Relocate QUICHE files into quiche/ directory within the quiche repo, and change the relative include paths accordingly.

PiperOrigin-RevId: 440164720
Change-Id: I64d8a975d08888a3a86f6c51908e63d5cd45fa35
diff --git a/quiche/quic/core/quic_connection_test.cc b/quiche/quic/core/quic_connection_test.cc
new file mode 100644
index 0000000..1311afe
--- /dev/null
+++ b/quiche/quic/core/quic_connection_test.cc
@@ -0,0 +1,15834 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "quiche/quic/core/quic_connection.h"
+
+#include <errno.h>
+
+#include <memory>
+#include <ostream>
+#include <string>
+#include <utility>
+
+#include "absl/base/macros.h"
+#include "absl/strings/str_cat.h"
+#include "absl/strings/str_join.h"
+#include "absl/strings/string_view.h"
+#include "quiche/quic/core/congestion_control/loss_detection_interface.h"
+#include "quiche/quic/core/congestion_control/send_algorithm_interface.h"
+#include "quiche/quic/core/crypto/null_decrypter.h"
+#include "quiche/quic/core/crypto/null_encrypter.h"
+#include "quiche/quic/core/crypto/quic_decrypter.h"
+#include "quiche/quic/core/crypto/quic_encrypter.h"
+#include "quiche/quic/core/frames/quic_connection_close_frame.h"
+#include "quiche/quic/core/frames/quic_new_connection_id_frame.h"
+#include "quiche/quic/core/frames/quic_path_response_frame.h"
+#include "quiche/quic/core/frames/quic_rst_stream_frame.h"
+#include "quiche/quic/core/quic_connection_id.h"
+#include "quiche/quic/core/quic_constants.h"
+#include "quiche/quic/core/quic_error_codes.h"
+#include "quiche/quic/core/quic_packet_creator.h"
+#include "quiche/quic/core/quic_packets.h"
+#include "quiche/quic/core/quic_path_validator.h"
+#include "quiche/quic/core/quic_types.h"
+#include "quiche/quic/core/quic_utils.h"
+#include "quiche/quic/core/quic_versions.h"
+#include "quiche/quic/platform/api/quic_expect_bug.h"
+#include "quiche/quic/platform/api/quic_flags.h"
+#include "quiche/quic/platform/api/quic_ip_address.h"
+#include "quiche/quic/platform/api/quic_logging.h"
+#include "quiche/quic/platform/api/quic_socket_address.h"
+#include "quiche/quic/platform/api/quic_test.h"
+#include "quiche/quic/test_tools/mock_clock.h"
+#include "quiche/quic/test_tools/mock_random.h"
+#include "quiche/quic/test_tools/quic_coalesced_packet_peer.h"
+#include "quiche/quic/test_tools/quic_config_peer.h"
+#include "quiche/quic/test_tools/quic_connection_peer.h"
+#include "quiche/quic/test_tools/quic_framer_peer.h"
+#include "quiche/quic/test_tools/quic_packet_creator_peer.h"
+#include "quiche/quic/test_tools/quic_path_validator_peer.h"
+#include "quiche/quic/test_tools/quic_sent_packet_manager_peer.h"
+#include "quiche/quic/test_tools/quic_test_utils.h"
+#include "quiche/quic/test_tools/simple_data_producer.h"
+#include "quiche/quic/test_tools/simple_session_notifier.h"
+#include "quiche/common/platform/api/quiche_reference_counted.h"
+#include "quiche/common/simple_buffer_allocator.h"
+
+using testing::_;
+using testing::AnyNumber;
+using testing::AtLeast;
+using testing::DoAll;
+using testing::ElementsAre;
+using testing::Ge;
+using testing::IgnoreResult;
+using testing::InSequence;
+using testing::Invoke;
+using testing::InvokeWithoutArgs;
+using testing::Lt;
+using testing::Ref;
+using testing::Return;
+using testing::SaveArg;
+using testing::SetArgPointee;
+using testing::StrictMock;
+
+namespace quic {
+namespace test {
+namespace {
+
+const char data1[] = "foo data";
+const char data2[] = "bar data";
+
+const bool kHasStopWaiting = true;
+
+const int kDefaultRetransmissionTimeMs = 500;
+
+DiversificationNonce kTestDiversificationNonce = {
+    'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a',
+    'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b',
+    'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b',
+};
+
+const StatelessResetToken kTestStatelessResetToken{
+    0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
+    0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f};
+
+const QuicSocketAddress kPeerAddress =
+    QuicSocketAddress(QuicIpAddress::Loopback6(),
+                      /*port=*/12345);
+const QuicSocketAddress kSelfAddress =
+    QuicSocketAddress(QuicIpAddress::Loopback6(),
+                      /*port=*/443);
+
+QuicStreamId GetNthClientInitiatedStreamId(int n,
+                                           QuicTransportVersion version) {
+  return QuicUtils::GetFirstBidirectionalStreamId(version,
+                                                  Perspective::IS_CLIENT) +
+         n * 2;
+}
+
+QuicLongHeaderType EncryptionlevelToLongHeaderType(EncryptionLevel level) {
+  switch (level) {
+    case ENCRYPTION_INITIAL:
+      return INITIAL;
+    case ENCRYPTION_HANDSHAKE:
+      return HANDSHAKE;
+    case ENCRYPTION_ZERO_RTT:
+      return ZERO_RTT_PROTECTED;
+    case ENCRYPTION_FORWARD_SECURE:
+      QUICHE_DCHECK(false);
+      return INVALID_PACKET_TYPE;
+    default:
+      QUICHE_DCHECK(false);
+      return INVALID_PACKET_TYPE;
+  }
+}
+
+// A NullEncrypterWithConfidentialityLimit is a NullEncrypter that allows
+// specifying the confidentiality limit on the maximum number of packets that
+// may be encrypted per key phase in TLS+QUIC.
+class NullEncrypterWithConfidentialityLimit : public NullEncrypter {
+ public:
+  NullEncrypterWithConfidentialityLimit(Perspective perspective,
+                                        QuicPacketCount confidentiality_limit)
+      : NullEncrypter(perspective),
+        confidentiality_limit_(confidentiality_limit) {}
+
+  QuicPacketCount GetConfidentialityLimit() const override {
+    return confidentiality_limit_;
+  }
+
+ private:
+  QuicPacketCount confidentiality_limit_;
+};
+
+class StrictTaggingDecrypterWithIntegrityLimit : public StrictTaggingDecrypter {
+ public:
+  StrictTaggingDecrypterWithIntegrityLimit(uint8_t tag,
+                                           QuicPacketCount integrity_limit)
+      : StrictTaggingDecrypter(tag), integrity_limit_(integrity_limit) {}
+
+  QuicPacketCount GetIntegrityLimit() const override {
+    return integrity_limit_;
+  }
+
+ private:
+  QuicPacketCount integrity_limit_;
+};
+
+class TestConnectionHelper : public QuicConnectionHelperInterface {
+ public:
+  TestConnectionHelper(MockClock* clock, MockRandom* random_generator)
+      : clock_(clock), random_generator_(random_generator) {
+    clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
+  }
+  TestConnectionHelper(const TestConnectionHelper&) = delete;
+  TestConnectionHelper& operator=(const TestConnectionHelper&) = delete;
+
+  // QuicConnectionHelperInterface
+  const QuicClock* GetClock() const override { return clock_; }
+
+  QuicRandom* GetRandomGenerator() override { return random_generator_; }
+
+  quiche::QuicheBufferAllocator* GetStreamSendBufferAllocator() override {
+    return &buffer_allocator_;
+  }
+
+ private:
+  MockClock* clock_;
+  MockRandom* random_generator_;
+  quiche::SimpleBufferAllocator buffer_allocator_;
+};
+
+class TestConnection : public QuicConnection {
+ public:
+  TestConnection(QuicConnectionId connection_id,
+                 QuicSocketAddress initial_self_address,
+                 QuicSocketAddress initial_peer_address,
+                 TestConnectionHelper* helper, TestAlarmFactory* alarm_factory,
+                 TestPacketWriter* writer, Perspective perspective,
+                 ParsedQuicVersion version)
+      : QuicConnection(connection_id, initial_self_address,
+                       initial_peer_address, helper, alarm_factory, writer,
+                       /* owns_writer= */ false, perspective,
+                       SupportedVersions(version)),
+        notifier_(nullptr) {
+    writer->set_perspective(perspective);
+    SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                 std::make_unique<NullEncrypter>(perspective));
+    SetDataProducer(&producer_);
+    ON_CALL(*this, OnSerializedPacket(_))
+        .WillByDefault([this](SerializedPacket packet) {
+          QuicConnection::OnSerializedPacket(std::move(packet));
+        });
+  }
+  TestConnection(const TestConnection&) = delete;
+  TestConnection& operator=(const TestConnection&) = delete;
+
+  MOCK_METHOD(void, OnSerializedPacket, (SerializedPacket packet), (override));
+
+  void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) {
+    QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm);
+  }
+
+  void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) {
+    QuicConnectionPeer::SetLossAlgorithm(this, loss_algorithm);
+  }
+
+  void SendPacket(EncryptionLevel /*level*/, uint64_t packet_number,
+                  std::unique_ptr<QuicPacket> packet,
+                  HasRetransmittableData retransmittable, bool has_ack,
+                  bool has_pending_frames) {
+    ScopedPacketFlusher flusher(this);
+    char buffer[kMaxOutgoingPacketSize];
+    size_t encrypted_length =
+        QuicConnectionPeer::GetFramer(this)->EncryptPayload(
+            ENCRYPTION_INITIAL, QuicPacketNumber(packet_number), *packet,
+            buffer, kMaxOutgoingPacketSize);
+    SerializedPacket serialized_packet(
+        QuicPacketNumber(packet_number), PACKET_4BYTE_PACKET_NUMBER, buffer,
+        encrypted_length, has_ack, has_pending_frames);
+    serialized_packet.peer_address = kPeerAddress;
+    if (retransmittable == HAS_RETRANSMITTABLE_DATA) {
+      serialized_packet.retransmittable_frames.push_back(
+          QuicFrame(QuicPingFrame()));
+    }
+    OnSerializedPacket(std::move(serialized_packet));
+  }
+
+  QuicConsumedData SaveAndSendStreamData(QuicStreamId id,
+                                         absl::string_view data,
+                                         QuicStreamOffset offset,
+                                         StreamSendingState state) {
+    ScopedPacketFlusher flusher(this);
+    producer_.SaveStreamData(id, data);
+    if (notifier_ != nullptr) {
+      return notifier_->WriteOrBufferData(id, data.length(), state);
+    }
+    return QuicConnection::SendStreamData(id, data.length(), offset, state);
+  }
+
+  QuicConsumedData SendStreamDataWithString(QuicStreamId id,
+                                            absl::string_view data,
+                                            QuicStreamOffset offset,
+                                            StreamSendingState state) {
+    ScopedPacketFlusher flusher(this);
+    if (!QuicUtils::IsCryptoStreamId(transport_version(), id) &&
+        this->encryption_level() == ENCRYPTION_INITIAL) {
+      this->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+      if (perspective() == Perspective::IS_CLIENT && !IsHandshakeComplete()) {
+        OnHandshakeComplete();
+      }
+      if (version().SupportsAntiAmplificationLimit()) {
+        QuicConnectionPeer::SetAddressValidated(this);
+      }
+    }
+    return SaveAndSendStreamData(id, data, offset, state);
+  }
+
+  QuicConsumedData SendApplicationDataAtLevel(EncryptionLevel encryption_level,
+                                              QuicStreamId id,
+                                              absl::string_view data,
+                                              QuicStreamOffset offset,
+                                              StreamSendingState state) {
+    ScopedPacketFlusher flusher(this);
+    QUICHE_DCHECK(encryption_level >= ENCRYPTION_ZERO_RTT);
+    SetEncrypter(encryption_level, std::make_unique<TaggingEncrypter>(0x01));
+    SetDefaultEncryptionLevel(encryption_level);
+    return SaveAndSendStreamData(id, data, offset, state);
+  }
+
+  QuicConsumedData SendStreamData3() {
+    return SendStreamDataWithString(
+        GetNthClientInitiatedStreamId(1, transport_version()), "food", 0,
+        NO_FIN);
+  }
+
+  QuicConsumedData SendStreamData5() {
+    return SendStreamDataWithString(
+        GetNthClientInitiatedStreamId(2, transport_version()), "food2", 0,
+        NO_FIN);
+  }
+
+  // Ensures the connection can write stream data before writing.
+  QuicConsumedData EnsureWritableAndSendStreamData5() {
+    EXPECT_TRUE(CanWrite(HAS_RETRANSMITTABLE_DATA));
+    return SendStreamData5();
+  }
+
+  // The crypto stream has special semantics so that it is not blocked by a
+  // congestion window limitation, and also so that it gets put into a separate
+  // packet (so that it is easier to reason about a crypto frame not being
+  // split needlessly across packet boundaries).  As a result, we have separate
+  // tests for some cases for this stream.
+  QuicConsumedData SendCryptoStreamData() {
+    QuicStreamOffset offset = 0;
+    absl::string_view data("chlo");
+    if (!QuicVersionUsesCryptoFrames(transport_version())) {
+      return SendCryptoDataWithString(data, offset);
+    }
+    producer_.SaveCryptoData(ENCRYPTION_INITIAL, offset, data);
+    size_t bytes_written;
+    if (notifier_) {
+      bytes_written =
+          notifier_->WriteCryptoData(ENCRYPTION_INITIAL, data.length(), offset);
+    } else {
+      bytes_written = QuicConnection::SendCryptoData(ENCRYPTION_INITIAL,
+                                                     data.length(), offset);
+    }
+    return QuicConsumedData(bytes_written, /*fin_consumed*/ false);
+  }
+
+  QuicConsumedData SendCryptoDataWithString(absl::string_view data,
+                                            QuicStreamOffset offset) {
+    return SendCryptoDataWithString(data, offset, ENCRYPTION_INITIAL);
+  }
+
+  QuicConsumedData SendCryptoDataWithString(absl::string_view data,
+                                            QuicStreamOffset offset,
+                                            EncryptionLevel encryption_level) {
+    if (!QuicVersionUsesCryptoFrames(transport_version())) {
+      return SendStreamDataWithString(
+          QuicUtils::GetCryptoStreamId(transport_version()), data, offset,
+          NO_FIN);
+    }
+    producer_.SaveCryptoData(encryption_level, offset, data);
+    size_t bytes_written;
+    if (notifier_) {
+      bytes_written =
+          notifier_->WriteCryptoData(encryption_level, data.length(), offset);
+    } else {
+      bytes_written = QuicConnection::SendCryptoData(encryption_level,
+                                                     data.length(), offset);
+    }
+    return QuicConsumedData(bytes_written, /*fin_consumed*/ false);
+  }
+
+  void set_version(ParsedQuicVersion version) {
+    QuicConnectionPeer::GetFramer(this)->set_version(version);
+  }
+
+  void SetSupportedVersions(const ParsedQuicVersionVector& versions) {
+    QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions);
+    writer()->SetSupportedVersions(versions);
+  }
+
+  // This should be called before setting customized encrypters/decrypters for
+  // connection and peer creator.
+  void set_perspective(Perspective perspective) {
+    writer()->set_perspective(perspective);
+    QuicConnectionPeer::ResetPeerIssuedConnectionIdManager(this);
+    QuicConnectionPeer::SetPerspective(this, perspective);
+    QuicSentPacketManagerPeer::SetPerspective(
+        QuicConnectionPeer::GetSentPacketManager(this), perspective);
+    QuicConnectionPeer::GetFramer(this)->SetInitialObfuscators(
+        TestConnectionId());
+    for (EncryptionLevel level : {ENCRYPTION_ZERO_RTT, ENCRYPTION_HANDSHAKE,
+                                  ENCRYPTION_FORWARD_SECURE}) {
+      if (QuicConnectionPeer::GetFramer(this)->HasEncrypterOfEncryptionLevel(
+              level)) {
+        SetEncrypter(level, std::make_unique<NullEncrypter>(perspective));
+      }
+      if (QuicConnectionPeer::GetFramer(this)->HasDecrypterOfEncryptionLevel(
+              level)) {
+        InstallDecrypter(level, std::make_unique<NullDecrypter>(perspective));
+      }
+    }
+  }
+
+  // Enable path MTU discovery.  Assumes that the test is performed from the
+  // server perspective and the higher value of MTU target is used.
+  void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) {
+    ASSERT_EQ(Perspective::IS_SERVER, perspective());
+
+    if (GetQuicReloadableFlag(quic_enable_mtu_discovery_at_server)) {
+      OnConfigNegotiated();
+    } else {
+      QuicConfig config;
+      QuicTagVector connection_options;
+      connection_options.push_back(kMTUH);
+      config.SetInitialReceivedConnectionOptions(connection_options);
+      EXPECT_CALL(*send_algorithm, SetFromConfig(_, _));
+      SetFromConfig(config);
+    }
+
+    // Normally, the pacing would be disabled in the test, but calling
+    // SetFromConfig enables it.  Set nearly-infinite bandwidth to make the
+    // pacing algorithm work.
+    EXPECT_CALL(*send_algorithm, PacingRate(_))
+        .WillRepeatedly(Return(QuicBandwidth::Infinite()));
+  }
+
+  TestAlarmFactory::TestAlarm* GetAckAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetAckAlarm(this));
+  }
+
+  TestAlarmFactory::TestAlarm* GetPingAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetPingAlarm(this));
+  }
+
+  TestAlarmFactory::TestAlarm* GetRetransmissionAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetRetransmissionAlarm(this));
+  }
+
+  TestAlarmFactory::TestAlarm* GetSendAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetSendAlarm(this));
+  }
+
+  TestAlarmFactory::TestAlarm* GetTimeoutAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetIdleNetworkDetectorAlarm(this));
+  }
+
+  TestAlarmFactory::TestAlarm* GetMtuDiscoveryAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetMtuDiscoveryAlarm(this));
+  }
+
+  TestAlarmFactory::TestAlarm* GetProcessUndecryptablePacketsAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetProcessUndecryptablePacketsAlarm(this));
+  }
+
+  TestAlarmFactory::TestAlarm* GetDiscardPreviousOneRttKeysAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetDiscardPreviousOneRttKeysAlarm(this));
+  }
+
+  TestAlarmFactory::TestAlarm* GetDiscardZeroRttDecryptionKeysAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetDiscardZeroRttDecryptionKeysAlarm(this));
+  }
+
+  TestAlarmFactory::TestAlarm* GetBlackholeDetectorAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetBlackholeDetectorAlarm(this));
+  }
+
+  TestAlarmFactory::TestAlarm* GetRetirePeerIssuedConnectionIdAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetRetirePeerIssuedConnectionIdAlarm(this));
+  }
+
+  TestAlarmFactory::TestAlarm* GetRetireSelfIssuedConnectionIdAlarm() {
+    return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+        QuicConnectionPeer::GetRetireSelfIssuedConnectionIdAlarm(this));
+  }
+
+  void PathDegradingTimeout() {
+    QUICHE_DCHECK(PathDegradingDetectionInProgress());
+    GetBlackholeDetectorAlarm()->Fire();
+  }
+
+  bool PathDegradingDetectionInProgress() {
+    return QuicConnectionPeer::GetPathDegradingDeadline(this).IsInitialized();
+  }
+
+  bool BlackholeDetectionInProgress() {
+    return QuicConnectionPeer::GetBlackholeDetectionDeadline(this)
+        .IsInitialized();
+  }
+
+  bool PathMtuReductionDetectionInProgress() {
+    return QuicConnectionPeer::GetPathMtuReductionDetectionDeadline(this)
+        .IsInitialized();
+  }
+
+  void SetMaxTailLossProbes(size_t max_tail_loss_probes) {
+    QuicSentPacketManagerPeer::SetMaxTailLossProbes(
+        QuicConnectionPeer::GetSentPacketManager(this), max_tail_loss_probes);
+  }
+
+  QuicByteCount GetBytesInFlight() {
+    return QuicConnectionPeer::GetSentPacketManager(this)->GetBytesInFlight();
+  }
+
+  void set_notifier(SimpleSessionNotifier* notifier) { notifier_ = notifier; }
+
+  void ReturnEffectivePeerAddressForNextPacket(const QuicSocketAddress& addr) {
+    next_effective_peer_addr_ = std::make_unique<QuicSocketAddress>(addr);
+  }
+
+  bool PtoEnabled() {
+    if (QuicConnectionPeer::GetSentPacketManager(this)->pto_enabled()) {
+      // TLP/RTO related tests are stale when PTO is enabled.
+      QUICHE_DCHECK(PROTOCOL_TLS1_3 == version().handshake_protocol ||
+                    GetQuicRestartFlag(quic_default_on_pto2));
+      return true;
+    }
+    return false;
+  }
+
+  void SendOrQueuePacket(SerializedPacket packet) override {
+    QuicConnection::SendOrQueuePacket(std::move(packet));
+    self_address_on_default_path_while_sending_packet_ = self_address();
+  }
+
+  QuicSocketAddress self_address_on_default_path_while_sending_packet() {
+    return self_address_on_default_path_while_sending_packet_;
+  }
+
+  SimpleDataProducer* producer() { return &producer_; }
+
+  using QuicConnection::active_effective_peer_migration_type;
+  using QuicConnection::IsCurrentPacketConnectivityProbing;
+  using QuicConnection::SelectMutualVersion;
+  using QuicConnection::SendProbingRetransmissions;
+  using QuicConnection::set_defer_send_in_response_to_packets;
+
+ protected:
+  QuicSocketAddress GetEffectivePeerAddressFromCurrentPacket() const override {
+    if (next_effective_peer_addr_) {
+      return *std::move(next_effective_peer_addr_);
+    }
+    return QuicConnection::GetEffectivePeerAddressFromCurrentPacket();
+  }
+
+ private:
+  TestPacketWriter* writer() {
+    return static_cast<TestPacketWriter*>(QuicConnection::writer());
+  }
+
+  SimpleDataProducer producer_;
+
+  SimpleSessionNotifier* notifier_;
+
+  std::unique_ptr<QuicSocketAddress> next_effective_peer_addr_;
+
+  QuicSocketAddress self_address_on_default_path_while_sending_packet_;
+};
+
+enum class AckResponse { kDefer, kImmediate };
+
+// Run tests with combinations of {ParsedQuicVersion, AckResponse}.
+struct TestParams {
+  TestParams(ParsedQuicVersion version, AckResponse ack_response,
+             bool no_stop_waiting)
+      : version(version),
+        ack_response(ack_response),
+        no_stop_waiting(no_stop_waiting) {}
+
+  ParsedQuicVersion version;
+  AckResponse ack_response;
+  bool no_stop_waiting;
+};
+
+// Used by ::testing::PrintToStringParamName().
+std::string PrintToString(const TestParams& p) {
+  return absl::StrCat(
+      ParsedQuicVersionToString(p.version), "_",
+      (p.ack_response == AckResponse::kDefer ? "defer" : "immediate"), "_",
+      (p.no_stop_waiting ? "No" : ""), "StopWaiting");
+}
+
+// Constructs various test permutations.
+std::vector<TestParams> GetTestParams() {
+  QuicFlagSaver flags;
+  std::vector<TestParams> params;
+  ParsedQuicVersionVector all_supported_versions = AllSupportedVersions();
+  for (size_t i = 0; i < all_supported_versions.size(); ++i) {
+    for (AckResponse ack_response :
+         {AckResponse::kDefer, AckResponse::kImmediate}) {
+      params.push_back(
+          TestParams(all_supported_versions[i], ack_response, true));
+      if (!all_supported_versions[i].HasIetfInvariantHeader()) {
+        params.push_back(
+            TestParams(all_supported_versions[i], ack_response, false));
+      }
+    }
+  }
+  return params;
+}
+
+class QuicConnectionTest : public QuicTestWithParam<TestParams> {
+ public:
+  // For tests that do silent connection closes, no such packet is generated. In
+  // order to verify the contents of the OnConnectionClosed upcall, EXPECTs
+  // should invoke this method, saving the frame, and then the test can verify
+  // the contents.
