Relocate QUICHE files into quiche/ directory within the quiche repo, and change the relative include paths accordingly.
PiperOrigin-RevId: 440164720
Change-Id: I64d8a975d08888a3a86f6c51908e63d5cd45fa35
diff --git a/quiche/quic/core/quic_connection_test.cc b/quiche/quic/core/quic_connection_test.cc
new file mode 100644
index 0000000..1311afe
--- /dev/null
+++ b/quiche/quic/core/quic_connection_test.cc
@@ -0,0 +1,15834 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "quiche/quic/core/quic_connection.h"
+
+#include <errno.h>
+
+#include <memory>
+#include <ostream>
+#include <string>
+#include <utility>
+
+#include "absl/base/macros.h"
+#include "absl/strings/str_cat.h"
+#include "absl/strings/str_join.h"
+#include "absl/strings/string_view.h"
+#include "quiche/quic/core/congestion_control/loss_detection_interface.h"
+#include "quiche/quic/core/congestion_control/send_algorithm_interface.h"
+#include "quiche/quic/core/crypto/null_decrypter.h"
+#include "quiche/quic/core/crypto/null_encrypter.h"
+#include "quiche/quic/core/crypto/quic_decrypter.h"
+#include "quiche/quic/core/crypto/quic_encrypter.h"
+#include "quiche/quic/core/frames/quic_connection_close_frame.h"
+#include "quiche/quic/core/frames/quic_new_connection_id_frame.h"
+#include "quiche/quic/core/frames/quic_path_response_frame.h"
+#include "quiche/quic/core/frames/quic_rst_stream_frame.h"
+#include "quiche/quic/core/quic_connection_id.h"
+#include "quiche/quic/core/quic_constants.h"
+#include "quiche/quic/core/quic_error_codes.h"
+#include "quiche/quic/core/quic_packet_creator.h"
+#include "quiche/quic/core/quic_packets.h"
+#include "quiche/quic/core/quic_path_validator.h"
+#include "quiche/quic/core/quic_types.h"
+#include "quiche/quic/core/quic_utils.h"
+#include "quiche/quic/core/quic_versions.h"
+#include "quiche/quic/platform/api/quic_expect_bug.h"
+#include "quiche/quic/platform/api/quic_flags.h"
+#include "quiche/quic/platform/api/quic_ip_address.h"
+#include "quiche/quic/platform/api/quic_logging.h"
+#include "quiche/quic/platform/api/quic_socket_address.h"
+#include "quiche/quic/platform/api/quic_test.h"
+#include "quiche/quic/test_tools/mock_clock.h"
+#include "quiche/quic/test_tools/mock_random.h"
+#include "quiche/quic/test_tools/quic_coalesced_packet_peer.h"
+#include "quiche/quic/test_tools/quic_config_peer.h"
+#include "quiche/quic/test_tools/quic_connection_peer.h"
+#include "quiche/quic/test_tools/quic_framer_peer.h"
+#include "quiche/quic/test_tools/quic_packet_creator_peer.h"
+#include "quiche/quic/test_tools/quic_path_validator_peer.h"
+#include "quiche/quic/test_tools/quic_sent_packet_manager_peer.h"
+#include "quiche/quic/test_tools/quic_test_utils.h"
+#include "quiche/quic/test_tools/simple_data_producer.h"
+#include "quiche/quic/test_tools/simple_session_notifier.h"
+#include "quiche/common/platform/api/quiche_reference_counted.h"
+#include "quiche/common/simple_buffer_allocator.h"
+
+using testing::_;
+using testing::AnyNumber;
+using testing::AtLeast;
+using testing::DoAll;
+using testing::ElementsAre;
+using testing::Ge;
+using testing::IgnoreResult;
+using testing::InSequence;
+using testing::Invoke;
+using testing::InvokeWithoutArgs;
+using testing::Lt;
+using testing::Ref;
+using testing::Return;
+using testing::SaveArg;
+using testing::SetArgPointee;
+using testing::StrictMock;
+
+namespace quic {
+namespace test {
+namespace {
+
+const char data1[] = "foo data";
+const char data2[] = "bar data";
+
+const bool kHasStopWaiting = true;
+
+const int kDefaultRetransmissionTimeMs = 500;
+
+DiversificationNonce kTestDiversificationNonce = {
+ 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a',
+ 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b',
+ 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b',
+};
+
+const StatelessResetToken kTestStatelessResetToken{
+ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
+ 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f};
+
+const QuicSocketAddress kPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(),
+ /*port=*/12345);
+const QuicSocketAddress kSelfAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(),
+ /*port=*/443);
+
+QuicStreamId GetNthClientInitiatedStreamId(int n,
+ QuicTransportVersion version) {
+ return QuicUtils::GetFirstBidirectionalStreamId(version,
+ Perspective::IS_CLIENT) +
+ n * 2;
+}
+
+QuicLongHeaderType EncryptionlevelToLongHeaderType(EncryptionLevel level) {
+ switch (level) {
+ case ENCRYPTION_INITIAL:
+ return INITIAL;
+ case ENCRYPTION_HANDSHAKE:
+ return HANDSHAKE;
+ case ENCRYPTION_ZERO_RTT:
+ return ZERO_RTT_PROTECTED;
+ case ENCRYPTION_FORWARD_SECURE:
+ QUICHE_DCHECK(false);
+ return INVALID_PACKET_TYPE;
+ default:
+ QUICHE_DCHECK(false);
+ return INVALID_PACKET_TYPE;
+ }
+}
+
+// A NullEncrypterWithConfidentialityLimit is a NullEncrypter that allows
+// specifying the confidentiality limit on the maximum number of packets that
+// may be encrypted per key phase in TLS+QUIC.
+class NullEncrypterWithConfidentialityLimit : public NullEncrypter {
+ public:
+ NullEncrypterWithConfidentialityLimit(Perspective perspective,
+ QuicPacketCount confidentiality_limit)
+ : NullEncrypter(perspective),
+ confidentiality_limit_(confidentiality_limit) {}
+
+ QuicPacketCount GetConfidentialityLimit() const override {
+ return confidentiality_limit_;
+ }
+
+ private:
+ QuicPacketCount confidentiality_limit_;
+};
+
+class StrictTaggingDecrypterWithIntegrityLimit : public StrictTaggingDecrypter {
+ public:
+ StrictTaggingDecrypterWithIntegrityLimit(uint8_t tag,
+ QuicPacketCount integrity_limit)
+ : StrictTaggingDecrypter(tag), integrity_limit_(integrity_limit) {}
+
+ QuicPacketCount GetIntegrityLimit() const override {
+ return integrity_limit_;
+ }
+
+ private:
+ QuicPacketCount integrity_limit_;
+};
+
+class TestConnectionHelper : public QuicConnectionHelperInterface {
+ public:
+ TestConnectionHelper(MockClock* clock, MockRandom* random_generator)
+ : clock_(clock), random_generator_(random_generator) {
+ clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ }
+ TestConnectionHelper(const TestConnectionHelper&) = delete;
+ TestConnectionHelper& operator=(const TestConnectionHelper&) = delete;
+
+ // QuicConnectionHelperInterface
+ const QuicClock* GetClock() const override { return clock_; }
+
+ QuicRandom* GetRandomGenerator() override { return random_generator_; }
+
+ quiche::QuicheBufferAllocator* GetStreamSendBufferAllocator() override {
+ return &buffer_allocator_;
+ }
+
+ private:
+ MockClock* clock_;
+ MockRandom* random_generator_;
+ quiche::SimpleBufferAllocator buffer_allocator_;
+};
+
+class TestConnection : public QuicConnection {
+ public:
+ TestConnection(QuicConnectionId connection_id,
+ QuicSocketAddress initial_self_address,
+ QuicSocketAddress initial_peer_address,
+ TestConnectionHelper* helper, TestAlarmFactory* alarm_factory,
+ TestPacketWriter* writer, Perspective perspective,
+ ParsedQuicVersion version)
+ : QuicConnection(connection_id, initial_self_address,
+ initial_peer_address, helper, alarm_factory, writer,
+ /* owns_writer= */ false, perspective,
+ SupportedVersions(version)),
+ notifier_(nullptr) {
+ writer->set_perspective(perspective);
+ SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<NullEncrypter>(perspective));
+ SetDataProducer(&producer_);
+ ON_CALL(*this, OnSerializedPacket(_))
+ .WillByDefault([this](SerializedPacket packet) {
+ QuicConnection::OnSerializedPacket(std::move(packet));
+ });
+ }
+ TestConnection(const TestConnection&) = delete;
+ TestConnection& operator=(const TestConnection&) = delete;
+
+ MOCK_METHOD(void, OnSerializedPacket, (SerializedPacket packet), (override));
+
+ void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) {
+ QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm);
+ }
+
+ void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) {
+ QuicConnectionPeer::SetLossAlgorithm(this, loss_algorithm);
+ }
+
+ void SendPacket(EncryptionLevel /*level*/, uint64_t packet_number,
+ std::unique_ptr<QuicPacket> packet,
+ HasRetransmittableData retransmittable, bool has_ack,
+ bool has_pending_frames) {
+ ScopedPacketFlusher flusher(this);
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length =
+ QuicConnectionPeer::GetFramer(this)->EncryptPayload(
+ ENCRYPTION_INITIAL, QuicPacketNumber(packet_number), *packet,
+ buffer, kMaxOutgoingPacketSize);
+ SerializedPacket serialized_packet(
+ QuicPacketNumber(packet_number), PACKET_4BYTE_PACKET_NUMBER, buffer,
+ encrypted_length, has_ack, has_pending_frames);
+ serialized_packet.peer_address = kPeerAddress;
+ if (retransmittable == HAS_RETRANSMITTABLE_DATA) {
+ serialized_packet.retransmittable_frames.push_back(
+ QuicFrame(QuicPingFrame()));
+ }
+ OnSerializedPacket(std::move(serialized_packet));
+ }
+
+ QuicConsumedData SaveAndSendStreamData(QuicStreamId id,
+ absl::string_view data,
+ QuicStreamOffset offset,
+ StreamSendingState state) {
+ ScopedPacketFlusher flusher(this);
+ producer_.SaveStreamData(id, data);
+ if (notifier_ != nullptr) {
+ return notifier_->WriteOrBufferData(id, data.length(), state);
+ }
+ return QuicConnection::SendStreamData(id, data.length(), offset, state);
+ }
+
+ QuicConsumedData SendStreamDataWithString(QuicStreamId id,
+ absl::string_view data,
+ QuicStreamOffset offset,
+ StreamSendingState state) {
+ ScopedPacketFlusher flusher(this);
+ if (!QuicUtils::IsCryptoStreamId(transport_version(), id) &&
+ this->encryption_level() == ENCRYPTION_INITIAL) {
+ this->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ if (perspective() == Perspective::IS_CLIENT && !IsHandshakeComplete()) {
+ OnHandshakeComplete();
+ }
+ if (version().SupportsAntiAmplificationLimit()) {
+ QuicConnectionPeer::SetAddressValidated(this);
+ }
+ }
+ return SaveAndSendStreamData(id, data, offset, state);
+ }
+
+ QuicConsumedData SendApplicationDataAtLevel(EncryptionLevel encryption_level,
+ QuicStreamId id,
+ absl::string_view data,
+ QuicStreamOffset offset,
+ StreamSendingState state) {
+ ScopedPacketFlusher flusher(this);
+ QUICHE_DCHECK(encryption_level >= ENCRYPTION_ZERO_RTT);
+ SetEncrypter(encryption_level, std::make_unique<TaggingEncrypter>(0x01));
+ SetDefaultEncryptionLevel(encryption_level);
+ return SaveAndSendStreamData(id, data, offset, state);
+ }
+
+ QuicConsumedData SendStreamData3() {
+ return SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, transport_version()), "food", 0,
+ NO_FIN);
+ }
+
+ QuicConsumedData SendStreamData5() {
+ return SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(2, transport_version()), "food2", 0,
+ NO_FIN);
+ }
+
+ // Ensures the connection can write stream data before writing.
+ QuicConsumedData EnsureWritableAndSendStreamData5() {
+ EXPECT_TRUE(CanWrite(HAS_RETRANSMITTABLE_DATA));
+ return SendStreamData5();
+ }
+
+ // The crypto stream has special semantics so that it is not blocked by a
+ // congestion window limitation, and also so that it gets put into a separate
+ // packet (so that it is easier to reason about a crypto frame not being
+ // split needlessly across packet boundaries). As a result, we have separate
+ // tests for some cases for this stream.
+ QuicConsumedData SendCryptoStreamData() {
+ QuicStreamOffset offset = 0;
+ absl::string_view data("chlo");
+ if (!QuicVersionUsesCryptoFrames(transport_version())) {
+ return SendCryptoDataWithString(data, offset);
+ }
+ producer_.SaveCryptoData(ENCRYPTION_INITIAL, offset, data);
+ size_t bytes_written;
+ if (notifier_) {
+ bytes_written =
+ notifier_->WriteCryptoData(ENCRYPTION_INITIAL, data.length(), offset);
+ } else {
+ bytes_written = QuicConnection::SendCryptoData(ENCRYPTION_INITIAL,
+ data.length(), offset);
+ }
+ return QuicConsumedData(bytes_written, /*fin_consumed*/ false);
+ }
+
+ QuicConsumedData SendCryptoDataWithString(absl::string_view data,
+ QuicStreamOffset offset) {
+ return SendCryptoDataWithString(data, offset, ENCRYPTION_INITIAL);
+ }
+
+ QuicConsumedData SendCryptoDataWithString(absl::string_view data,
+ QuicStreamOffset offset,
+ EncryptionLevel encryption_level) {
+ if (!QuicVersionUsesCryptoFrames(transport_version())) {
+ return SendStreamDataWithString(
+ QuicUtils::GetCryptoStreamId(transport_version()), data, offset,
+ NO_FIN);
+ }
+ producer_.SaveCryptoData(encryption_level, offset, data);
+ size_t bytes_written;
+ if (notifier_) {
+ bytes_written =
+ notifier_->WriteCryptoData(encryption_level, data.length(), offset);
+ } else {
+ bytes_written = QuicConnection::SendCryptoData(encryption_level,
+ data.length(), offset);
+ }
+ return QuicConsumedData(bytes_written, /*fin_consumed*/ false);
+ }
+
+ void set_version(ParsedQuicVersion version) {
+ QuicConnectionPeer::GetFramer(this)->set_version(version);
+ }
+
+ void SetSupportedVersions(const ParsedQuicVersionVector& versions) {
+ QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions);
+ writer()->SetSupportedVersions(versions);
+ }
+
+ // This should be called before setting customized encrypters/decrypters for
+ // connection and peer creator.
+ void set_perspective(Perspective perspective) {
+ writer()->set_perspective(perspective);
+ QuicConnectionPeer::ResetPeerIssuedConnectionIdManager(this);
+ QuicConnectionPeer::SetPerspective(this, perspective);
+ QuicSentPacketManagerPeer::SetPerspective(
+ QuicConnectionPeer::GetSentPacketManager(this), perspective);
+ QuicConnectionPeer::GetFramer(this)->SetInitialObfuscators(
+ TestConnectionId());
+ for (EncryptionLevel level : {ENCRYPTION_ZERO_RTT, ENCRYPTION_HANDSHAKE,
+ ENCRYPTION_FORWARD_SECURE}) {
+ if (QuicConnectionPeer::GetFramer(this)->HasEncrypterOfEncryptionLevel(
+ level)) {
+ SetEncrypter(level, std::make_unique<NullEncrypter>(perspective));
+ }
+ if (QuicConnectionPeer::GetFramer(this)->HasDecrypterOfEncryptionLevel(
+ level)) {
+ InstallDecrypter(level, std::make_unique<NullDecrypter>(perspective));
+ }
+ }
+ }
+
+ // Enable path MTU discovery. Assumes that the test is performed from the
+ // server perspective and the higher value of MTU target is used.
+ void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) {
+ ASSERT_EQ(Perspective::IS_SERVER, perspective());
+
+ if (GetQuicReloadableFlag(quic_enable_mtu_discovery_at_server)) {
+ OnConfigNegotiated();
+ } else {
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(kMTUH);
+ config.SetInitialReceivedConnectionOptions(connection_options);
+ EXPECT_CALL(*send_algorithm, SetFromConfig(_, _));
+ SetFromConfig(config);
+ }
+
+ // Normally, the pacing would be disabled in the test, but calling
+ // SetFromConfig enables it. Set nearly-infinite bandwidth to make the
+ // pacing algorithm work.
+ EXPECT_CALL(*send_algorithm, PacingRate(_))
+ .WillRepeatedly(Return(QuicBandwidth::Infinite()));
+ }
+
+ TestAlarmFactory::TestAlarm* GetAckAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetAckAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetPingAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetPingAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetRetransmissionAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetRetransmissionAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetSendAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetSendAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetTimeoutAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetIdleNetworkDetectorAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetMtuDiscoveryAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetMtuDiscoveryAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetProcessUndecryptablePacketsAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetProcessUndecryptablePacketsAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetDiscardPreviousOneRttKeysAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetDiscardPreviousOneRttKeysAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetDiscardZeroRttDecryptionKeysAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetDiscardZeroRttDecryptionKeysAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetBlackholeDetectorAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetBlackholeDetectorAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetRetirePeerIssuedConnectionIdAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetRetirePeerIssuedConnectionIdAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetRetireSelfIssuedConnectionIdAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetRetireSelfIssuedConnectionIdAlarm(this));
+ }
+
+ void PathDegradingTimeout() {
+ QUICHE_DCHECK(PathDegradingDetectionInProgress());
+ GetBlackholeDetectorAlarm()->Fire();
+ }
+
+ bool PathDegradingDetectionInProgress() {
+ return QuicConnectionPeer::GetPathDegradingDeadline(this).IsInitialized();
+ }
+
+ bool BlackholeDetectionInProgress() {
+ return QuicConnectionPeer::GetBlackholeDetectionDeadline(this)
+ .IsInitialized();
+ }
+
+ bool PathMtuReductionDetectionInProgress() {
+ return QuicConnectionPeer::GetPathMtuReductionDetectionDeadline(this)
+ .IsInitialized();
+ }
+
+ void SetMaxTailLossProbes(size_t max_tail_loss_probes) {
+ QuicSentPacketManagerPeer::SetMaxTailLossProbes(
+ QuicConnectionPeer::GetSentPacketManager(this), max_tail_loss_probes);
+ }
+
+ QuicByteCount GetBytesInFlight() {
+ return QuicConnectionPeer::GetSentPacketManager(this)->GetBytesInFlight();
+ }
+
+ void set_notifier(SimpleSessionNotifier* notifier) { notifier_ = notifier; }
+
+ void ReturnEffectivePeerAddressForNextPacket(const QuicSocketAddress& addr) {
+ next_effective_peer_addr_ = std::make_unique<QuicSocketAddress>(addr);
+ }
+
+ bool PtoEnabled() {
+ if (QuicConnectionPeer::GetSentPacketManager(this)->pto_enabled()) {
+ // TLP/RTO related tests are stale when PTO is enabled.
+ QUICHE_DCHECK(PROTOCOL_TLS1_3 == version().handshake_protocol ||
+ GetQuicRestartFlag(quic_default_on_pto2));
+ return true;
+ }
+ return false;
+ }
+
+ void SendOrQueuePacket(SerializedPacket packet) override {
+ QuicConnection::SendOrQueuePacket(std::move(packet));
+ self_address_on_default_path_while_sending_packet_ = self_address();
+ }
+
+ QuicSocketAddress self_address_on_default_path_while_sending_packet() {
+ return self_address_on_default_path_while_sending_packet_;
+ }
+
+ SimpleDataProducer* producer() { return &producer_; }
+
+ using QuicConnection::active_effective_peer_migration_type;
+ using QuicConnection::IsCurrentPacketConnectivityProbing;
+ using QuicConnection::SelectMutualVersion;
+ using QuicConnection::SendProbingRetransmissions;
+ using QuicConnection::set_defer_send_in_response_to_packets;
+
+ protected:
+ QuicSocketAddress GetEffectivePeerAddressFromCurrentPacket() const override {
+ if (next_effective_peer_addr_) {
+ return *std::move(next_effective_peer_addr_);
+ }
+ return QuicConnection::GetEffectivePeerAddressFromCurrentPacket();
+ }
+
+ private:
+ TestPacketWriter* writer() {
+ return static_cast<TestPacketWriter*>(QuicConnection::writer());
+ }
+
+ SimpleDataProducer producer_;
+
+ SimpleSessionNotifier* notifier_;
+
+ std::unique_ptr<QuicSocketAddress> next_effective_peer_addr_;
+
+ QuicSocketAddress self_address_on_default_path_while_sending_packet_;
+};
+
+enum class AckResponse { kDefer, kImmediate };
+
+// Run tests with combinations of {ParsedQuicVersion, AckResponse}.
+struct TestParams {
+ TestParams(ParsedQuicVersion version, AckResponse ack_response,
+ bool no_stop_waiting)
+ : version(version),
+ ack_response(ack_response),
+ no_stop_waiting(no_stop_waiting) {}
+
+ ParsedQuicVersion version;
+ AckResponse ack_response;
+ bool no_stop_waiting;
+};
+
+// Used by ::testing::PrintToStringParamName().
+std::string PrintToString(const TestParams& p) {
+ return absl::StrCat(
+ ParsedQuicVersionToString(p.version), "_",
+ (p.ack_response == AckResponse::kDefer ? "defer" : "immediate"), "_",
+ (p.no_stop_waiting ? "No" : ""), "StopWaiting");
+}
+
+// Constructs various test permutations.
+std::vector<TestParams> GetTestParams() {
+ QuicFlagSaver flags;
+ std::vector<TestParams> params;
+ ParsedQuicVersionVector all_supported_versions = AllSupportedVersions();
+ for (size_t i = 0; i < all_supported_versions.size(); ++i) {
+ for (AckResponse ack_response :
+ {AckResponse::kDefer, AckResponse::kImmediate}) {
+ params.push_back(
+ TestParams(all_supported_versions[i], ack_response, true));
+ if (!all_supported_versions[i].HasIetfInvariantHeader()) {
+ params.push_back(
+ TestParams(all_supported_versions[i], ack_response, false));
+ }
+ }
+ }
+ return params;
+}
+
+class QuicConnectionTest : public QuicTestWithParam<TestParams> {
+ public:
+ // For tests that do silent connection closes, no such packet is generated. In
+ // order to verify the contents of the OnConnectionClosed upcall, EXPECTs
+ // should invoke this method, saving the frame, and then the test can verify
+ // the contents.
+ void SaveConnectionCloseFrame(const QuicConnectionCloseFrame& frame,
+ ConnectionCloseSource /*source*/) {
+ saved_connection_close_frame_ = frame;
+ connection_close_frame_count_++;
+ }
+
+ protected:
+ QuicConnectionTest()
+ : connection_id_(TestConnectionId()),
+ framer_(SupportedVersions(version()), QuicTime::Zero(),
+ Perspective::IS_CLIENT, connection_id_.length()),
+ send_algorithm_(new StrictMock<MockSendAlgorithm>),
+ loss_algorithm_(new MockLossAlgorithm()),
+ helper_(new TestConnectionHelper(&clock_, &random_generator_)),
+ alarm_factory_(new TestAlarmFactory()),
+ peer_framer_(SupportedVersions(version()), QuicTime::Zero(),
+ Perspective::IS_SERVER, connection_id_.length()),
+ peer_creator_(connection_id_, &peer_framer_,
+ /*delegate=*/nullptr),
+ writer_(
+ new TestPacketWriter(version(), &clock_, Perspective::IS_CLIENT)),
+ connection_(connection_id_, kSelfAddress, kPeerAddress, helper_.get(),
+ alarm_factory_.get(), writer_.get(), Perspective::IS_CLIENT,
+ version()),
+ creator_(QuicConnectionPeer::GetPacketCreator(&connection_)),
+ manager_(QuicConnectionPeer::GetSentPacketManager(&connection_)),
+ frame1_(0, false, 0, absl::string_view(data1)),
+ frame2_(0, false, 3, absl::string_view(data2)),
+ crypto_frame_(ENCRYPTION_INITIAL, 0, absl::string_view(data1)),
+ packet_number_length_(PACKET_4BYTE_PACKET_NUMBER),
+ connection_id_included_(CONNECTION_ID_PRESENT),
+ notifier_(&connection_),
+ connection_close_frame_count_(0) {
+ QUIC_DVLOG(2) << "QuicConnectionTest(" << PrintToString(GetParam()) << ")";
+ connection_.set_defer_send_in_response_to_packets(GetParam().ack_response ==
+ AckResponse::kDefer);
+ framer_.SetInitialObfuscators(TestConnectionId());
+ connection_.InstallInitialCrypters(TestConnectionId());
+ CrypterPair crypters;
+ CryptoUtils::CreateInitialObfuscators(Perspective::IS_SERVER, version(),
+ TestConnectionId(), &crypters);
+ peer_creator_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::move(crypters.encrypter));
+ if (version().KnowsWhichDecrypterToUse()) {
+ peer_framer_.InstallDecrypter(ENCRYPTION_INITIAL,
+ std::move(crypters.decrypter));
+ } else {
+ peer_framer_.SetDecrypter(ENCRYPTION_INITIAL,
+ std::move(crypters.decrypter));
+ }
+ for (EncryptionLevel level :
+ {ENCRYPTION_ZERO_RTT, ENCRYPTION_FORWARD_SECURE}) {
+ peer_creator_.SetEncrypter(
+ level, std::make_unique<NullEncrypter>(peer_framer_.perspective()));
+ }
+ QuicFramerPeer::SetLastSerializedServerConnectionId(
+ QuicConnectionPeer::GetFramer(&connection_), connection_id_);
+ QuicFramerPeer::SetLastWrittenPacketNumberLength(
+ QuicConnectionPeer::GetFramer(&connection_), packet_number_length_);
+ if (version().HasIetfInvariantHeader()) {
+ EXPECT_TRUE(QuicConnectionPeer::GetNoStopWaitingFrames(&connection_));
+ } else {
+ QuicConnectionPeer::SetNoStopWaitingFrames(&connection_,
+ GetParam().no_stop_waiting);
+ }
+ QuicStreamId stream_id;
+ if (QuicVersionUsesCryptoFrames(version().transport_version)) {
+ stream_id = QuicUtils::GetFirstBidirectionalStreamId(
+ version().transport_version, Perspective::IS_CLIENT);
+ } else {
+ stream_id = QuicUtils::GetCryptoStreamId(version().transport_version);
+ }
+ frame1_.stream_id = stream_id;
+ frame2_.stream_id = stream_id;
+ connection_.set_visitor(&visitor_);
+ connection_.SetSessionNotifier(¬ifier_);
+ connection_.set_notifier(¬ifier_);
+ connection_.SetSendAlgorithm(send_algorithm_);
+ connection_.SetLossAlgorithm(loss_algorithm_.get());
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, OnPacketNeutered(_)).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
+ .WillRepeatedly(Return(kDefaultTCPMSS));
+ EXPECT_CALL(*send_algorithm_, PacingRate(_))
+ .WillRepeatedly(Return(QuicBandwidth::Zero()));
+ EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+ .Times(AnyNumber())
+ .WillRepeatedly(Return(QuicBandwidth::Zero()));
+ EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_))
+ .Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, GetCongestionControlType())
+ .Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, GetCongestionControlType())
+ .Times(AnyNumber());
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnPacketDecrypted(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnCanWrite())
+ .WillRepeatedly(Invoke(¬ifier_, &SimpleSessionNotifier::OnCanWrite));
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(false));
+ EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged())
+ .Times(testing::AtMost(1));
+ EXPECT_CALL(*loss_algorithm_, GetLossTimeout())
+ .WillRepeatedly(Return(QuicTime::Zero()));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .Times(AnyNumber());
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_START));
+ if (connection_.version().KnowsWhichDecrypterToUse()) {
+ connection_.InstallDecrypter(
+ ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<NullDecrypter>(Perspective::IS_CLIENT));
+ }
+ peer_creator_.SetDefaultPeerAddress(kSelfAddress);
+ }
+
+ QuicConnectionTest(const QuicConnectionTest&) = delete;
+ QuicConnectionTest& operator=(const QuicConnectionTest&) = delete;
+
+ ParsedQuicVersion version() { return GetParam().version; }
+
+ QuicStopWaitingFrame* stop_waiting() {
+ QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_);
+ return &stop_waiting_;
+ }
+
+ QuicPacketNumber least_unacked() {
+ if (writer_->stop_waiting_frames().empty()) {
+ return QuicPacketNumber();
+ }
+ return writer_->stop_waiting_frames()[0].least_unacked;
+ }
+
+ void use_tagging_decrypter() { writer_->use_tagging_decrypter(); }
+
+ void SetClientConnectionId(const QuicConnectionId& client_connection_id) {
+ connection_.set_client_connection_id(client_connection_id);
+ writer_->framer()->framer()->SetExpectedClientConnectionIdLength(
+ client_connection_id.length());
+ }
+
+ void SetDecrypter(EncryptionLevel level,
+ std::unique_ptr<QuicDecrypter> decrypter) {
+ if (connection_.version().KnowsWhichDecrypterToUse()) {
+ connection_.InstallDecrypter(level, std::move(decrypter));
+ } else {
+ connection_.SetDecrypter(level, std::move(decrypter));
+ }
+ }
+
+ void ProcessPacket(uint64_t number) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(number);
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ }
+
+ void ProcessReceivedPacket(const QuicSocketAddress& self_address,
+ const QuicSocketAddress& peer_address,
+ const QuicReceivedPacket& packet) {
+ connection_.ProcessUdpPacket(self_address, peer_address, packet);
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ }
+
+ QuicFrame MakeCryptoFrame() const {
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ return QuicFrame(new QuicCryptoFrame(crypto_frame_));
+ }
+ return QuicFrame(QuicStreamFrame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
+ 0u, absl::string_view()));
+ }
+
+ void ProcessFramePacket(QuicFrame frame) {
+ ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ }
+
+ void ProcessFramePacketWithAddresses(QuicFrame frame,
+ QuicSocketAddress self_address,
+ QuicSocketAddress peer_address,
+ EncryptionLevel level) {
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame));
+ return ProcessFramesPacketWithAddresses(frames, self_address, peer_address,
+ level);
+ }
+
+ std::unique_ptr<QuicReceivedPacket> ConstructPacket(QuicFrames frames,
+ EncryptionLevel level,
+ char* buffer,
+ size_t buffer_len) {
+ QUICHE_DCHECK(peer_framer_.HasEncrypterOfEncryptionLevel(level));
+ peer_creator_.set_encryption_level(level);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(
+ &peer_creator_,
+ level < ENCRYPTION_FORWARD_SECURE &&
+ connection_.perspective() == Perspective::IS_SERVER);
+
+ SerializedPacket serialized_packet =
+ QuicPacketCreatorPeer::SerializeAllFrames(&peer_creator_, frames,
+ buffer, buffer_len);
+ return std::make_unique<QuicReceivedPacket>(
+ serialized_packet.encrypted_buffer, serialized_packet.encrypted_length,
+ clock_.Now());
+ }
+
+ void ProcessFramesPacketWithAddresses(QuicFrames frames,
+ QuicSocketAddress self_address,
+ QuicSocketAddress peer_address,
+ EncryptionLevel level) {
+ char buffer[kMaxOutgoingPacketSize];
+ connection_.ProcessUdpPacket(
+ self_address, peer_address,
+ *ConstructPacket(std::move(frames), level, buffer,
+ kMaxOutgoingPacketSize));
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ }
+
+ // Bypassing the packet creator is unrealistic, but allows us to process
+ // packets the QuicPacketCreator won't allow us to create.
+ void ForceProcessFramePacket(QuicFrame frame) {
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame));
+ bool send_version = connection_.perspective() == Perspective::IS_SERVER;
+ if (connection_.version().KnowsWhichDecrypterToUse()) {
+ send_version = true;
+ }
+ QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_, send_version);
+ QuicPacketHeader header;
+ QuicPacketCreatorPeer::FillPacketHeader(&peer_creator_, &header);
+ char encrypted_buffer[kMaxOutgoingPacketSize];
+ size_t length = peer_framer_.BuildDataPacket(
+ header, frames, encrypted_buffer, kMaxOutgoingPacketSize,
+ ENCRYPTION_INITIAL);
+ QUICHE_DCHECK_GT(length, 0u);
+
+ const size_t encrypted_length = peer_framer_.EncryptInPlace(
+ ENCRYPTION_INITIAL, header.packet_number,
+ GetStartOfEncryptedData(peer_framer_.version().transport_version,
+ header),
+ length, kMaxOutgoingPacketSize, encrypted_buffer);
+ QUICHE_DCHECK_GT(encrypted_length, 0u);
+
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(encrypted_buffer, encrypted_length, clock_.Now()));
+ }
+
+ size_t ProcessFramePacketAtLevel(uint64_t number, QuicFrame frame,
+ EncryptionLevel level) {
+ QuicFrames frames;
+ frames.push_back(frame);
+ return ProcessFramesPacketAtLevel(number, frames, level);
+ }
+
+ size_t ProcessFramesPacketAtLevel(uint64_t number, const QuicFrames& frames,
+ EncryptionLevel level) {
+ QuicPacketHeader header = ConstructPacketHeader(number, level);
+ // Set the correct encryption level and encrypter on peer_creator and
+ // peer_framer, respectively.
+ peer_creator_.set_encryption_level(level);
+ if (QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) >
+ ENCRYPTION_INITIAL) {
+ peer_framer_.SetEncrypter(
+ QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+ std::make_unique<TaggingEncrypter>(0x01));
+ // Set the corresponding decrypter.
+ if (connection_.version().KnowsWhichDecrypterToUse()) {
+ connection_.InstallDecrypter(
+ QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+ std::make_unique<StrictTaggingDecrypter>(0x01));
+ } else {
+ connection_.SetDecrypter(
+ QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+ std::make_unique<StrictTaggingDecrypter>(0x01));
+ }
+ }
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet,
+ buffer, kMaxOutgoingPacketSize);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ return encrypted_length;
+ }
+
+ struct PacketInfo {
+ PacketInfo(uint64_t packet_number, QuicFrames frames, EncryptionLevel level)
+ : packet_number(packet_number), frames(frames), level(level) {}
+
+ uint64_t packet_number;
+ QuicFrames frames;
+ EncryptionLevel level;
+ };
+
+ size_t ProcessCoalescedPacket(std::vector<PacketInfo> packets) {
+ char coalesced_buffer[kMaxOutgoingPacketSize];
+ size_t coalesced_size = 0;
+ bool contains_initial = false;
+ for (const auto& packet : packets) {
+ QuicPacketHeader header =
+ ConstructPacketHeader(packet.packet_number, packet.level);
+ // Set the correct encryption level and encrypter on peer_creator and
+ // peer_framer, respectively.
+ peer_creator_.set_encryption_level(packet.level);
+ if (packet.level == ENCRYPTION_INITIAL) {
+ contains_initial = true;
+ }
+ if (QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) >
+ ENCRYPTION_INITIAL) {
+ peer_framer_.SetEncrypter(
+ QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+ std::make_unique<TaggingEncrypter>(0x01));
+ // Set the corresponding decrypter.
+ if (connection_.version().KnowsWhichDecrypterToUse()) {
+ connection_.InstallDecrypter(
+ QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+ std::make_unique<StrictTaggingDecrypter>(0x01));
+ } else {
+ connection_.SetDecrypter(
+ QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+ std::make_unique<StrictTaggingDecrypter>(0x01));
+ }
+ }
+ std::unique_ptr<QuicPacket> constructed_packet(
+ ConstructPacket(header, packet.frames));
+
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ packet.level, QuicPacketNumber(packet.packet_number),
+ *constructed_packet, buffer, kMaxOutgoingPacketSize);
+ QUICHE_DCHECK_LE(coalesced_size + encrypted_length,
+ kMaxOutgoingPacketSize);
+ memcpy(coalesced_buffer + coalesced_size, buffer, encrypted_length);
+ coalesced_size += encrypted_length;
+ }
+ if (contains_initial) {
+ // Padded coalesced packet to full if it contains initial packet.
+ memset(coalesced_buffer + coalesced_size, '0',
+ kMaxOutgoingPacketSize - coalesced_size);
+ }
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(coalesced_buffer, coalesced_size, clock_.Now(),
+ false));
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ return coalesced_size;
+ }
+
+ size_t ProcessDataPacket(uint64_t number) {
+ return ProcessDataPacketAtLevel(number, false, ENCRYPTION_FORWARD_SECURE);
+ }
+
+ size_t ProcessDataPacket(QuicPacketNumber packet_number) {
+ return ProcessDataPacketAtLevel(packet_number, false,
+ ENCRYPTION_FORWARD_SECURE);
+ }
+
+ size_t ProcessDataPacketAtLevel(QuicPacketNumber packet_number,
+ bool has_stop_waiting,
+ EncryptionLevel level) {
+ return ProcessDataPacketAtLevel(packet_number.ToUint64(), has_stop_waiting,
+ level);
+ }
+
+ size_t ProcessCryptoPacketAtLevel(uint64_t number, EncryptionLevel level) {
+ QuicPacketHeader header = ConstructPacketHeader(number, level);
+ QuicFrames frames;
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ frames.push_back(QuicFrame(&crypto_frame_));
+ } else {
+ frames.push_back(QuicFrame(frame1_));
+ }
+ if (level == ENCRYPTION_INITIAL) {
+ frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
+ }
+ std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames);
+ char buffer[kMaxOutgoingPacketSize];
+ peer_creator_.set_encryption_level(level);
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet,
+ buffer, kMaxOutgoingPacketSize);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ return encrypted_length;
+ }
+
+ size_t ProcessDataPacketAtLevel(uint64_t number, bool has_stop_waiting,
+ EncryptionLevel level) {
+ std::unique_ptr<QuicPacket> packet(
+ ConstructDataPacket(number, has_stop_waiting, level));
+ char buffer[kMaxOutgoingPacketSize];
+ peer_creator_.set_encryption_level(level);
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet,
+ buffer, kMaxOutgoingPacketSize);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ return encrypted_length;
+ }
+
+ void ProcessClosePacket(uint64_t number) {
+ std::unique_ptr<QuicPacket> packet(ConstructClosePacket(number));
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(number), *packet, buffer,
+ kMaxOutgoingPacketSize);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+ }
+
+ QuicByteCount SendStreamDataToPeer(QuicStreamId id, absl::string_view data,
+ QuicStreamOffset offset,
+ StreamSendingState state,
+ QuicPacketNumber* last_packet) {
+ QuicByteCount packet_size;
+ // Save the last packet's size.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AnyNumber())
+ .WillRepeatedly(SaveArg<3>(&packet_size));
+ connection_.SendStreamDataWithString(id, data, offset, state);
+ if (last_packet != nullptr) {
+ *last_packet = creator_->packet_number();
+ }
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AnyNumber());
+ return packet_size;
+ }
+
+ void SendAckPacketToPeer() {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ connection_.SendAck();
+ }
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AnyNumber());
+ }
+
+ void SendRstStream(QuicStreamId id, QuicRstStreamErrorCode error,
+ QuicStreamOffset bytes_written) {
+ notifier_.WriteOrBufferRstStream(id, error, bytes_written);
+ connection_.OnStreamReset(id, error);
+ }
+
+ void SendPing() { notifier_.WriteOrBufferPing(); }
+
+ MessageStatus SendMessage(absl::string_view message) {
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ quiche::QuicheMemSlice slice(quiche::QuicheBuffer::Copy(
+ connection_.helper()->GetStreamSendBufferAllocator(), message));
+ return connection_.SendMessage(1, absl::MakeSpan(&slice, 1), false);
+ }
+
+ void ProcessAckPacket(uint64_t packet_number, QuicAckFrame* frame) {
+ if (packet_number > 1) {
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, packet_number - 1);
+ } else {
+ QuicPacketCreatorPeer::ClearPacketNumber(&peer_creator_);
+ }
+ ProcessFramePacket(QuicFrame(frame));
+ }
+
+ void ProcessAckPacket(QuicAckFrame* frame) {
+ ProcessFramePacket(QuicFrame(frame));
+ }
+
+ void ProcessStopWaitingPacket(QuicStopWaitingFrame frame) {
+ ProcessFramePacket(QuicFrame(frame));
+ }
+
+ size_t ProcessStopWaitingPacketAtLevel(uint64_t number,
+ QuicStopWaitingFrame frame,
+ EncryptionLevel /*level*/) {
+ return ProcessFramePacketAtLevel(number, QuicFrame(frame),
+ ENCRYPTION_ZERO_RTT);
+ }
+
+ void ProcessGoAwayPacket(QuicGoAwayFrame* frame) {
+ ProcessFramePacket(QuicFrame(frame));
+ }
+
+ bool IsMissing(uint64_t number) {
+ return IsAwaitingPacket(connection_.ack_frame(), QuicPacketNumber(number),
+ QuicPacketNumber());
+ }
+
+ std::unique_ptr<QuicPacket> ConstructPacket(const QuicPacketHeader& header,
+ const QuicFrames& frames) {
+ auto packet = BuildUnsizedDataPacket(&peer_framer_, header, frames);
+ EXPECT_NE(nullptr, packet.get());
+ return packet;
+ }
+
+ QuicPacketHeader ConstructPacketHeader(uint64_t number,
+ EncryptionLevel level) {
+ QuicPacketHeader header;
+ if (peer_framer_.version().HasIetfInvariantHeader() &&
+ level < ENCRYPTION_FORWARD_SECURE) {
+ // Set long header type accordingly.
+ header.version_flag = true;
+ header.form = IETF_QUIC_LONG_HEADER_PACKET;
+ header.long_packet_type = EncryptionlevelToLongHeaderType(level);
+ if (QuicVersionHasLongHeaderLengths(
+ peer_framer_.version().transport_version)) {
+ header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
+ if (header.long_packet_type == INITIAL) {
+ header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
+ }
+ }
+ }
+ // Set connection_id to peer's in memory representation as this data packet
+ // is created by peer_framer.
+ if (peer_framer_.perspective() == Perspective::IS_SERVER) {
+ header.source_connection_id = connection_id_;
+ header.source_connection_id_included = connection_id_included_;
+ header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+ } else {
+ header.destination_connection_id = connection_id_;
+ header.destination_connection_id_included = connection_id_included_;
+ }
+ if (peer_framer_.version().HasIetfInvariantHeader() &&
+ peer_framer_.perspective() == Perspective::IS_SERVER) {
+ if (!connection_.client_connection_id().IsEmpty()) {
+ header.destination_connection_id = connection_.client_connection_id();
+ header.destination_connection_id_included = CONNECTION_ID_PRESENT;
+ } else {
+ header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+ }
+ if (header.version_flag) {
+ header.source_connection_id = connection_id_;
+ header.source_connection_id_included = CONNECTION_ID_PRESENT;
+ if (GetParam().version.handshake_protocol == PROTOCOL_QUIC_CRYPTO &&
+ header.long_packet_type == ZERO_RTT_PROTECTED) {
+ header.nonce = &kTestDiversificationNonce;
+ }
+ }
+ }
+ header.packet_number_length = packet_number_length_;
+ header.packet_number = QuicPacketNumber(number);
+ return header;
+ }
+
+ std::unique_ptr<QuicPacket> ConstructDataPacket(uint64_t number,
+ bool has_stop_waiting,
+ EncryptionLevel level) {
+ QuicPacketHeader header = ConstructPacketHeader(number, level);
+ QuicFrames frames;
+ if (VersionHasIetfQuicFrames(version().transport_version) &&
+ (level == ENCRYPTION_INITIAL || level == ENCRYPTION_HANDSHAKE)) {
+ frames.push_back(QuicFrame(QuicPingFrame()));
+ frames.push_back(QuicFrame(QuicPaddingFrame(100)));
+ } else {
+ frames.push_back(QuicFrame(frame1_));
+ if (has_stop_waiting) {
+ frames.push_back(QuicFrame(stop_waiting_));
+ }
+ }
+ return ConstructPacket(header, frames);
+ }
+
+ std::unique_ptr<SerializedPacket> ConstructProbingPacket() {
+ peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+ if (VersionHasIetfQuicFrames(version().transport_version)) {
+ QuicPathFrameBuffer payload = {
+ {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}};
+ return QuicPacketCreatorPeer::
+ SerializePathChallengeConnectivityProbingPacket(&peer_creator_,
+ payload);
+ }
+ return QuicPacketCreatorPeer::SerializeConnectivityProbingPacket(
+ &peer_creator_);
+ }
+
+ std::unique_ptr<QuicPacket> ConstructClosePacket(uint64_t number) {
+ peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+ QuicPacketHeader header;
+ // Set connection_id to peer's in memory representation as this connection
+ // close packet is created by peer_framer.
+ if (peer_framer_.perspective() == Perspective::IS_SERVER) {
+ header.source_connection_id = connection_id_;
+ header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+ if (!peer_framer_.version().HasIetfInvariantHeader()) {
+ header.source_connection_id_included = CONNECTION_ID_PRESENT;
+ }
+ } else {
+ header.destination_connection_id = connection_id_;
+ if (peer_framer_.version().HasIetfInvariantHeader()) {
+ header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+ }
+ }
+
+ header.packet_number = QuicPacketNumber(number);
+
+ QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY;
+ QuicConnectionCloseFrame qccf(peer_framer_.transport_version(),
+ kQuicErrorCode, NO_IETF_QUIC_ERROR, "",
+ /*transport_close_frame_type=*/0);
+ QuicFrames frames;
+ frames.push_back(QuicFrame(&qccf));
+ return ConstructPacket(header, frames);
+ }
+
+ QuicTime::Delta DefaultRetransmissionTime() {
+ return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
+ }
+
+ QuicTime::Delta DefaultDelayedAckTime() {
+ return QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs);
+ }
+
+ const QuicStopWaitingFrame InitStopWaitingFrame(uint64_t least_unacked) {
+ QuicStopWaitingFrame frame;
+ frame.least_unacked = QuicPacketNumber(least_unacked);
+ return frame;
+ }
+
+ // Construct a ack_frame that acks all packet numbers between 1 and
+ // |largest_acked|, except |missing|.
+ // REQUIRES: 1 <= |missing| < |largest_acked|
+ QuicAckFrame ConstructAckFrame(uint64_t largest_acked, uint64_t missing) {
+ return ConstructAckFrame(QuicPacketNumber(largest_acked),
+ QuicPacketNumber(missing));
+ }
+
+ QuicAckFrame ConstructAckFrame(QuicPacketNumber largest_acked,
+ QuicPacketNumber missing) {
+ if (missing == QuicPacketNumber(1)) {
+ return InitAckFrame({{missing + 1, largest_acked + 1}});
+ }
+ return InitAckFrame(
+ {{QuicPacketNumber(1), missing}, {missing + 1, largest_acked + 1}});
+ }
+
+ // Undo nacking a packet within the frame.
+ void AckPacket(QuicPacketNumber arrived, QuicAckFrame* frame) {
+ EXPECT_FALSE(frame->packets.Contains(arrived));
+ frame->packets.Add(arrived);
+ }
+
+ void TriggerConnectionClose() {
+ // Send an erroneous packet to close the connection.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ // Triggers a connection by receiving ACK of unsent packet.
+ QuicAckFrame frame = InitAckFrame(10000);
+ ProcessAckPacket(1, &frame);
+ EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
+ nullptr);
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_INVALID_ACK_DATA));
+ }
+
+ void BlockOnNextWrite() {
+ writer_->BlockOnNextWrite();
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+ }
+
+ void SimulateNextPacketTooLarge() { writer_->SimulateNextPacketTooLarge(); }
+
+ void AlwaysGetPacketTooLarge() { writer_->AlwaysGetPacketTooLarge(); }
+
+ void SetWritePauseTimeDelta(QuicTime::Delta delta) {
+ writer_->SetWritePauseTimeDelta(delta);
+ }
+
+ void CongestionBlockWrites() {
+ EXPECT_CALL(*send_algorithm_, CanSend(_))
+ .WillRepeatedly(testing::Return(false));
+ }
+
+ void CongestionUnblockWrites() {
+ EXPECT_CALL(*send_algorithm_, CanSend(_))
+ .WillRepeatedly(testing::Return(true));
+ }
+
+ void set_perspective(Perspective perspective) {
+ connection_.set_perspective(perspective);
+ if (perspective == Perspective::IS_SERVER) {
+ QuicConfig config;
+ if (!GetQuicReloadableFlag(
+ quic_remove_connection_migration_connection_option)) {
+ QuicTagVector connection_options;
+ connection_options.push_back(kRVCM);
+ config.SetInitialReceivedConnectionOptions(connection_options);
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+
+ connection_.set_can_truncate_connection_ids(true);
+ QuicConnectionPeer::SetNegotiatedVersion(&connection_);
+ connection_.OnSuccessfulVersionNegotiation();
+ }
+ QuicFramerPeer::SetPerspective(&peer_framer_,
+ QuicUtils::InvertPerspective(perspective));
+ peer_framer_.SetInitialObfuscators(TestConnectionId());
+ for (EncryptionLevel level : {ENCRYPTION_ZERO_RTT, ENCRYPTION_HANDSHAKE,
+ ENCRYPTION_FORWARD_SECURE}) {
+ if (peer_framer_.HasEncrypterOfEncryptionLevel(level)) {
+ peer_creator_.SetEncrypter(
+ level, std::make_unique<NullEncrypter>(peer_framer_.perspective()));
+ }
+ }
+ }
+
+ void set_packets_between_probes_base(
+ const QuicPacketCount packets_between_probes_base) {
+ QuicConnectionPeer::ReInitializeMtuDiscoverer(
+ &connection_, packets_between_probes_base,
+ QuicPacketNumber(packets_between_probes_base));
+ }
+
+ bool IsDefaultTestConfiguration() {
+ TestParams p = GetParam();
+ return p.ack_response == AckResponse::kImmediate &&
+ p.version == AllSupportedVersions()[0] && p.no_stop_waiting;
+ }
+
+ void TestConnectionCloseQuicErrorCode(QuicErrorCode expected_code) {
+ // Not strictly needed for this test, but is commonly done.
+ EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
+ nullptr);
+ const std::vector<QuicConnectionCloseFrame>& connection_close_frames =
+ writer_->connection_close_frames();
+ ASSERT_EQ(1u, connection_close_frames.size());
+
+ EXPECT_THAT(connection_close_frames[0].quic_error_code,
+ IsError(expected_code));
+
+ if (!VersionHasIetfQuicFrames(version().transport_version)) {
+ EXPECT_THAT(connection_close_frames[0].wire_error_code,
+ IsError(expected_code));
+ EXPECT_EQ(GOOGLE_QUIC_CONNECTION_CLOSE,
+ connection_close_frames[0].close_type);
+ return;
+ }
+
+ QuicErrorCodeToIetfMapping mapping =
+ QuicErrorCodeToTransportErrorCode(expected_code);
+
+ if (mapping.is_transport_close) {
+ // This Google QUIC Error Code maps to a transport close,
+ EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE,
+ connection_close_frames[0].close_type);
+ } else {
+ // This maps to an application close.
+ EXPECT_EQ(IETF_QUIC_APPLICATION_CONNECTION_CLOSE,
+ connection_close_frames[0].close_type);
+ }
+ EXPECT_EQ(mapping.error_code, connection_close_frames[0].wire_error_code);
+ }
+
+ void MtuDiscoveryTestInit() {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ if (version().SupportsAntiAmplificationLimit()) {
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ }
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+ // QuicFramer::GetMaxPlaintextSize uses the smallest max plaintext size
+ // across all encrypters. The initial encrypter used with IETF QUIC has a
+ // 16-byte overhead, while the NullEncrypter used throughout this test has a
+ // 12-byte overhead. This test tests behavior that relies on computing the
+ // packet size correctly, so by unsetting the initial encrypter, we avoid
+ // having a mismatch between the overheads for the encrypters used. In
+ // non-test scenarios all encrypters used for a given connection have the
+ // same overhead, either 12 bytes for ones using Google QUIC crypto, or 16
+ // bytes for ones using TLS.
+ connection_.SetEncrypter(ENCRYPTION_INITIAL, nullptr);
+ // Prevent packets from being coalesced.
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ EXPECT_TRUE(connection_.connected());
+ }
+
+ void PathProbeTestInit(Perspective perspective,
+ bool receive_new_server_connection_id = true) {
+ set_perspective(perspective);
+ connection_.CreateConnectionIdManager();
+ EXPECT_EQ(connection_.perspective(), perspective);
+ if (perspective == Perspective::IS_SERVER) {
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ }
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+ // Discard INITIAL key.
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ // Prevent packets from being coalesced.
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ if (version().SupportsAntiAmplificationLimit() &&
+ perspective == Perspective::IS_SERVER) {
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ }
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ }
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+ kPeerAddress, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+ if (perspective == Perspective::IS_CLIENT &&
+ receive_new_server_connection_id && version().HasIetfQuicFrames()) {
+ QuicNewConnectionIdFrame frame;
+ frame.connection_id = TestConnectionId(1234);
+ ASSERT_NE(frame.connection_id, connection_.connection_id());
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ frame.retire_prior_to = 0u;
+ frame.sequence_number = 1u;
+ connection_.OnNewConnectionIdFrame(frame);
+ }
+ }
+
+ void TestClientRetryHandling(bool invalid_retry_tag,
+ bool missing_original_id_in_config,
+ bool wrong_original_id_in_config,
+ bool missing_retry_id_in_config,
+ bool wrong_retry_id_in_config);
+
+ void TestReplaceConnectionIdFromInitial();
+
+ QuicConnectionId connection_id_;
+ QuicFramer framer_;
+
+ MockSendAlgorithm* send_algorithm_;
+ std::unique_ptr<MockLossAlgorithm> loss_algorithm_;
+ MockClock clock_;
+ MockRandom random_generator_;
+ quiche::SimpleBufferAllocator buffer_allocator_;
+ std::unique_ptr<TestConnectionHelper> helper_;
+ std::unique_ptr<TestAlarmFactory> alarm_factory_;
+ QuicFramer peer_framer_;
+ QuicPacketCreator peer_creator_;
+ std::unique_ptr<TestPacketWriter> writer_;
+ TestConnection connection_;
+ QuicPacketCreator* creator_;
+ QuicSentPacketManager* manager_;
+ StrictMock<MockQuicConnectionVisitor> visitor_;
+
+ QuicStreamFrame frame1_;
+ QuicStreamFrame frame2_;
+ QuicCryptoFrame crypto_frame_;
+ QuicAckFrame ack_;
+ QuicStopWaitingFrame stop_waiting_;
+ QuicPacketNumberLength packet_number_length_;
+ QuicConnectionIdIncluded connection_id_included_;
+
+ SimpleSessionNotifier notifier_;
+
+ QuicConnectionCloseFrame saved_connection_close_frame_;
+ int connection_close_frame_count_;
+};
+
+// Run all end to end tests with all supported versions.
