stats_.packets_spuriously_retransmitted); |
| } |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, AckOriginalTransmission) { |
| auto loss_algorithm = QuicMakeUnique<MockLossAlgorithm>(); |
| QuicSentPacketManagerPeer::SetLossAlgorithm(&manager_, loss_algorithm.get()); |
| |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| |
| // Ack original transmission, but that wasn't lost via fast retransmit, |
| // so no call on OnSpuriousRetransmission is expected. |
| { |
| ExpectAck(1); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| } |
| |
| SendDataPacket(3); |
| SendDataPacket(4); |
| // Ack 4, which causes 3 to be retransmitted. |
| { |
| ExpectAck(4); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(5)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL)); |
| RetransmitAndSendPacket(3, 5, LOSS_RETRANSMISSION); |
| } |
| |
| // Ack 3, which causes SpuriousRetransmitDetected to be called. |
| { |
| uint64_t acked[] = {3}; |
| ExpectAcksAndLosses(false, acked, QUIC_ARRAYSIZE(acked), nullptr, 0); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(*loss_algorithm, |
| SpuriousRetransmitDetected(_, _, _, QuicPacketNumber(5))); |
| manager_.OnAckFrameStart(QuicPacketNumber(4), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(5)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(3), |
| ENCRYPTION_INITIAL)); |
| if (manager_.session_decides_what_to_write()) { |
| // Ack 3 will not cause 5 be considered as a spurious retransmission. Ack |
| // 5 will cause 5 be considered as a spurious retransmission as no new |
| // data gets acked. |
| ExpectAck(5); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| EXPECT_CALL(notifier_, OnFrameAcked(_, _, _)).WillOnce(Return(false)); |
| manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6)); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(4), |
| ENCRYPTION_INITIAL)); |
| } |
| } |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, GetLeastUnacked) { |
| EXPECT_EQ(QuicPacketNumber(1u), manager_.GetLeastUnacked()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, GetLeastUnackedUnacked) { |
| SendDataPacket(1); |
| EXPECT_EQ(QuicPacketNumber(1u), manager_.GetLeastUnacked()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, AckAckAndUpdateRtt) { |
| EXPECT_FALSE(manager_.largest_packet_peer_knows_is_acked().IsInitialized()); |
| SendDataPacket(1); |
| SendAckPacket(2, 1); |
| |
| // Now ack the ack and expect an RTT update. |
| uint64_t acked[] = {1, 2}; |
| ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), |
| QuicTime::Delta::FromMilliseconds(5), clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| EXPECT_EQ(QuicPacketNumber(1), manager_.largest_packet_peer_knows_is_acked()); |
| |
| SendAckPacket(3, 3); |
| |
| // Now ack the ack and expect only an RTT update. |
| uint64_t acked2[] = {3}; |
| ExpectAcksAndLosses(true, acked2, QUIC_ARRAYSIZE(acked2), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL)); |
| EXPECT_EQ(QuicPacketNumber(3u), |
| manager_.largest_packet_peer_knows_is_acked()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, Rtt) { |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(20); |
| SendDataPacket(1); |
| clock_.AdvanceTime(expected_rtt); |
| |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RttWithInvalidDelta) { |
| // Expect that the RTT is equal to the local time elapsed, since the |
| // ack_delay_time is larger than the local time elapsed |
| // and is hence invalid. |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10); |
| SendDataPacket(1); |
| clock_.AdvanceTime(expected_rtt); |
| |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), |
| QuicTime::Delta::FromMilliseconds(11), clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RttWithInfiniteDelta) { |
| // Expect that the RTT is equal to the local time elapsed, since the |
| // ack_delay_time is infinite, and is hence invalid. |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10); |
| SendDataPacket(1); |
| clock_.AdvanceTime(expected_rtt); |
| |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RttZeroDelta) { |
| // Expect that the RTT is the time between send and receive since the |
| // ack_delay_time is zero. |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10); |
| SendDataPacket(1); |
| clock_.AdvanceTime(expected_rtt); |
| |
| ExpectAck(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Zero(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| EXPECT_EQ(expected_rtt, manager_.GetRttStats()->latest_rtt()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, TailLossProbeTimeout) { |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2); |
| |
| // Send 1 packet. |
| SendDataPacket(1); |
| |
| // The first tail loss probe retransmits 1 packet. |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke( |
| [this](TransmissionType type) { RetransmitDataPacket(2, type); }))); |
| } |
| manager_.MaybeRetransmitTailLossProbe(); |
| if (!manager_.session_decides_what_to_write()) { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(2); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| |
| // The second tail loss probe retransmits 1 packet. |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke( |
| [this](TransmissionType type) { RetransmitDataPacket(3, type); }))); |
| } |
| manager_.MaybeRetransmitTailLossProbe(); |
| if (!manager_.session_decides_what_to_write()) { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(3); |
| } |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); |
| EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| // Ack the third and ensure the first two are still pending. |
| ExpectAck(3); |
| |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| |
| EXPECT_TRUE(manager_.HasInFlightPackets()); |
| |
| // Acking two more packets will lose both of them due to nacks. |
| SendDataPacket(4); |
| SendDataPacket(5); |
| uint64_t acked[] = {4, 5}; |
| uint64_t lost[] = {1, 2}; |
| ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), lost, |
| QUIC_ARRAYSIZE(lost)); |
| if (manager_.session_decides_what_to_write()) { |
| // Frames in all packets are acked. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| // Notify session that stream frame in packets 1 and 2 get lost although |
| // they are not outstanding. |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(2); |
| } |
| manager_.OnAckFrameStart(QuicPacketNumber(5), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL)); |
| |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_FALSE(manager_.HasInFlightPackets()); |
| EXPECT_EQ(2u, stats_.tlp_count); |
| EXPECT_EQ(0u, stats_.rto_count); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, TailLossProbeThenRTO) { |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2); |
| |
| // Send 100 packets. |
| const size_t kNumSentPackets = 100; |
| for (size_t i = 1; i <= kNumSentPackets; ++i) { |
| SendDataPacket(i); |
| } |
| QuicTime rto_packet_time = clock_.Now(); |
| // Advance the time. |
| clock_.AdvanceTime(manager_.GetRetransmissionTime() - clock_.Now()); |
| |
| // The first tail loss probe retransmits 1 packet. |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| RetransmitDataPacket(101, type); |
| }))); |
| } |
| manager_.MaybeRetransmitTailLossProbe(); |
| if (!manager_.session_decides_what_to_write()) { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(101); |
| } |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); |
| EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| clock_.AdvanceTime(manager_.GetRetransmissionTime() - clock_.Now()); |