+  void SaveConnectionCloseFrame(const QuicConnectionCloseFrame& frame,
+                                ConnectionCloseSource /*source*/) {
+    saved_connection_close_frame_ = frame;
+    connection_close_frame_count_++;
+  }
+
+ protected:
+  QuicConnectionTest()
+      : connection_id_(TestConnectionId()),
+        framer_(SupportedVersions(version()), QuicTime::Zero(),
+                Perspective::IS_CLIENT, connection_id_.length()),
+        send_algorithm_(new StrictMock<MockSendAlgorithm>),
+        loss_algorithm_(new MockLossAlgorithm()),
+        helper_(new TestConnectionHelper(&clock_, &random_generator_)),
+        alarm_factory_(new TestAlarmFactory()),
+        peer_framer_(SupportedVersions(version()), QuicTime::Zero(),
+                     Perspective::IS_SERVER, connection_id_.length()),
+        peer_creator_(connection_id_, &peer_framer_,
+                      /*delegate=*/nullptr),
+        writer_(
+            new TestPacketWriter(version(), &clock_, Perspective::IS_CLIENT)),
+        connection_(connection_id_, kSelfAddress, kPeerAddress, helper_.get(),
+                    alarm_factory_.get(), writer_.get(), Perspective::IS_CLIENT,
+                    version()),
+        creator_(QuicConnectionPeer::GetPacketCreator(&connection_)),
+        manager_(QuicConnectionPeer::GetSentPacketManager(&connection_)),
+        frame1_(0, false, 0, absl::string_view(data1)),
+        frame2_(0, false, 3, absl::string_view(data2)),
+        crypto_frame_(ENCRYPTION_INITIAL, 0, absl::string_view(data1)),
+        packet_number_length_(PACKET_4BYTE_PACKET_NUMBER),
+        connection_id_included_(CONNECTION_ID_PRESENT),
+        notifier_(&connection_),
+        connection_close_frame_count_(0) {
+    QUIC_DVLOG(2) << "QuicConnectionTest(" << PrintToString(GetParam()) << ")";
+    connection_.set_defer_send_in_response_to_packets(GetParam().ack_response ==
+                                                      AckResponse::kDefer);
+    framer_.SetInitialObfuscators(TestConnectionId());
+    connection_.InstallInitialCrypters(TestConnectionId());
+    CrypterPair crypters;
+    CryptoUtils::CreateInitialObfuscators(Perspective::IS_SERVER, version(),
+                                          TestConnectionId(), &crypters);
+    peer_creator_.SetEncrypter(ENCRYPTION_INITIAL,
+                               std::move(crypters.encrypter));
+    if (version().KnowsWhichDecrypterToUse()) {
+      peer_framer_.InstallDecrypter(ENCRYPTION_INITIAL,
+                                    std::move(crypters.decrypter));
+    } else {
+      peer_framer_.SetDecrypter(ENCRYPTION_INITIAL,
+                                std::move(crypters.decrypter));
+    }
+    for (EncryptionLevel level :
+         {ENCRYPTION_ZERO_RTT, ENCRYPTION_FORWARD_SECURE}) {
+      peer_creator_.SetEncrypter(
+          level, std::make_unique<NullEncrypter>(peer_framer_.perspective()));
+    }
+    QuicFramerPeer::SetLastSerializedServerConnectionId(
+        QuicConnectionPeer::GetFramer(&connection_), connection_id_);
+    QuicFramerPeer::SetLastWrittenPacketNumberLength(
+        QuicConnectionPeer::GetFramer(&connection_), packet_number_length_);
+    if (version().HasIetfInvariantHeader()) {
+      EXPECT_TRUE(QuicConnectionPeer::GetNoStopWaitingFrames(&connection_));
+    } else {
+      QuicConnectionPeer::SetNoStopWaitingFrames(&connection_,
+                                                 GetParam().no_stop_waiting);
+    }
+    QuicStreamId stream_id;
+    if (QuicVersionUsesCryptoFrames(version().transport_version)) {
+      stream_id = QuicUtils::GetFirstBidirectionalStreamId(
+          version().transport_version, Perspective::IS_CLIENT);
+    } else {
+      stream_id = QuicUtils::GetCryptoStreamId(version().transport_version);
+    }
+    frame1_.stream_id = stream_id;
+    frame2_.stream_id = stream_id;
+    connection_.set_visitor(&visitor_);
+    connection_.SetSessionNotifier(&notifier_);
+    connection_.set_notifier(&notifier_);
+    connection_.SetSendAlgorithm(send_algorithm_);
+    connection_.SetLossAlgorithm(loss_algorithm_.get());
+    EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+        .Times(AnyNumber());
+    EXPECT_CALL(*send_algorithm_, OnPacketNeutered(_)).Times(AnyNumber());
+    EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
+        .WillRepeatedly(Return(kDefaultTCPMSS));
+    EXPECT_CALL(*send_algorithm_, PacingRate(_))
+        .WillRepeatedly(Return(QuicBandwidth::Zero()));
+    EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+        .Times(AnyNumber())
+        .WillRepeatedly(Return(QuicBandwidth::Zero()));
+    EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_))
+        .Times(AnyNumber());
+    EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
+    EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
+    EXPECT_CALL(*send_algorithm_, GetCongestionControlType())
+        .Times(AnyNumber());
+    EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
+    EXPECT_CALL(*send_algorithm_, GetCongestionControlType())
+        .Times(AnyNumber());
+    EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber());
+    EXPECT_CALL(visitor_, OnPacketDecrypted(_)).Times(AnyNumber());
+    EXPECT_CALL(visitor_, OnCanWrite())
+        .WillRepeatedly(Invoke(&notifier_, &SimpleSessionNotifier::OnCanWrite));
+    EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+        .WillRepeatedly(Return(false));
+    EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber());
+    EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(AnyNumber());
+    EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber());
+    EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged())
+        .Times(testing::AtMost(1));
+    EXPECT_CALL(*loss_algorithm_, GetLossTimeout())
+        .WillRepeatedly(Return(QuicTime::Zero()));
+    EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+        .Times(AnyNumber());
+    EXPECT_CALL(visitor_, GetHandshakeState())
+        .WillRepeatedly(Return(HANDSHAKE_START));
+    if (connection_.version().KnowsWhichDecrypterToUse()) {
+      connection_.InstallDecrypter(
+          ENCRYPTION_FORWARD_SECURE,
+          std::make_unique<NullDecrypter>(Perspective::IS_CLIENT));
+    }
+    peer_creator_.SetDefaultPeerAddress(kSelfAddress);
+  }
+
+  QuicConnectionTest(const QuicConnectionTest&) = delete;
+  QuicConnectionTest& operator=(const QuicConnectionTest&) = delete;
+
+  ParsedQuicVersion version() { return GetParam().version; }
+
+  QuicStopWaitingFrame* stop_waiting() {
+    QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_);
+    return &stop_waiting_;
+  }
+
+  QuicPacketNumber least_unacked() {
+    if (writer_->stop_waiting_frames().empty()) {
+      return QuicPacketNumber();
+    }
+    return writer_->stop_waiting_frames()[0].least_unacked;
+  }
+
+  void use_tagging_decrypter() { writer_->use_tagging_decrypter(); }
+
+  void SetClientConnectionId(const QuicConnectionId& client_connection_id) {
+    connection_.set_client_connection_id(client_connection_id);
+    writer_->framer()->framer()->SetExpectedClientConnectionIdLength(
+        client_connection_id.length());
+  }
+
+  void SetDecrypter(EncryptionLevel level,
+                    std::unique_ptr<QuicDecrypter> decrypter) {
+    if (connection_.version().KnowsWhichDecrypterToUse()) {
+      connection_.InstallDecrypter(level, std::move(decrypter));
+    } else {
+      connection_.SetDecrypter(level, std::move(decrypter));
+    }
+  }
+
+  void ProcessPacket(uint64_t number) {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+    ProcessDataPacket(number);
+    if (connection_.GetSendAlarm()->IsSet()) {
+      connection_.GetSendAlarm()->Fire();
+    }
+  }
+
+  void ProcessReceivedPacket(const QuicSocketAddress& self_address,
+                             const QuicSocketAddress& peer_address,
+                             const QuicReceivedPacket& packet) {
+    connection_.ProcessUdpPacket(self_address, peer_address, packet);
+    if (connection_.GetSendAlarm()->IsSet()) {
+      connection_.GetSendAlarm()->Fire();
+    }
+  }
+
+  QuicFrame MakeCryptoFrame() const {
+    if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+      return QuicFrame(new QuicCryptoFrame(crypto_frame_));
+    }
+    return QuicFrame(QuicStreamFrame(
+        QuicUtils::GetCryptoStreamId(connection_.transport_version()), false,
+        0u, absl::string_view()));
+  }
+
+  void ProcessFramePacket(QuicFrame frame) {
+    ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress,
+                                    ENCRYPTION_FORWARD_SECURE);
+  }
+
+  void ProcessFramePacketWithAddresses(QuicFrame frame,
+                                       QuicSocketAddress self_address,
+                                       QuicSocketAddress peer_address,
+                                       EncryptionLevel level) {
+    QuicFrames frames;
+    frames.push_back(QuicFrame(frame));
+    return ProcessFramesPacketWithAddresses(frames, self_address, peer_address,
+                                            level);
+  }
+
+  std::unique_ptr<QuicReceivedPacket> ConstructPacket(QuicFrames frames,
+                                                      EncryptionLevel level,
+                                                      char* buffer,
+                                                      size_t buffer_len) {
+    QUICHE_DCHECK(peer_framer_.HasEncrypterOfEncryptionLevel(level));
+    peer_creator_.set_encryption_level(level);
+    QuicPacketCreatorPeer::SetSendVersionInPacket(
+        &peer_creator_,
+        level < ENCRYPTION_FORWARD_SECURE &&
+            connection_.perspective() == Perspective::IS_SERVER);
+
+    SerializedPacket serialized_packet =
+        QuicPacketCreatorPeer::SerializeAllFrames(&peer_creator_, frames,
+                                                  buffer, buffer_len);
+    return std::make_unique<QuicReceivedPacket>(
+        serialized_packet.encrypted_buffer, serialized_packet.encrypted_length,
+        clock_.Now());
+  }
+
+  void ProcessFramesPacketWithAddresses(QuicFrames frames,
+                                        QuicSocketAddress self_address,
+                                        QuicSocketAddress peer_address,
+                                        EncryptionLevel level) {
+    char buffer[kMaxOutgoingPacketSize];
+    connection_.ProcessUdpPacket(
+        self_address, peer_address,
+        *ConstructPacket(std::move(frames), level, buffer,
+                         kMaxOutgoingPacketSize));
+    if (connection_.GetSendAlarm()->IsSet()) {
+      connection_.GetSendAlarm()->Fire();
+    }
+  }
+
+  // Bypassing the packet creator is unrealistic, but allows us to process
+  // packets the QuicPacketCreator won't allow us to create.
+  void ForceProcessFramePacket(QuicFrame frame) {
+    QuicFrames frames;
+    frames.push_back(QuicFrame(frame));
+    bool send_version = connection_.perspective() == Perspective::IS_SERVER;
+    if (connection_.version().KnowsWhichDecrypterToUse()) {
+      send_version = true;
+    }
+    QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_, send_version);
+    QuicPacketHeader header;
+    QuicPacketCreatorPeer::FillPacketHeader(&peer_creator_, &header);
+    char encrypted_buffer[kMaxOutgoingPacketSize];
+    size_t length = peer_framer_.BuildDataPacket(
+        header, frames, encrypted_buffer, kMaxOutgoingPacketSize,
+        ENCRYPTION_INITIAL);
+    QUICHE_DCHECK_GT(length, 0u);
+
+    const size_t encrypted_length = peer_framer_.EncryptInPlace(
+        ENCRYPTION_INITIAL, header.packet_number,
+        GetStartOfEncryptedData(peer_framer_.version().transport_version,
+                                header),
+        length, kMaxOutgoingPacketSize, encrypted_buffer);
+    QUICHE_DCHECK_GT(encrypted_length, 0u);
+
+    connection_.ProcessUdpPacket(
+        kSelfAddress, kPeerAddress,
+        QuicReceivedPacket(encrypted_buffer, encrypted_length, clock_.Now()));
+  }
+
+  size_t ProcessFramePacketAtLevel(uint64_t number, QuicFrame frame,
+                                   EncryptionLevel level) {
+    QuicFrames frames;
+    frames.push_back(frame);
+    return ProcessFramesPacketAtLevel(number, frames, level);
+  }
+
+  size_t ProcessFramesPacketAtLevel(uint64_t number, const QuicFrames& frames,
+                                    EncryptionLevel level) {
+    QuicPacketHeader header = ConstructPacketHeader(number, level);
+    // Set the correct encryption level and encrypter on peer_creator and
+    // peer_framer, respectively.
+    peer_creator_.set_encryption_level(level);
+    if (QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) >
+        ENCRYPTION_INITIAL) {
+      peer_framer_.SetEncrypter(
+          QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+          std::make_unique<TaggingEncrypter>(0x01));
+      // Set the corresponding decrypter.
+      if (connection_.version().KnowsWhichDecrypterToUse()) {
+        connection_.InstallDecrypter(
+            QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+            std::make_unique<StrictTaggingDecrypter>(0x01));
+      } else {
+        connection_.SetDecrypter(
+            QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+            std::make_unique<StrictTaggingDecrypter>(0x01));
+      }
+    }
+    std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+
+    char buffer[kMaxOutgoingPacketSize];
+    size_t encrypted_length =
+        peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet,
+                                    buffer, kMaxOutgoingPacketSize);
+    connection_.ProcessUdpPacket(
+        kSelfAddress, kPeerAddress,
+        QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+    if (connection_.GetSendAlarm()->IsSet()) {
+      connection_.GetSendAlarm()->Fire();
+    }
+    return encrypted_length;
+  }
+
+  struct PacketInfo {
+    PacketInfo(uint64_t packet_number, QuicFrames frames, EncryptionLevel level)
+        : packet_number(packet_number), frames(frames), level(level) {}
+
+    uint64_t packet_number;
+    QuicFrames frames;
+    EncryptionLevel level;
+  };
+
+  size_t ProcessCoalescedPacket(std::vector<PacketInfo> packets) {
+    char coalesced_buffer[kMaxOutgoingPacketSize];
+    size_t coalesced_size = 0;
+    bool contains_initial = false;
+    for (const auto& packet : packets) {
+      QuicPacketHeader header =
+          ConstructPacketHeader(packet.packet_number, packet.level);
+      // Set the correct encryption level and encrypter on peer_creator and
+      // peer_framer, respectively.
+      peer_creator_.set_encryption_level(packet.level);
+      if (packet.level == ENCRYPTION_INITIAL) {
+        contains_initial = true;
+      }
+      if (QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) >
+          ENCRYPTION_INITIAL) {
+        peer_framer_.SetEncrypter(
+            QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+            std::make_unique<TaggingEncrypter>(0x01));
+        // Set the corresponding decrypter.
+        if (connection_.version().KnowsWhichDecrypterToUse()) {
+          connection_.InstallDecrypter(
+              QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+              std::make_unique<StrictTaggingDecrypter>(0x01));
+        } else {
+          connection_.SetDecrypter(
+              QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+              std::make_unique<StrictTaggingDecrypter>(0x01));
+        }
+      }
+      std::unique_ptr<QuicPacket> constructed_packet(
+          ConstructPacket(header, packet.frames));
+
+      char buffer[kMaxOutgoingPacketSize];
+      size_t encrypted_length = peer_framer_.EncryptPayload(
+          packet.level, QuicPacketNumber(packet.packet_number),
+          *constructed_packet, buffer, kMaxOutgoingPacketSize);
+      QUICHE_DCHECK_LE(coalesced_size + encrypted_length,
+                       kMaxOutgoingPacketSize);
+      memcpy(coalesced_buffer + coalesced_size, buffer, encrypted_length);
+      coalesced_size += encrypted_length;
+    }
+    if (contains_initial) {
+      // Padded coalesced packet to full if it contains initial packet.
+      memset(coalesced_buffer + coalesced_size, '0',
+             kMaxOutgoingPacketSize - coalesced_size);
+    }
+    connection_.ProcessUdpPacket(
+        kSelfAddress, kPeerAddress,
+        QuicReceivedPacket(coalesced_buffer, coalesced_size, clock_.Now(),
+                           false));
+    if (connection_.GetSendAlarm()->IsSet()) {
+      connection_.GetSendAlarm()->Fire();
+    }
+    return coalesced_size;
+  }
+
+  size_t ProcessDataPacket(uint64_t number) {
+    return ProcessDataPacketAtLevel(number, false, ENCRYPTION_FORWARD_SECURE);
+  }
+
+  size_t ProcessDataPacket(QuicPacketNumber packet_number) {
+    return ProcessDataPacketAtLevel(packet_number, false,
+                                    ENCRYPTION_FORWARD_SECURE);
+  }
+
+  size_t ProcessDataPacketAtLevel(QuicPacketNumber packet_number,
+                                  bool has_stop_waiting,
+                                  EncryptionLevel level) {
+    return ProcessDataPacketAtLevel(packet_number.ToUint64(), has_stop_waiting,
+                                    level);
+  }
+
+  size_t ProcessCryptoPacketAtLevel(uint64_t number, EncryptionLevel level) {
+    QuicPacketHeader header = ConstructPacketHeader(number, level);
+    QuicFrames frames;
+    if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+      frames.push_back(QuicFrame(&crypto_frame_));
+    } else {
+      frames.push_back(QuicFrame(frame1_));
+    }
+    if (level == ENCRYPTION_INITIAL) {
+      frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
+    }
+    std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames);
+    char buffer[kMaxOutgoingPacketSize];
+    peer_creator_.set_encryption_level(level);
+    size_t encrypted_length =
+        peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet,
+                                    buffer, kMaxOutgoingPacketSize);
+    connection_.ProcessUdpPacket(
+        kSelfAddress, kPeerAddress,
+        QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+    if (connection_.GetSendAlarm()->IsSet()) {
+      connection_.GetSendAlarm()->Fire();
+    }
+    return encrypted_length;
+  }
+
+  size_t ProcessDataPacketAtLevel(uint64_t number, bool has_stop_waiting,
+                                  EncryptionLevel level) {
+    std::unique_ptr<QuicPacket> packet(
+        ConstructDataPacket(number, has_stop_waiting, level));
+    char buffer[kMaxOutgoingPacketSize];
+    peer_creator_.set_encryption_level(level);
+    size_t encrypted_length =
+        peer_framer_.EncryptPayload(level, QuicPacketNumber(number), *packet,
+                                    buffer, kMaxOutgoingPacketSize);
+    connection_.ProcessUdpPacket(
+        kSelfAddress, kPeerAddress,
+        QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+    if (connection_.GetSendAlarm()->IsSet()) {
+      connection_.GetSendAlarm()->Fire();
+    }
+    return encrypted_length;
+  }
+
+  void ProcessClosePacket(uint64_t number) {
+    std::unique_ptr<QuicPacket> packet(ConstructClosePacket(number));
+    char buffer[kMaxOutgoingPacketSize];
+    size_t encrypted_length = peer_framer_.EncryptPayload(
+        ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(number), *packet, buffer,
+        kMaxOutgoingPacketSize);
+    connection_.ProcessUdpPacket(
+        kSelfAddress, kPeerAddress,
+        QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+  }
+
+  QuicByteCount SendStreamDataToPeer(QuicStreamId id, absl::string_view data,
+                                     QuicStreamOffset offset,
+                                     StreamSendingState state,
+                                     QuicPacketNumber* last_packet) {
+    QuicByteCount packet_size;
+    // Save the last packet's size.
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+        .Times(AnyNumber())
+        .WillRepeatedly(SaveArg<3>(&packet_size));
+    connection_.SendStreamDataWithString(id, data, offset, state);
+    if (last_packet != nullptr) {
+      *last_packet = creator_->packet_number();
+    }
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+        .Times(AnyNumber());
+    return packet_size;
+  }
+
+  void SendAckPacketToPeer() {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    {
+      QuicConnection::ScopedPacketFlusher flusher(&connection_);
+      connection_.SendAck();
+    }
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+        .Times(AnyNumber());
+  }
+
+  void SendRstStream(QuicStreamId id, QuicRstStreamErrorCode error,
+                     QuicStreamOffset bytes_written) {
+    notifier_.WriteOrBufferRstStream(id, error, bytes_written);
+    connection_.OnStreamReset(id, error);
+  }
+
+  void SendPing() { notifier_.WriteOrBufferPing(); }
+
+  MessageStatus SendMessage(absl::string_view message) {
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    quiche::QuicheMemSlice slice(quiche::QuicheBuffer::Copy(
+        connection_.helper()->GetStreamSendBufferAllocator(), message));
+    return connection_.SendMessage(1, absl::MakeSpan(&slice, 1), false);
+  }
+
+  void ProcessAckPacket(uint64_t packet_number, QuicAckFrame* frame) {
+    if (packet_number > 1) {
+      QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, packet_number - 1);
+    } else {
+      QuicPacketCreatorPeer::ClearPacketNumber(&peer_creator_);
+    }
+    ProcessFramePacket(QuicFrame(frame));
+  }
+
+  void ProcessAckPacket(QuicAckFrame* frame) {
+    ProcessFramePacket(QuicFrame(frame));
+  }
+
+  void ProcessStopWaitingPacket(QuicStopWaitingFrame frame) {
+    ProcessFramePacket(QuicFrame(frame));
+  }
+
+  size_t ProcessStopWaitingPacketAtLevel(uint64_t number,
+                                         QuicStopWaitingFrame frame,
+                                         EncryptionLevel /*level*/) {
+    return ProcessFramePacketAtLevel(number, QuicFrame(frame),
+                                     ENCRYPTION_ZERO_RTT);
+  }
+
+  void ProcessGoAwayPacket(QuicGoAwayFrame* frame) {
+    ProcessFramePacket(QuicFrame(frame));
+  }
+
+  bool IsMissing(uint64_t number) {
+    return IsAwaitingPacket(connection_.ack_frame(), QuicPacketNumber(number),
+                            QuicPacketNumber());
+  }
+
+  std::unique_ptr<QuicPacket> ConstructPacket(const QuicPacketHeader& header,
+                                              const QuicFrames& frames) {
+    auto packet = BuildUnsizedDataPacket(&peer_framer_, header, frames);
+    EXPECT_NE(nullptr, packet.get());
+    return packet;
+  }
+
+  QuicPacketHeader ConstructPacketHeader(uint64_t number,
+                                         EncryptionLevel level) {
+    QuicPacketHeader header;
+    if (peer_framer_.version().HasIetfInvariantHeader() &&
+        level < ENCRYPTION_FORWARD_SECURE) {
+      // Set long header type accordingly.
+      header.version_flag = true;
+      header.form = IETF_QUIC_LONG_HEADER_PACKET;
+      header.long_packet_type = EncryptionlevelToLongHeaderType(level);
+      if (QuicVersionHasLongHeaderLengths(
+              peer_framer_.version().transport_version)) {
+        header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
+        if (header.long_packet_type == INITIAL) {
+          header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
+        }
+      }
+    }
+    // Set connection_id to peer's in memory representation as this data packet
+    // is created by peer_framer.