+INSTANTIATE_TEST_SUITE_P(QuicConnectionTests, QuicConnectionTest,
+ ::testing::ValuesIn(GetTestParams()),
+ ::testing::PrintToStringParamName());
+
+// These two tests ensure that the QuicErrorCode mapping works correctly.
+// Both tests expect to see a Google QUIC close if not running IETF QUIC.
+// If running IETF QUIC, the first will generate a transport connection
+// close, the second an application connection close.
+// The connection close codes for the two tests are manually chosen;
+// they are expected to always map to transport- and application-
+// closes, respectively. If that changes, new codes should be chosen.
+TEST_P(QuicConnectionTest, CloseErrorCodeTestTransport) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ connection_.CloseConnection(
+ IETF_QUIC_PROTOCOL_VIOLATION, "Should be transport close",
+ ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+}
+
+// Test that the IETF QUIC Error code mapping function works
+// properly for application connection close codes.
+TEST_P(QuicConnectionTest, CloseErrorCodeTestApplication) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ connection_.CloseConnection(
+ QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE,
+ "Should be application close",
+ ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE);
+}
+
+TEST_P(QuicConnectionTest, SelfAddressChangeAtClient) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+ EXPECT_TRUE(connection_.connected());
+
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_));
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_));
+ }
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+ // Cause change in self_address.
+ QuicIpAddress host;
+ host.FromString("1.1.1.1");
+ QuicSocketAddress self_address(host, 123);
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_));
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_));
+ }
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address, kPeerAddress,
+ ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, SelfAddressChangeAtServer) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+ EXPECT_TRUE(connection_.connected());
+
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_));
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_));
+ }
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+ // Cause change in self_address.
+ QuicIpAddress host;
+ host.FromString("1.1.1.1");
+ QuicSocketAddress self_address(host, 123);
+ EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+ EXPECT_CALL(visitor_, AllowSelfAddressChange()).WillOnce(Return(false));
+ if (GetQuicReloadableFlag(quic_drop_packets_with_changed_server_address)) {
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address,
+ kPeerAddress, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_EQ(1u, connection_.GetStats().packets_dropped);
+ return;
+ }
+ if (version().handshake_protocol == PROTOCOL_TLS1_3) {
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ }
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ EXPECT_QUIC_PEER_BUG(
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address,
+ kPeerAddress, ENCRYPTION_INITIAL),
+ "Self address migration is not supported at the server");
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_ERROR_MIGRATING_ADDRESS);
+ EXPECT_EQ(1u, connection_.GetStats().packets_dropped);
+}
+
+TEST_P(QuicConnectionTest, AllowSelfAddressChangeToMappedIpv4AddressAtServer) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+ EXPECT_TRUE(connection_.connected());
+
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3);
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3);
+ }
+ QuicIpAddress host;
+ host.FromString("1.1.1.1");
+ QuicSocketAddress self_address1(host, 443);
+ connection_.SetSelfAddress(self_address1);
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address1,
+ kPeerAddress, ENCRYPTION_INITIAL);
+ // Cause self_address change to mapped Ipv4 address.
+ QuicIpAddress host2;
+ host2.FromString(
+ absl::StrCat("::ffff:", connection_.self_address().host().ToString()));
+ QuicSocketAddress self_address2(host2, connection_.self_address().port());
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address2,
+ kPeerAddress, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.connected());
+ // self_address change back to Ipv4 address.
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address1,
+ kPeerAddress, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, ClientAddressChangeAndPacketReordered) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ }
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(),
+ /*port=*/23456);
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+ kNewPeerAddress, ENCRYPTION_INITIAL);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+
+ // Decrease packet number to simulate out-of-order packets.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4);
+ // This is an old packet, do not migrate.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, PeerPortChangeAtServer) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Prevent packets from being coalesced.
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ if (version().SupportsAntiAmplificationLimit()) {
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ }
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt();
+ rtt_stats->set_initial_rtt(default_init_rtt * 2);
+ EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt());
+
+ QuicSentPacketManagerPeer::SetConsecutiveRtoCount(manager_, 1);
+ EXPECT_EQ(1u, manager_->GetConsecutiveRtoCount());
+ QuicSentPacketManagerPeer::SetConsecutiveTlpCount(manager_, 2);
+ EXPECT_EQ(2u, manager_->GetConsecutiveTlpCount());
+
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+ EXPECT_CALL(visitor_, OnStreamFrame(_))
+ .WillOnce(Invoke(
+ [=]() { EXPECT_EQ(kPeerAddress, connection_.peer_address()); }))
+ .WillOnce(Invoke(
+ [=]() { EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); }));
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Process another packet with a different peer address on server side will
+ // start connection migration.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+ QuicFrames frames2;
+ frames2.push_back(QuicFrame(frame2_));
+ ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+ // PORT_CHANGE shouldn't state change in sent packet manager.
+ EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt());
+ EXPECT_EQ(1u, manager_->GetConsecutiveRtoCount());
+ EXPECT_EQ(2u, manager_->GetConsecutiveTlpCount());
+ EXPECT_EQ(manager_->GetSendAlgorithm(), send_algorithm_);
+ if (connection_.validate_client_address()) {
+ EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+ EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration);
+ }
+}
+
+TEST_P(QuicConnectionTest, PeerIpAddressChangeAtServer) {
+ set_perspective(Perspective::IS_SERVER);
+ if (!connection_.validate_client_address()) {
+ return;
+ }
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Discard INITIAL key.
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ // Prevent packets from being coalesced.
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ connection_.OnHandshakeComplete();
+
+ // Enable 5 RTO
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k5RTO);
+ config.SetInitialReceivedConnectionOptions(connection_options);
+ QuicConfigPeer::SetNegotiated(&config, true);
+ QuicConfigPeer::SetReceivedOriginalConnectionId(&config,
+ connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config,
+ QuicConnectionId());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+ EXPECT_CALL(visitor_, OnStreamFrame(_))
+ .WillOnce(Invoke(
+ [=]() { EXPECT_EQ(kPeerAddress, connection_.peer_address()); }))
+ .WillOnce(Invoke(
+ [=]() { EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); }));
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Send some data to make connection has packets in flight.
+ connection_.SendStreamData3();
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Process another packet with a different peer address on server side will
+ // start connection migration.
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+ // IETF QUIC send algorithm should be changed to a different object, so no
+ // OnPacketSent() called on the old send algorithm.
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+ .Times(0);
+ // Do not propagate OnCanWrite() to session notifier.
+ EXPECT_CALL(visitor_, OnCanWrite()).Times(AtLeast(1u));
+
+ QuicFrames frames2;
+ frames2.push_back(QuicFrame(frame2_));
+ ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+ connection_.active_effective_peer_migration_type());
+ EXPECT_FALSE(connection_.BlackholeDetectionInProgress());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+ EXPECT_FALSE(writer_->path_challenge_frames().empty());
+ QuicPathFrameBuffer payload =
+ writer_->path_challenge_frames().front().data_buffer;
+ EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(),
+ send_algorithm_);
+ // Switch to use the mock send algorithm.
+ send_algorithm_ = new StrictMock<MockSendAlgorithm>();
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
+ .WillRepeatedly(Return(kDefaultTCPMSS));
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+ .Times(AnyNumber())
+ .WillRepeatedly(Return(QuicBandwidth::Zero()));
+ EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber());
+ connection_.SetSendAlgorithm(send_algorithm_);
+
+ // PATH_CHALLENGE is expanded upto the max packet size which may exceeds the
+ // anti-amplification limit.
+ EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(1u,
+ connection_.GetStats().num_reverse_path_validtion_upon_migration);
+
+ // Verify server is throttled by anti-amplification limit.
+ connection_.SendCryptoDataWithString("foo", 0);
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Receiving an ACK to the packet sent after changing peer address doesn't
+ // finish migration validation.
+ QuicAckFrame ack_frame = InitAckFrame(2);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessFramePacketWithAddresses(QuicFrame(&ack_frame), kSelfAddress,
+ kNewPeerAddress, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+ connection_.active_effective_peer_migration_type());
+
+ // Receiving PATH_RESPONSE should lift the anti-amplification limit.
+ QuicFrames frames3;
+ frames3.push_back(QuicFrame(new QuicPathResponseFrame(99, payload)));
+ EXPECT_CALL(visitor_, MaybeSendAddressToken());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(testing::AtLeast(1u));
+ ProcessFramesPacketWithAddresses(frames3, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+
+ // Verify the anti-amplification limit is lifted by sending a packet larger
+ // than the anti-amplification limit.
+ connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0);
+ EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration);
+}
+
+TEST_P(QuicConnectionTest, PeerIpAddressChangeAtServerWithMissingConnectionId) {
+ set_perspective(Perspective::IS_SERVER);
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+
+ QuicConnectionId client_cid0 = TestConnectionId(1);
+ QuicConnectionId client_cid1 = TestConnectionId(3);
+ QuicConnectionId server_cid1;
+ SetClientConnectionId(client_cid0);
+ connection_.CreateConnectionIdManager();
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Prevent packets from being coalesced.
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+
+ // Sends new server CID to client.
+ EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+ .WillOnce(
+ Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; }));
+ EXPECT_CALL(visitor_, SendNewConnectionId(_));
+ connection_.OnHandshakeComplete();
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2);
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Send some data to make connection has packets in flight.
+ connection_.SendStreamData3();
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+ // Process another packet with a different peer address on server side will
+ // start connection migration.
+ peer_creator_.SetServerConnectionId(server_cid1);
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+ // Do not propagate OnCanWrite() to session notifier.
+ EXPECT_CALL(visitor_, OnCanWrite()).Times(AtLeast(1u));
+
+ QuicFrames frames2;
+ frames2.push_back(QuicFrame(frame2_));
+ ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+
+ // Writing path response & reverse path challenge is blocked due to missing
+ // client connection ID, i.e., packets_write_attempts is unchanged.
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+ // Receives new client CID from client would unblock write.
+ QuicNewConnectionIdFrame new_cid_frame;
+ new_cid_frame.connection_id = client_cid1;
+ new_cid_frame.sequence_number = 1u;
+ new_cid_frame.retire_prior_to = 0u;
+ connection_.OnNewConnectionIdFrame(new_cid_frame);
+ connection_.SendStreamData3();
+
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, EffectivePeerAddressChangeAtServer) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+ if (version().SupportsAntiAmplificationLimit()) {
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ }
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Discard INITIAL key.
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is different from direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ const QuicSocketAddress kEffectivePeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/43210);
+ connection_.ReturnEffectivePeerAddressForNextPacket(kEffectivePeerAddress);
+
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ }
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kEffectivePeerAddress, connection_.effective_peer_address());
+
+ // Process another packet with the same direct peer address and different
+ // effective peer address on server side will start connection migration.
+ const QuicSocketAddress kNewEffectivePeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/54321);
+ connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress);
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address());
+ if (connection_.validate_client_address()) {
+ EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+ EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration);
+ }
+
+ // Process another packet with a different direct peer address and the same
+ // effective peer address on server side will not start connection migration.
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+ connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress);
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+
+ if (!connection_.validate_client_address()) {
+ // ack_frame is used to complete the migration started by the last packet,
+ // we need to make sure a new migration does not start after the previous
+ // one is completed.
+ QuicAckFrame ack_frame = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessFramePacketWithAddresses(QuicFrame(&ack_frame), kSelfAddress,
+ kNewPeerAddress, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+ }
+
+ // Process another packet with different direct peer address and different
+ // effective peer address on server side will start connection migration.
+ const QuicSocketAddress kNewerEffectivePeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/65432);
+ const QuicSocketAddress kFinalPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/34567);
+ connection_.ReturnEffectivePeerAddressForNextPacket(
+ kNewerEffectivePeerAddress);
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+ kFinalPeerAddress, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kFinalPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewerEffectivePeerAddress, connection_.effective_peer_address());
+ if (connection_.validate_client_address()) {
+ EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+ EXPECT_EQ(send_algorithm_,
+ connection_.sent_packet_manager().GetSendAlgorithm());
+ EXPECT_EQ(2u, connection_.GetStats().num_validated_peer_migration);
+ }
+
+ // While the previous migration is ongoing, process another packet with the
+ // same direct peer address and different effective peer address on server
+ // side will start a new connection migration.
+ const QuicSocketAddress kNewestEffectivePeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/65430);
+ connection_.ReturnEffectivePeerAddressForNextPacket(
+ kNewestEffectivePeerAddress);
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+ if (!connection_.validate_client_address()) {
+ EXPECT_CALL(*send_algorithm_, OnConnectionMigration()).Times(1);
+ }
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+ kFinalPeerAddress, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kFinalPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewestEffectivePeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+ connection_.active_effective_peer_migration_type());
+ if (connection_.validate_client_address()) {
+ EXPECT_NE(send_algorithm_,
+ connection_.sent_packet_manager().GetSendAlgorithm());
+ EXPECT_EQ(kFinalPeerAddress, writer_->last_write_peer_address());
+ EXPECT_FALSE(writer_->path_challenge_frames().empty());
+ EXPECT_EQ(0u, connection_.GetStats()
+ .num_peer_migration_while_validating_default_path);
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+ }
+}
+
+// Regression test for b/200020764.
+TEST_P(QuicConnectionTest, ConnectionMigrationWithPendingPaddingBytes) {
+ // TODO(haoyuewang) Move these test setup code to a common member function.
+ set_perspective(Perspective::IS_SERVER);
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ connection_.CreateConnectionIdManager();
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ QuicConnectionPeer::SetPeerAddress(&connection_, kPeerAddress);
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_, kPeerAddress);
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+
+ // Sends new server CID to client.
+ QuicConnectionId new_cid;
+ EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+ .WillOnce(Invoke([&](const QuicConnectionId& cid) { new_cid = cid; }));
+ EXPECT_CALL(visitor_, SendNewConnectionId(_));
+ // Discard INITIAL key.
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ connection_.OnHandshakeComplete();
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+
+ auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_);
+ packet_creator->FlushCurrentPacket();
+ packet_creator->AddPendingPadding(50u);
+ const QuicSocketAddress kPeerAddress3 =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/56789);
+ auto ack_frame = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+ ProcessFramesPacketWithAddresses({QuicFrame(&ack_frame)}, kSelfAddress,
+ kPeerAddress3, ENCRYPTION_FORWARD_SECURE);
+ if (GetQuicReloadableFlag(
+ quic_flush_pending_frames_and_padding_bytes_on_migration)) {
+ // Any pending frames/padding should be flushed before default_path_ is
+ // temporarily reset.
+ ASSERT_EQ(connection_.self_address_on_default_path_while_sending_packet()
+ .host()
+ .address_family(),
+ IpAddressFamily::IP_V6);
+ } else {
+ ASSERT_EQ(connection_.self_address_on_default_path_while_sending_packet()
+ .host()
+ .address_family(),
+ IpAddressFamily::IP_UNSPEC);
+ }
+}
+
+// Regression test for b/196208556.
+TEST_P(QuicConnectionTest,
+ ReversePathValidationResponseReceivedFromUnexpectedPeerAddress) {
+ set_perspective(Perspective::IS_SERVER);
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ connection_.CreateConnectionIdManager();
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ QuicConnectionPeer::SetPeerAddress(&connection_, kPeerAddress);
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_, kPeerAddress);
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Sends new server CID to client.
+ QuicConnectionId new_cid;
+ EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+ .WillOnce(Invoke([&](const QuicConnectionId& cid) { new_cid = cid; }));
+ EXPECT_CALL(visitor_, SendNewConnectionId(_));
+ // Discard INITIAL key.
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ connection_.OnHandshakeComplete();
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+
+ // Process a non-probing packet to migrate to path 2 and kick off reverse path
+ // validation.
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+ const QuicSocketAddress kPeerAddress2 =
+ QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+ peer_creator_.SetServerConnectionId(new_cid);
+ ProcessFramesPacketWithAddresses({QuicFrame(QuicPingFrame())}, kSelfAddress,
+ kPeerAddress2, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_FALSE(writer_->path_challenge_frames().empty());
+ QuicPathFrameBuffer reverse_path_challenge_payload =
+ writer_->path_challenge_frames().front().data_buffer;
+
+ // Receiveds a packet from path 3 with PATH_RESPONSE frame intended to
+ // validate path 2 and a non-probing frame.
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ const QuicSocketAddress kPeerAddress3 =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/56789);
+ auto ack_frame = InitAckFrame(1);
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV4_TO_IPV6_CHANGE)).Times(1);
+ EXPECT_CALL(visitor_, MaybeSendAddressToken()).WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(
+ QuicFrame(new QuicNewTokenFrame(1, "new_token")));
+ return true;
+ }));
+ ProcessFramesPacketWithAddresses({QuicFrame(new QuicPathResponseFrame(
+ 0, reverse_path_challenge_payload)),
+ QuicFrame(&ack_frame)},
+ kSelfAddress, kPeerAddress3,
+ ENCRYPTION_FORWARD_SECURE);
+ }
+}
+
+TEST_P(QuicConnectionTest, ReversePathValidationFailureAtServer) {
+ set_perspective(Perspective::IS_SERVER);
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+ SetClientConnectionId(TestConnectionId(1));
+ connection_.CreateConnectionIdManager();
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Discard INITIAL key.
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ // Prevent packets from being coalesced.
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+
+ QuicConnectionId client_cid0 = connection_.client_connection_id();
+ QuicConnectionId client_cid1 = TestConnectionId(2);
+ QuicConnectionId server_cid0 = connection_.connection_id();
+ QuicConnectionId server_cid1;
+ // Sends new server CID to client.
+ EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+ .WillOnce(
+ Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; }));
+ EXPECT_CALL(visitor_, SendNewConnectionId(_));
+ connection_.OnHandshakeComplete();
+ // Receives new client CID from client.
+ QuicNewConnectionIdFrame new_cid_frame;
+ new_cid_frame.connection_id = client_cid1;
+ new_cid_frame.sequence_number = 1u;
+ new_cid_frame.retire_prior_to = 0u;
+ connection_.OnNewConnectionIdFrame(new_cid_frame);
+ auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_);
+ ASSERT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0);
+ ASSERT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+ EXPECT_CALL(visitor_, OnStreamFrame(_))
+ .WillOnce(Invoke(
+ [=]() { EXPECT_EQ(kPeerAddress, connection_.peer_address()); }))
+ .WillOnce(Invoke(
+ [=]() { EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); }));
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Process another packet with a different peer address on server side will
+ // start connection migration.
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+ // IETF QUIC send algorithm should be changed to a different object, so no
+ // OnPacketSent() called on the old send algorithm.
+ EXPECT_CALL(*send_algorithm_, OnConnectionMigration()).Times(0);
+
+ QuicFrames frames2;
+ frames2.push_back(QuicFrame(frame2_));
+ QuicPaddingFrame padding;
+ frames2.push_back(QuicFrame(padding));
+ peer_creator_.SetServerConnectionId(server_cid1);
+ ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+ connection_.active_effective_peer_migration_type());
+ EXPECT_LT(0u, writer_->packets_write_attempts());
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+ EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(),
+ send_algorithm_);
+ EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+ const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+ const auto* alternative_path =
+ QuicConnectionPeer::GetAlternativePath(&connection_);
+ EXPECT_EQ(default_path->client_connection_id, client_cid1);
+ EXPECT_EQ(default_path->server_connection_id, server_cid1);
+ EXPECT_EQ(alternative_path->client_connection_id, client_cid0);
+ EXPECT_EQ(alternative_path->server_connection_id, server_cid0);
+ EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid1);
+ EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid1);
+
+ for (size_t i = 0; i < QuicPathValidator::kMaxRetryTimes; ++i) {
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs));
+ static_cast<TestAlarmFactory::TestAlarm*>(
+ QuicPathValidatorPeer::retry_timer(
+ QuicConnectionPeer::path_validator(&connection_)))
+ ->Fire();
+ }
+ EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+ connection_.active_effective_peer_migration_type());
+
+ // Make sure anti-amplification limit is not reached.
+ ProcessFramesPacketWithAddresses(
+ {QuicFrame(QuicPingFrame()), QuicFrame(QuicPaddingFrame())}, kSelfAddress,
+ kNewPeerAddress, ENCRYPTION_FORWARD_SECURE);
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Advance the time so that the reverse path validation times out.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs));
+ static_cast<TestAlarmFactory::TestAlarm*>(
+ QuicPathValidatorPeer::retry_timer(
+ QuicConnectionPeer::path_validator(&connection_)))
+ ->Fire();
+ EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(connection_.sent_packet_manager().GetSendAlgorithm(),
+ send_algorithm_);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Verify that default_path_ is reverted and alternative_path_ is cleared.
+ EXPECT_EQ(default_path->client_connection_id, client_cid0);
+ EXPECT_EQ(default_path->server_connection_id, server_cid0);
+ EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty());
+ EXPECT_FALSE(alternative_path->stateless_reset_token.has_value());
+ auto* retire_peer_issued_cid_alarm =
+ connection_.GetRetirePeerIssuedConnectionIdAlarm();
+ ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+ EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/1u));
+ retire_peer_issued_cid_alarm->Fire();
+ EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0);
+ EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+}
+
+TEST_P(QuicConnectionTest, ReceivePathProbeWithNoAddressChangeAtServer) {
+ PathProbeTestInit(Perspective::IS_SERVER);
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ EXPECT_CALL(visitor_, OnPacketReceived(_, _, false)).Times(0);
+
+ // Process a padded PING packet with no peer address change on server side
+ // will be ignored. But a PATH CHALLENGE packet with no peer address change
+ // will be considered as path probing.
+ std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+ ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received);
+
+ EXPECT_EQ(
+ num_probing_received + (GetParam().version.HasIetfQuicFrames() ? 1u : 0u),
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+// Regression test for b/150161358.
+TEST_P(QuicConnectionTest, BufferedMtuPacketTooBig) {
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+ writer_->SetWriteBlocked();
+
+ // Send a MTU packet while blocked. It should be buffered.
+ connection_.SendMtuDiscoveryPacket(kMaxOutgoingPacketSize);
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+
+ writer_->AlwaysGetPacketTooLarge();
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+}
+
+TEST_P(QuicConnectionTest, WriteOutOfOrderQueuedPackets) {
+ // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+ if (!IsDefaultTestConfiguration()) {
+ return;
+ }
+
+ set_perspective(Perspective::IS_CLIENT);
+
+ BlockOnNextWrite();
+
+ QuicStreamId stream_id = 2;
+ connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
+
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ writer_->SetWritable();
+ connection_.SendConnectivityProbingPacket(writer_.get(),
+ connection_.peer_address());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+ connection_.OnCanWrite();
+}
+
+TEST_P(QuicConnectionTest, DiscardQueuedPacketsAfterConnectionClose) {
+ // Regression test for b/74073386.
+ {
+ InSequence seq;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1));
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(AtLeast(1));
+ }
+
+ set_perspective(Perspective::IS_CLIENT);
+
+ writer_->SimulateNextPacketTooLarge();
+
+ // This packet write should fail, which should cause the connection to close
+ // after sending a connection close packet, then the failed packet should be
+ // queued.
+ connection_.SendStreamDataWithString(/*id=*/2, "foo", 0, NO_FIN);
+
+ EXPECT_FALSE(connection_.connected());
+ // No need to buffer packets.
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+
+ EXPECT_EQ(0u, connection_.GetStats().packets_discarded);
+ connection_.OnCanWrite();
+ EXPECT_EQ(0u, connection_.GetStats().packets_discarded);
+}
+
+class TestQuicPathValidationContext : public QuicPathValidationContext {
+ public:
+ TestQuicPathValidationContext(const QuicSocketAddress& self_address,
+ const QuicSocketAddress& peer_address,
+
+ QuicPacketWriter* writer)
+ : QuicPathValidationContext(self_address, peer_address),
+ writer_(writer) {}
+
+ QuicPacketWriter* WriterToUse() override { return writer_; }
+
+ private:
+ QuicPacketWriter* writer_;
+};
+
+class TestValidationResultDelegate : public QuicPathValidator::ResultDelegate {
+ public:
+ TestValidationResultDelegate(QuicConnection* connection,
+ const QuicSocketAddress& expected_self_address,
+ const QuicSocketAddress& expected_peer_address,
+ bool* success)
+ : QuicPathValidator::ResultDelegate(),
+ connection_(connection),
+ expected_self_address_(expected_self_address),
+ expected_peer_address_(expected_peer_address),
+ success_(success) {}
+ void OnPathValidationSuccess(
+ std::unique_ptr<QuicPathValidationContext> context) override {
+ EXPECT_EQ(expected_self_address_, context->self_address());
+ EXPECT_EQ(expected_peer_address_, context->peer_address());
+ *success_ = true;
+ }
+
+ void OnPathValidationFailure(
+ std::unique_ptr<QuicPathValidationContext> context) override {
+ EXPECT_EQ(expected_self_address_, context->self_address());
+ EXPECT_EQ(expected_peer_address_, context->peer_address());
+ if (connection_->perspective() == Perspective::IS_CLIENT) {
+ connection_->OnPathValidationFailureAtClient();
+ }
+ *success_ = false;
+ }
+
+ private:
+ QuicConnection* connection_;
+ QuicSocketAddress expected_self_address_;
+ QuicSocketAddress expected_peer_address_;
+ bool* success_;
+};
+
+// Receive a path probe request at the server side, i.e.,
+// in non-IETF version: receive a padded PING packet with a peer addess change;
+// in IETF version: receive a packet contains PATH CHALLENGE with peer address
+// change.
+TEST_P(QuicConnectionTest, ReceivePathProbingAtServer) {
+ PathProbeTestInit(Perspective::IS_SERVER);
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ QuicPathFrameBuffer payload;
+ if (!GetParam().version.HasIetfQuicFrames()) {
+ EXPECT_CALL(visitor_,
+ OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+ .Times(1);
+ } else {
+ EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
+ if (connection_.validate_client_address()) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1u))
+ .WillOnce(Invoke([&]() {
+ EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+ EXPECT_EQ(1u, writer_->path_response_frames().size());
+ payload = writer_->path_challenge_frames().front().data_buffer;
+ }));
+ }
+ }
+ // Process a probing packet from a new peer address on server side
+ // is effectively receiving a connectivity probing.
+ const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(),
+ /*port=*/23456);
+
+ std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+ ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
+
+ EXPECT_EQ(num_probing_received + 1,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+ if (GetParam().version.HasIetfQuicFrames() &&
+ connection_.use_path_validator() &&
+ GetQuicReloadableFlag(quic_count_bytes_on_alternative_path_seperately)) {
+ QuicByteCount bytes_sent =
+ QuicConnectionPeer::BytesSentOnAlternativePath(&connection_);
+ EXPECT_LT(0u, bytes_sent);
+ EXPECT_EQ(received->length(),
+ QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_));
+
+ // Receiving one more probing packet should update the bytes count.
+ probing_packet = ConstructProbingPacket();
+ received.reset(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
+
+ EXPECT_EQ(num_probing_received + 2,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(2 * bytes_sent,
+ QuicConnectionPeer::BytesSentOnAlternativePath(&connection_));
+ EXPECT_EQ(2 * received->length(),
+ QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_));
+
+ bool success = false;
+ if (!connection_.validate_client_address()) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1u))
+ .WillOnce(Invoke([&]() {
+ EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+ payload = writer_->path_challenge_frames().front().data_buffer;
+ }));
+
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ connection_.self_address(), kNewPeerAddress, writer_.get()),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, connection_.self_address(), kNewPeerAddress,
+ &success));
+ }
+ EXPECT_EQ((connection_.validate_client_address() ? 2 : 3) * bytes_sent,
+ QuicConnectionPeer::BytesSentOnAlternativePath(&connection_));
+ QuicFrames frames;
+ frames.push_back(QuicFrame(new QuicPathResponseFrame(99, payload)));
+ ProcessFramesPacketWithAddresses(frames, connection_.self_address(),
+ kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_LT(2 * received->length(),
+ QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_));
+ if (connection_.validate_client_address()) {
+ EXPECT_TRUE(QuicConnectionPeer::IsAlternativePathValidated(&connection_));
+ }
+ // Receiving another probing packet from a newer address with a different
+ // port shouldn't trigger another reverse path validation.
+ QuicSocketAddress kNewerPeerAddress(QuicIpAddress::Loopback4(),
+ /*port=*/34567);
+ probing_packet = ConstructProbingPacket();
+ received.reset(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ ProcessReceivedPacket(kSelfAddress, kNewerPeerAddress, *received);
+ EXPECT_FALSE(connection_.HasPendingPathValidation());
+ EXPECT_EQ(connection_.validate_client_address(),
+ QuicConnectionPeer::IsAlternativePathValidated(&connection_));
+ }
+
+ // Process another packet with the old peer address on server side will not
+ // start peer migration.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+// Receive a padded PING packet with a port change on server side.
+TEST_P(QuicConnectionTest, ReceivePaddedPingWithPortChangeAtServer) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+ if (version().SupportsAntiAmplificationLimit()) {
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ }
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ if (GetParam().version.UsesCryptoFrames()) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ }
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ if (GetParam().version.HasIetfQuicFrames()) {
+ // In IETF version, a padded PING packet with port change is not taken as
+ // connectivity probe.
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+ EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
+ } else {
+ // In non-IETF version, process a padded PING packet from a new peer
+ // address on server side is effectively receiving a connectivity probing.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ EXPECT_CALL(visitor_,
+ OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+ .Times(1);
+ }
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+ QuicFrames frames;
+ // Write a PING frame, which has no data payload.
+ QuicPingFrame ping_frame;
+ frames.push_back(QuicFrame(ping_frame));
+
+ // Add padding to the rest of the packet.
+ QuicPaddingFrame padding_frame;
+ frames.push_back(QuicFrame(padding_frame));
+
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_INITIAL);
+
+ if (GetParam().version.HasIetfQuicFrames()) {
+ // Padded PING with port changen is not considered as connectivity probe but
+ // a PORT CHANGE.
+ EXPECT_EQ(num_probing_received,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+ } else {
+ EXPECT_EQ(num_probing_received + 1,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+ }
+
+ if (GetParam().version.HasIetfQuicFrames()) {
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+ }
+ // Process another packet with the old peer address on server side. gQUIC
+ // shouldn't regard this as a peer migration.
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, ReceiveReorderedPathProbingAtServer) {
+ PathProbeTestInit(Perspective::IS_SERVER);
+
+ // Decrease packet number to simulate out-of-order packets.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4);
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ if (!GetParam().version.HasIetfQuicFrames()) {
+ EXPECT_CALL(visitor_,
+ OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+ .Times(1);
+ } else {
+ EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
+ }
+
+ // Process a padded PING packet from a new peer address on server side
+ // is effectively receiving a connectivity probing, even if a newer packet has
+ // been received before this one.
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+ std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+ ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
+
+ EXPECT_EQ(num_probing_received + 1,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, MigrateAfterProbingAtServer) {
+ PathProbeTestInit(Perspective::IS_SERVER);
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ if (!GetParam().version.HasIetfQuicFrames()) {
+ EXPECT_CALL(visitor_,
+ OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+ .Times(1);
+ } else {
+ EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
+ }
+
+ // Process a padded PING packet from a new peer address on server side
+ // is effectively receiving a connectivity probing.
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+ std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Process another non-probing packet with the new peer address on server
+ // side will start peer migration.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+ kNewPeerAddress, ENCRYPTION_INITIAL);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, ReceiveConnectivityProbingPacketAtClient) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ PathProbeTestInit(Perspective::IS_CLIENT);
+
+ // Client takes all padded PING packet as speculative connectivity
+ // probing packet, and reports to visitor.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+
+ std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+ ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received);
+
+ EXPECT_EQ(
+ num_probing_received + (GetParam().version.HasIetfQuicFrames() ? 1u : 0u),
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, ReceiveConnectivityProbingResponseAtClient) {
+ // TODO(b/150095484): add test coverage for IETF to verify that client takes
+ // PATH RESPONSE with peer address change as correct validation on the new
+ // path.
+ if (GetParam().version.HasIetfQuicFrames()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ PathProbeTestInit(Perspective::IS_CLIENT);
+
+ // Process a padded PING packet with a different self address on client side
+ // is effectively receiving a connectivity probing.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ if (!GetParam().version.HasIetfQuicFrames()) {
+ EXPECT_CALL(visitor_,
+ OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+ .Times(1);
+ } else {
+ EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
+ }
+
+ const QuicSocketAddress kNewSelfAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+ std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+ ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received);
+
+ EXPECT_EQ(num_probing_received + 1,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, PeerAddressChangeAtClient) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ set_perspective(Perspective::IS_CLIENT);
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ }
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Process another packet with a different peer address on client side will
+ // only update peer address.
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+ kNewPeerAddress, ENCRYPTION_INITIAL);
+ if (connection_.version().HasIetfQuicFrames()) {
+ // IETF QUIC disallows server initiated address change.
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+ } else {
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+ }
+}
+
+TEST_P(QuicConnectionTest, MaxPacketSize) {
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+ EXPECT_EQ(1250u, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, PeerLowersMaxPacketSize) {
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+
+ // SetFromConfig is always called after construction from InitializeSession.
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ constexpr uint32_t kTestMaxPacketSize = 1233u;
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedMaxPacketSize(&config, kTestMaxPacketSize);
+ connection_.SetFromConfig(config);
+
+ EXPECT_EQ(kTestMaxPacketSize, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, PeerCannotRaiseMaxPacketSize) {
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+
+ // SetFromConfig is always called after construction from InitializeSession.
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ constexpr uint32_t kTestMaxPacketSize = 1450u;
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedMaxPacketSize(&config, kTestMaxPacketSize);
+ connection_.SetFromConfig(config);
+
+ EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) {
+ TestConnection connection(TestConnectionId(), kSelfAddress, kPeerAddress,
+ helper_.get(), alarm_factory_.get(), writer_.get(),
+ Perspective::IS_SERVER, version());
+ EXPECT_EQ(Perspective::IS_SERVER, connection.perspective());
+ EXPECT_EQ(1000u, connection.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, LowerServerResponseMtuTest) {
+ set_perspective(Perspective::IS_SERVER);
+ connection_.SetMaxPacketLength(1000);
+ EXPECT_EQ(1000u, connection_.max_packet_length());
+
+ SetQuicFlag(FLAGS_quic_use_lower_server_response_mtu_for_test, true);
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(::testing::AtMost(1));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(::testing::AtMost(1));
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+ EXPECT_EQ(1250u, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) {
+ set_perspective(Perspective::IS_SERVER);
+ connection_.SetMaxPacketLength(1000);
+
+ QuicPacketHeader header;
+ header.destination_connection_id = connection_id_;
+ header.version_flag = true;
+ header.packet_number = QuicPacketNumber(12);
+
+ if (QuicVersionHasLongHeaderLengths(
+ peer_framer_.version().transport_version)) {
+ header.long_packet_type = INITIAL;
+ header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
+ header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
+ }
+
+ QuicFrames frames;
+ QuicPaddingFrame padding;
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ frames.push_back(QuicFrame(&crypto_frame_));
+ } else {
+ frames.push_back(QuicFrame(frame1_));
+ }
+ frames.push_back(QuicFrame(padding));
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12),
+ *packet, buffer, kMaxOutgoingPacketSize);
+ EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length);
+
+ framer_.set_version(version());
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ }
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.ApproximateNow(),
+ false));
+
+ EXPECT_EQ(kMaxOutgoingPacketSize, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSizeWhileWriterLimited) {
+ const QuicByteCount lower_max_packet_size = 1240;
+ writer_->set_max_packet_size(lower_max_packet_size);
+ set_perspective(Perspective::IS_SERVER);
+ connection_.SetMaxPacketLength(1000);
+ EXPECT_EQ(1000u, connection_.max_packet_length());
+
+ QuicPacketHeader header;
+ header.destination_connection_id = connection_id_;
+ header.version_flag = true;
+ header.packet_number = QuicPacketNumber(12);
+
+ if (QuicVersionHasLongHeaderLengths(
+ peer_framer_.version().transport_version)) {
+ header.long_packet_type = INITIAL;
+ header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
+ header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
+ }
+
+ QuicFrames frames;
+ QuicPaddingFrame padding;
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ frames.push_back(QuicFrame(&crypto_frame_));
+ } else {
+ frames.push_back(QuicFrame(frame1_));
+ }
+ frames.push_back(QuicFrame(padding));
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12),
+ *packet, buffer, kMaxOutgoingPacketSize);
+ EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length);
+
+ framer_.set_version(version());
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ }
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.ApproximateNow(),
+ false));
+
+ // Here, the limit imposed by the writer is lower than the size of the packet
+ // received, so the writer max packet size is used.
+ EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriter) {
+ const QuicByteCount lower_max_packet_size = 1240;
+ writer_->set_max_packet_size(lower_max_packet_size);
+
+ static_assert(lower_max_packet_size < kDefaultMaxPacketSize,
+ "Default maximum packet size is too low");
+ connection_.SetMaxPacketLength(kDefaultMaxPacketSize);
+
+ EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriterForNewConnection) {
+ const QuicConnectionId connection_id = TestConnectionId(17);
+ const QuicByteCount lower_max_packet_size = 1240;
+ writer_->set_max_packet_size(lower_max_packet_size);
+ TestConnection connection(connection_id, kSelfAddress, kPeerAddress,
+ helper_.get(), alarm_factory_.get(), writer_.get(),
+ Perspective::IS_CLIENT, version());
+ EXPECT_EQ(Perspective::IS_CLIENT, connection.perspective());
+ EXPECT_EQ(lower_max_packet_size, connection.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, PacketsInOrder) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(1);
+ EXPECT_EQ(QuicPacketNumber(1u), LargestAcked(connection_.ack_frame()));
+ EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+
+ ProcessPacket(2);
+ EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(connection_.ack_frame()));
+ EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+
+ ProcessPacket(3);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+ EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+}
+
+TEST_P(QuicConnectionTest, PacketsOutOfOrder) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(3);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+ EXPECT_TRUE(IsMissing(2));
+ EXPECT_TRUE(IsMissing(1));
+
+ ProcessPacket(2);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+ EXPECT_FALSE(IsMissing(2));
+ EXPECT_TRUE(IsMissing(1));
+
+ ProcessPacket(1);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+ EXPECT_FALSE(IsMissing(2));
+ EXPECT_FALSE(IsMissing(1));
+}
+
+TEST_P(QuicConnectionTest, DuplicatePacket) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(3);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+ EXPECT_TRUE(IsMissing(2));
+ EXPECT_TRUE(IsMissing(1));
+
+ // Send packet 3 again, but do not set the expectation that
+ // the visitor OnStreamFrame() will be called.
+ ProcessDataPacket(3);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+ EXPECT_TRUE(IsMissing(2));
+ EXPECT_TRUE(IsMissing(1));
+}
+
+TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(3);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+ EXPECT_TRUE(IsMissing(2));
+ EXPECT_TRUE(IsMissing(1));
+
+ ProcessPacket(2);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+ EXPECT_TRUE(IsMissing(1));
+
+ ProcessPacket(5);
+ EXPECT_EQ(QuicPacketNumber(5u), LargestAcked(connection_.ack_frame()));
+ EXPECT_TRUE(IsMissing(1));
+ EXPECT_TRUE(IsMissing(4));
+
+ // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
+ // packet the peer will not retransmit. It indicates this by sending 'least
+ // awaiting' is 4. The connection should then realize 1 will not be
+ // retransmitted, and will remove it from the missing list.
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessAckPacket(6, &frame);
+
+ // Force an ack to be sent.
+ SendAckPacketToPeer();
+ EXPECT_TRUE(IsMissing(4));
+}
+
+TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) {
+ // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+ if (!IsDefaultTestConfiguration() ||
+ VersionHasIetfQuicFrames(version().transport_version)) {
+ return;
+ }
+
+ // Process an unencrypted packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_QUIC_PEER_BUG(ProcessDataPacketAtLevel(1, false, ENCRYPTION_INITIAL),
+ "");
+ TestConnectionCloseQuicErrorCode(QUIC_UNENCRYPTED_STREAM_DATA);
+}
+
+TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(3);
+ // Should not cause an ack.
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+ ProcessPacket(2);
+ // Should ack immediately, since this fills the last hole.
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+ ProcessPacket(1);
+ // Should ack immediately, since this fills the last hole.
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+
+ ProcessPacket(4);
+ // Should not cause an ack.
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+ SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+
+ QuicAckFrame ack1 = InitAckFrame(1);
+ QuicAckFrame ack2 = InitAckFrame(2);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()).Times(1);
+ }
+ ProcessAckPacket(2, &ack2);
+ // Should ack immediately since we have missing packets.
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()).Times(0);
+ }
+ ProcessAckPacket(1, &ack1);
+ // Should not ack an ack filling a missing packet.
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ QuicPacketNumber original, second;
+
+ QuicByteCount packet_size =
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original); // 1st packet.
+ SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second); // 2nd packet.
+
+ QuicAckFrame frame = InitAckFrame({{second, second + 1}});
+ // First nack triggers early retransmit.
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+ Return(LossDetectionInterface::DetectionStats())));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicPacketNumber retransmission;
+ // Packet 1 is short header for IETF QUIC because the encryption level
+ // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer.
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _,
+ GetParam().version.HasIetfInvariantHeader()
+ ? packet_size
+ : packet_size - kQuicVersionSize,
+ _))
+ .WillOnce(SaveArg<2>(&retransmission));
+
+ ProcessAckPacket(&frame);
+
+ QuicAckFrame frame2 = ConstructAckFrame(retransmission, original);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ ProcessAckPacket(&frame2);
+
+ // Now if the peer sends an ack which still reports the retransmitted packet
+ // as missing, that will bundle an ack with data after two acks in a row
+ // indicate the high water mark needs to be raised.
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
+ connection_.SendStreamDataWithString(3, "foo", 6, NO_FIN);
+ // No ack sent.
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+
+ // No more packet loss for the rest of the test.
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .Times(AnyNumber());
+ ProcessAckPacket(&frame2);
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
+ connection_.SendStreamDataWithString(3, "foofoofoo", 9, NO_FIN);
+ // Ack bundled.
+ if (GetParam().no_stop_waiting) {
+ // Do not ACK acks.
+ EXPECT_EQ(1u, writer_->frame_count());
+ } else {
+ EXPECT_EQ(3u, writer_->frame_count());
+ }
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ if (GetParam().no_stop_waiting) {
+ EXPECT_TRUE(writer_->ack_frames().empty());
+ } else {
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ }
+
+ // But an ack with no missing packets will not send an ack.
+ AckPacket(original, &frame2);
+ ProcessAckPacket(&frame2);
+ ProcessAckPacket(&frame2);
+}
+
+TEST_P(QuicConnectionTest, AckFrequencyUpdatedFromAckFrequencyFrame) {
+ if (!GetParam().version.HasIetfQuicFrames()) {
+ return;
+ }
+ connection_.set_can_receive_ack_frequency_frame();
+
+ // Expect 13 acks, every 3rd packet including the first packet with
+ // AckFrequencyFrame.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(13);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ QuicAckFrequencyFrame ack_frequency_frame;
+ ack_frequency_frame.packet_tolerance = 3;
+ ProcessFramePacketAtLevel(1, QuicFrame(&ack_frequency_frame),
+ ENCRYPTION_FORWARD_SECURE);
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(38);
+ // Receives packets 2 - 39.
+ for (size_t i = 2; i <= 39; ++i) {
+ ProcessDataPacket(i);
+ }
+}
+
+TEST_P(QuicConnectionTest, AckDecimationReducesAcks) {
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+
+ // Start ack decimation from 10th packet.
+ connection_.set_min_received_before_ack_decimation(10);
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(30);
+
+ // Expect 6 acks: 5 acks between packets 1-10, and ack at 20.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6);
+ // Receives packets 1 - 29.
+ for (size_t i = 1; i <= 29; ++i) {
+ ProcessDataPacket(i);
+ }
+
+ // We now receive the 30th packet, and so we send an ack.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessDataPacket(30);
+}
+
+TEST_P(QuicConnectionTest, AckNeedsRetransmittableFrames) {
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(99);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19);
+ // Receives packets 1 - 39.
+ for (size_t i = 1; i <= 39; ++i) {
+ ProcessDataPacket(i);
+ }
+ // Receiving Packet 40 causes 20th ack to send. Session is informed and adds
+ // WINDOW_UPDATE.
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
+ .WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(QuicFrame(QuicWindowUpdateFrame(1, 0, 0)));
+ }));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_EQ(0u, writer_->window_update_frames().size());
+ ProcessDataPacket(40);
+ EXPECT_EQ(1u, writer_->window_update_frames().size());
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(9);
+ // Receives packets 41 - 59.
+ for (size_t i = 41; i <= 59; ++i) {
+ ProcessDataPacket(i);
+ }
+ // Send a packet containing stream frame.
+ SendStreamDataToPeer(
+ QuicUtils::GetFirstBidirectionalStreamId(
+ connection_.version().transport_version, Perspective::IS_CLIENT),
+ "bar", 0, NO_FIN, nullptr);
+
+ // Session will not be informed until receiving another 20 packets.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19);
+ for (size_t i = 60; i <= 98; ++i) {
+ ProcessDataPacket(i);
+ EXPECT_EQ(0u, writer_->window_update_frames().size());
+ }
+ // Session does not add a retransmittable frame.
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
+ .WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
+ }));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_EQ(0u, writer_->ping_frames().size());
+ ProcessDataPacket(99);
+ EXPECT_EQ(0u, writer_->window_update_frames().size());
+ // A ping frame will be added.
+ EXPECT_EQ(1u, writer_->ping_frames().size());
+}
+
+TEST_P(QuicConnectionTest, AckNeedsRetransmittableFramesAfterPto) {
+ // Disable TLP so the RTO fires immediately.
+ connection_.SetMaxTailLossProbes(0);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(kEACK);
+ config.SetConnectionOptionsToSend(connection_options);
+ connection_.SetFromConfig(config);
+
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.OnHandshakeComplete();
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(10);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(4);
+ // Receive packets 1 - 9.
+ for (size_t i = 1; i <= 9; ++i) {
+ ProcessDataPacket(i);
+ }
+
+ // Send a ping and fire the retransmission alarm.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ SendPing();
+ QuicTime retransmission_time =
+ connection_.GetRetransmissionAlarm()->deadline();
+ clock_.AdvanceTime(retransmission_time - clock_.Now());
+ connection_.GetRetransmissionAlarm()->Fire();
+ ASSERT_TRUE(manager_->GetConsecutiveRtoCount() > 0 ||
+ manager_->GetConsecutivePtoCount() > 0);
+
+ // Process a packet, which requests a retransmittable frame be bundled
+ // with the ACK.
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
+ .WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(QuicFrame(QuicWindowUpdateFrame(1, 0, 0)));
+ }));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessDataPacket(11);
+ EXPECT_EQ(1u, writer_->window_update_frames().size());
+}
+
+TEST_P(QuicConnectionTest, LeastUnackedLower) {
+ if (GetParam().version.HasIetfInvariantHeader()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+ SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
+ SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr);
+
+ // Start out saying the least unacked is 2.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
+ ProcessStopWaitingPacket(InitStopWaitingFrame(2));
+
+ // Change it to 1, but lower the packet number to fake out-of-order packets.
+ // This should be fine.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1);
+ // The scheduler will not process out of order acks, but all packet processing
+ // causes the connection to try to write.
+ if (!GetParam().no_stop_waiting) {
+ EXPECT_CALL(visitor_, OnCanWrite());
+ }
+ ProcessStopWaitingPacket(InitStopWaitingFrame(1));
+
+ // Now claim it's one, but set the ordering so it was sent "after" the first
+ // one. This should cause a connection error.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 7);
+ if (!GetParam().no_stop_waiting) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1));
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .Times(AtLeast(1));
+ }
+ ProcessStopWaitingPacket(InitStopWaitingFrame(1));
+ if (!GetParam().no_stop_waiting) {
+ TestConnectionCloseQuicErrorCode(QUIC_INVALID_STOP_WAITING_DATA);
+ }
+}
+
+TEST_P(QuicConnectionTest, TooManySentPackets) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ QuicPacketCount max_tracked_packets = 50;
+ QuicConnectionPeer::SetMaxTrackedPackets(&connection_, max_tracked_packets);
+
+ const int num_packets = max_tracked_packets + 5;
+
+ for (int i = 0; i < num_packets; ++i) {
+ SendStreamDataToPeer(1, "foo", 3 * i, NO_FIN, nullptr);
+ }
+
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+
+ ProcessFramePacket(QuicFrame(QuicPingFrame()));
+
+ TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS);
+}
+
+TEST_P(QuicConnectionTest, LargestObservedLower) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+ SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
+ SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+ // Start out saying the largest observed is 2.
+ QuicAckFrame frame1 = InitAckFrame(1);
+ QuicAckFrame frame2 = InitAckFrame(2);
+ ProcessAckPacket(&frame2);
+
+ EXPECT_CALL(visitor_, OnCanWrite());
+ ProcessAckPacket(&frame1);
+}
+
+TEST_P(QuicConnectionTest, AckUnsentData) {
+ // Ack a packet which has not been sent.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
+ ProcessAckPacket(&frame);
+ TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA);
+}
+
+TEST_P(QuicConnectionTest, BasicSending) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ const QuicConnectionStats& stats = connection_.GetStats();
+ EXPECT_FALSE(stats.first_decrypted_packet.IsInitialized());
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(1);
+ EXPECT_EQ(QuicPacketNumber(1), stats.first_decrypted_packet);
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1
+ EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+ SendAckPacketToPeer(); // Packet 2
+
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
+ }
+
+ SendAckPacketToPeer(); // Packet 3
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
+ }
+
+ SendStreamDataToPeer(1, "bar", 3, NO_FIN, &last_packet); // Packet 4
+ EXPECT_EQ(QuicPacketNumber(4u), last_packet);
+ SendAckPacketToPeer(); // Packet 5
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
+ }
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+ // Peer acks up to packet 3.
+ QuicAckFrame frame = InitAckFrame(3);
+ ProcessAckPacket(&frame);
+ SendAckPacketToPeer(); // Packet 6
+
+ // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
+ // ack for 4.
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
+ }
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+ // Peer acks up to packet 4, the last packet.
+ QuicAckFrame frame2 = InitAckFrame(6);
+ ProcessAckPacket(&frame2); // Acks don't instigate acks.
+
+ // Verify that we did not send an ack.
+ EXPECT_EQ(QuicPacketNumber(6u), writer_->header().packet_number);
+
+ // So the last ack has not changed.
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
+ }
+
+ // If we force an ack, we shouldn't change our retransmit state.
+ SendAckPacketToPeer(); // Packet 7
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(7u), least_unacked());
+ }
+
+ // But if we send more data it should.
+ SendStreamDataToPeer(1, "eep", 6, NO_FIN, &last_packet); // Packet 8
+ EXPECT_EQ(QuicPacketNumber(8u), last_packet);
+ SendAckPacketToPeer(); // Packet 9
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(7u), least_unacked());
+ }
+ EXPECT_EQ(QuicPacketNumber(1), stats.first_decrypted_packet);
+}
+
+// QuicConnection should record the packet sent-time prior to sending the
+// packet.
+TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) {
+ // We're using a MockClock for the tests, so we have complete control over the
+ // time.
+ // Our recorded timestamp for the last packet sent time will be passed in to
+ // the send_algorithm. Make sure that it is set to the correct value.
+ QuicTime actual_recorded_send_time = QuicTime::Zero();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<0>(&actual_recorded_send_time));
+
+ // First send without any pause and check the result.
+ QuicTime expected_recorded_send_time = clock_.Now();
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
+ << "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
+ << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue();
+
+ // Now pause during the write, and check the results.
+ actual_recorded_send_time = QuicTime::Zero();
+ const QuicTime::Delta write_pause_time_delta =
+ QuicTime::Delta::FromMilliseconds(5000);
+ SetWritePauseTimeDelta(write_pause_time_delta);
+ expected_recorded_send_time = clock_.Now();
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<0>(&actual_recorded_send_time));
+ connection_.SendStreamDataWithString(2, "baz", 0, NO_FIN);
+ EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
+ << "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
+ << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue();
+}
+
+TEST_P(QuicConnectionTest, FramePacking) {
+ // Send two stream frames in 1 packet by queueing them.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ connection_.SendStreamData3();
+ connection_.SendStreamData5();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ }
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure it's an ack and two stream frames from
+ // two different streams.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ }
+
+ EXPECT_TRUE(writer_->ack_frames().empty());
+
+ ASSERT_EQ(2u, writer_->stream_frames().size());
+ EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+ EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
+ writer_->stream_frames()[1]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) {
+ // Send two stream frames (one non-crypto, then one crypto) in 2 packets by
+ // queueing them.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ connection_.SendStreamData3();
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.SendCryptoStreamData();
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ }
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure it contains a crypto stream frame.
