|  | // Copyright (c) 2019 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #ifndef QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_ | 
|  | #define QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_ | 
|  |  | 
|  | // QuicIntervalSet<T> is a data structure used to represent a sorted set of | 
|  | // non-empty, non-adjacent, and mutually disjoint intervals. Mutations to an | 
|  | // interval set preserve these properties, altering the set as needed. For | 
|  | // example, adding [2, 3) to a set containing only [1, 2) would result in the | 
|  | // set containing the single interval [1, 3). | 
|  | // | 
|  | // Supported operations include testing whether an Interval is contained in the | 
|  | // QuicIntervalSet, comparing two QuicIntervalSets, and performing | 
|  | // QuicIntervalSet union, intersection, and difference. | 
|  | // | 
|  | // QuicIntervalSet maintains the minimum number of entries needed to represent | 
|  | // the set of underlying intervals. When the QuicIntervalSet is modified (e.g. | 
|  | // due to an Add operation), other interval entries may be coalesced, removed, | 
|  | // or otherwise modified in order to maintain this invariant. The intervals are | 
|  | // maintained in sorted order, by ascending min() value. | 
|  | // | 
|  | // The reader is cautioned to beware of the terminology used here: this library | 
|  | // uses the terms "min" and "max" rather than "begin" and "end" as is | 
|  | // conventional for the STL. The terminology [min, max) refers to the half-open | 
|  | // interval which (if the interval is not empty) contains min but does not | 
|  | // contain max. An interval is considered empty if min >= max. | 
|  | // | 
|  | // T is required to be default- and copy-constructible, to have an assignment | 
|  | // operator, a difference operator (operator-()), and the full complement of | 
|  | // comparison operators (<, <=, ==, !=, >=, >). These requirements are inherited | 
|  | // from value_type. | 
|  | // | 
|  | // QuicIntervalSet has constant-time move operations. | 
|  | // | 
|  | // | 
|  | // Examples: | 
|  | //   QuicIntervalSet<int> intervals; | 
|  | //   intervals.Add(Interval<int>(10, 20)); | 
|  | //   intervals.Add(Interval<int>(30, 40)); | 
|  | //   // intervals contains [10,20) and [30,40). | 
|  | //   intervals.Add(Interval<int>(15, 35)); | 
|  | //   // intervals has been coalesced. It now contains the single range [10,40). | 
|  | //   EXPECT_EQ(1, intervals.Size()); | 
|  | //   EXPECT_TRUE(intervals.Contains(Interval<int>(10, 40))); | 
|  | // | 
|  | //   intervals.Difference(Interval<int>(10, 20)); | 
|  | //   // intervals should now contain the single range [20, 40). | 
|  | //   EXPECT_EQ(1, intervals.Size()); | 
|  | //   EXPECT_TRUE(intervals.Contains(Interval<int>(20, 40))); | 
|  |  | 
|  | #include <stddef.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <initializer_list> | 
|  | #include <set> | 
|  | #include <sstream> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "quiche/quic/core/quic_interval.h" | 
|  | #include "quiche/quic/platform/api/quic_flags.h" | 
|  | #include "quiche/common/platform/api/quiche_containers.h" | 
|  | #include "quiche/common/platform/api/quiche_logging.h" | 
|  |  | 
|  | namespace quic { | 
|  |  | 
|  | template <typename T> | 
|  | class QUICHE_NO_EXPORT QuicIntervalSet { | 
|  | public: | 
|  | using value_type = QuicInterval<T>; | 
|  |  | 
|  | private: | 
|  | struct QUICHE_NO_EXPORT IntervalLess { | 
|  | using is_transparent = void; | 
|  | bool operator()(const value_type& a, const value_type& b) const; | 
|  | // These transparent overloads are used when we do all of our searches (via | 
|  | // Set::lower_bound() and Set::upper_bound()), which avoids the need to | 
|  | // construct an interval when we are looking for a point and also avoids | 
|  | // needing to worry about comparing overlapping intervals in the overload | 
|  | // that takes two value_types (the one just above this comment). | 
|  | bool operator()(const value_type& a, const T& point) const; | 
|  | bool operator()(const value_type& a, T&& point) const; | 
|  | bool operator()(const T& point, const value_type& a) const; | 
|  | bool operator()(T&& point, const value_type& a) const; | 
|  | }; | 
|  |  | 
|  | using Set = quiche::QuicheSmallOrderedSet<value_type, IntervalLess>; | 
|  |  | 
|  | public: | 
|  | using const_iterator = typename Set::const_iterator; | 
|  | using const_reverse_iterator = typename Set::const_reverse_iterator; | 
|  |  | 
|  | // Instantiates an empty QuicIntervalSet. | 
|  | QuicIntervalSet() = default; | 
|  |  | 
|  | // Instantiates a QuicIntervalSet containing exactly one initial half-open | 
|  | // interval [min, max), unless the given interval is empty, in which case the | 