| |
| // The second tail loss probe retransmits 1 packet. |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| RetransmitDataPacket(102, type); |
| }))); |
| } |
| EXPECT_TRUE(manager_.MaybeRetransmitTailLossProbe()); |
| if (!manager_.session_decides_what_to_write()) { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(102); |
| } |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); |
| EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now())); |
| |
| // Ensure the RTO is set based on the correct packet. |
| rto_packet_time = clock_.Now(); |
| EXPECT_EQ(rto_packet_time + QuicTime::Delta::FromMilliseconds(500), |
| manager_.GetRetransmissionTime()); |
| |
| // Advance the time enough to ensure all packets are RTO'd. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1000)); |
| |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(2) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| RetransmitDataPacket(103, type); |
| }))) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| RetransmitDataPacket(104, type); |
| }))); |
| } |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(2u, stats_.tlp_count); |
| EXPECT_EQ(1u, stats_.rto_count); |
| if (manager_.session_decides_what_to_write()) { |
| // There are 2 RTO retransmissions. |
| EXPECT_EQ(104 * kDefaultLength, manager_.GetBytesInFlight()); |
| } |
| if (!manager_.session_decides_what_to_write()) { |
| // Send and Ack the RTO and ensure OnRetransmissionTimeout is called. |
| EXPECT_EQ(102 * kDefaultLength, manager_.GetBytesInFlight()); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(103); |
| } |
| QuicPacketNumber largest_acked = QuicPacketNumber(103); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent( |
| true, _, _, Pointwise(PacketNumberEq(), {largest_acked}), _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| if (manager_.session_decides_what_to_write()) { |
| // Although frames in packet 3 gets acked, it would be kept for another |
| // RTT. |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(true)); |
| // Packets [1, 102] are lost, although stream frame in packet 3 is not |
| // outstanding. |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(102); |
| } |
| manager_.OnAckFrameStart(QuicPacketNumber(103), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(103), QuicPacketNumber(104)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| // All packets before 103 should be lost. |
| if (manager_.session_decides_what_to_write()) { |
| // Packet 104 is still in flight. |
| EXPECT_EQ(1000u, manager_.GetBytesInFlight()); |
| } else { |
| EXPECT_EQ(0u, manager_.GetBytesInFlight()); |
| } |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, CryptoHandshakeTimeout) { |
| // Send 2 crypto packets and 3 data packets. |
| const size_t kNumSentCryptoPackets = 2; |
| for (size_t i = 1; i <= kNumSentCryptoPackets; ++i) { |
| SendCryptoPacket(i); |
| } |
| const size_t kNumSentDataPackets = 3; |
| for (size_t i = 1; i <= kNumSentDataPackets; ++i) { |
| SendDataPacket(kNumSentCryptoPackets + i); |
| } |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| EXPECT_EQ(5 * kDefaultLength, manager_.GetBytesInFlight()); |
| |
| // The first retransmits 2 packets. |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(2) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(6); })) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(7); })); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| RetransmitNextPacket(6); |
| RetransmitNextPacket(7); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| // Expect all 4 handshake packets to be in flight and 3 data packets. |
| if (GetQuicReloadableFlag(quic_loss_removes_from_inflight)) { |
| EXPECT_EQ(7 * kDefaultLength, manager_.GetBytesInFlight()); |
| } |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // The second retransmits 2 packets. |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(2) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(8); })) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(9); })); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| RetransmitNextPacket(8); |
| RetransmitNextPacket(9); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| if (GetQuicReloadableFlag(quic_loss_removes_from_inflight)) { |
| EXPECT_EQ(9 * kDefaultLength, manager_.GetBytesInFlight()); |
| } |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Now ack the two crypto packets and the speculatively encrypted request, |
| // and ensure the first four crypto packets get abandoned, but not lost. |
| if (GetQuicReloadableFlag(quic_loss_removes_from_inflight)) { |
| // Crypto packets remain in flight, so any that aren't acked will be lost. |
| uint64_t acked[] = {3, 4, 5, 8, 9}; |
| uint64_t lost[] = {1, 2, 6}; |
| ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), lost, |
| QUIC_ARRAYSIZE(lost)); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(3); |
| } |
| } else { |
| uint64_t acked[] = {3, 4, 5, 8, 9}; |
| ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0); |
| } |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()) |
| .WillRepeatedly(Return(false)); |
| } |
| manager_.OnAckFrameStart(QuicPacketNumber(9), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(8), QuicPacketNumber(10)); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(6)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| |
| EXPECT_FALSE(manager_.HasUnackedCryptoPackets()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, CryptoHandshakeTimeoutVersionNegotiation) { |
| // Send 2 crypto packets and 3 data packets. |
| const size_t kNumSentCryptoPackets = 2; |
| for (size_t i = 1; i <= kNumSentCryptoPackets; ++i) { |
| SendCryptoPacket(i); |
| } |
| const size_t kNumSentDataPackets = 3; |
| for (size_t i = 1; i <= kNumSentDataPackets; ++i) { |
| SendDataPacket(kNumSentCryptoPackets + i); |
| } |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(2) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(6); })) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(7); })); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(6); |
| RetransmitNextPacket(7); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Now act like a version negotiation packet arrived, which would cause all |
| // unacked packets to be retransmitted. |
| if (manager_.session_decides_what_to_write()) { |
| // Mark packets [1, 7] lost. And the frames in 6 and 7 are same as packets 1 |
| // and 2, respectively. |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(7); |
| } |
| manager_.RetransmitUnackedPackets(ALL_UNACKED_RETRANSMISSION); |
| |
| // Ensure the first two pending packets are the crypto retransmits. |
| if (manager_.session_decides_what_to_write()) { |
| RetransmitCryptoPacket(8); |
| RetransmitCryptoPacket(9); |
| RetransmitDataPacket(10, ALL_UNACKED_RETRANSMISSION); |
| RetransmitDataPacket(11, ALL_UNACKED_RETRANSMISSION); |
| RetransmitDataPacket(12, ALL_UNACKED_RETRANSMISSION); |
| } else { |
| ASSERT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_EQ(QuicPacketNumber(6u), |
| manager_.NextPendingRetransmission().packet_number); |
| RetransmitNextPacket(8); |
| EXPECT_EQ(QuicPacketNumber(7u), |
| manager_.NextPendingRetransmission().packet_number); |
| RetransmitNextPacket(9); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| // Send 3 more data packets and ensure the least unacked is raised. |
| RetransmitNextPacket(10); |
| RetransmitNextPacket(11); |