+ EXPECT_LE(2u, writer_->frame_count());
+ ASSERT_LE(1u, writer_->padding_frames().size());
+ if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ ASSERT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(QuicUtils::GetCryptoStreamId(connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+ } else {
+ EXPECT_LE(1u, writer_->crypto_frames().size());
+ }
+}
+
+TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) {
+ // Send two stream frames (one crypto, then one non-crypto) in 2 packets by
+ // queueing them.
+ {
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ connection_.SendCryptoStreamData();
+ connection_.SendStreamData3();
+ }
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure it's the stream frame from stream 3.
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ ASSERT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, FramePackingAckResponse) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ // Process a data packet to queue up a pending ack.
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ }
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+ QuicPacketNumber last_packet;
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ connection_.SendCryptoDataWithString("foo", 0);
+ } else {
+ SendStreamDataToPeer(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), "foo", 0,
+ NO_FIN, &last_packet);
+ }
+ // Verify ack is bundled with outging packet.
+ EXPECT_FALSE(writer_->ack_frames().empty());
+
+ EXPECT_CALL(visitor_, OnCanWrite())
+ .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendStreamData3)),
+ IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendStreamData5))));
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+
+ // Process a data packet to cause the visitor's OnCanWrite to be invoked.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<StrictTaggingDecrypter>(0x01));
+ ProcessDataPacket(2);
+
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure it's an ack and two stream frames from
+ // two different streams.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(4u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ ASSERT_EQ(2u, writer_->stream_frames().size());
+ EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+ EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
+ writer_->stream_frames()[1]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, FramePackingSendv) {
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+
+ QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId(
+ connection_.transport_version(), Perspective::IS_CLIENT);
+ connection_.SaveAndSendStreamData(stream_id, "ABCDEF", 0, NO_FIN);
+
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure multiple iovector blocks have
+ // been packed into a single stream frame from one stream.
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(0u, writer_->padding_frames().size());
+ QuicStreamFrame* frame = writer_->stream_frames()[0].get();
+ EXPECT_EQ(stream_id, frame->stream_id);
+ EXPECT_EQ("ABCDEF",
+ absl::string_view(frame->data_buffer, frame->data_length));
+}
+
+TEST_P(QuicConnectionTest, FramePackingSendvQueued) {
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+
+ BlockOnNextWrite();
+ QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId(
+ connection_.transport_version(), Perspective::IS_CLIENT);
+ connection_.SaveAndSendStreamData(stream_id, "ABCDEF", 0, NO_FIN);
+
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+ EXPECT_TRUE(connection_.HasQueuedData());
+
+ // Unblock the writes and actually send.
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+
+ // Parse the last packet and ensure it's one stream frame from one stream.
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(0u, writer_->padding_frames().size());
+ QuicStreamFrame* frame = writer_->stream_frames()[0].get();
+ EXPECT_EQ(stream_id, frame->stream_id);
+ EXPECT_EQ("ABCDEF",
+ absl::string_view(frame->data_buffer, frame->data_length));
+}
+
+TEST_P(QuicConnectionTest, SendingZeroBytes) {
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Send a zero byte write with a fin using writev.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId(
+ connection_.transport_version(), Perspective::IS_CLIENT);
+ connection_.SaveAndSendStreamData(stream_id, {}, 0, FIN);
+
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Padding frames are added by v99 to ensure a minimum packet size.
+ size_t extra_padding_frames = 0;
+ if (GetParam().version.HasHeaderProtection()) {
+ extra_padding_frames = 1;
+ }
+
+ // Parse the last packet and ensure it's one stream frame from one stream.
+ EXPECT_EQ(1u + extra_padding_frames, writer_->frame_count());
+ EXPECT_EQ(extra_padding_frames, writer_->padding_frames().size());
+ ASSERT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(stream_id, writer_->stream_frames()[0]->stream_id);
+ EXPECT_TRUE(writer_->stream_frames()[0]->fin);
+}
+
+TEST_P(QuicConnectionTest, LargeSendWithPendingAck) {
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ // Set the ack alarm by processing a ping frame.
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Processs a PING frame.
+ ProcessFramePacket(QuicFrame(QuicPingFrame()));
+ // Ensure that this has caused the ACK alarm to be set.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ // Send data and ensure the ack is bundled.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(9);
+ const std::string data(10000, '?');
+ QuicConsumedData consumed = connection_.SaveAndSendStreamData(
+ GetNthClientInitiatedStreamId(0, connection_.transport_version()), data,
+ 0, FIN);
+ EXPECT_EQ(data.length(), consumed.bytes_consumed);
+ EXPECT_TRUE(consumed.fin_consumed);
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure it's one stream frame with a fin.
+ EXPECT_EQ(1u, writer_->frame_count());
+ ASSERT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(GetNthClientInitiatedStreamId(0, connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+ EXPECT_TRUE(writer_->stream_frames()[0]->fin);
+ // Ensure the ack alarm was cancelled when the ack was sent.
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, OnCanWrite) {
+ // Visitor's OnCanWrite will send data, but will have more pending writes.
+ EXPECT_CALL(visitor_, OnCanWrite())
+ .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendStreamData3)),
+ IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendStreamData5))));
+ {
+ InSequence seq;
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true));
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite())
+ .WillRepeatedly(Return(false));
+ }
+
+ EXPECT_CALL(*send_algorithm_, CanSend(_))
+ .WillRepeatedly(testing::Return(true));
+
+ connection_.OnCanWrite();
+
+ // Parse the last packet and ensure it's the two stream frames from
+ // two different streams.
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_EQ(2u, writer_->stream_frames().size());
+ EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+ EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
+ writer_->stream_frames()[1]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, RetransmitOnNack) {
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(3, "foos", 3, NO_FIN, &last_packet);
+ SendStreamDataToPeer(3, "fooos", 7, NO_FIN, &last_packet);
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Don't lose a packet on an ack, and nothing is retransmitted.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame ack_one = InitAckFrame(1);
+ ProcessAckPacket(&ack_one);
+
+ // Lose a packet and ensure it triggers retransmission.
+ QuicAckFrame nack_two = ConstructAckFrame(3, 2);
+ LostPacketVector lost_packets;
+ lost_packets.push_back(
+ LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+ Return(LossDetectionInterface::DetectionStats())));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_));
+ ProcessAckPacket(&nack_two);
+}
+
+TEST_P(QuicConnectionTest, DoNotSendQueuedPacketForResetStream) {
+ // Block the connection to queue the packet.
+ BlockOnNextWrite();
+
+ QuicStreamId stream_id = 2;
+ connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
+
+ // Now that there is a queued packet, reset the stream.
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+ // Unblock the connection and verify that only the RST_STREAM is sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+}
+
+TEST_P(QuicConnectionTest, SendQueuedPacketForQuicRstStreamNoError) {
+ // Block the connection to queue the packet.
+ BlockOnNextWrite();
+
+ QuicStreamId stream_id = 2;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
+
+ // Now that there is a queued packet, reset the stream.
+ SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3);
+
+ // Unblock the connection and verify that the RST_STREAM is sent and the data
+ // packet is sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+}
+
+TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnNack) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12);
+
+ // Lose a packet and ensure it does not trigger retransmission.
+ QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessAckPacket(&nack_two);
+}
+
+TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnNack) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12);
+
+ // Lose a packet, ensure it triggers retransmission.
+ QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+ Return(LossDetectionInterface::DetectionStats())));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ ProcessAckPacket(&nack_two);
+}
+
+TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnRTO) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+ // Fire the RTO and verify that the RST_STREAM is resent, not stream data.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ connection_.GetRetransmissionAlarm()->Fire();
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+ EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
+}
+
+// Ensure that if the only data in flight is non-retransmittable, the
+// retransmission alarm is not set.
+TEST_P(QuicConnectionTest, CancelRetransmissionAlarmAfterResetStream) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_data_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet);
+
+ // Cancel the stream.
+ const QuicPacketNumber rst_packet = last_data_packet + 1;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, rst_packet, _, _)).Times(1);
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+ // Ack the RST_STREAM frame (since it's retransmittable), but not the data
+ // packet, which is no longer retransmittable since the stream was cancelled.
+ QuicAckFrame nack_stream_data =
+ ConstructAckFrame(rst_packet, last_data_packet);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessAckPacket(&nack_stream_data);
+
+ // Ensure that the data is still in flight, but the retransmission alarm is no
+ // longer set.
+ EXPECT_GT(manager_->GetBytesInFlight(), 0u);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnRTO) {
+ connection_.SetMaxTailLossProbes(0);
+
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3);
+
+ // Fire the RTO and verify that the RST_STREAM is resent, the stream data
+ // is sent.
+ const size_t num_retransmissions = connection_.PtoEnabled() ? 1 : 2;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(num_retransmissions));
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ connection_.GetRetransmissionAlarm()->Fire();
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ if (num_retransmissions == 2) {
+ ASSERT_EQ(1u, writer_->rst_stream_frames().size());
+ EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
+ }
+}
+
+TEST_P(QuicConnectionTest, DoNotSendPendingRetransmissionForResetStream) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN);
+
+ // Lose a packet which will trigger a pending retransmission.
+ QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessAckPacket(&ack);
+
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12);
+
+ // Unblock the connection and verify that the RST_STREAM is sent but not the
+ // second data packet nor a retransmit.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ ASSERT_EQ(1u, writer_->rst_stream_frames().size());
+ EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
+}
+
+TEST_P(QuicConnectionTest, SendPendingRetransmissionForQuicRstStreamNoError) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN);
+
+ // Lose a packet which will trigger a pending retransmission.
+ QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+ Return(LossDetectionInterface::DetectionStats())));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessAckPacket(&ack);
+
+ SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12);
+
+ // Unblock the connection and verify that the RST_STREAM is sent and the
+ // second data packet or a retransmit is sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2));
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ // The RST_STREAM_FRAME is sent after queued packets and pending
+ // retransmission.
+ connection_.SendControlFrame(QuicFrame(
+ new QuicRstStreamFrame(1, stream_id, QUIC_STREAM_NO_ERROR, 14)));
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+}
+
+TEST_P(QuicConnectionTest, RetransmitAckedPacket) {
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1
+ SendStreamDataToPeer(1, "foos", 3, NO_FIN, &last_packet); // Packet 2
+ SendStreamDataToPeer(1, "fooos", 7, NO_FIN, &last_packet); // Packet 3
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Instigate a loss with an ack.
+ QuicAckFrame nack_two = ConstructAckFrame(3, 2);
+ // The first nack should trigger a fast retransmission, but we'll be
+ // write blocked, so the packet will be queued.
+ BlockOnNextWrite();
+
+ LostPacketVector lost_packets;
+ lost_packets.push_back(
+ LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+ Return(LossDetectionInterface::DetectionStats())));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _))
+ .Times(1);
+ ProcessAckPacket(&nack_two);
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ // Now, ack the previous transmission.
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(false, _, _, _, _));
+ QuicAckFrame ack_all = InitAckFrame(3);
+ ProcessAckPacket(&ack_all);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _))
+ .Times(0);
+
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ // We do not store retransmittable frames of this retransmission.
+ EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, 4));
+}
+
+TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ QuicPacketNumber original, second;
+
+ QuicByteCount packet_size =
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original); // 1st packet.
+ SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second); // 2nd packet.
+
+ QuicAckFrame frame = InitAckFrame({{second, second + 1}});
+ // The first nack should retransmit the largest observed packet.
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+ Return(LossDetectionInterface::DetectionStats())));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ // Packet 1 is short header for IETF QUIC because the encryption level
+ // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer.
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _,
+ GetParam().version.HasIetfInvariantHeader()
+ ? packet_size
+ : packet_size - kQuicVersionSize,
+ _));
+ ProcessAckPacket(&frame);
+}
+
+TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ connection_.SetMaxTailLossProbes(0);
+
+ for (int i = 0; i < 10; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(3, "foo", i * 3, NO_FIN);
+ }
+
+ // Block the writer and ensure they're queued.
+ BlockOnNextWrite();
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_TRUE(connection_.HasQueuedData());
+
+ // Unblock the writer.
+ writer_->SetWritable();
+ clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(
+ 2 * DefaultRetransmissionTime().ToMicroseconds()));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ connection_.GetRetransmissionAlarm()->Fire();
+ connection_.OnCanWrite();
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedBufferedThenSent) {
+ BlockOnNextWrite();
+ writer_->set_is_write_blocked_data_buffered(true);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedThenSent) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ BlockOnNextWrite();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ // The second packet should also be queued, in order to ensure packets are
+ // never sent out of order.
+ writer_->SetWritable();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_EQ(2u, connection_.NumQueuedPackets());
+
+ // Now both are sent in order when we unblock.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.OnCanWrite();
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ BlockOnNextWrite();
+ writer_->set_is_write_blocked_data_buffered(true);
+ // Simulate the retransmission alarm firing.
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // Ack the sent packet before the callback returns, which happens in
+ // rare circumstances with write blocked sockets.
+ QuicAckFrame ack = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&ack);
+
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ uint64_t retransmission = connection_.PtoEnabled() ? 3 : 2;
+ EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_,
+ retransmission));
+}
+
+TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) {
+ // Block the connection.
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+
+ // Set the send alarm. Fire the alarm and ensure it doesn't attempt to write.
+ connection_.GetSendAlarm()->Set(clock_.ApproximateNow());
+ connection_.GetSendAlarm()->Fire();
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, NoSendAlarmAfterProcessPacketWhenWriteBlocked) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Block the connection.
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ // Process packet number 1. Can not call ProcessPacket or ProcessDataPacket
+ // here, because they will fire the alarm after QuicConnection::ProcessPacket
+ // is returned.
+ const uint64_t received_packet_num = 1;
+ const bool has_stop_waiting = false;
+ const EncryptionLevel level = ENCRYPTION_FORWARD_SECURE;
+ std::unique_ptr<QuicPacket> packet(
+ ConstructDataPacket(received_packet_num, has_stop_waiting, level));
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(level, QuicPacketNumber(received_packet_num),
+ *packet, buffer, kMaxOutgoingPacketSize);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, AddToWriteBlockedListIfWriterBlockedWhenProcessing) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+
+ // Simulate the case where a shared writer gets blocked by another connection.
+ writer_->SetWriteBlocked();
+
+ // Process an ACK, make sure the connection calls visitor_->OnWriteBlocked().
+ QuicAckFrame ack1 = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+ ProcessAckPacket(1, &ack1);
+}
+
+TEST_P(QuicConnectionTest, DoNotAddToWriteBlockedListAfterDisconnect) {
+ writer_->SetBatchMode(true);
+ EXPECT_TRUE(connection_.connected());
+ // Have to explicitly grab the OnConnectionClosed frame and check
+ // its parameters because this is a silent connection close and the
+ // frame is not also transmitted to the peer.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0);
+
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+
+ EXPECT_FALSE(connection_.connected());
+ writer_->SetWriteBlocked();
+ }
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_PEER_GOING_AWAY));
+}
+
+TEST_P(QuicConnectionTest, AddToWriteBlockedListIfBlockedOnFlushPackets) {
+ writer_->SetBatchMode(true);
+ writer_->BlockOnNextFlush();
+
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ // flusher's destructor will call connection_.FlushPackets, which should add
+ // the connection to the write blocked list.
+ }
+}
+
+TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ int offset = 0;
+ // Send packets 1 to 15.
+ for (int i = 0; i < 15; ++i) {
+ SendStreamDataToPeer(1, "foo", offset, NO_FIN, nullptr);
+ offset += 3;
+ }
+
+ // Ack 15, nack 1-14.
+
+ QuicAckFrame nack =
+ InitAckFrame({{QuicPacketNumber(15), QuicPacketNumber(16)}});
+
+ // 14 packets have been NACK'd and lost.
+ LostPacketVector lost_packets;
+ for (int i = 1; i < 15; ++i) {
+ lost_packets.push_back(
+ LostPacket(QuicPacketNumber(i), kMaxOutgoingPacketSize));
+ }
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+ Return(LossDetectionInterface::DetectionStats())));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessAckPacket(&nack);
+}
+
+// Test sending multiple acks from the connection to the session.
+TEST_P(QuicConnectionTest, MultipleAcks) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(1);
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1
+ EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet); // Packet 2
+ EXPECT_EQ(QuicPacketNumber(2u), last_packet);
+ SendAckPacketToPeer(); // Packet 3
+ SendStreamDataToPeer(5, "foo", 0, NO_FIN, &last_packet); // Packet 4
+ EXPECT_EQ(QuicPacketNumber(4u), last_packet);
+ SendStreamDataToPeer(1, "foo", 3, NO_FIN, &last_packet); // Packet 5
+ EXPECT_EQ(QuicPacketNumber(5u), last_packet);
+ SendStreamDataToPeer(3, "foo", 3, NO_FIN, &last_packet); // Packet 6
+ EXPECT_EQ(QuicPacketNumber(6u), last_packet);
+
+ // Client will ack packets 1, 2, [!3], 4, 5.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame1 = ConstructAckFrame(5, 3);
+ ProcessAckPacket(&frame1);
+
+ // Now the client implicitly acks 3, and explicitly acks 6.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame2 = InitAckFrame(6);
+ ProcessAckPacket(&frame2);
+}
+
+TEST_P(QuicConnectionTest, DontLatchUnackedPacket) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(1);
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); // Packet 1;
+ // From now on, we send acks, so the send algorithm won't mark them pending.
+ SendAckPacketToPeer(); // Packet 2
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame = InitAckFrame(1);
+ ProcessAckPacket(&frame);
+
+ // Verify that our internal state has least-unacked as 2, because we're still
+ // waiting for a potential ack for 2.
+
+ EXPECT_EQ(QuicPacketNumber(2u), stop_waiting()->least_unacked);
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame(2);
+ ProcessAckPacket(&frame);
+ EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked);
+
+ // When we send an ack, we make sure our least-unacked makes sense. In this
+ // case since we're not waiting on an ack for 2 and all packets are acked, we
+ // set it to 3.
+ SendAckPacketToPeer(); // Packet 3
+ // Least_unacked remains at 3 until another ack is received.
+ EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked);
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ // Check that the outgoing ack had its packet number as least_unacked.
+ EXPECT_EQ(QuicPacketNumber(3u), least_unacked());
+ }
+
+ // Ack the ack, which updates the rtt and raises the least unacked.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame(3);
+ ProcessAckPacket(&frame);
+
+ SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); // Packet 4
+ EXPECT_EQ(QuicPacketNumber(4u), stop_waiting()->least_unacked);
+ SendAckPacketToPeer(); // Packet 5
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
+ }
+
+ // Send two data packets at the end, and ensure if the last one is acked,
+ // the least unacked is raised above the ack packets.
+ SendStreamDataToPeer(1, "bar", 6, NO_FIN, nullptr); // Packet 6
+ SendStreamDataToPeer(1, "bar", 9, NO_FIN, nullptr); // Packet 7
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(5)},
+ {QuicPacketNumber(7), QuicPacketNumber(8)}});
+ ProcessAckPacket(&frame);
+
+ EXPECT_EQ(QuicPacketNumber(6u), stop_waiting()->least_unacked);
+}
+
+TEST_P(QuicConnectionTest, TLP) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ connection_.SetMaxTailLossProbes(1);
+
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
+ EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+ QuicTime retransmission_time =
+ connection_.GetRetransmissionAlarm()->deadline();
+ EXPECT_NE(QuicTime::Zero(), retransmission_time);
+
+ EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number);
+ // Simulate the retransmission alarm firing and sending a tlp,
+ // so send algorithm's OnRetransmissionTimeout is not called.
+ clock_.AdvanceTime(retransmission_time - clock_.Now());
+ const QuicPacketNumber retransmission(
+ connection_.SupportsMultiplePacketNumberSpaces() ? 3 : 2);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, retransmission, _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(retransmission, writer_->header().packet_number);
+ // We do not raise the high water mark yet.
+ EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+}
+
+TEST_P(QuicConnectionTest, RTO) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ connection_.SetMaxTailLossProbes(0);
+
+ QuicTime default_retransmission_time =
+ clock_.ApproximateNow() + DefaultRetransmissionTime();
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
+ EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+
+ EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number);
+ EXPECT_EQ(default_retransmission_time,
+ connection_.GetRetransmissionAlarm()->deadline());
+ // Simulate the retransmission alarm firing.
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number);
+ // We do not raise the high water mark yet.
+ EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+}
+
+// Regression test of b/133771183.
+TEST_P(QuicConnectionTest, RtoWithNoDataToRetransmit) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ connection_.SetMaxTailLossProbes(0);
+
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
+ // Connection is cwnd limited.
+ CongestionBlockWrites();
+ // Stream gets reset.
+ SendRstStream(3, QUIC_ERROR_PROCESSING_STREAM, 3);
+ // Simulate the retransmission alarm firing.
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ // RTO fires, but there is no packet to be RTOed.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(40);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(20);
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false));
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(1);
+ // Receives packets 1 - 40.
+ for (size_t i = 1; i <= 40; ++i) {
+ ProcessDataPacket(i);
+ }
+}
+
+TEST_P(QuicConnectionTest, SendHandshakeMessages) {
+ use_tagging_decrypter();
+ // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
+ // the end of the packet. We can test this to check which encrypter was used.
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+
+ // Attempt to send a handshake message and have the socket block.
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ BlockOnNextWrite();
+ connection_.SendCryptoDataWithString("foo", 0);
+ // The packet should be serialized, but not queued.
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ // Switch to the new encrypter.
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+
+ // Now become writeable and flush the packets.
+ writer_->SetWritable();
+ EXPECT_CALL(visitor_, OnCanWrite());
+ connection_.OnCanWrite();
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+
+ // Verify that the handshake packet went out at the null encryption.
+ EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+}
+
+TEST_P(QuicConnectionTest,
+ DropRetransmitsForNullEncryptedPacketAfterForwardSecure) {
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SendCryptoStreamData();
+
+ // Simulate the retransmission alarm firing and the socket blocking.
+ BlockOnNextWrite();
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ // Go forward secure.
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ notifier_.NeuterUnencryptedData();
+ connection_.NeuterUnencryptedPackets();
+ connection_.OnHandshakeComplete();
+
+ EXPECT_EQ(QuicTime::Zero(), connection_.GetRetransmissionAlarm()->deadline());
+ // Unblock the socket and ensure that no packets are sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+}
+
+TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) {
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+
+ connection_.SendCryptoDataWithString("foo", 0);
+
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+
+ SendStreamDataToPeer(2, "bar", 0, NO_FIN, nullptr);
+ EXPECT_FALSE(notifier_.HasLostStreamData());
+ connection_.MarkZeroRttPacketsForRetransmission(0);
+ EXPECT_TRUE(notifier_.HasLostStreamData());
+}
+
+TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ // SetFromConfig is always called after construction from InitializeSession.
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ use_tagging_decrypter();
+
+ const uint8_t tag = 0x07;
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(tag));
+
+ // Process an encrypted packet which can not yet be decrypted which should
+ // result in the packet being buffered.
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Transition to the new encryption state and process another encrypted packet
+ // which should result in the original packet being processed.
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(tag));
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(tag));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2);
+ ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Finally, process a third packet and note that we do not reprocess the
+ // buffered packet.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+}
+
+TEST_P(QuicConnectionTest, TestRetransmitOrder) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ connection_.SetMaxTailLossProbes(0);
+
+ QuicByteCount first_packet_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&first_packet_size));
+
+ connection_.SendStreamDataWithString(3, "first_packet", 0, NO_FIN);
+ QuicByteCount second_packet_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&second_packet_size));
+ connection_.SendStreamDataWithString(3, "second_packet", 12, NO_FIN);
+ EXPECT_NE(first_packet_size, second_packet_size);
+ // Advance the clock by huge time to make sure packets will be retransmitted.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
+ {
+ InSequence s;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _));
+ }
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // Advance again and expect the packets to be sent again in the same order.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20));
+ {
+ InSequence s;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _));
+ }
+ connection_.GetRetransmissionAlarm()->Fire();
+}
+
+TEST_P(QuicConnectionTest, Buffer100NonDecryptablePacketsThenKeyChange) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ // SetFromConfig is always called after construction from InitializeSession.
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ config.set_max_undecryptable_packets(100);
+ connection_.SetFromConfig(config);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ use_tagging_decrypter();
+
+ const uint8_t tag = 0x07;
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(tag));
+
+ // Process an encrypted packet which can not yet be decrypted which should
+ // result in the packet being buffered.
+ for (uint64_t i = 1; i <= 100; ++i) {
+ ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+
+ // Transition to the new encryption state and process another encrypted packet
+ // which should result in the original packets being processed.
+ EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(tag));
+ EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(tag));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(100);
+ connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+
+ // Finally, process a third packet and note that we do not reprocess the
+ // buffered packet.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(102, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+}
+
+TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) {
+ BlockOnNextWrite();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Test that RTO is started once we write to the socket.
+ writer_->SetWritable();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.OnCanWrite();
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ connection_.SetMaxTailLossProbes(0);
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+ connection_.SendStreamDataWithString(3, "bar", 0, NO_FIN);
+ QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm();
+ EXPECT_TRUE(retransmission_alarm->IsSet());
+ EXPECT_EQ(DefaultRetransmissionTime(),
+ retransmission_alarm->deadline() - clock_.Now());
+
+ // Advance the time right before the RTO, then receive an ack for the first
+ // packet to delay the RTO.
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame ack = InitAckFrame(1);
+ ProcessAckPacket(&ack);
+ // Now we have an RTT sample of DefaultRetransmissionTime(500ms),
+ // so the RTO has increased to 2 * SRTT.
+ EXPECT_TRUE(retransmission_alarm->IsSet());
+ EXPECT_EQ(retransmission_alarm->deadline() - clock_.Now(),
+ 2 * DefaultRetransmissionTime());
+
+ // Move forward past the original RTO and ensure the RTO is still pending.
+ clock_.AdvanceTime(2 * DefaultRetransmissionTime());
+
+ // Ensure the second packet gets retransmitted when it finally fires.
+ EXPECT_TRUE(retransmission_alarm->IsSet());
+ EXPECT_EQ(retransmission_alarm->deadline(), clock_.ApproximateNow());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ // Manually cancel the alarm to simulate a real test.
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // The new retransmitted packet number should set the RTO to a larger value
+ // than previously.
+ EXPECT_TRUE(retransmission_alarm->IsSet());
+ QuicTime next_rto_time = retransmission_alarm->deadline();
+ QuicTime expected_rto_time =
+ connection_.sent_packet_manager().GetRetransmissionTime();
+ EXPECT_EQ(next_rto_time, expected_rto_time);
+}
+
+TEST_P(QuicConnectionTest, TestQueued) {
+ connection_.SetMaxTailLossProbes(0);
+
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ // Unblock the writes and actually send.
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, InitialTimeout) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+
+ // SetFromConfig sets the initial timeouts before negotiation.
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ // Subtract a second from the idle timeout on the client side.
+ QuicTime default_timeout =
+ clock_.ApproximateNow() +
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ // Simulate the timeout alarm firing.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1));
+ connection_.GetTimeoutAlarm()->Fire();
+
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+ TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, IdleTimeoutAfterFirstSentPacket) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ QuicTime initial_ddl =
+ clock_.ApproximateNow() +
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline());
+ EXPECT_TRUE(connection_.connected());
+
+ // Advance the time and send the first packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+ // This will be the updated deadline for the connection to idle time out.
+ QuicTime new_ddl = clock_.ApproximateNow() +
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+
+ // Simulate the timeout alarm firing, the connection should not be closed as
+ // a new packet has been sent.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+ QuicTime::Delta delay = initial_ddl - clock_.ApproximateNow();
+ clock_.AdvanceTime(delay);
+ // Verify the timeout alarm deadline is updated.
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_EQ(new_ddl, connection_.GetTimeoutAlarm()->deadline());
+
+ // Simulate the timeout alarm firing again, the connection now should be
+ // closed.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ clock_.AdvanceTime(new_ddl - clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, IdleTimeoutAfterSendTwoPackets) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ QuicTime initial_ddl =
+ clock_.ApproximateNow() +
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline());
+ EXPECT_TRUE(connection_.connected());
+
+ // Immediately send the first packet, this is a rare case but test code will
+ // hit this issue often as MockClock used for tests doesn't move with code
+ // execution until manually adjusted.
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+
+ // Advance the time and send the second packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(2u), last_packet);
+
+ // Simulate the timeout alarm firing, the connection will be closed.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ clock_.AdvanceTime(initial_ddl - clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, HandshakeTimeout) {
+ // Use a shorter handshake timeout than idle timeout for this test.
+ const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
+ connection_.SetNetworkTimeouts(timeout, timeout);
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+
+ QuicTime handshake_timeout =
+ clock_.ApproximateNow() + timeout - QuicTime::Delta::FromSeconds(1);
+ EXPECT_EQ(handshake_timeout, connection_.GetTimeoutAlarm()->deadline());
+ EXPECT_TRUE(connection_.connected());
+
+ // Send and ack new data 3 seconds later to lengthen the idle timeout.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(0, connection_.transport_version()),
+ "GET /", 0, FIN, nullptr);
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3));
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&frame);
+
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+
+ clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(2));
+
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ // Simulate the timeout alarm firing.
+ connection_.GetTimeoutAlarm()->Fire();
+
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+ TestConnectionCloseQuicErrorCode(QUIC_HANDSHAKE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, PingAfterSend) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+
+ // Advance to 5ms, and send a packet to the peer, which will set
+ // the ping alarm.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(0, connection_.transport_version()),
+ "GET /", 0, FIN, nullptr);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(QuicTime::Delta::FromSeconds(15),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Now recevie an ACK of the previous packet, which will move the
+ // ping alarm forward.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ // The ping timer is set slightly less than 15 seconds in the future, because
+ // of the 1s ping timer alarm granularity.
+ EXPECT_EQ(
+ QuicTime::Delta::FromSeconds(15) - QuicTime::Delta::FromMilliseconds(5),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ writer_->Reset();
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15));
+ connection_.GetPingAlarm()->Fire();
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ ASSERT_EQ(1u, writer_->ping_frames().size());
+ writer_->Reset();
+
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(false));
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ SendAckPacketToPeer();
+
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, ReducedPingTimeout) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+
+ // Use a reduced ping timeout for this connection.
+ connection_.set_ping_timeout(QuicTime::Delta::FromSeconds(10));
+
+ // Advance to 5ms, and send a packet to the peer, which will set
+ // the ping alarm.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(0, connection_.transport_version()),
+ "GET /", 0, FIN, nullptr);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(QuicTime::Delta::FromSeconds(10),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Now recevie an ACK of the previous packet, which will move the
+ // ping alarm forward.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ // The ping timer is set slightly less than 10 seconds in the future, because
+ // of the 1s ping timer alarm granularity.
+ EXPECT_EQ(
+ QuicTime::Delta::FromSeconds(10) - QuicTime::Delta::FromMilliseconds(5),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ writer_->Reset();
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
+ connection_.GetPingAlarm()->Fire();
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ ASSERT_EQ(1u, writer_->ping_frames().size());
+ writer_->Reset();
+
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(false));
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ SendAckPacketToPeer();
+
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+}
+
+// Tests whether sending an MTU discovery packet to peer successfully causes the
+// maximum packet size to increase.
+TEST_P(QuicConnectionTest, SendMtuDiscoveryPacket) {
+ MtuDiscoveryTestInit();
+
+ // Send an MTU probe.
+ const size_t new_mtu = kDefaultMaxPacketSize + 100;
+ QuicByteCount mtu_probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&mtu_probe_size));
+ connection_.SendMtuDiscoveryPacket(new_mtu);
+ EXPECT_EQ(new_mtu, mtu_probe_size);
+ EXPECT_EQ(QuicPacketNumber(1u), creator_->packet_number());
+
+ // Send more than MTU worth of data. No acknowledgement was received so far,
+ // so the MTU should be at its old value.
+ const std::string data(kDefaultMaxPacketSize + 1, '.');
+ QuicByteCount size_before_mtu_change;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(2)
+ .WillOnce(SaveArg<3>(&size_before_mtu_change))
+ .WillOnce(Return());
+ connection_.SendStreamDataWithString(3, data, 0, FIN);
+ EXPECT_EQ(QuicPacketNumber(3u), creator_->packet_number());
+ EXPECT_EQ(kDefaultMaxPacketSize, size_before_mtu_change);
+
+ // Acknowledge all packets so far.
+ QuicAckFrame probe_ack = InitAckFrame(3);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&probe_ack);
+ EXPECT_EQ(new_mtu, connection_.max_packet_length());
+
+ // Send the same data again. Check that it fits into a single packet now.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(3, data, 0, FIN);
+ EXPECT_EQ(QuicPacketNumber(4u), creator_->packet_number());
+}
+
+// Verifies that when a MTU probe packet is sent and buffered in a batch writer,
+// the writer is flushed immediately.
+TEST_P(QuicConnectionTest, BatchWriterFlushedAfterMtuDiscoveryPacket) {
+ writer_->SetBatchMode(true);
+ MtuDiscoveryTestInit();
+
+ // Send an MTU probe.
+ const size_t target_mtu = kDefaultMaxPacketSize + 100;
+ QuicByteCount mtu_probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&mtu_probe_size));
+ const uint32_t prior_flush_attempts = writer_->flush_attempts();
+ connection_.SendMtuDiscoveryPacket(target_mtu);
+ EXPECT_EQ(target_mtu, mtu_probe_size);
+ EXPECT_EQ(writer_->flush_attempts(), prior_flush_attempts + 1);
+}
+
+// Tests whether MTU discovery does not happen when it is not explicitly enabled
+// by the connection options.
+TEST_P(QuicConnectionTest, MtuDiscoveryDisabled) {
+ MtuDiscoveryTestInit();
+
+ const QuicPacketCount packets_between_probes_base = 10;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ const QuicPacketCount number_of_packets = packets_between_probes_base * 2;
+ for (QuicPacketCount i = 0; i < number_of_packets; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ EXPECT_EQ(0u, connection_.mtu_probe_count());
+ }
+}
+
+// Tests whether MTU discovery works when all probes are acknowledged on the
+// first try.
+TEST_P(QuicConnectionTest, MtuDiscoveryEnabled) {
+ MtuDiscoveryTestInit();
+
+ const QuicPacketCount packets_between_probes_base = 5;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ // Send enough packets so that the next one triggers path MTU discovery.
+ for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the probe.
+ SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+ nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ QuicByteCount probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&probe_size));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+
+ EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(),
+ kMtuDiscoveryTargetPacketSizeHigh));
+
+ const QuicPacketNumber probe_packet_number =
+ FirstSendingPacketNumber() + packets_between_probes_base;
+ ASSERT_EQ(probe_packet_number, creator_->packet_number());
+
+ // Acknowledge all packets sent so far.
+ QuicAckFrame probe_ack = InitAckFrame(probe_packet_number);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+ .Times(AnyNumber());
+ ProcessAckPacket(&probe_ack);
+ EXPECT_EQ(probe_size, connection_.max_packet_length());
+ EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+ EXPECT_EQ(1u, connection_.mtu_probe_count());
+
+ QuicStreamOffset stream_offset = packets_between_probes_base;
+ QuicByteCount last_probe_size = 0;
+ for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts;
+ ++num_probes) {
+ // Send just enough packets without triggering the next probe.
+ for (QuicPacketCount i = 0;
+ i < (packets_between_probes_base << num_probes) - 1; ++i) {
+ SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the next probe.
+ SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ QuicByteCount new_probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&new_probe_size));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ EXPECT_THAT(new_probe_size,
+ InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh));
+ EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count());
+
+ // Acknowledge all packets sent so far.
+ QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number());
+ ProcessAckPacket(&probe_ack);
+ EXPECT_EQ(new_probe_size, connection_.max_packet_length());
+ EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+ last_probe_size = probe_size;
+ probe_size = new_probe_size;
+ }
+
+ // The last probe size should be equal to the target.
+ EXPECT_EQ(probe_size, kMtuDiscoveryTargetPacketSizeHigh);
+
+ writer_->SetShouldWriteFail();
+
+ // Ignore PACKET_WRITE_ERROR once.
+ SendStreamDataToPeer(3, "(", stream_offset++, NO_FIN, nullptr);
+ EXPECT_EQ(last_probe_size, connection_.max_packet_length());
+ EXPECT_TRUE(connection_.connected());
+
+ // Close connection on another PACKET_WRITE_ERROR.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ SendStreamDataToPeer(3, ")", stream_offset++, NO_FIN, nullptr);
+ EXPECT_EQ(last_probe_size, connection_.max_packet_length());
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_PACKET_WRITE_ERROR));
+}
+
+// After a successful MTU probe, one and only one write error should be ignored
+// if it happened in QuicConnection::FlushPacket.
+TEST_P(QuicConnectionTest,
+ MtuDiscoveryIgnoreOneWriteErrorInFlushAfterSuccessfulProbes) {
+ MtuDiscoveryTestInit();
+ writer_->SetBatchMode(true);
+
+ const QuicPacketCount packets_between_probes_base = 5;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ const QuicByteCount original_max_packet_length =
+ connection_.max_packet_length();
+ // Send enough packets so that the next one triggers path MTU discovery.
+ for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the probe.
+ SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+ nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ QuicByteCount probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&probe_size));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+
+ EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(),
+ kMtuDiscoveryTargetPacketSizeHigh));
+
+ const QuicPacketNumber probe_packet_number =
+ FirstSendingPacketNumber() + packets_between_probes_base;
+ ASSERT_EQ(probe_packet_number, creator_->packet_number());
+
+ // Acknowledge all packets sent so far.
+ QuicAckFrame probe_ack = InitAckFrame(probe_packet_number);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+ .Times(AnyNumber());
+ ProcessAckPacket(&probe_ack);
+ EXPECT_EQ(probe_size, connection_.max_packet_length());
+ EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+ EXPECT_EQ(1u, connection_.mtu_probe_count());
+
+ writer_->SetShouldWriteFail();
+
+ // Ignore PACKET_WRITE_ERROR once.
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ // flusher's destructor will call connection_.FlushPackets, which should
+ // get a WRITE_STATUS_ERROR from the writer and ignore it.
+ }
+ EXPECT_EQ(original_max_packet_length, connection_.max_packet_length());
+ EXPECT_TRUE(connection_.connected());
+
+ // Close connection on another PACKET_WRITE_ERROR.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ // flusher's destructor will call connection_.FlushPackets, which should
+ // get a WRITE_STATUS_ERROR from the writer and ignore it.
+ }
+ EXPECT_EQ(original_max_packet_length, connection_.max_packet_length());
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_PACKET_WRITE_ERROR));
+}
+
+// Simulate the case where the first attempt to send a probe is write blocked,
+// and after unblock, the second attempt returns a MSG_TOO_BIG error.
+TEST_P(QuicConnectionTest, MtuDiscoveryWriteBlocked) {
+ MtuDiscoveryTestInit();
+
+ const QuicPacketCount packets_between_probes_base = 5;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ // Send enough packets so that the next one triggers path MTU discovery.
+ for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ QuicByteCount original_max_packet_length = connection_.max_packet_length();
+
+ // Trigger the probe.
+ SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+ nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ BlockOnNextWrite();
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ EXPECT_EQ(1u, connection_.mtu_probe_count());
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+ ASSERT_TRUE(connection_.connected());
+
+ writer_->SetWritable();
+ SimulateNextPacketTooLarge();
+ connection_.OnCanWrite();
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_EQ(original_max_packet_length, connection_.max_packet_length());
+ EXPECT_TRUE(connection_.connected());
+}
+
+// Tests whether MTU discovery works correctly when the probes never get
+// acknowledged.
+TEST_P(QuicConnectionTest, MtuDiscoveryFailed) {
+ MtuDiscoveryTestInit();
+
+ // Lower the number of probes between packets in order to make the test go
+ // much faster.
+ const QuicPacketCount packets_between_probes_base = 5;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100);
+
+ EXPECT_EQ(packets_between_probes_base,
+ QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_));
+
+ // This tests sends more packets than strictly necessary to make sure that if
+ // the connection was to send more discovery packets than needed, those would
+ // get caught as well.
+ const QuicPacketCount number_of_packets =
+ packets_between_probes_base * (1 << (kMtuDiscoveryAttempts + 1));
+ std::vector<QuicPacketNumber> mtu_discovery_packets;
+ // Called on many acks.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+ .Times(AnyNumber());
+ for (QuicPacketCount i = 0; i < number_of_packets; i++) {
+ SendStreamDataToPeer(3, "!", i, NO_FIN, nullptr);
+ clock_.AdvanceTime(rtt);
+
+ // Receive an ACK, which marks all data packets as received, and all MTU
+ // discovery packets as missing.
+
+ QuicAckFrame ack;
+
+ if (!mtu_discovery_packets.empty()) {
+ QuicPacketNumber min_packet = *min_element(mtu_discovery_packets.begin(),
+ mtu_discovery_packets.end());
+ QuicPacketNumber max_packet = *max_element(mtu_discovery_packets.begin(),
+ mtu_discovery_packets.end());
+ ack.packets.AddRange(QuicPacketNumber(1), min_packet);
+ ack.packets.AddRange(QuicPacketNumber(max_packet + 1),
+ creator_->packet_number() + 1);
+ ack.largest_acked = creator_->packet_number();
+
+ } else {
+ ack.packets.AddRange(QuicPacketNumber(1), creator_->packet_number() + 1);
+ ack.largest_acked = creator_->packet_number();
+ }
+
+ ProcessAckPacket(&ack);
+
+ // Trigger MTU probe if it would be scheduled now.
+ if (!connection_.GetMtuDiscoveryAlarm()->IsSet()) {
+ continue;
+ }
+
+ // Fire the alarm. The alarm should cause a packet to be sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ // Record the packet number of the MTU discovery packet in order to
+ // mark it as NACK'd.
+ mtu_discovery_packets.push_back(creator_->packet_number());
+ }
+
+ // Ensure the number of packets between probes grows exponentially by checking
+ // it against the closed-form expression for the packet number.
+ ASSERT_EQ(kMtuDiscoveryAttempts, mtu_discovery_packets.size());
+ for (uint64_t i = 0; i < kMtuDiscoveryAttempts; i++) {
+ // 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1
+ const QuicPacketCount packets_between_probes =
+ packets_between_probes_base * ((1 << (i + 1)) - 1);
+ EXPECT_EQ(QuicPacketNumber(packets_between_probes + (i + 1)),
+ mtu_discovery_packets[i]);
+ }
+
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length());
+ EXPECT_EQ(kMtuDiscoveryAttempts, connection_.mtu_probe_count());
+}
+
+// Probe 3 times, the first one succeeds, then fails, then succeeds again.
+TEST_P(QuicConnectionTest, MtuDiscoverySecondProbeFailed) {
+ MtuDiscoveryTestInit();
+
+ const QuicPacketCount packets_between_probes_base = 5;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ // Send enough packets so that the next one triggers path MTU discovery.
+ QuicStreamOffset stream_offset = 0;
+ for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+ SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the probe.
+ SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+ nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ QuicByteCount probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&probe_size));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(),
+ kMtuDiscoveryTargetPacketSizeHigh));
+
+ const QuicPacketNumber probe_packet_number =
+ FirstSendingPacketNumber() + packets_between_probes_base;
+ ASSERT_EQ(probe_packet_number, creator_->packet_number());
+
+ // Acknowledge all packets sent so far.
+ QuicAckFrame first_ack = InitAckFrame(probe_packet_number);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+ .Times(AnyNumber());
+ ProcessAckPacket(&first_ack);
+ EXPECT_EQ(probe_size, connection_.max_packet_length());
+ EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+ EXPECT_EQ(1u, connection_.mtu_probe_count());
+
+ // Send just enough packets without triggering the second probe.
+ for (QuicPacketCount i = 0; i < (packets_between_probes_base << 1) - 1; ++i) {
+ SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the second probe.
+ SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ QuicByteCount second_probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&second_probe_size));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ EXPECT_THAT(second_probe_size,
+ InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh));
+ EXPECT_EQ(2u, connection_.mtu_probe_count());
+
+ // Acknowledge all packets sent so far, except the second probe.
+ QuicPacketNumber second_probe_packet_number = creator_->packet_number();
+ QuicAckFrame second_ack = InitAckFrame(second_probe_packet_number - 1);
+ ProcessAckPacket(&first_ack);
+ EXPECT_EQ(probe_size, connection_.max_packet_length());
+
+ // Send just enough packets without triggering the third probe.
+ for (QuicPacketCount i = 0; i < (packets_between_probes_base << 2) - 1; ++i) {
+ SendStreamDataToPeer(3, "@", stream_offset++, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the third probe.
+ SendStreamDataToPeer(3, "#", stream_offset++, NO_FIN, nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ QuicByteCount third_probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&third_probe_size));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ EXPECT_THAT(third_probe_size, InRange(probe_size, second_probe_size));
+ EXPECT_EQ(3u, connection_.mtu_probe_count());
+
+ // Acknowledge all packets sent so far, except the second probe.
+ QuicAckFrame third_ack =
+ ConstructAckFrame(creator_->packet_number(), second_probe_packet_number);
+ ProcessAckPacket(&third_ack);
+ EXPECT_EQ(third_probe_size, connection_.max_packet_length());
+
+ SendStreamDataToPeer(3, "$", stream_offset++, NO_FIN, nullptr);
+ EXPECT_TRUE(connection_.PathMtuReductionDetectionInProgress());
+
+ if (connection_.PathDegradingDetectionInProgress() &&
+ QuicConnectionPeer::GetPathDegradingDeadline(&connection_) <
+ QuicConnectionPeer::GetPathMtuReductionDetectionDeadline(
+ &connection_)) {
+ // Fire path degrading alarm first.
+ connection_.PathDegradingTimeout();
+ }
+
+ // Verify the max packet size has not reduced.
+ EXPECT_EQ(third_probe_size, connection_.max_packet_length());
+
+ // Fire alarm to get path mtu reduction callback called.
+ EXPECT_TRUE(connection_.PathMtuReductionDetectionInProgress());
+ connection_.GetBlackholeDetectorAlarm()->Fire();
+
+ // Verify the max packet size has reduced to the previous value.
+ EXPECT_EQ(probe_size, connection_.max_packet_length());
+}
+
+// Tests whether MTU discovery works when the writer has a limit on how large a
+// packet can be.
+TEST_P(QuicConnectionTest, MtuDiscoveryWriterLimited) {
+ MtuDiscoveryTestInit();
+
+ const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1;
+ writer_->set_max_packet_size(mtu_limit);
+
+ const QuicPacketCount packets_between_probes_base = 5;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ // Send enough packets so that the next one triggers path MTU discovery.
+ for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the probe.
+ SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+ nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ QuicByteCount probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&probe_size));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+
+ EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), mtu_limit));
+
+ const QuicPacketNumber probe_sequence_number =
+ FirstSendingPacketNumber() + packets_between_probes_base;
+ ASSERT_EQ(probe_sequence_number, creator_->packet_number());
+
+ // Acknowledge all packets sent so far.
+ QuicAckFrame probe_ack = InitAckFrame(probe_sequence_number);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+ .Times(AnyNumber());
+ ProcessAckPacket(&probe_ack);
+ EXPECT_EQ(probe_size, connection_.max_packet_length());
+ EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+ EXPECT_EQ(1u, connection_.mtu_probe_count());
+
+ QuicStreamOffset stream_offset = packets_between_probes_base;
+ for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts;
+ ++num_probes) {
+ // Send just enough packets without triggering the next probe.
+ for (QuicPacketCount i = 0;
+ i < (packets_between_probes_base << num_probes) - 1; ++i) {
+ SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the next probe.
+ SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ QuicByteCount new_probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&new_probe_size));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ EXPECT_THAT(new_probe_size, InRange(probe_size, mtu_limit));
+ EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count());
+
+ // Acknowledge all packets sent so far.
+ QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number());
+ ProcessAckPacket(&probe_ack);
+ EXPECT_EQ(new_probe_size, connection_.max_packet_length());
+ EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+ probe_size = new_probe_size;
+ }
+
+ // The last probe size should be equal to the target.
+ EXPECT_EQ(probe_size, mtu_limit);
+}
+
+// Tests whether MTU discovery works when the writer returns an error despite
+// advertising higher packet length.
+TEST_P(QuicConnectionTest, MtuDiscoveryWriterFailed) {
+ MtuDiscoveryTestInit();
+
+ const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1;
+ const QuicByteCount initial_mtu = connection_.max_packet_length();
+ EXPECT_LT(initial_mtu, mtu_limit);
+ writer_->set_max_packet_size(mtu_limit);
+
+ const QuicPacketCount packets_between_probes_base = 5;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ // Send enough packets so that the next one triggers path MTU discovery.
+ for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the probe.
+ SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+ nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ writer_->SimulateNextPacketTooLarge();
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ ASSERT_TRUE(connection_.connected());
+
+ // Send more data.
+ QuicPacketNumber probe_number = creator_->packet_number();
+ QuicPacketCount extra_packets = packets_between_probes_base * 3;
+ for (QuicPacketCount i = 0; i < extra_packets; i++) {
+ connection_.EnsureWritableAndSendStreamData5();
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Acknowledge all packets sent so far, except for the lost probe.
+ QuicAckFrame probe_ack =
+ ConstructAckFrame(creator_->packet_number(), probe_number);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&probe_ack);
+ EXPECT_EQ(initial_mtu, connection_.max_packet_length());
+
+ // Send more packets, and ensure that none of them sets the alarm.
+ for (QuicPacketCount i = 0; i < 4 * packets_between_probes_base; i++) {
+ connection_.EnsureWritableAndSendStreamData5();
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ EXPECT_EQ(initial_mtu, connection_.max_packet_length());
+ EXPECT_EQ(1u, connection_.mtu_probe_count());
+}
+
+TEST_P(QuicConnectionTest, NoMtuDiscoveryAfterConnectionClosed) {
+ MtuDiscoveryTestInit();
+
+ const QuicPacketCount packets_between_probes_base = 10;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ // Send enough packets so that the next one triggers path MTU discovery.
+ for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+ nullptr);
+ EXPECT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterSendDuringHandshake) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+
+ const QuicTime::Delta initial_idle_timeout =
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
+
+ // When we send a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // Now send more data. This will not move the timeout because
+ // no data has been received since the previous write.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 3, FIN, nullptr);
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // The original alarm will fire. We should not time out because we had a
+ // network event at t=5ms. The alarm will reregister.
+ clock_.AdvanceTime(initial_idle_timeout - five_ms - five_ms);
+ EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // This time, we should time out.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ clock_.AdvanceTime(five_ms);
+ EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterRetransmission) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+
+ const QuicTime start_time = clock_.Now();
+ const QuicTime::Delta initial_idle_timeout =
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ QuicTime default_timeout = clock_.Now() + initial_idle_timeout;
+
+ connection_.SetMaxTailLossProbes(0);
+ const QuicTime default_retransmission_time =
+ start_time + DefaultRetransmissionTime();
+
+ ASSERT_LT(default_retransmission_time, default_timeout);
+
+ // When we send a packet, the timeout will change to 5 ms +
+ // kInitialIdleTimeoutSecs (but it will not reschedule the alarm).
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ const QuicTime send_time = start_time + five_ms;
+ clock_.AdvanceTime(five_ms);
+ ASSERT_EQ(send_time, clock_.Now());
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // Move forward 5 ms and receive a packet, which will move the timeout
+ // forward 5 ms more (but will not reschedule the alarm).
+ const QuicTime receive_time = send_time + five_ms;
+ clock_.AdvanceTime(receive_time - clock_.Now());
+ ASSERT_EQ(receive_time, clock_.Now());
+ ProcessPacket(1);
+
+ // Now move forward to the retransmission time and retransmit the
+ // packet, which should move the timeout forward again (but will not
+ // reschedule the alarm).
+ EXPECT_EQ(default_retransmission_time + five_ms,
+ connection_.GetRetransmissionAlarm()->deadline());
+ // Simulate the retransmission alarm firing.
+ const QuicTime rto_time = send_time + DefaultRetransmissionTime();
+ const QuicTime final_timeout = rto_time + initial_idle_timeout;
+ clock_.AdvanceTime(rto_time - clock_.Now());
+ ASSERT_EQ(rto_time, clock_.Now());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // Advance to the original timeout and fire the alarm. The connection should
+ // timeout, and the alarm should be registered based on the time of the
+ // retransmission.
+ clock_.AdvanceTime(default_timeout - clock_.Now());
+ ASSERT_EQ(default_timeout.ToDebuggingValue(),
+ clock_.Now().ToDebuggingValue());
+ EXPECT_EQ(default_timeout, clock_.Now());
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+ ASSERT_EQ(final_timeout.ToDebuggingValue(),
+ connection_.GetTimeoutAlarm()->deadline().ToDebuggingValue());
+
+ // This time, we should time out.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ clock_.AdvanceTime(final_timeout - clock_.Now());
+ EXPECT_EQ(connection_.GetTimeoutAlarm()->deadline(), clock_.Now());
+ EXPECT_EQ(final_timeout, clock_.Now());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterSendAfterHandshake) {
+ // When the idle timeout fires, verify that by default we do not send any
+ // connection close packets.
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+
+ // Create a handshake message that also enables silent close.
+ CryptoHandshakeMessage msg;
+ std::string error_details;
+ QuicConfig client_config;
+ client_config.SetInitialStreamFlowControlWindowToSend(
+ kInitialStreamFlowControlWindowForTest);
+ client_config.SetInitialSessionFlowControlWindowToSend(
+ kInitialSessionFlowControlWindowForTest);
+ client_config.SetIdleNetworkTimeout(
+ QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs));
+ client_config.ToHandshakeMessage(&msg, connection_.transport_version());
+ const QuicErrorCode error =
+ config.ProcessPeerHello(msg, CLIENT, &error_details);
+ EXPECT_THAT(error, IsQuicNoError());
+
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ connection_.SetFromConfig(config);
+
+ const QuicTime::Delta default_idle_timeout =
+ QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1);
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
+
+ // When we send a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // Now send more data. This will not move the timeout because
+ // no data has been received since the previous write.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 3, FIN, nullptr);
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // The original alarm will fire. We should not time out because we had a
+ // network event at t=5ms. The alarm will reregister.