|  | // QuicIntervalSet will be empty. | 
|  | explicit QuicIntervalSet(const value_type& interval) { Add(interval); } | 
|  |  | 
|  | // Instantiates a QuicIntervalSet containing the half-open interval [min, | 
|  | // max). | 
|  | QuicIntervalSet(const T& min, const T& max) { Add(min, max); } | 
|  |  | 
|  | QuicIntervalSet(std::initializer_list<value_type> il) { assign(il); } | 
|  |  | 
|  | // Clears this QuicIntervalSet. | 
|  | void Clear() { intervals_.clear(); } | 
|  |  | 
|  | // Returns the number of disjoint intervals contained in this QuicIntervalSet. | 
|  | size_t Size() const { return intervals_.size(); } | 
|  |  | 
|  | // Returns the smallest interval that contains all intervals in this | 
|  | // QuicIntervalSet, or the empty interval if the set is empty. | 
|  | value_type SpanningInterval() const; | 
|  |  | 
|  | // Adds "interval" to this QuicIntervalSet. Adding the empty interval has no | 
|  | // effect. | 
|  | void Add(const value_type& interval); | 
|  |  | 
|  | // Adds the interval [min, max) to this QuicIntervalSet. Adding the empty | 
|  | // interval has no effect. | 
|  | void Add(const T& min, const T& max) { Add(value_type(min, max)); } | 
|  |  | 
|  | // Same semantics as Add(const value_type&), but optimized for the case where | 
|  | // rbegin()->min() <= |interval|.min() <= rbegin()->max(). | 
|  | void AddOptimizedForAppend(const value_type& interval) { | 
|  | if (Empty() || !GetQuicFlag(quic_interval_set_enable_add_optimization)) { | 
|  | Add(interval); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const_reverse_iterator last_interval = intervals_.rbegin(); | 
|  |  | 
|  | // If interval.min() is outside of [last_interval->min, last_interval->max], | 
|  | // we can not simply extend last_interval->max. | 
|  | if (interval.min() < last_interval->min() || | 
|  | interval.min() > last_interval->max()) { | 
|  | Add(interval); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (interval.max() <= last_interval->max()) { | 
|  | // interval is fully contained by last_interval. | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Extend last_interval.max to interval.max, in place. | 
|  | // | 
|  | // Set does not allow in-place updates due to the potential of violating its | 
|  | // ordering requirements. But we know setting the max of the last interval | 
|  | // is safe w.r.t set ordering and other invariants of QuicIntervalSet, so we | 
|  | // force an in-place update for performance. | 
|  | const_cast<value_type*>(&(*last_interval))->SetMax(interval.max()); | 
|  | } | 
|  |  | 
|  | // Same semantics as Add(const T&, const T&), but optimized for the case where | 
|  | // rbegin()->max() == |min|. | 
|  | void AddOptimizedForAppend(const T& min, const T& max) { | 
|  | AddOptimizedForAppend(value_type(min, max)); | 
|  | } | 
|  |  | 
|  | // TODO(wub): Similar to AddOptimizedForAppend, we can also have a | 
|  | // AddOptimizedForPrepend if there is a use case. | 
|  |  | 
|  | // Remove the first interval. | 
|  | // REQUIRES: !Empty() | 
|  | void PopFront() { | 
|  | QUICHE_DCHECK(!Empty()); | 
|  | intervals_.erase(intervals_.begin()); | 
|  | } | 
|  |  | 
|  | // Trim all values that are smaller than |value|. Which means | 
|  | // a) If all values in an interval is smaller than |value|, the entire | 
|  | //    interval is removed. | 
|  | // b) If some but not all values in an interval is smaller than |value|, the | 
|  | //    min of that interval is raised to |value|. | 
|  | // Returns true if some intervals are trimmed. | 
|  | bool TrimLessThan(const T& value) { | 
|  | // Number of intervals that are fully or partially trimmed. | 
|  | size_t num_intervals_trimmed = 0; | 
|  |  | 
|  | while (!intervals_.empty()) { | 
|  | const_iterator first_interval = intervals_.begin(); | 
|  | if (first_interval->min() >= value) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | ++num_intervals_trimmed; | 
|  |  | 
|  | if (first_interval->max() <= value) { | 
|  | // a) Trim the entire interval. | 
|  | intervals_.erase(first_interval); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // b) Trim a prefix of the interval. | 
|  | // | 
|  | // Set does not allow in-place updates due to the potential of violating | 
|  | // its ordering requirements. But increasing the min of the first interval | 
|  | // will not break the ordering, hence the const_cast. | 
|  | const_cast<value_type*>(&(*first_interval))->SetMin(value); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return num_intervals_trimmed != 0; | 
|  | } | 
|  |  | 
|  | // Returns true if this QuicIntervalSet is empty. | 
|  | bool Empty() const { return intervals_.empty(); } | 
|  |  | 
|  | // Returns true if any interval in this QuicIntervalSet contains the indicated | 