+    if (peer_framer_.perspective() == Perspective::IS_SERVER) {
+      header.source_connection_id = connection_id_;
+      header.source_connection_id_included = connection_id_included_;
+      header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+    } else {
+      header.destination_connection_id = connection_id_;
+      header.destination_connection_id_included = connection_id_included_;
+    }
+    if (peer_framer_.version().HasIetfInvariantHeader() &&
+        peer_framer_.perspective() == Perspective::IS_SERVER) {
+      if (!connection_.client_connection_id().IsEmpty()) {
+        header.destination_connection_id = connection_.client_connection_id();
+        header.destination_connection_id_included = CONNECTION_ID_PRESENT;
+      } else {
+        header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+      }
+      if (header.version_flag) {
+        header.source_connection_id = connection_id_;
+        header.source_connection_id_included = CONNECTION_ID_PRESENT;
+        if (GetParam().version.handshake_protocol == PROTOCOL_QUIC_CRYPTO &&
+            header.long_packet_type == ZERO_RTT_PROTECTED) {
+          header.nonce = &kTestDiversificationNonce;
+        }
+      }
+    }
+    header.packet_number_length = packet_number_length_;
+    header.packet_number = QuicPacketNumber(number);
+    return header;
+  }
+
+  std::unique_ptr<QuicPacket> ConstructDataPacket(uint64_t number,
+                                                  bool has_stop_waiting,
+                                                  EncryptionLevel level) {
+    QuicPacketHeader header = ConstructPacketHeader(number, level);
+    QuicFrames frames;
+    if (VersionHasIetfQuicFrames(version().transport_version) &&
+        (level == ENCRYPTION_INITIAL || level == ENCRYPTION_HANDSHAKE)) {
+      frames.push_back(QuicFrame(QuicPingFrame()));
+      frames.push_back(QuicFrame(QuicPaddingFrame(100)));
+    } else {
+      frames.push_back(QuicFrame(frame1_));
+      if (has_stop_waiting) {
+        frames.push_back(QuicFrame(stop_waiting_));
+      }
+    }
+    return ConstructPacket(header, frames);
+  }
+
+  std::unique_ptr<SerializedPacket> ConstructProbingPacket() {
+    peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+    if (VersionHasIetfQuicFrames(version().transport_version)) {
+      QuicPathFrameBuffer payload = {
+          {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}};
+      return QuicPacketCreatorPeer::
+          SerializePathChallengeConnectivityProbingPacket(&peer_creator_,
+                                                          payload);
+    }
+    return QuicPacketCreatorPeer::SerializeConnectivityProbingPacket(
+        &peer_creator_);
+  }
+
+  std::unique_ptr<QuicPacket> ConstructClosePacket(uint64_t number) {
+    peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+    QuicPacketHeader header;
+    // Set connection_id to peer's in memory representation as this connection
+    // close packet is created by peer_framer.
+    if (peer_framer_.perspective() == Perspective::IS_SERVER) {
+      header.source_connection_id = connection_id_;
+      header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+      if (!peer_framer_.version().HasIetfInvariantHeader()) {
+        header.source_connection_id_included = CONNECTION_ID_PRESENT;
+      }
+    } else {
+      header.destination_connection_id = connection_id_;
+      if (peer_framer_.version().HasIetfInvariantHeader()) {
+        header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+      }
+    }
+
+    header.packet_number = QuicPacketNumber(number);
+
+    QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY;
+    QuicConnectionCloseFrame qccf(peer_framer_.transport_version(),
+                                  kQuicErrorCode, NO_IETF_QUIC_ERROR, "",
+                                  /*transport_close_frame_type=*/0);
+    QuicFrames frames;
+    frames.push_back(QuicFrame(&qccf));
+    return ConstructPacket(header, frames);
+  }
+
+  QuicTime::Delta DefaultRetransmissionTime() {
+    return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
+  }
+
+  QuicTime::Delta DefaultDelayedAckTime() {
+    return QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs);
+  }
+
+  const QuicStopWaitingFrame InitStopWaitingFrame(uint64_t least_unacked) {
+    QuicStopWaitingFrame frame;
+    frame.least_unacked = QuicPacketNumber(least_unacked);
+    return frame;
+  }
+
+  // Construct a ack_frame that acks all packet numbers between 1 and
+  // |largest_acked|, except |missing|.
+  // REQUIRES: 1 <= |missing| < |largest_acked|
+  QuicAckFrame ConstructAckFrame(uint64_t largest_acked, uint64_t missing) {
+    return ConstructAckFrame(QuicPacketNumber(largest_acked),
+                             QuicPacketNumber(missing));
+  }
+
+  QuicAckFrame ConstructAckFrame(QuicPacketNumber largest_acked,
+                                 QuicPacketNumber missing) {
+    if (missing == QuicPacketNumber(1)) {
+      return InitAckFrame({{missing + 1, largest_acked + 1}});
+    }
+    return InitAckFrame(
+        {{QuicPacketNumber(1), missing}, {missing + 1, largest_acked + 1}});
+  }
+
+  // Undo nacking a packet within the frame.
+  void AckPacket(QuicPacketNumber arrived, QuicAckFrame* frame) {
+    EXPECT_FALSE(frame->packets.Contains(arrived));
+    frame->packets.Add(arrived);
+  }
+
+  void TriggerConnectionClose() {
+    // Send an erroneous packet to close the connection.
+    EXPECT_CALL(visitor_,
+                OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+        .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+
+    EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+    // Triggers a connection by receiving ACK of unsent packet.
+    QuicAckFrame frame = InitAckFrame(10000);
+    ProcessAckPacket(1, &frame);
+    EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
+                 nullptr);
+    EXPECT_EQ(1, connection_close_frame_count_);
+    EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+                IsError(QUIC_INVALID_ACK_DATA));
+  }
+
+  void BlockOnNextWrite() {
+    writer_->BlockOnNextWrite();
+    EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+  }
+
+  void SimulateNextPacketTooLarge() { writer_->SimulateNextPacketTooLarge(); }
+
+  void AlwaysGetPacketTooLarge() { writer_->AlwaysGetPacketTooLarge(); }
+
+  void SetWritePauseTimeDelta(QuicTime::Delta delta) {
+    writer_->SetWritePauseTimeDelta(delta);
+  }
+
+  void CongestionBlockWrites() {
+    EXPECT_CALL(*send_algorithm_, CanSend(_))
+        .WillRepeatedly(testing::Return(false));
+  }
+
+  void CongestionUnblockWrites() {
+    EXPECT_CALL(*send_algorithm_, CanSend(_))
+        .WillRepeatedly(testing::Return(true));
+  }
+
+  void set_perspective(Perspective perspective) {
+    connection_.set_perspective(perspective);
+    if (perspective == Perspective::IS_SERVER) {
+      QuicConfig config;
+      if (!GetQuicReloadableFlag(
+              quic_remove_connection_migration_connection_option)) {
+        QuicTagVector connection_options;
+        connection_options.push_back(kRVCM);
+        config.SetInitialReceivedConnectionOptions(connection_options);
+      }
+      EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+      connection_.SetFromConfig(config);
+
+      connection_.set_can_truncate_connection_ids(true);
+      QuicConnectionPeer::SetNegotiatedVersion(&connection_);
+      connection_.OnSuccessfulVersionNegotiation();
+    }
+    QuicFramerPeer::SetPerspective(&peer_framer_,
+                                   QuicUtils::InvertPerspective(perspective));
+    peer_framer_.SetInitialObfuscators(TestConnectionId());
+    for (EncryptionLevel level : {ENCRYPTION_ZERO_RTT, ENCRYPTION_HANDSHAKE,
+                                  ENCRYPTION_FORWARD_SECURE}) {
+      if (peer_framer_.HasEncrypterOfEncryptionLevel(level)) {
+        peer_creator_.SetEncrypter(
+            level, std::make_unique<NullEncrypter>(peer_framer_.perspective()));
+      }
+    }
+  }
+
+  void set_packets_between_probes_base(
+      const QuicPacketCount packets_between_probes_base) {
+    QuicConnectionPeer::ReInitializeMtuDiscoverer(
+        &connection_, packets_between_probes_base,
+        QuicPacketNumber(packets_between_probes_base));
+  }
+
+  bool IsDefaultTestConfiguration() {
+    TestParams p = GetParam();
+    return p.ack_response == AckResponse::kImmediate &&
+           p.version == AllSupportedVersions()[0] && p.no_stop_waiting;
+  }
+
+  void TestConnectionCloseQuicErrorCode(QuicErrorCode expected_code) {
+    // Not strictly needed for this test, but is commonly done.
+    EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
+                 nullptr);
+    const std::vector<QuicConnectionCloseFrame>& connection_close_frames =
+        writer_->connection_close_frames();
+    ASSERT_EQ(1u, connection_close_frames.size());
+
+    EXPECT_THAT(connection_close_frames[0].quic_error_code,
+                IsError(expected_code));
+
+    if (!VersionHasIetfQuicFrames(version().transport_version)) {
+      EXPECT_THAT(connection_close_frames[0].wire_error_code,
+                  IsError(expected_code));
+      EXPECT_EQ(GOOGLE_QUIC_CONNECTION_CLOSE,
+                connection_close_frames[0].close_type);
+      return;
+    }
+
+    QuicErrorCodeToIetfMapping mapping =
+        QuicErrorCodeToTransportErrorCode(expected_code);
+
+    if (mapping.is_transport_close) {
+      // This Google QUIC Error Code maps to a transport close,
+      EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE,
+                connection_close_frames[0].close_type);
+    } else {
+      // This maps to an application close.
+      EXPECT_EQ(IETF_QUIC_APPLICATION_CONNECTION_CLOSE,
+                connection_close_frames[0].close_type);
+    }
+    EXPECT_EQ(mapping.error_code, connection_close_frames[0].wire_error_code);
+  }
+
+  void MtuDiscoveryTestInit() {
+    set_perspective(Perspective::IS_SERVER);
+    QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+    if (version().SupportsAntiAmplificationLimit()) {
+      QuicConnectionPeer::SetAddressValidated(&connection_);
+    }
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+    // QuicFramer::GetMaxPlaintextSize uses the smallest max plaintext size
+    // across all encrypters. The initial encrypter used with IETF QUIC has a
+    // 16-byte overhead, while the NullEncrypter used throughout this test has a
+    // 12-byte overhead. This test tests behavior that relies on computing the
+    // packet size correctly, so by unsetting the initial encrypter, we avoid
+    // having a mismatch between the overheads for the encrypters used. In
+    // non-test scenarios all encrypters used for a given connection have the
+    // same overhead, either 12 bytes for ones using Google QUIC crypto, or 16
+    // bytes for ones using TLS.
+    connection_.SetEncrypter(ENCRYPTION_INITIAL, nullptr);
+    // Prevent packets from being coalesced.
+    EXPECT_CALL(visitor_, GetHandshakeState())
+        .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+    EXPECT_TRUE(connection_.connected());
+  }
+
+  void PathProbeTestInit(Perspective perspective,
+                         bool receive_new_server_connection_id = true) {
+    set_perspective(perspective);
+    connection_.CreateConnectionIdManager();
+    EXPECT_EQ(connection_.perspective(), perspective);
+    if (perspective == Perspective::IS_SERVER) {
+      QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+    }
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+    // Discard INITIAL key.
+    connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+    connection_.NeuterUnencryptedPackets();
+    // Prevent packets from being coalesced.
+    EXPECT_CALL(visitor_, GetHandshakeState())
+        .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+    if (version().SupportsAntiAmplificationLimit() &&
+        perspective == Perspective::IS_SERVER) {
+      QuicConnectionPeer::SetAddressValidated(&connection_);
+    }
+    // Clear direct_peer_address.
+    QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+    // Clear effective_peer_address, it is the same as direct_peer_address for
+    // this test.
+    QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+                                                QuicSocketAddress());
+    EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+    if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+      EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+    } else {
+      EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+    }
+    QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
+    ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+                                    kPeerAddress, ENCRYPTION_FORWARD_SECURE);
+    EXPECT_EQ(kPeerAddress, connection_.peer_address());
+    EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+    if (perspective == Perspective::IS_CLIENT &&
+        receive_new_server_connection_id && version().HasIetfQuicFrames()) {
+      QuicNewConnectionIdFrame frame;
+      frame.connection_id = TestConnectionId(1234);
+      ASSERT_NE(frame.connection_id, connection_.connection_id());
+      frame.stateless_reset_token =
+          QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+      frame.retire_prior_to = 0u;
+      frame.sequence_number = 1u;
+      connection_.OnNewConnectionIdFrame(frame);
+    }
+  }
+
+  void TestClientRetryHandling(bool invalid_retry_tag,
+                               bool missing_original_id_in_config,
+                               bool wrong_original_id_in_config,
+                               bool missing_retry_id_in_config,
+                               bool wrong_retry_id_in_config);
+
+  void TestReplaceConnectionIdFromInitial();
+
+  QuicConnectionId connection_id_;
+  QuicFramer framer_;
+
+  MockSendAlgorithm* send_algorithm_;
+  std::unique_ptr<MockLossAlgorithm> loss_algorithm_;
+  MockClock clock_;
+  MockRandom random_generator_;
+  quiche::SimpleBufferAllocator buffer_allocator_;
+  std::unique_ptr<TestConnectionHelper> helper_;
+  std::unique_ptr<TestAlarmFactory> alarm_factory_;
+  QuicFramer peer_framer_;
+  QuicPacketCreator peer_creator_;
+  std::unique_ptr<TestPacketWriter> writer_;
+  TestConnection connection_;
+  QuicPacketCreator* creator_;
+  QuicSentPacketManager* manager_;
+  StrictMock<MockQuicConnectionVisitor> visitor_;
+
+  QuicStreamFrame frame1_;
+  QuicStreamFrame frame2_;
+  QuicCryptoFrame crypto_frame_;
+  QuicAckFrame ack_;
+  QuicStopWaitingFrame stop_waiting_;
+  QuicPacketNumberLength packet_number_length_;
+  QuicConnectionIdIncluded connection_id_included_;
+
+  SimpleSessionNotifier notifier_;
+
+  QuicConnectionCloseFrame saved_connection_close_frame_;
+  int connection_close_frame_count_;
+};
+
+// Run all end to end tests with all supported versions.
+INSTANTIATE_TEST_SUITE_P(QuicConnectionTests, QuicConnectionTest,
+                         ::testing::ValuesIn(GetTestParams()),
+                         ::testing::PrintToStringParamName());
+
+// These two tests ensure that the QuicErrorCode mapping works correctly.
+// Both tests expect to see a Google QUIC close if not running IETF QUIC.
+// If running IETF QUIC, the first will generate a transport connection
+// close, the second an application connection close.
+// The connection close codes for the two tests are manually chosen;
+// they are expected to always map to transport- and application-
+// closes, respectively. If that changes, new codes should be chosen.
+TEST_P(QuicConnectionTest, CloseErrorCodeTestTransport) {
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  connection_.CloseConnection(
+      IETF_QUIC_PROTOCOL_VIOLATION, "Should be transport close",
+      ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+}
+
+// Test that the IETF QUIC Error code mapping function works
+// properly for application connection close codes.
+TEST_P(QuicConnectionTest, CloseErrorCodeTestApplication) {
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  connection_.CloseConnection(
+      QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE,
+      "Should be application close",
+      ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE);
+}
+
+TEST_P(QuicConnectionTest, SelfAddressChangeAtClient) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+  EXPECT_TRUE(connection_.connected());
+
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_));
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_));
+  }
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+  // Cause change in self_address.
+  QuicIpAddress host;
+  host.FromString("1.1.1.1");
+  QuicSocketAddress self_address(host, 123);
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_));
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_));
+  }
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, SelfAddressChangeAtServer) {
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+  EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+  EXPECT_TRUE(connection_.connected());
+
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_));
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_));
+  }
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+  // Cause change in self_address.
+  QuicIpAddress host;
+  host.FromString("1.1.1.1");
+  QuicSocketAddress self_address(host, 123);
+  EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+  EXPECT_CALL(visitor_, AllowSelfAddressChange()).WillOnce(Return(false));
+  if (GetQuicReloadableFlag(quic_drop_packets_with_changed_server_address)) {
+    ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address,
+                                    kPeerAddress, ENCRYPTION_INITIAL);
+    EXPECT_TRUE(connection_.connected());
+    EXPECT_EQ(1u, connection_.GetStats().packets_dropped);
+    return;
+  }
+  if (version().handshake_protocol == PROTOCOL_TLS1_3) {
+    EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  }
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  EXPECT_QUIC_PEER_BUG(
+      ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address,
+                                      kPeerAddress, ENCRYPTION_INITIAL),
+      "Self address migration is not supported at the server");
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_ERROR_MIGRATING_ADDRESS);
+  EXPECT_EQ(1u, connection_.GetStats().packets_dropped);
+}
+
+TEST_P(QuicConnectionTest, AllowSelfAddressChangeToMappedIpv4AddressAtServer) {
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+  EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+  EXPECT_TRUE(connection_.connected());
+
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3);
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3);
+  }
+  QuicIpAddress host;
+  host.FromString("1.1.1.1");
+  QuicSocketAddress self_address1(host, 443);
+  connection_.SetSelfAddress(self_address1);
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address1,
+                                  kPeerAddress, ENCRYPTION_INITIAL);
+  // Cause self_address change to mapped Ipv4 address.
+  QuicIpAddress host2;
+  host2.FromString(
+      absl::StrCat("::ffff:", connection_.self_address().host().ToString()));
+  QuicSocketAddress self_address2(host2, connection_.self_address().port());
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address2,
+                                  kPeerAddress, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.connected());
+  // self_address change back to Ipv4 address.
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), self_address1,
+                                  kPeerAddress, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, ClientAddressChangeAndPacketReordered) {
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+
+  // Clear direct_peer_address.
+  QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+  // Clear effective_peer_address, it is the same as direct_peer_address for
+  // this test.
+  QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+                                              QuicSocketAddress());
+
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  }
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(),
+                        /*port=*/23456);
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+                                  kNewPeerAddress, ENCRYPTION_INITIAL);
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+
+  // Decrease packet number to simulate out-of-order packets.
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4);
+  // This is an old packet, do not migrate.
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, PeerPortChangeAtServer) {
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  // Prevent packets from being coalesced.
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  if (version().SupportsAntiAmplificationLimit()) {
+    QuicConnectionPeer::SetAddressValidated(&connection_);
+  }
+
+  // Clear direct_peer_address.
+  QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+  // Clear effective_peer_address, it is the same as direct_peer_address for
+  // this test.
+  QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+                                              QuicSocketAddress());
+  EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt();
+  rtt_stats->set_initial_rtt(default_init_rtt * 2);
+  EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt());
+
+  QuicSentPacketManagerPeer::SetConsecutiveRtoCount(manager_, 1);
+  EXPECT_EQ(1u, manager_->GetConsecutiveRtoCount());
+  QuicSentPacketManagerPeer::SetConsecutiveTlpCount(manager_, 2);
+  EXPECT_EQ(2u, manager_->GetConsecutiveTlpCount());
+
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+  EXPECT_CALL(visitor_, OnStreamFrame(_))
+      .WillOnce(Invoke(
+          [=]() { EXPECT_EQ(kPeerAddress, connection_.peer_address()); }))
+      .WillOnce(Invoke(
+          [=]() { EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); }));
+  QuicFrames frames;
+  frames.push_back(QuicFrame(frame1_));
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+  // Process another packet with a different peer address on server side will
+  // start connection migration.
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+  QuicFrames frames2;
+  frames2.push_back(QuicFrame(frame2_));
+  ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+  // PORT_CHANGE shouldn't state change in sent packet manager.
+  EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt());
+  EXPECT_EQ(1u, manager_->GetConsecutiveRtoCount());
+  EXPECT_EQ(2u, manager_->GetConsecutiveTlpCount());
+  EXPECT_EQ(manager_->GetSendAlgorithm(), send_algorithm_);
+  if (connection_.validate_client_address()) {
+    EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+    EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration);
+  }
+}
+
+TEST_P(QuicConnectionTest, PeerIpAddressChangeAtServer) {
+  set_perspective(Perspective::IS_SERVER);
+  if (!connection_.validate_client_address()) {
+    return;
+  }
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  // Discard INITIAL key.
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.NeuterUnencryptedPackets();
+  // Prevent packets from being coalesced.
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  QuicConnectionPeer::SetAddressValidated(&connection_);
+  connection_.OnHandshakeComplete();
+
+  // Enable 5 RTO
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k5RTO);
+  config.SetInitialReceivedConnectionOptions(connection_options);
+  QuicConfigPeer::SetNegotiated(&config, true);
+  QuicConfigPeer::SetReceivedOriginalConnectionId(&config,
+                                                  connection_.connection_id());
+  QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config,
+                                                       QuicConnectionId());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+
+  // Clear direct_peer_address.
+  QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+  // Clear effective_peer_address, it is the same as direct_peer_address for
+  // this test.
+  QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+                                              QuicSocketAddress());
+  EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+  EXPECT_CALL(visitor_, OnStreamFrame(_))
+      .WillOnce(Invoke(
+          [=]() { EXPECT_EQ(kPeerAddress, connection_.peer_address()); }))
+      .WillOnce(Invoke(
+          [=]() { EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); }));
+  QuicFrames frames;
+  frames.push_back(QuicFrame(frame1_));
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+  // Send some data to make connection has packets in flight.
+  connection_.SendStreamData3();
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Process another packet with a different peer address on server side will
+  // start connection migration.
+  EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+  // IETF QUIC send algorithm should be changed to a different object, so no
+  // OnPacketSent() called on the old send algorithm.
+  EXPECT_CALL(*send_algorithm_,
+              OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+      .Times(0);
+  // Do not propagate OnCanWrite() to session notifier.
+  EXPECT_CALL(visitor_, OnCanWrite()).Times(AtLeast(1u));
+
+  QuicFrames frames2;
+  frames2.push_back(QuicFrame(frame2_));
+  ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+  EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+            connection_.active_effective_peer_migration_type());
+  EXPECT_FALSE(connection_.BlackholeDetectionInProgress());
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  EXPECT_EQ(2u, writer_->packets_write_attempts());
+  EXPECT_FALSE(writer_->path_challenge_frames().empty());
+  QuicPathFrameBuffer payload =
+      writer_->path_challenge_frames().front().data_buffer;
+  EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(),
+            send_algorithm_);
+  // Switch to use the mock send algorithm.
+  send_algorithm_ = new StrictMock<MockSendAlgorithm>();
+  EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+  EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
+      .WillRepeatedly(Return(kDefaultTCPMSS));
+  EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+      .Times(AnyNumber())
+      .WillRepeatedly(Return(QuicBandwidth::Zero()));
+  EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber());
+  connection_.SetSendAlgorithm(send_algorithm_);
+
+  // PATH_CHALLENGE is expanded upto the max packet size which may exceeds the
+  // anti-amplification limit.
+  EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+  EXPECT_EQ(1u,
+            connection_.GetStats().num_reverse_path_validtion_upon_migration);
+
+  // Verify server is throttled by anti-amplification limit.
+  connection_.SendCryptoDataWithString("foo", 0);
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Receiving an ACK to the packet sent after changing peer address doesn't
+  // finish migration validation.
+  QuicAckFrame ack_frame = InitAckFrame(2);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  ProcessFramePacketWithAddresses(QuicFrame(&ack_frame), kSelfAddress,
+                                  kNewPeerAddress, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+  EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+            connection_.active_effective_peer_migration_type());
+
+  // Receiving PATH_RESPONSE should lift the anti-amplification limit.
+  QuicFrames frames3;
+  frames3.push_back(QuicFrame(new QuicPathResponseFrame(99, payload)));
+  EXPECT_CALL(visitor_, MaybeSendAddressToken());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(testing::AtLeast(1u));
+  ProcessFramesPacketWithAddresses(frames3, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+
+  // Verify the anti-amplification limit is lifted by sending a packet larger
+  // than the anti-amplification limit.