+ clock_.AdvanceTime(default_idle_timeout - five_ms - five_ms);
+ EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // This time, we should time out.
+ // This results in a SILENT_CLOSE, so the writer will not be invoked
+ // and will not save the frame. Grab the frame from OnConnectionClosed
+ // directly.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+
+ clock_.AdvanceTime(five_ms);
+ EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_NETWORK_IDLE_TIMEOUT));
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseAndTLP) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ // Same test as above, but sending TLPs causes a connection close to be sent.
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+
+ // Create a handshake message that also enables silent close.
+ CryptoHandshakeMessage msg;
+ std::string error_details;
+ QuicConfig client_config;
+ client_config.SetInitialStreamFlowControlWindowToSend(
+ kInitialStreamFlowControlWindowForTest);
+ client_config.SetInitialSessionFlowControlWindowToSend(
+ kInitialSessionFlowControlWindowForTest);
+ client_config.SetIdleNetworkTimeout(
+ QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs));
+ client_config.ToHandshakeMessage(&msg, connection_.transport_version());
+ const QuicErrorCode error =
+ config.ProcessPeerHello(msg, CLIENT, &error_details);
+ EXPECT_THAT(error, IsQuicNoError());
+
+ connection_.SetFromConfig(config);
+
+ const QuicTime::Delta default_idle_timeout =
+ QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1);
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
+
+ // When we send a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // Retransmit the packet via tail loss probe.
+ clock_.AdvanceTime(connection_.GetRetransmissionAlarm()->deadline() -
+ clock_.Now());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // This time, we should time out and send a connection close due to the TLP.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() -
+ clock_.ApproximateNow() + five_ms);
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseWithOpenStreams) {
+ // Same test as above, but having open streams causes a connection close
+ // to be sent.
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+
+ // Create a handshake message that also enables silent close.
+ CryptoHandshakeMessage msg;
+ std::string error_details;
+ QuicConfig client_config;
+ client_config.SetInitialStreamFlowControlWindowToSend(
+ kInitialStreamFlowControlWindowForTest);
+ client_config.SetInitialSessionFlowControlWindowToSend(
+ kInitialSessionFlowControlWindowForTest);
+ client_config.SetIdleNetworkTimeout(
+ QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs));
+ client_config.ToHandshakeMessage(&msg, connection_.transport_version());
+ const QuicErrorCode error =
+ config.ProcessPeerHello(msg, CLIENT, &error_details);
+ EXPECT_THAT(error, IsQuicNoError());
+
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ connection_.SetFromConfig(config);
+
+ const QuicTime::Delta default_idle_timeout =
+ QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1);
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
+
+ // When we send a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // Indicate streams are still open.
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+ if (GetQuicReloadableFlag(quic_add_stream_info_to_idle_close_detail)) {
+ EXPECT_CALL(visitor_, GetStreamsInfoForLogging()).WillOnce(Return(""));
+ }
+
+ // This time, we should time out and send a connection close due to the TLP.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() -
+ clock_.ApproximateNow() + five_ms);
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterReceive) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+
+ const QuicTime::Delta initial_idle_timeout =
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
+
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, NO_FIN);
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 3, NO_FIN);
+
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+ clock_.AdvanceTime(five_ms);
+
+ // When we receive a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ QuicAckFrame ack = InitAckFrame(2);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&ack);
+
+ // The original alarm will fire. We should not time out because we had a
+ // network event at t=5ms. The alarm will reregister.
+ clock_.AdvanceTime(initial_idle_timeout - five_ms);
+ EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // This time, we should time out.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ clock_.AdvanceTime(five_ms);
+ EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterReceiveNotSendWhenUnacked) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+
+ const QuicTime::Delta initial_idle_timeout =
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ connection_.SetNetworkTimeouts(
+ QuicTime::Delta::Infinite(),
+ initial_idle_timeout + QuicTime::Delta::FromSeconds(1));
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, NO_FIN);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 3, NO_FIN);
+
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+ clock_.AdvanceTime(five_ms);
+
+ // When we receive a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ QuicAckFrame ack = InitAckFrame(2);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&ack);
+
+ // The original alarm will fire. We should not time out because we had a
+ // network event at t=5ms. The alarm will reregister.
+ clock_.AdvanceTime(initial_idle_timeout - five_ms);
+ EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // Now, send packets while advancing the time and verify that the connection
+ // eventually times out.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+ for (int i = 0; i < 100 && connection_.connected(); ++i) {
+ QUIC_LOG(INFO) << "sending data packet";
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+ "foo", 0, NO_FIN);
+ connection_.GetTimeoutAlarm()->Fire();
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ }
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfter5ClientRTOs) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ connection_.SetMaxTailLossProbes(2);
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k5RTO);
+ config.SetConnectionOptionsToSend(connection_options);
+ QuicConfigPeer::SetNegotiated(&config, true);
+ if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+ }
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ connection_.SetFromConfig(config);
+
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+
+ // Fire the retransmission alarm 6 times, twice for TLP and 4 times for RTO.
+ for (int i = 0; i < 6; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+ }
+ EXPECT_CALL(visitor_, OnPathDegrading());
+ connection_.PathDegradingTimeout();
+
+ EXPECT_EQ(2u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
+ EXPECT_EQ(4u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
+ // This time, we should time out.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+ connection_.GetBlackholeDetectorAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
+}
+
+TEST_P(QuicConnectionTest, SendScheduler) {
+ // Test that if we send a packet without delay, it is not queued.
+ QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
+ std::unique_ptr<QuicPacket> packet =
+ ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
+ QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet),
+ HAS_RETRANSMITTABLE_DATA, false, false);
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, FailToSendFirstPacket) {
+ // Test that the connection does not crash when it fails to send the first
+ // packet at which point self_address_ might be uninitialized.
+ QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1);
+ std::unique_ptr<QuicPacket> packet =
+ ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
+ QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
+ writer_->SetShouldWriteFail();
+ connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet),
+ HAS_RETRANSMITTABLE_DATA, false, false);
+}
+
+TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) {
+ QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
+ std::unique_ptr<QuicPacket> packet =
+ ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
+ QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
+ BlockOnNextWrite();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _))
+ .Times(0);
+ connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet),
+ HAS_RETRANSMITTABLE_DATA, false, false);
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) {
+ // Queue the first packet.
+ size_t payload_length = connection_.max_packet_length();
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(testing::Return(false));
+ const std::string payload(payload_length, 'a');
+ QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId(
+ connection_.version().transport_version, Perspective::IS_CLIENT));
+ EXPECT_EQ(0u, connection_
+ .SendStreamDataWithString(first_bidi_stream_id, payload, 0,
+ NO_FIN)
+ .bytes_consumed);
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, SendingThreePackets) {
+ // Make the payload twice the size of the packet, so 3 packets are written.
+ size_t total_payload_length = 2 * connection_.max_packet_length();
+ const std::string payload(total_payload_length, 'a');
+ QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId(
+ connection_.version().transport_version, Perspective::IS_CLIENT));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
+ EXPECT_EQ(payload.size(), connection_
+ .SendStreamDataWithString(first_bidi_stream_id,
+ payload, 0, NO_FIN)
+ .bytes_consumed);
+}
+
+TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) {
+ set_perspective(Perspective::IS_SERVER);
+ if (!GetParam().version.HasIetfInvariantHeader()) {
+ // For IETF QUIC, encryption level will be switched to FORWARD_SECURE in
+ // SendStreamDataWithString.
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ }
+ // Set up a larger payload than will fit in one packet.
+ const std::string payload(connection_.max_packet_length(), 'a');
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
+
+ // Now send some packets with no truncation.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ EXPECT_EQ(payload.size(),
+ connection_.SendStreamDataWithString(3, payload, 0, NO_FIN)
+ .bytes_consumed);
+ // Track the size of the second packet here. The overhead will be the largest
+ // we see in this test, due to the non-truncated connection id.
+ size_t non_truncated_packet_size = writer_->last_packet_size();
+
+ // Change to a 0 byte connection id.
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0);
+ connection_.SetFromConfig(config);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ EXPECT_EQ(payload.size(),
+ connection_.SendStreamDataWithString(3, payload, 1350, NO_FIN)
+ .bytes_consumed);
+ if (connection_.version().HasIetfInvariantHeader()) {
+ // Short header packets sent from server omit connection ID already, and
+ // stream offset size increases from 0 to 2.
+ EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() - 2);
+ } else {
+ // Just like above, we save 8 bytes on payload, and 8 on truncation. -2
+ // because stream offset size is 2 instead of 0.
+ EXPECT_EQ(non_truncated_packet_size,
+ writer_->last_packet_size() + 8 * 2 - 2);
+ }
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAck) {
+ QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ const uint8_t tag = 0x07;
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_INITIAL.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+ // Simulate delayed ack alarm firing.
+ clock_.AdvanceTime(DefaultDelayedAckTime());
+ connection_.GetAckAlarm()->Fire();
+ // Check that ack is sent and that delayed ack alarm is reset.
+ size_t padding_frame_count = writer_->padding_frames().size();
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimation) {
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ // The ack time should be based on min_rtt/4, since it's less than the
+ // default delayed ack time.
+ QuicTime ack_time = clock_.ApproximateNow() +
+ QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ const uint8_t tag = 0x07;
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // Process all the initial packets in order so there aren't missing packets.
+ uint64_t kFirstDecimatedPacket = 101;
+ for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_INITIAL.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // The 10th received packet causes an ack to be sent.
+ for (int i = 0; i < 9; ++i) {
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ }
+ // Check that ack is sent and that delayed ack alarm is reset.
+ size_t padding_frame_count = writer_->padding_frames().size();
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimationUnlimitedAggregation) {
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ QuicTagVector connection_options;
+ // No limit on the number of packets received before sending an ack.
+ connection_options.push_back(kAKDU);
+ config.SetConnectionOptionsToSend(connection_options);
+ connection_.SetFromConfig(config);
+
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ // The ack time should be based on min_rtt/4, since it's less than the
+ // default delayed ack time.
+ QuicTime ack_time = clock_.ApproximateNow() +
+ QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ const uint8_t tag = 0x07;
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // Process all the initial packets in order so there aren't missing packets.
+ uint64_t kFirstDecimatedPacket = 101;
+ for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_INITIAL.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // 18 packets will not cause an ack to be sent. 19 will because when
+ // stop waiting frames are in use, we ack every 20 packets no matter what.
+ for (int i = 0; i < 18; ++i) {
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ }
+ // The delayed ack timer should still be set to the expected deadline.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimationEighthRtt) {
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+ QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125);
+
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ // The ack time should be based on min_rtt/8, since it's less than the
+ // default delayed ack time.
+ QuicTime ack_time = clock_.ApproximateNow() +
+ QuicTime::Delta::FromMilliseconds(kMinRttMs / 8);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ const uint8_t tag = 0x07;
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // Process all the initial packets in order so there aren't missing packets.
+ uint64_t kFirstDecimatedPacket = 101;
+ for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_INITIAL.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // The 10th received packet causes an ack to be sent.
+ for (int i = 0; i < 9; ++i) {
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ }
+ // Check that ack is sent and that delayed ack alarm is reset.
+ size_t padding_frame_count = writer_->padding_frames().size();
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessPacket(1);
+ // Check that ack is sent and that delayed ack alarm is set.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // Completing the handshake as the server does nothing.
+ QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER);
+ connection_.OnHandshakeComplete();
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // Complete the handshake as the client decreases the delayed ack time to 0ms.
+ QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_CLIENT);
+ connection_.OnHandshakeComplete();
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ EXPECT_EQ(clock_.ApproximateNow() + DefaultDelayedAckTime(),
+ connection_.GetAckAlarm()->deadline());
+ } else {
+ EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline());
+ }
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessPacket(1);
+ ProcessPacket(2);
+ // Check that ack is sent and that delayed ack alarm is reset.
+ size_t padding_frame_count = writer_->padding_frames().size();
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, NoAckOnOldNacks) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessPacket(2);
+ size_t frames_per_ack = GetParam().no_stop_waiting ? 1 : 2;
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessPacket(3);
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count());
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ writer_->Reset();
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessPacket(4);
+ EXPECT_EQ(0u, writer_->frame_count());
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessPacket(5);
+ padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count());
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ writer_->Reset();
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ // Now only set the timer on the 6th packet, instead of sending another ack.
+ ProcessPacket(6);
+ padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count, writer_->frame_count());
+ EXPECT_TRUE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_));
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<StrictTaggingDecrypter>(0x01));
+ ProcessDataPacket(1);
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, NO_FIN);
+ // Check that ack is bundled with outgoing data and that delayed ack
+ // alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ }
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+ connection_.SendCryptoDataWithString("foo", 0);
+ // Check that ack is bundled with outgoing crypto data.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(4u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessPacket(1);
+ BlockOnNextWrite();
+ writer_->set_is_write_blocked_data_buffered(true);
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ } else {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ }
+ connection_.SendCryptoDataWithString("foo", 0);
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ EXPECT_FALSE(connection_.HasQueuedData());
+ connection_.SendCryptoDataWithString("bar", 3);
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ // CRYPTO frames are not flushed when writer is blocked.
+ EXPECT_FALSE(connection_.HasQueuedData());
+ } else {
+ EXPECT_TRUE(connection_.HasQueuedData());
+ }
+}
+
+TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ EXPECT_CALL(visitor_, OnCanWrite())
+ .WillOnce(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendCryptoStreamData)));
+ // Process a packet from the crypto stream, which is frame1_'s default.
+ // Receiving the CHLO as packet 2 first will cause the connection to
+ // immediately send an ack, due to the packet gap.
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ }
+ ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(4u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ } else {
+ EXPECT_EQ(1u, writer_->crypto_frames().size());
+ }
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ ASSERT_FALSE(writer_->ack_frames().empty());
+ EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front()));
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, BundleAckForSecondCHLOTwoPacketReject) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.HasPendingAcks());
+
+ // Process two packets from the crypto stream, which is frame1_'s default,
+ // simulating a 2 packet reject.
+ {
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ }
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+ // Send the new CHLO when the REJ is processed.
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_))
+ .WillOnce(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendCryptoStreamData)));
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_))
+ .WillOnce(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendCryptoStreamData)));
+ }
+ ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+ }
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(4u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ } else {
+ EXPECT_EQ(1u, writer_->crypto_frames().size());
+ }
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ ASSERT_FALSE(writer_->ack_frames().empty());
+ EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front()));
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, NO_FIN);
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 3, NO_FIN);
+ // Ack the second packet, which will retransmit the first packet.
+ QuicAckFrame ack = ConstructAckFrame(2, 1);
+ LostPacketVector lost_packets;
+ lost_packets.push_back(
+ LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+ Return(LossDetectionInterface::DetectionStats())));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&ack);
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ writer_->Reset();
+
+ // Now ack the retransmission, which will both raise the high water mark
+ // and see if there is more data to send.
+ ack = ConstructAckFrame(3, 1);
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&ack);
+
+ // Check that no packet is sent and the ack alarm isn't set.
+ EXPECT_EQ(0u, writer_->frame_count());
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ writer_->Reset();
+
+ // Send the same ack, but send both data and an ack together.
+ ack = ConstructAckFrame(3, 1);
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(visitor_, OnCanWrite())
+ .WillOnce(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::EnsureWritableAndSendStreamData5)));
+ ProcessAckPacket(&ack);
+
+ // Check that ack is bundled with outgoing data and the delayed ack
+ // alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ // Do not ACK acks.
+ EXPECT_EQ(1u, writer_->frame_count());
+ } else {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ if (GetParam().no_stop_waiting) {
+ EXPECT_TRUE(writer_->ack_frames().empty());
+ } else {
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_EQ(QuicPacketNumber(3u),
+ LargestAcked(writer_->ack_frames().front()));
+ }
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, NoAckSentForClose) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessPacket(1);
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessClosePacket(2);
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_PEER_GOING_AWAY));
+}
+
+TEST_P(QuicConnectionTest, SendWhenDisconnected) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
+ EXPECT_EQ(DISCARD, connection_.GetSerializedPacketFate(
+ /*is_mtu_discovery=*/false, ENCRYPTION_INITIAL));
+}
+
+TEST_P(QuicConnectionTest, SendConnectivityProbingWhenDisconnected) {
+ // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+ if (!IsDefaultTestConfiguration()) {
+ return;
+ }
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+ .Times(0);
+
+ EXPECT_QUIC_BUG(connection_.SendConnectivityProbingPacket(
+ writer_.get(), connection_.peer_address()),
+ "Not sending connectivity probing packet as connection is "
+ "disconnected.");
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_PEER_GOING_AWAY));
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedAfterClientSendsConnectivityProbe) {
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ TestPacketWriter probing_writer(version(), &clock_, Perspective::IS_CLIENT);
+ // Block next write so that sending connectivity probe will encounter a
+ // blocked write when send a connectivity probe to the peer.
+ probing_writer.BlockOnNextWrite();
+ // Connection will not be marked as write blocked as connectivity probe only
+ // affects the probing_writer which is not the default.
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+ .Times(1);
+ connection_.SendConnectivityProbingPacket(&probing_writer,
+ connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, WriterBlockedAfterServerSendsConnectivityProbe) {
+ PathProbeTestInit(Perspective::IS_SERVER);
+ if (version().SupportsAntiAmplificationLimit()) {
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ }
+
+ // Block next write so that sending connectivity probe will encounter a
+ // blocked write when send a connectivity probe to the peer.
+ writer_->BlockOnNextWrite();
+ // Connection will be marked as write blocked as server uses the default
+ // writer to send connectivity probes.
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+ .Times(1);
+ if (VersionHasIetfQuicFrames(GetParam().version.transport_version)) {
+ QuicPathFrameBuffer payload{
+ {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}};
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ connection_.SendPathChallenge(
+ payload, connection_.self_address(), connection_.peer_address(),
+ connection_.effective_peer_address(), writer_.get());
+ } else {
+ connection_.SendConnectivityProbingPacket(writer_.get(),
+ connection_.peer_address());
+ }
+}
+
+TEST_P(QuicConnectionTest, WriterErrorWhenClientSendsConnectivityProbe) {
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ TestPacketWriter probing_writer(version(), &clock_, Perspective::IS_CLIENT);
+ probing_writer.SetShouldWriteFail();
+
+ // Connection should not be closed if a connectivity probe is failed to be
+ // sent.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+ .Times(0);
+ connection_.SendConnectivityProbingPacket(&probing_writer,
+ connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, WriterErrorWhenServerSendsConnectivityProbe) {
+ PathProbeTestInit(Perspective::IS_SERVER);
+
+ writer_->SetShouldWriteFail();
+ // Connection should not be closed if a connectivity probe is failed to be
+ // sent.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+ .Times(0);
+ connection_.SendConnectivityProbingPacket(writer_.get(),
+ connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, PublicReset) {
+ if (GetParam().version.HasIetfInvariantHeader()) {
+ return;
+ }
+ QuicPublicResetPacket header;
+ // Public reset packet in only built by server.
+ header.connection_id = connection_id_;
+ std::unique_ptr<QuicEncryptedPacket> packet(
+ framer_.BuildPublicResetPacket(header));
+ std::unique_ptr<QuicReceivedPacket> received(
+ ConstructReceivedPacket(*packet, QuicTime::Zero()));
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_PUBLIC_RESET));
+}
+
+TEST_P(QuicConnectionTest, IetfStatelessReset) {
+ if (!GetParam().version.HasIetfInvariantHeader()) {
+ return;
+ }
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedStatelessResetToken(&config,
+ kTestStatelessResetToken);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ std::unique_ptr<QuicEncryptedPacket> packet(
+ QuicFramer::BuildIetfStatelessResetPacket(connection_id_,
+ /*received_packet_length=*/100,
+ kTestStatelessResetToken));
+ std::unique_ptr<QuicReceivedPacket> received(
+ ConstructReceivedPacket(*packet, QuicTime::Zero()));
+ if (!connection_.use_path_validator()) {
+ EXPECT_CALL(visitor_, ValidateStatelessReset(_, _)).WillOnce(Return(true));
+ }
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_PUBLIC_RESET));
+}
+
+TEST_P(QuicConnectionTest, GoAway) {
+ if (VersionHasIetfQuicFrames(GetParam().version.transport_version)) {
+ // GoAway is not available in version 99.
+ return;
+ }
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ QuicGoAwayFrame* goaway = new QuicGoAwayFrame();
+ goaway->last_good_stream_id = 1;
+ goaway->error_code = QUIC_PEER_GOING_AWAY;
+ goaway->reason_phrase = "Going away.";
+ EXPECT_CALL(visitor_, OnGoAway(_));
+ ProcessGoAwayPacket(goaway);
+}
+
+TEST_P(QuicConnectionTest, WindowUpdate) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ QuicWindowUpdateFrame window_update;
+ window_update.stream_id = 3;
+ window_update.max_data = 1234;
+ EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
+ ProcessFramePacket(QuicFrame(window_update));
+}
+
+TEST_P(QuicConnectionTest, Blocked) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ QuicBlockedFrame blocked;
+ blocked.stream_id = 3;
+ EXPECT_CALL(visitor_, OnBlockedFrame(_));
+ ProcessFramePacket(QuicFrame(blocked));
+ EXPECT_EQ(1u, connection_.GetStats().blocked_frames_received);
+ EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
+}
+
+TEST_P(QuicConnectionTest, ZeroBytePacket) {
+ // Don't close the connection for zero byte packets.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+ QuicReceivedPacket encrypted(nullptr, 0, QuicTime::Zero());
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, encrypted);
+}
+
+TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) {
+ if (GetParam().version.HasIetfInvariantHeader()) {
+ return;
+ }
+ // Set the packet number of the ack packet to be least unacked (4).
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 3);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessStopWaitingPacket(InitStopWaitingFrame(4));
+ EXPECT_FALSE(connection_.ack_frame().packets.Empty());
+}
+
+TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) {
+ // All supported versions except the one the connection supports.
+ ParsedQuicVersionVector versions;
+ for (auto version : AllSupportedVersions()) {
+ if (version != connection_.version()) {
+ versions.push_back(version);
+ }
+ }
+
+ // Send a version negotiation packet.
+ std::unique_ptr<QuicEncryptedPacket> encrypted(
+ QuicFramer::BuildVersionNegotiationPacket(
+ connection_id_, EmptyQuicConnectionId(),
+ connection_.version().HasIetfInvariantHeader(),
+ connection_.version().HasLengthPrefixedConnectionIds(), versions));
+ std::unique_ptr<QuicReceivedPacket> received(
+ ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ // Verify no connection close packet gets sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_INVALID_VERSION));
+}
+
+TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiationWithConnectionClose) {
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(kINVC);
+ config.SetClientConnectionOptions(connection_options);
+ connection_.SetFromConfig(config);
+
+ // All supported versions except the one the connection supports.
+ ParsedQuicVersionVector versions;
+ for (auto version : AllSupportedVersions()) {
+ if (version != connection_.version()) {
+ versions.push_back(version);
+ }
+ }
+
+ // Send a version negotiation packet.
+ std::unique_ptr<QuicEncryptedPacket> encrypted(
+ QuicFramer::BuildVersionNegotiationPacket(
+ connection_id_, EmptyQuicConnectionId(),
+ connection_.version().HasIetfInvariantHeader(),
+ connection_.version().HasLengthPrefixedConnectionIds(), versions));
+ std::unique_ptr<QuicReceivedPacket> received(
+ ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ // Verify connection close packet gets sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1u));
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_INVALID_VERSION));
+}
+
+TEST_P(QuicConnectionTest, BadVersionNegotiation) {
+ // Send a version negotiation packet with the version the client started with.
+ // It should be rejected.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ std::unique_ptr<QuicEncryptedPacket> encrypted(
+ QuicFramer::BuildVersionNegotiationPacket(
+ connection_id_, EmptyQuicConnectionId(),
+ connection_.version().HasIetfInvariantHeader(),
+ connection_.version().HasLengthPrefixedConnectionIds(),
+ AllSupportedVersions()));
+ std::unique_ptr<QuicReceivedPacket> received(
+ ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET));
+}
+
+TEST_P(QuicConnectionTest, CheckSendStats) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ connection_.SetMaxTailLossProbes(0);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SendStreamDataWithString(3, "first", 0, NO_FIN);
+ size_t first_packet_size = writer_->last_packet_size();
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SendStreamDataWithString(5, "second", 0, NO_FIN);
+ size_t second_packet_size = writer_->last_packet_size();
+
+ // 2 retransmissions due to rto, 1 due to explicit nack.
+ EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
+
+ // Retransmit due to RTO.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // Retransmit due to explicit nacks.
+ QuicAckFrame nack_three =
+ InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)},
+ {QuicPacketNumber(4), QuicPacketNumber(5)}});
+
+ LostPacketVector lost_packets;
+ lost_packets.push_back(
+ LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize));
+ lost_packets.push_back(
+ LostPacket(QuicPacketNumber(3), kMaxOutgoingPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+ Return(LossDetectionInterface::DetectionStats())));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessAckPacket(&nack_three);
+
+ EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+ .WillOnce(Return(QuicBandwidth::Zero()));
+
+ const QuicConnectionStats& stats = connection_.GetStats();
+ // For IETF QUIC, version is not included as the encryption level switches to
+ // FORWARD_SECURE in SendStreamDataWithString.
+ size_t save_on_version =
+ GetParam().version.HasIetfInvariantHeader() ? 0 : kQuicVersionSize;
+ EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - save_on_version,
+ stats.bytes_sent);
+ EXPECT_EQ(5u, stats.packets_sent);
+ EXPECT_EQ(2 * first_packet_size + second_packet_size - save_on_version,
+ stats.bytes_retransmitted);
+ EXPECT_EQ(3u, stats.packets_retransmitted);
+ EXPECT_EQ(1u, stats.rto_count);
+ EXPECT_EQ(kDefaultMaxPacketSize, stats.egress_mtu);
+}
+
+TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) {
+ // Construct a packet with stream frame and connection close frame.
+ QuicPacketHeader header;
+ if (peer_framer_.perspective() == Perspective::IS_SERVER) {
+ header.source_connection_id = connection_id_;
+ header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+ if (!peer_framer_.version().HasIetfInvariantHeader()) {
+ header.source_connection_id_included = CONNECTION_ID_PRESENT;
+ }
+ } else {
+ header.destination_connection_id = connection_id_;
+ if (peer_framer_.version().HasIetfInvariantHeader()) {
+ header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+ }
+ }
+ header.packet_number = QuicPacketNumber(1);
+ header.version_flag = false;
+
+ QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY;
+ // This QuicConnectionCloseFrame will default to being for a Google QUIC
+ // close. If doing IETF QUIC then set fields appropriately for CC/T or CC/A,
+ // depending on the mapping.
+ QuicConnectionCloseFrame qccf(peer_framer_.transport_version(),
+ kQuicErrorCode, NO_IETF_QUIC_ERROR, "",
+ /*transport_close_frame_type=*/0);
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ frames.push_back(QuicFrame(&qccf));
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+ EXPECT_TRUE(nullptr != packet);
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer,
+ kMaxOutgoingPacketSize);
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_PEER_GOING_AWAY));
+}
+
+TEST_P(QuicConnectionTest, SelectMutualVersion) {
+ connection_.SetSupportedVersions(AllSupportedVersions());
+ // Set the connection to speak the lowest quic version.
+ connection_.set_version(QuicVersionMin());
+ EXPECT_EQ(QuicVersionMin(), connection_.version());
+
+ // Pass in available versions which includes a higher mutually supported
+ // version. The higher mutually supported version should be selected.
+ ParsedQuicVersionVector supported_versions = AllSupportedVersions();
+ EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions));
+ EXPECT_EQ(QuicVersionMax(), connection_.version());
+
+ // Expect that the lowest version is selected.
+ // Ensure the lowest supported version is less than the max, unless they're
+ // the same.
+ ParsedQuicVersionVector lowest_version_vector;
+ lowest_version_vector.push_back(QuicVersionMin());
+ EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector));
+ EXPECT_EQ(QuicVersionMin(), connection_.version());
+
+ // Shouldn't be able to find a mutually supported version.
+ ParsedQuicVersionVector unsupported_version;
+ unsupported_version.push_back(UnsupportedQuicVersion());
+ EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version));
+}
+
+TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) {
+ EXPECT_FALSE(writer_->IsWriteBlocked());
+
+ // Send a packet.
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+ TriggerConnectionClose();
+ EXPECT_LE(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) {
+ BlockOnNextWrite();
+ TriggerConnectionClose();
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+}
+
+TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) {
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ TriggerConnectionClose();
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, OnPacketSentDebugVisitor) {
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1);
+ connection_.SendConnectivityProbingPacket(writer_.get(),
+ connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) {
+ QuicPacketHeader header;
+ header.packet_number = QuicPacketNumber(1);
+ if (GetParam().version.HasIetfInvariantHeader()) {
+ header.form = IETF_QUIC_LONG_HEADER_PACKET;
+ }
+
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+ EXPECT_CALL(debug_visitor, OnPacketHeader(Ref(header), _, _)).Times(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(1);
+ EXPECT_CALL(debug_visitor, OnSuccessfulVersionNegotiation(_)).Times(1);
+ connection_.OnPacketHeader(header);
+}
+
+TEST_P(QuicConnectionTest, Pacing) {
+ TestConnection server(connection_id_, kPeerAddress, kSelfAddress,
+ helper_.get(), alarm_factory_.get(), writer_.get(),
+ Perspective::IS_SERVER, version());
+ TestConnection client(connection_id_, kSelfAddress, kPeerAddress,
+ helper_.get(), alarm_factory_.get(), writer_.get(),
+ Perspective::IS_CLIENT, version());
+ EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing(
+ static_cast<const QuicSentPacketManager*>(
+ &client.sent_packet_manager())));
+ EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing(
+ static_cast<const QuicSentPacketManager*>(
+ &server.sent_packet_manager())));
+}
+
+TEST_P(QuicConnectionTest, WindowUpdateInstigateAcks) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Send a WINDOW_UPDATE frame.
+ QuicWindowUpdateFrame window_update;
+ window_update.stream_id = 3;
+ window_update.max_data = 1234;
+ EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
+ ProcessFramePacket(QuicFrame(window_update));
+
+ // Ensure that this has caused the ACK alarm to be set.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, BlockedFrameInstigateAcks) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Send a BLOCKED frame.
+ QuicBlockedFrame blocked;
+ blocked.stream_id = 3;
+ EXPECT_CALL(visitor_, OnBlockedFrame(_));
+ ProcessFramePacket(QuicFrame(blocked));
+
+ // Ensure that this has caused the ACK alarm to be set.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, ReevaluateTimeUntilSendOnAck) {
+ // Enable pacing.
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+
+ // Send two packets. One packet is not sufficient because if it gets acked,
+ // there will be no packets in flight after that and the pacer will always
+ // allow the next packet in that situation.
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, NO_FIN);
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "bar",
+ 3, NO_FIN);
+ connection_.OnCanWrite();
+
+ // Schedule the next packet for a few milliseconds in future.
+ QuicSentPacketManagerPeer::DisablePacerBursts(manager_);
+ QuicTime scheduled_pacing_time =
+ clock_.Now() + QuicTime::Delta::FromMilliseconds(5);
+ QuicSentPacketManagerPeer::SetNextPacedPacketTime(manager_,
+ scheduled_pacing_time);
+
+ // Send a packet and have it be blocked by congestion control.
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(false));
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "baz",
+ 6, NO_FIN);
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+
+ // Process an ack and the send alarm will be set to the new 5ms delay.
+ QuicAckFrame ack = InitAckFrame(1);
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ ProcessAckPacket(&ack);
+ size_t padding_frame_count = writer_->padding_frames().size();
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_TRUE(connection_.GetSendAlarm()->IsSet());
+ EXPECT_EQ(scheduled_pacing_time, connection_.GetSendAlarm()->deadline());
+ writer_->Reset();
+}
+
+TEST_P(QuicConnectionTest, SendAcksImmediately) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(1);
+ CongestionBlockWrites();
+ SendAckPacketToPeer();
+}
+
+TEST_P(QuicConnectionTest, SendPingImmediately) {
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+
+ CongestionBlockWrites();
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1);
+ EXPECT_CALL(debug_visitor, OnPingSent()).Times(1);
+ connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
+ EXPECT_FALSE(connection_.HasQueuedData());
+}
+
+TEST_P(QuicConnectionTest, SendBlockedImmediately) {
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1);
+ EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
+ connection_.SendControlFrame(QuicFrame(QuicBlockedFrame(1, 3)));
+ EXPECT_EQ(1u, connection_.GetStats().blocked_frames_sent);
+ EXPECT_FALSE(connection_.HasQueuedData());
+}
+
+TEST_P(QuicConnectionTest, FailedToSendBlockedFrames) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+ QuicBlockedFrame blocked(1, 3);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(0);
+ EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
+ connection_.SendControlFrame(QuicFrame(blocked));
+ EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
+ EXPECT_FALSE(connection_.HasQueuedData());
+}
+
+TEST_P(QuicConnectionTest, SendingUnencryptedStreamDataFails) {
+ // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+ if (!IsDefaultTestConfiguration()) {
+ return;
+ }
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ EXPECT_QUIC_BUG(connection_.SaveAndSendStreamData(3, {}, 0, FIN),
+ "Cannot send stream data with level: ENCRYPTION_INITIAL");
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA));
+}
+
+TEST_P(QuicConnectionTest, SetRetransmissionAlarmForCryptoPacket) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendCryptoStreamData();
+
+ // Verify retransmission timer is correctly set after crypto packet has been
+ // sent.
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ QuicTime retransmission_time =
+ QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetRetransmissionTime();
+ EXPECT_NE(retransmission_time, clock_.ApproximateNow());
+ EXPECT_EQ(retransmission_time,
+ connection_.GetRetransmissionAlarm()->deadline());
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.GetRetransmissionAlarm()->Fire();
+}
+
+// Includes regression test for b/69979024.
+TEST_P(QuicConnectionTest, PathDegradingDetectionForNonCryptoPackets) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ for (int i = 0; i < 2; ++i) {
+ // Send a packet. Now there's a retransmittable packet on the wire, so the
+ // path degrading detection should be set.
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), data,
+ offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ // Check the deadline of the path degrading detection.
+ QuicTime::Delta delay =
+ QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+ clock_.ApproximateNow());
+
+ // Send a second packet. The path degrading detection's deadline should
+ // remain the same.
+ // Regression test for b/69979024.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicTime prev_deadline =
+ connection_.GetBlackholeDetectorAlarm()->deadline();
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), data,
+ offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_EQ(prev_deadline,
+ connection_.GetBlackholeDetectorAlarm()->deadline());
+
+ // Now receive an ACK of the first packet. This should advance the path
+ // degrading detection's deadline since forward progress has been made.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ if (i == 0) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ }
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame = InitAckFrame(
+ {{QuicPacketNumber(1u + 2u * i), QuicPacketNumber(2u + 2u * i)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ // Check the deadline of the path degrading detection.
+ delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+ clock_.ApproximateNow());
+
+ if (i == 0) {
+ // Now receive an ACK of the second packet. Since there are no more
+ // retransmittable packets on the wire, this should cancel the path
+ // degrading detection.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ ProcessAckPacket(&frame);
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ } else {
+ // Advance time to the path degrading alarm's deadline and simulate
+ // firing the alarm.
+ clock_.AdvanceTime(delay);
+ EXPECT_CALL(visitor_, OnPathDegrading());
+ connection_.PathDegradingTimeout();
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ }
+ }
+ EXPECT_TRUE(connection_.IsPathDegrading());
+}
+
+TEST_P(QuicConnectionTest, RetransmittableOnWireSetsPingAlarm) {
+ const QuicTime::Delta retransmittable_on_wire_timeout =
+ QuicTime::Delta::FromMilliseconds(50);
+ connection_.set_initial_retransmittable_on_wire_timeout(
+ retransmittable_on_wire_timeout);
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ // Send a packet.
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ // Now there's a retransmittable packet on the wire, so the path degrading
+ // alarm should be set.
+ // The retransmittable-on-wire alarm should not be set.
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+ clock_.ApproximateNow());
+ ASSERT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+ // The ping alarm is set for the ping timeout, not the shorter
+ // retransmittable_on_wire_timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
+ EXPECT_EQ(ping_delay,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Now receive an ACK of the packet.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+ ProcessAckPacket(&frame);
+ // No more retransmittable packets on the wire, so the path degrading alarm
+ // should be cancelled, and the ping alarm should be set to the
+ // retransmittable_on_wire_timeout.
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Simulate firing the ping alarm and sending a PING.
+ clock_.AdvanceTime(retransmittable_on_wire_timeout);
+ connection_.GetPingAlarm()->Fire();
+
+ // Now there's a retransmittable packet (PING) on the wire, so the path
+ // degrading alarm should be set.
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+ clock_.ApproximateNow());
+}
+
+TEST_P(QuicConnectionTest, ServerRetransmittableOnWire) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ SetQuicReloadableFlag(quic_enable_server_on_wire_ping, true);
+
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(kSRWP);
+ config.SetInitialReceivedConnectionOptions(connection_options);
+ connection_.SetFromConfig(config);
+
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+
+ ProcessPacket(1);
+
+ ASSERT_TRUE(connection_.GetPingAlarm()->IsSet());
+ QuicTime::Delta ping_delay = QuicTime::Delta::FromMilliseconds(200);
+ EXPECT_EQ(ping_delay,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10));
+ connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+ // Verify PING alarm gets cancelled.
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+
+ // Now receive an ACK of the packet.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+ ProcessAckPacket(2, &frame);
+ // Verify PING alarm gets scheduled.
+ ASSERT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(ping_delay,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+}
+
+// This test verifies that the connection marks path as degrading and does not
+// spin timer to detect path degrading when a new packet is sent on the
+// degraded path.
+TEST_P(QuicConnectionTest, NoPathDegradingDetectionIfPathIsDegrading) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ // Send the first packet. Now there's a retransmittable packet on the wire, so
+ // the path degrading alarm should be set.
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ // Check the deadline of the path degrading detection.
+ QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+ clock_.ApproximateNow());
+
+ // Send a second packet. The path degrading detection's deadline should remain
+ // the same.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicTime prev_deadline = connection_.GetBlackholeDetectorAlarm()->deadline();
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_EQ(prev_deadline, connection_.GetBlackholeDetectorAlarm()->deadline());
+
+ // Now receive an ACK of the first packet. This should advance the path
+ // degrading detection's deadline since forward progress has been made.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ // Check the deadline of the path degrading alarm.
+ delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+ clock_.ApproximateNow());
+
+ // Advance time to the path degrading detection's deadline and simulate
+ // firing the path degrading detection. This path will be considered as
+ // degrading.
+ clock_.AdvanceTime(delay);
+ EXPECT_CALL(visitor_, OnPathDegrading()).Times(1);
+ connection_.PathDegradingTimeout();
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_TRUE(connection_.IsPathDegrading());
+
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ // Send a third packet. The path degrading detection is no longer set but path
+ // should still be marked as degrading.
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_TRUE(connection_.IsPathDegrading());
+}
+
+// This test verifies that the connection unmarks path as degrarding and spins
+// the timer to detect future path degrading when forward progress is made
+// after path has been marked degrading.
+TEST_P(QuicConnectionTest, UnmarkPathDegradingOnForwardProgress) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ // Send the first packet. Now there's a retransmittable packet on the wire, so
+ // the path degrading alarm should be set.
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ // Check the deadline of the path degrading alarm.
+ QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+ clock_.ApproximateNow());
+
+ // Send a second packet. The path degrading alarm's deadline should remain
+ // the same.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicTime prev_deadline = connection_.GetBlackholeDetectorAlarm()->deadline();
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_EQ(prev_deadline, connection_.GetBlackholeDetectorAlarm()->deadline());
+
+ // Now receive an ACK of the first packet. This should advance the path
+ // degrading alarm's deadline since forward progress has been made.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ // Check the deadline of the path degrading alarm.
+ delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+ clock_.ApproximateNow());
+
+ // Advance time to the path degrading alarm's deadline and simulate
+ // firing the alarm.
+ clock_.AdvanceTime(delay);
+ EXPECT_CALL(visitor_, OnPathDegrading()).Times(1);
+ connection_.PathDegradingTimeout();
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_TRUE(connection_.IsPathDegrading());
+
+ // Send a third packet. The path degrading alarm is no longer set but path
+ // should still be marked as degrading.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_TRUE(connection_.IsPathDegrading());
+
+ // Now receive an ACK of the second packet. This should unmark the path as
+ // degrading. And will set a timer to detect new path degrading.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading()).Times(1);
+ frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ ProcessAckPacket(&frame);
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+}
+
+TEST_P(QuicConnectionTest, NoPathDegradingOnServer) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+
+ // Send data.
+ const char data[] = "data";
+ connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+
+ // Ack data.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
+ ProcessAckPacket(&frame);
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+}
+
+TEST_P(QuicConnectionTest, NoPathDegradingAfterSendingAck) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(1);
+ SendAckPacketToPeer();
+ EXPECT_FALSE(connection_.sent_packet_manager().unacked_packets().empty());
+ EXPECT_FALSE(connection_.sent_packet_manager().HasInFlightPackets());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+}
+
+TEST_P(QuicConnectionTest, MultipleCallsToCloseConnection) {
+ // Verifies that multiple calls to CloseConnection do not
+ // result in multiple attempts to close the connection - it will be marked as
+ // disconnected after the first call.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1);
+ connection_.CloseConnection(QUIC_NO_ERROR, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+ connection_.CloseConnection(QUIC_NO_ERROR, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+}
+
+TEST_P(QuicConnectionTest, ServerReceivesChloOnNonCryptoStream) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ CryptoHandshakeMessage message;
+ CryptoFramer framer;
+ message.set_tag(kCHLO);
+ std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message);
+ frame1_.stream_id = 10;
+ frame1_.data_buffer = data->data();
+ frame1_.data_length = data->length();
+
+ if (version().handshake_protocol == PROTOCOL_TLS1_3) {
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ }
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ ForceProcessFramePacket(QuicFrame(frame1_));
+ if (VersionHasIetfQuicFrames(version().transport_version)) {
+ // INITIAL packet should not contain STREAM frame.
+ TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+ } else {
+ TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY);
+ }
+}
+
+TEST_P(QuicConnectionTest, ClientReceivesRejOnNonCryptoStream) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ CryptoHandshakeMessage message;
+ CryptoFramer framer;
+ message.set_tag(kREJ);
+ std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message);
+ frame1_.stream_id = 10;
+ frame1_.data_buffer = data->data();
+ frame1_.data_length = data->length();
+
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ ForceProcessFramePacket(QuicFrame(frame1_));
+ if (VersionHasIetfQuicFrames(version().transport_version)) {
+ // INITIAL packet should not contain STREAM frame.
+ TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+ } else {
+ TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY);
+ }
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOnPacketTooLarge) {
+ SimulateNextPacketTooLarge();
+ // A connection close packet is sent
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .Times(1);
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
+}
+
+TEST_P(QuicConnectionTest, AlwaysGetPacketTooLarge) {
+ // Test even we always get packet too large, we do not infinitely try to send
+ // close packet.
+ AlwaysGetPacketTooLarge();
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .Times(1);
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOnQueuedWriteError) {
+ // Regression test for crbug.com/979507.
+ //
+ // If we get a write error when writing queued packets, we should attempt to
+ // send a connection close packet, but if sending that fails, it shouldn't get
+ // queued.
+
+ // Queue a packet to write.
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ // Configure writer to always fail.
+ AlwaysGetPacketTooLarge();
+
+ // Expect that we attempt to close the connection exactly once.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .Times(1);
+
+ // Unblock the writes and actually send.
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+
+ TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
+}
+
+// Verify that if connection has no outstanding data, it notifies the send
+// algorithm after the write.
+TEST_P(QuicConnectionTest, SendDataAndBecomeApplicationLimited) {
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
+ {
+ InSequence seq;
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite())
+ .WillRepeatedly(Return(false));
+ }
+
+ connection_.SendStreamData3();
+}
+
+// Verify that the connection does not become app-limited if there is
+// outstanding data to send after the write.
+TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedIfMoreDataAvailable) {
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
+ {
+ InSequence seq;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+ }
+
+ connection_.SendStreamData3();
+}
+
+// Verify that the connection does not become app-limited after blocked write
+// even if there is outstanding data to send after the write.
+TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedDueToWriteBlock) {
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+ BlockOnNextWrite();
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamData3();
+
+ // Now unblock the writer, become congestion control blocked,
+ // and ensure we become app-limited after writing.
+ writer_->SetWritable();
+ CongestionBlockWrites();
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
+ connection_.OnCanWrite();
+}
+
+// Test the mode in which the link is filled up with probing retransmissions if
+// the connection becomes application-limited.
+TEST_P(QuicConnectionTest, SendDataWhenApplicationLimited) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
+ .WillRepeatedly(Return(true));
+ {
+ InSequence seq;
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite())
+ .WillRepeatedly(Return(false));
+ }
+ EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] {
+ return connection_.sent_packet_manager().MaybeRetransmitOldestPacket(
+ PROBING_RETRANSMISSION);
+ });
+ // Fix congestion window to be 20,000 bytes.
+ EXPECT_CALL(*send_algorithm_, CanSend(Ge(20000u)))
+ .WillRepeatedly(Return(false));
+ EXPECT_CALL(*send_algorithm_, CanSend(Lt(20000u)))
+ .WillRepeatedly(Return(true));
+
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
+ ASSERT_EQ(0u, connection_.GetStats().packets_sent);
+ connection_.set_fill_up_link_during_probing(true);
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ connection_.OnHandshakeComplete();
+ connection_.SendStreamData3();
+
+ // We expect a lot of packets from a 20 kbyte window.
+ EXPECT_GT(connection_.GetStats().packets_sent, 10u);
+ // Ensure that the packets are padded.
+ QuicByteCount average_packet_size =
+ connection_.GetStats().bytes_sent / connection_.GetStats().packets_sent;
+ EXPECT_GT(average_packet_size, 1000u);
+
+ // Acknowledge all packets sent, except for the last one.
+ QuicAckFrame ack = InitAckFrame(
+ connection_.sent_packet_manager().GetLargestSentPacket() - 1);
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+ // Ensure that since we no longer have retransmittable bytes in flight, this
+ // will not cause any responses to be sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
+ ProcessAckPacket(&ack);
+}
+
+TEST_P(QuicConnectionTest, DoNotForceSendingAckOnPacketTooLarge) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ // Send an ack by simulating delayed ack alarm firing.
+ ProcessPacket(1);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ connection_.GetAckAlarm()->Fire();
+ // Simulate data packet causes write error.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ SimulateNextPacketTooLarge();
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ EXPECT_EQ(1u, writer_->connection_close_frames().size());
+ // Ack frame is not bundled in connection close packet.
+ EXPECT_TRUE(writer_->ack_frames().empty());
+ if (writer_->padding_frames().empty()) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ }
+
+ TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionAllLevels) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
+ connection_.CloseConnection(
+ kQuicErrorCode, "Some random error message",
+ ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+
+ EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
+
+ TestConnectionCloseQuicErrorCode(kQuicErrorCode);
+ EXPECT_EQ(1u, writer_->connection_close_frames().size());
+
+ if (!connection_.version().CanSendCoalescedPackets()) {
+ // Each connection close packet should be sent in distinct UDP packets.
+ EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
+ writer_->connection_close_packets());
+ EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
+ writer_->packets_write_attempts());
+ return;
+ }
+
+ // A single UDP packet should be sent with multiple connection close packets
+ // coalesced together.
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+ // Only the first packet has been processed yet.
+ EXPECT_EQ(1u, writer_->connection_close_packets());
+
+ // ProcessPacket resets the visitor and frees the coalesced packet.
+ ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+ auto packet = writer_->coalesced_packet()->Clone();
+ writer_->framer()->ProcessPacket(*packet);
+ EXPECT_EQ(1u, writer_->connection_close_packets());
+ ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOneLevel) {
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
+ connection_.CloseConnection(
+ kQuicErrorCode, "Some random error message",
+ ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+
+ EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
+
+ TestConnectionCloseQuicErrorCode(kQuicErrorCode);
+ EXPECT_EQ(1u, writer_->connection_close_frames().size());
+ EXPECT_EQ(1u, writer_->connection_close_packets());
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+}
+
+TEST_P(QuicConnectionTest, DoNotPadServerInitialConnectionClose) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+
+ if (version().handshake_protocol == PROTOCOL_TLS1_3) {
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ }
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
+ connection_.CloseConnection(
+ kQuicErrorCode, "Some random error message",
+ ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+
+ EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
+
+ TestConnectionCloseQuicErrorCode(kQuicErrorCode);
+ EXPECT_EQ(1u, writer_->connection_close_frames().size());
+ EXPECT_TRUE(writer_->padding_frames().empty());
+ EXPECT_EQ(ENCRYPTION_INITIAL, writer_->framer()->last_decrypted_level());
+}
+
+// Regression test for b/63620844.
+TEST_P(QuicConnectionTest, FailedToWriteHandshakePacket) {
+ SimulateNextPacketTooLarge();
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .Times(1);
+
+ connection_.SendCryptoStreamData();
+ TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
+}
+
+TEST_P(QuicConnectionTest, MaxPacingRate) {
+ EXPECT_EQ(0, connection_.MaxPacingRate().ToBytesPerSecond());
+ connection_.SetMaxPacingRate(QuicBandwidth::FromBytesPerSecond(100));
+ EXPECT_EQ(100, connection_.MaxPacingRate().ToBytesPerSecond());
+}
+
+TEST_P(QuicConnectionTest, ClientAlwaysSendConnectionId) {
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ EXPECT_EQ(CONNECTION_ID_PRESENT,
+ writer_->last_packet_header().destination_connection_id_included);
+
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0);
+ connection_.SetFromConfig(config);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(3, "bar", 3, NO_FIN);
+ // Verify connection id is still sent in the packet.
+ EXPECT_EQ(CONNECTION_ID_PRESENT,
+ writer_->last_packet_header().destination_connection_id_included);
+}
+
+TEST_P(QuicConnectionTest, SendProbingRetransmissions) {
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+
+ const QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "bar", 3, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "test", 6, NO_FIN, &last_packet);
+
+ const QuicByteCount old_bytes_in_flight =
+ connection_.sent_packet_manager().GetBytesInFlight();
+
+ // Allow 9 probing retransmissions to be sent.
+ {
+ InSequence seq;
+ EXPECT_CALL(*send_algorithm_, CanSend(_))
+ .Times(9 * 2)
+ .WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
+ }
+ // Expect them retransmitted in cyclic order (foo, bar, test, foo, bar...).
+ QuicPacketCount sent_count = 0;
+
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _))
+ .WillRepeatedly(Invoke(
+ [this, &sent_count](QuicPacketNumber, QuicPacketLength, bool,
+ TransmissionType, EncryptionLevel,
+ const QuicFrames&, const QuicFrames&, QuicTime) {
+ ASSERT_EQ(1u, writer_->stream_frames().size());
+ if (connection_.version().CanSendCoalescedPackets()) {
+ // There is a delay of sending coalesced packet, so (6, 0, 3, 6,
+ // 0...).
+ EXPECT_EQ(3 * ((sent_count + 2) % 3),
+ writer_->stream_frames()[0]->offset);
+ } else {
+ // Identify the frames by stream offset (0, 3, 6, 0, 3...).
+ EXPECT_EQ(3 * (sent_count % 3),
+ writer_->stream_frames()[0]->offset);
+ }
+ sent_count++;
+ }));
+
+ EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
+ .WillRepeatedly(Return(true));
+ EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] {
+ return connection_.sent_packet_manager().MaybeRetransmitOldestPacket(
+ PROBING_RETRANSMISSION);
+ });
+
+ connection_.SendProbingRetransmissions();
+
+ // Ensure that the in-flight has increased.
+ const QuicByteCount new_bytes_in_flight =
+ connection_.sent_packet_manager().GetBytesInFlight();
+ EXPECT_GT(new_bytes_in_flight, old_bytes_in_flight);
+}
+
+// Ensure that SendProbingRetransmissions() does not retransmit anything when
+// there are no outstanding packets.
+TEST_P(QuicConnectionTest,
+ SendProbingRetransmissionsFailsWhenNothingToRetransmit) {
+ ASSERT_TRUE(connection_.sent_packet_manager().unacked_packets().empty());
+
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(0);
+ EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
+ .WillRepeatedly(Return(true));
+ EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] {
+ return connection_.sent_packet_manager().MaybeRetransmitOldestPacket(
+ PROBING_RETRANSMISSION);
+ });
+
+ connection_.SendProbingRetransmissions();
+}
+
+TEST_P(QuicConnectionTest, PingAfterLastRetransmittablePacketAcked) {
+ const QuicTime::Delta retransmittable_on_wire_timeout =
+ QuicTime::Delta::FromMilliseconds(50);
+ connection_.set_initial_retransmittable_on_wire_timeout(
+ retransmittable_on_wire_timeout);
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ // Advance 5ms, send a retransmittable packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+ // The ping alarm is set for the ping timeout, not the shorter
+ // retransmittable_on_wire_timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
+ EXPECT_EQ(ping_delay,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Advance 5ms, send a second retransmittable packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+
+ // Now receive an ACK of the first packet. This should not set the
+ // retransmittable-on-wire alarm since packet 2 is still on the wire.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+ // The ping alarm is set for the ping timeout, not the shorter
+ // retransmittable_on_wire_timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ // The ping alarm has a 1 second granularity, and the clock has been advanced
+ // 10ms since it was originally set.