|  | // value. | 
|  | bool Contains(const T& value) const; | 
|  |  | 
|  | // Returns true if there is some interval in this QuicIntervalSet that wholly | 
|  | // contains the given interval. An interval O "wholly contains" a non-empty | 
|  | // interval I if O.Contains(p) is true for every p in I. This is the same | 
|  | // definition used by value_type::Contains(). This method returns false on | 
|  | // the empty interval, due to a (perhaps unintuitive) convention inherited | 
|  | // from value_type. | 
|  | // Example: | 
|  | //   Assume an QuicIntervalSet containing the entries { [10,20), [30,40) }. | 
|  | //   Contains(Interval(15, 16)) returns true, because [10,20) contains | 
|  | //   [15,16). However, Contains(Interval(15, 35)) returns false. | 
|  | bool Contains(const value_type& interval) const; | 
|  |  | 
|  | // Returns true if for each interval in "other", there is some (possibly | 
|  | // different) interval in this QuicIntervalSet which wholly contains it. See | 
|  | // Contains(const value_type& interval) for the meaning of "wholly contains". | 
|  | // Perhaps unintuitively, this method returns false if "other" is the empty | 
|  | // set. The algorithmic complexity of this method is O(other.Size() * | 
|  | // log(this->Size())). The method could be rewritten to run in O(other.Size() | 
|  | // + this->Size()), and this alternative could be implemented as a free | 
|  | // function using the public API. | 
|  | bool Contains(const QuicIntervalSet<T>& other) const; | 
|  |  | 
|  | // Returns true if there is some interval in this QuicIntervalSet that wholly | 
|  | // contains the interval [min, max). See Contains(const value_type&). | 
|  | bool Contains(const T& min, const T& max) const { | 
|  | return Contains(value_type(min, max)); | 
|  | } | 
|  |  | 
|  | // Returns true if for some interval in "other", there is some interval in | 
|  | // this QuicIntervalSet that intersects with it. See value_type::Intersects() | 
|  | // for the definition of interval intersection.  Runs in time O(n+m) where n | 
|  | // is the number of intervals in this and m is the number of intervals in | 
|  | // other. | 
|  | bool Intersects(const QuicIntervalSet& other) const; | 
|  |  | 
|  | // Returns an iterator to the value_type in the QuicIntervalSet that contains | 
|  | // the given value. In other words, returns an iterator to the unique interval | 
|  | // [min, max) in the QuicIntervalSet that has the property min <= value < max. | 
|  | // If there is no such interval, this method returns end(). | 
|  | const_iterator Find(const T& value) const; | 
|  |  | 
|  | // Returns an iterator to the value_type in the QuicIntervalSet that wholly | 
|  | // contains the given interval. In other words, returns an iterator to the | 
|  | // unique interval outer in the QuicIntervalSet that has the property that | 
|  | // outer.Contains(interval). If there is no such interval, or if interval is | 
|  | // empty, returns end(). | 
|  | const_iterator Find(const value_type& interval) const; | 
|  |  | 
|  | // Returns an iterator to the value_type in the QuicIntervalSet that wholly | 
|  | // contains [min, max). In other words, returns an iterator to the unique | 
|  | // interval outer in the QuicIntervalSet that has the property that | 
|  | // outer.Contains(Interval<T>(min, max)). If there is no such interval, or if | 
|  | // interval is empty, returns end(). | 
|  | const_iterator Find(const T& min, const T& max) const { | 
|  | return Find(value_type(min, max)); | 
|  | } | 
|  |  | 
|  | // Returns an iterator pointing to the first value_type which contains or | 
|  | // goes after the given value. | 
|  | // | 
|  | // Example: | 
|  | //   [10, 20)  [30, 40) | 
|  | //   ^                    LowerBound(10) | 
|  | //   ^                    LowerBound(15) | 
|  | //             ^          LowerBound(20) | 
|  | //             ^          LowerBound(25) | 
|  | const_iterator LowerBound(const T& value) const; | 
|  |  | 
|  | // Returns an iterator pointing to the first value_type which goes after | 
|  | // the given value. | 
|  | // | 
|  | // Example: | 
|  | //   [10, 20)  [30, 40) | 
|  | //             ^          UpperBound(10) | 
|  | //             ^          UpperBound(15) | 
|  | //             ^          UpperBound(20) | 
|  | //             ^          UpperBound(25) | 
|  | const_iterator UpperBound(const T& value) const; | 
|  |  | 
|  | // Returns true if every value within the passed interval is not Contained | 
|  | // within the QuicIntervalSet. | 
|  | // Note that empty intervals are always considered disjoint from the | 
|  | // QuicIntervalSet (even though the QuicIntervalSet doesn't `Contain` them). | 
