|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "net/third_party/quiche/src/quic/core/quic_data_writer.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <limits> | 
|  |  | 
|  | #include "net/third_party/quiche/src/quic/core/crypto/quic_random.h" | 
|  | #include "net/third_party/quiche/src/quic/core/quic_constants.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_bug_tracker.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" | 
|  | #include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h" | 
|  |  | 
|  | namespace quic { | 
|  |  | 
|  | QuicDataWriter::QuicDataWriter(size_t size, char* buffer) | 
|  | : QuicDataWriter(size, buffer, NETWORK_BYTE_ORDER) {} | 
|  |  | 
|  | QuicDataWriter::QuicDataWriter(size_t size, char* buffer, Endianness endianness) | 
|  | : buffer_(buffer), capacity_(size), length_(0), endianness_(endianness) {} | 
|  |  | 
|  | QuicDataWriter::~QuicDataWriter() {} | 
|  |  | 
|  | char* QuicDataWriter::data() { | 
|  | return buffer_; | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteUInt8(uint8_t value) { | 
|  | return WriteBytes(&value, sizeof(value)); | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteUInt16(uint16_t value) { | 
|  | if (endianness_ == NETWORK_BYTE_ORDER) { | 
|  | value = QuicEndian::HostToNet16(value); | 
|  | } | 
|  | return WriteBytes(&value, sizeof(value)); | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteUInt32(uint32_t value) { | 
|  | if (endianness_ == NETWORK_BYTE_ORDER) { | 
|  | value = QuicEndian::HostToNet32(value); | 
|  | } | 
|  | return WriteBytes(&value, sizeof(value)); | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteUInt64(uint64_t value) { | 
|  | if (endianness_ == NETWORK_BYTE_ORDER) { | 
|  | value = QuicEndian::HostToNet64(value); | 
|  | } | 
|  | return WriteBytes(&value, sizeof(value)); | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteBytesToUInt64(size_t num_bytes, uint64_t value) { | 
|  | if (num_bytes > sizeof(value)) { | 
|  | return false; | 
|  | } | 
|  | if (endianness_ == HOST_BYTE_ORDER) { | 
|  | return WriteBytes(&value, num_bytes); | 
|  | } | 
|  |  | 
|  | value = QuicEndian::HostToNet64(value); | 
|  | return WriteBytes(reinterpret_cast<char*>(&value) + sizeof(value) - num_bytes, | 
|  | num_bytes); | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteUFloat16(uint64_t value) { | 
|  | uint16_t result; | 
|  | if (value < (UINT64_C(1) << kUFloat16MantissaEffectiveBits)) { | 
|  | // Fast path: either the value is denormalized, or has exponent zero. | 
|  | // Both cases are represented by the value itself. | 
|  | result = static_cast<uint16_t>(value); | 
|  | } else if (value >= kUFloat16MaxValue) { | 
|  | // Value is out of range; clamp it to the maximum representable. | 
|  | result = std::numeric_limits<uint16_t>::max(); | 
|  | } else { | 
|  | // The highest bit is between position 13 and 42 (zero-based), which | 
|  | // corresponds to exponent 1-30. In the output, mantissa is from 0 to 10, | 
|  | // hidden bit is 11 and exponent is 11 to 15. Shift the highest bit to 11 | 
|  | // and count the shifts. | 
|  | uint16_t exponent = 0; | 
|  | for (uint16_t offset = 16; offset > 0; offset /= 2) { | 
|  | // Right-shift the value until the highest bit is in position 11. | 
|  | // For offset of 16, 8, 4, 2 and 1 (binary search over 1-30), | 
|  | // shift if the bit is at or above 11 + offset. | 
|  | if (value >= (UINT64_C(1) << (kUFloat16MantissaBits + offset))) { | 
|  | exponent += offset; | 
|  | value >>= offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | DCHECK_GE(exponent, 1); | 
|  | DCHECK_LE(exponent, kUFloat16MaxExponent); | 
|  | DCHECK_GE(value, UINT64_C(1) << kUFloat16MantissaBits); | 
|  | DCHECK_LT(value, UINT64_C(1) << kUFloat16MantissaEffectiveBits); | 
|  |  | 
|  | // Hidden bit (position 11) is set. We should remove it and increment the | 
|  | // exponent. Equivalently, we just add it to the exponent. | 
|  | // This hides the bit. | 
|  | result = static_cast<uint16_t>(value + (exponent << kUFloat16MantissaBits)); | 
|  | } | 
|  |  | 
|  | if (endianness_ == NETWORK_BYTE_ORDER) { | 
|  | result = QuicEndian::HostToNet16(result); | 
|  | } | 