+ EXPECT_EQ(ping_delay - QuicTime::Delta::FromMilliseconds(10),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Now receive an ACK of the second packet. This should set the
+ // retransmittable-on-wire alarm now that no retransmittable packets are on
+ // the wire.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Now receive a duplicate ACK of the second packet. This should not update
+ // the ping alarm.
+ QuicTime prev_deadline = connection_.GetPingAlarm()->deadline();
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline());
+
+ // Now receive a non-ACK packet. This should not update the ping alarm.
+ prev_deadline = connection_.GetPingAlarm()->deadline();
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ ProcessPacket(4);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline());
+
+ // Simulate the alarm firing and check that a PING is sent.
+ connection_.GetPingAlarm()->Fire();
+ size_t padding_frame_count = writer_->padding_frames().size();
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
+ } else {
+ EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count());
+ }
+ ASSERT_EQ(1u, writer_->ping_frames().size());
+}
+
+TEST_P(QuicConnectionTest, NoPingIfRetransmittablePacketSent) {
+ const QuicTime::Delta retransmittable_on_wire_timeout =
+ QuicTime::Delta::FromMilliseconds(50);
+ connection_.set_initial_retransmittable_on_wire_timeout(
+ retransmittable_on_wire_timeout);
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ // Advance 5ms, send a retransmittable packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+ // The ping alarm is set for the ping timeout, not the shorter
+ // retransmittable_on_wire_timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
+ EXPECT_EQ(ping_delay,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Now receive an ACK of the first packet. This should set the
+ // retransmittable-on-wire alarm now that no retransmittable packets are on
+ // the wire.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Before the alarm fires, send another retransmittable packet. This should
+ // cancel the retransmittable-on-wire alarm since now there's a
+ // retransmittable packet on the wire.
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+
+ // Now receive an ACK of the second packet. This should set the
+ // retransmittable-on-wire alarm now that no retransmittable packets are on
+ // the wire.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Simulate the alarm firing and check that a PING is sent.
+ writer_->Reset();
+ connection_.GetPingAlarm()->Fire();
+ size_t padding_frame_count = writer_->padding_frames().size();
+ if (GetParam().no_stop_waiting) {
+ // Do not ACK acks.
+ EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+ } else {
+ EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count());
+ }
+ ASSERT_EQ(1u, writer_->ping_frames().size());
+}
+
+// When there is no stream data received but are open streams, send the
+// first few consecutive pings with aggressive retransmittable-on-wire
+// timeout. Exponentially back off the retransmittable-on-wire ping timeout
+// afterwards until it exceeds the default ping timeout.
+TEST_P(QuicConnectionTest, BackOffRetransmittableOnWireTimeout) {
+ int max_aggressive_retransmittable_on_wire_ping_count = 5;
+ SetQuicFlag(FLAGS_quic_max_aggressive_retransmittable_on_wire_ping_count,
+ max_aggressive_retransmittable_on_wire_ping_count);
+ const QuicTime::Delta initial_retransmittable_on_wire_timeout =
+ QuicTime::Delta::FromMilliseconds(200);
+ connection_.set_initial_retransmittable_on_wire_timeout(
+ initial_retransmittable_on_wire_timeout);
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+
+ const char data[] = "data";
+ // Advance 5ms, send a retransmittable data packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
+ EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+ // The ping alarm is set for the ping timeout, not the shorter
+ // retransmittable_on_wire_timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(connection_.ping_timeout(),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+ .Times(AnyNumber());
+
+ // Verify that the first few consecutive retransmittable on wire pings are
+ // sent with aggressive timeout.
+ for (int i = 0; i <= max_aggressive_retransmittable_on_wire_ping_count; i++) {
+ // Receive an ACK of the previous packet. This should set the ping alarm
+ // with the initial retransmittable-on-wire timeout.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicPacketNumber ack_num = creator_->packet_number();
+ QuicAckFrame frame = InitAckFrame(
+ {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+ // Simulate the alarm firing and check that a PING is sent.
+ writer_->Reset();
+ clock_.AdvanceTime(initial_retransmittable_on_wire_timeout);
+ connection_.GetPingAlarm()->Fire();
+ }
+
+ QuicTime::Delta retransmittable_on_wire_timeout =
+ initial_retransmittable_on_wire_timeout;
+
+ // Verify subsequent pings are sent with timeout that is exponentially backed
+ // off.
+ while (retransmittable_on_wire_timeout * 2 < connection_.ping_timeout()) {
+ // Receive an ACK for the previous PING. This should set the
+ // ping alarm with backed off retransmittable-on-wire timeout.
+ retransmittable_on_wire_timeout = retransmittable_on_wire_timeout * 2;
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicPacketNumber ack_num = creator_->packet_number();
+ QuicAckFrame frame = InitAckFrame(
+ {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Simulate the alarm firing and check that a PING is sent.
+ writer_->Reset();
+ clock_.AdvanceTime(retransmittable_on_wire_timeout);
+ connection_.GetPingAlarm()->Fire();
+ }
+
+ // The ping alarm is set with default ping timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(connection_.ping_timeout(),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Receive an ACK for the previous PING. The ping alarm is set with an
+ // earlier deadline.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicPacketNumber ack_num = creator_->packet_number();
+ QuicAckFrame frame = InitAckFrame(
+ {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(connection_.ping_timeout() - QuicTime::Delta::FromMilliseconds(5),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+}
+
+// This test verify that the count of consecutive aggressive pings is reset
+// when new data is received. And it also verifies the connection resets
+// the exponential back-off of the retransmittable-on-wire ping timeout
+// after receiving new stream data.
+TEST_P(QuicConnectionTest, ResetBackOffRetransmitableOnWireTimeout) {
+ int max_aggressive_retransmittable_on_wire_ping_count = 3;
+ SetQuicFlag(FLAGS_quic_max_aggressive_retransmittable_on_wire_ping_count, 3);
+ const QuicTime::Delta initial_retransmittable_on_wire_timeout =
+ QuicTime::Delta::FromMilliseconds(200);
+ connection_.set_initial_retransmittable_on_wire_timeout(
+ initial_retransmittable_on_wire_timeout);
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+ .Times(AnyNumber());
+
+ const char data[] = "data";
+ // Advance 5ms, send a retransmittable data packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
+ EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+ // The ping alarm is set for the ping timeout, not the shorter
+ // retransmittable_on_wire_timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(connection_.ping_timeout(),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Receive an ACK of the first packet. This should set the ping alarm with
+ // initial retransmittable-on-wire timeout since there is no retransmittable
+ // packet on the wire.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Simulate the alarm firing and check that a PING is sent.
+ writer_->Reset();
+ clock_.AdvanceTime(initial_retransmittable_on_wire_timeout);
+ connection_.GetPingAlarm()->Fire();
+
+ // Receive an ACK for the previous PING. Ping alarm will be set with
+ // aggressive timeout.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicPacketNumber ack_num = creator_->packet_number();
+ frame = InitAckFrame(
+ {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Process a data packet.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(peer_creator_.packet_number() + 1);
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_,
+ peer_creator_.packet_number() + 1);
+ EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Verify the count of consecutive aggressive pings is reset.
+ for (int i = 0; i < max_aggressive_retransmittable_on_wire_ping_count; i++) {
+ // Receive an ACK of the previous packet. This should set the ping alarm
+ // with the initial retransmittable-on-wire timeout.
+ QuicPacketNumber ack_num = creator_->packet_number();
+ QuicAckFrame frame = InitAckFrame(
+ {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+ // Simulate the alarm firing and check that a PING is sent.
+ writer_->Reset();
+ clock_.AdvanceTime(initial_retransmittable_on_wire_timeout);
+ connection_.GetPingAlarm()->Fire();
+ // Advance 5ms to receive next packet.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ }
+
+ // Receive another ACK for the previous PING. This should set the
+ // ping alarm with backed off retransmittable-on-wire timeout.
+ ack_num = creator_->packet_number();
+ frame = InitAckFrame(
+ {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(initial_retransmittable_on_wire_timeout * 2,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ writer_->Reset();
+ clock_.AdvanceTime(2 * initial_retransmittable_on_wire_timeout);
+ connection_.GetPingAlarm()->Fire();
+
+ // Process another data packet and a new ACK packet. The ping alarm is set
+ // with aggressive ping timeout again.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ ProcessDataPacket(peer_creator_.packet_number() + 1);
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_,
+ peer_creator_.packet_number() + 1);
+ ack_num = creator_->packet_number();
+ frame = InitAckFrame(
+ {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+}
+
+// Make sure that we never send more retransmissible on the wire pings than
+// the limit in FLAGS_quic_max_retransmittable_on_wire_ping_count.
+TEST_P(QuicConnectionTest, RetransmittableOnWirePingLimit) {
+ static constexpr int kMaxRetransmittableOnWirePingCount = 3;
+ SetQuicFlag(FLAGS_quic_max_retransmittable_on_wire_ping_count,
+ kMaxRetransmittableOnWirePingCount);
+ static constexpr QuicTime::Delta initial_retransmittable_on_wire_timeout =
+ QuicTime::Delta::FromMilliseconds(200);
+ static constexpr QuicTime::Delta short_delay =
+ QuicTime::Delta::FromMilliseconds(5);
+ ASSERT_LT(short_delay * 10, initial_retransmittable_on_wire_timeout);
+ connection_.set_initial_retransmittable_on_wire_timeout(
+ initial_retransmittable_on_wire_timeout);
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+
+ const char data[] = "data";
+ // Advance 5ms, send a retransmittable data packet to the peer.
+ clock_.AdvanceTime(short_delay);
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
+ EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+ // The ping alarm is set for the ping timeout, not the shorter
+ // retransmittable_on_wire_timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(connection_.ping_timeout(),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+ .Times(AnyNumber());
+
+ // Verify that the first few consecutive retransmittable on wire pings are
+ // sent with aggressive timeout.
+ for (int i = 0; i <= kMaxRetransmittableOnWirePingCount; i++) {
+ // Receive an ACK of the previous packet. This should set the ping alarm
+ // with the initial retransmittable-on-wire timeout.
+ clock_.AdvanceTime(short_delay);
+ QuicPacketNumber ack_num = creator_->packet_number();
+ QuicAckFrame frame = InitAckFrame(
+ {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+ // Simulate the alarm firing and check that a PING is sent.
+ writer_->Reset();
+ clock_.AdvanceTime(initial_retransmittable_on_wire_timeout);
+ connection_.GetPingAlarm()->Fire();
+ }
+
+ // Receive an ACK of the previous packet. This should set the ping alarm
+ // but this time with the default ping timeout.
+ QuicPacketNumber ack_num = creator_->packet_number();
+ QuicAckFrame frame = InitAckFrame(
+ {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(connection_.ping_timeout(),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+}
+
+TEST_P(QuicConnectionTest, ValidStatelessResetToken) {
+ const StatelessResetToken kTestToken{0, 1, 0, 1, 0, 1, 0, 1,
+ 0, 1, 0, 1, 0, 1, 0, 1};
+ const StatelessResetToken kWrongTestToken{0, 1, 0, 1, 0, 1, 0, 1,
+ 0, 1, 0, 1, 0, 1, 0, 2};
+ QuicConfig config;
+ // No token has been received.
+ EXPECT_FALSE(connection_.IsValidStatelessResetToken(kTestToken));
+
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(2);
+ // Token is different from received token.
+ QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken);
+ connection_.SetFromConfig(config);
+ EXPECT_FALSE(connection_.IsValidStatelessResetToken(kWrongTestToken));
+
+ QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken);
+ connection_.SetFromConfig(config);
+ EXPECT_TRUE(connection_.IsValidStatelessResetToken(kTestToken));
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedWithInvalidAck) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+ BlockOnNextWrite();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(5, "foo", 0, FIN);
+ // This causes connection to be closed because packet 1 has not been sent yet.
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessAckPacket(1, &frame);
+ EXPECT_EQ(0, connection_close_frame_count_);
+}
+
+TEST_P(QuicConnectionTest, SendMessage) {
+ if (!VersionSupportsMessageFrames(connection_.transport_version())) {
+ return;
+ }
+ if (connection_.version().UsesTls()) {
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
+ &config, kMaxAcceptedDatagramFrameSize);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ }
+ std::string message(connection_.GetCurrentLargestMessagePayload() * 2, 'a');
+ quiche::QuicheMemSlice slice;
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ connection_.SendStreamData3();
+ // Send a message which cannot fit into current open packet, and 2 packets
+ // get sent, one contains stream frame, and the other only contains the
+ // message frame.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ slice = MemSliceFromString(absl::string_view(
+ message.data(), connection_.GetCurrentLargestMessagePayload()));
+ EXPECT_EQ(MESSAGE_STATUS_SUCCESS,
+ connection_.SendMessage(1, absl::MakeSpan(&slice, 1), false));
+ }
+ // Fail to send a message if connection is congestion control blocked.
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
+ slice = MemSliceFromString("message");
+ EXPECT_EQ(MESSAGE_STATUS_BLOCKED,
+ connection_.SendMessage(2, absl::MakeSpan(&slice, 1), false));
+
+ // Always fail to send a message which cannot fit into one packet.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ slice = MemSliceFromString(absl::string_view(
+ message.data(), connection_.GetCurrentLargestMessagePayload() + 1));
+ EXPECT_EQ(MESSAGE_STATUS_TOO_LARGE,
+ connection_.SendMessage(3, absl::MakeSpan(&slice, 1), false));
+}
+
+TEST_P(QuicConnectionTest, GetCurrentLargestMessagePayload) {
+ if (!connection_.version().SupportsMessageFrames()) {
+ return;
+ }
+ // Force use of this encrypter to simplify test expectations by making sure
+ // that the encryption overhead is constant across versions.
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x00));
+ QuicPacketLength expected_largest_payload = 1219;
+ if (connection_.version().SendsVariableLengthPacketNumberInLongHeader()) {
+ expected_largest_payload += 3;
+ }
+ if (connection_.version().HasLongHeaderLengths()) {
+ expected_largest_payload -= 2;
+ }
+ if (connection_.version().HasLengthPrefixedConnectionIds()) {
+ expected_largest_payload -= 1;
+ }
+ if (connection_.version().UsesTls()) {
+ // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake.
+ EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), 0);
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
+ &config, kMaxAcceptedDatagramFrameSize);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ // Verify the value post-handshake.
+ EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(),
+ expected_largest_payload);
+ } else {
+ EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(),
+ expected_largest_payload);
+ }
+}
+
+TEST_P(QuicConnectionTest, GetGuaranteedLargestMessagePayload) {
+ if (!connection_.version().SupportsMessageFrames()) {
+ return;
+ }
+ // Force use of this encrypter to simplify test expectations by making sure
+ // that the encryption overhead is constant across versions.
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x00));
+ QuicPacketLength expected_largest_payload = 1219;
+ if (connection_.version().HasLongHeaderLengths()) {
+ expected_largest_payload -= 2;
+ }
+ if (connection_.version().HasLengthPrefixedConnectionIds()) {
+ expected_largest_payload -= 1;
+ }
+ if (connection_.version().UsesTls()) {
+ // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake.
+ EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), 0);
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
+ &config, kMaxAcceptedDatagramFrameSize);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ // Verify the value post-handshake.
+ EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(),
+ expected_largest_payload);
+ } else {
+ EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(),
+ expected_largest_payload);
+ }
+}
+
+TEST_P(QuicConnectionTest, LimitedLargestMessagePayload) {
+ if (!connection_.version().SupportsMessageFrames() ||
+ !connection_.version().UsesTls()) {
+ return;
+ }
+ constexpr QuicPacketLength kFrameSizeLimit = 1000;
+ constexpr QuicPacketLength kPayloadSizeLimit =
+ kFrameSizeLimit - kQuicFrameTypeSize;
+ // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake.
+ EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), 0);
+ EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), 0);
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedMaxDatagramFrameSize(&config, kFrameSizeLimit);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ // Verify the value post-handshake.
+ EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), kPayloadSizeLimit);
+ EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(),
+ kPayloadSizeLimit);
+}
+
+// Test to check that the path challenge/path response logic works
+// correctly. This test is only for version-99
+TEST_P(QuicConnectionTest, ServerResponseToPathChallenge) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_SERVER);
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ // First check if the server can send probing packet.
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ // Create and send the probe request (PATH_CHALLENGE frame).
+ // SendConnectivityProbingPacket ends up calling
+ // TestPacketWriter::WritePacket() which in turns receives and parses the
+ // packet by calling framer_.ProcessPacket() -- which in turn calls
+ // SimpleQuicFramer::OnPathChallengeFrame(). SimpleQuicFramer saves
+ // the packet in writer_->path_challenge_frames()
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendConnectivityProbingPacket(writer_.get(),
+ connection_.peer_address());
+ // Save the random contents of the challenge for later comparison to the
+ // response.
+ ASSERT_GE(writer_->path_challenge_frames().size(), 1u);
+ QuicPathFrameBuffer challenge_data =
+ writer_->path_challenge_frames().front().data_buffer;
+
+ // Normally, QuicConnection::OnPathChallengeFrame and OnPaddingFrame would be
+ // called and it will perform actions to ensure that the rest of the protocol
+ // is performed.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_TRUE(connection_.OnPathChallengeFrame(
+ writer_->path_challenge_frames().front()));
+ EXPECT_TRUE(connection_.OnPaddingFrame(writer_->padding_frames().front()));
+ creator_->FlushCurrentPacket();
+
+ // The final check is to ensure that the random data in the response matches
+ // the random data from the challenge.
+ EXPECT_EQ(1u, writer_->path_response_frames().size());
+ EXPECT_EQ(0, memcmp(&challenge_data,
+ &(writer_->path_response_frames().front().data_buffer),
+ sizeof(challenge_data)));
+}
+
+TEST_P(QuicConnectionTest, ClientResponseToPathChallengeOnDefaulSocket) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ // First check if the client can send probing packet.
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ // Create and send the probe request (PATH_CHALLENGE frame).
+ // SendConnectivityProbingPacket ends up calling
+ // TestPacketWriter::WritePacket() which in turns receives and parses the
+ // packet by calling framer_.ProcessPacket() -- which in turn calls
+ // SimpleQuicFramer::OnPathChallengeFrame(). SimpleQuicFramer saves
+ // the packet in writer_->path_challenge_frames()
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendConnectivityProbingPacket(writer_.get(),
+ connection_.peer_address());
+ // Save the random contents of the challenge for later validation against the
+ // response.
+ ASSERT_GE(writer_->path_challenge_frames().size(), 1u);
+ QuicPathFrameBuffer challenge_data =
+ writer_->path_challenge_frames().front().data_buffer;
+
+ // Normally, QuicConnection::OnPathChallengeFrame would be
+ // called and it will perform actions to ensure that the rest of the protocol
+ // is performed.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_TRUE(connection_.OnPathChallengeFrame(
+ writer_->path_challenge_frames().front()));
+ EXPECT_TRUE(connection_.OnPaddingFrame(writer_->padding_frames().front()));
+ creator_->FlushCurrentPacket();
+
+ // The final check is to ensure that the random data in the response matches
+ // the random data from the challenge.
+ EXPECT_EQ(1u, writer_->path_response_frames().size());
+ EXPECT_EQ(0, memcmp(&challenge_data,
+ &(writer_->path_response_frames().front().data_buffer),
+ sizeof(challenge_data)));
+}
+
+TEST_P(QuicConnectionTest, ClientResponseToPathChallengeOnAlternativeSocket) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.use_path_validator()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ QuicSocketAddress kNewSelfAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1u))
+ .WillOnce(Invoke([&]() {
+ EXPECT_EQ(1u, new_writer.packets_write_attempts());
+ EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+ EXPECT_EQ(1u, new_writer.padding_frames().size());
+ EXPECT_EQ(kNewSelfAddress.host(),
+ new_writer.last_write_source_address());
+ }));
+ bool success = false;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kNewSelfAddress, connection_.peer_address(), &new_writer),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+
+ // Receiving a PATH_CHALLENGE on the alternative path. Response to this
+ // PATH_CHALLENGE should be sent via the alternative writer.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1u))
+ .WillOnce(Invoke([&]() {
+ EXPECT_EQ(2u, new_writer.packets_write_attempts());
+ EXPECT_EQ(1u, new_writer.path_response_frames().size());
+ EXPECT_EQ(1u, new_writer.padding_frames().size());
+ EXPECT_EQ(kNewSelfAddress.host(),
+ new_writer.last_write_source_address());
+ }));
+ std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received);
+
+ QuicSocketAddress kNewerSelfAddress(QuicIpAddress::Loopback6(),
+ /*port=*/34567);
+ // Receiving a PATH_CHALLENGE on an unknown socket should be ignored.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u);
+ ProcessReceivedPacket(kNewerSelfAddress, kPeerAddress, *received);
+}
+
+TEST_P(QuicConnectionTest,
+ RestartPathDegradingDetectionAfterMigrationWithProbe) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ PathProbeTestInit(Perspective::IS_CLIENT);
+
+ // Send data and verify the path degrading detection is set.
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+
+ // Verify the path degrading detection is in progress.
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ QuicTime ddl = connection_.GetBlackholeDetectorAlarm()->deadline();
+
+ // Simulate the firing of path degrading.
+ clock_.AdvanceTime(ddl - clock_.ApproximateNow());
+ EXPECT_CALL(visitor_, OnPathDegrading()).Times(1);
+ connection_.PathDegradingTimeout();
+ EXPECT_TRUE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+
+ if (!GetParam().version.HasIetfQuicFrames()) {
+ // Simulate path degrading handling by sending a probe on an alternet path.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ TestPacketWriter probing_writer(version(), &clock_, Perspective::IS_CLIENT);
+ connection_.SendConnectivityProbingPacket(&probing_writer,
+ connection_.peer_address());
+ // Verify that path degrading detection is not reset.
+ EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+
+ // Simulate successful path degrading handling by receiving probe response.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+
+ EXPECT_CALL(visitor_,
+ OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+ .Times(1);
+ const QuicSocketAddress kNewSelfAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+ std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+ ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received);
+
+ EXPECT_EQ(num_probing_received + 1,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+ EXPECT_TRUE(connection_.IsPathDegrading());
+ }
+
+ // Verify new path degrading detection is activated.
+ EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading()).Times(1);
+ connection_.OnSuccessfulMigration(/*is_port_change*/ true);
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+}
+
+TEST_P(QuicConnectionTest, ClientsResetCwndAfterConnectionMigration) {
+ if (!GetParam().version.HasIetfQuicFrames()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ EXPECT_EQ(kSelfAddress, connection_.self_address());
+
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt();
+ rtt_stats->set_initial_rtt(default_init_rtt * 2);
+ EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt());
+
+ QuicSentPacketManagerPeer::SetConsecutiveRtoCount(manager_, 1);
+ EXPECT_EQ(1u, manager_->GetConsecutiveRtoCount());
+ QuicSentPacketManagerPeer::SetConsecutiveTlpCount(manager_, 2);
+ EXPECT_EQ(2u, manager_->GetConsecutiveTlpCount());
+ const SendAlgorithmInterface* send_algorithm = manager_->GetSendAlgorithm();
+
+ // Migrate to a new address with different IP.
+ const QuicSocketAddress kNewSelfAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ connection_.MigratePath(kNewSelfAddress, connection_.peer_address(),
+ &new_writer, false);
+ EXPECT_EQ(default_init_rtt, manager_->GetRttStats()->initial_rtt());
+ EXPECT_EQ(0u, manager_->GetConsecutiveRtoCount());
+ EXPECT_EQ(0u, manager_->GetConsecutiveTlpCount());
+ EXPECT_NE(send_algorithm, manager_->GetSendAlgorithm());
+}
+
+// Regression test for b/110259444
+TEST_P(QuicConnectionTest, DoNotScheduleSpuriousAckAlarm) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+ writer_->SetWriteBlocked();
+
+ ProcessPacket(1);
+ // Verify ack alarm is set.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ // Fire the ack alarm, verify no packet is sent because the writer is blocked.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.GetAckAlarm()->Fire();
+
+ writer_->SetWritable();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessPacket(2);
+ // Verify ack alarm is not set.
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, DisablePacingOffloadConnectionOptions) {
+ EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
+ writer_->set_supports_release_time(true);
+ QuicConfig config;
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ EXPECT_TRUE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
+
+ QuicTagVector connection_options;
+ connection_options.push_back(kNPCO);
+ config.SetConnectionOptionsToSend(connection_options);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ // Verify pacing offload is disabled.
+ EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
+}
+
+// Regression test for b/110259444
+// Get a path response without having issued a path challenge...
+TEST_P(QuicConnectionTest, OrphanPathResponse) {
+ QuicPathFrameBuffer data = {{0, 1, 2, 3, 4, 5, 6, 7}};
+
+ QuicPathResponseFrame frame(99, data);
+ EXPECT_TRUE(connection_.OnPathResponseFrame(frame));
+ // If PATH_RESPONSE was accepted (payload matches the payload saved
+ // in QuicConnection::transmitted_connectivity_probe_payload_) then
+ // current_packet_content_ would be set to FIRST_FRAME_IS_PING.
+ // Since this PATH_RESPONSE does not match, current_packet_content_
+ // must not be FIRST_FRAME_IS_PING.
+ EXPECT_NE(QuicConnection::FIRST_FRAME_IS_PING,
+ QuicConnectionPeer::GetCurrentPacketContent(&connection_));
+}
+
+// Regression test for b/120791670
+TEST_P(QuicConnectionTest, StopProcessingGQuicPacketInIetfQuicConnection) {
+ // This test mimics a problematic scenario where a QUIC connection using a
+ // modern version received a Q043 packet and processed it incorrectly.
+ // We can remove this test once Q043 is deprecated.
+ if (!version().HasIetfInvariantHeader()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ }
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+
+ // Let connection process a Google QUIC packet.
+ peer_framer_.set_version_for_tests(ParsedQuicVersion::Q043());
+ std::unique_ptr<QuicPacket> packet(
+ ConstructDataPacket(2, !kHasStopWaiting, ENCRYPTION_INITIAL));
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(2),
+ *packet, buffer, kMaxOutgoingPacketSize);
+ // Make sure no stream frame is processed.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(0);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+
+ EXPECT_EQ(2u, connection_.GetStats().packets_received);
+ EXPECT_EQ(1u, connection_.GetStats().packets_processed);
+}
+
+TEST_P(QuicConnectionTest, AcceptPacketNumberZero) {
+ if (!VersionHasIetfQuicFrames(version().transport_version)) {
+ return;
+ }
+ // Set first_sending_packet_number to be 0 to allow successfully processing
+ // acks which ack packet number 0.
+ QuicFramerPeer::SetFirstSendingPacketNumber(writer_->framer()->framer(), 0);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(0);
+ EXPECT_EQ(QuicPacketNumber(0), LargestAcked(connection_.ack_frame()));
+ EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+
+ ProcessPacket(1);
+ EXPECT_EQ(QuicPacketNumber(1), LargestAcked(connection_.ack_frame()));
+ EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+
+ ProcessPacket(2);
+ EXPECT_EQ(QuicPacketNumber(2), LargestAcked(connection_.ack_frame()));
+ EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+}
+
+TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicSending) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+
+ connection_.SendCryptoStreamData();
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ QuicAckFrame frame1 = InitAckFrame(1);
+ // Received ACK for packet 1.
+ ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(4);
+ connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0,
+ NO_FIN);
+ connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4,
+ NO_FIN);
+ connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
+ 8, NO_FIN);
+ connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
+ 12, FIN);
+ // Received ACK for packets 2, 4, 5.
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ QuicAckFrame frame2 =
+ InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)},
+ {QuicPacketNumber(4), QuicPacketNumber(6)}});
+ // Make sure although the same packet number is used, but they are in
+ // different packet number spaces.
+ ProcessFramePacketAtLevel(30, QuicFrame(&frame2), ENCRYPTION_FORWARD_SECURE);
+}
+
+TEST_P(QuicConnectionTest, PeerAcksPacketsInWrongPacketNumberSpace) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x01));
+
+ connection_.SendCryptoStreamData();
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ QuicAckFrame frame1 = InitAckFrame(1);
+ // Received ACK for packet 1.
+ ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0,
+ NO_FIN);
+ connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4,
+ NO_FIN);
+
+ // Received ACK for packets 2 and 3 in wrong packet number space.
+ QuicAckFrame invalid_ack =
+ InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(4)}});
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ ProcessFramePacketAtLevel(300, QuicFrame(&invalid_ack), ENCRYPTION_INITIAL);
+ TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA);
+}
+
+TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicReceiving) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ }
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+ // Receives packet 1000 in initial data.
+ ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x02));
+ // Receives packet 1000 in application data.
+ ProcessDataPacketAtLevel(1000, false, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
+ 0, NO_FIN);
+ // Verify application data ACK gets bundled with outgoing data.
+ EXPECT_EQ(2u, writer_->frame_count());
+ // Make sure ACK alarm is still set because initial data is not ACKed.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ // Receive packet 1001 in application data.
+ ProcessDataPacketAtLevel(1001, false, ENCRYPTION_FORWARD_SECURE);
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ // Simulates ACK alarm fires and verify two ACKs are flushed.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.GetAckAlarm()->Fire();
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ // Receives more packets in application data.
+ ProcessDataPacketAtLevel(1002, false, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ // Verify zero rtt and forward secure packets get acked in the same packet.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessDataPacket(1003);
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, CancelAckAlarmOnWriteBlocked) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ }
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+ // Receives packet 1000 in initial data.
+ ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x02));
+ // Receives packet 1000 in application data.
+ ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ writer_->SetWriteBlocked();
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AnyNumber());
+ // Simulates ACK alarm fires and verify no ACK is flushed because of write
+ // blocked.
+ clock_.AdvanceTime(DefaultDelayedAckTime());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.GetAckAlarm()->Fire();
+ // Verify ACK alarm is not set.
+ EXPECT_FALSE(connection_.HasPendingAcks());
+
+ writer_->SetWritable();
+ // Verify 2 ACKs are sent when connection gets unblocked.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ connection_.OnCanWrite();
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+// Make sure a packet received with the right client connection ID is processed.
+TEST_P(QuicConnectionTest, ValidClientConnectionId) {
+ if (!framer_.version().SupportsClientConnectionIds()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ SetClientConnectionId(TestConnectionId(0x33));
+ QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE);
+ header.destination_connection_id = TestConnectionId(0x33);
+ header.destination_connection_id_included = CONNECTION_ID_PRESENT;
+ header.source_connection_id_included = CONNECTION_ID_ABSENT;
+ QuicFrames frames;
+ QuicPingFrame ping_frame;
+ QuicPaddingFrame padding_frame;
+ frames.push_back(QuicFrame(ping_frame));
+ frames.push_back(QuicFrame(padding_frame));
+ std::unique_ptr<QuicPacket> packet =
+ BuildUnsizedDataPacket(&peer_framer_, header, frames);
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer,
+ kMaxOutgoingPacketSize);
+ QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
+ false);
+ EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+ ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
+ EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+}
+
+// Make sure a packet received with a different client connection ID is dropped.
+TEST_P(QuicConnectionTest, InvalidClientConnectionId) {
+ if (!framer_.version().SupportsClientConnectionIds()) {
+ return;
+ }
+ SetClientConnectionId(TestConnectionId(0x33));
+ QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE);
+ header.destination_connection_id = TestConnectionId(0xbad);
+ header.destination_connection_id_included = CONNECTION_ID_PRESENT;
+ header.source_connection_id_included = CONNECTION_ID_ABSENT;
+ QuicFrames frames;
+ QuicPingFrame ping_frame;
+ QuicPaddingFrame padding_frame;
+ frames.push_back(QuicFrame(ping_frame));
+ frames.push_back(QuicFrame(padding_frame));
+ std::unique_ptr<QuicPacket> packet =
+ BuildUnsizedDataPacket(&peer_framer_, header, frames);
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer,
+ kMaxOutgoingPacketSize);
+ QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
+ false);
+ EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+ ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
+ EXPECT_EQ(1u, connection_.GetStats().packets_dropped);
+}
+
+// Make sure the first packet received with a different client connection ID on
+// the server is processed and it changes the client connection ID.
+TEST_P(QuicConnectionTest, UpdateClientConnectionIdFromFirstPacket) {
+ if (!framer_.version().SupportsClientConnectionIds()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_INITIAL);
+ header.source_connection_id = TestConnectionId(0x33);
+ header.source_connection_id_included = CONNECTION_ID_PRESENT;
+ QuicFrames frames;
+ QuicPingFrame ping_frame;
+ QuicPaddingFrame padding_frame;
+ frames.push_back(QuicFrame(ping_frame));
+ frames.push_back(QuicFrame(padding_frame));
+ std::unique_ptr<QuicPacket> packet =
+ BuildUnsizedDataPacket(&peer_framer_, header, frames);
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(1),
+ *packet, buffer, kMaxOutgoingPacketSize);
+ QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
+ false);
+ EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+ ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
+ EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+ EXPECT_EQ(TestConnectionId(0x33), connection_.client_connection_id());
+}
+void QuicConnectionTest::TestReplaceConnectionIdFromInitial() {
+ if (!framer_.version().AllowsVariableLengthConnectionIds()) {
+ return;
+ }
+ // We start with a known connection ID.
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+ EXPECT_NE(TestConnectionId(0x33), connection_.connection_id());
+ // Receiving an initial can replace the connection ID once.
+ {
+ QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_INITIAL);
+ header.source_connection_id = TestConnectionId(0x33);
+ header.source_connection_id_included = CONNECTION_ID_PRESENT;
+ QuicFrames frames;
+ QuicPingFrame ping_frame;
+ QuicPaddingFrame padding_frame;
+ frames.push_back(QuicFrame(ping_frame));
+ frames.push_back(QuicFrame(padding_frame));
+ std::unique_ptr<QuicPacket> packet =
+ BuildUnsizedDataPacket(&peer_framer_, header, frames);
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(1),
+ *packet, buffer, kMaxOutgoingPacketSize);
+ QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
+ false);
+ ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
+ }
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+ EXPECT_EQ(TestConnectionId(0x33), connection_.connection_id());
+ // Trying to replace the connection ID a second time drops the packet.
+ {
+ QuicPacketHeader header = ConstructPacketHeader(2, ENCRYPTION_INITIAL);
+ header.source_connection_id = TestConnectionId(0x66);
+ header.source_connection_id_included = CONNECTION_ID_PRESENT;
+ QuicFrames frames;
+ QuicPingFrame ping_frame;
+ QuicPaddingFrame padding_frame;
+ frames.push_back(QuicFrame(ping_frame));
+ frames.push_back(QuicFrame(padding_frame));
+ std::unique_ptr<QuicPacket> packet =
+ BuildUnsizedDataPacket(&peer_framer_, header, frames);
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(2),
+ *packet, buffer, kMaxOutgoingPacketSize);
+ QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
+ false);
+ ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
+ }
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_EQ(1u, connection_.GetStats().packets_dropped);
+ EXPECT_EQ(TestConnectionId(0x33), connection_.connection_id());
+}
+
+TEST_P(QuicConnectionTest, ReplaceServerConnectionIdFromInitial) {
+ TestReplaceConnectionIdFromInitial();
+}
+
+TEST_P(QuicConnectionTest, ReplaceServerConnectionIdFromRetryAndInitial) {
+ // First make the connection process a RETRY and replace the server connection
+ // ID a first time.
+ TestClientRetryHandling(/*invalid_retry_tag=*/false,
+ /*missing_original_id_in_config=*/false,
+ /*wrong_original_id_in_config=*/false,
+ /*missing_retry_id_in_config=*/false,
+ /*wrong_retry_id_in_config=*/false);
+ // Reset the test framer to use the right connection ID.
+ peer_framer_.SetInitialObfuscators(connection_.connection_id());
+ // Now process an INITIAL and replace the server connection ID a second time.
+ TestReplaceConnectionIdFromInitial();
+}
+
+// Regression test for b/134416344.
+TEST_P(QuicConnectionTest, CheckConnectedBeforeFlush) {
+ // This test mimics a scenario where a connection processes 2 packets and the
+ // 2nd packet contains connection close frame. When the 2nd flusher goes out
+ // of scope, a delayed ACK is pending, and ACK alarm should not be scheduled
+ // because connection is disconnected.
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+ const QuicErrorCode kErrorCode = QUIC_INTERNAL_ERROR;
+ std::unique_ptr<QuicConnectionCloseFrame> connection_close_frame(
+ new QuicConnectionCloseFrame(connection_.transport_version(), kErrorCode,
+ NO_IETF_QUIC_ERROR, "",
+ /*transport_close_frame_type=*/0));
+
+ // Received 2 packets.
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ }
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ ProcessFramePacketWithAddresses(QuicFrame(connection_close_frame.release()),
+ kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+ // Verify ack alarm is not set.
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+// Verify that a packet containing three coalesced packets is parsed correctly.
+TEST_P(QuicConnectionTest, CoalescedPacket) {
+ if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) {
+ // Coalesced packets can only be encoded using long header lengths.
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_TRUE(connection_.connected());
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3);
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3);
+ }
+
+ uint64_t packet_numbers[3] = {1, 2, 3};
+ EncryptionLevel encryption_levels[3] = {
+ ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE};
+ char buffer[kMaxOutgoingPacketSize] = {};
+ size_t total_encrypted_length = 0;
+ for (int i = 0; i < 3; i++) {
+ QuicPacketHeader header =
+ ConstructPacketHeader(packet_numbers[i], encryption_levels[i]);
+ QuicFrames frames;
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ frames.push_back(QuicFrame(&crypto_frame_));
+ } else {
+ frames.push_back(QuicFrame(frame1_));
+ }
+ std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames);
+ peer_creator_.set_encryption_level(encryption_levels[i]);
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet,
+ buffer + total_encrypted_length,
+ sizeof(buffer) - total_encrypted_length);
+ EXPECT_GT(encrypted_length, 0u);
+ total_encrypted_length += encrypted_length;
+ }
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false));
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+
+ EXPECT_TRUE(connection_.connected());
+}
+
+// Regression test for crbug.com/992831.
+TEST_P(QuicConnectionTest, CoalescedPacketThatSavesFrames) {
+ if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) {
+ // Coalesced packets can only be encoded using long header lengths.
+ return;
+ }
+ if (connection_.SupportsMultiplePacketNumberSpaces()) {
+ // TODO(b/129151114) Enable this test with multiple packet number spaces.
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_TRUE(connection_.connected());
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_))
+ .Times(3)
+ .WillRepeatedly([this](const QuicCryptoFrame& /*frame*/) {
+ // QuicFrame takes ownership of the QuicBlockedFrame.
+ connection_.SendControlFrame(QuicFrame(QuicBlockedFrame(1, 3)));
+ });
+ } else {
+ EXPECT_CALL(visitor_, OnStreamFrame(_))
+ .Times(3)
+ .WillRepeatedly([this](const QuicStreamFrame& /*frame*/) {
+ // QuicFrame takes ownership of the QuicBlockedFrame.
+ connection_.SendControlFrame(QuicFrame(QuicBlockedFrame(1, 3)));
+ });
+ }
+
+ uint64_t packet_numbers[3] = {1, 2, 3};
+ EncryptionLevel encryption_levels[3] = {
+ ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE};
+ char buffer[kMaxOutgoingPacketSize] = {};
+ size_t total_encrypted_length = 0;
+ for (int i = 0; i < 3; i++) {
+ QuicPacketHeader header =
+ ConstructPacketHeader(packet_numbers[i], encryption_levels[i]);
+ QuicFrames frames;
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ frames.push_back(QuicFrame(&crypto_frame_));
+ } else {
+ frames.push_back(QuicFrame(frame1_));
+ }
+ std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames);
+ peer_creator_.set_encryption_level(encryption_levels[i]);
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet,
+ buffer + total_encrypted_length,
+ sizeof(buffer) - total_encrypted_length);
+ EXPECT_GT(encrypted_length, 0u);
+ total_encrypted_length += encrypted_length;
+ }
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false));
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+
+ EXPECT_TRUE(connection_.connected());
+
+ SendAckPacketToPeer();
+}
+
+// Regresstion test for b/138962304.
+TEST_P(QuicConnectionTest, RtoAndWriteBlocked) {
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_data_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Writer gets blocked.
+ writer_->SetWriteBlocked();
+
+ // Cancel the stream.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite())
+ .WillRepeatedly(
+ Invoke(¬ifier_, &SimpleSessionNotifier::WillingToWrite));
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+ // Retransmission timer fires in RTO mode.
+ connection_.GetRetransmissionAlarm()->Fire();
+ // Verify no packets get flushed when writer is blocked.
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+// Regresstion test for b/138962304.
+TEST_P(QuicConnectionTest, TlpAndWriteBlocked) {
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ connection_.SetMaxTailLossProbes(1);
+
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_data_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet);
+ SendStreamDataToPeer(4, "foo", 0, NO_FIN, &last_data_packet);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Writer gets blocked.
+ writer_->SetWriteBlocked();
+
+ // Cancel stream 2.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ // Retransmission timer fires in TLP mode.
+ connection_.GetRetransmissionAlarm()->Fire();
+ // Verify one packets is forced flushed when writer is blocked.
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+}
+
+// Regresstion test for b/139375344.
+TEST_P(QuicConnectionTest, RtoForcesSendingPing) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ connection_.SetMaxTailLossProbes(2);
+ EXPECT_EQ(0u, connection_.GetStats().tlp_count);
+ EXPECT_EQ(0u, connection_.GetStats().rto_count);
+
+ SendStreamDataToPeer(2, "foo", 0, NO_FIN, nullptr);
+ QuicTime retransmission_time =
+ connection_.GetRetransmissionAlarm()->deadline();
+ EXPECT_NE(QuicTime::Zero(), retransmission_time);
+ // TLP fires.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _));
+ clock_.AdvanceTime(retransmission_time - clock_.Now());
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(1u, connection_.GetStats().tlp_count);
+ EXPECT_EQ(0u, connection_.GetStats().rto_count);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Packet 1 gets acked.
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessAckPacket(1, &frame);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ retransmission_time = connection_.GetRetransmissionAlarm()->deadline();
+
+ // RTO fires, verify a PING packet gets sent because there is no data to send.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _));
+ clock_.AdvanceTime(retransmission_time - clock_.Now());
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(1u, connection_.GetStats().tlp_count);
+ EXPECT_EQ(1u, connection_.GetStats().rto_count);
+ EXPECT_EQ(1u, writer_->ping_frames().size());
+}
+
+TEST_P(QuicConnectionTest, ProbeTimeout) {
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k2PTO);
+ config.SetConnectionOptionsToSend(connection_options);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Reset stream.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+ // Fire the PTO and verify only the RST_STREAM is resent, not stream data.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(0u, writer_->stream_frames().size());
+ EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionAfter6ClientPTOs) {
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k1PTO);
+ connection_options.push_back(k6PTO);
+ config.SetConnectionOptionsToSend(connection_options);
+ QuicConfigPeer::SetNegotiated(&config, true);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ }
+ connection_.OnHandshakeComplete();
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+
+ // Fire the retransmission alarm 5 times.
+ for (int i = 0; i < 5; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+ }
+ EXPECT_CALL(visitor_, OnPathDegrading());
+ connection_.PathDegradingTimeout();
+
+ EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
+ EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
+ EXPECT_EQ(5u, connection_.sent_packet_manager().GetConsecutivePtoCount());
+ // Closes connection on 6th PTO.
+ // May send multiple connecction close packets with multiple PN spaces.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+ connection_.GetBlackholeDetectorAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionAfter7ClientPTOs) {
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k2PTO);
+ connection_options.push_back(k7PTO);
+ config.SetConnectionOptionsToSend(connection_options);
+ QuicConfigPeer::SetNegotiated(&config, true);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ }
+ connection_.OnHandshakeComplete();
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+
+ // Fire the retransmission alarm 6 times.
+ for (int i = 0; i < 6; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+ }
+ EXPECT_CALL(visitor_, OnPathDegrading());
+ connection_.PathDegradingTimeout();
+
+ EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
+ EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
+ EXPECT_EQ(6u, connection_.sent_packet_manager().GetConsecutivePtoCount());
+ // Closes connection on 7th PTO.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+ connection_.GetBlackholeDetectorAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionAfter8ClientPTOs) {
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k2PTO);
+ connection_options.push_back(k8PTO);
+ QuicConfigPeer::SetNegotiated(&config, true);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ config.SetConnectionOptionsToSend(connection_options);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ }
+ connection_.OnHandshakeComplete();
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+
+ // Fire the retransmission alarm 7 times.
+ for (int i = 0; i < 7; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+ }
+ EXPECT_CALL(visitor_, OnPathDegrading());
+ connection_.PathDegradingTimeout();
+
+ EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
+ EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
+ EXPECT_EQ(7u, connection_.sent_packet_manager().GetConsecutivePtoCount());
+ // Closes connection on 8th PTO.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+ connection_.GetBlackholeDetectorAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
+}
+
+TEST_P(QuicConnectionTest, DeprecateHandshakeMode) {
+ if (!connection_.version().SupportsAntiAmplificationLimit()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Send CHLO.
+ connection_.SendCryptoStreamData();
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ QuicAckFrame frame1 = InitAckFrame(1);
+ // Received ACK for packet 1.
+ ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+
+ // Verify retransmission alarm is still set because handshake is not
+ // confirmed although there is nothing in flight.
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_EQ(0u, connection_.GetStats().pto_count);
+ EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count);
+
+ // PTO fires, verify a PING packet gets sent because there is no data to send.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(1u, connection_.GetStats().pto_count);
+ EXPECT_EQ(1u, connection_.GetStats().crypto_retransmit_count);
+ EXPECT_EQ(1u, writer_->ping_frames().size());
+}
+
+TEST_P(QuicConnectionTest, AntiAmplificationLimit) {
+ if (!connection_.version().SupportsAntiAmplificationLimit()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+
+ set_perspective(Perspective::IS_SERVER);
+ // Verify no data can be sent at the beginning because bytes received is 0.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.SendCryptoDataWithString("foo", 0);
+ EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
+ EXPECT_FALSE(connection_.CanWrite(NO_RETRANSMITTABLE_DATA));
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Receives packet 1.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+ const size_t anti_amplification_factor =
+ GetQuicFlag(FLAGS_quic_anti_amplification_factor);
+ // Verify now packets can be sent.
+ for (size_t i = 1; i < anti_amplification_factor; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendCryptoDataWithString("foo", i * 3);
+ // Verify retransmission alarm is not set if throttled by anti-amplification
+ // limit.
+ EXPECT_EQ(i != anti_amplification_factor - 1,
+ connection_.GetRetransmissionAlarm()->IsSet());
+ }
+ // Verify server is throttled by anti-amplification limit.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3);
+
+ // Receives packet 2.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+ // Verify more packets can be sent.
+ for (size_t i = anti_amplification_factor + 1;
+ i < anti_amplification_factor * 2; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendCryptoDataWithString("foo", i * 3);
+ }
+ // Verify server is throttled by anti-amplification limit.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.SendCryptoDataWithString("foo",
+ 2 * anti_amplification_factor * 3);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessPacket(3);
+ // Verify anti-amplification limit is gone after address validation.
+ for (size_t i = 0; i < 100; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN);
+ }
+}
+
+TEST_P(QuicConnectionTest, 3AntiAmplificationLimit) {
+ if (!connection_.version().SupportsAntiAmplificationLimit()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+
+ set_perspective(Perspective::IS_SERVER);
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k3AFF);
+ config.SetInitialReceivedConnectionOptions(connection_options);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config,
+ QuicConnectionId());
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+
+ // Verify no data can be sent at the beginning because bytes received is 0.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.SendCryptoDataWithString("foo", 0);
+ EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
+ EXPECT_FALSE(connection_.CanWrite(NO_RETRANSMITTABLE_DATA));
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Receives packet 1.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+ const size_t anti_amplification_factor = 3;
+ // Verify now packets can be sent.
+ for (size_t i = 1; i < anti_amplification_factor; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendCryptoDataWithString("foo", i * 3);
+ // Verify retransmission alarm is not set if throttled by anti-amplification
+ // limit.
+ EXPECT_EQ(i != anti_amplification_factor - 1,
+ connection_.GetRetransmissionAlarm()->IsSet());
+ }
+ // Verify server is throttled by anti-amplification limit.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3);
+
+ // Receives packet 2.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+ // Verify more packets can be sent.
+ for (size_t i = anti_amplification_factor + 1;
+ i < anti_amplification_factor * 2; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendCryptoDataWithString("foo", i * 3);
+ }
+ // Verify server is throttled by anti-amplification limit.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.SendCryptoDataWithString("foo",
+ 2 * anti_amplification_factor * 3);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessPacket(3);
+ // Verify anti-amplification limit is gone after address validation.
+ for (size_t i = 0; i < 100; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN);
+ }
+}
+
+TEST_P(QuicConnectionTest, 10AntiAmplificationLimit) {
+ if (!connection_.version().SupportsAntiAmplificationLimit()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+
+ set_perspective(Perspective::IS_SERVER);
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k10AF);
+ config.SetInitialReceivedConnectionOptions(connection_options);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config,
+ QuicConnectionId());
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+
+ // Verify no data can be sent at the beginning because bytes received is 0.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.SendCryptoDataWithString("foo", 0);
+ EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
+ EXPECT_FALSE(connection_.CanWrite(NO_RETRANSMITTABLE_DATA));
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Receives packet 1.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+ const size_t anti_amplification_factor = 10;
+ // Verify now packets can be sent.
+ for (size_t i = 1; i < anti_amplification_factor; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendCryptoDataWithString("foo", i * 3);
+ // Verify retransmission alarm is not set if throttled by anti-amplification
+ // limit.
+ EXPECT_EQ(i != anti_amplification_factor - 1,
+ connection_.GetRetransmissionAlarm()->IsSet());
+ }
+ // Verify server is throttled by anti-amplification limit.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3);
+
+ // Receives packet 2.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+ // Verify more packets can be sent.
+ for (size_t i = anti_amplification_factor + 1;
+ i < anti_amplification_factor * 2; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendCryptoDataWithString("foo", i * 3);
+ }
+ // Verify server is throttled by anti-amplification limit.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.SendCryptoDataWithString("foo",
+ 2 * anti_amplification_factor * 3);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessPacket(3);
+ // Verify anti-amplification limit is gone after address validation.
+ for (size_t i = 0; i < 100; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN);
+ }
+}
+
+TEST_P(QuicConnectionTest, AckPendingWithAmplificationLimited) {
+ if (!connection_.version().SupportsAntiAmplificationLimit()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber());
+ set_perspective(Perspective::IS_SERVER);
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ // Receives packet 1.
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ // Send response in different encryption level and cause amplification factor
+ // throttled.
+ size_t i = 0;
+ while (connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)) {
+ connection_.SendCryptoDataWithString(std::string(1024, 'a'), i * 1024,
+ ENCRYPTION_HANDSHAKE);
+ ++i;
+ }
+ // Verify ACK is still pending.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ // Fire ACK alarm and verify ACK cannot be sent due to amplification factor.
+ clock_.AdvanceTime(connection_.GetAckAlarm()->deadline() - clock_.Now());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.GetAckAlarm()->Fire();
+ // Verify ACK alarm is cancelled.
+ EXPECT_FALSE(connection_.HasPendingAcks());
+
+ // Receives packet 2 and verify ACK gets flushed.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+ EXPECT_FALSE(writer_->ack_frames().empty());
+}
+
+TEST_P(QuicConnectionTest, ConnectionCloseFrameType) {
+ if (!VersionHasIetfQuicFrames(version().transport_version)) {
+ // Test relevent only for IETF QUIC.
+ return;
+ }
+ const QuicErrorCode kQuicErrorCode = IETF_QUIC_PROTOCOL_VIOLATION;
+ // Use the (unknown) frame type of 9999 to avoid triggering any logic
+ // which might be associated with the processing of a known frame type.
+ const uint64_t kTransportCloseFrameType = 9999u;
+ QuicFramerPeer::set_current_received_frame_type(
+ QuicConnectionPeer::GetFramer(&connection_), kTransportCloseFrameType);
+ // Do a transport connection close
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ connection_.CloseConnection(
+ kQuicErrorCode, "Some random error message",
+ ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+ const std::vector<QuicConnectionCloseFrame>& connection_close_frames =
+ writer_->connection_close_frames();
+ ASSERT_EQ(1u, connection_close_frames.size());
+ EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE,
+ connection_close_frames[0].close_type);
+ EXPECT_EQ(kQuicErrorCode, connection_close_frames[0].quic_error_code);
+ EXPECT_EQ(kTransportCloseFrameType,
+ connection_close_frames[0].transport_close_frame_type);
+}
+
+// Regression test for b/137401387 and b/138962304.
+TEST_P(QuicConnectionTest, RtoPacketAsTwo) {
+ if (connection_.PtoEnabled()) {
+ return;
+ }
+ connection_.SetMaxTailLossProbes(1);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ std::string stream_data(3000, 's');
+ // Send packets 1 - 66 and exhaust cwnd.
+ for (size_t i = 0; i < 22; ++i) {
+ // 3 packets for each stream, the first 2 are guaranteed to be full packets.
+ SendStreamDataToPeer(i + 2, stream_data, 0, FIN, nullptr);
+ }
+ CongestionBlockWrites();
+
+ // Fires TLP. Please note, this tail loss probe has 1 byte less stream data
+ // compared to packet 1 because packet number length increases.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(67), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ // Fires RTO. Please note, although packets 2 and 3 *should* be RTOed, but
+ // packet 2 gets RTOed to two packets because packet number length increases.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(68), _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(69), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ // Resets all streams except 2 and ack packets 1 and 2. Now, packet 3 is the
+ // only one containing retransmittable frames.