|  | bool IsDisjoint(const value_type& interval) const; | 
|  |  | 
|  | // Merges all the values contained in "other" into this QuicIntervalSet. | 
|  | // | 
|  | // Performance: Let n == Size() and m = other.Size().  Union() runs in O(m) | 
|  | // Set operations, so that if Set is a tree, it runs in time O(m log(n+m)) and | 
|  | // if Set is a flat_set it runs in time O(m(n+m)).  In principle, for the | 
|  | // flat_set, we should be able to make this run in time O(n+m). | 
|  | // | 
|  | // TODO(bradleybear): Make Union() run in time O(n+m) for flat_set.  This may | 
|  | // require an additional template parameter to indicate that the Set is a | 
|  | // linear-time data structure instead of a log-time data structure. | 
|  | void Union(const QuicIntervalSet& other); | 
|  |  | 
|  | // Modifies this QuicIntervalSet so that it contains only those values that | 
|  | // are currently present both in *this and in the QuicIntervalSet "other". | 
|  | void Intersection(const QuicIntervalSet& other); | 
|  |  | 
|  | // Mutates this QuicIntervalSet so that it contains only those values that are | 
|  | // currently in *this but not in "interval". | 
|  | void Difference(const value_type& interval); | 
|  |  | 
|  | // Mutates this QuicIntervalSet so that it contains only those values that are | 
|  | // currently in *this but not in the interval [min, max). | 
|  | void Difference(const T& min, const T& max); | 
|  |  | 
|  | // Mutates this QuicIntervalSet so that it contains only those values that are | 
|  | // currently in *this but not in the QuicIntervalSet "other".  Runs in time | 
|  | // O(n+m) where n is this->Size(), m is other.Size(), regardless of whether | 
|  | // the Set is a flat_set or a std::set. | 
|  | void Difference(const QuicIntervalSet& other); | 
|  |  | 
|  | // Mutates this QuicIntervalSet so that it contains only those values that are | 
|  | // in [min, max) but not currently in *this. | 
|  | void Complement(const T& min, const T& max); | 
|  |  | 
|  | // QuicIntervalSet's begin() iterator. The invariants of QuicIntervalSet | 
|  | // guarantee that for each entry e in the set, e.min() < e.max() (because the | 
|  | // entries are non-empty) and for each entry f that appears later in the set, | 
|  | // e.max() < f.min() (because the entries are ordered, pairwise-disjoint, and | 
|  | // non-adjacent). Modifications to this QuicIntervalSet invalidate these | 
|  | // iterators. | 
|  | const_iterator begin() const { return intervals_.begin(); } | 
|  |  | 
|  | // QuicIntervalSet's end() iterator. | 
|  | const_iterator end() const { return intervals_.end(); } | 
|  |  | 
|  | // QuicIntervalSet's rbegin() and rend() iterators. Iterator invalidation | 
|  | // semantics are the same as those for begin() / end(). | 
|  | const_reverse_iterator rbegin() const { return intervals_.rbegin(); } | 
|  |  | 
|  | const_reverse_iterator rend() const { return intervals_.rend(); } | 
|  |  | 
|  | template <typename Iter> | 
|  | void assign(Iter first, Iter last) { | 
|  | Clear(); | 
|  | for (; first != last; ++first) Add(*first); | 
|  | } | 
|  |  | 
|  | void assign(std::initializer_list<value_type> il) { | 
|  | assign(il.begin(), il.end()); | 
|  | } | 
|  |  | 
|  | // Returns a human-readable representation of this set. This will typically be | 
|  | // (though is not guaranteed to be) of the form | 
|  | //   "[a1, b1) [a2, b2) ... [an, bn)" | 
|  | // where the intervals are in the same order as given by traversal from | 
|  | // begin() to end(). This representation is intended for human consumption; | 
|  | // computer programs should not rely on the output being in exactly this form. | 
|  | std::string ToString() const; | 
|  |  | 
|  | QuicIntervalSet& operator=(std::initializer_list<value_type> il) { | 
|  | assign(il.begin(), il.end()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | friend bool operator==(const QuicIntervalSet& a, const QuicIntervalSet& b) { | 
|  | return a.Size() == b.Size() && | 
|  | std::equal(a.begin(), a.end(), b.begin(), NonemptyIntervalEq()); | 
|  | } | 
|  |  | 
|  | friend bool operator!=(const QuicIntervalSet& a, const QuicIntervalSet& b) { | 
|  | return !(a == b); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Simple member-wise equality, since all intervals are non-empty. | 
|  | struct QUICHE_NO_EXPORT NonemptyIntervalEq { | 
|  | bool operator()(const value_type& a, const value_type& b) const { | 
|  | return a.min() == b.min() && a.max() == b.max(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Returns true if this set is valid (i.e. all intervals in it are non-empty, | 
|  | // non-adjacent, and mutually disjoint). Currently this is used as an | 
|  | // integrity check by the Intersection() and Difference() methods, but is only | 