| RetransmitNextPacket(12); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| |
| EXPECT_EQ(QuicPacketNumber(1u), manager_.GetLeastUnacked()); |
| // Least unacked isn't raised until an ack is received, so ack the |
| // crypto packets. |
| uint64_t acked[] = {8, 9}; |
| ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(9), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(8), QuicPacketNumber(10)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()) |
| .WillRepeatedly(Return(false)); |
| } |
| EXPECT_EQ(QuicPacketNumber(10u), manager_.GetLeastUnacked()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, CryptoHandshakeSpuriousRetransmission) { |
| // Send 1 crypto packet. |
| SendCryptoPacket(1); |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Retransmit the crypto packet as 2. |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(2); })); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(2); |
| } |
| |
| // Retransmit the crypto packet as 3. |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(3); })); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(3); |
| } |
| |
| // Now ack the second crypto packet, and ensure the first gets removed, but |
| // the third does not. |
| uint64_t acked[] = {2}; |
| ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()) |
| .WillRepeatedly(Return(false)); |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| } |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| |
| EXPECT_FALSE(manager_.HasUnackedCryptoPackets()); |
| if (GetQuicReloadableFlag(quic_loss_removes_from_inflight)) { |
| uint64_t unacked[] = {1, 3}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| } else { |
| uint64_t unacked[] = {3}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| } |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, CryptoHandshakeTimeoutUnsentDataPacket) { |
| // Send 2 crypto packets and 1 data packet. |
| const size_t kNumSentCryptoPackets = 2; |
| for (size_t i = 1; i <= kNumSentCryptoPackets; ++i) { |
| SendCryptoPacket(i); |
| } |
| SendDataPacket(3); |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Retransmit 2 crypto packets, but not the serialized packet. |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(2) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(4); })) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(5); })); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(4); |
| RetransmitNextPacket(5); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, |
| CryptoHandshakeRetransmissionThenRetransmitAll) { |
| // Send 1 crypto packet. |
| SendCryptoPacket(1); |
| |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Retransmit the crypto packet as 2. |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(2); })); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(2); |
| } |
| // Now retransmit all the unacked packets, which occurs when there is a |
| // version negotiation. |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(2); |
| } |
| manager_.RetransmitUnackedPackets(ALL_UNACKED_RETRANSMISSION); |
| if (manager_.session_decides_what_to_write()) { |
| // Both packets 1 and 2 are unackable. |
| EXPECT_FALSE(manager_.unacked_packets().IsUnacked(QuicPacketNumber(1))); |
| EXPECT_FALSE(manager_.unacked_packets().IsUnacked(QuicPacketNumber(2))); |
| } else { |
| // Packet 2 is useful because it does not get retransmitted and still has |
| // retransmittable frames. |
| uint64_t unacked[] = {1, 2}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| } |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| EXPECT_FALSE(manager_.HasInFlightPackets()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, |
| CryptoHandshakeRetransmissionThenNeuterAndAck) { |
| // Send 1 crypto packet. |
| SendCryptoPacket(1); |
| |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Retransmit the crypto packet as 2. |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(2); })); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(2); |
| } |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Retransmit the crypto packet as 3. |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(3); })); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(3); |
| } |
| EXPECT_TRUE(manager_.HasUnackedCryptoPackets()); |
| |
| // Now neuter all unacked unencrypted packets, which occurs when the |
| // connection goes forward secure. |
| manager_.NeuterUnencryptedPackets(); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, HasUnackedCryptoData()) |
| .WillRepeatedly(Return(false)); |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(false)); |
| } |
| EXPECT_FALSE(manager_.HasUnackedCryptoPackets()); |
| uint64_t unacked[] = {1, 2, 3}; |
| VerifyUnackedPackets(unacked, QUIC_ARRAYSIZE(unacked)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_FALSE(manager_.HasUnackedCryptoPackets()); |
| EXPECT_FALSE(manager_.HasInFlightPackets()); |
| |
| // Ensure both packets get discarded when packet 2 is acked. |
| uint64_t acked[] = {3}; |
| ExpectAcksAndLosses(true, acked, QUIC_ARRAYSIZE(acked), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| VerifyUnackedPackets(nullptr, 0); |
| VerifyRetransmittablePackets(nullptr, 0); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RetransmissionTimeout) { |
| StrictMock<MockDebugDelegate> debug_delegate; |
| manager_.SetDebugDelegate(&debug_delegate); |
| |
| // Send 100 packets. |
| const size_t kNumSentPackets = 100; |
| for (size_t i = 1; i <= kNumSentPackets; ++i) { |
| SendDataPacket(i); |
| } |
| |
| EXPECT_FALSE(manager_.MaybeRetransmitTailLossProbe()); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(2) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| RetransmitDataPacket(101, type); |
| }))) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| RetransmitDataPacket(102, type); |
| }))); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_EQ(102 * kDefaultLength, manager_.GetBytesInFlight()); |
| } else { |
| ASSERT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_EQ(100 * kDefaultLength, manager_.GetBytesInFlight()); |
| RetransmitNextPacket(101); |
| ASSERT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(102); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| |
| // Ack a retransmission. |
| // Ensure no packets are lost. |
| QuicPacketNumber largest_acked = QuicPacketNumber(102); |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(true, _, _, |
| Pointwise(PacketNumberEq(), {largest_acked}), |
| /*lost_packets=*/IsEmpty())); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| // RTO's use loss detection instead of immediately declaring retransmitted |
| // packets lost. |
| for (int i = 1; i <= 99; ++i) { |
| EXPECT_CALL(debug_delegate, |
| OnPacketLoss(QuicPacketNumber(i), LOSS_RETRANSMISSION, _)); |
| } |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(true)); |
| // Packets [1, 99] are considered as lost, although stream frame in packet |
| // 2 is not outstanding. |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(99); |
| } |
| manager_.OnAckFrameStart(QuicPacketNumber(102), QuicTime::Delta::Zero(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(102), QuicPacketNumber(103)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RetransmissionTimeoutOnePacket) { |
| // Set the 1RTO connection option. |
| QuicConfig client_config; |
| QuicTagVector options; |
| options.push_back(k1RTO); |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| client_config.SetConnectionOptionsToSend(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| manager_.SetFromConfig(client_config); |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); |