+  connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0);
+  EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration);
+}
+
+TEST_P(QuicConnectionTest, PeerIpAddressChangeAtServerWithMissingConnectionId) {
+  set_perspective(Perspective::IS_SERVER);
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+
+  QuicConnectionId client_cid0 = TestConnectionId(1);
+  QuicConnectionId client_cid1 = TestConnectionId(3);
+  QuicConnectionId server_cid1;
+  SetClientConnectionId(client_cid0);
+  connection_.CreateConnectionIdManager();
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  // Prevent packets from being coalesced.
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  QuicConnectionPeer::SetAddressValidated(&connection_);
+
+  // Sends new server CID to client.
+  EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+      .WillOnce(
+          Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; }));
+  EXPECT_CALL(visitor_, SendNewConnectionId(_));
+  connection_.OnHandshakeComplete();
+
+  // Clear direct_peer_address.
+  QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+  // Clear effective_peer_address, it is the same as direct_peer_address for
+  // this test.
+  QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+                                              QuicSocketAddress());
+  EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2);
+  QuicFrames frames;
+  frames.push_back(QuicFrame(frame1_));
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+  // Send some data to make connection has packets in flight.
+  connection_.SendStreamData3();
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+  // Process another packet with a different peer address on server side will
+  // start connection migration.
+  peer_creator_.SetServerConnectionId(server_cid1);
+  EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+  // Do not propagate OnCanWrite() to session notifier.
+  EXPECT_CALL(visitor_, OnCanWrite()).Times(AtLeast(1u));
+
+  QuicFrames frames2;
+  frames2.push_back(QuicFrame(frame2_));
+  ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+
+  // Writing path response & reverse path challenge is blocked due to missing
+  // client connection ID, i.e., packets_write_attempts is unchanged.
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+  // Receives new client CID from client would unblock write.
+  QuicNewConnectionIdFrame new_cid_frame;
+  new_cid_frame.connection_id = client_cid1;
+  new_cid_frame.sequence_number = 1u;
+  new_cid_frame.retire_prior_to = 0u;
+  connection_.OnNewConnectionIdFrame(new_cid_frame);
+  connection_.SendStreamData3();
+
+  EXPECT_EQ(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, EffectivePeerAddressChangeAtServer) {
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+  if (version().SupportsAntiAmplificationLimit()) {
+    QuicConnectionPeer::SetAddressValidated(&connection_);
+  }
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  // Discard INITIAL key.
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.NeuterUnencryptedPackets();
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+
+  // Clear direct_peer_address.
+  QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+  // Clear effective_peer_address, it is different from direct_peer_address for
+  // this test.
+  QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+                                              QuicSocketAddress());
+  const QuicSocketAddress kEffectivePeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/43210);
+  connection_.ReturnEffectivePeerAddressForNextPacket(kEffectivePeerAddress);
+
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  }
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kEffectivePeerAddress, connection_.effective_peer_address());
+
+  // Process another packet with the same direct peer address and different
+  // effective peer address on server side will start connection migration.
+  const QuicSocketAddress kNewEffectivePeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/54321);
+  connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress);
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address());
+  EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address());
+  if (connection_.validate_client_address()) {
+    EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+    EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration);
+  }
+
+  // Process another packet with a different direct peer address and the same
+  // effective peer address on server side will not start connection migration.
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+  connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress);
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+
+  if (!connection_.validate_client_address()) {
+    // ack_frame is used to complete the migration started by the last packet,
+    // we need to make sure a new migration does not start after the previous
+    // one is completed.
+    QuicAckFrame ack_frame = InitAckFrame(1);
+    EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+    ProcessFramePacketWithAddresses(QuicFrame(&ack_frame), kSelfAddress,
+                                    kNewPeerAddress, ENCRYPTION_FORWARD_SECURE);
+    EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+    EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address());
+    EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+  }
+
+  // Process another packet with different direct peer address and different
+  // effective peer address on server side will start connection migration.
+  const QuicSocketAddress kNewerEffectivePeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/65432);
+  const QuicSocketAddress kFinalPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/34567);
+  connection_.ReturnEffectivePeerAddressForNextPacket(
+      kNewerEffectivePeerAddress);
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+                                  kFinalPeerAddress, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kFinalPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewerEffectivePeerAddress, connection_.effective_peer_address());
+  if (connection_.validate_client_address()) {
+    EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+    EXPECT_EQ(send_algorithm_,
+              connection_.sent_packet_manager().GetSendAlgorithm());
+    EXPECT_EQ(2u, connection_.GetStats().num_validated_peer_migration);
+  }
+
+  // While the previous migration is ongoing, process another packet with the
+  // same direct peer address and different effective peer address on server
+  // side will start a new connection migration.
+  const QuicSocketAddress kNewestEffectivePeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/65430);
+  connection_.ReturnEffectivePeerAddressForNextPacket(
+      kNewestEffectivePeerAddress);
+  EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+  if (!connection_.validate_client_address()) {
+    EXPECT_CALL(*send_algorithm_, OnConnectionMigration()).Times(1);
+  }
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+                                  kFinalPeerAddress, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kFinalPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewestEffectivePeerAddress, connection_.effective_peer_address());
+  EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+            connection_.active_effective_peer_migration_type());
+  if (connection_.validate_client_address()) {
+    EXPECT_NE(send_algorithm_,
+              connection_.sent_packet_manager().GetSendAlgorithm());
+    EXPECT_EQ(kFinalPeerAddress, writer_->last_write_peer_address());
+    EXPECT_FALSE(writer_->path_challenge_frames().empty());
+    EXPECT_EQ(0u, connection_.GetStats()
+                      .num_peer_migration_while_validating_default_path);
+    EXPECT_TRUE(connection_.HasPendingPathValidation());
+  }
+}
+
+// Regression test for b/200020764.
+TEST_P(QuicConnectionTest, ConnectionMigrationWithPendingPaddingBytes) {
+  // TODO(haoyuewang) Move these test setup code to a common member function.
+  set_perspective(Perspective::IS_SERVER);
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  connection_.CreateConnectionIdManager();
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  QuicConnectionPeer::SetPeerAddress(&connection_, kPeerAddress);
+  QuicConnectionPeer::SetEffectivePeerAddress(&connection_, kPeerAddress);
+  QuicConnectionPeer::SetAddressValidated(&connection_);
+
+  // Sends new server CID to client.
+  QuicConnectionId new_cid;
+  EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+      .WillOnce(Invoke([&](const QuicConnectionId& cid) { new_cid = cid; }));
+  EXPECT_CALL(visitor_, SendNewConnectionId(_));
+  // Discard INITIAL key.
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.NeuterUnencryptedPackets();
+  connection_.OnHandshakeComplete();
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+
+  auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_);
+  packet_creator->FlushCurrentPacket();
+  packet_creator->AddPendingPadding(50u);
+  const QuicSocketAddress kPeerAddress3 =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/56789);
+  auto ack_frame = InitAckFrame(1);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+  ProcessFramesPacketWithAddresses({QuicFrame(&ack_frame)}, kSelfAddress,
+                                   kPeerAddress3, ENCRYPTION_FORWARD_SECURE);
+  if (GetQuicReloadableFlag(
+          quic_flush_pending_frames_and_padding_bytes_on_migration)) {
+    // Any pending frames/padding should be flushed before default_path_ is
+    // temporarily reset.
+    ASSERT_EQ(connection_.self_address_on_default_path_while_sending_packet()
+                  .host()
+                  .address_family(),
+              IpAddressFamily::IP_V6);
+  } else {
+    ASSERT_EQ(connection_.self_address_on_default_path_while_sending_packet()
+                  .host()
+                  .address_family(),
+              IpAddressFamily::IP_UNSPEC);
+  }
+}
+
+// Regression test for b/196208556.
+TEST_P(QuicConnectionTest,
+       ReversePathValidationResponseReceivedFromUnexpectedPeerAddress) {
+  set_perspective(Perspective::IS_SERVER);
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  connection_.CreateConnectionIdManager();
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  QuicConnectionPeer::SetPeerAddress(&connection_, kPeerAddress);
+  QuicConnectionPeer::SetEffectivePeerAddress(&connection_, kPeerAddress);
+  QuicConnectionPeer::SetAddressValidated(&connection_);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+  // Sends new server CID to client.
+  QuicConnectionId new_cid;
+  EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+      .WillOnce(Invoke([&](const QuicConnectionId& cid) { new_cid = cid; }));
+  EXPECT_CALL(visitor_, SendNewConnectionId(_));
+  // Discard INITIAL key.
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.NeuterUnencryptedPackets();
+  connection_.OnHandshakeComplete();
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+
+  // Process a non-probing packet to migrate to path 2 and kick off reverse path
+  // validation.
+  EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+  const QuicSocketAddress kPeerAddress2 =
+      QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+  peer_creator_.SetServerConnectionId(new_cid);
+  ProcessFramesPacketWithAddresses({QuicFrame(QuicPingFrame())}, kSelfAddress,
+                                   kPeerAddress2, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_FALSE(writer_->path_challenge_frames().empty());
+  QuicPathFrameBuffer reverse_path_challenge_payload =
+      writer_->path_challenge_frames().front().data_buffer;
+
+  // Receiveds a packet from path 3 with PATH_RESPONSE frame intended to
+  // validate path 2 and a non-probing frame.
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    const QuicSocketAddress kPeerAddress3 =
+        QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/56789);
+    auto ack_frame = InitAckFrame(1);
+    EXPECT_CALL(visitor_, OnConnectionMigration(IPV4_TO_IPV6_CHANGE)).Times(1);
+    EXPECT_CALL(visitor_, MaybeSendAddressToken()).WillOnce(Invoke([this]() {
+      connection_.SendControlFrame(
+          QuicFrame(new QuicNewTokenFrame(1, "new_token")));
+      return true;
+    }));
+    ProcessFramesPacketWithAddresses({QuicFrame(new QuicPathResponseFrame(
+                                          0, reverse_path_challenge_payload)),
+                                      QuicFrame(&ack_frame)},
+                                     kSelfAddress, kPeerAddress3,
+                                     ENCRYPTION_FORWARD_SECURE);
+  }
+}
+
+TEST_P(QuicConnectionTest, ReversePathValidationFailureAtServer) {
+  set_perspective(Perspective::IS_SERVER);
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+  SetClientConnectionId(TestConnectionId(1));
+  connection_.CreateConnectionIdManager();
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  // Discard INITIAL key.
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.NeuterUnencryptedPackets();
+  // Prevent packets from being coalesced.
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  QuicConnectionPeer::SetAddressValidated(&connection_);
+
+  QuicConnectionId client_cid0 = connection_.client_connection_id();
+  QuicConnectionId client_cid1 = TestConnectionId(2);
+  QuicConnectionId server_cid0 = connection_.connection_id();
+  QuicConnectionId server_cid1;
+  // Sends new server CID to client.
+  EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+      .WillOnce(
+          Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; }));
+  EXPECT_CALL(visitor_, SendNewConnectionId(_));
+  connection_.OnHandshakeComplete();
+  // Receives new client CID from client.
+  QuicNewConnectionIdFrame new_cid_frame;
+  new_cid_frame.connection_id = client_cid1;
+  new_cid_frame.sequence_number = 1u;
+  new_cid_frame.retire_prior_to = 0u;
+  connection_.OnNewConnectionIdFrame(new_cid_frame);
+  auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_);
+  ASSERT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0);
+  ASSERT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+
+  // Clear direct_peer_address.
+  QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+  // Clear effective_peer_address, it is the same as direct_peer_address for
+  // this test.
+  QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+                                              QuicSocketAddress());
+  EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+  EXPECT_CALL(visitor_, OnStreamFrame(_))
+      .WillOnce(Invoke(
+          [=]() { EXPECT_EQ(kPeerAddress, connection_.peer_address()); }))
+      .WillOnce(Invoke(
+          [=]() { EXPECT_EQ(kNewPeerAddress, connection_.peer_address()); }));
+  QuicFrames frames;
+  frames.push_back(QuicFrame(frame1_));
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+  // Process another packet with a different peer address on server side will
+  // start connection migration.
+  EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+  // IETF QUIC send algorithm should be changed to a different object, so no
+  // OnPacketSent() called on the old send algorithm.
+  EXPECT_CALL(*send_algorithm_, OnConnectionMigration()).Times(0);
+
+  QuicFrames frames2;
+  frames2.push_back(QuicFrame(frame2_));
+  QuicPaddingFrame padding;
+  frames2.push_back(QuicFrame(padding));
+  peer_creator_.SetServerConnectionId(server_cid1);
+  ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+  EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+            connection_.active_effective_peer_migration_type());
+  EXPECT_LT(0u, writer_->packets_write_attempts());
+  EXPECT_TRUE(connection_.HasPendingPathValidation());
+  EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(),
+            send_algorithm_);
+  EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+  const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+  const auto* alternative_path =
+      QuicConnectionPeer::GetAlternativePath(&connection_);
+  EXPECT_EQ(default_path->client_connection_id, client_cid1);
+  EXPECT_EQ(default_path->server_connection_id, server_cid1);
+  EXPECT_EQ(alternative_path->client_connection_id, client_cid0);
+  EXPECT_EQ(alternative_path->server_connection_id, server_cid0);
+  EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid1);
+  EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid1);
+
+  for (size_t i = 0; i < QuicPathValidator::kMaxRetryTimes; ++i) {
+    clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs));
+    static_cast<TestAlarmFactory::TestAlarm*>(
+        QuicPathValidatorPeer::retry_timer(
+            QuicConnectionPeer::path_validator(&connection_)))
+        ->Fire();
+  }
+  EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+            connection_.active_effective_peer_migration_type());
+
+  // Make sure anti-amplification limit is not reached.
+  ProcessFramesPacketWithAddresses(
+      {QuicFrame(QuicPingFrame()), QuicFrame(QuicPaddingFrame())}, kSelfAddress,
+      kNewPeerAddress, ENCRYPTION_FORWARD_SECURE);
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Advance the time so that the reverse path validation times out.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs));
+  static_cast<TestAlarmFactory::TestAlarm*>(
+      QuicPathValidatorPeer::retry_timer(
+          QuicConnectionPeer::path_validator(&connection_)))
+      ->Fire();
+  EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+  EXPECT_EQ(connection_.sent_packet_manager().GetSendAlgorithm(),
+            send_algorithm_);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Verify that default_path_ is reverted and alternative_path_ is cleared.
+  EXPECT_EQ(default_path->client_connection_id, client_cid0);
+  EXPECT_EQ(default_path->server_connection_id, server_cid0);
+  EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty());
+  EXPECT_FALSE(alternative_path->stateless_reset_token.has_value());
+  auto* retire_peer_issued_cid_alarm =
+      connection_.GetRetirePeerIssuedConnectionIdAlarm();
+  ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+  EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/1u));
+  retire_peer_issued_cid_alarm->Fire();
+  EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0);
+  EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+}
+
+TEST_P(QuicConnectionTest, ReceivePathProbeWithNoAddressChangeAtServer) {
+  PathProbeTestInit(Perspective::IS_SERVER);
+
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+  EXPECT_CALL(visitor_, OnPacketReceived(_, _, false)).Times(0);
+
+  // Process a padded PING packet with no peer address change on server side
+  // will be ignored. But a PATH CHALLENGE packet with no peer address change
+  // will be considered as path probing.
+  std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+
+  std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+      QuicEncryptedPacket(probing_packet->encrypted_buffer,
+                          probing_packet->encrypted_length),
+      clock_.Now()));
+
+  uint64_t num_probing_received =
+      connection_.GetStats().num_connectivity_probing_received;
+  ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received);
+
+  EXPECT_EQ(
+      num_probing_received + (GetParam().version.HasIetfQuicFrames() ? 1u : 0u),
+      connection_.GetStats().num_connectivity_probing_received);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+// Regression test for b/150161358.
+TEST_P(QuicConnectionTest, BufferedMtuPacketTooBig) {
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+  writer_->SetWriteBlocked();
+
+  // Send a MTU packet while blocked. It should be buffered.
+  connection_.SendMtuDiscoveryPacket(kMaxOutgoingPacketSize);
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+  EXPECT_TRUE(writer_->IsWriteBlocked());
+
+  writer_->AlwaysGetPacketTooLarge();
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+}
+
+TEST_P(QuicConnectionTest, WriteOutOfOrderQueuedPackets) {
+  // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+  if (!IsDefaultTestConfiguration()) {
+    return;
+  }
+
+  set_perspective(Perspective::IS_CLIENT);
+
+  BlockOnNextWrite();
+
+  QuicStreamId stream_id = 2;
+  connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
+
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+  writer_->SetWritable();
+  connection_.SendConnectivityProbingPacket(writer_.get(),
+                                            connection_.peer_address());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+  connection_.OnCanWrite();
+}
+
+TEST_P(QuicConnectionTest, DiscardQueuedPacketsAfterConnectionClose) {
+  // Regression test for b/74073386.
+  {
+    InSequence seq;
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+        .Times(AtLeast(1));
+    EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(AtLeast(1));
+  }
+
+  set_perspective(Perspective::IS_CLIENT);
+
+  writer_->SimulateNextPacketTooLarge();
+
+  // This packet write should fail, which should cause the connection to close
+  // after sending a connection close packet, then the failed packet should be
+  // queued.
+  connection_.SendStreamDataWithString(/*id=*/2, "foo", 0, NO_FIN);
+
+  EXPECT_FALSE(connection_.connected());
+  // No need to buffer packets.
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+
+  EXPECT_EQ(0u, connection_.GetStats().packets_discarded);
+  connection_.OnCanWrite();
+  EXPECT_EQ(0u, connection_.GetStats().packets_discarded);
+}
+
+class TestQuicPathValidationContext : public QuicPathValidationContext {
+ public:
+  TestQuicPathValidationContext(const QuicSocketAddress& self_address,
+                                const QuicSocketAddress& peer_address,
+
+                                QuicPacketWriter* writer)
+      : QuicPathValidationContext(self_address, peer_address),
+        writer_(writer) {}
+
+  QuicPacketWriter* WriterToUse() override { return writer_; }
+
+ private:
+  QuicPacketWriter* writer_;
+};
+
+class TestValidationResultDelegate : public QuicPathValidator::ResultDelegate {
+ public:
+  TestValidationResultDelegate(QuicConnection* connection,
+                               const QuicSocketAddress& expected_self_address,
+                               const QuicSocketAddress& expected_peer_address,
+                               bool* success)
+      : QuicPathValidator::ResultDelegate(),
+        connection_(connection),
+        expected_self_address_(expected_self_address),
+        expected_peer_address_(expected_peer_address),
+        success_(success) {}
+  void OnPathValidationSuccess(
+      std::unique_ptr<QuicPathValidationContext> context) override {
+    EXPECT_EQ(expected_self_address_, context->self_address());
+    EXPECT_EQ(expected_peer_address_, context->peer_address());
+    *success_ = true;
+  }
+
+  void OnPathValidationFailure(
+      std::unique_ptr<QuicPathValidationContext> context) override {
+    EXPECT_EQ(expected_self_address_, context->self_address());
+    EXPECT_EQ(expected_peer_address_, context->peer_address());
+    if (connection_->perspective() == Perspective::IS_CLIENT) {
+      connection_->OnPathValidationFailureAtClient();
+    }
+    *success_ = false;
+  }
+
+ private:
+  QuicConnection* connection_;
+  QuicSocketAddress expected_self_address_;
+  QuicSocketAddress expected_peer_address_;
+  bool* success_;
+};
+
+// Receive a path probe request at the server side, i.e.,
+// in non-IETF version: receive a padded PING packet with a peer addess change;
+// in IETF version: receive a packet contains PATH CHALLENGE with peer address
+// change.
+TEST_P(QuicConnectionTest, ReceivePathProbingAtServer) {
+  PathProbeTestInit(Perspective::IS_SERVER);
+
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+  QuicPathFrameBuffer payload;
+  if (!GetParam().version.HasIetfQuicFrames()) {
+    EXPECT_CALL(visitor_,
+                OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+        .Times(1);
+  } else {
+    EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
+    if (connection_.validate_client_address()) {
+      EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+          .Times(AtLeast(1u))
+          .WillOnce(Invoke([&]() {
+            EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+            EXPECT_EQ(1u, writer_->path_response_frames().size());
+            payload = writer_->path_challenge_frames().front().data_buffer;
+          }));
+    }
+  }
+  // Process a probing packet from a new peer address on server side
+  // is effectively receiving a connectivity probing.
+  const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(),
+                                          /*port=*/23456);
+
+  std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+  std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+      QuicEncryptedPacket(probing_packet->encrypted_buffer,
+                          probing_packet->encrypted_length),
+      clock_.Now()));
+  uint64_t num_probing_received =
+      connection_.GetStats().num_connectivity_probing_received;
+  ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
+
+  EXPECT_EQ(num_probing_received + 1,
+            connection_.GetStats().num_connectivity_probing_received);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+  if (GetParam().version.HasIetfQuicFrames() &&
+      connection_.use_path_validator() &&
+      GetQuicReloadableFlag(quic_count_bytes_on_alternative_path_seperately)) {
+    QuicByteCount bytes_sent =
+        QuicConnectionPeer::BytesSentOnAlternativePath(&connection_);
+    EXPECT_LT(0u, bytes_sent);
+    EXPECT_EQ(received->length(),
+              QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_));
+
+    // Receiving one more probing packet should update the bytes count.
+    probing_packet = ConstructProbingPacket();
+    received.reset(ConstructReceivedPacket(
+        QuicEncryptedPacket(probing_packet->encrypted_buffer,
+                            probing_packet->encrypted_length),
+        clock_.Now()));
+    ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
+
+    EXPECT_EQ(num_probing_received + 2,
+              connection_.GetStats().num_connectivity_probing_received);
+    EXPECT_EQ(2 * bytes_sent,
+              QuicConnectionPeer::BytesSentOnAlternativePath(&connection_));
+    EXPECT_EQ(2 * received->length(),
+              QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_));
+
+    bool success = false;
+    if (!connection_.validate_client_address()) {
+      EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+          .Times(AtLeast(1u))
+          .WillOnce(Invoke([&]() {
+            EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+            payload = writer_->path_challenge_frames().front().data_buffer;
+          }));
+
+      connection_.ValidatePath(
+          std::make_unique<TestQuicPathValidationContext>(
+              connection_.self_address(), kNewPeerAddress, writer_.get()),
+          std::make_unique<TestValidationResultDelegate>(
+              &connection_, connection_.self_address(), kNewPeerAddress,
+              &success));
+    }
+    EXPECT_EQ((connection_.validate_client_address() ? 2 : 3) * bytes_sent,
+              QuicConnectionPeer::BytesSentOnAlternativePath(&connection_));
+    QuicFrames frames;
+    frames.push_back(QuicFrame(new QuicPathResponseFrame(99, payload)));
+    ProcessFramesPacketWithAddresses(frames, connection_.self_address(),
+                                     kNewPeerAddress,
+                                     ENCRYPTION_FORWARD_SECURE);
+    EXPECT_LT(2 * received->length(),
+              QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_));
+    if (connection_.validate_client_address()) {
+      EXPECT_TRUE(QuicConnectionPeer::IsAlternativePathValidated(&connection_));
+    }
+    // Receiving another probing packet from a newer address with a different
+    // port shouldn't trigger another reverse path validation.