|  | // invoked for debug builds (via QUICHE_DCHECK). | 
|  | bool Valid() const; | 
|  |  | 
|  | // Finds the first interval that potentially intersects 'other'. | 
|  | const_iterator FindIntersectionCandidate(const QuicIntervalSet& other) const; | 
|  |  | 
|  | // Finds the first interval that potentially intersects 'interval'.  More | 
|  | // precisely, return an interator it pointing at the last interval J such that | 
|  | // interval <= J.  If all the intervals are > J then return begin(). | 
|  | const_iterator FindIntersectionCandidate(const value_type& interval) const; | 
|  |  | 
|  | // Helper for Intersection() and Difference(): Finds the next pair of | 
|  | // intervals from 'x' and 'y' that intersect. 'mine' is an iterator | 
|  | // over x->intervals_. 'theirs' is an iterator over y.intervals_. 'mine' | 
|  | // and 'theirs' are advanced until an intersecting pair is found. | 
|  | // Non-intersecting intervals (aka "holes") from x->intervals_ can be | 
|  | // optionally erased by "on_hole". "on_hole" must return an iterator to the | 
|  | // first element in 'x' after the hole, or x->intervals_.end() if no elements | 
|  | // exist after the hole. | 
|  | template <typename X, typename Func> | 
|  | static bool FindNextIntersectingPairImpl(X* x, const QuicIntervalSet& y, | 
|  | const_iterator* mine, | 
|  | const_iterator* theirs, | 
|  | Func on_hole); | 
|  |  | 
|  | // The variant of the above method that doesn't mutate this QuicIntervalSet. | 
|  | bool FindNextIntersectingPair(const QuicIntervalSet& other, | 
|  | const_iterator* mine, | 
|  | const_iterator* theirs) const { | 
|  | return FindNextIntersectingPairImpl( | 
|  | this, other, mine, theirs, | 
|  | [](const QuicIntervalSet*, const_iterator, const_iterator end) { | 
|  | return end; | 
|  | }); | 
|  | } | 
|  |  | 
|  | // The variant of the above method that mutates this QuicIntervalSet by | 
|  | // erasing holes. | 
|  | bool FindNextIntersectingPairAndEraseHoles(const QuicIntervalSet& other, | 
|  | const_iterator* mine, | 
|  | const_iterator* theirs) { | 
|  | return FindNextIntersectingPairImpl( | 
|  | this, other, mine, theirs, | 
|  | [](QuicIntervalSet* x, const_iterator from, const_iterator to) { | 
|  | return x->intervals_.erase(from, to); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // The representation for the intervals. The intervals in this set are | 
|  | // non-empty, pairwise-disjoint, non-adjacent and ordered in ascending order | 
|  | // by min(). | 
|  | Set intervals_; | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | auto operator<<(std::ostream& out, const QuicIntervalSet<T>& seq) | 
|  | -> decltype(out << *seq.begin()) { | 
|  | out << "{"; | 
|  | for (const auto& interval : seq) { | 
|  | out << " " << interval; | 
|  | } | 
|  | out << " }"; | 
|  |  | 
|  | return out; | 
|  | } | 
|  |  | 
|  | //============================================================================== | 
|  | // Implementation details: Clients can stop reading here. | 
|  |  | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::value_type QuicIntervalSet<T>::SpanningInterval() | 
|  | const { | 
|  | value_type result; | 
|  | if (!intervals_.empty()) { | 
|  | result.SetMin(intervals_.begin()->min()); | 
|  | result.SetMax(intervals_.rbegin()->max()); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Add(const value_type& interval) { | 
|  | if (interval.Empty()) return; | 
|  | const_iterator it = intervals_.lower_bound(interval.min()); | 
|  | value_type the_union = interval; | 
|  | if (it != intervals_.begin()) { | 
|  | --it; | 
|  | if (it->Separated(the_union)) { | 
|  | ++it; | 
|  | } | 
|  | } | 
|  | // Don't erase the elements one at a time, since that will produce quadratic | 
|  | // work on a flat_set, and apparently an extra log-factor of work for a | 
|  | // tree-based set.  Instead identify the first and last intervals that need to | 
|  | // be erased, and call erase only once. | 
|  | const_iterator start = it; | 
|  | while (it != intervals_.end() && !it->Separated(the_union)) { | 
|  | the_union.SpanningUnion(*it); | 
|  | ++it; | 
|  | } | 
|  | intervals_.erase(start, it); | 
|  | intervals_.insert(the_union); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::Contains(const T& value) const { | 
|  | // Find the first interval with min() > value, then move back one step | 
|  | const_iterator it = intervals_.upper_bound(value); | 
|  | if (it == intervals_.begin()) return false; | 
|  | --it; | 
|  | return it->Contains(value); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::Contains(const value_type& interval) const { | 
|  | // Find the first interval with min() > value, then move back one step. | 
|  | const_iterator it = intervals_.upper_bound(interval.min()); | 