| |
| StrictMock<MockDebugDelegate> debug_delegate; |
| manager_.SetDebugDelegate(&debug_delegate); |
| |
| // Send 100 packets. |
| const size_t kNumSentPackets = 100; |
| for (size_t i = 1; i <= kNumSentPackets; ++i) { |
| SendDataPacket(i); |
| } |
| |
| EXPECT_FALSE(manager_.MaybeRetransmitTailLossProbe()); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(1) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| RetransmitDataPacket(101, type); |
| }))); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_EQ(101 * kDefaultLength, manager_.GetBytesInFlight()); |
| } else { |
| ASSERT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_EQ(100 * kDefaultLength, manager_.GetBytesInFlight()); |
| RetransmitNextPacket(101); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NewRetransmissionTimeout) { |
| QuicConfig client_config; |
| QuicTagVector options; |
| options.push_back(kNRTO); |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| client_config.SetConnectionOptionsToSend(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| manager_.SetFromConfig(client_config); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::GetUseNewRto(&manager_)); |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true)); |
| |
| // Send 100 packets. |
| const size_t kNumSentPackets = 100; |
| for (size_t i = 1; i <= kNumSentPackets; ++i) { |
| SendDataPacket(i); |
| } |
| |
| EXPECT_FALSE(manager_.MaybeRetransmitTailLossProbe()); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(2) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| RetransmitDataPacket(101, type); |
| }))) |
| .WillOnce(WithArgs<1>(Invoke([this](TransmissionType type) { |
| RetransmitDataPacket(102, type); |
| }))); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_EQ(102 * kDefaultLength, manager_.GetBytesInFlight()); |
| } else { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_EQ(100 * kDefaultLength, manager_.GetBytesInFlight()); |
| RetransmitNextPacket(101); |
| RetransmitNextPacket(102); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| |
| // Ack a retransmission and expect no call to OnRetransmissionTimeout. |
| // This will include packets in the lost packet map. |
| QuicPacketNumber largest_acked = QuicPacketNumber(102); |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(true, _, _, |
| Pointwise(PacketNumberEq(), {largest_acked}), |
| /*lost_packets=*/Not(IsEmpty()))); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, IsFrameOutstanding(_)).WillRepeatedly(Return(true)); |
| // Packets [1, 99] are considered as lost, although stream frame in packet |
| // 2 is not outstanding. |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(99); |
| } |
| manager_.OnAckFrameStart(QuicPacketNumber(102), QuicTime::Delta::Zero(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(102), QuicPacketNumber(103)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, TwoRetransmissionTimeoutsAckSecond) { |
| // Send 1 packet. |
| SendDataPacket(1); |
| |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke( |
| [this](TransmissionType type) { RetransmitDataPacket(2, type); }))); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight()); |
| } else { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_EQ(kDefaultLength, manager_.GetBytesInFlight()); |
| RetransmitNextPacket(2); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| |
| // Rto a second time. |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke( |
| [this](TransmissionType type) { RetransmitDataPacket(3, type); }))); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_EQ(3 * kDefaultLength, manager_.GetBytesInFlight()); |
| } else { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight()); |
| RetransmitNextPacket(3); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| |
| // Ack a retransmission and ensure OnRetransmissionTimeout is called. |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| ExpectAck(2); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Zero(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| |
| // The original packet and newest should be outstanding. |
| EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, TwoRetransmissionTimeoutsAckFirst) { |
| // Send 1 packet. |
| SendDataPacket(1); |
| |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke( |
| [this](TransmissionType type) { RetransmitDataPacket(2, type); }))); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight()); |
| } else { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_EQ(kDefaultLength, manager_.GetBytesInFlight()); |
| RetransmitNextPacket(2); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| |
| // Rto a second time. |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke( |
| [this](TransmissionType type) { RetransmitDataPacket(3, type); }))); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_EQ(3 * kDefaultLength, manager_.GetBytesInFlight()); |
| } else { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight()); |
| RetransmitNextPacket(3); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } |
| |
| // Ack a retransmission and ensure OnRetransmissionTimeout is called. |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| ExpectAck(3); |
| manager_.OnAckFrameStart(QuicPacketNumber(3), QuicTime::Delta::Zero(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(3), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| |
| // The first two packets should still be outstanding. |
| EXPECT_EQ(2 * kDefaultLength, manager_.GetBytesInFlight()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, GetTransmissionTime) { |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, GetTransmissionTimeCryptoHandshake) { |
| QuicTime crypto_packet_send_time = clock_.Now(); |
| SendCryptoPacket(1); |
| |
| // Check the min. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(1)); |
| EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(10), |
| manager_.GetRetransmissionTime()); |
| |
| // Test with a standard smoothed RTT. |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100)); |
| |
| QuicTime::Delta srtt = rtt_stats->initial_rtt(); |
| QuicTime expected_time = clock_.Now() + 1.5 * srtt; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Retransmit the packet by invoking the retransmission timeout. |
| clock_.AdvanceTime(1.5 * srtt); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(2); })); |
| // When session decides what to write, crypto_packet_send_time gets updated. |
| crypto_packet_send_time = clock_.Now(); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(2); |
| } |
| |
| // The retransmission time should now be twice as far in the future. |
| expected_time = crypto_packet_send_time + srtt * 2 * 1.5; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Retransmit the packet for the 2nd time. |
| clock_.AdvanceTime(2 * 1.5 * srtt); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(3); })); |
| // When session decides what to write, crypto_packet_send_time gets updated. |
| crypto_packet_send_time = clock_.Now(); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(3); |
| } |
| |
| // Verify exponential backoff of the retransmission timeout. |
| expected_time = crypto_packet_send_time + srtt * 4 * 1.5; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, |