+    QuicSocketAddress kNewerPeerAddress(QuicIpAddress::Loopback4(),
+                                        /*port=*/34567);
+    probing_packet = ConstructProbingPacket();
+    received.reset(ConstructReceivedPacket(
+        QuicEncryptedPacket(probing_packet->encrypted_buffer,
+                            probing_packet->encrypted_length),
+        clock_.Now()));
+    ProcessReceivedPacket(kSelfAddress, kNewerPeerAddress, *received);
+    EXPECT_FALSE(connection_.HasPendingPathValidation());
+    EXPECT_EQ(connection_.validate_client_address(),
+              QuicConnectionPeer::IsAlternativePathValidated(&connection_));
+  }
+
+  // Process another packet with the old peer address on server side will not
+  // start peer migration.
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+// Receive a padded PING packet with a port change on server side.
+TEST_P(QuicConnectionTest, ReceivePaddedPingWithPortChangeAtServer) {
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+  if (version().SupportsAntiAmplificationLimit()) {
+    QuicConnectionPeer::SetAddressValidated(&connection_);
+  }
+
+  // Clear direct_peer_address.
+  QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+  // Clear effective_peer_address, it is the same as direct_peer_address for
+  // this test.
+  QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+                                              QuicSocketAddress());
+  EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+  if (GetParam().version.UsesCryptoFrames()) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  }
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+  if (GetParam().version.HasIetfQuicFrames()) {
+    // In IETF version, a padded PING packet with port change is not taken as
+    // connectivity probe.
+    EXPECT_CALL(visitor_, GetHandshakeState())
+        .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+    EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+    EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
+  } else {
+    // In non-IETF version, process a padded PING packet from a new peer
+    // address on server side is effectively receiving a connectivity probing.
+    EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+    EXPECT_CALL(visitor_,
+                OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+        .Times(1);
+  }
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+  QuicFrames frames;
+  // Write a PING frame, which has no data payload.
+  QuicPingFrame ping_frame;
+  frames.push_back(QuicFrame(ping_frame));
+
+  // Add padding to the rest of the packet.
+  QuicPaddingFrame padding_frame;
+  frames.push_back(QuicFrame(padding_frame));
+
+  uint64_t num_probing_received =
+      connection_.GetStats().num_connectivity_probing_received;
+
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_INITIAL);
+
+  if (GetParam().version.HasIetfQuicFrames()) {
+    // Padded PING with port changen is not considered as connectivity probe but
+    // a PORT CHANGE.
+    EXPECT_EQ(num_probing_received,
+              connection_.GetStats().num_connectivity_probing_received);
+    EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+    EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+  } else {
+    EXPECT_EQ(num_probing_received + 1,
+              connection_.GetStats().num_connectivity_probing_received);
+    EXPECT_EQ(kPeerAddress, connection_.peer_address());
+    EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+  }
+
+  if (GetParam().version.HasIetfQuicFrames()) {
+    EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+  }
+  // Process another packet with the old peer address on server side. gQUIC
+  // shouldn't regard this as a peer migration.
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, ReceiveReorderedPathProbingAtServer) {
+  PathProbeTestInit(Perspective::IS_SERVER);
+
+  // Decrease packet number to simulate out-of-order packets.
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4);
+
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+  if (!GetParam().version.HasIetfQuicFrames()) {
+    EXPECT_CALL(visitor_,
+                OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+        .Times(1);
+  } else {
+    EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
+  }
+
+  // Process a padded PING packet from a new peer address on server side
+  // is effectively receiving a connectivity probing, even if a newer packet has
+  // been received before this one.
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+  std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+  std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+      QuicEncryptedPacket(probing_packet->encrypted_buffer,
+                          probing_packet->encrypted_length),
+      clock_.Now()));
+
+  uint64_t num_probing_received =
+      connection_.GetStats().num_connectivity_probing_received;
+  ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
+
+  EXPECT_EQ(num_probing_received + 1,
+            connection_.GetStats().num_connectivity_probing_received);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, MigrateAfterProbingAtServer) {
+  PathProbeTestInit(Perspective::IS_SERVER);
+
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+  if (!GetParam().version.HasIetfQuicFrames()) {
+    EXPECT_CALL(visitor_,
+                OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+        .Times(1);
+  } else {
+    EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
+  }
+
+  // Process a padded PING packet from a new peer address on server side
+  // is effectively receiving a connectivity probing.
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+  std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+  std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+      QuicEncryptedPacket(probing_packet->encrypted_buffer,
+                          probing_packet->encrypted_length),
+      clock_.Now()));
+  ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+  // Process another non-probing packet with the new peer address on server
+  // side will start peer migration.
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+                                  kNewPeerAddress, ENCRYPTION_INITIAL);
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, ReceiveConnectivityProbingPacketAtClient) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  PathProbeTestInit(Perspective::IS_CLIENT);
+
+  // Client takes all padded PING packet as speculative connectivity
+  // probing packet, and reports to visitor.
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+
+  std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+  std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+      QuicEncryptedPacket(probing_packet->encrypted_buffer,
+                          probing_packet->encrypted_length),
+      clock_.Now()));
+  uint64_t num_probing_received =
+      connection_.GetStats().num_connectivity_probing_received;
+  ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received);
+
+  EXPECT_EQ(
+      num_probing_received + (GetParam().version.HasIetfQuicFrames() ? 1u : 0u),
+      connection_.GetStats().num_connectivity_probing_received);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, ReceiveConnectivityProbingResponseAtClient) {
+  // TODO(b/150095484): add test coverage for IETF to verify that client takes
+  // PATH RESPONSE with peer address change as correct validation on the new
+  // path.
+  if (GetParam().version.HasIetfQuicFrames()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  PathProbeTestInit(Perspective::IS_CLIENT);
+
+  // Process a padded PING packet with a different self address on client side
+  // is effectively receiving a connectivity probing.
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+  if (!GetParam().version.HasIetfQuicFrames()) {
+    EXPECT_CALL(visitor_,
+                OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+        .Times(1);
+  } else {
+    EXPECT_CALL(visitor_, OnPacketReceived(_, _, _)).Times(0);
+  }
+
+  const QuicSocketAddress kNewSelfAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+  std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+  std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+      QuicEncryptedPacket(probing_packet->encrypted_buffer,
+                          probing_packet->encrypted_length),
+      clock_.Now()));
+  uint64_t num_probing_received =
+      connection_.GetStats().num_connectivity_probing_received;
+  ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received);
+
+  EXPECT_EQ(num_probing_received + 1,
+            connection_.GetStats().num_connectivity_probing_received);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, PeerAddressChangeAtClient) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  set_perspective(Perspective::IS_CLIENT);
+  EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+
+  // Clear direct_peer_address.
+  QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+  // Clear effective_peer_address, it is the same as direct_peer_address for
+  // this test.
+  QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+                                              QuicSocketAddress());
+  EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  }
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+  // Process another packet with a different peer address on client side will
+  // only update peer address.
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress,
+                                  kNewPeerAddress, ENCRYPTION_INITIAL);
+  if (connection_.version().HasIetfQuicFrames()) {
+    // IETF QUIC disallows server initiated address change.
+    EXPECT_EQ(kPeerAddress, connection_.peer_address());
+    EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+  } else {
+    EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+    EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+  }
+}
+
+TEST_P(QuicConnectionTest, MaxPacketSize) {
+  EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+  EXPECT_EQ(1250u, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, PeerLowersMaxPacketSize) {
+  EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+
+  // SetFromConfig is always called after construction from InitializeSession.
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  constexpr uint32_t kTestMaxPacketSize = 1233u;
+  QuicConfig config;
+  QuicConfigPeer::SetReceivedMaxPacketSize(&config, kTestMaxPacketSize);
+  connection_.SetFromConfig(config);
+
+  EXPECT_EQ(kTestMaxPacketSize, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, PeerCannotRaiseMaxPacketSize) {
+  EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+
+  // SetFromConfig is always called after construction from InitializeSession.
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  constexpr uint32_t kTestMaxPacketSize = 1450u;
+  QuicConfig config;
+  QuicConfigPeer::SetReceivedMaxPacketSize(&config, kTestMaxPacketSize);
+  connection_.SetFromConfig(config);
+
+  EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) {
+  TestConnection connection(TestConnectionId(), kSelfAddress, kPeerAddress,
+                            helper_.get(), alarm_factory_.get(), writer_.get(),
+                            Perspective::IS_SERVER, version());
+  EXPECT_EQ(Perspective::IS_SERVER, connection.perspective());
+  EXPECT_EQ(1000u, connection.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, LowerServerResponseMtuTest) {
+  set_perspective(Perspective::IS_SERVER);
+  connection_.SetMaxPacketLength(1000);
+  EXPECT_EQ(1000u, connection_.max_packet_length());
+
+  SetQuicFlag(FLAGS_quic_use_lower_server_response_mtu_for_test, true);
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(::testing::AtMost(1));
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(::testing::AtMost(1));
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+  EXPECT_EQ(1250u, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) {
+  set_perspective(Perspective::IS_SERVER);
+  connection_.SetMaxPacketLength(1000);
+
+  QuicPacketHeader header;
+  header.destination_connection_id = connection_id_;
+  header.version_flag = true;
+  header.packet_number = QuicPacketNumber(12);
+
+  if (QuicVersionHasLongHeaderLengths(
+          peer_framer_.version().transport_version)) {
+    header.long_packet_type = INITIAL;
+    header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
+    header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
+  }
+
+  QuicFrames frames;
+  QuicPaddingFrame padding;
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    frames.push_back(QuicFrame(&crypto_frame_));
+  } else {
+    frames.push_back(QuicFrame(frame1_));
+  }
+  frames.push_back(QuicFrame(padding));
+  std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+  char buffer[kMaxOutgoingPacketSize];
+  size_t encrypted_length =
+      peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12),
+                                  *packet, buffer, kMaxOutgoingPacketSize);
+  EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length);
+
+  framer_.set_version(version());
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  }
+  connection_.ProcessUdpPacket(
+      kSelfAddress, kPeerAddress,
+      QuicReceivedPacket(buffer, encrypted_length, clock_.ApproximateNow(),
+                         false));
+
+  EXPECT_EQ(kMaxOutgoingPacketSize, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSizeWhileWriterLimited) {
+  const QuicByteCount lower_max_packet_size = 1240;
+  writer_->set_max_packet_size(lower_max_packet_size);
+  set_perspective(Perspective::IS_SERVER);
+  connection_.SetMaxPacketLength(1000);
+  EXPECT_EQ(1000u, connection_.max_packet_length());
+
+  QuicPacketHeader header;
+  header.destination_connection_id = connection_id_;
+  header.version_flag = true;
+  header.packet_number = QuicPacketNumber(12);
+
+  if (QuicVersionHasLongHeaderLengths(
+          peer_framer_.version().transport_version)) {
+    header.long_packet_type = INITIAL;
+    header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
+    header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
+  }
+
+  QuicFrames frames;
+  QuicPaddingFrame padding;
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    frames.push_back(QuicFrame(&crypto_frame_));
+  } else {
+    frames.push_back(QuicFrame(frame1_));
+  }
+  frames.push_back(QuicFrame(padding));
+  std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+  char buffer[kMaxOutgoingPacketSize];
+  size_t encrypted_length =
+      peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(12),
+                                  *packet, buffer, kMaxOutgoingPacketSize);
+  EXPECT_EQ(kMaxOutgoingPacketSize, encrypted_length);
+
+  framer_.set_version(version());
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  }
+  connection_.ProcessUdpPacket(
+      kSelfAddress, kPeerAddress,
+      QuicReceivedPacket(buffer, encrypted_length, clock_.ApproximateNow(),
+                         false));
+
+  // Here, the limit imposed by the writer is lower than the size of the packet
+  // received, so the writer max packet size is used.
+  EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriter) {
+  const QuicByteCount lower_max_packet_size = 1240;
+  writer_->set_max_packet_size(lower_max_packet_size);
+
+  static_assert(lower_max_packet_size < kDefaultMaxPacketSize,
+                "Default maximum packet size is too low");
+  connection_.SetMaxPacketLength(kDefaultMaxPacketSize);
+
+  EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriterForNewConnection) {
+  const QuicConnectionId connection_id = TestConnectionId(17);
+  const QuicByteCount lower_max_packet_size = 1240;
+  writer_->set_max_packet_size(lower_max_packet_size);
+  TestConnection connection(connection_id, kSelfAddress, kPeerAddress,
+                            helper_.get(), alarm_factory_.get(), writer_.get(),
+                            Perspective::IS_CLIENT, version());
+  EXPECT_EQ(Perspective::IS_CLIENT, connection.perspective());
+  EXPECT_EQ(lower_max_packet_size, connection.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, PacketsInOrder) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  ProcessPacket(1);
+  EXPECT_EQ(QuicPacketNumber(1u), LargestAcked(connection_.ack_frame()));
+  EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+
+  ProcessPacket(2);
+  EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(connection_.ack_frame()));
+  EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+
+  ProcessPacket(3);
+  EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+  EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+}
+
+TEST_P(QuicConnectionTest, PacketsOutOfOrder) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  ProcessPacket(3);
+  EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+  EXPECT_TRUE(IsMissing(2));
+  EXPECT_TRUE(IsMissing(1));
+
+  ProcessPacket(2);
+  EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+  EXPECT_FALSE(IsMissing(2));
+  EXPECT_TRUE(IsMissing(1));
+
+  ProcessPacket(1);
+  EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+  EXPECT_FALSE(IsMissing(2));
+  EXPECT_FALSE(IsMissing(1));
+}
+
+TEST_P(QuicConnectionTest, DuplicatePacket) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  ProcessPacket(3);
+  EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+  EXPECT_TRUE(IsMissing(2));
+  EXPECT_TRUE(IsMissing(1));
+
+  // Send packet 3 again, but do not set the expectation that
+  // the visitor OnStreamFrame() will be called.
+  ProcessDataPacket(3);
+  EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+  EXPECT_TRUE(IsMissing(2));
+  EXPECT_TRUE(IsMissing(1));
+}
+
+TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  ProcessPacket(3);
+  EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+  EXPECT_TRUE(IsMissing(2));
+  EXPECT_TRUE(IsMissing(1));
+
+  ProcessPacket(2);
+  EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(connection_.ack_frame()));
+  EXPECT_TRUE(IsMissing(1));
+
+  ProcessPacket(5);
+  EXPECT_EQ(QuicPacketNumber(5u), LargestAcked(connection_.ack_frame()));
+  EXPECT_TRUE(IsMissing(1));
+  EXPECT_TRUE(IsMissing(4));
+
+  // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
+  // packet the peer will not retransmit.  It indicates this by sending 'least
+  // awaiting' is 4.  The connection should then realize 1 will not be
+  // retransmitted, and will remove it from the missing list.
+  QuicAckFrame frame = InitAckFrame(1);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  ProcessAckPacket(6, &frame);
+
+  // Force an ack to be sent.
+  SendAckPacketToPeer();
+  EXPECT_TRUE(IsMissing(4));
+}
+
+TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) {
+  // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+  if (!IsDefaultTestConfiguration() ||
+      VersionHasIetfQuicFrames(version().transport_version)) {
+    return;
+  }
+
+  // Process an unencrypted packet from the non-crypto stream.
+  frame1_.stream_id = 3;
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_QUIC_PEER_BUG(ProcessDataPacketAtLevel(1, false, ENCRYPTION_INITIAL),
+                       "");
+  TestConnectionCloseQuicErrorCode(QUIC_UNENCRYPTED_STREAM_DATA);
+}
+
+TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  ProcessPacket(3);
+  // Should not cause an ack.
+  EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+  ProcessPacket(2);
+  // Should ack immediately, since this fills the last hole.
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+  ProcessPacket(1);
+  // Should ack immediately, since this fills the last hole.
+  EXPECT_EQ(2u, writer_->packets_write_attempts());
+
+  ProcessPacket(4);
+  // Should not cause an ack.
+  EXPECT_EQ(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+  SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
+  EXPECT_EQ(2u, writer_->packets_write_attempts());
+
+  QuicAckFrame ack1 = InitAckFrame(1);
+  QuicAckFrame ack2 = InitAckFrame(2);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()).Times(1);
+  }
+  ProcessAckPacket(2, &ack2);
+  // Should ack immediately since we have missing packets.
+  EXPECT_EQ(2u, writer_->packets_write_attempts());
+
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    EXPECT_CALL(visitor_, OnOneRttPacketAcknowledged()).Times(0);
+  }
+  ProcessAckPacket(1, &ack1);
+  // Should not ack an ack filling a missing packet.
+  EXPECT_EQ(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  QuicPacketNumber original, second;
+
+  QuicByteCount packet_size =
+      SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original);  // 1st packet.
+  SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second);        // 2nd packet.
+
+  QuicAckFrame frame = InitAckFrame({{second, second + 1}});
+  // First nack triggers early retransmit.
+  LostPacketVector lost_packets;
+  lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+                      Return(LossDetectionInterface::DetectionStats())));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicPacketNumber retransmission;
+  // Packet 1 is short header for IETF QUIC because the encryption level
+  // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer.
+  EXPECT_CALL(*send_algorithm_,
+              OnPacketSent(_, _, _,
+                           GetParam().version.HasIetfInvariantHeader()
+                               ? packet_size
+                               : packet_size - kQuicVersionSize,
+                           _))
+      .WillOnce(SaveArg<2>(&retransmission));
+
+  ProcessAckPacket(&frame);
+
+  QuicAckFrame frame2 = ConstructAckFrame(retransmission, original);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  ProcessAckPacket(&frame2);
+
+  // Now if the peer sends an ack which still reports the retransmitted packet
+  // as missing, that will bundle an ack with data after two acks in a row
+  // indicate the high water mark needs to be raised.
+  EXPECT_CALL(*send_algorithm_,
+              OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
+  connection_.SendStreamDataWithString(3, "foo", 6, NO_FIN);
+  // No ack sent.
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  EXPECT_EQ(1u, writer_->stream_frames().size());
+
+  // No more packet loss for the rest of the test.
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .Times(AnyNumber());
+  ProcessAckPacket(&frame2);
+  EXPECT_CALL(*send_algorithm_,
+              OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
+  connection_.SendStreamDataWithString(3, "foofoofoo", 9, NO_FIN);
+  // Ack bundled.
+  if (GetParam().no_stop_waiting) {
+    // Do not ACK acks.
+    EXPECT_EQ(1u, writer_->frame_count());
+  } else {
+    EXPECT_EQ(3u, writer_->frame_count());
+  }
+  EXPECT_EQ(1u, writer_->stream_frames().size());
+  if (GetParam().no_stop_waiting) {
+    EXPECT_TRUE(writer_->ack_frames().empty());
+  } else {
+    EXPECT_FALSE(writer_->ack_frames().empty());
+  }
+
+  // But an ack with no missing packets will not send an ack.
+  AckPacket(original, &frame2);
+  ProcessAckPacket(&frame2);
+  ProcessAckPacket(&frame2);
+}
+
+TEST_P(QuicConnectionTest, AckFrequencyUpdatedFromAckFrequencyFrame) {
+  if (!GetParam().version.HasIetfQuicFrames()) {
+    return;
+  }
+  connection_.set_can_receive_ack_frequency_frame();
+
+  // Expect 13 acks, every 3rd packet including the first packet with
+  // AckFrequencyFrame.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(13);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  QuicAckFrequencyFrame ack_frequency_frame;
+  ack_frequency_frame.packet_tolerance = 3;
+  ProcessFramePacketAtLevel(1, QuicFrame(&ack_frequency_frame),
+                            ENCRYPTION_FORWARD_SECURE);
+
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(38);
+  // Receives packets 2 - 39.
+  for (size_t i = 2; i <= 39; ++i) {
+    ProcessDataPacket(i);
+  }
+}
+
+TEST_P(QuicConnectionTest, AckDecimationReducesAcks) {
+  const size_t kMinRttMs = 40;
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+                       QuicTime::Delta::Zero(), QuicTime::Zero());
+  EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+
+  // Start ack decimation from 10th packet.
+  connection_.set_min_received_before_ack_decimation(10);
+
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(30);
+
+  // Expect 6 acks: 5 acks between packets 1-10, and ack at 20.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6);
+  // Receives packets 1 - 29.
+  for (size_t i = 1; i <= 29; ++i) {
+    ProcessDataPacket(i);
+  }
+
+  // We now receive the 30th packet, and so we send an ack.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessDataPacket(30);
+}
+
+TEST_P(QuicConnectionTest, AckNeedsRetransmittableFrames) {
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(99);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19);
+  // Receives packets 1 - 39.
+  for (size_t i = 1; i <= 39; ++i) {
+    ProcessDataPacket(i);
+  }
+  // Receiving Packet 40 causes 20th ack to send. Session is informed and adds
+  // WINDOW_UPDATE.
+  EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
+      .WillOnce(Invoke([this]() {
+        connection_.SendControlFrame(QuicFrame(QuicWindowUpdateFrame(1, 0, 0)));
+      }));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  EXPECT_EQ(0u, writer_->window_update_frames().size());
+  ProcessDataPacket(40);
+  EXPECT_EQ(1u, writer_->window_update_frames().size());
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(9);
+  // Receives packets 41 - 59.
+  for (size_t i = 41; i <= 59; ++i) {
+    ProcessDataPacket(i);
+  }
+  // Send a packet containing stream frame.
+  SendStreamDataToPeer(
+      QuicUtils::GetFirstBidirectionalStreamId(
+          connection_.version().transport_version, Perspective::IS_CLIENT),
+      "bar", 0, NO_FIN, nullptr);
+
+  // Session will not be informed until receiving another 20 packets.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19);
+  for (size_t i = 60; i <= 98; ++i) {
+    ProcessDataPacket(i);
+    EXPECT_EQ(0u, writer_->window_update_frames().size());
+  }
+  // Session does not add a retransmittable frame.
+  EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
+      .WillOnce(Invoke([this]() {
+        connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
+      }));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  EXPECT_EQ(0u, writer_->ping_frames().size());
+  ProcessDataPacket(99);
+  EXPECT_EQ(0u, writer_->window_update_frames().size());
+  // A ping frame will be added.
+  EXPECT_EQ(1u, writer_->ping_frames().size());
+}
+
+TEST_P(QuicConnectionTest, AckNeedsRetransmittableFramesAfterPto) {
+  // Disable TLP so the RTO fires immediately.
+  connection_.SetMaxTailLossProbes(0);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(kEACK);
+  config.SetConnectionOptionsToSend(connection_options);
+  connection_.SetFromConfig(config);
+
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  connection_.OnHandshakeComplete();
+
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(10);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(4);
+  // Receive packets 1 - 9.
+  for (size_t i = 1; i <= 9; ++i) {
+    ProcessDataPacket(i);
+  }
+
+  // Send a ping and fire the retransmission alarm.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  SendPing();
+  QuicTime retransmission_time =
+      connection_.GetRetransmissionAlarm()->deadline();
+  clock_.AdvanceTime(retransmission_time - clock_.Now());
+  connection_.GetRetransmissionAlarm()->Fire();
+  ASSERT_TRUE(manager_->GetConsecutiveRtoCount() > 0 ||
+              manager_->GetConsecutivePtoCount() > 0);
+
+  // Process a packet, which requests a retransmittable frame be bundled
+  // with the ACK.
+  EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
+      .WillOnce(Invoke([this]() {
+        connection_.SendControlFrame(QuicFrame(QuicWindowUpdateFrame(1, 0, 0)));
+      }));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessDataPacket(11);
+  EXPECT_EQ(1u, writer_->window_update_frames().size());
+}
+
+TEST_P(QuicConnectionTest, LeastUnackedLower) {
+  if (GetParam().version.HasIetfInvariantHeader()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+  SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
+  SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr);
+
+  // Start out saying the least unacked is 2.
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
+  ProcessStopWaitingPacket(InitStopWaitingFrame(2));
+
+  // Change it to 1, but lower the packet number to fake out-of-order packets.
+  // This should be fine.
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1);
+  // The scheduler will not process out of order acks, but all packet processing
+  // causes the connection to try to write.