|  | if (it == intervals_.begin()) return false; | 
|  | --it; | 
|  | return it->Contains(interval); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::Contains(const QuicIntervalSet<T>& other) const { | 
|  | if (!SpanningInterval().Contains(other.SpanningInterval())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (const_iterator i = other.begin(); i != other.end(); ++i) { | 
|  | // If we don't contain the interval, can return false now. | 
|  | if (!Contains(*i)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This method finds the interval that Contains() "value", if such an interval | 
|  | // exists in the QuicIntervalSet. The way this is done is to locate the | 
|  | // "candidate interval", the only interval that could *possibly* contain value, | 
|  | // and test it using Contains(). The candidate interval is the interval with the | 
|  | // largest min() having min() <= value. | 
|  | // | 
|  | // Another detail involves the choice of which Set method to use to try to find | 
|  | // the candidate interval. The most appropriate entry point is | 
|  | // Set::upper_bound(), which finds the least interval with a min > the | 
|  | // value. The semantics of upper_bound() are slightly different from what we | 
|  | // want (namely, to find the greatest interval which is <= the probe interval) | 
|  | // but they are close enough; the interval found by upper_bound() will always be | 
|  | // one step past the interval we are looking for (if it exists) or at begin() | 
|  | // (if it does not). Getting to the proper interval is a simple matter of | 
|  | // decrementing the iterator. | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::Find( | 
|  | const T& value) const { | 
|  | const_iterator it = intervals_.upper_bound(value); | 
|  | if (it == intervals_.begin()) return intervals_.end(); | 
|  | --it; | 
|  | if (it->Contains(value)) | 
|  | return it; | 
|  | else | 
|  | return intervals_.end(); | 
|  | } | 
|  |  | 
|  | // This method finds the interval that Contains() the interval "probe", if such | 
|  | // an interval exists in the QuicIntervalSet. The way this is done is to locate | 
|  | // the "candidate interval", the only interval that could *possibly* contain | 
|  | // "probe", and test it using Contains().  We use the same algorithm as for | 
|  | // Find(value), except that instead of checking that the value is contained, we | 
|  | // check that the probe is contained. | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::Find( | 
|  | const value_type& probe) const { | 
|  | const_iterator it = intervals_.upper_bound(probe.min()); | 
|  | if (it == intervals_.begin()) return intervals_.end(); | 
|  | --it; | 
|  | if (it->Contains(probe)) | 
|  | return it; | 
|  | else | 
|  | return intervals_.end(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::LowerBound( | 
|  | const T& value) const { | 
|  | const_iterator it = intervals_.lower_bound(value); | 
|  | if (it == intervals_.begin()) { | 
|  | return it; | 
|  | } | 
|  |  | 
|  | // The previous intervals_.lower_bound() checking is essentially based on | 
|  | // interval.min(), so we need to check whether the `value` is contained in | 
|  | // the previous interval. | 
|  | --it; | 
|  | if (it->Contains(value)) { | 
|  | return it; | 
|  | } else { | 
|  | return ++it; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::UpperBound( | 
|  | const T& value) const { | 
|  | return intervals_.upper_bound(value); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::IsDisjoint(const value_type& interval) const { | 
|  | if (interval.Empty()) return true; | 
|  | // Find the first interval with min() > interval.min() | 
|  | const_iterator it = intervals_.upper_bound(interval.min()); | 
|  | if (it != intervals_.end() && interval.max() > it->min()) return false; | 
|  | if (it == intervals_.begin()) return true; | 
|  | --it; | 
|  | return it->max() <= interval.min(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Union(const QuicIntervalSet& other) { | 
|  | for (const value_type& interval : other.intervals_) { | 
|  | Add(interval); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator | 
|  | QuicIntervalSet<T>::FindIntersectionCandidate( | 
|  | const QuicIntervalSet& other) const { | 
|  | return FindIntersectionCandidate(*other.intervals_.begin()); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | typename QuicIntervalSet<T>::const_iterator | 
|  | QuicIntervalSet<T>::FindIntersectionCandidate( | 
|  | const value_type& interval) const { | 
|  | // Use upper_bound to efficiently find the first interval in intervals_ | 
|  | // where min() is greater than interval.min().  If the result | 
|  | // isn't the beginning of intervals_ then move backwards one interval since | 