| GetConservativeTransmissionTimeCryptoHandshake) { |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kCONH); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| // Calling SetFromConfig requires mocking out some send algorithm methods. |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillRepeatedly(Return(10 * kDefaultTCPMSS)); |
| |
| QuicTime crypto_packet_send_time = clock_.Now(); |
| SendCryptoPacket(1); |
| |
| // Check the min. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(1)); |
| EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(25), |
| manager_.GetRetransmissionTime()); |
| |
| // Test with a standard smoothed RTT. |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100)); |
| |
| QuicTime::Delta srtt = rtt_stats->initial_rtt(); |
| QuicTime expected_time = clock_.Now() + 2 * srtt; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Retransmit the packet by invoking the retransmission timeout. |
| clock_.AdvanceTime(2 * srtt); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(InvokeWithoutArgs([this]() { RetransmitCryptoPacket(2); })); |
| crypto_packet_send_time = clock_.Now(); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(2); |
| } |
| |
| // The retransmission time should now be twice as far in the future. |
| expected_time = crypto_packet_send_time + srtt * 2 * 2; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, GetTransmissionTimeTailLossProbe) { |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2); |
| SendDataPacket(1); |
| SendDataPacket(2); |
| |
| // Check the min. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(1)); |
| EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(10), |
| manager_.GetRetransmissionTime()); |
| |
| // Test with a standard smoothed RTT. |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100)); |
| QuicTime::Delta srtt = rtt_stats->initial_rtt(); |
| QuicTime::Delta expected_tlp_delay = 2 * srtt; |
| QuicTime expected_time = clock_.Now() + expected_tlp_delay; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Retransmit the packet by invoking the retransmission timeout. |
| clock_.AdvanceTime(expected_tlp_delay); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke( |
| [this](TransmissionType type) { RetransmitDataPacket(3, type); }))); |
| } |
| EXPECT_TRUE(manager_.MaybeRetransmitTailLossProbe()); |
| if (!manager_.session_decides_what_to_write()) { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(3); |
| } |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); |
| EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| expected_time = clock_.Now() + expected_tlp_delay; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, TLPRWithPendingStreamData) { |
| if (!manager_.session_decides_what_to_write()) { |
| return; |
| } |
| |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kTLPR); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillOnce(Return(10 * kDefaultTCPMSS)); |
| manager_.SetFromConfig(config); |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::GetEnableHalfRttTailLossProbe(&manager_)); |
| |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2); |
| |
| SendDataPacket(1); |
| SendDataPacket(2); |
| |
| // Test with a standard smoothed RTT. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100)); |
| QuicTime::Delta srtt = rtt_stats->initial_rtt(); |
| // With pending stream data, TLPR is used. |
| QuicTime::Delta expected_tlp_delay = 0.5 * srtt; |
| EXPECT_CALL(notifier_, HasUnackedStreamData()).WillRepeatedly(Return(true)); |
| |
| EXPECT_EQ(expected_tlp_delay, |
| manager_.GetRetransmissionTime() - clock_.Now()); |
| |
| // Retransmit the packet by invoking the retransmission timeout. |
| clock_.AdvanceTime(expected_tlp_delay); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke( |
| [this](TransmissionType type) { RetransmitDataPacket(3, type); }))); |
| EXPECT_TRUE(manager_.MaybeRetransmitTailLossProbe()); |
| |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); |
| EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| // 2nd TLP. |
| expected_tlp_delay = 2 * srtt; |
| EXPECT_EQ(expected_tlp_delay, |
| manager_.GetRetransmissionTime() - clock_.Now()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, TLPRWithoutPendingStreamData) { |
| if (!manager_.session_decides_what_to_write()) { |
| return; |
| } |
| |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kTLPR); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillOnce(Return(10 * kDefaultTCPMSS)); |
| manager_.SetFromConfig(config); |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::GetEnableHalfRttTailLossProbe(&manager_)); |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2); |
| |
| SendPingPacket(1, ENCRYPTION_INITIAL); |
| SendPingPacket(2, ENCRYPTION_INITIAL); |
| |
| // Test with a standard smoothed RTT. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->set_initial_rtt(QuicTime::Delta::FromMilliseconds(100)); |
| QuicTime::Delta srtt = rtt_stats->initial_rtt(); |
| QuicTime::Delta expected_tlp_delay = 0.5 * srtt; |
| if (GetQuicReloadableFlag(quic_ignore_tlpr_if_no_pending_stream_data)) { |
| // With no pending stream data, TLPR is ignored. |
| expected_tlp_delay = 2 * srtt; |
| } |
| EXPECT_CALL(notifier_, HasUnackedStreamData()).WillRepeatedly(Return(false)); |
| EXPECT_EQ(expected_tlp_delay, |
| manager_.GetRetransmissionTime() - clock_.Now()); |
| |
| // Retransmit the packet by invoking the retransmission timeout. |
| clock_.AdvanceTime(expected_tlp_delay); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke( |
| [this](TransmissionType type) { RetransmitDataPacket(3, type); }))); |
| EXPECT_TRUE(manager_.MaybeRetransmitTailLossProbe()); |
| EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false)); |
| EXPECT_EQ(QuicTime::Delta::Infinite(), manager_.TimeUntilSend(clock_.Now())); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| // 2nd TLP. |
| expected_tlp_delay = 2 * srtt; |
| EXPECT_EQ(expected_tlp_delay, |
| manager_.GetRetransmissionTime() - clock_.Now()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, GetTransmissionTimeSpuriousRTO) { |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| |
| SendDataPacket(1); |
| SendDataPacket(2); |
| SendDataPacket(3); |
| SendDataPacket(4); |
| |
| QuicTime::Delta expected_rto_delay = |
| rtt_stats->smoothed_rtt() + 4 * rtt_stats->mean_deviation(); |
| QuicTime expected_time = clock_.Now() + expected_rto_delay; |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Retransmit the packet by invoking the retransmission timeout. |
| clock_.AdvanceTime(expected_rto_delay); |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .Times(2) |
| .WillOnce(WithArgs<1>(Invoke( |
| [this](TransmissionType type) { RetransmitDataPacket(5, type); }))) |
| .WillOnce(WithArgs<1>(Invoke( |
| [this](TransmissionType type) { RetransmitDataPacket(6, type); }))); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| // All packets are still considered inflight. |
| EXPECT_EQ(4 * kDefaultLength, manager_.GetBytesInFlight()); |
| RetransmitNextPacket(5); |
| RetransmitNextPacket(6); |
| } |
| // All previous packets are inflight, plus two rto retransmissions. |
| EXPECT_EQ(6 * kDefaultLength, manager_.GetBytesInFlight()); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| // The delay should double the second time. |
| expected_time = clock_.Now() + expected_rto_delay + expected_rto_delay; |
| // Once we always base the timer on the right edge, leaving the older packets |
| // in flight doesn't change the timeout. |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Ack a packet before the first RTO and ensure the RTO timeout returns to the |