+  if (!GetParam().no_stop_waiting) {
+    EXPECT_CALL(visitor_, OnCanWrite());
+  }
+  ProcessStopWaitingPacket(InitStopWaitingFrame(1));
+
+  // Now claim it's one, but set the ordering so it was sent "after" the first
+  // one.  This should cause a connection error.
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 7);
+  if (!GetParam().no_stop_waiting) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+        .Times(AtLeast(1));
+    EXPECT_CALL(visitor_,
+                OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+        .Times(AtLeast(1));
+  }
+  ProcessStopWaitingPacket(InitStopWaitingFrame(1));
+  if (!GetParam().no_stop_waiting) {
+    TestConnectionCloseQuicErrorCode(QUIC_INVALID_STOP_WAITING_DATA);
+  }
+}
+
+TEST_P(QuicConnectionTest, TooManySentPackets) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  QuicPacketCount max_tracked_packets = 50;
+  QuicConnectionPeer::SetMaxTrackedPackets(&connection_, max_tracked_packets);
+
+  const int num_packets = max_tracked_packets + 5;
+
+  for (int i = 0; i < num_packets; ++i) {
+    SendStreamDataToPeer(1, "foo", 3 * i, NO_FIN, nullptr);
+  }
+
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+
+  ProcessFramePacket(QuicFrame(QuicPingFrame()));
+
+  TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS);
+}
+
+TEST_P(QuicConnectionTest, LargestObservedLower) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+  SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
+  SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+  // Start out saying the largest observed is 2.
+  QuicAckFrame frame1 = InitAckFrame(1);
+  QuicAckFrame frame2 = InitAckFrame(2);
+  ProcessAckPacket(&frame2);
+
+  EXPECT_CALL(visitor_, OnCanWrite());
+  ProcessAckPacket(&frame1);
+}
+
+TEST_P(QuicConnectionTest, AckUnsentData) {
+  // Ack a packet which has not been sent.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  QuicAckFrame frame = InitAckFrame(1);
+  EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
+  ProcessAckPacket(&frame);
+  TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA);
+}
+
+TEST_P(QuicConnectionTest, BasicSending) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  const QuicConnectionStats& stats = connection_.GetStats();
+  EXPECT_FALSE(stats.first_decrypted_packet.IsInitialized());
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacket(1);
+  EXPECT_EQ(QuicPacketNumber(1), stats.first_decrypted_packet);
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);  // Packet 1
+  EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+  SendAckPacketToPeer();  // Packet 2
+
+  if (GetParam().no_stop_waiting) {
+    // Expect no stop waiting frame is sent.
+    EXPECT_FALSE(least_unacked().IsInitialized());
+  } else {
+    EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
+  }
+
+  SendAckPacketToPeer();  // Packet 3
+  if (GetParam().no_stop_waiting) {
+    // Expect no stop waiting frame is sent.
+    EXPECT_FALSE(least_unacked().IsInitialized());
+  } else {
+    EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
+  }
+
+  SendStreamDataToPeer(1, "bar", 3, NO_FIN, &last_packet);  // Packet 4
+  EXPECT_EQ(QuicPacketNumber(4u), last_packet);
+  SendAckPacketToPeer();  // Packet 5
+  if (GetParam().no_stop_waiting) {
+    // Expect no stop waiting frame is sent.
+    EXPECT_FALSE(least_unacked().IsInitialized());
+  } else {
+    EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
+  }
+
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+  // Peer acks up to packet 3.
+  QuicAckFrame frame = InitAckFrame(3);
+  ProcessAckPacket(&frame);
+  SendAckPacketToPeer();  // Packet 6
+
+  // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
+  // ack for 4.
+  if (GetParam().no_stop_waiting) {
+    // Expect no stop waiting frame is sent.
+    EXPECT_FALSE(least_unacked().IsInitialized());
+  } else {
+    EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
+  }
+
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+  // Peer acks up to packet 4, the last packet.
+  QuicAckFrame frame2 = InitAckFrame(6);
+  ProcessAckPacket(&frame2);  // Acks don't instigate acks.
+
+  // Verify that we did not send an ack.
+  EXPECT_EQ(QuicPacketNumber(6u), writer_->header().packet_number);
+
+  // So the last ack has not changed.
+  if (GetParam().no_stop_waiting) {
+    // Expect no stop waiting frame is sent.
+    EXPECT_FALSE(least_unacked().IsInitialized());
+  } else {
+    EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
+  }
+
+  // If we force an ack, we shouldn't change our retransmit state.
+  SendAckPacketToPeer();  // Packet 7
+  if (GetParam().no_stop_waiting) {
+    // Expect no stop waiting frame is sent.
+    EXPECT_FALSE(least_unacked().IsInitialized());
+  } else {
+    EXPECT_EQ(QuicPacketNumber(7u), least_unacked());
+  }
+
+  // But if we send more data it should.
+  SendStreamDataToPeer(1, "eep", 6, NO_FIN, &last_packet);  // Packet 8
+  EXPECT_EQ(QuicPacketNumber(8u), last_packet);
+  SendAckPacketToPeer();  // Packet 9
+  if (GetParam().no_stop_waiting) {
+    // Expect no stop waiting frame is sent.
+    EXPECT_FALSE(least_unacked().IsInitialized());
+  } else {
+    EXPECT_EQ(QuicPacketNumber(7u), least_unacked());
+  }
+  EXPECT_EQ(QuicPacketNumber(1), stats.first_decrypted_packet);
+}
+
+// QuicConnection should record the packet sent-time prior to sending the
+// packet.
+TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) {
+  // We're using a MockClock for the tests, so we have complete control over the
+  // time.
+  // Our recorded timestamp for the last packet sent time will be passed in to
+  // the send_algorithm.  Make sure that it is set to the correct value.
+  QuicTime actual_recorded_send_time = QuicTime::Zero();
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<0>(&actual_recorded_send_time));
+
+  // First send without any pause and check the result.
+  QuicTime expected_recorded_send_time = clock_.Now();
+  connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+  EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
+      << "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
+      << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue();
+
+  // Now pause during the write, and check the results.
+  actual_recorded_send_time = QuicTime::Zero();
+  const QuicTime::Delta write_pause_time_delta =
+      QuicTime::Delta::FromMilliseconds(5000);
+  SetWritePauseTimeDelta(write_pause_time_delta);
+  expected_recorded_send_time = clock_.Now();
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<0>(&actual_recorded_send_time));
+  connection_.SendStreamDataWithString(2, "baz", 0, NO_FIN);
+  EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
+      << "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
+      << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue();
+}
+
+TEST_P(QuicConnectionTest, FramePacking) {
+  // Send two stream frames in 1 packet by queueing them.
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    connection_.SendStreamData3();
+    connection_.SendStreamData5();
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  }
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  EXPECT_FALSE(connection_.HasQueuedData());
+
+  // Parse the last packet and ensure it's an ack and two stream frames from
+  // two different streams.
+  if (GetParam().no_stop_waiting) {
+    EXPECT_EQ(2u, writer_->frame_count());
+    EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+  } else {
+    EXPECT_EQ(2u, writer_->frame_count());
+    EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+  }
+
+  EXPECT_TRUE(writer_->ack_frames().empty());
+
+  ASSERT_EQ(2u, writer_->stream_frames().size());
+  EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+            writer_->stream_frames()[0]->stream_id);
+  EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
+            writer_->stream_frames()[1]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) {
+  // Send two stream frames (one non-crypto, then one crypto) in 2 packets by
+  // queueing them.
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    connection_.SendStreamData3();
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+    connection_.SendCryptoStreamData();
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  }
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  EXPECT_FALSE(connection_.HasQueuedData());
+
+  // Parse the last packet and ensure it contains a crypto stream frame.
+  EXPECT_LE(2u, writer_->frame_count());
+  ASSERT_LE(1u, writer_->padding_frames().size());
+  if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    ASSERT_EQ(1u, writer_->stream_frames().size());
+    EXPECT_EQ(QuicUtils::GetCryptoStreamId(connection_.transport_version()),
+              writer_->stream_frames()[0]->stream_id);
+  } else {
+    EXPECT_LE(1u, writer_->crypto_frames().size());
+  }
+}
+
+TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) {
+  // Send two stream frames (one crypto, then one non-crypto) in 2 packets by
+  // queueing them.
+  {
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    connection_.SendCryptoStreamData();
+    connection_.SendStreamData3();
+  }
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  EXPECT_FALSE(connection_.HasQueuedData());
+
+  // Parse the last packet and ensure it's the stream frame from stream 3.
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  ASSERT_EQ(1u, writer_->stream_frames().size());
+  EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+            writer_->stream_frames()[0]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, FramePackingAckResponse) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  // Process a data packet to queue up a pending ack.
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  }
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+  QuicPacketNumber last_packet;
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    connection_.SendCryptoDataWithString("foo", 0);
+  } else {
+    SendStreamDataToPeer(
+        QuicUtils::GetCryptoStreamId(connection_.transport_version()), "foo", 0,
+        NO_FIN, &last_packet);
+  }
+  // Verify ack is bundled with outging packet.
+  EXPECT_FALSE(writer_->ack_frames().empty());
+
+  EXPECT_CALL(visitor_, OnCanWrite())
+      .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs(
+                          &connection_, &TestConnection::SendStreamData3)),
+                      IgnoreResult(InvokeWithoutArgs(
+                          &connection_, &TestConnection::SendStreamData5))));
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+
+  // Process a data packet to cause the visitor's OnCanWrite to be invoked.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(0x01));
+  SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+               std::make_unique<StrictTaggingDecrypter>(0x01));
+  ProcessDataPacket(2);
+
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  EXPECT_FALSE(connection_.HasQueuedData());
+
+  // Parse the last packet and ensure it's an ack and two stream frames from
+  // two different streams.
+  if (GetParam().no_stop_waiting) {
+    EXPECT_EQ(3u, writer_->frame_count());
+    EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+  } else {
+    EXPECT_EQ(4u, writer_->frame_count());
+    EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+  }
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  ASSERT_EQ(2u, writer_->stream_frames().size());
+  EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+            writer_->stream_frames()[0]->stream_id);
+  EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
+            writer_->stream_frames()[1]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, FramePackingSendv) {
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+
+  QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId(
+      connection_.transport_version(), Perspective::IS_CLIENT);
+  connection_.SaveAndSendStreamData(stream_id, "ABCDEF", 0, NO_FIN);
+
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  EXPECT_FALSE(connection_.HasQueuedData());
+
+  // Parse the last packet and ensure multiple iovector blocks have
+  // been packed into a single stream frame from one stream.
+  EXPECT_EQ(1u, writer_->frame_count());
+  EXPECT_EQ(1u, writer_->stream_frames().size());
+  EXPECT_EQ(0u, writer_->padding_frames().size());
+  QuicStreamFrame* frame = writer_->stream_frames()[0].get();
+  EXPECT_EQ(stream_id, frame->stream_id);
+  EXPECT_EQ("ABCDEF",
+            absl::string_view(frame->data_buffer, frame->data_length));
+}
+
+TEST_P(QuicConnectionTest, FramePackingSendvQueued) {
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+
+  BlockOnNextWrite();
+  QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId(
+      connection_.transport_version(), Perspective::IS_CLIENT);
+  connection_.SaveAndSendStreamData(stream_id, "ABCDEF", 0, NO_FIN);
+
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+  EXPECT_TRUE(connection_.HasQueuedData());
+
+  // Unblock the writes and actually send.
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+
+  // Parse the last packet and ensure it's one stream frame from one stream.
+  EXPECT_EQ(1u, writer_->frame_count());
+  EXPECT_EQ(1u, writer_->stream_frames().size());
+  EXPECT_EQ(0u, writer_->padding_frames().size());
+  QuicStreamFrame* frame = writer_->stream_frames()[0].get();
+  EXPECT_EQ(stream_id, frame->stream_id);
+  EXPECT_EQ("ABCDEF",
+            absl::string_view(frame->data_buffer, frame->data_length));
+}
+
+TEST_P(QuicConnectionTest, SendingZeroBytes) {
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  // Send a zero byte write with a fin using writev.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+  QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId(
+      connection_.transport_version(), Perspective::IS_CLIENT);
+  connection_.SaveAndSendStreamData(stream_id, {}, 0, FIN);
+
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  EXPECT_FALSE(connection_.HasQueuedData());
+
+  // Padding frames are added by v99 to ensure a minimum packet size.
+  size_t extra_padding_frames = 0;
+  if (GetParam().version.HasHeaderProtection()) {
+    extra_padding_frames = 1;
+  }
+
+  // Parse the last packet and ensure it's one stream frame from one stream.
+  EXPECT_EQ(1u + extra_padding_frames, writer_->frame_count());
+  EXPECT_EQ(extra_padding_frames, writer_->padding_frames().size());
+  ASSERT_EQ(1u, writer_->stream_frames().size());
+  EXPECT_EQ(stream_id, writer_->stream_frames()[0]->stream_id);
+  EXPECT_TRUE(writer_->stream_frames()[0]->fin);
+}
+
+TEST_P(QuicConnectionTest, LargeSendWithPendingAck) {
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  // Set the ack alarm by processing a ping frame.
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  // Processs a PING frame.
+  ProcessFramePacket(QuicFrame(QuicPingFrame()));
+  // Ensure that this has caused the ACK alarm to be set.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  // Send data and ensure the ack is bundled.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(9);
+  const std::string data(10000, '?');
+  QuicConsumedData consumed = connection_.SaveAndSendStreamData(
+      GetNthClientInitiatedStreamId(0, connection_.transport_version()), data,
+      0, FIN);
+  EXPECT_EQ(data.length(), consumed.bytes_consumed);
+  EXPECT_TRUE(consumed.fin_consumed);
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  EXPECT_FALSE(connection_.HasQueuedData());
+
+  // Parse the last packet and ensure it's one stream frame with a fin.
+  EXPECT_EQ(1u, writer_->frame_count());
+  ASSERT_EQ(1u, writer_->stream_frames().size());
+  EXPECT_EQ(GetNthClientInitiatedStreamId(0, connection_.transport_version()),
+            writer_->stream_frames()[0]->stream_id);
+  EXPECT_TRUE(writer_->stream_frames()[0]->fin);
+  // Ensure the ack alarm was cancelled when the ack was sent.
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, OnCanWrite) {
+  // Visitor's OnCanWrite will send data, but will have more pending writes.
+  EXPECT_CALL(visitor_, OnCanWrite())
+      .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs(
+                          &connection_, &TestConnection::SendStreamData3)),
+                      IgnoreResult(InvokeWithoutArgs(
+                          &connection_, &TestConnection::SendStreamData5))));
+  {
+    InSequence seq;
+    EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true));
+    EXPECT_CALL(visitor_, WillingAndAbleToWrite())
+        .WillRepeatedly(Return(false));
+  }
+
+  EXPECT_CALL(*send_algorithm_, CanSend(_))
+      .WillRepeatedly(testing::Return(true));
+
+  connection_.OnCanWrite();
+
+  // Parse the last packet and ensure it's the two stream frames from
+  // two different streams.
+  EXPECT_EQ(2u, writer_->frame_count());
+  EXPECT_EQ(2u, writer_->stream_frames().size());
+  EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+            writer_->stream_frames()[0]->stream_id);
+  EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
+            writer_->stream_frames()[1]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, RetransmitOnNack) {
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet);
+  SendStreamDataToPeer(3, "foos", 3, NO_FIN, &last_packet);
+  SendStreamDataToPeer(3, "fooos", 7, NO_FIN, &last_packet);
+
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  // Don't lose a packet on an ack, and nothing is retransmitted.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame ack_one = InitAckFrame(1);
+  ProcessAckPacket(&ack_one);
+
+  // Lose a packet and ensure it triggers retransmission.
+  QuicAckFrame nack_two = ConstructAckFrame(3, 2);
+  LostPacketVector lost_packets;
+  lost_packets.push_back(
+      LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+                      Return(LossDetectionInterface::DetectionStats())));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  EXPECT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_));
+  ProcessAckPacket(&nack_two);
+}
+
+TEST_P(QuicConnectionTest, DoNotSendQueuedPacketForResetStream) {
+  // Block the connection to queue the packet.
+  BlockOnNextWrite();
+
+  QuicStreamId stream_id = 2;
+  connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
+
+  // Now that there is a queued packet, reset the stream.
+  SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+  // Unblock the connection and verify that only the RST_STREAM is sent.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+}
+
+TEST_P(QuicConnectionTest, SendQueuedPacketForQuicRstStreamNoError) {
+  // Block the connection to queue the packet.
+  BlockOnNextWrite();
+
+  QuicStreamId stream_id = 2;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
+
+  // Now that there is a queued packet, reset the stream.
+  SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3);
+
+  // Unblock the connection and verify that the RST_STREAM is sent and the data
+  // packet is sent.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+}
+
+TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnNack) {
+  QuicStreamId stream_id = 2;
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+  SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+  SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12);
+
+  // Lose a packet and ensure it does not trigger retransmission.
+  QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  ProcessAckPacket(&nack_two);
+}
+
+TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnNack) {
+  QuicStreamId stream_id = 2;
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+  SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+  SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12);
+
+  // Lose a packet, ensure it triggers retransmission.
+  QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  LostPacketVector lost_packets;
+  lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+                      Return(LossDetectionInterface::DetectionStats())));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  ProcessAckPacket(&nack_two);
+}
+
+TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnRTO) {
+  QuicStreamId stream_id = 2;
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+  // Fire the RTO and verify that the RST_STREAM is resent, not stream data.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  clock_.AdvanceTime(DefaultRetransmissionTime());
+  connection_.GetRetransmissionAlarm()->Fire();
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+  EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
+}
+
+// Ensure that if the only data in flight is non-retransmittable, the
+// retransmission alarm is not set.
+TEST_P(QuicConnectionTest, CancelRetransmissionAlarmAfterResetStream) {
+  QuicStreamId stream_id = 2;
+  QuicPacketNumber last_data_packet;
+  SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet);
+
+  // Cancel the stream.
+  const QuicPacketNumber rst_packet = last_data_packet + 1;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, rst_packet, _, _)).Times(1);
+  SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+  // Ack the RST_STREAM frame (since it's retransmittable), but not the data
+  // packet, which is no longer retransmittable since the stream was cancelled.
+  QuicAckFrame nack_stream_data =
+      ConstructAckFrame(rst_packet, last_data_packet);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  ProcessAckPacket(&nack_stream_data);
+
+  // Ensure that the data is still in flight, but the retransmission alarm is no
+  // longer set.
+  EXPECT_GT(manager_->GetBytesInFlight(), 0u);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnRTO) {
+  connection_.SetMaxTailLossProbes(0);
+
+  QuicStreamId stream_id = 2;
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3);
+
+  // Fire the RTO and verify that the RST_STREAM is resent, the stream data
+  // is sent.
+  const size_t num_retransmissions = connection_.PtoEnabled() ? 1 : 2;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(AtLeast(num_retransmissions));
+  clock_.AdvanceTime(DefaultRetransmissionTime());
+  connection_.GetRetransmissionAlarm()->Fire();
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  if (num_retransmissions == 2) {
+    ASSERT_EQ(1u, writer_->rst_stream_frames().size());
+    EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
+  }
+}
+
+TEST_P(QuicConnectionTest, DoNotSendPendingRetransmissionForResetStream) {
+  QuicStreamId stream_id = 2;
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+  SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+  BlockOnNextWrite();
+  connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN);
+
+  // Lose a packet which will trigger a pending retransmission.
+  QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  ProcessAckPacket(&ack);
+
+  SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12);
+
+  // Unblock the connection and verify that the RST_STREAM is sent but not the
+  // second data packet nor a retransmit.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  ASSERT_EQ(1u, writer_->rst_stream_frames().size());
+  EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
+}
+
+TEST_P(QuicConnectionTest, SendPendingRetransmissionForQuicRstStreamNoError) {
+  QuicStreamId stream_id = 2;
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+  SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+  BlockOnNextWrite();
+  connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN);
+
+  // Lose a packet which will trigger a pending retransmission.
+  QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  LostPacketVector lost_packets;
+  lost_packets.push_back(LostPacket(last_packet - 1, kMaxOutgoingPacketSize));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+                      Return(LossDetectionInterface::DetectionStats())));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  ProcessAckPacket(&ack);
+
+  SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12);
+
+  // Unblock the connection and verify that the RST_STREAM is sent and the
+  // second data packet or a retransmit is sent.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2));
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+  // The RST_STREAM_FRAME is sent after queued packets and pending
+  // retransmission.
+  connection_.SendControlFrame(QuicFrame(
+      new QuicRstStreamFrame(1, stream_id, QUIC_STREAM_NO_ERROR, 14)));
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+}
+
+TEST_P(QuicConnectionTest, RetransmitAckedPacket) {
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);    // Packet 1
+  SendStreamDataToPeer(1, "foos", 3, NO_FIN, &last_packet);   // Packet 2
+  SendStreamDataToPeer(1, "fooos", 7, NO_FIN, &last_packet);  // Packet 3
+
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  // Instigate a loss with an ack.
+  QuicAckFrame nack_two = ConstructAckFrame(3, 2);
+  // The first nack should trigger a fast retransmission, but we'll be
+  // write blocked, so the packet will be queued.
+  BlockOnNextWrite();
+
+  LostPacketVector lost_packets;
+  lost_packets.push_back(
+      LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+                      Return(LossDetectionInterface::DetectionStats())));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _))
+      .Times(1);
+  ProcessAckPacket(&nack_two);
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+  // Now, ack the previous transmission.
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(false, _, _, _, _));
+  QuicAckFrame ack_all = InitAckFrame(3);
+  ProcessAckPacket(&ack_all);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _))
+      .Times(0);
+
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  // We do not store retransmittable frames of this retransmission.
+  EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, 4));
+}
+
+TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  QuicPacketNumber original, second;
+
+  QuicByteCount packet_size =
+      SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original);  // 1st packet.
+  SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second);        // 2nd packet.
+
+  QuicAckFrame frame = InitAckFrame({{second, second + 1}});
+  // The first nack should retransmit the largest observed packet.
+  LostPacketVector lost_packets;
+  lost_packets.push_back(LostPacket(original, kMaxOutgoingPacketSize));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+                      Return(LossDetectionInterface::DetectionStats())));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  // Packet 1 is short header for IETF QUIC because the encryption level
+  // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer.
+  EXPECT_CALL(*send_algorithm_,
+              OnPacketSent(_, _, _,
+                           GetParam().version.HasIetfInvariantHeader()
+                               ? packet_size
+                               : packet_size - kQuicVersionSize,
+                           _));
+  ProcessAckPacket(&frame);
+}
+
+TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  connection_.SetMaxTailLossProbes(0);
+
+  for (int i = 0; i < 10; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    connection_.SendStreamDataWithString(3, "foo", i * 3, NO_FIN);
+  }
+
+  // Block the writer and ensure they're queued.
+  BlockOnNextWrite();
+  clock_.AdvanceTime(DefaultRetransmissionTime());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_TRUE(connection_.HasQueuedData());
+
+  // Unblock the writer.
+  writer_->SetWritable();
+  clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(
+      2 * DefaultRetransmissionTime().ToMicroseconds()));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  connection_.GetRetransmissionAlarm()->Fire();
+  connection_.OnCanWrite();
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedBufferedThenSent) {
+  BlockOnNextWrite();
+  writer_->set_is_write_blocked_data_buffered(true);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedThenSent) {
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  BlockOnNextWrite();
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+  // The second packet should also be queued, in order to ensure packets are
+  // never sent out of order.
+  writer_->SetWritable();
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+  EXPECT_EQ(2u, connection_.NumQueuedPackets());
+
+  // Now both are sent in order when we unblock.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.OnCanWrite();
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  BlockOnNextWrite();
+  writer_->set_is_write_blocked_data_buffered(true);
+  // Simulate the retransmission alarm firing.