|  | // the interval before it is the first candidate where max() may be | 
|  | // greater than interval.min(). | 
|  | // In other words, no interval before that can possibly intersect with any | 
|  | // of other.intervals_. | 
|  | const_iterator mine = intervals_.upper_bound(interval.min()); | 
|  | if (mine != intervals_.begin()) { | 
|  | --mine; | 
|  | } | 
|  | return mine; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | template <typename X, typename Func> | 
|  | bool QuicIntervalSet<T>::FindNextIntersectingPairImpl(X* x, | 
|  | const QuicIntervalSet& y, | 
|  | const_iterator* mine, | 
|  | const_iterator* theirs, | 
|  | Func on_hole) { | 
|  | QUICHE_CHECK(x != nullptr); | 
|  | if ((*mine == x->intervals_.end()) || (*theirs == y.intervals_.end())) { | 
|  | return false; | 
|  | } | 
|  | while (!(**mine).Intersects(**theirs)) { | 
|  | const_iterator erase_first = *mine; | 
|  | // Skip over intervals in 'mine' that don't reach 'theirs'. | 
|  | while (*mine != x->intervals_.end() && (**mine).max() <= (**theirs).min()) { | 
|  | ++(*mine); | 
|  | } | 
|  | *mine = on_hole(x, erase_first, *mine); | 
|  | // We're done if the end of intervals_ is reached. | 
|  | if (*mine == x->intervals_.end()) { | 
|  | return false; | 
|  | } | 
|  | // Skip over intervals 'theirs' that don't reach 'mine'. | 
|  | while (*theirs != y.intervals_.end() && | 
|  | (**theirs).max() <= (**mine).min()) { | 
|  | ++(*theirs); | 
|  | } | 
|  | // If the end of other.intervals_ is reached, we're done. | 
|  | if (*theirs == y.intervals_.end()) { | 
|  | on_hole(x, *mine, x->intervals_.end()); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Intersection(const QuicIntervalSet& other) { | 
|  | if (!SpanningInterval().Intersects(other.SpanningInterval())) { | 
|  | intervals_.clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const_iterator mine = FindIntersectionCandidate(other); | 
|  | // Remove any intervals that cannot possibly intersect with other.intervals_. | 
|  | mine = intervals_.erase(intervals_.begin(), mine); | 
|  | const_iterator theirs = other.FindIntersectionCandidate(*this); | 
|  |  | 
|  | while (FindNextIntersectingPairAndEraseHoles(other, &mine, &theirs)) { | 
|  | // OK, *mine and *theirs intersect.  Now, we find the largest | 
|  | // span of intervals in other (starting at theirs) - say [a..b] | 
|  | // - that intersect *mine, and we replace *mine with (*mine | 
|  | // intersect x) for all x in [a..b] Note that subsequent | 
|  | // intervals in this can't intersect any intervals in [a..b) -- | 
|  | // they may only intersect b or subsequent intervals in other. | 
|  | value_type i(*mine); | 
|  | intervals_.erase(mine); | 
|  | mine = intervals_.end(); | 
|  | value_type intersection; | 
|  | while (theirs != other.intervals_.end() && | 
|  | i.Intersects(*theirs, &intersection)) { | 
|  | std::pair<const_iterator, bool> ins = intervals_.insert(intersection); | 
|  | QUICHE_DCHECK(ins.second); | 
|  | mine = ins.first; | 
|  | ++theirs; | 
|  | } | 
|  | QUICHE_DCHECK(mine != intervals_.end()); | 
|  | --theirs; | 
|  | ++mine; | 
|  | } | 
|  | QUICHE_DCHECK(Valid()); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::Intersects(const QuicIntervalSet& other) const { | 
|  | // Don't bother to handle nonoverlapping spanning intervals as a special case. | 
|  | // This code runs in time O(n+m), as guaranteed, even for that case . | 
|  | // Handling the nonoverlapping spanning intervals as a special case doesn't | 
|  | // improve the asymptotics but does make the code more complex. | 
|  | auto mine = intervals_.begin(); | 
|  | auto theirs = other.intervals_.begin(); | 
|  | while (mine != intervals_.end() && theirs != other.intervals_.end()) { | 
|  | if (mine->Intersects(*theirs)) | 
|  | return true; | 
|  | else if (*mine < *theirs) | 
|  | ++mine; | 
|  | else | 
|  | ++theirs; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Difference(const value_type& interval) { | 
|  | if (!SpanningInterval().Intersects(interval)) { | 
|  | return; | 
|  | } | 
|  | Difference(QuicIntervalSet<T>(interval)); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Difference(const T& min, const T& max) { | 
|  | Difference(value_type(min, max)); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Difference(const QuicIntervalSet& other) { | 
|  | // In order to avoid quadratic-time when using a flat set, we don't try to | 
|  | // update intervals_ in place.  Instead we build up a new result_, always | 
|  | // inserting at the end which is O(1) time per insertion.  Since the number of | 
|  | // elements in the result is O(Size() + other.Size()), the cost for all the | 
|  | // insertions is also O(Size() + other.Size()). | 
|  | // | 