|  | return WriteBytes(&result, sizeof(result)); | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteStringPiece16(QuicStringPiece val) { | 
|  | if (val.size() > std::numeric_limits<uint16_t>::max()) { | 
|  | return false; | 
|  | } | 
|  | if (!WriteUInt16(static_cast<uint16_t>(val.size()))) { | 
|  | return false; | 
|  | } | 
|  | return WriteBytes(val.data(), val.size()); | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteStringPiece(QuicStringPiece val) { | 
|  | return WriteBytes(val.data(), val.size()); | 
|  | } | 
|  |  | 
|  | char* QuicDataWriter::BeginWrite(size_t length) { | 
|  | if (length_ > capacity_) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (capacity_ - length_ < length) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | #ifdef ARCH_CPU_64_BITS | 
|  | DCHECK_LE(length, std::numeric_limits<uint32_t>::max()); | 
|  | #endif | 
|  |  | 
|  | return buffer_ + length_; | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteBytes(const void* data, size_t data_len) { | 
|  | char* dest = BeginWrite(data_len); | 
|  | if (!dest) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | memcpy(dest, data, data_len); | 
|  |  | 
|  | length_ += data_len; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteRepeatedByte(uint8_t byte, size_t count) { | 
|  | char* dest = BeginWrite(count); | 
|  | if (!dest) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | memset(dest, byte, count); | 
|  |  | 
|  | length_ += count; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void QuicDataWriter::WritePadding() { | 
|  | DCHECK_LE(length_, capacity_); | 
|  | if (length_ > capacity_) { | 
|  | return; | 
|  | } | 
|  | memset(buffer_ + length_, 0x00, capacity_ - length_); | 
|  | length_ = capacity_; | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WritePaddingBytes(size_t count) { | 
|  | return WriteRepeatedByte(0x00, count); | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteConnectionId(QuicConnectionId connection_id) { | 
|  | if (connection_id.IsEmpty()) { | 
|  | return true; | 
|  | } | 
|  | return WriteBytes(connection_id.data(), connection_id.length()); | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteLengthPrefixedConnectionId( | 
|  | QuicConnectionId connection_id) { | 
|  | return WriteUInt8(connection_id.length()) && WriteConnectionId(connection_id); | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteTag(uint32_t tag) { | 
|  | return WriteBytes(&tag, sizeof(tag)); | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteRandomBytes(QuicRandom* random, size_t length) { | 
|  | char* dest = BeginWrite(length); | 
|  | if (!dest) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | random->RandBytes(dest, length); | 
|  | length_ += length; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::Seek(size_t length) { | 
|  | if (!BeginWrite(length)) { | 
|  | return false; | 
|  | } | 
|  | length_ += length; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Converts a uint64_t into an IETF/Quic formatted Variable Length | 
|  | // Integer. IETF Variable Length Integers have 62 significant bits, so | 
|  | // the value to write must be in the range of 0..(2^62)-1. | 
|  | // | 
|  | // Performance notes | 
|  | // | 
|  | // Measurements and experiments showed that unrolling the four cases | 
|  | // like this and dereferencing next_ as we do (*(next_+n)) gains about | 
|  | // 10% over making a loop and dereferencing it as *(next_++) | 
|  | // | 
|  | // Using a register for next didn't help. | 
|  | // | 
|  | // Branches are ordered to increase the likelihood of the first being | 
|  | // taken. | 
|  | // | 
|  | // Low-level optimization is useful here because this function will be | 
|  | // called frequently, leading to outsize benefits. | 
|  | bool QuicDataWriter::WriteVarInt62(uint64_t value) { | 
|  | DCHECK_EQ(endianness_, NETWORK_BYTE_ORDER); | 
|  |  | 
|  | size_t remaining = capacity_ - length_; | 
|  | char* next = buffer_ + length_; | 
|  |  | 
|  | if ((value & kVarInt62ErrorMask) == 0) { | 
|  | // We know the high 2 bits are 0 so |value| is legal. | 
|  | // We can do the encoding. | 
|  | if ((value & kVarInt62Mask8Bytes) != 0) { | 
|  | // Someplace in the high-4 bytes is a 1-bit. Do an 8-byte | 
|  | // encoding. | 
|  | if (remaining >= 8) { | 