+  clock_.AdvanceTime(DefaultRetransmissionTime());
+  connection_.GetRetransmissionAlarm()->Fire();
+
+  // Ack the sent packet before the callback returns, which happens in
+  // rare circumstances with write blocked sockets.
+  QuicAckFrame ack = InitAckFrame(1);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  ProcessAckPacket(&ack);
+
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  uint64_t retransmission = connection_.PtoEnabled() ? 3 : 2;
+  EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_,
+                                                            retransmission));
+}
+
+TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) {
+  // Block the connection.
+  BlockOnNextWrite();
+  connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  EXPECT_TRUE(writer_->IsWriteBlocked());
+
+  // Set the send alarm. Fire the alarm and ensure it doesn't attempt to write.
+  connection_.GetSendAlarm()->Set(clock_.ApproximateNow());
+  connection_.GetSendAlarm()->Fire();
+  EXPECT_TRUE(writer_->IsWriteBlocked());
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, NoSendAlarmAfterProcessPacketWhenWriteBlocked) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  // Block the connection.
+  BlockOnNextWrite();
+  connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+  EXPECT_TRUE(writer_->IsWriteBlocked());
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+  EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  // Process packet number 1. Can not call ProcessPacket or ProcessDataPacket
+  // here, because they will fire the alarm after QuicConnection::ProcessPacket
+  // is returned.
+  const uint64_t received_packet_num = 1;
+  const bool has_stop_waiting = false;
+  const EncryptionLevel level = ENCRYPTION_FORWARD_SECURE;
+  std::unique_ptr<QuicPacket> packet(
+      ConstructDataPacket(received_packet_num, has_stop_waiting, level));
+  char buffer[kMaxOutgoingPacketSize];
+  size_t encrypted_length =
+      peer_framer_.EncryptPayload(level, QuicPacketNumber(received_packet_num),
+                                  *packet, buffer, kMaxOutgoingPacketSize);
+  connection_.ProcessUdpPacket(
+      kSelfAddress, kPeerAddress,
+      QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+
+  EXPECT_TRUE(writer_->IsWriteBlocked());
+  EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, AddToWriteBlockedListIfWriterBlockedWhenProcessing) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+
+  // Simulate the case where a shared writer gets blocked by another connection.
+  writer_->SetWriteBlocked();
+
+  // Process an ACK, make sure the connection calls visitor_->OnWriteBlocked().
+  QuicAckFrame ack1 = InitAckFrame(1);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+  ProcessAckPacket(1, &ack1);
+}
+
+TEST_P(QuicConnectionTest, DoNotAddToWriteBlockedListAfterDisconnect) {
+  writer_->SetBatchMode(true);
+  EXPECT_TRUE(connection_.connected());
+  // Have to explicitly grab the OnConnectionClosed frame and check
+  // its parameters because this is a silent connection close and the
+  // frame is not also transmitted to the peer.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0);
+
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+                                ConnectionCloseBehavior::SILENT_CLOSE);
+
+    EXPECT_FALSE(connection_.connected());
+    writer_->SetWriteBlocked();
+  }
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_PEER_GOING_AWAY));
+}
+
+TEST_P(QuicConnectionTest, AddToWriteBlockedListIfBlockedOnFlushPackets) {
+  writer_->SetBatchMode(true);
+  writer_->BlockOnNextFlush();
+
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    // flusher's destructor will call connection_.FlushPackets, which should add
+    // the connection to the write blocked list.
+  }
+}
+
+TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  int offset = 0;
+  // Send packets 1 to 15.
+  for (int i = 0; i < 15; ++i) {
+    SendStreamDataToPeer(1, "foo", offset, NO_FIN, nullptr);
+    offset += 3;
+  }
+
+  // Ack 15, nack 1-14.
+
+  QuicAckFrame nack =
+      InitAckFrame({{QuicPacketNumber(15), QuicPacketNumber(16)}});
+
+  // 14 packets have been NACK'd and lost.
+  LostPacketVector lost_packets;
+  for (int i = 1; i < 15; ++i) {
+    lost_packets.push_back(
+        LostPacket(QuicPacketNumber(i), kMaxOutgoingPacketSize));
+  }
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+                      Return(LossDetectionInterface::DetectionStats())));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessAckPacket(&nack);
+}
+
+// Test sending multiple acks from the connection to the session.
+TEST_P(QuicConnectionTest, MultipleAcks) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacket(1);
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);  // Packet 1
+  EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+  SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet);  // Packet 2
+  EXPECT_EQ(QuicPacketNumber(2u), last_packet);
+  SendAckPacketToPeer();                                    // Packet 3
+  SendStreamDataToPeer(5, "foo", 0, NO_FIN, &last_packet);  // Packet 4
+  EXPECT_EQ(QuicPacketNumber(4u), last_packet);
+  SendStreamDataToPeer(1, "foo", 3, NO_FIN, &last_packet);  // Packet 5
+  EXPECT_EQ(QuicPacketNumber(5u), last_packet);
+  SendStreamDataToPeer(3, "foo", 3, NO_FIN, &last_packet);  // Packet 6
+  EXPECT_EQ(QuicPacketNumber(6u), last_packet);
+
+  // Client will ack packets 1, 2, [!3], 4, 5.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame1 = ConstructAckFrame(5, 3);
+  ProcessAckPacket(&frame1);
+
+  // Now the client implicitly acks 3, and explicitly acks 6.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame2 = InitAckFrame(6);
+  ProcessAckPacket(&frame2);
+}
+
+TEST_P(QuicConnectionTest, DontLatchUnackedPacket) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacket(1);
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);  // Packet 1;
+  // From now on, we send acks, so the send algorithm won't mark them pending.
+  SendAckPacketToPeer();  // Packet 2
+
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame = InitAckFrame(1);
+  ProcessAckPacket(&frame);
+
+  // Verify that our internal state has least-unacked as 2, because we're still
+  // waiting for a potential ack for 2.
+
+  EXPECT_EQ(QuicPacketNumber(2u), stop_waiting()->least_unacked);
+
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  frame = InitAckFrame(2);
+  ProcessAckPacket(&frame);
+  EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked);
+
+  // When we send an ack, we make sure our least-unacked makes sense.  In this
+  // case since we're not waiting on an ack for 2 and all packets are acked, we
+  // set it to 3.
+  SendAckPacketToPeer();  // Packet 3
+  // Least_unacked remains at 3 until another ack is received.
+  EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked);
+  if (GetParam().no_stop_waiting) {
+    // Expect no stop waiting frame is sent.
+    EXPECT_FALSE(least_unacked().IsInitialized());
+  } else {
+    // Check that the outgoing ack had its packet number as least_unacked.
+    EXPECT_EQ(QuicPacketNumber(3u), least_unacked());
+  }
+
+  // Ack the ack, which updates the rtt and raises the least unacked.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  frame = InitAckFrame(3);
+  ProcessAckPacket(&frame);
+
+  SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);  // Packet 4
+  EXPECT_EQ(QuicPacketNumber(4u), stop_waiting()->least_unacked);
+  SendAckPacketToPeer();  // Packet 5
+  if (GetParam().no_stop_waiting) {
+    // Expect no stop waiting frame is sent.
+    EXPECT_FALSE(least_unacked().IsInitialized());
+  } else {
+    EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
+  }
+
+  // Send two data packets at the end, and ensure if the last one is acked,
+  // the least unacked is raised above the ack packets.
+  SendStreamDataToPeer(1, "bar", 6, NO_FIN, nullptr);  // Packet 6
+  SendStreamDataToPeer(1, "bar", 9, NO_FIN, nullptr);  // Packet 7
+
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  frame = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(5)},
+                        {QuicPacketNumber(7), QuicPacketNumber(8)}});
+  ProcessAckPacket(&frame);
+
+  EXPECT_EQ(QuicPacketNumber(6u), stop_waiting()->least_unacked);
+}
+
+TEST_P(QuicConnectionTest, TLP) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  connection_.SetMaxTailLossProbes(1);
+
+  SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
+  EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+  QuicTime retransmission_time =
+      connection_.GetRetransmissionAlarm()->deadline();
+  EXPECT_NE(QuicTime::Zero(), retransmission_time);
+
+  EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number);
+  // Simulate the retransmission alarm firing and sending a tlp,
+  // so send algorithm's OnRetransmissionTimeout is not called.
+  clock_.AdvanceTime(retransmission_time - clock_.Now());
+  const QuicPacketNumber retransmission(
+      connection_.SupportsMultiplePacketNumberSpaces() ? 3 : 2);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, retransmission, _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_EQ(retransmission, writer_->header().packet_number);
+  // We do not raise the high water mark yet.
+  EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+}
+
+TEST_P(QuicConnectionTest, RTO) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  connection_.SetMaxTailLossProbes(0);
+
+  QuicTime default_retransmission_time =
+      clock_.ApproximateNow() + DefaultRetransmissionTime();
+  SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
+  EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+
+  EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number);
+  EXPECT_EQ(default_retransmission_time,
+            connection_.GetRetransmissionAlarm()->deadline());
+  // Simulate the retransmission alarm firing.
+  clock_.AdvanceTime(DefaultRetransmissionTime());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number);
+  // We do not raise the high water mark yet.
+  EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+}
+
+// Regression test of b/133771183.
+TEST_P(QuicConnectionTest, RtoWithNoDataToRetransmit) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  connection_.SetMaxTailLossProbes(0);
+
+  SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
+  // Connection is cwnd limited.
+  CongestionBlockWrites();
+  // Stream gets reset.
+  SendRstStream(3, QUIC_ERROR_PROCESSING_STREAM, 3);
+  // Simulate the retransmission alarm firing.
+  clock_.AdvanceTime(DefaultRetransmissionTime());
+  // RTO fires, but there is no packet to be RTOed.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(40);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(20);
+  EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false));
+  EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(1);
+  // Receives packets 1 - 40.
+  for (size_t i = 1; i <= 40; ++i) {
+    ProcessDataPacket(i);
+  }
+}
+
+TEST_P(QuicConnectionTest, SendHandshakeMessages) {
+  use_tagging_decrypter();
+  // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
+  // the end of the packet. We can test this to check which encrypter was used.
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+
+  // Attempt to send a handshake message and have the socket block.
+  EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+  BlockOnNextWrite();
+  connection_.SendCryptoDataWithString("foo", 0);
+  // The packet should be serialized, but not queued.
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+  // Switch to the new encrypter.
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+
+  // Now become writeable and flush the packets.
+  writer_->SetWritable();
+  EXPECT_CALL(visitor_, OnCanWrite());
+  connection_.OnCanWrite();
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+
+  // Verify that the handshake packet went out at the null encryption.
+  EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+}
+
+TEST_P(QuicConnectionTest,
+       DropRetransmitsForNullEncryptedPacketAfterForwardSecure) {
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SendCryptoStreamData();
+
+  // Simulate the retransmission alarm firing and the socket blocking.
+  BlockOnNextWrite();
+  clock_.AdvanceTime(DefaultRetransmissionTime());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+  // Go forward secure.
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  notifier_.NeuterUnencryptedData();
+  connection_.NeuterUnencryptedPackets();
+  connection_.OnHandshakeComplete();
+
+  EXPECT_EQ(QuicTime::Zero(), connection_.GetRetransmissionAlarm()->deadline());
+  // Unblock the socket and ensure that no packets are sent.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+}
+
+TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) {
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+
+  connection_.SendCryptoDataWithString("foo", 0);
+
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+
+  SendStreamDataToPeer(2, "bar", 0, NO_FIN, nullptr);
+  EXPECT_FALSE(notifier_.HasLostStreamData());
+  connection_.MarkZeroRttPacketsForRetransmission(0);
+  EXPECT_TRUE(notifier_.HasLostStreamData());
+}
+
+TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  // SetFromConfig is always called after construction from InitializeSession.
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  use_tagging_decrypter();
+
+  const uint8_t tag = 0x07;
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(tag));
+
+  // Process an encrypted packet which can not yet be decrypted which should
+  // result in the packet being buffered.
+  ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+  // Transition to the new encryption state and process another encrypted packet
+  // which should result in the original packet being processed.
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(tag));
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(tag));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2);
+  ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+  // Finally, process a third packet and note that we do not reprocess the
+  // buffered packet.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+}
+
+TEST_P(QuicConnectionTest, TestRetransmitOrder) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  connection_.SetMaxTailLossProbes(0);
+
+  QuicByteCount first_packet_size;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<3>(&first_packet_size));
+
+  connection_.SendStreamDataWithString(3, "first_packet", 0, NO_FIN);
+  QuicByteCount second_packet_size;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<3>(&second_packet_size));
+  connection_.SendStreamDataWithString(3, "second_packet", 12, NO_FIN);
+  EXPECT_NE(first_packet_size, second_packet_size);
+  // Advance the clock by huge time to make sure packets will be retransmitted.
+  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
+  {
+    InSequence s;
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _));
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _));
+  }
+  connection_.GetRetransmissionAlarm()->Fire();
+
+  // Advance again and expect the packets to be sent again in the same order.
+  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20));
+  {
+    InSequence s;
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _));
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _));
+  }
+  connection_.GetRetransmissionAlarm()->Fire();
+}
+
+TEST_P(QuicConnectionTest, Buffer100NonDecryptablePacketsThenKeyChange) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  // SetFromConfig is always called after construction from InitializeSession.
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  config.set_max_undecryptable_packets(100);
+  connection_.SetFromConfig(config);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  use_tagging_decrypter();
+
+  const uint8_t tag = 0x07;
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(tag));
+
+  // Process an encrypted packet which can not yet be decrypted which should
+  // result in the packet being buffered.
+  for (uint64_t i = 1; i <= 100; ++i) {
+    ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+  }
+
+  // Transition to the new encryption state and process another encrypted packet
+  // which should result in the original packets being processed.
+  EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(tag));
+  EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(tag));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(100);
+  connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+
+  // Finally, process a third packet and note that we do not reprocess the
+  // buffered packet.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(102, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+}
+
+TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) {
+  BlockOnNextWrite();
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Test that RTO is started once we write to the socket.
+  writer_->SetWritable();
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.OnCanWrite();
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  connection_.SetMaxTailLossProbes(0);
+
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+  connection_.SendStreamDataWithString(3, "bar", 0, NO_FIN);
+  QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm();
+  EXPECT_TRUE(retransmission_alarm->IsSet());
+  EXPECT_EQ(DefaultRetransmissionTime(),
+            retransmission_alarm->deadline() - clock_.Now());
+
+  // Advance the time right before the RTO, then receive an ack for the first
+  // packet to delay the RTO.
+  clock_.AdvanceTime(DefaultRetransmissionTime());
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame ack = InitAckFrame(1);
+  ProcessAckPacket(&ack);
+  // Now we have an RTT sample of DefaultRetransmissionTime(500ms),
+  // so the RTO has increased to 2 * SRTT.
+  EXPECT_TRUE(retransmission_alarm->IsSet());
+  EXPECT_EQ(retransmission_alarm->deadline() - clock_.Now(),
+            2 * DefaultRetransmissionTime());
+
+  // Move forward past the original RTO and ensure the RTO is still pending.
+  clock_.AdvanceTime(2 * DefaultRetransmissionTime());
+
+  // Ensure the second packet gets retransmitted when it finally fires.
+  EXPECT_TRUE(retransmission_alarm->IsSet());
+  EXPECT_EQ(retransmission_alarm->deadline(), clock_.ApproximateNow());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+  // Manually cancel the alarm to simulate a real test.
+  connection_.GetRetransmissionAlarm()->Fire();
+
+  // The new retransmitted packet number should set the RTO to a larger value
+  // than previously.
+  EXPECT_TRUE(retransmission_alarm->IsSet());
+  QuicTime next_rto_time = retransmission_alarm->deadline();
+  QuicTime expected_rto_time =
+      connection_.sent_packet_manager().GetRetransmissionTime();
+  EXPECT_EQ(next_rto_time, expected_rto_time);
+}
+
+TEST_P(QuicConnectionTest, TestQueued) {
+  connection_.SetMaxTailLossProbes(0);
+
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  BlockOnNextWrite();
+  connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+  // Unblock the writes and actually send.
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, InitialTimeout) {
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+
+  // SetFromConfig sets the initial timeouts before negotiation.
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+  // Subtract a second from the idle timeout on the client side.
+  QuicTime default_timeout =
+      clock_.ApproximateNow() +
+      QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+  EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  // Simulate the timeout alarm firing.
+  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1));
+  connection_.GetTimeoutAlarm()->Fire();
+
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+  TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, IdleTimeoutAfterFirstSentPacket) {
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+  EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  QuicTime initial_ddl =
+      clock_.ApproximateNow() +
+      QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+  EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline());
+  EXPECT_TRUE(connection_.connected());
+
+  // Advance the time and send the first packet to the peer.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+  EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+  // This will be the updated deadline for the connection to idle time out.
+  QuicTime new_ddl = clock_.ApproximateNow() +
+                     QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+
+  // Simulate the timeout alarm firing, the connection should not be closed as
+  // a new packet has been sent.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+  QuicTime::Delta delay = initial_ddl - clock_.ApproximateNow();
+  clock_.AdvanceTime(delay);
+  // Verify the timeout alarm deadline is updated.
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_EQ(new_ddl, connection_.GetTimeoutAlarm()->deadline());
+
+  // Simulate the timeout alarm firing again, the connection now should be
+  // closed.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  clock_.AdvanceTime(new_ddl - clock_.ApproximateNow());
+  connection_.GetTimeoutAlarm()->Fire();
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, IdleTimeoutAfterSendTwoPackets) {
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+  EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  QuicTime initial_ddl =
+      clock_.ApproximateNow() +
+      QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+  EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline());
+  EXPECT_TRUE(connection_.connected());
+
+  // Immediately send the first packet, this is a rare case but test code will
+  // hit this issue often as MockClock used for tests doesn't move with code
+  // execution until manually adjusted.
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+  EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+
+  // Advance the time and send the second packet to the peer.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+  EXPECT_EQ(QuicPacketNumber(2u), last_packet);
+
+  // Simulate the timeout alarm firing, the connection will be closed.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  clock_.AdvanceTime(initial_ddl - clock_.ApproximateNow());
+  connection_.GetTimeoutAlarm()->Fire();
+
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, HandshakeTimeout) {
+  // Use a shorter handshake timeout than idle timeout for this test.
+  const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
+  connection_.SetNetworkTimeouts(timeout, timeout);
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+
+  QuicTime handshake_timeout =
+      clock_.ApproximateNow() + timeout - QuicTime::Delta::FromSeconds(1);
+  EXPECT_EQ(handshake_timeout, connection_.GetTimeoutAlarm()->deadline());
+  EXPECT_TRUE(connection_.connected());
+
+  // Send and ack new data 3 seconds later to lengthen the idle timeout.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(0, connection_.transport_version()),
+      "GET /", 0, FIN, nullptr);
+  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3));
+  QuicAckFrame frame = InitAckFrame(1);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  ProcessAckPacket(&frame);
+
+  EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_TRUE(connection_.connected());
+
+  clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(2));
+
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  // Simulate the timeout alarm firing.
+  connection_.GetTimeoutAlarm()->Fire();
+
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+  TestConnectionCloseQuicErrorCode(QUIC_HANDSHAKE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, PingAfterSend) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(true));
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+
+  // Advance to 5ms, and send a packet to the peer, which will set
+  // the ping alarm.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(0, connection_.transport_version()),
+      "GET /", 0, FIN, nullptr);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(QuicTime::Delta::FromSeconds(15),
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Now recevie an ACK of the previous packet, which will move the
+  // ping alarm forward.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  QuicAckFrame frame = InitAckFrame(1);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  // The ping timer is set slightly less than 15 seconds in the future, because
+  // of the 1s ping timer alarm granularity.
+  EXPECT_EQ(
+      QuicTime::Delta::FromSeconds(15) - QuicTime::Delta::FromMilliseconds(5),
+      connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  writer_->Reset();
+  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15));
+  connection_.GetPingAlarm()->Fire();
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  ASSERT_EQ(1u, writer_->ping_frames().size());
+  writer_->Reset();
+
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(false));
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  SendAckPacketToPeer();
+
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, ReducedPingTimeout) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(true));
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+
+  // Use a reduced ping timeout for this connection.
+  connection_.set_ping_timeout(QuicTime::Delta::FromSeconds(10));
+
+  // Advance to 5ms, and send a packet to the peer, which will set
+  // the ping alarm.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(0, connection_.transport_version()),
+      "GET /", 0, FIN, nullptr);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(QuicTime::Delta::FromSeconds(10),
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Now recevie an ACK of the previous packet, which will move the
+  // ping alarm forward.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  QuicAckFrame frame = InitAckFrame(1);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  // The ping timer is set slightly less than 10 seconds in the future, because
+  // of the 1s ping timer alarm granularity.
+  EXPECT_EQ(
+      QuicTime::Delta::FromSeconds(10) - QuicTime::Delta::FromMilliseconds(5),
+      connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  writer_->Reset();
+  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
+  connection_.GetPingAlarm()->Fire();
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  ASSERT_EQ(1u, writer_->ping_frames().size());
+  writer_->Reset();
+
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(false));
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  SendAckPacketToPeer();
+
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+}
+
+// Tests whether sending an MTU discovery packet to peer successfully causes the
+// maximum packet size to increase.
+TEST_P(QuicConnectionTest, SendMtuDiscoveryPacket) {
+  MtuDiscoveryTestInit();
+
+  // Send an MTU probe.
+  const size_t new_mtu = kDefaultMaxPacketSize + 100;
+  QuicByteCount mtu_probe_size;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<3>(&mtu_probe_size));
+  connection_.SendMtuDiscoveryPacket(new_mtu);
+  EXPECT_EQ(new_mtu, mtu_probe_size);
+  EXPECT_EQ(QuicPacketNumber(1u), creator_->packet_number());
+
+  // Send more than MTU worth of data.  No acknowledgement was received so far,
+  // so the MTU should be at its old value.
+  const std::string data(kDefaultMaxPacketSize + 1, '.');
+  QuicByteCount size_before_mtu_change;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(2)
+      .WillOnce(SaveArg<3>(&size_before_mtu_change))
+      .WillOnce(Return());
+  connection_.SendStreamDataWithString(3, data, 0, FIN);
+  EXPECT_EQ(QuicPacketNumber(3u), creator_->packet_number());
+  EXPECT_EQ(kDefaultMaxPacketSize, size_before_mtu_change);
+
+  // Acknowledge all packets so far.
+  QuicAckFrame probe_ack = InitAckFrame(3);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  ProcessAckPacket(&probe_ack);
+  EXPECT_EQ(new_mtu, connection_.max_packet_length());
+
+  // Send the same data again.  Check that it fits into a single packet now.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendStreamDataWithString(3, data, 0, FIN);
+  EXPECT_EQ(QuicPacketNumber(4u), creator_->packet_number());
+}
+
+// Verifies that when a MTU probe packet is sent and buffered in a batch writer,
+// the writer is flushed immediately.
+TEST_P(QuicConnectionTest, BatchWriterFlushedAfterMtuDiscoveryPacket) {
+  writer_->SetBatchMode(true);
+  MtuDiscoveryTestInit();
+
+  // Send an MTU probe.
+  const size_t target_mtu = kDefaultMaxPacketSize + 100;
+  QuicByteCount mtu_probe_size;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<3>(&mtu_probe_size));
+  const uint32_t prior_flush_attempts = writer_->flush_attempts();
+  connection_.SendMtuDiscoveryPacket(target_mtu);
+  EXPECT_EQ(target_mtu, mtu_probe_size);
+  EXPECT_EQ(writer_->flush_attempts(), prior_flush_attempts + 1);
+}
+
+// Tests whether MTU discovery does not happen when it is not explicitly enabled
+// by the connection options.