+ for (size_t i = 1; i < 22; ++i) {
+ notifier_.OnStreamReset(i + 2, QUIC_STREAM_CANCELLED);
+ }
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(3)}});
+ ProcessAckPacket(1, &frame);
+ CongestionUnblockWrites();
+
+ // Fires TLP, verify a PING gets sent because packet 3 is marked
+ // RTO_RETRANSMITTED.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(70), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+}
+
+TEST_P(QuicConnectionTest, PtoSkipsPacketNumber) {
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k1PTO);
+ connection_options.push_back(kPTOS);
+ config.SetConnectionOptionsToSend(connection_options);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(2), last_packet);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Fire PTO and verify the PTO retransmission skips one packet number.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(QuicPacketNumber(4), writer_->last_packet_header().packet_number);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, SendCoalescedPackets) {
+ if (!connection_.version().CanSendCoalescedPackets()) {
+ return;
+ }
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(3);
+ EXPECT_CALL(debug_visitor, OnCoalescedPacketSent(_, _)).Times(1);
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.SendCryptoDataWithString("foo", 0);
+ // Verify this packet is on hold.
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ connection_.SendCryptoDataWithString("bar", 3);
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x03));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ SendStreamDataToPeer(2, "baz", 3, NO_FIN, nullptr);
+ }
+ // Verify all 3 packets are coalesced in the same UDP datagram.
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
+ // Verify the packet is padded to full.
+ EXPECT_EQ(connection_.max_packet_length(), writer_->last_packet_size());
+
+ // Verify packet process.
+ EXPECT_EQ(1u, writer_->crypto_frames().size());
+ EXPECT_EQ(0u, writer_->stream_frames().size());
+ // Verify there is coalesced packet.
+ EXPECT_NE(nullptr, writer_->coalesced_packet());
+}
+
+TEST_P(QuicConnectionTest, FailToCoalescePacket) {
+ // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+ if (!IsDefaultTestConfiguration() ||
+ !connection_.version().CanSendCoalescedPackets()) {
+ return;
+ }
+
+ set_perspective(Perspective::IS_SERVER);
+ use_tagging_decrypter();
+
+ EXPECT_CALL(visitor_, OnHandshakePacketSent());
+
+ if (GetQuicReloadableFlag(
+ quic_close_connection_if_fail_to_serialzie_coalesced_packet2)) {
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ }
+
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
+ auto test_body = [&] {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.SendCryptoDataWithString("foo", 0);
+ // Verify this packet is on hold.
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ connection_.SendCryptoDataWithString("bar", 3);
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x03));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ SendStreamDataToPeer(2, "baz", 3, NO_FIN, nullptr);
+
+ creator_->Flush();
+
+ auto& coalesced_packet =
+ QuicConnectionPeer::GetCoalescedPacket(&connection_);
+ QuicPacketLength coalesced_packet_max_length =
+ coalesced_packet.max_packet_length();
+ QuicCoalescedPacketPeer::SetMaxPacketLength(coalesced_packet,
+ coalesced_packet.length());
+
+ // Make the coalescer's FORWARD_SECURE packet longer.
+ *QuicCoalescedPacketPeer::GetMutableEncryptedBuffer(
+ coalesced_packet, ENCRYPTION_FORWARD_SECURE) += "!!! TEST !!!";
+
+ QUIC_LOG(INFO) << "Reduced coalesced_packet_max_length from "
+ << coalesced_packet_max_length << " to "
+ << coalesced_packet.max_packet_length()
+ << ", coalesced_packet.length:" << coalesced_packet.length()
+ << ", coalesced_packet.packet_lengths:"
+ << absl::StrJoin(coalesced_packet.packet_lengths(), ":");
+ };
+
+ EXPECT_QUIC_BUG(test_body(), "SerializeCoalescedPacket failed.");
+
+ if (GetQuicReloadableFlag(
+ quic_close_connection_if_fail_to_serialzie_coalesced_packet2)) {
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(QUIC_FAILED_TO_SERIALIZE_PACKET));
+ EXPECT_EQ(saved_connection_close_frame_.error_details,
+ "Failed to serialize coalesced packet.");
+ } else {
+ EXPECT_TRUE(connection_.connected());
+ }
+}
+
+TEST_P(QuicConnectionTest, LegacyVersionEncapsulation) {
+ connection_.EnableLegacyVersionEncapsulation("test.example.org");
+
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1);
+
+ // Our TestPacketWriter normally parses the sent packet using the version
+ // from the connection, so here we need to tell it to use the encapsulation
+ // version, and reset the initial decrypter for that version.
+ writer_->framer()->SetSupportedVersions(
+ SupportedVersions(LegacyVersionForEncapsulation()));
+ writer_->framer()->framer()->SetInitialObfuscators(
+ connection_.connection_id());
+
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ connection_.SendCryptoDataWithString("TEST_CRYPTO_DATA", /*offset=*/0);
+ }
+
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ // Verify that the packet is fully padded.
+ EXPECT_EQ(connection_.max_packet_length(), writer_->last_packet_size());
+
+ // Check that the connection stats show Legacy Version Encapsulation was used.
+ EXPECT_GT(connection_.GetStats().sent_legacy_version_encapsulated_packets,
+ 0u);
+
+ // Verify that the sent packet was in fact encapsulated, and check header.
+ const QuicPacketHeader& encapsulated_header = writer_->last_packet_header();
+ EXPECT_TRUE(encapsulated_header.version_flag);
+ EXPECT_EQ(encapsulated_header.version, LegacyVersionForEncapsulation());
+ EXPECT_EQ(encapsulated_header.destination_connection_id,
+ connection_.connection_id());
+
+ // Encapsulated packet should contain a stream frame for the crypto stream,
+ // optionally padding, and nothing else.
+ EXPECT_EQ(0u, writer_->crypto_frames().size());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(writer_->frame_count(), writer_->framer()->padding_frames().size() +
+ writer_->stream_frames().size());
+}
+
+TEST_P(QuicConnectionTest, ClientReceivedHandshakeDone) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnHandshakeDoneReceived());
+ QuicFrames frames;
+ frames.push_back(QuicFrame(QuicHandshakeDoneFrame()));
+ frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
+ ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
+}
+
+TEST_P(QuicConnectionTest, ServerReceivedHandshakeDone) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ EXPECT_CALL(visitor_, OnHandshakeDoneReceived()).Times(0);
+ if (version().handshake_protocol == PROTOCOL_TLS1_3) {
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ }
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ QuicFrames frames;
+ frames.push_back(QuicFrame(QuicHandshakeDoneFrame()));
+ frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
+ ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(1, connection_close_frame_count_);
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(IETF_QUIC_PROTOCOL_VIOLATION));
+}
+
+TEST_P(QuicConnectionTest, MultiplePacketNumberSpacePto) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ use_tagging_decrypter();
+ // Send handshake packet.
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+ EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
+
+ // Send application data.
+ connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
+ 0, NO_FIN);
+ EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+ QuicTime retransmission_time =
+ connection_.GetRetransmissionAlarm()->deadline();
+ EXPECT_NE(QuicTime::Zero(), retransmission_time);
+
+ // Retransmit handshake data.
+ clock_.AdvanceTime(retransmission_time - clock_.Now());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ // Verify 1-RTT packet gets coalesced with handshake retransmission.
+ EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+
+ // Send application data.
+ connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
+ 4, NO_FIN);
+ EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+ retransmission_time = connection_.GetRetransmissionAlarm()->deadline();
+ EXPECT_NE(QuicTime::Zero(), retransmission_time);
+
+ // Retransmit handshake data again.
+ clock_.AdvanceTime(retransmission_time - clock_.Now());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(9), _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(8), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ // Verify 1-RTT packet gets coalesced with handshake retransmission.
+ EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+
+ // Discard handshake key.
+ connection_.OnHandshakeComplete();
+ retransmission_time = connection_.GetRetransmissionAlarm()->deadline();
+ EXPECT_NE(QuicTime::Zero(), retransmission_time);
+
+ // Retransmit application data.
+ clock_.AdvanceTime(retransmission_time - clock_.Now());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(11), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+}
+
+void QuicConnectionTest::TestClientRetryHandling(
+ bool invalid_retry_tag, bool missing_original_id_in_config,
+ bool wrong_original_id_in_config, bool missing_retry_id_in_config,
+ bool wrong_retry_id_in_config) {
+ if (invalid_retry_tag) {
+ ASSERT_FALSE(missing_original_id_in_config);
+ ASSERT_FALSE(wrong_original_id_in_config);
+ ASSERT_FALSE(missing_retry_id_in_config);
+ ASSERT_FALSE(wrong_retry_id_in_config);
+ } else {
+ ASSERT_FALSE(missing_original_id_in_config && wrong_original_id_in_config);
+ ASSERT_FALSE(missing_retry_id_in_config && wrong_retry_id_in_config);
+ }
+ if (!version().UsesTls()) {
+ return;
+ }
+
+ // These values come from draft-ietf-quic-v2 Appendix A.4.
+ uint8_t retry_packet_rfcv2[] = {
+ 0xcf, 0x70, 0x9a, 0x50, 0xc4, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a,
+ 0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x1d, 0xc7, 0x11, 0x30,
+ 0xcd, 0x1e, 0xd3, 0x9d, 0x6e, 0xfc, 0xee, 0x5c, 0x85, 0x80, 0x65, 0x01};
+ // These values come from RFC9001 Appendix A.4.
+ uint8_t retry_packet_rfcv1[] = {
+ 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a,
+ 0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x04, 0xa2, 0x65, 0xba,
+ 0x2e, 0xff, 0x4d, 0x82, 0x90, 0x58, 0xfb, 0x3f, 0x0f, 0x24, 0x96, 0xba};
+ uint8_t retry_packet29[] = {
+ 0xff, 0xff, 0x00, 0x00, 0x1d, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a,
+ 0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0xd1, 0x69, 0x26, 0xd8,
+ 0x1f, 0x6f, 0x9c, 0xa2, 0x95, 0x3a, 0x8a, 0xa4, 0x57, 0x5e, 0x1e, 0x49};
+
+ uint8_t* retry_packet;
+ size_t retry_packet_length;
+ if (version() == ParsedQuicVersion::V2Draft01()) {
+ retry_packet = retry_packet_rfcv2;
+ retry_packet_length = ABSL_ARRAYSIZE(retry_packet_rfcv2);
+ } else if (version() == ParsedQuicVersion::RFCv1()) {
+ retry_packet = retry_packet_rfcv1;
+ retry_packet_length = ABSL_ARRAYSIZE(retry_packet_rfcv1);
+ } else if (version() == ParsedQuicVersion::Draft29()) {
+ retry_packet = retry_packet29;
+ retry_packet_length = ABSL_ARRAYSIZE(retry_packet29);
+ } else {
+ // TODO(dschinazi) generate retry packets for all versions once we have
+ // server-side support for generating these programmatically.
+ return;
+ }
+
+ uint8_t original_connection_id_bytes[] = {0x83, 0x94, 0xc8, 0xf0,
+ 0x3e, 0x51, 0x57, 0x08};
+ uint8_t new_connection_id_bytes[] = {0xf0, 0x67, 0xa5, 0x50,
+ 0x2a, 0x42, 0x62, 0xb5};
+ uint8_t retry_token_bytes[] = {0x74, 0x6f, 0x6b, 0x65, 0x6e};
+
+ QuicConnectionId original_connection_id(
+ reinterpret_cast<char*>(original_connection_id_bytes),
+ ABSL_ARRAYSIZE(original_connection_id_bytes));
+ QuicConnectionId new_connection_id(
+ reinterpret_cast<char*>(new_connection_id_bytes),
+ ABSL_ARRAYSIZE(new_connection_id_bytes));
+
+ std::string retry_token(reinterpret_cast<char*>(retry_token_bytes),
+ ABSL_ARRAYSIZE(retry_token_bytes));
+
+ if (invalid_retry_tag) {
+ // Flip the last bit of the retry packet to prevent the integrity tag
+ // from validating correctly.
+ retry_packet[retry_packet_length - 1] ^= 1;
+ }
+
+ QuicConnectionId config_original_connection_id = original_connection_id;
+ if (wrong_original_id_in_config) {
+ // Flip the first bit of the connection ID.
+ ASSERT_FALSE(config_original_connection_id.IsEmpty());
+ config_original_connection_id.mutable_data()[0] ^= 0x80;
+ }
+ QuicConnectionId config_retry_source_connection_id = new_connection_id;
+ if (wrong_retry_id_in_config) {
+ // Flip the first bit of the connection ID.
+ ASSERT_FALSE(config_retry_source_connection_id.IsEmpty());
+ config_retry_source_connection_id.mutable_data()[0] ^= 0x80;
+ }
+
+ // Make sure the connection uses the connection ID from the test vectors,
+ QuicConnectionPeer::SetServerConnectionId(&connection_,
+ original_connection_id);
+ // Make sure our fake framer has the new post-retry INITIAL keys so that any
+ // retransmission triggered by retry can be decrypted.
+ writer_->framer()->framer()->SetInitialObfuscators(new_connection_id);
+
+ // Process the RETRY packet.
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(reinterpret_cast<char*>(retry_packet),
+ retry_packet_length, clock_.Now()));
+
+ if (invalid_retry_tag) {
+ // Make sure we refuse to process a RETRY with invalid tag.
+ EXPECT_FALSE(connection_.GetStats().retry_packet_processed);
+ EXPECT_EQ(connection_.connection_id(), original_connection_id);
+ EXPECT_TRUE(QuicPacketCreatorPeer::GetRetryToken(
+ QuicConnectionPeer::GetPacketCreator(&connection_))
+ .empty());
+ return;
+ }
+
+ // Make sure we correctly parsed the RETRY.
+ EXPECT_TRUE(connection_.GetStats().retry_packet_processed);
+ EXPECT_EQ(connection_.connection_id(), new_connection_id);
+ EXPECT_EQ(QuicPacketCreatorPeer::GetRetryToken(
+ QuicConnectionPeer::GetPacketCreator(&connection_)),
+ retry_token);
+
+ // Test validating the original_connection_id from the config.
+ QuicConfig received_config;
+ QuicConfigPeer::SetNegotiated(&received_config, true);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &received_config, connection_.connection_id());
+ if (!missing_retry_id_in_config) {
+ QuicConfigPeer::SetReceivedRetrySourceConnectionId(
+ &received_config, config_retry_source_connection_id);
+ }
+ }
+ if (!missing_original_id_in_config) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &received_config, config_original_connection_id);
+ }
+
+ if (missing_original_id_in_config || wrong_original_id_in_config ||
+ missing_retry_id_in_config || wrong_retry_id_in_config) {
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .Times(1);
+ } else {
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .Times(0);
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
+ connection_.SetFromConfig(received_config);
+ if (missing_original_id_in_config || wrong_original_id_in_config ||
+ missing_retry_id_in_config || wrong_retry_id_in_config) {
+ ASSERT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+ } else {
+ EXPECT_TRUE(connection_.connected());
+ }
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetry) {
+ TestClientRetryHandling(/*invalid_retry_tag=*/false,
+ /*missing_original_id_in_config=*/false,
+ /*wrong_original_id_in_config=*/false,
+ /*missing_retry_id_in_config=*/false,
+ /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetryInvalidTag) {
+ TestClientRetryHandling(/*invalid_retry_tag=*/true,
+ /*missing_original_id_in_config=*/false,
+ /*wrong_original_id_in_config=*/false,
+ /*missing_retry_id_in_config=*/false,
+ /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetryMissingOriginalId) {
+ TestClientRetryHandling(/*invalid_retry_tag=*/false,
+ /*missing_original_id_in_config=*/true,
+ /*wrong_original_id_in_config=*/false,
+ /*missing_retry_id_in_config=*/false,
+ /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetryWrongOriginalId) {
+ TestClientRetryHandling(/*invalid_retry_tag=*/false,
+ /*missing_original_id_in_config=*/false,
+ /*wrong_original_id_in_config=*/true,
+ /*missing_retry_id_in_config=*/false,
+ /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetryMissingRetryId) {
+ if (!connection_.version().UsesTls()) {
+ // Versions that do not authenticate connection IDs never send the
+ // retry_source_connection_id transport parameter.
+ return;
+ }
+ TestClientRetryHandling(/*invalid_retry_tag=*/false,
+ /*missing_original_id_in_config=*/false,
+ /*wrong_original_id_in_config=*/false,
+ /*missing_retry_id_in_config=*/true,
+ /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetryWrongRetryId) {
+ if (!connection_.version().UsesTls()) {
+ // Versions that do not authenticate connection IDs never send the
+ // retry_source_connection_id transport parameter.
+ return;
+ }
+ TestClientRetryHandling(/*invalid_retry_tag=*/false,
+ /*missing_original_id_in_config=*/false,
+ /*wrong_original_id_in_config=*/false,
+ /*missing_retry_id_in_config=*/false,
+ /*wrong_retry_id_in_config=*/true);
+}
+
+TEST_P(QuicConnectionTest, ClientRetransmitsInitialPacketsOnRetry) {
+ if (!connection_.version().HasIetfQuicFrames()) {
+ // TestClientRetryHandling() currently only supports IETF draft versions.
+ return;
+ }
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+
+ connection_.SendCryptoStreamData();
+
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ TestClientRetryHandling(/*invalid_retry_tag=*/false,
+ /*missing_original_id_in_config=*/false,
+ /*wrong_original_id_in_config=*/false,
+ /*missing_retry_id_in_config=*/false,
+ /*wrong_retry_id_in_config=*/false);
+
+ // Verify that initial data is retransmitted immediately after receiving
+ // RETRY.
+ if (GetParam().ack_response == AckResponse::kImmediate) {
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+ EXPECT_EQ(1u, writer_->framer()->crypto_frames().size());
+ }
+}
+
+TEST_P(QuicConnectionTest, NoInitialPacketsRetransmissionOnInvalidRetry) {
+ if (!connection_.version().HasIetfQuicFrames()) {
+ return;
+ }
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+
+ connection_.SendCryptoStreamData();
+
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ TestClientRetryHandling(/*invalid_retry_tag=*/true,
+ /*missing_original_id_in_config=*/false,
+ /*wrong_original_id_in_config=*/false,
+ /*missing_retry_id_in_config=*/false,
+ /*wrong_retry_id_in_config=*/false);
+
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, ClientReceivesOriginalConnectionIdWithoutRetry) {
+ if (!connection_.version().UsesTls()) {
+ // QUIC+TLS is required to transmit connection ID transport parameters.
+ return;
+ }
+ if (connection_.version().UsesTls()) {
+ // Versions that authenticate connection IDs always send the
+ // original_destination_connection_id transport parameter.
+ return;
+ }
+ // Make sure that receiving the original_destination_connection_id transport
+ // parameter fails the handshake when no RETRY packet was received before it.
+ QuicConfig received_config;
+ QuicConfigPeer::SetNegotiated(&received_config, true);
+ QuicConfigPeer::SetReceivedOriginalConnectionId(&received_config,
+ TestConnectionId(0x12345));
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .Times(1);
+ connection_.SetFromConfig(received_config);
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+}
+
+TEST_P(QuicConnectionTest, ClientReceivesRetrySourceConnectionIdWithoutRetry) {
+ if (!connection_.version().UsesTls()) {
+ // Versions that do not authenticate connection IDs never send the
+ // retry_source_connection_id transport parameter.
+ return;
+ }
+ // Make sure that receiving the retry_source_connection_id transport parameter
+ // fails the handshake when no RETRY packet was received before it.
+ QuicConfig received_config;
+ QuicConfigPeer::SetNegotiated(&received_config, true);
+ QuicConfigPeer::SetReceivedRetrySourceConnectionId(&received_config,
+ TestConnectionId(0x12345));
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .Times(1);
+ connection_.SetFromConfig(received_config);
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+}
+
+// Regression test for http://crbug/1047977
+TEST_P(QuicConnectionTest, MaxStreamsFrameCausesConnectionClose) {
+ if (!VersionHasIetfQuicFrames(connection_.transport_version())) {
+ return;
+ }
+ // Received frame causes connection close.
+ EXPECT_CALL(visitor_, OnMaxStreamsFrame(_))
+ .WillOnce(InvokeWithoutArgs([this]() {
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ connection_.CloseConnection(
+ QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES, "error",
+ ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+ return true;
+ }));
+ QuicFrames frames;
+ frames.push_back(QuicFrame(QuicMaxStreamsFrame()));
+ frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
+ ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
+}
+
+TEST_P(QuicConnectionTest, StreamsBlockedFrameCausesConnectionClose) {
+ if (!VersionHasIetfQuicFrames(connection_.transport_version())) {
+ return;
+ }
+ // Received frame causes connection close.
+ EXPECT_CALL(visitor_, OnStreamsBlockedFrame(_))
+ .WillOnce(InvokeWithoutArgs([this]() {
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ connection_.CloseConnection(
+ QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES, "error",
+ ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+ return true;
+ }));
+ QuicFrames frames;
+ frames.push_back(
+ QuicFrame(QuicStreamsBlockedFrame(kInvalidControlFrameId, 10, false)));
+ frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
+ ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
+}
+
+TEST_P(QuicConnectionTest,
+ BundleAckWithConnectionCloseMultiplePacketNumberSpace) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ // Receives packet 1000 in initial data.
+ ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+ // Receives packet 2000 in application data.
+ ProcessDataPacketAtLevel(2000, false, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
+ connection_.CloseConnection(
+ kQuicErrorCode, "Some random error message",
+ ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+
+ EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
+
+ TestConnectionCloseQuicErrorCode(kQuicErrorCode);
+ EXPECT_EQ(1u, writer_->connection_close_frames().size());
+ // Verify ack is bundled.
+ EXPECT_EQ(1u, writer_->ack_frames().size());
+
+ if (!connection_.version().CanSendCoalescedPackets()) {
+ // Each connection close packet should be sent in distinct UDP packets.
+ EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
+ writer_->connection_close_packets());
+ EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
+ writer_->packets_write_attempts());
+ return;
+ }
+
+ // A single UDP packet should be sent with multiple connection close packets
+ // coalesced together.
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+ // Only the first packet has been processed yet.
+ EXPECT_EQ(1u, writer_->connection_close_packets());
+
+ // ProcessPacket resets the visitor and frees the coalesced packet.
+ ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+ auto packet = writer_->coalesced_packet()->Clone();
+ writer_->framer()->ProcessPacket(*packet);
+ EXPECT_EQ(1u, writer_->connection_close_packets());
+ EXPECT_EQ(1u, writer_->connection_close_frames().size());
+ // Verify ack is bundled.
+ EXPECT_EQ(1u, writer_->ack_frames().size());
+ ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+}
+
+// Regression test for b/151220135.
+TEST_P(QuicConnectionTest, SendPingWhenSkipPacketNumberForPto) {
+ if (!VersionSupportsMessageFrames(connection_.transport_version())) {
+ return;
+ }
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(kPTOS);
+ connection_options.push_back(k1PTO);
+ config.SetConnectionOptionsToSend(connection_options);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
+ &config, kMaxAcceptedDatagramFrameSize);
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ connection_.OnHandshakeComplete();
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ EXPECT_EQ(MESSAGE_STATUS_SUCCESS, SendMessage("message"));
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // PTO fires, verify a PING packet gets sent because there is no data to
+ // send.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(1u, connection_.GetStats().pto_count);
+ EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count);
+ EXPECT_EQ(1u, writer_->ping_frames().size());
+}
+
+// Regression test for b/155757133
+TEST_P(QuicConnectionTest, DonotChangeQueuedAcks) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Discard INITIAL key.
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+ ProcessPacket(2);
+ ProcessPacket(3);
+ ProcessPacket(4);
+ // Process a packet containing stream frame followed by ACK of packets 1.
+ QuicFrames frames;
+ frames.push_back(QuicFrame(QuicStreamFrame(
+ QuicUtils::GetFirstBidirectionalStreamId(
+ connection_.version().transport_version, Perspective::IS_CLIENT),
+ false, 0u, absl::string_view())));
+ QuicAckFrame ack_frame = InitAckFrame(1);
+ frames.push_back(QuicFrame(&ack_frame));
+ // Receiving stream frame causes something to send.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(QuicFrame(QuicWindowUpdateFrame(1, 0, 0)));
+ // Verify now the queued ACK contains packet number 2.
+ EXPECT_TRUE(QuicPacketCreatorPeer::QueuedFrames(
+ QuicConnectionPeer::GetPacketCreator(&connection_))[0]
+ .ack_frame->packets.Contains(QuicPacketNumber(2)));
+ }));
+ ProcessFramesPacketAtLevel(9, frames, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_TRUE(writer_->ack_frames()[0].packets.Contains(QuicPacketNumber(2)));
+}
+
+TEST_P(QuicConnectionTest, DonotExtendIdleTimeOnUndecryptablePackets) {
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ // Subtract a second from the idle timeout on the client side.
+ QuicTime initial_deadline =
+ clock_.ApproximateNow() +
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ EXPECT_EQ(initial_deadline, connection_.GetTimeoutAlarm()->deadline());
+
+ // Received an undecryptable packet.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ const uint8_t tag = 0x07;
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(tag));
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ // Verify deadline does not get extended.
+ EXPECT_EQ(initial_deadline, connection_.GetTimeoutAlarm()->deadline());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1);
+ QuicTime::Delta delay = initial_deadline - clock_.ApproximateNow();
+ clock_.AdvanceTime(delay);
+ connection_.GetTimeoutAlarm()->Fire();
+ // Verify connection gets closed.
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, BundleAckWithImmediateResponse) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([this]() {
+ notifier_.WriteOrBufferWindowUpate(0, 0);
+ }));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessDataPacket(1);
+ // Verify ACK is bundled with WINDOW_UPDATE.
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, AckAlarmFiresEarly) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ }
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+ // Receives packet 1000 in initial data.
+ ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x02));
+ // Receives packet 1000 in application data.
+ ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ // Verify ACK deadline does not change.
+ EXPECT_EQ(clock_.ApproximateNow() + kAlarmGranularity,
+ connection_.GetAckAlarm()->deadline());
+
+ // Ack alarm fires early.
+ // Verify the earliest ACK is flushed.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.GetAckAlarm()->Fire();
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ EXPECT_EQ(clock_.ApproximateNow() + DefaultDelayedAckTime(),
+ connection_.GetAckAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, ClientOnlyBlackholeDetectionClient) {
+ if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ return;
+ }
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(kCBHD);
+ config.SetConnectionOptionsToSend(connection_options);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+ EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ // Verify blackhole detection is in progress.
+ EXPECT_TRUE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, ClientOnlyBlackholeDetectionServer) {
+ if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ if (version().SupportsAntiAmplificationLimit()) {
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ }
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(kCBHD);
+ config.SetInitialReceivedConnectionOptions(connection_options);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+ EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ // Verify blackhole detection is disabled.
+ EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, 2RtoBlackholeDetection) {
+ if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ return;
+ }
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k2RTO);
+ config.SetConnectionOptionsToSend(connection_options);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+ EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ // Verify blackhole delay is expected.
+ EXPECT_EQ(clock_.Now() +
+ connection_.sent_packet_manager().GetNetworkBlackholeDelay(2),
+ QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
+}
+
+TEST_P(QuicConnectionTest, 3RtoBlackholeDetection) {
+ if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ return;
+ }
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k3RTO);
+ config.SetConnectionOptionsToSend(connection_options);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+ EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ // Verify blackhole delay is expected.
+ EXPECT_EQ(clock_.Now() +
+ connection_.sent_packet_manager().GetNetworkBlackholeDelay(3),
+ QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
+}
+
+TEST_P(QuicConnectionTest, 4RtoBlackholeDetection) {
+ if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ return;
+ }
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k4RTO);
+ config.SetConnectionOptionsToSend(connection_options);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+ EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ // Verify blackhole delay is expected.
+ EXPECT_EQ(clock_.Now() +
+ connection_.sent_packet_manager().GetNetworkBlackholeDelay(4),
+ QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
+}
+
+TEST_P(QuicConnectionTest, 6RtoBlackholeDetection) {
+ if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ return;
+ }
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k6RTO);
+ config.SetConnectionOptionsToSend(connection_options);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+ EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ // Verify blackhole delay is expected.
+ EXPECT_EQ(clock_.Now() +
+ connection_.sent_packet_manager().GetNetworkBlackholeDelay(6),
+ QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
+}
+
+// Regresstion test for b/158491591.
+TEST_P(QuicConnectionTest, MadeForwardProgressOnDiscardingKeys) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ use_tagging_decrypter();
+ // Send handshake packet.
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k5RTO);
+ config.SetConnectionOptionsToSend(connection_options);
+ QuicConfigPeer::SetNegotiated(&config, true);
+ if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+ }
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+ EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
+ // Discard handshake keys.
+ connection_.OnHandshakeComplete();
+ if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ // Verify blackhole detection stops.
+ EXPECT_FALSE(connection_.BlackholeDetectionInProgress());
+ } else {
+ // Problematic: although there is nothing in flight, blackhole detection is
+ // still in progress.
+ EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
+ }
+}
+
+TEST_P(QuicConnectionTest, ProcessUndecryptablePacketsBasedOnEncryptionLevel) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ // SetFromConfig is always called after construction from InitializeSession.
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber());
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE);
+ use_tagging_decrypter();
+
+ peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x02));
+
+ for (uint64_t i = 1; i <= 3; ++i) {
+ ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+ }
+ ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ for (uint64_t j = 5; j <= 7; ++j) {
+ ProcessDataPacketAtLevel(j, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+ }
+ EXPECT_EQ(7u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+ EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypter>(0x01));
+ EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ // Verify all ENCRYPTION_HANDSHAKE packets get processed.
+ if (!VersionHasIetfQuicFrames(version().transport_version)) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(6);
+ }
+ connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+ EXPECT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+
+ SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ // Verify the 1-RTT packet gets processed.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+ EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+}
+
+TEST_P(QuicConnectionTest, ServerBundlesInitialDataWithInitialAck) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ }
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+ // Receives packet 1000 in initial data.
+ ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+ QuicTime expected_pto_time =
+ connection_.sent_packet_manager().GetRetransmissionTime();
+
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+ // Verify PTO time does not change.
+ EXPECT_EQ(expected_pto_time,
+ connection_.sent_packet_manager().GetRetransmissionTime());
+
+ // Receives packet 1001 in initial data.
+ ProcessCryptoPacketAtLevel(1001, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ // Receives packet 1002 in initial data.
+ ProcessCryptoPacketAtLevel(1002, ENCRYPTION_INITIAL);
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ // Verify CRYPTO frame is bundled with INITIAL ACK.
+ EXPECT_FALSE(writer_->crypto_frames().empty());
+ // Verify PTO time changes.
+ EXPECT_NE(expected_pto_time,
+ connection_.sent_packet_manager().GetRetransmissionTime());
+}
+
+TEST_P(QuicConnectionTest, ClientBundlesHandshakeDataWithHandshakeAck) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ }
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ // Receives packet 1000 in handshake data.
+ ProcessCryptoPacketAtLevel(1000, ENCRYPTION_HANDSHAKE);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+
+ // Receives packet 1001 in handshake data.
+ ProcessCryptoPacketAtLevel(1001, ENCRYPTION_HANDSHAKE);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ // Receives packet 1002 in handshake data.
+ ProcessCryptoPacketAtLevel(1002, ENCRYPTION_HANDSHAKE);
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ // Verify CRYPTO frame is bundled with HANDSHAKE ACK.
+ EXPECT_FALSE(writer_->crypto_frames().empty());
+}
+
+// Regresstion test for b/156232673.
+TEST_P(QuicConnectionTest, CoalescePacketOfLowerEncryptionLevel) {
+ if (!connection_.version().CanSendCoalescedPackets()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ SendStreamDataToPeer(2, std::string(1286, 'a'), 0, NO_FIN, nullptr);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ // Try to coalesce a HANDSHAKE packet after 1-RTT packet.
+ // Verify soft max packet length gets resumed and handshake packet gets
+ // successfully sent.
+ connection_.SendCryptoDataWithString("a", 0, ENCRYPTION_HANDSHAKE);
+ }
+}
+
+// Regression test for b/160790422.
+TEST_P(QuicConnectionTest, ServerRetransmitsHandshakeDataEarly) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ }
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+ // Receives packet 1000 in initial data.
+ ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ // Send INITIAL 1.
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+ QuicTime expected_pto_time =
+ connection_.sent_packet_manager().GetRetransmissionTime();
+
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ // Send HANDSHAKE 2 and 3.
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+ connection_.SendCryptoDataWithString("bar", 3, ENCRYPTION_HANDSHAKE);
+ // Verify PTO time does not change.
+ EXPECT_EQ(expected_pto_time,
+ connection_.sent_packet_manager().GetRetransmissionTime());
+
+ // Receives ACK for HANDSHAKE 2.
+ QuicFrames frames;
+ auto ack_frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ frames.push_back(QuicFrame(&ack_frame));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessFramesPacketAtLevel(30, frames, ENCRYPTION_HANDSHAKE);
+ // Discard INITIAL key.
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ // Receives PING from peer.
+ frames.clear();
+ frames.push_back(QuicFrame(QuicPingFrame()));
+ frames.push_back(QuicFrame(QuicPaddingFrame(3)));
+ ProcessFramesPacketAtLevel(31, frames, ENCRYPTION_HANDSHAKE);
+ EXPECT_EQ(clock_.Now() + kAlarmGranularity,
+ connection_.GetAckAlarm()->deadline());
+ // Fire ACK alarm.
+ clock_.AdvanceTime(kAlarmGranularity);
+ connection_.GetAckAlarm()->Fire();
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ // Verify handshake data gets retransmitted early.
+ EXPECT_FALSE(writer_->crypto_frames().empty());
+}
+
+// Regression test for b/161228202
+TEST_P(QuicConnectionTest, InflatedRttSample) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ // 30ms RTT.
+ const QuicTime::Delta kTestRTT = QuicTime::Delta::FromMilliseconds(30);
+ set_perspective(Perspective::IS_SERVER);
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ use_tagging_decrypter();
+ // Receives packet 1000 in initial data.
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ }
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ // Send INITIAL 1.
+ std::string initial_crypto_data(512, 'a');
+ connection_.SendCryptoDataWithString(initial_crypto_data, 0,
+ ENCRYPTION_INITIAL);
+ ASSERT_TRUE(connection_.sent_packet_manager()
+ .GetRetransmissionTime()
+ .IsInitialized());
+ QuicTime::Delta pto_timeout =
+ connection_.sent_packet_manager().GetRetransmissionTime() - clock_.Now();
+ // Send Handshake 2.
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ std::string handshake_crypto_data(1024, 'a');
+ connection_.SendCryptoDataWithString(handshake_crypto_data, 0,
+ ENCRYPTION_HANDSHAKE);
+
+ // INITIAL 1 gets lost and PTO fires.
+ clock_.AdvanceTime(pto_timeout);
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ clock_.AdvanceTime(kTestRTT);
+ // Assume retransmitted INITIAL gets received.
+ QuicFrames frames;
+ auto ack_frame = InitAckFrame({{QuicPacketNumber(4), QuicPacketNumber(5)}});
+ frames.push_back(QuicFrame(&ack_frame));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _))
+ .Times(AnyNumber());
+ ProcessFramesPacketAtLevel(1001, frames, ENCRYPTION_INITIAL);
+ EXPECT_EQ(kTestRTT, rtt_stats->latest_rtt());
+ // Because retransmitted INITIAL gets received so HANDSHAKE 2 gets processed.
+ frames.clear();
+ // HANDSHAKE 5 is also processed.
+ QuicAckFrame ack_frame2 =
+ InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)},
+ {QuicPacketNumber(5), QuicPacketNumber(6)}});
+ ack_frame2.ack_delay_time = QuicTime::Delta::Zero();
+ frames.push_back(QuicFrame(&ack_frame2));
+ ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_HANDSHAKE);
+ // Verify RTT inflation gets mitigated.
+ EXPECT_EQ(rtt_stats->latest_rtt(), kTestRTT);
+}
+
+// Regression test for b/161228202
+TEST_P(QuicConnectionTest, CoalscingPacketCausesInfiniteLoop) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ use_tagging_decrypter();
+ // Receives packet 1000 in initial data.
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ }
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+
+ // Set anti amplification factor to 2, such that RetransmitDataOfSpaceIfAny
+ // makes no forward progress and causes infinite loop.
+ SetQuicFlag(FLAGS_quic_anti_amplification_factor, 2);
+
+ ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ // Send INITIAL 1.
+ std::string initial_crypto_data(512, 'a');
+ connection_.SendCryptoDataWithString(initial_crypto_data, 0,
+ ENCRYPTION_INITIAL);
+ ASSERT_TRUE(connection_.sent_packet_manager()
+ .GetRetransmissionTime()
+ .IsInitialized());
+ QuicTime::Delta pto_timeout =
+ connection_.sent_packet_manager().GetRetransmissionTime() - clock_.Now();
+ // Send Handshake 2.
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ // Verify HANDSHAKE packet is coalesced with INITIAL retransmission.
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ std::string handshake_crypto_data(1024, 'a');
+ connection_.SendCryptoDataWithString(handshake_crypto_data, 0,
+ ENCRYPTION_HANDSHAKE);
+
+ // INITIAL 1 gets lost and PTO fires.
+ clock_.AdvanceTime(pto_timeout);
+ connection_.GetRetransmissionAlarm()->Fire();
+}
+
+TEST_P(QuicConnectionTest, ClientAckDelayForAsyncPacketProcessing) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ // SetFromConfig is always called after construction from InitializeSession.
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() {
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ }));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+
+ // Received undecryptable HANDSHAKE 2.
+ ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+ ASSERT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+ // Received INITIAL 4 (which is retransmission of INITIAL 1) after 100ms.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100));
+ ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_INITIAL);
+ // Generate HANDSHAKE key.
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypter>(0x01));
+ EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ // Verify HANDSHAKE packet gets processed.
+ if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ } else {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ }
+ connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+ if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) {
+ // Verify immediate ACK has been sent out when flush went out of scope.
+ ASSERT_FALSE(connection_.HasPendingAcks());
+ } else {
+ ASSERT_TRUE(connection_.HasPendingAcks());
+ // Send ACKs.
+ clock_.AdvanceTime(connection_.GetAckAlarm()->deadline() - clock_.Now());
+ connection_.GetAckAlarm()->Fire();
+ }
+ ASSERT_FALSE(writer_->ack_frames().empty());
+ if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) {
+ // Verify the ack_delay_time in the sent HANDSHAKE ACK frame is 100ms.
+ EXPECT_EQ(QuicTime::Delta::FromMilliseconds(100),
+ writer_->ack_frames()[0].ack_delay_time);
+ ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+ return;
+ }
+ // Verify the ack_delay_time in the INITIAL ACK frame is 1ms.
+ EXPECT_EQ(QuicTime::Delta::FromMilliseconds(1),
+ writer_->ack_frames()[0].ack_delay_time);
+ // Process the coalesced HANDSHAKE packet.
+ ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+ auto packet = writer_->coalesced_packet()->Clone();
+ writer_->framer()->ProcessPacket(*packet);
+ ASSERT_FALSE(writer_->ack_frames().empty());
+ // Verify the ack_delay_time in the HANDSHAKE ACK frame includes the
+ // buffering time.
+ EXPECT_EQ(QuicTime::Delta::FromMilliseconds(101),
+ writer_->ack_frames()[0].ack_delay_time);
+ ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+}
+
+TEST_P(QuicConnectionTest, TestingLiveness) {
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+
+ CryptoHandshakeMessage msg;
+ std::string error_details;
+ QuicConfig client_config;
+ client_config.SetInitialStreamFlowControlWindowToSend(
+ kInitialStreamFlowControlWindowForTest);
+ client_config.SetInitialSessionFlowControlWindowToSend(
+ kInitialSessionFlowControlWindowForTest);
+ client_config.SetIdleNetworkTimeout(QuicTime::Delta::FromSeconds(30));
+ client_config.ToHandshakeMessage(&msg, connection_.transport_version());
+ const QuicErrorCode error =
+ config.ProcessPeerHello(msg, CLIENT, &error_details);
+ EXPECT_THAT(error, IsQuicNoError());
+
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+
+ connection_.SetFromConfig(config);
+ connection_.OnHandshakeComplete();
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ ASSERT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.MaybeTestLiveness());
+
+ QuicTime deadline = connection_.GetTimeoutAlarm()->deadline();
+ QuicTime::Delta timeout = deadline - clock_.ApproximateNow();
+ // Advance time to near the idle timeout.
+ clock_.AdvanceTime(timeout - QuicTime::Delta::FromMilliseconds(1));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_TRUE(connection_.MaybeTestLiveness());
+ // Verify idle deadline does not change.
+ EXPECT_EQ(deadline, connection_.GetTimeoutAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, SilentIdleTimeout) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ if (version().SupportsAntiAmplificationLimit()) {
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ }
+
+ QuicConfig config;
+ QuicConfigPeer::SetNegotiated(&config, true);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config,
+ QuicConnectionId());
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+
+ if (version().handshake_protocol == PROTOCOL_TLS1_3) {
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ }
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.GetTimeoutAlarm()->Fire();
+ // Verify the connection close packets get serialized and added to
+ // termination packets list.
+ EXPECT_NE(nullptr,
+ QuicConnectionPeer::GetConnectionClosePacket(&connection_));
+}
+
+TEST_P(QuicConnectionTest, DonotSendPing) {
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.OnHandshakeComplete();
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(0, connection_.transport_version()),
+ "GET /", 0, FIN, nullptr);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_EQ(QuicTime::Delta::FromSeconds(15),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ // Now recevie an ACK and response of the previous packet, which will move the
+ // ping alarm forward.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicFrames frames;
+ QuicAckFrame ack_frame = InitAckFrame(1);
+ frames.push_back(QuicFrame(&ack_frame));
+ frames.push_back(QuicFrame(QuicStreamFrame(
+ GetNthClientInitiatedStreamId(0, connection_.transport_version()), true,
+ 0u, absl::string_view())));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ // The ping timer is set slightly less than 15 seconds in the future, because
+ // of the 1s ping timer alarm granularity.
+ EXPECT_EQ(
+ QuicTime::Delta::FromSeconds(15) - QuicTime::Delta::FromMilliseconds(5),
+ connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15));
+ // Suppose now ShouldKeepConnectionAlive returns false.
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(false));
+ // Verify PING does not get sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.GetPingAlarm()->Fire();
+}
+
+// Regression test for b/159698337
+TEST_P(QuicConnectionTest, DuplicateAckCausesLostPackets) {
+ if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ return;
+ }
+ // Finish handshake.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ notifier_.NeuterUnencryptedData();
+ connection_.NeuterUnencryptedPackets();
+ connection_.OnHandshakeComplete();
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+ std::string data(1200, 'a');
+ // Send data packets 1 - 5.
+ for (size_t i = 0; i < 5; ++i) {
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), data,
+ i * 1200, i == 4 ? FIN : NO_FIN, nullptr);
+ }
+ ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)).Times(3);
+
+ // ACK packet 5 and 1 and 2 are detected lost.
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(5), QuicPacketNumber(6)}});
+ LostPacketVector lost_packets;
+ lost_packets.push_back(
+ LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize));
+ lost_packets.push_back(
+ LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .Times(AnyNumber())
+ .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+ Return(LossDetectionInterface::DetectionStats())));
+ ProcessAckPacket(1, &frame);
+ EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
+ QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm();
+ EXPECT_TRUE(retransmission_alarm->IsSet());
+
+ // ACK packet 1 - 5 and 7.
+ QuicAckFrame frame2 =
+ InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(6)},
+ {QuicPacketNumber(7), QuicPacketNumber(8)}});
+ ProcessAckPacket(2, &frame2);
+ EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
+
+ // ACK packet 7 again and assume packet 6 is detected lost.
+ QuicAckFrame frame3 =
+ InitAckFrame({{QuicPacketNumber(7), QuicPacketNumber(8)}});
+ lost_packets.clear();
+ lost_packets.push_back(
+ LostPacket(QuicPacketNumber(6), kMaxOutgoingPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .Times(AnyNumber())
+ .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+ Return(LossDetectionInterface::DetectionStats())));
+ ProcessAckPacket(3, &frame3);
+ // Make sure loss detection is cancelled even there is no new acked packets.
+ EXPECT_FALSE(connection_.BlackholeDetectionInProgress());
+}
+
+TEST_P(QuicConnectionTest, ShorterIdleTimeoutOnSentPackets) {
+ EXPECT_TRUE(connection_.connected());
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ config.SetClientConnectionOptions(QuicTagVector{kFIDT});
+ QuicConfigPeer::SetNegotiated(&config, true);
+ if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+ }
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ connection_.SetFromConfig(config);
+
+ ASSERT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ // Send a packet close to timeout.
+ QuicTime::Delta timeout =
+ connection_.GetTimeoutAlarm()->deadline() - clock_.Now();
+ clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(1));
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ // Verify this sent packet does not extend idle timeout since 1s is > PTO
+ // delay.
+ ASSERT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_EQ(QuicTime::Delta::FromSeconds(1),
+ connection_.GetTimeoutAlarm()->deadline() - clock_.Now());
+
+ // Received an ACK 100ms later.
+ clock_.AdvanceTime(timeout - QuicTime::Delta::FromMilliseconds(100));
+ QuicAckFrame ack = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(1, &ack);
+ // Verify idle timeout gets extended.
+ EXPECT_EQ(clock_.Now() + timeout, connection_.GetTimeoutAlarm()->deadline());
+}
+
+// Regression test for b/166255274
+TEST_P(QuicConnectionTest,
+ ReserializeInitialPacketInCoalescerAfterDiscardingInitialKey) {
+ if (!connection_.version().CanSendCoalescedPackets()) {
+ return;
+ }
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() {
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ }));
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+ // Verify the packet is on hold.
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+ // Flush pending ACKs.
+ connection_.GetAckAlarm()->Fire();
+ }
+ EXPECT_FALSE(connection_.packet_creator().HasPendingFrames());
+ // The ACK frame is deleted along with initial_packet_ in coalescer. Sending
+ // connection close would cause this (released) ACK frame be serialized (and
+ // crashes).
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1000, false, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, PathValidationOnNewSocketSuccess) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.use_path_validator()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+ EXPECT_NE(kNewSelfAddress, connection_.self_address());
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1u))
+ .WillOnce(Invoke([&]() {
+ EXPECT_EQ(1u, new_writer.packets_write_attempts());
+ EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+ EXPECT_EQ(1u, new_writer.padding_frames().size());
+ EXPECT_EQ(kNewSelfAddress.host(),
+ new_writer.last_write_source_address());
+ }));
+ bool success = false;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kNewSelfAddress, connection_.peer_address(), &new_writer),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+ QuicFrames frames;
+ frames.push_back(QuicFrame(new QuicPathResponseFrame(
+ 99, new_writer.path_challenge_frames().front().data_buffer)));
+ ProcessFramesPacketWithAddresses(frames, kNewSelfAddress, kPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_TRUE(success);
+}
+
+TEST_P(QuicConnectionTest, NewPathValidationCancelsPreviousOne) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.use_path_validator()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+ EXPECT_NE(kNewSelfAddress, connection_.self_address());
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1u))
+ .WillOnce(Invoke([&]() {
+ EXPECT_EQ(1u, new_writer.packets_write_attempts());
+ EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+ EXPECT_EQ(1u, new_writer.padding_frames().size());
+ EXPECT_EQ(kNewSelfAddress.host(),
+ new_writer.last_write_source_address());
+ }));
+ bool success = true;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kNewSelfAddress, connection_.peer_address(), &new_writer),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+ // Start another path validation request.
+ const QuicSocketAddress kNewSelfAddress2(QuicIpAddress::Any4(), 12346);
+ EXPECT_NE(kNewSelfAddress2, connection_.self_address());
+ TestPacketWriter new_writer2(version(), &clock_, Perspective::IS_CLIENT);
+ if (!connection_.connection_migration_use_new_cid()) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1u))
+ .WillOnce(Invoke([&]() {
+ EXPECT_EQ(1u, new_writer2.packets_write_attempts());
+ EXPECT_EQ(1u, new_writer2.path_challenge_frames().size());
+ EXPECT_EQ(1u, new_writer2.padding_frames().size());
+ EXPECT_EQ(kNewSelfAddress2.host(),
+ new_writer2.last_write_source_address());
+ }));
+ }
+ bool success2 = false;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kNewSelfAddress2, connection_.peer_address(), &new_writer2),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kNewSelfAddress2, connection_.peer_address(),
+ &success2));
+ EXPECT_FALSE(success);
+ if (connection_.connection_migration_use_new_cid()) {
+ // There is no pening path validation as there is no available connection
+ // ID.
+ EXPECT_FALSE(connection_.HasPendingPathValidation());
+ } else {
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+ }
+}
+
+// Regression test for b/182571515.
+TEST_P(QuicConnectionTest, PathValidationRetry) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.use_path_validator()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(2u)
+ .WillRepeatedly(Invoke([&]() {
+ EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ }));
+ bool success = true;
+ connection_.ValidatePath(std::make_unique<TestQuicPathValidationContext>(
+ connection_.self_address(),
+ connection_.peer_address(), writer_.get()),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, connection_.self_address(),
+ connection_.peer_address(), &success));
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+
+ // Retry after time out.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs));
+ static_cast<test::MockRandom*>(helper_->GetRandomGenerator())->ChangeValue();
+ static_cast<TestAlarmFactory::TestAlarm*>(
+ QuicPathValidatorPeer::retry_timer(
+ QuicConnectionPeer::path_validator(&connection_)))
+ ->Fire();
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, PathValidationReceivesStatelessReset) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.use_path_validator()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedStatelessResetToken(&config,
+ kTestStatelessResetToken);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+ EXPECT_NE(kNewSelfAddress, connection_.self_address());
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1u))
+ .WillOnce(Invoke([&]() {
+ EXPECT_EQ(1u, new_writer.packets_write_attempts());
+ EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+ EXPECT_EQ(1u, new_writer.padding_frames().size());
+ EXPECT_EQ(kNewSelfAddress.host(),
+ new_writer.last_write_source_address());
+ }));
+ bool success = true;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kNewSelfAddress, connection_.peer_address(), &new_writer),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+
+ std::unique_ptr<QuicEncryptedPacket> packet(
+ QuicFramer::BuildIetfStatelessResetPacket(connection_id_,
+ /*received_packet_length=*/100,
+ kTestStatelessResetToken));
+ std::unique_ptr<QuicReceivedPacket> received(
+ ConstructReceivedPacket(*packet, QuicTime::Zero()));
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+ connection_.ProcessUdpPacket(kNewSelfAddress, kPeerAddress, *received);
+ EXPECT_FALSE(connection_.HasPendingPathValidation());
+ EXPECT_FALSE(success);
+}
+
+// Tests that PATH_CHALLENGE is dropped if it is sent via a blocked alternative
+// writer.
+TEST_P(QuicConnectionTest, SendPathChallengeUsingBlockedNewSocket) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+ EXPECT_NE(kNewSelfAddress, connection_.self_address());
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ new_writer.BlockOnNextWrite();
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1))
+ .WillOnce(Invoke([&]() {
+ // Even though the socket is blocked, the PATH_CHALLENGE should still be
+ // treated as sent.
+ EXPECT_EQ(1u, new_writer.packets_write_attempts());
+ EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+ EXPECT_EQ(1u, new_writer.padding_frames().size());
+ EXPECT_EQ(kNewSelfAddress.host(),
+ new_writer.last_write_source_address());
+ }));
+ bool success = false;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kNewSelfAddress, connection_.peer_address(), &new_writer),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+ new_writer.SetWritable();
+ // Write event on the default socket shouldn't make any difference.
+ connection_.OnCanWrite();
+ // A NEW_CONNECTION_ID frame is received in PathProbeTestInit and OnCanWrite
+ // will write a acking packet.
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_EQ(1u, new_writer.packets_write_attempts());
+}
+
+// Tests that PATH_CHALLENGE is dropped if it is sent via the default writer
+// and the writer is blocked.
+TEST_P(QuicConnectionTest, SendPathChallengeUsingBlockedDefaultSocket) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.use_path_validator()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_SERVER);
+ const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Any4(), 12345);
+ writer_->BlockOnNextWrite();
+ // 1st time is after writer returns WRITE_STATUS_BLOCKED. 2nd time is in
+ // ShouldGeneratePacket().
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(2));
+ QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7};
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1u))
+ .WillOnce(Invoke([&]() {
+ // This packet isn't sent actually, instead it is buffered in the
+ // connection.
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ if (connection_.validate_client_address()) {
+ EXPECT_EQ(1u, writer_->path_response_frames().size());
+ EXPECT_EQ(0,
+ memcmp(&path_challenge_payload,
+ &writer_->path_response_frames().front().data_buffer,
+ sizeof(path_challenge_payload)));
+ }
+ EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+ }))
+ .WillRepeatedly(Invoke([&]() {
+ // Only one PATH_CHALLENGE should be sent out.
+ EXPECT_EQ(0u, writer_->path_challenge_frames().size());
+ }));
+ bool success = false;
+ if (connection_.validate_client_address()) {
+ // Receiving a PATH_CHALLENGE from the new peer address should trigger
+ // address validation.
+ QuicFrames frames;
+ frames.push_back(
+ QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload)));
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ } else {
+ // Manually start to validate the new peer address.
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ connection_.self_address(), kNewPeerAddress, writer_.get()),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, connection_.self_address(), kNewPeerAddress,
+ &success));
+ }
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+ // Try again with the new socket blocked from the beginning. The 2nd
+ // PATH_CHALLENGE shouldn't be serialized, but be dropped.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs));
+ static_cast<test::MockRandom*>(helper_->GetRandomGenerator())->ChangeValue();
+ static_cast<TestAlarmFactory::TestAlarm*>(
+ QuicPathValidatorPeer::retry_timer(
+ QuicConnectionPeer::path_validator(&connection_)))
+ ->Fire();
+
+ // No more write attempt should be made.
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+ writer_->SetWritable();
+ // OnCanWrite() should actually write out the 1st PATH_CHALLENGE packet
+ // buffered earlier, thus incrementing the write counter. It may also send
+ // ACKs to previously received packets.