|  | *(next + 0) = ((value >> 56) & 0x3f) + 0xc0; | 
|  | *(next + 1) = (value >> 48) & 0xff; | 
|  | *(next + 2) = (value >> 40) & 0xff; | 
|  | *(next + 3) = (value >> 32) & 0xff; | 
|  | *(next + 4) = (value >> 24) & 0xff; | 
|  | *(next + 5) = (value >> 16) & 0xff; | 
|  | *(next + 6) = (value >> 8) & 0xff; | 
|  | *(next + 7) = value & 0xff; | 
|  | length_ += 8; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | // The high-order-4 bytes are all 0, check for a 1, 2, or 4-byte | 
|  | // encoding | 
|  | if ((value & kVarInt62Mask4Bytes) != 0) { | 
|  | // The encoding will not fit into 2 bytes, Do a 4-byte | 
|  | // encoding. | 
|  | if (remaining >= 4) { | 
|  | *(next + 0) = ((value >> 24) & 0x3f) + 0x80; | 
|  | *(next + 1) = (value >> 16) & 0xff; | 
|  | *(next + 2) = (value >> 8) & 0xff; | 
|  | *(next + 3) = value & 0xff; | 
|  | length_ += 4; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | // The high-order bits are all 0. Check to see if the number | 
|  | // can be encoded as one or two bytes. One byte encoding has | 
|  | // only 6 significant bits (bits 0xffffffff ffffffc0 are all 0). | 
|  | // Two byte encoding has more than 6, but 14 or less significant | 
|  | // bits (bits 0xffffffff ffffc000 are 0 and 0x00000000 00003fc0 | 
|  | // are not 0) | 
|  | if ((value & kVarInt62Mask2Bytes) != 0) { | 
|  | // Do 2-byte encoding | 
|  | if (remaining >= 2) { | 
|  | *(next + 0) = ((value >> 8) & 0x3f) + 0x40; | 
|  | *(next + 1) = (value)&0xff; | 
|  | length_ += 2; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | if (remaining >= 1) { | 
|  | // Do 1-byte encoding | 
|  | *next = (value & 0x3f); | 
|  | length_ += 1; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | // Can not encode, high 2 bits not 0 | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteVarInt62( | 
|  | uint64_t value, | 
|  | QuicVariableLengthIntegerLength write_length) { | 
|  | DCHECK_EQ(endianness_, NETWORK_BYTE_ORDER); | 
|  |  | 
|  | size_t remaining = capacity_ - length_; | 
|  | if (remaining < write_length) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const QuicVariableLengthIntegerLength min_length = GetVarInt62Len(value); | 
|  | if (write_length < min_length) { | 
|  | QUIC_BUG << "Cannot write value " << value << " with write_length " | 
|  | << write_length; | 
|  | return false; | 
|  | } | 
|  | if (write_length == min_length) { | 
|  | return WriteVarInt62(value); | 
|  | } | 
|  |  | 
|  | if (write_length == VARIABLE_LENGTH_INTEGER_LENGTH_2) { | 
|  | return WriteUInt8(0b01000000) && WriteUInt8(value); | 
|  | } | 
|  | if (write_length == VARIABLE_LENGTH_INTEGER_LENGTH_4) { | 
|  | return WriteUInt8(0b10000000) && WriteUInt8(0) && WriteUInt16(value); | 
|  | } | 
|  | if (write_length == VARIABLE_LENGTH_INTEGER_LENGTH_8) { | 
|  | return WriteUInt8(0b11000000) && WriteUInt8(0) && WriteUInt16(0) && | 
|  | WriteUInt32(value); | 
|  | } | 
|  |  | 
|  | QUIC_BUG << "Invalid write_length " << static_cast<int>(write_length); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // static | 
|  | QuicVariableLengthIntegerLength QuicDataWriter::GetVarInt62Len(uint64_t value) { | 
|  | if ((value & kVarInt62ErrorMask) != 0) { | 
|  | QUIC_BUG << "Attempted to encode a value, " << value | 
|  | << ", that is too big for VarInt62"; | 
|  | return VARIABLE_LENGTH_INTEGER_LENGTH_0; | 
|  | } | 
|  | if ((value & kVarInt62Mask8Bytes) != 0) { | 
|  | return VARIABLE_LENGTH_INTEGER_LENGTH_8; | 
|  | } | 
|  | if ((value & kVarInt62Mask4Bytes) != 0) { | 
|  | return VARIABLE_LENGTH_INTEGER_LENGTH_4; | 
|  | } | 
|  | if ((value & kVarInt62Mask2Bytes) != 0) { | 
|  | return VARIABLE_LENGTH_INTEGER_LENGTH_2; | 
|  | } | 
|  | return VARIABLE_LENGTH_INTEGER_LENGTH_1; | 
|  | } | 
|  |  | 
|  | bool QuicDataWriter::WriteStringPieceVarInt62( | 
|  | const QuicStringPiece& string_piece) { | 
|  | if (!WriteVarInt62(string_piece.size())) { | 
|  | return false; | 
|  | } | 
|  | if (!string_piece.empty()) { | 
|  | if (!WriteBytes(string_piece.data(), string_piece.size())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::string QuicDataWriter::DebugString() const { | 
|  | return QuicStrCat(" { capacity: ", capacity_, ", length: ", length_, " }"); | 
|  | } | 
|  |  | 
|  | }  // namespace quic |