|  | // We look at all the elements of intervals_, so that's O(Size()). | 
|  | // | 
|  | // We also look at all the elements of other.intervals_, for O(other.Size()). | 
|  | if (Empty()) return; | 
|  | Set result; | 
|  | const_iterator mine = intervals_.begin(); | 
|  | value_type myinterval = *mine; | 
|  | const_iterator theirs = other.intervals_.begin(); | 
|  | while (mine != intervals_.end()) { | 
|  | // Loop invariants: | 
|  | //   myinterval is nonempty. | 
|  | //   mine points at a range that is a suffix of myinterval. | 
|  | QUICHE_DCHECK(!myinterval.Empty()); | 
|  | QUICHE_DCHECK(myinterval.max() == mine->max()); | 
|  |  | 
|  | // There are 3 cases. | 
|  | //  myinterval is completely before theirs (treat theirs==end() as if it is | 
|  | //  infinity). | 
|  | //    --> consume myinterval into result. | 
|  | //  myinterval is completely after theirs | 
|  | //    --> theirs can no longer affect us, so ++theirs. | 
|  | //  myinterval touches theirs with a prefix of myinterval not touching | 
|  | //  *theirs. | 
|  | //    --> consume the prefix of myinterval into the result. | 
|  | //  myinterval touches theirs, with the first element of myinterval in | 
|  | //  *theirs. | 
|  | //    -> reduce myinterval | 
|  | if (theirs == other.intervals_.end() || myinterval.max() <= theirs->min()) { | 
|  | // Keep all of my_interval. | 
|  | result.insert(result.end(), myinterval); | 
|  | myinterval.Clear(); | 
|  | } else if (theirs->max() <= myinterval.min()) { | 
|  | ++theirs; | 
|  | } else if (myinterval.min() < theirs->min()) { | 
|  | // Keep a nonempty prefix of my interval. | 
|  | result.insert(result.end(), value_type(myinterval.min(), theirs->min())); | 
|  | myinterval.SetMin(theirs->max()); | 
|  | } else { | 
|  | // myinterval starts at or after *theirs, chop down myinterval. | 
|  | myinterval.SetMin(theirs->max()); | 
|  | } | 
|  | // if myinterval became empty, find the next interval | 
|  | if (myinterval.Empty()) { | 
|  | ++mine; | 
|  | if (mine != intervals_.end()) { | 
|  | myinterval = *mine; | 
|  | } | 
|  | } | 
|  | } | 
|  | std::swap(result, intervals_); | 
|  | QUICHE_DCHECK(Valid()); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void QuicIntervalSet<T>::Complement(const T& min, const T& max) { | 
|  | QuicIntervalSet<T> span(min, max); | 
|  | span.Difference(*this); | 
|  | intervals_.swap(span.intervals_); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | std::string QuicIntervalSet<T>::ToString() const { | 
|  | std::ostringstream os; | 
|  | os << *this; | 
|  | return os.str(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::Valid() const { | 
|  | const_iterator prev = end(); | 
|  | for (const_iterator it = begin(); it != end(); ++it) { | 
|  | // invalid or empty interval. | 
|  | if (it->min() >= it->max()) return false; | 
|  | // Not sorted, not disjoint, or adjacent. | 
|  | if (prev != end() && prev->max() >= it->min()) return false; | 
|  | prev = it; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This comparator orders intervals first by ascending min().  The Set never | 
|  | // contains overlapping intervals, so that suffices. | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::IntervalLess::operator()(const value_type& a, | 
|  | const value_type& b) const { | 
|  | // This overload is probably used only by Set::insert(). | 
|  | return a.min() < b.min(); | 
|  | } | 
|  |  | 
|  | // It appears that the Set::lower_bound(T) method uses only two overloads of the | 
|  | // comparison operator that take a T as the second argument..  In contrast | 
|  | // Set::upper_bound(T) uses the two overloads that take T as the first argument. | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::IntervalLess::operator()(const value_type& a, | 
|  | const T& point) const { | 
|  | // Compare an interval to a point. | 
|  | return a.min() < point; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::IntervalLess::operator()(const value_type& a, | 
|  | T&& point) const { | 
|  | // Compare an interval to a point | 
|  | return a.min() < point; | 
|  | } | 
|  |  | 
|  | // It appears that the Set::upper_bound(T) method uses only the next two | 
|  | // overloads of the comparison operator. | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::IntervalLess::operator()(const T& point, | 
|  | const value_type& a) const { | 
|  | // Compare an interval to a point. | 
|  | return point < a.min(); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool QuicIntervalSet<T>::IntervalLess::operator()(T&& point, | 
|  | const value_type& a) const { | 
|  | // Compare an interval to a point. | 
|  | return point < a.min(); | 
|  | } | 
|  |  | 
|  | }  // namespace quic | 
|  |  | 
|  | #endif  // QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_ |