| // original value and OnRetransmissionTimeout is not called or reverted. |
| ExpectAck(2); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_EQ(5 * kDefaultLength, manager_.GetBytesInFlight()); |
| |
| // Wait 2RTTs from now for the RTO, since it's the max of the RTO time |
| // and the TLP time. In production, there would always be two TLP's first. |
| // Since retransmission was spurious, smoothed_rtt_ is expired, and replaced |
| // by the latest RTT sample of 500ms. |
| expected_time = clock_.Now() + QuicTime::Delta::FromMilliseconds(1000); |
| // Once we always base the timer on the right edge, leaving the older packets |
| // in flight doesn't change the timeout. |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, GetTransmissionDelayMin) { |
| SendDataPacket(1); |
| // Provide a 1ms RTT sample. |
| const_cast<RttStats*>(manager_.GetRttStats()) |
| ->UpdateRtt(QuicTime::Delta::FromMilliseconds(1), QuicTime::Delta::Zero(), |
| QuicTime::Zero()); |
| QuicTime::Delta delay = QuicTime::Delta::FromMilliseconds(200); |
| |
| // If the delay is smaller than the min, ensure it exponentially backs off |
| // from the min. |
| for (int i = 0; i < 5; ++i) { |
| EXPECT_EQ(delay, |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_)); |
| EXPECT_EQ(delay, |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, i)); |
| delay = delay + delay; |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke([this, i](TransmissionType type) { |
| RetransmitDataPacket(i + 2, type); |
| }))); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(i + 2); |
| } |
| } |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, GetTransmissionDelayMax) { |
| SendDataPacket(1); |
| // Provide a 60s RTT sample. |
| const_cast<RttStats*>(manager_.GetRttStats()) |
| ->UpdateRtt(QuicTime::Delta::FromSeconds(60), QuicTime::Delta::Zero(), |
| QuicTime::Zero()); |
| |
| EXPECT_EQ(QuicTime::Delta::FromSeconds(60), |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromSeconds(60), |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, 0)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, GetTransmissionDelayExponentialBackoff) { |
| SendDataPacket(1); |
| QuicTime::Delta delay = QuicTime::Delta::FromMilliseconds(500); |
| |
| // Delay should back off exponentially. |
| for (int i = 0; i < 5; ++i) { |
| EXPECT_EQ(delay, |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_)); |
| EXPECT_EQ(delay, |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, i)); |
| delay = delay + delay; |
| if (manager_.session_decides_what_to_write()) { |
| EXPECT_CALL(notifier_, RetransmitFrames(_, _)) |
| .WillOnce(WithArgs<1>(Invoke([this, i](TransmissionType type) { |
| RetransmitDataPacket(i + 2, type); |
| }))); |
| } |
| manager_.OnRetransmissionTimeout(); |
| if (!manager_.session_decides_what_to_write()) { |
| RetransmitNextPacket(i + 2); |
| } |
| } |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, RetransmissionDelay) { |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| const int64_t kRttMs = 250; |
| const int64_t kDeviationMs = 5; |
| |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs), |
| QuicTime::Delta::Zero(), clock_.Now()); |
| |
| // Initial value is to set the median deviation to half of the initial rtt, |
| // the median in then multiplied by a factor of 4 and finally the smoothed rtt |
| // is added which is the initial rtt. |
| QuicTime::Delta expected_delay = |
| QuicTime::Delta::FromMilliseconds(kRttMs + kRttMs / 2 * 4); |
| EXPECT_EQ(expected_delay, |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_)); |
| EXPECT_EQ(expected_delay, |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, 0)); |
| |
| for (int i = 0; i < 100; ++i) { |
| // Run to make sure that we converge. |
| rtt_stats->UpdateRtt( |
| QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs), |
| QuicTime::Delta::Zero(), clock_.Now()); |
| rtt_stats->UpdateRtt( |
| QuicTime::Delta::FromMilliseconds(kRttMs - kDeviationMs), |
| QuicTime::Delta::Zero(), clock_.Now()); |
| } |
| expected_delay = QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs * 4); |
| |
| EXPECT_NEAR(kRttMs, rtt_stats->smoothed_rtt().ToMilliseconds(), 1); |
| EXPECT_NEAR(expected_delay.ToMilliseconds(), |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_) |
| .ToMilliseconds(), |
| 1); |
| EXPECT_EQ(QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, 0), |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, GetLossDelay) { |
| auto loss_algorithm = QuicMakeUnique<MockLossAlgorithm>(); |
| QuicSentPacketManagerPeer::SetLossAlgorithm(&manager_, loss_algorithm.get()); |
| |
| EXPECT_CALL(*loss_algorithm, GetLossTimeout()) |
| .WillRepeatedly(Return(QuicTime::Zero())); |
| SendDataPacket(1); |
| SendDataPacket(2); |
| |
| // Handle an ack which causes the loss algorithm to be evaluated and |
| // set the loss timeout. |
| ExpectAck(2); |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| manager_.OnAckFrameStart(QuicPacketNumber(2), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(2), QuicPacketNumber(3)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| |
| QuicTime timeout(clock_.Now() + QuicTime::Delta::FromMilliseconds(10)); |
| EXPECT_CALL(*loss_algorithm, GetLossTimeout()) |
| .WillRepeatedly(Return(timeout)); |
| EXPECT_EQ(timeout, manager_.GetRetransmissionTime()); |
| |
| // Fire the retransmission timeout and ensure the loss detection algorithm |
| // is invoked. |
| EXPECT_CALL(*loss_algorithm, DetectLosses(_, _, _, _, _, _)); |
| manager_.OnRetransmissionTimeout(); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateTimeLossDetectionFromOptions) { |
| EXPECT_EQ(kNack, QuicSentPacketManagerPeer::GetLossAlgorithm(&manager_) |
| ->GetLossDetectionType()); |
| |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kTIME); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_EQ(kTime, QuicSentPacketManagerPeer::GetLossAlgorithm(&manager_) |
| ->GetLossDetectionType()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateCongestionControlFromOptions) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kRENO); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| |
| options.clear(); |
| options.push_back(kTBBR); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kBBR, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| |
| options.clear(); |
| options.push_back(kBYTE); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kCubicBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| options.clear(); |
| options.push_back(kRENO); |
| options.push_back(kBYTE); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateClientCongestionControlFromOptions) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| // No change if the server receives client options. |
| const SendAlgorithmInterface* mock_sender = |
| QuicSentPacketManagerPeer::GetSendAlgorithm(manager_); |
| options.push_back(kRENO); |
| config.SetClientConnectionOptions(options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(mock_sender, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_)); |
| |
| // Change the congestion control on the client with client options. |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| |
| options.clear(); |
| options.push_back(kTBBR); |
| config.SetClientConnectionOptions(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kBBR, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| |
| options.clear(); |
| options.push_back(kBYTE); |