+ connection_.OnCanWrite();
+ EXPECT_LE(2u, writer_->packets_write_attempts());
+}
+
+// Tests that write error on the alternate socket should be ignored.
+TEST_P(QuicConnectionTest, SendPathChallengeFailOnNewSocket) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.use_path_validator()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+ EXPECT_NE(kNewSelfAddress, connection_.self_address());
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ new_writer.SetShouldWriteFail();
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .Times(0);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u);
+
+ bool success = false;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kNewSelfAddress, connection_.peer_address(), &new_writer),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+ EXPECT_EQ(1u, new_writer.packets_write_attempts());
+ EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+ EXPECT_EQ(1u, new_writer.padding_frames().size());
+ EXPECT_EQ(kNewSelfAddress.host(), new_writer.last_write_source_address());
+
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+ // Regardless of the write error, the connection should still be connected.
+ EXPECT_TRUE(connection_.connected());
+}
+
+// Tests that write error while sending PATH_CHALLANGE from the default socket
+// should close the connection.
+TEST_P(QuicConnectionTest, SendPathChallengeFailOnDefaultPath) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.use_path_validator()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+
+ writer_->SetShouldWriteFail();
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(
+ Invoke([](QuicConnectionCloseFrame frame, ConnectionCloseSource) {
+ EXPECT_EQ(QUIC_PACKET_WRITE_ERROR, frame.quic_error_code);
+ }));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u);
+ {
+ // Add a flusher to force flush, otherwise the frames will remain in the
+ // packet creator.
+ bool success = false;
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ connection_.ValidatePath(std::make_unique<TestQuicPathValidationContext>(
+ connection_.self_address(),
+ connection_.peer_address(), writer_.get()),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, connection_.self_address(),
+ connection_.peer_address(), &success));
+ }
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ EXPECT_EQ(connection_.peer_address(), writer_->last_write_peer_address());
+ EXPECT_FALSE(connection_.connected());
+ // Closing connection should abandon ongoing path validation.
+ EXPECT_FALSE(connection_.HasPendingPathValidation());
+}
+
+TEST_P(QuicConnectionTest, SendPathChallengeFailOnAlternativePeerAddress) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.use_path_validator()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+
+ writer_->SetShouldWriteFail();
+ const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Any4(), 12345);
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(
+ Invoke([](QuicConnectionCloseFrame frame, ConnectionCloseSource) {
+ EXPECT_EQ(QUIC_PACKET_WRITE_ERROR, frame.quic_error_code);
+ }));
+ // Sending PATH_CHALLENGE to trigger a flush write which will fail and close
+ // the connection.
+ bool success = false;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ connection_.self_address(), kNewPeerAddress, writer_.get()),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, connection_.self_address(), kNewPeerAddress, &success));
+
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_FALSE(connection_.HasPendingPathValidation());
+ EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest,
+ SendPathChallengeFailPacketTooBigOnAlternativePeerAddress) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.use_path_validator()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ // Make sure there is no outstanding ACK_FRAME to write.
+ connection_.OnCanWrite();
+ uint32_t num_packets_write_attempts = writer_->packets_write_attempts();
+
+ writer_->SetShouldWriteFail();
+ writer_->SetWriteError(*writer_->MessageTooBigErrorCode());
+ const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Any4(), 12345);
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .Times(0u);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u);
+ // Sending PATH_CHALLENGE to trigger a flush write which will fail with
+ // MSG_TOO_BIG.
+ bool success = false;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ connection_.self_address(), kNewPeerAddress, writer_.get()),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, connection_.self_address(), kNewPeerAddress, &success));
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+ // Connection shouldn't be closed.
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_EQ(++num_packets_write_attempts, writer_->packets_write_attempts());
+ EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+}
+
+// Check that if there are two PATH_CHALLENGE frames in the packet, the latter
+// one is ignored.
+TEST_P(QuicConnectionTest, ReceiveMultiplePathChallenge) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_SERVER);
+
+ QuicPathFrameBuffer path_frame_buffer1{0, 1, 2, 3, 4, 5, 6, 7};
+ QuicPathFrameBuffer path_frame_buffer2{8, 9, 10, 11, 12, 13, 14, 15};
+ QuicFrames frames;
+ frames.push_back(
+ QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer1)));
+ frames.push_back(
+ QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer2)));
+ const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback6(),
+ /*port=*/23456);
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+
+ // Expect 2 packets to be sent: the first are padded PATH_RESPONSE(s) to the
+ // alternative peer address. The 2nd is a ACK-only packet to the original
+ // peer address.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(2)
+ .WillOnce(Invoke([=]() {
+ EXPECT_EQ(1u, writer_->path_response_frames().size());
+ // The final check is to ensure that the random data in the response
+ // matches the random data from the challenge.
+ EXPECT_EQ(0,
+ memcmp(path_frame_buffer1.data(),
+ &(writer_->path_response_frames().front().data_buffer),
+ sizeof(path_frame_buffer1)));
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+ }))
+ .WillOnce(Invoke([=]() {
+ // The last write of ACK-only packet should still use the old peer
+ // address.
+ EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address());
+ }));
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+}
+
+TEST_P(QuicConnectionTest, ReceiveStreamFrameBeforePathChallenge) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_SERVER);
+
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7};
+ frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer)));
+ const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(),
+ /*port=*/23456);
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE));
+ EXPECT_CALL(*send_algorithm_, OnConnectionMigration())
+ .Times(connection_.validate_client_address() ? 0u : 1u);
+ EXPECT_CALL(visitor_, OnStreamFrame(_))
+ .WillOnce(Invoke([=](const QuicStreamFrame& frame) {
+ // Send some data on the stream. The STREAM_FRAME should be built into
+ // one packet together with the latter PATH_RESPONSE and PATH_CHALLENGE.
+ const std::string data{"response body"};
+ connection_.producer()->SaveStreamData(frame.stream_id, data);
+ return notifier_.WriteOrBufferData(frame.stream_id, data.length(),
+ NO_FIN);
+ }));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(connection_.validate_client_address() ? 0u : 1u);
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+
+ // Verify that this packet contains a STREAM_FRAME and a
+ // PATH_RESPONSE_FRAME.
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(1u, writer_->path_response_frames().size());
+ EXPECT_EQ(connection_.validate_client_address() ? 1u : 0u,
+ writer_->path_challenge_frames().size());
+ // The final check is to ensure that the random data in the response
+ // matches the random data from the challenge.
+ EXPECT_EQ(0, memcmp(path_frame_buffer.data(),
+ &(writer_->path_response_frames().front().data_buffer),
+ sizeof(path_frame_buffer)));
+ EXPECT_EQ(connection_.validate_client_address() ? 1u : 0u,
+ writer_->path_challenge_frames().size());
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+ if (connection_.validate_client_address()) {
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+ }
+}
+
+TEST_P(QuicConnectionTest, ReceiveStreamFrameFollowingPathChallenge) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_SERVER);
+
+ QuicFrames frames;
+ QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7};
+ frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer)));
+ // PATH_RESPONSE should be flushed out before the rest packet is parsed.
+ frames.push_back(QuicFrame(frame1_));
+ const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(),
+ /*port=*/23456);
+ QuicByteCount received_packet_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AtLeast(1u))
+ .WillOnce(Invoke([=, &received_packet_size]() {
+ // Verify that this packet contains a PATH_RESPONSE_FRAME.
+ EXPECT_EQ(0u, writer_->stream_frames().size());
+ EXPECT_EQ(1u, writer_->path_response_frames().size());
+ // The final check is to ensure that the random data in the response
+ // matches the random data from the challenge.
+ EXPECT_EQ(0,
+ memcmp(path_frame_buffer.data(),
+ &(writer_->path_response_frames().front().data_buffer),
+ sizeof(path_frame_buffer)));
+ EXPECT_EQ(connection_.validate_client_address() ? 1u : 0u,
+ writer_->path_challenge_frames().size());
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+ received_packet_size =
+ QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_);
+ }));
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE));
+ EXPECT_CALL(*send_algorithm_, OnConnectionMigration())
+ .Times(connection_.validate_client_address() ? 0u : 1u);
+ EXPECT_CALL(visitor_, OnStreamFrame(_))
+ .WillOnce(Invoke([=](const QuicStreamFrame& frame) {
+ // Send some data on the stream. The STREAM_FRAME should be built into a
+ // new packet but throttled by anti-amplifciation limit.
+ const std::string data{"response body"};
+ connection_.producer()->SaveStreamData(frame.stream_id, data);
+ return notifier_.WriteOrBufferData(frame.stream_id, data.length(),
+ NO_FIN);
+ }));
+
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ if (!connection_.validate_client_address()) {
+ return;
+ }
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+ EXPECT_EQ(0u,
+ QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_));
+ EXPECT_EQ(
+ received_packet_size,
+ QuicConnectionPeer::BytesReceivedBeforeAddressValidation(&connection_));
+}
+
+// Tests that a PATH_CHALLENGE is received in between other frames in an out of
+// order packet.
+TEST_P(QuicConnectionTest, PathChallengeWithDataInOutOfOrderPacket) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_SERVER);
+
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7};
+ frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer)));
+ frames.push_back(QuicFrame(frame2_));
+ const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback6(),
+ /*port=*/23456);
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0u);
+ EXPECT_CALL(visitor_, OnStreamFrame(_))
+ .Times(2)
+ .WillRepeatedly(Invoke([=](const QuicStreamFrame& frame) {
+ // Send some data on the stream. The STREAM_FRAME should be built into
+ // one packet together with the latter PATH_RESPONSE.
+ const std::string data{"response body"};
+ connection_.producer()->SaveStreamData(frame.stream_id, data);
+ return notifier_.WriteOrBufferData(frame.stream_id, data.length(),
+ NO_FIN);
+ }));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(Invoke([=]() {
+ // Verify that this packet contains a STREAM_FRAME and is sent to the
+ // original peer address.
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ // No connection migration should happen because the packet is received
+ // out of order.
+ EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address());
+ }))
+ .WillOnce(Invoke([=]() {
+ EXPECT_EQ(1u, writer_->path_response_frames().size());
+ // The final check is to ensure that the random data in the response
+ // matches the random data from the challenge.
+ EXPECT_EQ(0,
+ memcmp(path_frame_buffer.data(),
+ &(writer_->path_response_frames().front().data_buffer),
+ sizeof(path_frame_buffer)));
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ // PATH_RESPONSE should be sent in another packet to a different peer
+ // address.
+ EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+ }))
+ .WillOnce(Invoke([=]() {
+ // Verify that this packet contains a STREAM_FRAME and is sent to the
+ // original peer address.
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ // No connection migration should happen because the packet is received
+ // out of order.
+ EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address());
+ }));
+ // Lower the packet number so that receiving this packet shouldn't trigger
+ // peer migration.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1);
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+}
+
+// Tests that a PATH_CHALLENGE is cached if its PATH_RESPONSE can't be sent.
+TEST_P(QuicConnectionTest, FailToWritePathResponse) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_SERVER);
+
+ QuicFrames frames;
+ QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7};
+ frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer)));
+ const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback6(),
+ /*port=*/23456);
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0u);
+ // Lower the packet number so that receiving this packet shouldn't trigger
+ // peer migration.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1);
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+ writer_->SetWriteBlocked();
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+}
+
+// Regression test for b/168101557.
+TEST_P(QuicConnectionTest, HandshakeDataDoesNotGetPtoed) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ }
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ // Send INITIAL 1.
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ // Send HANDSHAKE packets.
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x03));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Send half RTT packet.
+ connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+
+ // Receives HANDSHAKE 1.
+ peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_HANDSHAKE);
+ // Discard INITIAL key.
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ // Verify there is pending ACK.
+ ASSERT_TRUE(connection_.HasPendingAcks());
+ // Set the send alarm.
+ connection_.GetSendAlarm()->Set(clock_.ApproximateNow());
+
+ // Fire ACK alarm.
+ connection_.GetAckAlarm()->Fire();
+ // Verify 1-RTT packet is coalesced with handshake packet.
+ EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
+ connection_.GetSendAlarm()->Fire();
+
+ ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ connection_.GetRetransmissionAlarm()->Fire();
+ // Verify a handshake packet gets PTOed and 1-RTT packet gets coalesced.
+ EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
+}
+
+// Regression test for b/168294218.
+TEST_P(QuicConnectionTest, CoalescerHandlesInitialKeyDiscard) {
+ if (!connection_.version().CanSendCoalescedPackets()) {
+ return;
+ }
+ SetQuicReloadableFlag(quic_discard_initial_packet_with_key_dropped, true);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() {
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ }));
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+
+ EXPECT_EQ(0u, connection_.GetStats().packets_discarded);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ use_tagging_decrypter();
+ ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1));
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0);
+ // Verify this packet is on hold.
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+ }
+ EXPECT_TRUE(connection_.connected());
+}
+
+// Regresstion test for b/168294218
+TEST_P(QuicConnectionTest, ZeroRttRejectionAndMissingInitialKeys) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ // Not defer send in response to packet.
+ connection_.set_defer_send_in_response_to_packets(false);
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() {
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ }));
+ EXPECT_CALL(visitor_, OnCryptoFrame(_))
+ .WillRepeatedly(Invoke([=](const QuicCryptoFrame& frame) {
+ if (frame.level == ENCRYPTION_HANDSHAKE) {
+ // 0-RTT gets rejected.
+ connection_.MarkZeroRttPacketsForRetransmission(0);
+ // Send Crypto data.
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x03));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x04));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Advance INITIAL ack delay to trigger initial ACK to be sent AFTER
+ // the retransmission of rejected 0-RTT packets while the HANDSHAKE
+ // packet is still in the coalescer, such that the INITIAL key gets
+ // dropped between SendAllPendingAcks and actually send the ack frame,
+ // bummer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1));
+ }
+ }));
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+ // Send 0-RTT packet.
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+ connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+
+ QuicAckFrame frame1 = InitAckFrame(1);
+ // Received ACK for packet 1.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Fire retransmission alarm.
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ QuicFrames frames1;
+ frames1.push_back(QuicFrame(&crypto_frame_));
+ QuicFrames frames2;
+ QuicCryptoFrame crypto_frame(ENCRYPTION_HANDSHAKE, 0,
+ absl::string_view(data1));
+ frames2.push_back(QuicFrame(&crypto_frame));
+ ProcessCoalescedPacket(
+ {{2, frames1, ENCRYPTION_INITIAL}, {3, frames2, ENCRYPTION_HANDSHAKE}});
+}
+
+TEST_P(QuicConnectionTest, OnZeroRttPacketAcked) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SendCryptoStreamData();
+ // Send 0-RTT packet.
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+ connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+ connection_.SendStreamDataWithString(4, "bar", 0, NO_FIN);
+ // Received ACK for packet 1, HANDSHAKE packet and 1-RTT ACK.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _))
+ .Times(AnyNumber());
+ QuicFrames frames1;
+ QuicAckFrame ack_frame1 = InitAckFrame(1);
+ frames1.push_back(QuicFrame(&ack_frame1));
+
+ QuicFrames frames2;
+ QuicCryptoFrame crypto_frame(ENCRYPTION_HANDSHAKE, 0,
+ absl::string_view(data1));
+ frames2.push_back(QuicFrame(&crypto_frame));
+ EXPECT_CALL(debug_visitor, OnZeroRttPacketAcked()).Times(0);
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+ ProcessCoalescedPacket(
+ {{1, frames1, ENCRYPTION_INITIAL}, {2, frames2, ENCRYPTION_HANDSHAKE}});
+
+ QuicFrames frames3;
+ QuicAckFrame ack_frame2 =
+ InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ frames3.push_back(QuicFrame(&ack_frame2));
+ EXPECT_CALL(debug_visitor, OnZeroRttPacketAcked()).Times(1);
+ ProcessCoalescedPacket({{3, frames3, ENCRYPTION_FORWARD_SECURE}});
+
+ QuicFrames frames4;
+ QuicAckFrame ack_frame3 =
+ InitAckFrame({{QuicPacketNumber(3), QuicPacketNumber(4)}});
+ frames4.push_back(QuicFrame(&ack_frame3));
+ EXPECT_CALL(debug_visitor, OnZeroRttPacketAcked()).Times(0);
+ ProcessCoalescedPacket({{4, frames4, ENCRYPTION_FORWARD_SECURE}});
+}
+
+TEST_P(QuicConnectionTest, InitiateKeyUpdate) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+
+ TransportParameters params;
+ QuicConfig config;
+ std::string error_details;
+ EXPECT_THAT(config.ProcessTransportParameters(
+ params, /* is_resumption = */ false, &error_details),
+ IsQuicNoError());
+ QuicConfigPeer::SetNegotiated(&config, true);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+
+ EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+
+ MockFramerVisitor peer_framer_visitor_;
+ peer_framer_.set_visitor(&peer_framer_visitor_);
+
+ use_tagging_decrypter();
+
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<StrictTaggingDecrypter>(0x01));
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ connection_.OnHandshakeComplete();
+
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x01));
+
+ // Key update should still not be allowed, since no packet has been acked
+ // from the current key phase.
+ EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+ EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+ // Send packet 1.
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+
+ // Key update should still not be allowed, even though a packet was sent in
+ // the current key phase it hasn't been acked yet.
+ EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+ EXPECT_TRUE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+ EXPECT_FALSE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+ // Receive ack for packet 1.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame1 = InitAckFrame(1);
+ ProcessAckPacket(&frame1);
+
+ // OnDecryptedFirstPacketInKeyPhase is called even on the first key phase,
+ // so discard_previous_keys_alarm_ should be set now.
+ EXPECT_TRUE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+ EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+ // Key update should now be allowed.
+ EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter())
+ .WillOnce(
+ []() { return std::make_unique<StrictTaggingDecrypter>(0x02); });
+ EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() {
+ return std::make_unique<TaggingEncrypter>(0x02);
+ });
+ EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests));
+ EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests));
+ // discard_previous_keys_alarm_ should not be set until a packet from the new
+ // key phase has been received. (The alarm that was set above should be
+ // cleared if it hasn't fired before the next key update happened.)
+ EXPECT_FALSE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+ EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+ // Pretend that peer accepts the key update.
+ EXPECT_CALL(peer_framer_visitor_,
+ AdvanceKeysAndCreateCurrentOneRttDecrypter())
+ .WillOnce(
+ []() { return std::make_unique<StrictTaggingDecrypter>(0x02); });
+ EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter())
+ .WillOnce([]() { return std::make_unique<TaggingEncrypter>(0x02); });
+ peer_framer_.SetKeyUpdateSupportForConnection(true);
+ peer_framer_.DoKeyUpdate(KeyUpdateReason::kRemote);
+
+ // Another key update should not be allowed yet.
+ EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+
+ // Send packet 2.
+ SendStreamDataToPeer(2, "bar", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(2u), last_packet);
+ EXPECT_TRUE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+ // Receive ack for packet 2.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame2 = InitAckFrame(2);
+ ProcessAckPacket(&frame2);
+ EXPECT_TRUE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+ EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+ // Key update should be allowed again now that a packet has been acked from
+ // the current key phase.
+ EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter())
+ .WillOnce(
+ []() { return std::make_unique<StrictTaggingDecrypter>(0x03); });
+ EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() {
+ return std::make_unique<TaggingEncrypter>(0x03);
+ });
+ EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests));
+ EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests));
+
+ // Pretend that peer accepts the key update.
+ EXPECT_CALL(peer_framer_visitor_,
+ AdvanceKeysAndCreateCurrentOneRttDecrypter())
+ .WillOnce(
+ []() { return std::make_unique<StrictTaggingDecrypter>(0x03); });
+ EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter())
+ .WillOnce([]() { return std::make_unique<TaggingEncrypter>(0x03); });
+ peer_framer_.DoKeyUpdate(KeyUpdateReason::kRemote);
+
+ // Another key update should not be allowed yet.
+ EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+
+ // Send packet 3.
+ SendStreamDataToPeer(3, "baz", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(3u), last_packet);
+
+ // Another key update should not be allowed yet.
+ EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+ EXPECT_TRUE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+ // Receive ack for packet 3.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame3 = InitAckFrame(3);
+ ProcessAckPacket(&frame3);
+ EXPECT_TRUE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+ EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+ // Key update should be allowed now.
+ EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter())
+ .WillOnce(
+ []() { return std::make_unique<StrictTaggingDecrypter>(0x04); });
+ EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() {
+ return std::make_unique<TaggingEncrypter>(0x04);
+ });
+ EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests));
+ EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests));
+ EXPECT_FALSE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+ EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+}
+
+TEST_P(QuicConnectionTest, InitiateKeyUpdateApproachingConfidentialityLimit) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+
+ SetQuicFlag(FLAGS_quic_key_update_confidentiality_limit, 3U);
+
+ std::string error_details;
+ TransportParameters params;
+ // Key update is enabled.
+ QuicConfig config;
+ EXPECT_THAT(config.ProcessTransportParameters(
+ params, /* is_resumption = */ false, &error_details),
+ IsQuicNoError());
+ QuicConfigPeer::SetNegotiated(&config, true);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+
+ MockFramerVisitor peer_framer_visitor_;
+ peer_framer_.set_visitor(&peer_framer_visitor_);
+
+ use_tagging_decrypter();
+
+ uint8_t current_tag = 0x01;
+
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(current_tag));
+ SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<StrictTaggingDecrypter>(current_tag));
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ connection_.OnHandshakeComplete();
+
+ peer_framer_.SetKeyUpdateSupportForConnection(true);
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(current_tag));
+
+ const QuicConnectionStats& stats = connection_.GetStats();
+
+ for (int packet_num = 1; packet_num <= 8; ++packet_num) {
+ if (packet_num == 3 || packet_num == 6) {
+ current_tag++;
+ EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter())
+ .WillOnce([current_tag]() {
+ return std::make_unique<StrictTaggingDecrypter>(current_tag);
+ });
+ EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter())
+ .WillOnce([current_tag]() {
+ return std::make_unique<TaggingEncrypter>(current_tag);
+ });
+ EXPECT_CALL(visitor_,
+ OnKeyUpdate(KeyUpdateReason::kLocalKeyUpdateLimitOverride));
+ }
+ // Send packet.
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(packet_num, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(packet_num), last_packet);
+ if (packet_num >= 6) {
+ EXPECT_EQ(2U, stats.key_update_count);
+ } else if (packet_num >= 3) {
+ EXPECT_EQ(1U, stats.key_update_count);
+ } else {
+ EXPECT_EQ(0U, stats.key_update_count);
+ }
+
+ if (packet_num == 4 || packet_num == 7) {
+ // Pretend that peer accepts the key update.
+ EXPECT_CALL(peer_framer_visitor_,
+ AdvanceKeysAndCreateCurrentOneRttDecrypter())
+ .WillOnce([current_tag]() {
+ return std::make_unique<StrictTaggingDecrypter>(current_tag);
+ });
+ EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter())
+ .WillOnce([current_tag]() {
+ return std::make_unique<TaggingEncrypter>(current_tag);
+ });
+ peer_framer_.DoKeyUpdate(KeyUpdateReason::kRemote);
+ }
+ // Receive ack for packet.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame1 = InitAckFrame(packet_num);
+ ProcessAckPacket(&frame1);
+ }
+}
+
+TEST_P(QuicConnectionTest,
+ CloseConnectionOnConfidentialityLimitKeyUpdateNotAllowed) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+
+ // Set key update confidentiality limit to 1 packet.
+ SetQuicFlag(FLAGS_quic_key_update_confidentiality_limit, 1U);
+ // Use confidentiality limit for connection close of 3 packets.
+ constexpr size_t kConfidentialityLimit = 3U;
+
+ std::string error_details;
+ TransportParameters params;
+ // Key update is enabled.
+ QuicConfig config;
+ EXPECT_THAT(config.ProcessTransportParameters(
+ params, /* is_resumption = */ false, &error_details),
+ IsQuicNoError());
+ QuicConfigPeer::SetNegotiated(&config, true);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.SetEncrypter(
+ ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<NullEncrypterWithConfidentialityLimit>(
+ Perspective::IS_CLIENT, kConfidentialityLimit));
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ connection_.OnHandshakeComplete();
+
+ QuicPacketNumber last_packet;
+ // Send 3 packets without receiving acks for any of them. Key update will not
+ // be allowed, so the confidentiality limit should be reached, forcing the
+ // connection to be closed.
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_TRUE(connection_.connected());
+ SendStreamDataToPeer(2, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_FALSE(connection_.connected());
+ const QuicConnectionStats& stats = connection_.GetStats();
+ EXPECT_EQ(0U, stats.key_update_count);
+ TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOnIntegrityLimitDuringHandshake) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+
+ constexpr uint8_t correct_tag = 0x01;
+ constexpr uint8_t wrong_tag = 0xFE;
+ constexpr QuicPacketCount kIntegrityLimit = 3;
+
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+ correct_tag, kIntegrityLimit));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(correct_tag));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(wrong_tag));
+ for (uint64_t i = 1; i <= kIntegrityLimit; ++i) {
+ EXPECT_TRUE(connection_.connected());
+ if (i == kIntegrityLimit) {
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber());
+ }
+ ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+ EXPECT_EQ(
+ i, connection_.GetStats().num_failed_authentication_packets_received);
+ }
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOnIntegrityLimitAfterHandshake) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+
+ constexpr uint8_t correct_tag = 0x01;
+ constexpr uint8_t wrong_tag = 0xFE;
+ constexpr QuicPacketCount kIntegrityLimit = 3;
+
+ use_tagging_decrypter();
+ SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+ correct_tag, kIntegrityLimit));
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(correct_tag));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ connection_.OnHandshakeComplete();
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(wrong_tag));
+ for (uint64_t i = 1; i <= kIntegrityLimit; ++i) {
+ EXPECT_TRUE(connection_.connected());
+ if (i == kIntegrityLimit) {
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ }
+ ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(
+ i, connection_.GetStats().num_failed_authentication_packets_received);
+ }
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED);
+}
+
+TEST_P(QuicConnectionTest,
+ CloseConnectionOnIntegrityLimitAcrossEncryptionLevels) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+
+ constexpr uint8_t correct_tag = 0x01;
+ constexpr uint8_t wrong_tag = 0xFE;
+ constexpr QuicPacketCount kIntegrityLimit = 4;
+
+ use_tagging_decrypter();
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+ correct_tag, kIntegrityLimit));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(correct_tag));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(wrong_tag));
+ for (uint64_t i = 1; i <= 2; ++i) {
+ EXPECT_TRUE(connection_.connected());
+ ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+ EXPECT_EQ(
+ i, connection_.GetStats().num_failed_authentication_packets_received);
+ }
+
+ SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+ correct_tag, kIntegrityLimit));
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(correct_tag));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ connection_.OnHandshakeComplete();
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.RemoveEncrypter(ENCRYPTION_HANDSHAKE);
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(wrong_tag));
+ for (uint64_t i = 3; i <= kIntegrityLimit; ++i) {
+ EXPECT_TRUE(connection_.connected());
+ if (i == kIntegrityLimit) {
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ }
+ ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(
+ i, connection_.GetStats().num_failed_authentication_packets_received);
+ }
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED);
+}
+
+TEST_P(QuicConnectionTest, IntegrityLimitDoesNotApplyWithoutDecryptionKey) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+
+ constexpr uint8_t correct_tag = 0x01;
+ constexpr uint8_t wrong_tag = 0xFE;
+ constexpr QuicPacketCount kIntegrityLimit = 3;
+
+ use_tagging_decrypter();
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+ correct_tag, kIntegrityLimit));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(correct_tag));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE);
+
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(wrong_tag));
+ for (uint64_t i = 1; i <= kIntegrityLimit * 2; ++i) {
+ EXPECT_TRUE(connection_.connected());
+ ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(
+ 0u, connection_.GetStats().num_failed_authentication_packets_received);
+ }
+ EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOnIntegrityLimitAcrossKeyPhases) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+
+ constexpr QuicPacketCount kIntegrityLimit = 4;
+
+ TransportParameters params;
+ QuicConfig config;
+ std::string error_details;
+ EXPECT_THAT(config.ProcessTransportParameters(
+ params, /* is_resumption = */ false, &error_details),
+ IsQuicNoError());
+ QuicConfigPeer::SetNegotiated(&config, true);
+ if (connection_.version().UsesTls()) {
+ QuicConfigPeer::SetReceivedOriginalConnectionId(
+ &config, connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+
+ MockFramerVisitor peer_framer_visitor_;
+ peer_framer_.set_visitor(&peer_framer_visitor_);
+
+ use_tagging_decrypter();
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+ 0x01, kIntegrityLimit));
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ connection_.OnHandshakeComplete();
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0xFF));
+ for (uint64_t i = 1; i <= 2; ++i) {
+ EXPECT_TRUE(connection_.connected());
+ ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(
+ i, connection_.GetStats().num_failed_authentication_packets_received);
+ }
+
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ // Send packet 1.
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+ // Receive ack for packet 1.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame1 = InitAckFrame(1);
+ ProcessAckPacket(&frame1);
+ // Key update should now be allowed, initiate it.
+ EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter())
+ .WillOnce([kIntegrityLimit]() {
+ return std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+ 0x02, kIntegrityLimit);
+ });
+ EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() {
+ return std::make_unique<TaggingEncrypter>(0x02);
+ });
+ EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests));
+ EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests));
+
+ // Pretend that peer accepts the key update.
+ EXPECT_CALL(peer_framer_visitor_,
+ AdvanceKeysAndCreateCurrentOneRttDecrypter())
+ .WillOnce(
+ []() { return std::make_unique<StrictTaggingDecrypter>(0x02); });
+ EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter())
+ .WillOnce([]() { return std::make_unique<TaggingEncrypter>(0x02); });
+ peer_framer_.SetKeyUpdateSupportForConnection(true);
+ peer_framer_.DoKeyUpdate(KeyUpdateReason::kLocalForTests);
+
+ // Send packet 2.
+ SendStreamDataToPeer(2, "bar", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(2u), last_packet);
+ // Receive ack for packet 2.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame2 = InitAckFrame(2);
+ ProcessAckPacket(&frame2);
+
+ EXPECT_EQ(2u,
+ connection_.GetStats().num_failed_authentication_packets_received);
+
+ // Do two more undecryptable packets. Integrity limit should be reached.
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0xFF));
+ for (uint64_t i = 3; i <= kIntegrityLimit; ++i) {
+ EXPECT_TRUE(connection_.connected());
+ if (i == kIntegrityLimit) {
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ }
+ ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(
+ i, connection_.GetStats().num_failed_authentication_packets_received);
+ }
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED);
+}
+
+TEST_P(QuicConnectionTest, SendAckFrequencyFrame) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ SetQuicReloadableFlag(quic_can_send_ack_frequency, true);
+ set_perspective(Perspective::IS_SERVER);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _))
+ .Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedMinAckDelayMs(&config, /*min_ack_delay_ms=*/1);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+
+ connection_.OnHandshakeComplete();
+
+ writer_->SetWritable();
+ QuicPacketCreatorPeer::SetPacketNumber(creator_, 99);
+ // Send packet 100
+ SendStreamDataToPeer(/*id=*/1, "foo", /*offset=*/0, NO_FIN, nullptr);
+
+ QuicAckFrequencyFrame captured_frame;
+ EXPECT_CALL(visitor_, SendAckFrequency(_))
+ .WillOnce(Invoke([&captured_frame](const QuicAckFrequencyFrame& frame) {
+ captured_frame = frame;
+ }));
+ // Send packet 101.
+ SendStreamDataToPeer(/*id=*/1, "bar", /*offset=*/3, NO_FIN, nullptr);
+
+ EXPECT_EQ(captured_frame.packet_tolerance, 10u);
+ EXPECT_EQ(captured_frame.max_ack_delay,
+ QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs));
+
+ // Sending packet 102 does not trigger sending another AckFrequencyFrame.
+ SendStreamDataToPeer(/*id=*/1, "baz", /*offset=*/6, NO_FIN, nullptr);
+}
+
+TEST_P(QuicConnectionTest, SendAckFrequencyFrameUponHandshakeCompletion) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ SetQuicReloadableFlag(quic_can_send_ack_frequency, true);
+ set_perspective(Perspective::IS_SERVER);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _))
+ .Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedMinAckDelayMs(&config, /*min_ack_delay_ms=*/1);
+ QuicTagVector quic_tag_vector;
+ // Enable sending AckFrequency upon handshake completion.
+ quic_tag_vector.push_back(kAFF2);
+ QuicConfigPeer::SetReceivedConnectionOptions(&config, quic_tag_vector);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+
+ QuicAckFrequencyFrame captured_frame;
+ EXPECT_CALL(visitor_, SendAckFrequency(_))
+ .WillOnce(Invoke([&captured_frame](const QuicAckFrequencyFrame& frame) {
+ captured_frame = frame;
+ }));
+
+ connection_.OnHandshakeComplete();
+
+ EXPECT_EQ(captured_frame.packet_tolerance, 2u);
+ EXPECT_EQ(captured_frame.max_ack_delay,
+ QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs));
+}
+
+TEST_P(QuicConnectionTest, FastRecoveryOfLostServerHello) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.SendCryptoStreamData();
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+
+ // Assume ServerHello gets lost.
+ peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ ProcessCryptoPacketAtLevel(2, ENCRYPTION_HANDSHAKE);
+ ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ // Shorten PTO for fast recovery from lost ServerHello.
+ EXPECT_EQ(clock_.ApproximateNow() + kAlarmGranularity,
+ connection_.GetRetransmissionAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, ServerHelloGetsReordered) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ EXPECT_CALL(visitor_, OnCryptoFrame(_))
+ .WillRepeatedly(Invoke([=](const QuicCryptoFrame& frame) {
+ if (frame.level == ENCRYPTION_INITIAL) {
+ // Install handshake read keys.
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ }
+ }));
+
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.SendCryptoStreamData();
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+
+ // Assume ServerHello gets reordered.
+ peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ ProcessCryptoPacketAtLevel(2, ENCRYPTION_HANDSHAKE);
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+ // Verify fast recovery is not enabled.
+ EXPECT_EQ(connection_.sent_packet_manager().GetRetransmissionTime(),
+ connection_.GetRetransmissionAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, MigratePath) {
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+ EXPECT_CALL(visitor_, OnPathDegrading());
+ connection_.OnPathDegradingDetected();
+ const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+ EXPECT_NE(kNewSelfAddress, connection_.self_address());
+
+ // Buffer a packet.
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+ writer_->SetWriteBlocked();
+ connection_.SendMtuDiscoveryPacket(kMaxOutgoingPacketSize);
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading());
+ connection_.MigratePath(kNewSelfAddress, connection_.peer_address(),
+ &new_writer, /*owns_writer=*/false);
+
+ EXPECT_EQ(kNewSelfAddress, connection_.self_address());
+ EXPECT_EQ(&new_writer, QuicConnectionPeer::GetWriter(&connection_));
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ // Buffered packet on the old path should be discarded.
+ if (connection_.connection_migration_use_new_cid()) {
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ } else {
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+ }
+}
+
+TEST_P(QuicConnectionTest, MigrateToNewPathDuringProbing) {
+ if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+ !connection_.use_path_validator()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+ const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+ EXPECT_NE(kNewSelfAddress, connection_.self_address());
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ bool success = false;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kNewSelfAddress, connection_.peer_address(), &new_writer),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+ EXPECT_TRUE(QuicConnectionPeer::IsAlternativePath(
+ &connection_, kNewSelfAddress, connection_.peer_address()));
+
+ connection_.MigratePath(kNewSelfAddress, connection_.peer_address(),
+ &new_writer, /*owns_writer=*/false);
+ EXPECT_EQ(kNewSelfAddress, connection_.self_address());
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+ EXPECT_FALSE(QuicConnectionPeer::IsAlternativePath(
+ &connection_, kNewSelfAddress, connection_.peer_address()));
+}
+
+TEST_P(QuicConnectionTest, SingleAckInPacket) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ connection_.OnHandshakeComplete();
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() {
+ connection_.SendStreamData3();
+ connection_.CloseConnection(
+ QUIC_INTERNAL_ERROR, "error",
+ ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+ }));
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ ASSERT_FALSE(writer_->ack_frames().empty());
+ EXPECT_EQ(1u, writer_->ack_frames().size());
+}
+
+TEST_P(QuicConnectionTest,
+ ServerReceivedZeroRttPacketAfterOneRttPacketWithRetainedKey) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+
+ set_perspective(Perspective::IS_SERVER);
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<NullDecrypter>(Perspective::IS_SERVER));
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Finish handshake.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ notifier_.NeuterUnencryptedData();
+ connection_.NeuterUnencryptedPackets();
+ connection_.OnHandshakeComplete();
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_TRUE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet());
+
+ // 0-RTT packet received out of order should be decoded since the decrypter
+ // is temporarily retained.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ EXPECT_EQ(
+ 0u,
+ connection_.GetStats()
+ .num_tls_server_zero_rtt_packets_received_after_discarding_decrypter);
+
+ // Simulate the timeout for discarding 0-RTT keys passing.
+ connection_.GetDiscardZeroRttDecryptionKeysAlarm()->Fire();
+
+ // Another 0-RTT packet received now should not be decoded.
+ EXPECT_FALSE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(0);
+ ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ EXPECT_EQ(
+ 1u,
+ connection_.GetStats()
+ .num_tls_server_zero_rtt_packets_received_after_discarding_decrypter);
+
+ // The |discard_zero_rtt_decryption_keys_alarm_| should only be set on the
+ // first 1-RTT packet received.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(5, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_FALSE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, NewTokenFrameInstigateAcks) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ QuicNewTokenFrame* new_token = new QuicNewTokenFrame();
+ EXPECT_CALL(visitor_, OnNewTokenReceived(_));
+ ProcessFramePacket(QuicFrame(new_token));
+
+ // Ensure that this has caused the ACK alarm to be set.
+ EXPECT_TRUE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, ServerClosesConnectionOnNewTokenFrame) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ QuicNewTokenFrame* new_token = new QuicNewTokenFrame();
+ EXPECT_CALL(visitor_, OnNewTokenReceived(_)).Times(0);
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ ProcessFramePacket(QuicFrame(new_token));
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, OverrideRetryTokenWithRetryPacket) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ std::string address_token = "TestAddressToken";
+ connection_.SetSourceAddressTokenToSend(address_token);
+ EXPECT_EQ(QuicPacketCreatorPeer::GetRetryToken(
+ QuicConnectionPeer::GetPacketCreator(&connection_)),
+ address_token);
+ // Passes valid retry and verify token gets overridden.
+ TestClientRetryHandling(/*invalid_retry_tag=*/false,
+ /*missing_original_id_in_config=*/false,
+ /*wrong_original_id_in_config=*/false,
+ /*missing_retry_id_in_config=*/false,
+ /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, DonotOverrideRetryTokenWithAddressToken) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ // Passes valid retry and verify token gets overridden.
+ TestClientRetryHandling(/*invalid_retry_tag=*/false,
+ /*missing_original_id_in_config=*/false,
+ /*wrong_original_id_in_config=*/false,
+ /*missing_retry_id_in_config=*/false,
+ /*wrong_retry_id_in_config=*/false);
+ std::string retry_token = QuicPacketCreatorPeer::GetRetryToken(
+ QuicConnectionPeer::GetPacketCreator(&connection_));
+
+ std::string address_token = "TestAddressToken";
+ connection_.SetSourceAddressTokenToSend(address_token);
+ EXPECT_EQ(QuicPacketCreatorPeer::GetRetryToken(
+ QuicConnectionPeer::GetPacketCreator(&connection_)),
+ retry_token);
+}
+
+TEST_P(QuicConnectionTest,
+ ServerReceivedZeroRttWithHigherPacketNumberThanOneRtt) {
+ if (!connection_.version().UsesTls()) {
+ return;
+ }
+
+ // The code that checks for this error piggybacks on some book-keeping state
+ // kept for key update, so enable key update for the test.
+ std::string error_details;
+ TransportParameters params;
+ QuicConfig config;
+ EXPECT_THAT(config.ProcessTransportParameters(
+ params, /* is_resumption = */ false, &error_details),
+ IsQuicNoError());
+ QuicConfigPeer::SetNegotiated(&config, true);
+ QuicConfigPeer::SetReceivedOriginalConnectionId(&config,
+ connection_.connection_id());
+ QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+ &config, connection_.connection_id());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+
+ set_perspective(Perspective::IS_SERVER);
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<NullDecrypter>(Perspective::IS_SERVER));
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Finish handshake.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ notifier_.NeuterUnencryptedData();
+ connection_.NeuterUnencryptedPackets();
+ connection_.OnHandshakeComplete();
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+ // Decrypt a 1-RTT packet.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_TRUE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet());
+
+ // 0-RTT packet with higher packet number than a 1-RTT packet is invalid and
+ // should cause the connection to be closed.
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ EXPECT_FALSE(connection_.connected());
+ TestConnectionCloseQuicErrorCode(
+ QUIC_INVALID_0RTT_PACKET_NUMBER_OUT_OF_ORDER);
+}
+
+// Regression test for b/177312785
+TEST_P(QuicConnectionTest, PeerMigrateBeforeHandshakeConfirm) {
+ if (!VersionHasIetfQuicFrames(version().transport_version)) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_START));
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Process another packet with a different peer address on server side will
+ // close connection.
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0u);
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)).Times(0);
+ ProcessFramePacketWithAddresses(QuicFrame(&frame), kSelfAddress,
+ kNewPeerAddress, ENCRYPTION_INITIAL);
+ EXPECT_FALSE(connection_.connected());
+}
+
+// Regresstion test for b/175685916
+TEST_P(QuicConnectionTest, TryToFlushAckWithAckQueued) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ SetQuicReloadableFlag(quic_can_send_ack_frequency, true);
+ set_perspective(Perspective::IS_SERVER);
+
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedMinAckDelayMs(&config, /*min_ack_delay_ms=*/1);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.OnHandshakeComplete();
+ QuicPacketCreatorPeer::SetPacketNumber(creator_, 200);
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ // Sending ACK_FREQUENCY bundles ACK. QuicConnectionPeer::SendPing
+ // will try to bundle ACK but there is no pending ACK.
+ EXPECT_CALL(visitor_, SendAckFrequency(_))
+ .WillOnce(Invoke(¬ifier_,
+ &SimpleSessionNotifier::WriteOrBufferAckFrequency));
+ QuicConnectionPeer::SendPing(&connection_);
+}
+
+TEST_P(QuicConnectionTest, PathChallengeBeforePeerIpAddressChangeAtServer) {
+ set_perspective(Perspective::IS_SERVER);
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_SERVER);
+ SetClientConnectionId(TestConnectionId(1));
+ connection_.CreateConnectionIdManager();
+
+ QuicConnectionId server_cid0 = connection_.connection_id();
+ QuicConnectionId client_cid0 = connection_.client_connection_id();
+ QuicConnectionId client_cid1 = TestConnectionId(2);
+ QuicConnectionId server_cid1;
+ // Sends new server CID to client.
+ EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+ .WillOnce(
+ Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; }));
+ EXPECT_CALL(visitor_, SendNewConnectionId(_));
+ connection_.MaybeSendConnectionIdToClient();
+ // Receives new client CID from client.
+ QuicNewConnectionIdFrame new_cid_frame;
+ new_cid_frame.connection_id = client_cid1;
+ new_cid_frame.sequence_number = 1u;
+ new_cid_frame.retire_prior_to = 0u;
+ connection_.OnNewConnectionIdFrame(new_cid_frame);
+ auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_);
+ ASSERT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0);
+ ASSERT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+
+ peer_creator_.SetServerConnectionId(server_cid1);
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+ QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7};
+ QuicFrames frames1;
+ frames1.push_back(
+ QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload)));
+ QuicPathFrameBuffer payload;
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+ .Times(AtLeast(1))
+ .WillOnce(Invoke([&]() {
+ EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+ EXPECT_FALSE(writer_->path_response_frames().empty());
+ EXPECT_FALSE(writer_->path_challenge_frames().empty());
+ payload = writer_->path_challenge_frames().front().data_buffer;
+ }));
+ ProcessFramesPacketWithAddresses(frames1, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+ const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+ const auto* alternative_path =
+ QuicConnectionPeer::GetAlternativePath(&connection_);
+ EXPECT_EQ(default_path->client_connection_id, client_cid0);
+ EXPECT_EQ(default_path->server_connection_id, server_cid0);
+ EXPECT_EQ(alternative_path->client_connection_id, client_cid1);
+ EXPECT_EQ(alternative_path->server_connection_id, server_cid1);
+ EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0);
+ EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+
+ // Process another packet with a different peer address on server side will
+ // start connection migration.
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() {
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ }));
+ // IETF QUIC send algorithm should be changed to a different object, so no
+ // OnPacketSent() called on the old send algorithm.
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+ .Times(0);
+ QuicFrames frames2;
+ frames2.push_back(QuicFrame(frame2_));
+ ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+ connection_.active_effective_peer_migration_type());
+ EXPECT_TRUE(writer_->path_challenge_frames().empty());
+ EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(),
+ send_algorithm_);
+ // Switch to use the mock send algorithm.
+ send_algorithm_ = new StrictMock<MockSendAlgorithm>();
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
+ .WillRepeatedly(Return(kDefaultTCPMSS));
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+ .Times(AnyNumber())
+ .WillRepeatedly(Return(QuicBandwidth::Zero()));
+ EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber());
+ connection_.SetSendAlgorithm(send_algorithm_);
+ EXPECT_EQ(default_path->client_connection_id, client_cid1);
+ EXPECT_EQ(default_path->server_connection_id, server_cid1);
+ // The previous default path is kept as alternative path before reverse path
+ // validation finishes.
+ EXPECT_EQ(alternative_path->client_connection_id, client_cid0);
+ EXPECT_EQ(alternative_path->server_connection_id, server_cid0);
+ EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid1);
+ EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid1);
+
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+ connection_.active_effective_peer_migration_type());
+ EXPECT_EQ(1u, connection_.GetStats()
+ .num_peer_migration_to_proactively_validated_address);
+
+ // The PATH_CHALLENGE and PATH_RESPONSE is expanded upto the max packet size
+ // which may exceeds the anti-amplification limit. Verify server is throttled
+ // by anti-amplification limit.
+ connection_.SendCryptoDataWithString("foo", 0);
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Receiving PATH_RESPONSE should lift the anti-amplification limit.
+ QuicFrames frames3;
+ frames3.push_back(QuicFrame(new QuicPathResponseFrame(99, payload)));
+ EXPECT_CALL(visitor_, MaybeSendAddressToken());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(testing::AtLeast(1u));
+ ProcessFramesPacketWithAddresses(frames3, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+ // Verify that alternative_path_ is cleared and the peer CID is retired.
+ EXPECT_TRUE(alternative_path->client_connection_id.IsEmpty());
+ EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty());
+ EXPECT_FALSE(alternative_path->stateless_reset_token.has_value());
+ auto* retire_peer_issued_cid_alarm =
+ connection_.GetRetirePeerIssuedConnectionIdAlarm();
+ ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+ EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+ retire_peer_issued_cid_alarm->Fire();
+
+ // Verify the anti-amplification limit is lifted by sending a packet larger
+ // than the anti-amplification limit.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_CALL(*send_algorithm_, PacingRate(_))
+ .WillRepeatedly(Return(QuicBandwidth::Zero()));
+ connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0);
+ EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration);
+}
+
+TEST_P(QuicConnectionTest,
+ PathValidationSucceedsBeforePeerIpAddressChangeAtServer) {
+ set_perspective(Perspective::IS_SERVER);
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_SERVER);
+ connection_.CreateConnectionIdManager();
+
+ QuicConnectionId server_cid0 = connection_.connection_id();
+ QuicConnectionId server_cid1;
+ // Sends new server CID to client.
+ EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+ .WillOnce(
+ Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; }));
+ EXPECT_CALL(visitor_, SendNewConnectionId(_));
+ connection_.MaybeSendConnectionIdToClient();
+ auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_);
+ ASSERT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+
+ // Receive probing packet with new peer address.
+ peer_creator_.SetServerConnectionId(server_cid1);
+ const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(),
+ /*port=*/23456);
+ QuicPathFrameBuffer payload;
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+ .WillOnce(Invoke([&]() {
+ EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+ EXPECT_FALSE(writer_->path_response_frames().empty());
+ EXPECT_FALSE(writer_->path_challenge_frames().empty());
+ payload = writer_->path_challenge_frames().front().data_buffer;
+ }))
+ .WillRepeatedly(Invoke([&]() {
+ // Only start reverse path validation once.
+ EXPECT_TRUE(writer_->path_challenge_frames().empty());
+ }));
+ QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7};
+ QuicFrames frames1;
+ frames1.push_back(
+ QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload)));
+ ProcessFramesPacketWithAddresses(frames1, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+ const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+ const auto* alternative_path =
+ QuicConnectionPeer::GetAlternativePath(&connection_);
+ EXPECT_EQ(default_path->server_connection_id, server_cid0);
+ EXPECT_EQ(alternative_path->server_connection_id, server_cid1);
+ EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+
+ // Receive PATH_RESPONSE should mark the new peer address validated.
+ QuicFrames frames3;
+ frames3.push_back(QuicFrame(new QuicPathResponseFrame(99, payload)));
+ ProcessFramesPacketWithAddresses(frames3, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+
+ // Process another packet with a newer peer address with the same port will
+ // start connection migration.
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+ // IETF QUIC send algorithm should be changed to a different object, so no
+ // OnPacketSent() called on the old send algorithm.
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+ .Times(0);
+ const QuicSocketAddress kNewerPeerAddress(QuicIpAddress::Loopback4(),
+ /*port=*/34567);
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() {
+ EXPECT_EQ(kNewerPeerAddress, connection_.peer_address());
+ }));
+ EXPECT_CALL(visitor_, MaybeSendAddressToken());
+ QuicFrames frames2;
+ frames2.push_back(QuicFrame(frame2_));
+ ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewerPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kNewerPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewerPeerAddress, connection_.effective_peer_address());
+ // Since the newer address has the same IP as the previously validated probing
+ // address. The peer migration becomes validated immediately.
+ EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+ EXPECT_EQ(kNewerPeerAddress, writer_->last_write_peer_address());
+ EXPECT_EQ(1u, connection_.GetStats()
+ .num_peer_migration_to_proactively_validated_address);
+ EXPECT_FALSE(connection_.HasPendingPathValidation());
+ EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(),
+ send_algorithm_);
+
+ EXPECT_EQ(default_path->server_connection_id, server_cid1);
+ EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid1);
+ // Verify that alternative_path_ is cleared.
+ EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty());
+ EXPECT_FALSE(alternative_path->stateless_reset_token.has_value());
+
+ // Switch to use the mock send algorithm.
+ send_algorithm_ = new StrictMock<MockSendAlgorithm>();
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
+ .WillRepeatedly(Return(kDefaultTCPMSS));
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+ .Times(AnyNumber())
+ .WillRepeatedly(Return(QuicBandwidth::Zero()));
+ EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber());
+ connection_.SetSendAlgorithm(send_algorithm_);
+
+ // Verify the server is not throttled by the anti-amplification limit by
+ // sending a packet larger than the anti-amplification limit.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0);
+ EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration);
+}
+
+TEST_P(QuicConnectionTest,
+ ProbedOnAnotherPathAfterPeerIpAddressChangeAtServer) {
+ PathProbeTestInit(Perspective::IS_SERVER);
+ if (!connection_.validate_client_address()) {
+ return;
+ }
+
+ const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(),
+ /*port=*/23456);
+
+ // Process a packet with a new peer address will start connection migration.
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+ // IETF QUIC send algorithm should be changed to a different object, so no
+ // OnPacketSent() called on the old send algorithm.
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+ .Times(0);
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() {
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ }));
+ QuicFrames frames2;
+ frames2.push_back(QuicFrame(frame2_));
+ ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_TRUE(QuicConnectionPeer::IsAlternativePathValidated(&connection_));
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+
+ // Switch to use the mock send algorithm.
+ send_algorithm_ = new StrictMock<MockSendAlgorithm>();
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
+ .WillRepeatedly(Return(kDefaultTCPMSS));
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+ .Times(AnyNumber())
+ .WillRepeatedly(Return(QuicBandwidth::Zero()));
+ EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber());
+ connection_.SetSendAlgorithm(send_algorithm_);
+
+ // Receive probing packet with a newer peer address shouldn't override the
+ // on-going path validation.
+ const QuicSocketAddress kNewerPeerAddress(QuicIpAddress::Loopback4(),
+ /*port=*/34567);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(Invoke([&]() {
+ EXPECT_EQ(kNewerPeerAddress, writer_->last_write_peer_address());
+ EXPECT_FALSE(writer_->path_response_frames().empty());
+ EXPECT_TRUE(writer_->path_challenge_frames().empty());
+ }));
+ QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7};
+ QuicFrames frames1;
+ frames1.push_back(
+ QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload)));
+ ProcessFramesPacketWithAddresses(frames1, kSelfAddress, kNewerPeerAddress,
+ ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_TRUE(QuicConnectionPeer::IsAlternativePathValidated(&connection_));
+ EXPECT_TRUE(connection_.HasPendingPathValidation());
+}
+
+TEST_P(QuicConnectionTest,
+ PathValidationFailedOnClientDueToLackOfServerConnectionId) {
+ if (!GetQuicReloadableFlag(
+ quic_remove_connection_migration_connection_option)) {
+ QuicConfig config;
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ config.SetConnectionOptionsToSend({kRVCM});
+ }
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT,
+ /*receive_new_server_connection_id=*/false);
+
+ const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Loopback4(),
+ /*port=*/34567);
+
+ bool success;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kNewSelfAddress, connection_.peer_address(), writer_.get()),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+
+ EXPECT_FALSE(success);
+}
+
+TEST_P(QuicConnectionTest,
+ PathValidationFailedOnClientDueToLackOfClientConnectionIdTheSecondTime) {
+ if (!GetQuicReloadableFlag(
+ quic_remove_connection_migration_connection_option)) {
+ QuicConfig config;
+ config.SetConnectionOptionsToSend({kRVCM});
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ }
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT,
+ /*receive_new_server_connection_id=*/false);
+ SetClientConnectionId(TestConnectionId(1));
+
+ // Make sure server connection ID is available for the 1st validation.