| config.SetClientConnectionOptions(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kCubicBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| |
| options.clear(); |
| options.push_back(kRENO); |
| options.push_back(kBYTE); |
| config.SetClientConnectionOptions(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kRenoBytes, QuicSentPacketManagerPeer::GetSendAlgorithm(manager_) |
| ->GetCongestionControlType()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateNoMinTLPFromOptionsAtServer) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kMAD2); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillOnce(Return(10 * kDefaultTCPMSS)); |
| manager_.SetFromConfig(config); |
| // Set the initial RTT to 1us. |
| QuicSentPacketManagerPeer::GetRttStats(&manager_)->set_initial_rtt( |
| QuicTime::Delta::FromMicroseconds(1)); |
| // The TLP with fewer than 2 packets outstanding includes 1/2 min RTO(200ms). |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(100002), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(100002), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0)); |
| |
| // Send two packets, and the TLP should be 2 us. |
| SendDataPacket(1); |
| SendDataPacket(2); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateNoMinTLPFromOptionsAtClient) { |
| QuicConfig client_config; |
| QuicTagVector options; |
| |
| options.push_back(kMAD2); |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| client_config.SetConnectionOptionsToSend(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*send_algorithm_, PacingRate(_)) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .WillOnce(Return(10 * kDefaultTCPMSS)); |
| manager_.SetFromConfig(client_config); |
| // Set the initial RTT to 1us. |
| QuicSentPacketManagerPeer::GetRttStats(&manager_)->set_initial_rtt( |
| QuicTime::Delta::FromMicroseconds(1)); |
| // The TLP with fewer than 2 packets outstanding includes 1/2 min RTO(200ms). |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(100002), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(100002), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0)); |
| // Send two packets, and the TLP should be 2 us. |
| SendDataPacket(1); |
| SendDataPacket(2); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateIETFTLPFromOptionsAtServer) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kMAD4); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(config); |
| // Provide an RTT measurement of 100ms. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| // Expect 1.5x * SRTT + 0ms MAD |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(150), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(150), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0)); |
| // Expect 1.5x * SRTT + 50ms MAD |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(150), |
| QuicTime::Delta::FromMilliseconds(50), QuicTime::Zero()); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(100), rtt_stats->smoothed_rtt()); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(200), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(200), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateIETFTLPFromOptionsAtClient) { |
| QuicConfig client_config; |
| QuicTagVector options; |
| |
| options.push_back(kMAD4); |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| client_config.SetConnectionOptionsToSend(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(client_config); |
| // Provide an RTT measurement of 100ms. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| // Expect 1.5x * SRTT + 0ms MAD |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(150), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(150), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0)); |
| // Expect 1.5x * SRTT + 50ms MAD |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(150), |
| QuicTime::Delta::FromMilliseconds(50), QuicTime::Zero()); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(100), rtt_stats->smoothed_rtt()); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(200), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(200), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateNoMinRTOFromOptionsAtServer) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kMAD3); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(config); |
| // Provide one RTT measurement, because otherwise we use the default of 500ms. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMicroseconds(1), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(1), |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(1), |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, 0)); |
| // The TLP with fewer than 2 packets outstanding includes 1/2 min RTO(0ms). |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateNoMinRTOFromOptionsAtClient) { |
| QuicConfig client_config; |
| QuicTagVector options; |
| |
| options.push_back(kMAD3); |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| client_config.SetConnectionOptionsToSend(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(client_config); |
| // Provide one RTT measurement, because otherwise we use the default of 500ms. |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| rtt_stats->UpdateRtt(QuicTime::Delta::FromMicroseconds(1), |
| QuicTime::Delta::Zero(), QuicTime::Zero()); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(1), |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(1), |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_, 0)); |
| // The TLP with fewer than 2 packets outstanding includes 1/2 min RTO(0ms). |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_)); |
| EXPECT_EQ(QuicTime::Delta::FromMicroseconds(2), |
| QuicSentPacketManagerPeer::GetTailLossProbeDelay(&manager_, 0)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateNoTLPFromOptionsAtServer) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kNTLP); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetMaxTailLossProbes(&manager_)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateNoTLPFromOptionsAtClient) { |
| QuicConfig client_config; |
| QuicTagVector options; |
| |
| options.push_back(kNTLP); |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| client_config.SetConnectionOptionsToSend(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(client_config); |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetMaxTailLossProbes(&manager_)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, Negotiate1TLPFromOptionsAtServer) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(k1TLP); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(1u, QuicSentPacketManagerPeer::GetMaxTailLossProbes(&manager_)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, Negotiate1TLPFromOptionsAtClient) { |
| QuicConfig client_config; |
| QuicTagVector options; |
| |
| options.push_back(k1TLP); |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| client_config.SetConnectionOptionsToSend(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(client_config); |
| EXPECT_EQ(1u, QuicSentPacketManagerPeer::GetMaxTailLossProbes(&manager_)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateTLPRttFromOptionsAtServer) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kTLPR); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(config); |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::GetEnableHalfRttTailLossProbe(&manager_)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateTLPRttFromOptionsAtClient) { |
| QuicConfig client_config; |