+ QuicConnectionId server_cid0 = connection_.connection_id();
+ QuicConnectionId server_cid1 = TestConnectionId(2);
+ QuicConnectionId server_cid2 = TestConnectionId(4);
+ QuicConnectionId client_cid1;
+ QuicNewConnectionIdFrame frame1;
+ frame1.connection_id = server_cid1;
+ frame1.sequence_number = 1u;
+ frame1.retire_prior_to = 0u;
+ frame1.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame1.connection_id);
+ connection_.OnNewConnectionIdFrame(frame1);
+ const auto* packet_creator =
+ QuicConnectionPeer::GetPacketCreator(&connection_);
+ ASSERT_EQ(packet_creator->GetDestinationConnectionId(), server_cid0);
+
+ // Client will issue a new client connection ID to server.
+ EXPECT_CALL(visitor_, SendNewConnectionId(_))
+ .WillOnce(Invoke([&](const QuicNewConnectionIdFrame& frame) {
+ client_cid1 = frame.connection_id;
+ }));
+
+ const QuicSocketAddress kSelfAddress1(QuicIpAddress::Any4(), 12345);
+ ASSERT_NE(kSelfAddress1, connection_.self_address());
+ bool success1;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kSelfAddress1, connection_.peer_address(), writer_.get()),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kSelfAddress1, connection_.peer_address(), &success1));
+
+ // Migrate upon 1st validation success.
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ ASSERT_TRUE(connection_.MigratePath(kSelfAddress1, connection_.peer_address(),
+ &new_writer, /*owns_writer=*/false));
+ QuicConnectionPeer::RetirePeerIssuedConnectionIdsNoLongerOnPath(&connection_);
+ const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+ EXPECT_EQ(default_path->client_connection_id, client_cid1);
+ EXPECT_EQ(default_path->server_connection_id, server_cid1);
+ EXPECT_EQ(default_path->stateless_reset_token, frame1.stateless_reset_token);
+ const auto* alternative_path =
+ QuicConnectionPeer::GetAlternativePath(&connection_);
+ EXPECT_TRUE(alternative_path->client_connection_id.IsEmpty());
+ EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty());
+ EXPECT_FALSE(alternative_path->stateless_reset_token.has_value());
+ ASSERT_EQ(packet_creator->GetDestinationConnectionId(), server_cid1);
+
+ // Client will retire server connection ID on old default_path.
+ auto* retire_peer_issued_cid_alarm =
+ connection_.GetRetirePeerIssuedConnectionIdAlarm();
+ ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+ EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+ retire_peer_issued_cid_alarm->Fire();
+
+ // Another server connection ID is available to client.
+ QuicNewConnectionIdFrame frame2;
+ frame2.connection_id = server_cid2;
+ frame2.sequence_number = 2u;
+ frame2.retire_prior_to = 1u;
+ frame2.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame2.connection_id);
+ connection_.OnNewConnectionIdFrame(frame2);
+
+ const QuicSocketAddress kSelfAddress2(QuicIpAddress::Loopback4(),
+ /*port=*/45678);
+ bool success2;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kSelfAddress2, connection_.peer_address(), writer_.get()),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kSelfAddress2, connection_.peer_address(), &success2));
+ // Since server does not retire any client connection ID yet, 2nd validation
+ // would fail due to lack of client connection ID.
+ EXPECT_FALSE(success2);
+}
+
+TEST_P(QuicConnectionTest, ServerConnectionIdRetiredUponPathValidationFailure) {
+ if (!GetQuicReloadableFlag(
+ quic_remove_connection_migration_connection_option)) {
+ QuicConfig config;
+ config.SetConnectionOptionsToSend({kRVCM});
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ }
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT);
+
+ // Make sure server connection ID is available for validation.
+ QuicNewConnectionIdFrame frame;
+ frame.connection_id = TestConnectionId(2);
+ frame.sequence_number = 1u;
+ frame.retire_prior_to = 0u;
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ connection_.OnNewConnectionIdFrame(frame);
+
+ const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Loopback4(),
+ /*port=*/34567);
+ bool success;
+ connection_.ValidatePath(
+ std::make_unique<TestQuicPathValidationContext>(
+ kNewSelfAddress, connection_.peer_address(), writer_.get()),
+ std::make_unique<TestValidationResultDelegate>(
+ &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+
+ auto* path_validator = QuicConnectionPeer::path_validator(&connection_);
+ path_validator->CancelPathValidation();
+ QuicConnectionPeer::RetirePeerIssuedConnectionIdsNoLongerOnPath(&connection_);
+ EXPECT_FALSE(success);
+ const auto* alternative_path =
+ QuicConnectionPeer::GetAlternativePath(&connection_);
+ EXPECT_TRUE(alternative_path->client_connection_id.IsEmpty());
+ EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty());
+ EXPECT_FALSE(alternative_path->stateless_reset_token.has_value());
+
+ // Client will retire server connection ID on alternative_path.
+ auto* retire_peer_issued_cid_alarm =
+ connection_.GetRetirePeerIssuedConnectionIdAlarm();
+ ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+ EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/1u));
+ retire_peer_issued_cid_alarm->Fire();
+}
+
+TEST_P(QuicConnectionTest,
+ MigratePathDirectlyFailedDueToLackOfServerConnectionId) {
+ if (!GetQuicReloadableFlag(
+ quic_remove_connection_migration_connection_option)) {
+ QuicConfig config;
+ config.SetConnectionOptionsToSend({kRVCM});
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ }
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT,
+ /*receive_new_server_connection_id=*/false);
+ const QuicSocketAddress kSelfAddress1(QuicIpAddress::Any4(), 12345);
+ ASSERT_NE(kSelfAddress1, connection_.self_address());
+
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ ASSERT_FALSE(connection_.MigratePath(kSelfAddress1,
+ connection_.peer_address(), &new_writer,
+ /*owns_writer=*/false));
+}
+
+TEST_P(QuicConnectionTest,
+ MigratePathDirectlyFailedDueToLackOfClientConnectionIdTheSecondTime) {
+ if (!GetQuicReloadableFlag(
+ quic_remove_connection_migration_connection_option)) {
+ QuicConfig config;
+ config.SetConnectionOptionsToSend({kRVCM});
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ }
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_CLIENT,
+ /*receive_new_server_connection_id=*/false);
+ SetClientConnectionId(TestConnectionId(1));
+
+ // Make sure server connection ID is available for the 1st migration.
+ QuicNewConnectionIdFrame frame1;
+ frame1.connection_id = TestConnectionId(2);
+ frame1.sequence_number = 1u;
+ frame1.retire_prior_to = 0u;
+ frame1.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame1.connection_id);
+ connection_.OnNewConnectionIdFrame(frame1);
+
+ // Client will issue a new client connection ID to server.
+ QuicConnectionId new_client_connection_id;
+ EXPECT_CALL(visitor_, SendNewConnectionId(_))
+ .WillOnce(Invoke([&](const QuicNewConnectionIdFrame& frame) {
+ new_client_connection_id = frame.connection_id;
+ }));
+
+ // 1st migration is successful.
+ const QuicSocketAddress kSelfAddress1(QuicIpAddress::Any4(), 12345);
+ ASSERT_NE(kSelfAddress1, connection_.self_address());
+ TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+ ASSERT_TRUE(connection_.MigratePath(kSelfAddress1, connection_.peer_address(),
+ &new_writer,
+ /*owns_writer=*/false));
+ QuicConnectionPeer::RetirePeerIssuedConnectionIdsNoLongerOnPath(&connection_);
+ const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+ EXPECT_EQ(default_path->client_connection_id, new_client_connection_id);
+ EXPECT_EQ(default_path->server_connection_id, frame1.connection_id);
+ EXPECT_EQ(default_path->stateless_reset_token, frame1.stateless_reset_token);
+
+ // Client will retire server connection ID on old default_path.
+ auto* retire_peer_issued_cid_alarm =
+ connection_.GetRetirePeerIssuedConnectionIdAlarm();
+ ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+ EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+ retire_peer_issued_cid_alarm->Fire();
+
+ // Another server connection ID is available to client.
+ QuicNewConnectionIdFrame frame2;
+ frame2.connection_id = TestConnectionId(4);
+ frame2.sequence_number = 2u;
+ frame2.retire_prior_to = 1u;
+ frame2.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame2.connection_id);
+ connection_.OnNewConnectionIdFrame(frame2);
+
+ // Since server does not retire any client connection ID yet, 2nd migration
+ // would fail due to lack of client connection ID.
+ const QuicSocketAddress kSelfAddress2(QuicIpAddress::Loopback4(),
+ /*port=*/45678);
+ auto new_writer2 = std::make_unique<TestPacketWriter>(version(), &clock_,
+ Perspective::IS_CLIENT);
+ ASSERT_FALSE(connection_.MigratePath(
+ kSelfAddress2, connection_.peer_address(), new_writer2.release(),
+ /*owns_writer=*/true));
+}
+
+TEST_P(QuicConnectionTest,
+ CloseConnectionAfterReceiveNewConnectionIdFromPeerUsingEmptyCID) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ ASSERT_TRUE(connection_.client_connection_id().IsEmpty());
+
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ QuicNewConnectionIdFrame frame;
+ frame.sequence_number = 1u;
+ frame.connection_id = TestConnectionId(1);
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ frame.retire_prior_to = 0u;
+
+ EXPECT_FALSE(connection_.OnNewConnectionIdFrame(frame));
+
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(IETF_QUIC_PROTOCOL_VIOLATION));
+}
+
+TEST_P(QuicConnectionTest, NewConnectionIdFrameResultsInError) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ connection_.CreateConnectionIdManager();
+ ASSERT_FALSE(connection_.connection_id().IsEmpty());
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ QuicNewConnectionIdFrame frame;
+ frame.sequence_number = 1u;
+ frame.connection_id = connection_id_; // Reuses connection ID casuing error.
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ frame.retire_prior_to = 0u;
+
+ EXPECT_FALSE(connection_.OnNewConnectionIdFrame(frame));
+
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(IETF_QUIC_PROTOCOL_VIOLATION));
+}
+
+TEST_P(QuicConnectionTest,
+ ClientRetirePeerIssuedConnectionIdTriggeredByNewConnectionIdFrame) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ connection_.CreateConnectionIdManager();
+
+ QuicNewConnectionIdFrame frame;
+ frame.sequence_number = 1u;
+ frame.connection_id = TestConnectionId(1);
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ frame.retire_prior_to = 0u;
+
+ EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+ auto* retire_peer_issued_cid_alarm =
+ connection_.GetRetirePeerIssuedConnectionIdAlarm();
+ ASSERT_FALSE(retire_peer_issued_cid_alarm->IsSet());
+
+ frame.sequence_number = 2u;
+ frame.connection_id = TestConnectionId(2);
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ frame.retire_prior_to = 1u; // CID associated with #1 will be retired.
+
+ EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+ ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+ EXPECT_EQ(connection_.connection_id(), connection_id_);
+
+ EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+ retire_peer_issued_cid_alarm->Fire();
+ EXPECT_EQ(connection_.connection_id(), TestConnectionId(2));
+ EXPECT_EQ(connection_.packet_creator().GetDestinationConnectionId(),
+ TestConnectionId(2));
+}
+
+TEST_P(QuicConnectionTest,
+ ServerRetirePeerIssuedConnectionIdTriggeredByNewConnectionIdFrame) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ SetClientConnectionId(TestConnectionId(0));
+
+ QuicNewConnectionIdFrame frame;
+ frame.sequence_number = 1u;
+ frame.connection_id = TestConnectionId(1);
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ frame.retire_prior_to = 0u;
+
+ EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+ auto* retire_peer_issued_cid_alarm =
+ connection_.GetRetirePeerIssuedConnectionIdAlarm();
+ ASSERT_FALSE(retire_peer_issued_cid_alarm->IsSet());
+
+ frame.sequence_number = 2u;
+ frame.connection_id = TestConnectionId(2);
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ frame.retire_prior_to = 1u; // CID associated with #1 will be retired.
+
+ EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+ ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+ EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(0));
+
+ EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+ retire_peer_issued_cid_alarm->Fire();
+ EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(2));
+ EXPECT_EQ(connection_.packet_creator().GetDestinationConnectionId(),
+ TestConnectionId(2));
+}
+
+TEST_P(
+ QuicConnectionTest,
+ ReplacePeerIssuedConnectionIdOnBothPathsTriggeredByNewConnectionIdFrame) {
+ if (!version().HasIetfQuicFrames() || !connection_.use_path_validator() ||
+ !connection_.count_bytes_on_alternative_path_separately()) {
+ return;
+ }
+ PathProbeTestInit(Perspective::IS_SERVER);
+ SetClientConnectionId(TestConnectionId(0));
+
+ // Populate alternative_path_ with probing packet.
+ std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ QuicIpAddress new_host;
+ new_host.FromString("1.1.1.1");
+ ProcessReceivedPacket(kSelfAddress,
+ QuicSocketAddress(new_host, /*port=*/23456), *received);
+
+ EXPECT_EQ(
+ TestConnectionId(0),
+ QuicConnectionPeer::GetClientConnectionIdOnAlternativePath(&connection_));
+
+ QuicNewConnectionIdFrame frame;
+ frame.sequence_number = 1u;
+ frame.connection_id = TestConnectionId(1);
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ frame.retire_prior_to = 0u;
+
+ EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+ auto* retire_peer_issued_cid_alarm =
+ connection_.GetRetirePeerIssuedConnectionIdAlarm();
+ ASSERT_FALSE(retire_peer_issued_cid_alarm->IsSet());
+
+ frame.sequence_number = 2u;
+ frame.connection_id = TestConnectionId(2);
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ frame.retire_prior_to = 1u; // CID associated with #1 will be retired.
+
+ EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+ ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+ EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(0));
+
+ EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+ retire_peer_issued_cid_alarm->Fire();
+ EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(2));
+ EXPECT_EQ(connection_.packet_creator().GetDestinationConnectionId(),
+ TestConnectionId(2));
+ // Clean up alternative path connection ID.
+ EXPECT_EQ(
+ TestConnectionId(2),
+ QuicConnectionPeer::GetClientConnectionIdOnAlternativePath(&connection_));
+}
+
+TEST_P(QuicConnectionTest,
+ CloseConnectionAfterReceiveRetireConnectionIdWhenNoCIDIssued) {
+ if (!version().HasIetfQuicFrames() ||
+ !connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ QuicRetireConnectionIdFrame frame;
+ frame.sequence_number = 1u;
+
+ EXPECT_FALSE(connection_.OnRetireConnectionIdFrame(frame));
+
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(IETF_QUIC_PROTOCOL_VIOLATION));
+}
+
+TEST_P(QuicConnectionTest, RetireConnectionIdFrameResultsInError) {
+ if (!version().HasIetfQuicFrames() ||
+ !connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ connection_.CreateConnectionIdManager();
+
+ EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_));
+ EXPECT_CALL(visitor_, SendNewConnectionId(_));
+ connection_.MaybeSendConnectionIdToClient();
+
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+ .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+ QuicRetireConnectionIdFrame frame;
+ frame.sequence_number = 2u; // The corresponding ID is never issued.
+
+ EXPECT_FALSE(connection_.OnRetireConnectionIdFrame(frame));
+
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+ IsError(IETF_QUIC_PROTOCOL_VIOLATION));
+}
+
+TEST_P(QuicConnectionTest,
+ ServerRetireSelfIssuedConnectionIdWithoutSendingNewConnectionIdBefore) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ connection_.CreateConnectionIdManager();
+
+ auto* retire_self_issued_cid_alarm =
+ connection_.GetRetireSelfIssuedConnectionIdAlarm();
+ ASSERT_FALSE(retire_self_issued_cid_alarm->IsSet());
+
+ QuicConnectionId cid0 = connection_id_;
+ QuicRetireConnectionIdFrame frame;
+ frame.sequence_number = 0u;
+ if (connection_.connection_migration_use_new_cid()) {
+ EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)).Times(2);
+ EXPECT_CALL(visitor_, SendNewConnectionId(_)).Times(2);
+ }
+ EXPECT_TRUE(connection_.OnRetireConnectionIdFrame(frame));
+}
+
+TEST_P(QuicConnectionTest, ServerRetireSelfIssuedConnectionId) {
+ if (!GetQuicReloadableFlag(
+ quic_remove_connection_migration_connection_option)) {
+ QuicConfig config;
+ config.SetConnectionOptionsToSend({kRVCM});
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ }
+ if (!connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ connection_.CreateConnectionIdManager();
+ QuicConnectionId recorded_cid;
+ auto cid_recorder = [&recorded_cid](const QuicConnectionId& cid) {
+ recorded_cid = cid;
+ };
+ QuicConnectionId cid0 = connection_id_;
+ QuicConnectionId cid1;
+ QuicConnectionId cid2;
+ EXPECT_EQ(connection_.connection_id(), cid0);
+ EXPECT_EQ(connection_.GetOneActiveServerConnectionId(), cid0);
+
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+ .WillOnce(Invoke(cid_recorder));
+ EXPECT_CALL(visitor_, SendNewConnectionId(_));
+ connection_.MaybeSendConnectionIdToClient();
+ cid1 = recorded_cid;
+
+ auto* retire_self_issued_cid_alarm =
+ connection_.GetRetireSelfIssuedConnectionIdAlarm();
+ ASSERT_FALSE(retire_self_issued_cid_alarm->IsSet());
+
+ // Generate three packets with different connection IDs that will arrive out
+ // of order (2, 1, 3) later.
+ char buffers[3][kMaxOutgoingPacketSize];
+ // Destination connection ID of packet1 is cid0.
+ auto packet1 =
+ ConstructPacket({QuicFrame(QuicPingFrame())}, ENCRYPTION_FORWARD_SECURE,
+ buffers[0], kMaxOutgoingPacketSize);
+ peer_creator_.SetServerConnectionId(cid1);
+ auto retire_cid_frame = std::make_unique<QuicRetireConnectionIdFrame>();
+ retire_cid_frame->sequence_number = 0u;
+ // Destination connection ID of packet2 is cid1.
+ auto packet2 = ConstructPacket({QuicFrame(retire_cid_frame.release())},
+ ENCRYPTION_FORWARD_SECURE, buffers[1],
+ kMaxOutgoingPacketSize);
+ // Destination connection ID of packet3 is cid1.
+ auto packet3 =
+ ConstructPacket({QuicFrame(QuicPingFrame())}, ENCRYPTION_FORWARD_SECURE,
+ buffers[2], kMaxOutgoingPacketSize);
+
+ // Packet2 with RetireConnectionId frame trigers sending NewConnectionId
+ // immediately.
+ EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+ .WillOnce(Invoke(cid_recorder));
+ EXPECT_CALL(visitor_, SendNewConnectionId(_));
+ peer_creator_.SetServerConnectionId(cid1);
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *packet2);
+ cid2 = recorded_cid;
+ // cid0 is not retired immediately.
+ EXPECT_THAT(connection_.GetActiveServerConnectionIds(),
+ ElementsAre(cid0, cid1, cid2));
+ ASSERT_TRUE(retire_self_issued_cid_alarm->IsSet());
+ EXPECT_EQ(connection_.connection_id(), cid1);
+ EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid0 ||
+ connection_.GetOneActiveServerConnectionId() == cid1 ||
+ connection_.GetOneActiveServerConnectionId() == cid2);
+
+ // Packet1 updates the connection ID on the default path but not the active
+ // connection ID.
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *packet1);
+ EXPECT_EQ(connection_.connection_id(), cid0);
+ EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid0 ||
+ connection_.GetOneActiveServerConnectionId() == cid1 ||
+ connection_.GetOneActiveServerConnectionId() == cid2);
+
+ // cid0 is retired when the retire CID alarm fires.
+ EXPECT_CALL(visitor_, OnServerConnectionIdRetired(cid0));
+ retire_self_issued_cid_alarm->Fire();
+ EXPECT_THAT(connection_.GetActiveServerConnectionIds(),
+ ElementsAre(cid1, cid2));
+ EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid1 ||
+ connection_.GetOneActiveServerConnectionId() == cid2);
+
+ // Packet3 updates the connection ID on the default path.
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *packet3);
+ EXPECT_EQ(connection_.connection_id(), cid1);
+ EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid1 ||
+ connection_.GetOneActiveServerConnectionId() == cid2);
+}
+
+TEST_P(QuicConnectionTest, PatchMissingClientConnectionIdOntoAlternativePath) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ connection_.CreateConnectionIdManager();
+ connection_.set_client_connection_id(TestConnectionId(1));
+
+ // Set up the state after path probing.
+ const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+ auto* alternative_path = QuicConnectionPeer::GetAlternativePath(&connection_);
+ QuicIpAddress new_host;
+ new_host.FromString("12.12.12.12");
+ alternative_path->self_address = default_path->self_address;
+ alternative_path->peer_address = QuicSocketAddress(new_host, 12345);
+ alternative_path->server_connection_id = TestConnectionId(3);
+ ASSERT_TRUE(alternative_path->client_connection_id.IsEmpty());
+ ASSERT_FALSE(alternative_path->stateless_reset_token.has_value());
+
+ QuicNewConnectionIdFrame frame;
+ frame.sequence_number = 1u;
+ frame.connection_id = TestConnectionId(5);
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ frame.retire_prior_to = 0u;
+ // New ID is patched onto the alternative path when the needed
+ // NEW_CONNECTION_ID frame is received after PATH_CHALLENGE frame.
+ connection_.OnNewConnectionIdFrame(frame);
+
+ ASSERT_EQ(alternative_path->client_connection_id, frame.connection_id);
+ ASSERT_EQ(alternative_path->stateless_reset_token,
+ frame.stateless_reset_token);
+}
+
+TEST_P(QuicConnectionTest, PatchMissingClientConnectionIdOntoDefaultPath) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ connection_.CreateConnectionIdManager();
+ connection_.set_client_connection_id(TestConnectionId(1));
+
+ // Set up the state after peer migration without probing.
+ auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+ auto* alternative_path = QuicConnectionPeer::GetAlternativePath(&connection_);
+ auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_);
+ *alternative_path = std::move(*default_path);
+ QuicIpAddress new_host;
+ new_host.FromString("12.12.12.12");
+ default_path->self_address = default_path->self_address;
+ default_path->peer_address = QuicSocketAddress(new_host, 12345);
+ default_path->server_connection_id = TestConnectionId(3);
+ packet_creator->SetDefaultPeerAddress(default_path->peer_address);
+ packet_creator->SetServerConnectionId(default_path->server_connection_id);
+ packet_creator->SetClientConnectionId(default_path->client_connection_id);
+
+ ASSERT_FALSE(default_path->validated);
+ ASSERT_TRUE(default_path->client_connection_id.IsEmpty());
+ ASSERT_FALSE(default_path->stateless_reset_token.has_value());
+
+ QuicNewConnectionIdFrame frame;
+ frame.sequence_number = 1u;
+ frame.connection_id = TestConnectionId(5);
+ frame.stateless_reset_token =
+ QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+ frame.retire_prior_to = 0u;
+ // New ID is patched onto the default path when the needed
+ // NEW_CONNECTION_ID frame is received after PATH_CHALLENGE frame.
+ connection_.OnNewConnectionIdFrame(frame);
+
+ ASSERT_EQ(default_path->client_connection_id, frame.connection_id);
+ ASSERT_EQ(default_path->stateless_reset_token, frame.stateless_reset_token);
+ ASSERT_EQ(packet_creator->GetDestinationConnectionId(), frame.connection_id);
+}
+
+TEST_P(QuicConnectionTest, ShouldGeneratePacketBlockedByMissingConnectionId) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ connection_.set_client_connection_id(TestConnectionId(1));
+ connection_.CreateConnectionIdManager();
+ if (version().SupportsAntiAmplificationLimit()) {
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ }
+
+ ASSERT_TRUE(
+ connection_.ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, NOT_HANDSHAKE));
+
+ QuicPacketCreator* packet_creator =
+ QuicConnectionPeer::GetPacketCreator(&connection_);
+ QuicIpAddress peer_host1;
+ peer_host1.FromString("12.12.12.12");
+ QuicSocketAddress peer_address1(peer_host1, 1235);
+
+ {
+ // No connection ID is available as context is created without any.
+ QuicPacketCreator::ScopedPeerAddressContext context(
+ packet_creator, peer_address1, EmptyQuicConnectionId(),
+ EmptyQuicConnectionId(),
+ /*update_connection_id=*/true);
+ ASSERT_FALSE(connection_.ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA,
+ NOT_HANDSHAKE));
+ }
+ ASSERT_TRUE(
+ connection_.ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, NOT_HANDSHAKE));
+}
+
+// Regression test for b/182571515
+TEST_P(QuicConnectionTest, LostDataThenGetAcknowledged) {
+ set_perspective(Perspective::IS_SERVER);
+ if (!connection_.validate_client_address()) {
+ return;
+ }
+
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ if (version().SupportsAntiAmplificationLimit()) {
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ }
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Discard INITIAL key.
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+
+ QuicPacketNumber last_packet;
+ // Send packets 1 to 4.
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet); // Packet 1
+ SendStreamDataToPeer(3, "foo", 3, NO_FIN, &last_packet); // Packet 2
+ SendStreamDataToPeer(3, "foo", 6, NO_FIN, &last_packet); // Packet 3
+ SendStreamDataToPeer(3, "foo", 9, NO_FIN, &last_packet); // Packet 4
+
+ // Process a PING packet to set peer address.
+ ProcessFramePacket(QuicFrame(QuicPingFrame()));
+
+ // Process a packet containing a STREAM_FRAME and an ACK with changed peer
+ // address.
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ QuicAckFrame ack = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(5)}});
+ frames.push_back(QuicFrame(&ack));
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(_)).Times(1);
+
+ // Invoke OnCanWrite.
+ EXPECT_CALL(visitor_, OnStreamFrame(_))
+ .WillOnce(
+ InvokeWithoutArgs(¬ifier_, &SimpleSessionNotifier::OnCanWrite));
+ QuicIpAddress ip_address;
+ ASSERT_TRUE(ip_address.FromString("127.0.52.223"));
+ EXPECT_QUIC_BUG(ProcessFramesPacketWithAddresses(
+ frames, kSelfAddress, QuicSocketAddress(ip_address, 1000),
+ ENCRYPTION_FORWARD_SECURE),
+ "Try to write mid packet processing");
+ EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+ // Verify stream frame will not be retransmitted.
+ EXPECT_TRUE(writer_->stream_frames().empty());
+}
+
+TEST_P(QuicConnectionTest, PtoSendStreamData) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ }
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ // Send INITIAL 1.
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ // Send HANDSHAKE packets.
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x03));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+
+ // Send half RTT packet with congestion control blocked.
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(false));
+ connection_.SendStreamDataWithString(2, std::string(1500, 'a'), 0, NO_FIN);
+
+ ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ connection_.GetRetransmissionAlarm()->Fire();
+ // Verify INITIAL and HANDSHAKE get retransmitted.
+ EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
+}
+
+TEST_P(QuicConnectionTest, SendingZeroRttPacketsDoesNotPostponePTO) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ // Send CHLO.
+ connection_.SendCryptoStreamData();
+ ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ // Install 0-RTT keys.
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+
+ // CHLO gets acknowledged after 10ms.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10));
+ QuicAckFrame frame1 = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+ // Verify PTO is still armed since address validation is not finished yet.
+ ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ QuicTime pto_deadline = connection_.GetRetransmissionAlarm()->deadline();
+
+ // Send 0-RTT packet.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+ connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+ ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ // PTO deadline should be unchanged.
+ EXPECT_EQ(pto_deadline, connection_.GetRetransmissionAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, QueueingUndecryptablePacketsDoesntPostponePTO) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ config.set_max_undecryptable_packets(3);
+ connection_.SetFromConfig(config);
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE);
+ // Send CHLO.
+ connection_.SendCryptoStreamData();
+
+ // Send 0-RTT packet.
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+ connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+
+ // CHLO gets acknowledged after 10ms.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10));
+ QuicAckFrame frame1 = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+ // Verify PTO is still armed since address validation is not finished yet.
+ ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ QuicTime pto_deadline = connection_.GetRetransmissionAlarm()->deadline();
+
+ // Receive an undecryptable packets.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0xFF));
+ ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ // Verify PTO deadline is sooner.
+ EXPECT_GT(pto_deadline, connection_.GetRetransmissionAlarm()->deadline());
+ pto_deadline = connection_.GetRetransmissionAlarm()->deadline();
+
+ // PTO fires.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ clock_.AdvanceTime(pto_deadline - clock_.ApproximateNow());
+ connection_.GetRetransmissionAlarm()->Fire();
+ // Verify PTO is still armed since address validation is not finished yet.
+ ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ pto_deadline = connection_.GetRetransmissionAlarm()->deadline();
+
+ // Verify PTO deadline does not change.
+ ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+ EXPECT_EQ(pto_deadline, connection_.GetRetransmissionAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, QueueUndecryptableHandshakePackets) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ config.set_max_undecryptable_packets(3);
+ connection_.SetFromConfig(config);
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.RemoveDecrypter(ENCRYPTION_HANDSHAKE);
+ // Send CHLO.
+ connection_.SendCryptoStreamData();
+
+ // Send 0-RTT packet.
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+ connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+ EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+
+ // Receive an undecryptable handshake packet.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0xFF));
+ ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+ // Verify this handshake packet gets queued.
+ EXPECT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+}
+
+TEST_P(QuicConnectionTest, PingNotSentAt0RTTLevelWhenInitialAvailable) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ // Send CHLO.
+ connection_.SendCryptoStreamData();
+ // Send 0-RTT packet.
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+ connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+
+ // CHLO gets acknowledged after 10ms.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10));
+ QuicAckFrame frame1 = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+ // Verify PTO is still armed since address validation is not finished yet.
+ ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ QuicTime pto_deadline = connection_.GetRetransmissionAlarm()->deadline();
+
+ // PTO fires.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ clock_.AdvanceTime(pto_deadline - clock_.ApproximateNow());
+ connection_.GetRetransmissionAlarm()->Fire();
+ // Verify the PING gets sent in ENCRYPTION_INITIAL.
+ EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+}
+
+TEST_P(QuicConnectionTest, AckElicitingFrames) {
+ if (!GetQuicReloadableFlag(
+ quic_remove_connection_migration_connection_option)) {
+ QuicConfig config;
+ config.SetConnectionOptionsToSend({kRVCM});
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ }
+ if (!version().HasIetfQuicFrames() ||
+ !connection_.connection_migration_use_new_cid()) {
+ return;
+ }
+ EXPECT_CALL(visitor_, SendNewConnectionId(_)).Times(2);
+ EXPECT_CALL(visitor_, OnRstStream(_));
+ EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
+ EXPECT_CALL(visitor_, OnBlockedFrame(_));
+ EXPECT_CALL(visitor_, OnHandshakeDoneReceived());
+ EXPECT_CALL(visitor_, OnStreamFrame(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ EXPECT_CALL(visitor_, OnMaxStreamsFrame(_));
+ EXPECT_CALL(visitor_, OnStreamsBlockedFrame(_));
+ EXPECT_CALL(visitor_, OnStopSendingFrame(_));
+ EXPECT_CALL(visitor_, OnMessageReceived(""));
+ EXPECT_CALL(visitor_, OnNewTokenReceived(""));
+
+ SetClientConnectionId(TestConnectionId(12));
+ connection_.CreateConnectionIdManager();
+ QuicConnectionPeer::GetSelfIssuedConnectionIdManager(&connection_)
+ ->MaybeSendNewConnectionIds();
+ connection_.set_can_receive_ack_frequency_frame();
+
+ QuicAckFrame ack_frame = InitAckFrame(1);
+ QuicRstStreamFrame rst_stream_frame;
+ QuicWindowUpdateFrame window_update_frame;
+ QuicPathChallengeFrame path_challenge_frame;
+ QuicNewConnectionIdFrame new_connection_id_frame;
+ QuicRetireConnectionIdFrame retire_connection_id_frame;
+ retire_connection_id_frame.sequence_number = 1u;
+ QuicStopSendingFrame stop_sending_frame;
+ QuicPathResponseFrame path_response_frame;
+ QuicMessageFrame message_frame;
+ QuicNewTokenFrame new_token_frame;
+ QuicAckFrequencyFrame ack_frequency_frame;
+ QuicBlockedFrame blocked_frame;
+ size_t packet_number = 1;
+
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+
+ for (uint8_t i = 0; i < NUM_FRAME_TYPES; ++i) {
+ QuicFrameType frame_type = static_cast<QuicFrameType>(i);
+ bool skipped = false;
+ QuicFrame frame;
+ QuicFrames frames;
+ // Add some padding to fullfill the min size requirement of header
+ // protection.
+ frames.push_back(QuicFrame(QuicPaddingFrame(10)));
+ switch (frame_type) {
+ case PADDING_FRAME:
+ frame = QuicFrame(QuicPaddingFrame(10));
+ break;
+ case MTU_DISCOVERY_FRAME:
+ frame = QuicFrame(QuicMtuDiscoveryFrame());
+ break;
+ case PING_FRAME:
+ frame = QuicFrame(QuicPingFrame());
+ break;
+ case MAX_STREAMS_FRAME:
+ frame = QuicFrame(QuicMaxStreamsFrame());
+ break;
+ case STOP_WAITING_FRAME:
+ // Not supported.
+ skipped = true;
+ break;
+ case STREAMS_BLOCKED_FRAME:
+ frame = QuicFrame(QuicStreamsBlockedFrame());
+ break;
+ case STREAM_FRAME:
+ frame = QuicFrame(QuicStreamFrame());
+ break;
+ case HANDSHAKE_DONE_FRAME:
+ frame = QuicFrame(QuicHandshakeDoneFrame());
+ break;
+ case ACK_FRAME:
+ frame = QuicFrame(&ack_frame);
+ break;
+ case RST_STREAM_FRAME:
+ frame = QuicFrame(&rst_stream_frame);
+ break;
+ case CONNECTION_CLOSE_FRAME:
+ // Do not test connection close.
+ skipped = true;
+ break;
+ case GOAWAY_FRAME:
+ // Does not exist in IETF QUIC.
+ skipped = true;
+ break;
+ case BLOCKED_FRAME:
+ frame = QuicFrame(blocked_frame);
+ break;
+ case WINDOW_UPDATE_FRAME:
+ frame = QuicFrame(window_update_frame);
+ break;
+ case PATH_CHALLENGE_FRAME:
+ frame = QuicFrame(&path_challenge_frame);
+ break;
+ case STOP_SENDING_FRAME:
+ frame = QuicFrame(stop_sending_frame);
+ break;
+ case NEW_CONNECTION_ID_FRAME:
+ frame = QuicFrame(&new_connection_id_frame);
+ break;
+ case RETIRE_CONNECTION_ID_FRAME:
+ frame = QuicFrame(&retire_connection_id_frame);
+ break;
+ case PATH_RESPONSE_FRAME:
+ frame = QuicFrame(&path_response_frame);
+ break;
+ case MESSAGE_FRAME:
+ frame = QuicFrame(&message_frame);
+ break;
+ case CRYPTO_FRAME:
+ // CRYPTO_FRAME is ack eliciting is covered by other tests.
+ skipped = true;
+ break;
+ case NEW_TOKEN_FRAME:
+ frame = QuicFrame(&new_token_frame);
+ break;
+ case ACK_FREQUENCY_FRAME:
+ frame = QuicFrame(&ack_frequency_frame);
+ break;
+ case NUM_FRAME_TYPES:
+ skipped = true;
+ break;
+ }
+ if (skipped) {
+ continue;
+ }
+ ASSERT_EQ(frame_type, frame.type);
+ frames.push_back(frame);
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ // Process frame.
+ ProcessFramesPacketAtLevel(packet_number++, frames,
+ ENCRYPTION_FORWARD_SECURE);
+ if (QuicUtils::IsAckElicitingFrame(frame_type)) {
+ ASSERT_TRUE(connection_.HasPendingAcks()) << frame;
+ // Flush ACK.
+ clock_.AdvanceTime(DefaultDelayedAckTime());
+ connection_.GetAckAlarm()->Fire();
+ }
+ EXPECT_FALSE(connection_.HasPendingAcks());
+ ASSERT_TRUE(connection_.connected());
+ }
+}
+
+TEST_P(QuicConnectionTest, ReceivedChloAndAck) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ QuicFrames frames;
+ QuicAckFrame ack_frame = InitAckFrame(1);
+ frames.push_back(MakeCryptoFrame());
+ frames.push_back(QuicFrame(&ack_frame));
+
+ EXPECT_CALL(visitor_, OnCryptoFrame(_))
+ .WillOnce(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendCryptoStreamData)));
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+ ENCRYPTION_INITIAL);
+}
+
+// Regression test for b/201643321.
+TEST_P(QuicConnectionTest, FailedToRetransmitShlo) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+ // Received INITIAL 1.
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x03));
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x04));
+ // Received ENCRYPTION_ZERO_RTT 1.
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ // Send INITIAL 1.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+ // Send HANDSHAKE 2.
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Send half RTT data to exhaust amplification credit.
+ connection_.SendStreamDataWithString(0, std::string(100 * 1024, 'a'), 0,
+ NO_FIN);
+ }
+ // Received INITIAL 2.
+ ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+ ASSERT_TRUE(connection_.HasPendingAcks());
+ // Verify ACK delay is 1ms.
+ EXPECT_EQ(clock_.Now() + kAlarmGranularity,
+ connection_.GetAckAlarm()->deadline());
+ // ACK is not throttled by amplification limit, and SHLO is bundled. Also
+ // HANDSHAKE + 1RTT packets get coalesced.
+ if (GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
+ } else {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ }
+ // ACK alarm fires.
+ clock_.AdvanceTime(kAlarmGranularity);
+ connection_.GetAckAlarm()->Fire();
+ if (GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) {
+ // Verify 1-RTT packet is coalesced.
+ EXPECT_EQ(0x04040404u, writer_->final_bytes_of_last_packet());
+ } else {
+ // Verify HANDSHAKE packet is coalesced with INITIAL ACK + SHLO.
+ EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
+ }
+ // Only the first packet in the coalesced packet has been processed,
+ // verify SHLO is bundled with INITIAL ACK.
+ EXPECT_EQ(1u, writer_->ack_frames().size());
+ EXPECT_EQ(1u, writer_->crypto_frames().size());
+ // Process the coalesced HANDSHAKE packet.
+ ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+ auto packet = writer_->coalesced_packet()->Clone();
+ writer_->framer()->ProcessPacket(*packet);
+ EXPECT_EQ(0u, writer_->ack_frames().size());
+ EXPECT_EQ(1u, writer_->crypto_frames().size());
+ if (GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) {
+ // Process the coalesced 1-RTT packet.
+ ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+ packet = writer_->coalesced_packet()->Clone();
+ writer_->framer()->ProcessPacket(*packet);
+ EXPECT_EQ(0u, writer_->crypto_frames().size());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ } else {
+ ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+ }
+
+ // Received INITIAL 3.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+ ProcessCryptoPacketAtLevel(3, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+}
+
+// Regression test for b/216133388.
+TEST_P(QuicConnectionTest, FailedToConsumeCryptoData) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+ // Received INITIAL 1.
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+ EXPECT_TRUE(connection_.HasPendingAcks());
+
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x03));
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypter>(0x03));
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x04));
+ // Received ENCRYPTION_ZERO_RTT 1.
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ // Send INITIAL 1.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+ // Send HANDSHAKE 2.
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ connection_.SendCryptoDataWithString(std::string(200, 'a'), 0,
+ ENCRYPTION_HANDSHAKE);
+ // Send 1-RTT 3.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.SendStreamDataWithString(0, std::string(40, 'a'), 0, NO_FIN);
+ }
+ // Received HANDSHAKE Ping, hence discard INITIAL keys.
+ peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x03));
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.NeuterUnencryptedPackets();
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_HANDSHAKE);
+ clock_.AdvanceTime(kAlarmGranularity);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ // Sending this 1-RTT data would leave the coalescer only have space to
+ // accommodate the HANDSHAKE ACK. The crypto data cannot be bundled with the
+ // ACK.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.SendStreamDataWithString(0, std::string(1395, 'a'), 40, NO_FIN);
+ }
+ // Verify retransmission alarm is armed.
+ ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ const QuicTime retransmission_time =
+ connection_.GetRetransmissionAlarm()->deadline();
+ clock_.AdvanceTime(retransmission_time - clock_.Now());
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ if (GetQuicRestartFlag(quic_set_packet_state_if_all_data_retransmitted)) {
+ // Verify the retransmission is a coalesced packet with HANDSHAKE 2 and
+ // 1-RTT 3.
+ EXPECT_EQ(0x04040404u, writer_->final_bytes_of_last_packet());
+ // Only the first packet in the coalesced packet has been processed.
+ EXPECT_EQ(1u, writer_->crypto_frames().size());
+ // Process the coalesced 1-RTT packet.
+ ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+ auto packet = writer_->coalesced_packet()->Clone();
+ writer_->framer()->ProcessPacket(*packet);
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+ } else {
+ // Although packet 2 has not been retransmitted, it has been marked PTOed
+ // and a HANDHSAKE PING gets retransmitted.
+ EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
+ EXPECT_EQ(1u, writer_->ping_frames().size());
+ EXPECT_TRUE(writer_->stream_frames().empty());
+ ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+ }
+ // Verify retransmission alarm is still armed.
+ ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest,
+ RTTSampleDoesNotIncludeQueuingDelayWithPostponedAckProcessing) {
+ // An endpoint might postpone the processing of ACK when the corresponding
+ // decryption key is not available. This test makes sure the RTT sample does
+ // not include the queuing delay.
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ config.set_max_undecryptable_packets(3);
+ connection_.SetFromConfig(config);
+
+ // 30ms RTT.
+ const QuicTime::Delta kTestRTT = QuicTime::Delta::FromMilliseconds(30);
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(kTestRTT, QuicTime::Delta::Zero(), QuicTime::Zero());
+ use_tagging_decrypter();
+
+ // Send 0-RTT packet.
+ connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE);
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+ connection_.SendStreamDataWithString(0, std::string(10, 'a'), 0, FIN);
+
+ // Receives 1-RTT ACK for 0-RTT packet after RTT + ack_delay.
+ clock_.AdvanceTime(
+ kTestRTT + QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs));
+ EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ QuicAckFrame ack_frame = InitAckFrame(1);
+ // Peer reported ACK delay.
+ ack_frame.ack_delay_time =
+ QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs);
+ QuicFrames frames;
+ frames.push_back(QuicFrame(&ack_frame));
+ QuicPacketHeader header =
+ ConstructPacketHeader(30, ENCRYPTION_FORWARD_SECURE);
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(30), *packet, buffer,
+ kMaxOutgoingPacketSize);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ ASSERT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+
+ // Assume 1-RTT decrypter is available after 10ms.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10));
+ EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+ SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<StrictTaggingDecrypter>(0x01));
+ ASSERT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+ // Verify RTT sample does not include queueing delay.
+ EXPECT_EQ(rtt_stats->latest_rtt(), kTestRTT);
+}
+
+// Regression test for b/112480134.
+TEST_P(QuicConnectionTest, NoExtraPaddingInReserializedInitial) {
+ // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+ if (!IsDefaultTestConfiguration() ||
+ !connection_.version().CanSendCoalescedPackets()) {
+ return;
+ }
+
+ set_perspective(Perspective::IS_SERVER);
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+
+ uint64_t debug_visitor_sent_count = 0;
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _))
+ .WillRepeatedly([&]() { debug_visitor_sent_count++; });
+
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+
+ // Received INITIAL 1.
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x03));
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypter>(0x03));
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x04));
+
+ // Received ENCRYPTION_ZERO_RTT 2.
+ ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ // Send INITIAL 1.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+ // Send HANDSHAKE 2.
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ connection_.SendCryptoDataWithString(std::string(200, 'a'), 0,
+ ENCRYPTION_HANDSHAKE);
+ // Send 1-RTT 3.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.SendStreamDataWithString(0, std::string(400, 'b'), 0, NO_FIN);
+ }
+
+ // Arrange the stream data to be sent in response to ENCRYPTION_INITIAL 3.
+ const std::string data4(1000, '4'); // Data to send in stream id 4
+ const std::string data8(3000, '8'); // Data to send in stream id 8
+ EXPECT_CALL(visitor_, OnCanWrite()).WillOnce([&]() {
+ connection_.producer()->SaveStreamData(4, data4);
+ connection_.producer()->SaveStreamData(8, data8);
+
+ notifier_.WriteOrBufferData(4, data4.size(), FIN_AND_PADDING);
+
+ // This should trigger FlushCoalescedPacket.
+ notifier_.WriteOrBufferData(8, data8.size(), FIN);
+ });
+
+ QuicByteCount pending_padding_after_serialize_2nd_1rtt_packet = 0;
+ QuicPacketCount num_1rtt_packets_serialized = 0;
+ EXPECT_CALL(connection_, OnSerializedPacket(_))
+ .WillRepeatedly([&](SerializedPacket packet) {
+ if (packet.encryption_level == ENCRYPTION_FORWARD_SECURE) {
+ num_1rtt_packets_serialized++;
+ if (num_1rtt_packets_serialized == 2) {
+ pending_padding_after_serialize_2nd_1rtt_packet =
+ connection_.packet_creator().pending_padding_bytes();
+ }
+ }
+ connection_.QuicConnection::OnSerializedPacket(std::move(packet));
+ });
+
+ // Server receives INITIAL 3, this will serialzie FS 7 (stream 4, stream 8),
+ // which will trigger a flush of a coalesced packet consists of INITIAL 4,
+ // HS 5 and FS 6 (stream 4).
+ if (GetQuicReloadableFlag(
+ quic_close_connection_if_fail_to_serialzie_coalesced_packet2)) {
+ // Expect no QUIC_BUG.
+ ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_INITIAL);
+ EXPECT_EQ(
+ debug_visitor_sent_count,
+ connection_.sent_packet_manager().GetLargestSentPacket().ToUint64());
+ } else {
+ // Expect QUIC_BUG due to extra padding.
+ EXPECT_QUIC_BUG(
+ { ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_INITIAL); },
+ "Reserialize initial packet in coalescer has unexpected size");
+ EXPECT_EQ(
+ debug_visitor_sent_count + 1,
+ connection_.sent_packet_manager().GetLargestSentPacket().ToUint64());
+ }
+
+ // The error only happens if after serializing the second 1RTT packet(pkt #7),
+ // the pending padding bytes is non zero.
+ EXPECT_GT(pending_padding_after_serialize_2nd_1rtt_packet, 0u);
+ EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, ReportedAckDelayIncludesQueuingDelay) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ config.set_max_undecryptable_packets(3);
+ connection_.SetFromConfig(config);
+
+ // Receive 1-RTT ack-eliciting packet while keys are not available.
+ connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE);
+ peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x01));
+ QuicFrames frames;
+ frames.push_back(QuicFrame(QuicPingFrame()));
+ frames.push_back(QuicFrame(QuicPaddingFrame(100)));
+ QuicPacketHeader header =
+ ConstructPacketHeader(30, ENCRYPTION_FORWARD_SECURE);
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+
+ char buffer[kMaxOutgoingPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(30), *packet, buffer,
+ kMaxOutgoingPacketSize);
+ EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+ const QuicTime packet_receipt_time = clock_.Now();
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ ASSERT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+ // 1-RTT keys become available after 10ms.
+ const QuicTime::Delta kQueuingDelay = QuicTime::Delta::FromMilliseconds(10);
+ clock_.AdvanceTime(kQueuingDelay);
+ EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<StrictTaggingDecrypter>(0x01));
+ ASSERT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+
+ connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+ ASSERT_TRUE(connection_.HasPendingAcks());
+ if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) {
+ EXPECT_EQ(packet_receipt_time + DefaultDelayedAckTime(),
+ connection_.GetAckAlarm()->deadline());
+ clock_.AdvanceTime(packet_receipt_time + DefaultDelayedAckTime() -
+ clock_.Now());
+ } else {
+ EXPECT_EQ(clock_.Now() + DefaultDelayedAckTime(),
+ connection_.GetAckAlarm()->deadline());
+ clock_.AdvanceTime(DefaultDelayedAckTime());
+ }
+ // Fire ACK alarm.
+ connection_.GetAckAlarm()->Fire();
+ ASSERT_EQ(1u, writer_->ack_frames().size());
+ if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) {
+ // Verify ACK delay time does not include queuing delay.
+ EXPECT_EQ(DefaultDelayedAckTime(), writer_->ack_frames()[0].ack_delay_time);
+ } else {
+ // Verify ACK delay time = queuing delay + ack delay
+ EXPECT_EQ(DefaultDelayedAckTime() + kQueuingDelay,
+ writer_->ack_frames()[0].ack_delay_time);
+ }
+}
+
+TEST_P(QuicConnectionTest, CoalesceOneRTTPacketWithInitialAndHandshakePackets) {
+ if (!version().HasIetfQuicFrames()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+
+ // Received INITIAL 1.
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<TaggingEncrypter>(0x02));
+
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x03));
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypter>(0x03));
+ SetDecrypter(ENCRYPTION_ZERO_RTT,
+ std::make_unique<StrictTaggingDecrypter>(0x02));
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x04));
+
+ // Received ENCRYPTION_ZERO_RTT 2.
+ ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ // Send INITIAL 1.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+ // Send HANDSHAKE 2.
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ connection_.SendCryptoDataWithString(std::string(200, 'a'), 0,
+ ENCRYPTION_HANDSHAKE);
+ // Send 1-RTT data.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.SendStreamDataWithString(0, std::string(2000, 'b'), 0, FIN);
+ }
+ // Verify coalesced packet [INITIAL 1 + HANDSHAKE 2 + part of 1-RTT data] +
+ // rest of 1-RTT data get sent.
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+
+ // Received ENCRYPTION_INITIAL 3.
+ ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_INITIAL);
+
+ // Verify a coalesced packet gets sent.
+ EXPECT_EQ(3u, writer_->packets_write_attempts());
+
+ // Only the first INITIAL packet has been processed yet.
+ EXPECT_EQ(1u, writer_->ack_frames().size());
+ EXPECT_EQ(1u, writer_->crypto_frames().size());
+
+ // Process HANDSHAKE packet.
+ ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+ auto packet = writer_->coalesced_packet()->Clone();
+ writer_->framer()->ProcessPacket(*packet);
+ EXPECT_EQ(1u, writer_->crypto_frames().size());
+ if (!GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) {
+ ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+ return;
+ }
+ // Process 1-RTT packet.
+ ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+ packet = writer_->coalesced_packet()->Clone();
+ writer_->framer()->ProcessPacket(*packet);
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+}
+
+// Regression test for b/180103273
+TEST_P(QuicConnectionTest, SendMultipleConnectionCloses) {
+ if (!version().HasIetfQuicFrames() ||
+ !GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ // Finish handshake.
+ QuicConnectionPeer::SetAddressValidated(&connection_);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ notifier_.NeuterUnencryptedData();
+ connection_.NeuterUnencryptedPackets();
+ connection_.OnHandshakeComplete();
+ connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+ connection_.RemoveEncrypter(ENCRYPTION_HANDSHAKE);
+ EXPECT_CALL(visitor_, GetHandshakeState())
+ .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+ ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+ // Verify BeforeConnectionCloseSent gets called twice while OnConnectionClosed
+ // is called once.
+ EXPECT_CALL(visitor_, BeforeConnectionCloseSent()).Times(2);
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+ // Send connection close w/o closing connection.
+ QuicConnectionPeer::SendConnectionClosePacket(
+ &connection_, INTERNAL_ERROR, QUIC_INTERNAL_ERROR, "internal error");
+ // Fire blackhole detection alarm.
+ EXPECT_QUIC_BUG(connection_.GetBlackholeDetectorAlarm()->Fire(),
+ "Already sent connection close");
+}
+
+// Regression test for b/157895910.
+TEST_P(QuicConnectionTest, EarliestSentTimeNotInitializedWhenPtoFires) {
+ if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ use_tagging_decrypter();
+
+ // Received INITIAL 1.
+ ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+ connection_.SetEncrypter(ENCRYPTION_INITIAL,
+ std::make_unique<TaggingEncrypter>(0x01));
+ connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<TaggingEncrypter>(0x03));
+ SetDecrypter(ENCRYPTION_HANDSHAKE,
+ std::make_unique<StrictTaggingDecrypter>(0x03));
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ std::make_unique<TaggingEncrypter>(0x04));
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_);
+ // Send INITIAL 1.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+ connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+ // Send HANDSHAKE 2.
+ EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+ connection_.SendCryptoDataWithString(std::string(200, 'a'), 0,
+ ENCRYPTION_HANDSHAKE);
+ // Send half RTT data.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ connection_.SendStreamDataWithString(0, std::string(2000, 'b'), 0, FIN);
+ }
+
+ // Received ACKs for both INITIAL and HANDSHAKE packets.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _))
+ .Times(AnyNumber());
+ QuicFrames frames1;
+ QuicAckFrame ack_frame1 = InitAckFrame(1);
+ frames1.push_back(QuicFrame(&ack_frame1));
+
+ QuicFrames frames2;
+ QuicAckFrame ack_frame2 =
+ InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ frames2.push_back(QuicFrame(&ack_frame2));
+ ProcessCoalescedPacket(
+ {{2, frames1, ENCRYPTION_INITIAL}, {3, frames2, ENCRYPTION_HANDSHAKE}});
+ // Verify PTO is not armed given the only outstanding data is half RTT data.
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+} // namespace
+} // namespace test
+} // namespace quic