| QuicTagVector options; |
| |
| options.push_back(kTLPR); |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| client_config.SetConnectionOptionsToSend(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(client_config); |
| EXPECT_TRUE( |
| QuicSentPacketManagerPeer::GetEnableHalfRttTailLossProbe(&manager_)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateNewRTOFromOptionsAtServer) { |
| EXPECT_FALSE(QuicSentPacketManagerPeer::GetUseNewRto(&manager_)); |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kNRTO); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(config); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::GetUseNewRto(&manager_)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, NegotiateNewRTOFromOptionsAtClient) { |
| EXPECT_FALSE(QuicSentPacketManagerPeer::GetUseNewRto(&manager_)); |
| QuicConfig client_config; |
| QuicTagVector options; |
| |
| options.push_back(kNRTO); |
| QuicSentPacketManagerPeer::SetPerspective(&manager_, Perspective::IS_CLIENT); |
| client_config.SetConnectionOptionsToSend(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| manager_.SetFromConfig(client_config); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::GetUseNewRto(&manager_)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, UseInitialRoundTripTimeToSend) { |
| QuicTime::Delta initial_rtt = QuicTime::Delta::FromMilliseconds(325); |
| EXPECT_NE(initial_rtt, manager_.GetRttStats()->smoothed_rtt()); |
| |
| QuicConfig config; |
| config.SetInitialRoundTripTimeUsToSend(initial_rtt.ToMicroseconds()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionChange()); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_EQ(QuicTime::Delta::Zero(), manager_.GetRttStats()->smoothed_rtt()); |
| EXPECT_EQ(initial_rtt, manager_.GetRttStats()->initial_rtt()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, ResumeConnectionState) { |
| // The sent packet manager should use the RTT from CachedNetworkParameters if |
| // it is provided. |
| const QuicTime::Delta kRtt = QuicTime::Delta::FromMilliseconds(1234); |
| CachedNetworkParameters cached_network_params; |
| cached_network_params.set_min_rtt_ms(kRtt.ToMilliseconds()); |
| |
| EXPECT_CALL(*send_algorithm_, |
| AdjustNetworkParameters(QuicBandwidth::Zero(), kRtt, false)); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) |
| .Times(testing::AnyNumber()); |
| manager_.ResumeConnectionState(cached_network_params, false); |
| EXPECT_EQ(kRtt, manager_.GetRttStats()->initial_rtt()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, ConnectionMigrationUnspecifiedChange) { |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt(); |
| rtt_stats->set_initial_rtt(default_init_rtt * 2); |
| EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt()); |
| |
| QuicSentPacketManagerPeer::SetConsecutiveRtoCount(&manager_, 1); |
| EXPECT_EQ(1u, manager_.GetConsecutiveRtoCount()); |
| QuicSentPacketManagerPeer::SetConsecutiveTlpCount(&manager_, 2); |
| EXPECT_EQ(2u, manager_.GetConsecutiveTlpCount()); |
| |
| EXPECT_CALL(*send_algorithm_, OnConnectionMigration()); |
| manager_.OnConnectionMigration(IPV4_TO_IPV4_CHANGE); |
| |
| EXPECT_EQ(default_init_rtt, rtt_stats->initial_rtt()); |
| EXPECT_EQ(0u, manager_.GetConsecutiveRtoCount()); |
| EXPECT_EQ(0u, manager_.GetConsecutiveTlpCount()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, ConnectionMigrationIPSubnetChange) { |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt(); |
| rtt_stats->set_initial_rtt(default_init_rtt * 2); |
| EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt()); |
| |
| QuicSentPacketManagerPeer::SetConsecutiveRtoCount(&manager_, 1); |
| EXPECT_EQ(1u, manager_.GetConsecutiveRtoCount()); |
| QuicSentPacketManagerPeer::SetConsecutiveTlpCount(&manager_, 2); |
| EXPECT_EQ(2u, manager_.GetConsecutiveTlpCount()); |
| |
| manager_.OnConnectionMigration(IPV4_SUBNET_CHANGE); |
| |
| EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt()); |
| EXPECT_EQ(1u, manager_.GetConsecutiveRtoCount()); |
| EXPECT_EQ(2u, manager_.GetConsecutiveTlpCount()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, ConnectionMigrationPortChange) { |
| RttStats* rtt_stats = const_cast<RttStats*>(manager_.GetRttStats()); |
| QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt(); |
| rtt_stats->set_initial_rtt(default_init_rtt * 2); |
| EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt()); |
| |
| QuicSentPacketManagerPeer::SetConsecutiveRtoCount(&manager_, 1); |
| EXPECT_EQ(1u, manager_.GetConsecutiveRtoCount()); |
| QuicSentPacketManagerPeer::SetConsecutiveTlpCount(&manager_, 2); |
| EXPECT_EQ(2u, manager_.GetConsecutiveTlpCount()); |
| |
| manager_.OnConnectionMigration(PORT_CHANGE); |
| |
| EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt()); |
| EXPECT_EQ(1u, manager_.GetConsecutiveRtoCount()); |
| EXPECT_EQ(2u, manager_.GetConsecutiveTlpCount()); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, PathMtuIncreased) { |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), QuicPacketNumber(1), _, _)); |
| SerializedPacket packet(QuicPacketNumber(1), PACKET_4BYTE_PACKET_NUMBER, |
| nullptr, kDefaultLength + 100, false, false); |
| manager_.OnPacketSent(&packet, QuicPacketNumber(), clock_.Now(), |
| NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA); |
| |
| // Ack the large packet and expect the path MTU to increase. |
| ExpectAck(1); |
| EXPECT_CALL(*network_change_visitor_, |
| OnPathMtuIncreased(kDefaultLength + 100)); |
| QuicAckFrame ack_frame = InitAckFrame(1); |
| manager_.OnAckFrameStart(QuicPacketNumber(1), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, OnAckRangeSlowPath) { |
| // Send packets 1 - 20. |
| for (size_t i = 1; i <= 20; ++i) { |
| SendDataPacket(i); |
| } |
| // Ack [5, 7), [10, 12), [15, 17). |
| uint64_t acked1[] = {5, 6, 10, 11, 15, 16}; |
| uint64_t lost1[] = {1, 2, 3, 4, 7, 8, 9, 12, 13}; |
| ExpectAcksAndLosses(true, acked1, QUIC_ARRAYSIZE(acked1), lost1, |
| QUIC_ARRAYSIZE(lost1)); |
| EXPECT_CALL(notifier_, OnFrameLost(_)).Times(AnyNumber()); |
| manager_.OnAckFrameStart(QuicPacketNumber(16), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(15), QuicPacketNumber(17)); |
| manager_.OnAckRange(QuicPacketNumber(10), QuicPacketNumber(12)); |
| manager_.OnAckRange(QuicPacketNumber(5), QuicPacketNumber(7)); |
| // Make sure empty range does not harm. |
| manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(4)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(1), |
| ENCRYPTION_INITIAL)); |
| |
| // Ack [4, 8), [9, 13), [14, 21). |
| uint64_t acked2[] = {4, 7, 9, 12, 14, 17, 18, 19, 20}; |
| ExpectAcksAndLosses(true, acked2, QUIC_ARRAYSIZE(acked2), nullptr, 0); |
| manager_.OnAckFrameStart(QuicPacketNumber(20), QuicTime::Delta::Infinite(), |
| clock_.Now()); |
| manager_.OnAckRange(QuicPacketNumber(14), QuicPacketNumber(21)); |
| manager_.OnAckRange(QuicPacketNumber(9), QuicPacketNumber(13)); |
| manager_.OnAckRange(QuicPacketNumber(4), QuicPacketNumber(8)); |
| EXPECT_EQ(PACKETS_NEWLY_ACKED, |
| manager_.OnAckFrameEnd(clock_.Now(), QuicPacketNumber(2), |
| ENCRYPTION_INITIAL)); |
| } |
| |
| TEST_P(QuicSentPacketManagerTest, TolerateReneging) { |
| // Send packets 1 - 20. |
| for (size_t i = 1; i <= 20; ++i) { |
| SendDataPacket(i); |
| } |
| // Ack [5, 7), [10, 12), [15, 17). |
| uint64_t acked1[] = {5, 6, 10, 11, 15, 16}; |
| uint64_t lost1[] = {1, 2, 3, 4, 7, 8, 9, 12, 13}; |
| ExpectAcksAndLosses(true, acked1, QUIC_ARRAYSIZE(acked1), lost1, |
| QUIC_ARRAYSIZE(lost1)); |
|