+TEST_P(QuicConnectionTest, MtuDiscoveryDisabled) {
+  MtuDiscoveryTestInit();
+
+  const QuicPacketCount packets_between_probes_base = 10;
+  set_packets_between_probes_base(packets_between_probes_base);
+
+  const QuicPacketCount number_of_packets = packets_between_probes_base * 2;
+  for (QuicPacketCount i = 0; i < number_of_packets; i++) {
+    SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+    EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+    EXPECT_EQ(0u, connection_.mtu_probe_count());
+  }
+}
+
+// Tests whether MTU discovery works when all probes are acknowledged on the
+// first try.
+TEST_P(QuicConnectionTest, MtuDiscoveryEnabled) {
+  MtuDiscoveryTestInit();
+
+  const QuicPacketCount packets_between_probes_base = 5;
+  set_packets_between_probes_base(packets_between_probes_base);
+
+  connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+  // Send enough packets so that the next one triggers path MTU discovery.
+  for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+    SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+    ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  }
+
+  // Trigger the probe.
+  SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+                       nullptr);
+  ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  QuicByteCount probe_size;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<3>(&probe_size));
+  connection_.GetMtuDiscoveryAlarm()->Fire();
+
+  EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(),
+                                  kMtuDiscoveryTargetPacketSizeHigh));
+
+  const QuicPacketNumber probe_packet_number =
+      FirstSendingPacketNumber() + packets_between_probes_base;
+  ASSERT_EQ(probe_packet_number, creator_->packet_number());
+
+  // Acknowledge all packets sent so far.
+  QuicAckFrame probe_ack = InitAckFrame(probe_packet_number);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+      .Times(AnyNumber());
+  ProcessAckPacket(&probe_ack);
+  EXPECT_EQ(probe_size, connection_.max_packet_length());
+  EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+  EXPECT_EQ(1u, connection_.mtu_probe_count());
+
+  QuicStreamOffset stream_offset = packets_between_probes_base;
+  QuicByteCount last_probe_size = 0;
+  for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts;
+       ++num_probes) {
+    // Send just enough packets without triggering the next probe.
+    for (QuicPacketCount i = 0;
+         i < (packets_between_probes_base << num_probes) - 1; ++i) {
+      SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
+      ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+    }
+
+    // Trigger the next probe.
+    SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr);
+    ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+    QuicByteCount new_probe_size;
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+        .WillOnce(SaveArg<3>(&new_probe_size));
+    connection_.GetMtuDiscoveryAlarm()->Fire();
+    EXPECT_THAT(new_probe_size,
+                InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh));
+    EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count());
+
+    // Acknowledge all packets sent so far.
+    QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number());
+    ProcessAckPacket(&probe_ack);
+    EXPECT_EQ(new_probe_size, connection_.max_packet_length());
+    EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+    last_probe_size = probe_size;
+    probe_size = new_probe_size;
+  }
+
+  // The last probe size should be equal to the target.
+  EXPECT_EQ(probe_size, kMtuDiscoveryTargetPacketSizeHigh);
+
+  writer_->SetShouldWriteFail();
+
+  // Ignore PACKET_WRITE_ERROR once.
+  SendStreamDataToPeer(3, "(", stream_offset++, NO_FIN, nullptr);
+  EXPECT_EQ(last_probe_size, connection_.max_packet_length());
+  EXPECT_TRUE(connection_.connected());
+
+  // Close connection on another PACKET_WRITE_ERROR.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  SendStreamDataToPeer(3, ")", stream_offset++, NO_FIN, nullptr);
+  EXPECT_EQ(last_probe_size, connection_.max_packet_length());
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_PACKET_WRITE_ERROR));
+}
+
+// After a successful MTU probe, one and only one write error should be ignored
+// if it happened in QuicConnection::FlushPacket.
+TEST_P(QuicConnectionTest,
+       MtuDiscoveryIgnoreOneWriteErrorInFlushAfterSuccessfulProbes) {
+  MtuDiscoveryTestInit();
+  writer_->SetBatchMode(true);
+
+  const QuicPacketCount packets_between_probes_base = 5;
+  set_packets_between_probes_base(packets_between_probes_base);
+
+  connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+  const QuicByteCount original_max_packet_length =
+      connection_.max_packet_length();
+  // Send enough packets so that the next one triggers path MTU discovery.
+  for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+    SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+    ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  }
+
+  // Trigger the probe.
+  SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+                       nullptr);
+  ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  QuicByteCount probe_size;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<3>(&probe_size));
+  connection_.GetMtuDiscoveryAlarm()->Fire();
+
+  EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(),
+                                  kMtuDiscoveryTargetPacketSizeHigh));
+
+  const QuicPacketNumber probe_packet_number =
+      FirstSendingPacketNumber() + packets_between_probes_base;
+  ASSERT_EQ(probe_packet_number, creator_->packet_number());
+
+  // Acknowledge all packets sent so far.
+  QuicAckFrame probe_ack = InitAckFrame(probe_packet_number);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+      .Times(AnyNumber());
+  ProcessAckPacket(&probe_ack);
+  EXPECT_EQ(probe_size, connection_.max_packet_length());
+  EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+  EXPECT_EQ(1u, connection_.mtu_probe_count());
+
+  writer_->SetShouldWriteFail();
+
+  // Ignore PACKET_WRITE_ERROR once.
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    // flusher's destructor will call connection_.FlushPackets, which should
+    // get a WRITE_STATUS_ERROR from the writer and ignore it.
+  }
+  EXPECT_EQ(original_max_packet_length, connection_.max_packet_length());
+  EXPECT_TRUE(connection_.connected());
+
+  // Close connection on another PACKET_WRITE_ERROR.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    // flusher's destructor will call connection_.FlushPackets, which should
+    // get a WRITE_STATUS_ERROR from the writer and ignore it.
+  }
+  EXPECT_EQ(original_max_packet_length, connection_.max_packet_length());
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_PACKET_WRITE_ERROR));
+}
+
+// Simulate the case where the first attempt to send a probe is write blocked,
+// and after unblock, the second attempt returns a MSG_TOO_BIG error.
+TEST_P(QuicConnectionTest, MtuDiscoveryWriteBlocked) {
+  MtuDiscoveryTestInit();
+
+  const QuicPacketCount packets_between_probes_base = 5;
+  set_packets_between_probes_base(packets_between_probes_base);
+
+  connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+  // Send enough packets so that the next one triggers path MTU discovery.
+  for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+    SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+    ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  }
+
+  QuicByteCount original_max_packet_length = connection_.max_packet_length();
+
+  // Trigger the probe.
+  SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+                       nullptr);
+  ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+  BlockOnNextWrite();
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  connection_.GetMtuDiscoveryAlarm()->Fire();
+  EXPECT_EQ(1u, connection_.mtu_probe_count());
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+  ASSERT_TRUE(connection_.connected());
+
+  writer_->SetWritable();
+  SimulateNextPacketTooLarge();
+  connection_.OnCanWrite();
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  EXPECT_EQ(original_max_packet_length, connection_.max_packet_length());
+  EXPECT_TRUE(connection_.connected());
+}
+
+// Tests whether MTU discovery works correctly when the probes never get
+// acknowledged.
+TEST_P(QuicConnectionTest, MtuDiscoveryFailed) {
+  MtuDiscoveryTestInit();
+
+  // Lower the number of probes between packets in order to make the test go
+  // much faster.
+  const QuicPacketCount packets_between_probes_base = 5;
+  set_packets_between_probes_base(packets_between_probes_base);
+
+  connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+  const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100);
+
+  EXPECT_EQ(packets_between_probes_base,
+            QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_));
+
+  // This tests sends more packets than strictly necessary to make sure that if
+  // the connection was to send more discovery packets than needed, those would
+  // get caught as well.
+  const QuicPacketCount number_of_packets =
+      packets_between_probes_base * (1 << (kMtuDiscoveryAttempts + 1));
+  std::vector<QuicPacketNumber> mtu_discovery_packets;
+  // Called on many acks.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+      .Times(AnyNumber());
+  for (QuicPacketCount i = 0; i < number_of_packets; i++) {
+    SendStreamDataToPeer(3, "!", i, NO_FIN, nullptr);
+    clock_.AdvanceTime(rtt);
+
+    // Receive an ACK, which marks all data packets as received, and all MTU
+    // discovery packets as missing.
+
+    QuicAckFrame ack;
+
+    if (!mtu_discovery_packets.empty()) {
+      QuicPacketNumber min_packet = *min_element(mtu_discovery_packets.begin(),
+                                                 mtu_discovery_packets.end());
+      QuicPacketNumber max_packet = *max_element(mtu_discovery_packets.begin(),
+                                                 mtu_discovery_packets.end());
+      ack.packets.AddRange(QuicPacketNumber(1), min_packet);
+      ack.packets.AddRange(QuicPacketNumber(max_packet + 1),
+                           creator_->packet_number() + 1);
+      ack.largest_acked = creator_->packet_number();
+
+    } else {
+      ack.packets.AddRange(QuicPacketNumber(1), creator_->packet_number() + 1);
+      ack.largest_acked = creator_->packet_number();
+    }
+
+    ProcessAckPacket(&ack);
+
+    // Trigger MTU probe if it would be scheduled now.
+    if (!connection_.GetMtuDiscoveryAlarm()->IsSet()) {
+      continue;
+    }
+
+    // Fire the alarm.  The alarm should cause a packet to be sent.
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+    connection_.GetMtuDiscoveryAlarm()->Fire();
+    // Record the packet number of the MTU discovery packet in order to
+    // mark it as NACK'd.
+    mtu_discovery_packets.push_back(creator_->packet_number());
+  }
+
+  // Ensure the number of packets between probes grows exponentially by checking
+  // it against the closed-form expression for the packet number.
+  ASSERT_EQ(kMtuDiscoveryAttempts, mtu_discovery_packets.size());
+  for (uint64_t i = 0; i < kMtuDiscoveryAttempts; i++) {
+    // 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1
+    const QuicPacketCount packets_between_probes =
+        packets_between_probes_base * ((1 << (i + 1)) - 1);
+    EXPECT_EQ(QuicPacketNumber(packets_between_probes + (i + 1)),
+              mtu_discovery_packets[i]);
+  }
+
+  EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length());
+  EXPECT_EQ(kMtuDiscoveryAttempts, connection_.mtu_probe_count());
+}
+
+// Probe 3 times, the first one succeeds, then fails, then succeeds again.
+TEST_P(QuicConnectionTest, MtuDiscoverySecondProbeFailed) {
+  MtuDiscoveryTestInit();
+
+  const QuicPacketCount packets_between_probes_base = 5;
+  set_packets_between_probes_base(packets_between_probes_base);
+
+  connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+  // Send enough packets so that the next one triggers path MTU discovery.
+  QuicStreamOffset stream_offset = 0;
+  for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+    SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
+    ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  }
+
+  // Trigger the probe.
+  SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+                       nullptr);
+  ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  QuicByteCount probe_size;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<3>(&probe_size));
+  connection_.GetMtuDiscoveryAlarm()->Fire();
+  EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(),
+                                  kMtuDiscoveryTargetPacketSizeHigh));
+
+  const QuicPacketNumber probe_packet_number =
+      FirstSendingPacketNumber() + packets_between_probes_base;
+  ASSERT_EQ(probe_packet_number, creator_->packet_number());
+
+  // Acknowledge all packets sent so far.
+  QuicAckFrame first_ack = InitAckFrame(probe_packet_number);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+      .Times(AnyNumber());
+  ProcessAckPacket(&first_ack);
+  EXPECT_EQ(probe_size, connection_.max_packet_length());
+  EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+  EXPECT_EQ(1u, connection_.mtu_probe_count());
+
+  // Send just enough packets without triggering the second probe.
+  for (QuicPacketCount i = 0; i < (packets_between_probes_base << 1) - 1; ++i) {
+    SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
+    ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  }
+
+  // Trigger the second probe.
+  SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr);
+  ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  QuicByteCount second_probe_size;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<3>(&second_probe_size));
+  connection_.GetMtuDiscoveryAlarm()->Fire();
+  EXPECT_THAT(second_probe_size,
+              InRange(probe_size, kMtuDiscoveryTargetPacketSizeHigh));
+  EXPECT_EQ(2u, connection_.mtu_probe_count());
+
+  // Acknowledge all packets sent so far, except the second probe.
+  QuicPacketNumber second_probe_packet_number = creator_->packet_number();
+  QuicAckFrame second_ack = InitAckFrame(second_probe_packet_number - 1);
+  ProcessAckPacket(&first_ack);
+  EXPECT_EQ(probe_size, connection_.max_packet_length());
+
+  // Send just enough packets without triggering the third probe.
+  for (QuicPacketCount i = 0; i < (packets_between_probes_base << 2) - 1; ++i) {
+    SendStreamDataToPeer(3, "@", stream_offset++, NO_FIN, nullptr);
+    ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  }
+
+  // Trigger the third probe.
+  SendStreamDataToPeer(3, "#", stream_offset++, NO_FIN, nullptr);
+  ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  QuicByteCount third_probe_size;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<3>(&third_probe_size));
+  connection_.GetMtuDiscoveryAlarm()->Fire();
+  EXPECT_THAT(third_probe_size, InRange(probe_size, second_probe_size));
+  EXPECT_EQ(3u, connection_.mtu_probe_count());
+
+  // Acknowledge all packets sent so far, except the second probe.
+  QuicAckFrame third_ack =
+      ConstructAckFrame(creator_->packet_number(), second_probe_packet_number);
+  ProcessAckPacket(&third_ack);
+  EXPECT_EQ(third_probe_size, connection_.max_packet_length());
+
+  SendStreamDataToPeer(3, "$", stream_offset++, NO_FIN, nullptr);
+  EXPECT_TRUE(connection_.PathMtuReductionDetectionInProgress());
+
+  if (connection_.PathDegradingDetectionInProgress() &&
+      QuicConnectionPeer::GetPathDegradingDeadline(&connection_) <
+          QuicConnectionPeer::GetPathMtuReductionDetectionDeadline(
+              &connection_)) {
+    // Fire path degrading alarm first.
+    connection_.PathDegradingTimeout();
+  }
+
+  // Verify the max packet size has not reduced.
+  EXPECT_EQ(third_probe_size, connection_.max_packet_length());
+
+  // Fire alarm to get path mtu reduction callback called.
+  EXPECT_TRUE(connection_.PathMtuReductionDetectionInProgress());
+  connection_.GetBlackholeDetectorAlarm()->Fire();
+
+  // Verify the max packet size has reduced to the previous value.
+  EXPECT_EQ(probe_size, connection_.max_packet_length());
+}
+
+// Tests whether MTU discovery works when the writer has a limit on how large a
+// packet can be.
+TEST_P(QuicConnectionTest, MtuDiscoveryWriterLimited) {
+  MtuDiscoveryTestInit();
+
+  const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1;
+  writer_->set_max_packet_size(mtu_limit);
+
+  const QuicPacketCount packets_between_probes_base = 5;
+  set_packets_between_probes_base(packets_between_probes_base);
+
+  connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+  // Send enough packets so that the next one triggers path MTU discovery.
+  for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+    SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+    ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  }
+
+  // Trigger the probe.
+  SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+                       nullptr);
+  ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  QuicByteCount probe_size;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(SaveArg<3>(&probe_size));
+  connection_.GetMtuDiscoveryAlarm()->Fire();
+
+  EXPECT_THAT(probe_size, InRange(connection_.max_packet_length(), mtu_limit));
+
+  const QuicPacketNumber probe_sequence_number =
+      FirstSendingPacketNumber() + packets_between_probes_base;
+  ASSERT_EQ(probe_sequence_number, creator_->packet_number());
+
+  // Acknowledge all packets sent so far.
+  QuicAckFrame probe_ack = InitAckFrame(probe_sequence_number);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+      .Times(AnyNumber());
+  ProcessAckPacket(&probe_ack);
+  EXPECT_EQ(probe_size, connection_.max_packet_length());
+  EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+  EXPECT_EQ(1u, connection_.mtu_probe_count());
+
+  QuicStreamOffset stream_offset = packets_between_probes_base;
+  for (size_t num_probes = 1; num_probes < kMtuDiscoveryAttempts;
+       ++num_probes) {
+    // Send just enough packets without triggering the next probe.
+    for (QuicPacketCount i = 0;
+         i < (packets_between_probes_base << num_probes) - 1; ++i) {
+      SendStreamDataToPeer(3, ".", stream_offset++, NO_FIN, nullptr);
+      ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+    }
+
+    // Trigger the next probe.
+    SendStreamDataToPeer(3, "!", stream_offset++, NO_FIN, nullptr);
+    ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+    QuicByteCount new_probe_size;
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+        .WillOnce(SaveArg<3>(&new_probe_size));
+    connection_.GetMtuDiscoveryAlarm()->Fire();
+    EXPECT_THAT(new_probe_size, InRange(probe_size, mtu_limit));
+    EXPECT_EQ(num_probes + 1, connection_.mtu_probe_count());
+
+    // Acknowledge all packets sent so far.
+    QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number());
+    ProcessAckPacket(&probe_ack);
+    EXPECT_EQ(new_probe_size, connection_.max_packet_length());
+    EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+    probe_size = new_probe_size;
+  }
+
+  // The last probe size should be equal to the target.
+  EXPECT_EQ(probe_size, mtu_limit);
+}
+
+// Tests whether MTU discovery works when the writer returns an error despite
+// advertising higher packet length.
+TEST_P(QuicConnectionTest, MtuDiscoveryWriterFailed) {
+  MtuDiscoveryTestInit();
+
+  const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1;
+  const QuicByteCount initial_mtu = connection_.max_packet_length();
+  EXPECT_LT(initial_mtu, mtu_limit);
+  writer_->set_max_packet_size(mtu_limit);
+
+  const QuicPacketCount packets_between_probes_base = 5;
+  set_packets_between_probes_base(packets_between_probes_base);
+
+  connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+  // Send enough packets so that the next one triggers path MTU discovery.
+  for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+    SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+    ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  }
+
+  // Trigger the probe.
+  SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+                       nullptr);
+  ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  writer_->SimulateNextPacketTooLarge();
+  connection_.GetMtuDiscoveryAlarm()->Fire();
+  ASSERT_TRUE(connection_.connected());
+
+  // Send more data.
+  QuicPacketNumber probe_number = creator_->packet_number();
+  QuicPacketCount extra_packets = packets_between_probes_base * 3;
+  for (QuicPacketCount i = 0; i < extra_packets; i++) {
+    connection_.EnsureWritableAndSendStreamData5();
+    ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  }
+
+  // Acknowledge all packets sent so far, except for the lost probe.
+  QuicAckFrame probe_ack =
+      ConstructAckFrame(creator_->packet_number(), probe_number);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  ProcessAckPacket(&probe_ack);
+  EXPECT_EQ(initial_mtu, connection_.max_packet_length());
+
+  // Send more packets, and ensure that none of them sets the alarm.
+  for (QuicPacketCount i = 0; i < 4 * packets_between_probes_base; i++) {
+    connection_.EnsureWritableAndSendStreamData5();
+    ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  }
+
+  EXPECT_EQ(initial_mtu, connection_.max_packet_length());
+  EXPECT_EQ(1u, connection_.mtu_probe_count());
+}
+
+TEST_P(QuicConnectionTest, NoMtuDiscoveryAfterConnectionClosed) {
+  MtuDiscoveryTestInit();
+
+  const QuicPacketCount packets_between_probes_base = 10;
+  set_packets_between_probes_base(packets_between_probes_base);
+
+  connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+  // Send enough packets so that the next one triggers path MTU discovery.
+  for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+    SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+    ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+  }
+
+  SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+                       nullptr);
+  EXPECT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+                              ConnectionCloseBehavior::SILENT_CLOSE);
+  EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterSendDuringHandshake) {
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+
+  const QuicTime::Delta initial_idle_timeout =
+      QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+  const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+  QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
+
+  // When we send a packet, the timeout will change to 5ms +
+  // kInitialIdleTimeoutSecs.
+  clock_.AdvanceTime(five_ms);
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  EXPECT_EQ(default_timeout + five_ms,
+            connection_.GetTimeoutAlarm()->deadline());
+
+  // Now send more data. This will not move the timeout because
+  // no data has been received since the previous write.
+  clock_.AdvanceTime(five_ms);
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      3, FIN, nullptr);
+  EXPECT_EQ(default_timeout + five_ms,
+            connection_.GetTimeoutAlarm()->deadline());
+
+  // The original alarm will fire.  We should not time out because we had a
+  // network event at t=5ms.  The alarm will reregister.
+  clock_.AdvanceTime(initial_idle_timeout - five_ms - five_ms);
+  EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+  EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_EQ(default_timeout + five_ms,
+            connection_.GetTimeoutAlarm()->deadline());
+
+  // This time, we should time out.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  clock_.AdvanceTime(five_ms);
+  EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
+  connection_.GetTimeoutAlarm()->Fire();
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterRetransmission) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+
+  const QuicTime start_time = clock_.Now();
+  const QuicTime::Delta initial_idle_timeout =
+      QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+  QuicTime default_timeout = clock_.Now() + initial_idle_timeout;
+
+  connection_.SetMaxTailLossProbes(0);
+  const QuicTime default_retransmission_time =
+      start_time + DefaultRetransmissionTime();
+
+  ASSERT_LT(default_retransmission_time, default_timeout);
+
+  // When we send a packet, the timeout will change to 5 ms +
+  // kInitialIdleTimeoutSecs (but it will not reschedule the alarm).
+  const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+  const QuicTime send_time = start_time + five_ms;
+  clock_.AdvanceTime(five_ms);
+  ASSERT_EQ(send_time, clock_.Now());
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  EXPECT_EQ(default_timeout + five_ms,
+            connection_.GetTimeoutAlarm()->deadline());
+
+  // Move forward 5 ms and receive a packet, which will move the timeout
+  // forward 5 ms more (but will not reschedule the alarm).
+  const QuicTime receive_time = send_time + five_ms;
+  clock_.AdvanceTime(receive_time - clock_.Now());
+  ASSERT_EQ(receive_time, clock_.Now());
+  ProcessPacket(1);
+
+  // Now move forward to the retransmission time and retransmit the
+  // packet, which should move the timeout forward again (but will not
+  // reschedule the alarm).
+  EXPECT_EQ(default_retransmission_time + five_ms,
+            connection_.GetRetransmissionAlarm()->deadline());
+  // Simulate the retransmission alarm firing.
+  const QuicTime rto_time = send_time + DefaultRetransmissionTime();
+  const QuicTime final_timeout = rto_time + initial_idle_timeout;
+  clock_.AdvanceTime(rto_time - clock_.Now());
+  ASSERT_EQ(rto_time, clock_.Now());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+
+  // Advance to the original timeout and fire the alarm. The connection should
+  // timeout, and the alarm should be registered based on the time of the
+  // retransmission.
+  clock_.AdvanceTime(default_timeout - clock_.Now());
+  ASSERT_EQ(default_timeout.ToDebuggingValue(),
+            clock_.Now().ToDebuggingValue());
+  EXPECT_EQ(default_timeout, clock_.Now());
+  EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_TRUE(connection_.connected());
+  ASSERT_EQ(final_timeout.ToDebuggingValue(),
+            connection_.GetTimeoutAlarm()->deadline().ToDebuggingValue());
+
+  // This time, we should time out.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  clock_.AdvanceTime(final_timeout - clock_.Now());
+  EXPECT_EQ(connection_.GetTimeoutAlarm()->deadline(), clock_.Now());
+  EXPECT_EQ(final_timeout, clock_.Now());
+  connection_.GetTimeoutAlarm()->Fire();
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterSendAfterHandshake) {
+  // When the idle timeout fires, verify that by default we do not send any
+  // connection close packets.
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+
+  // Create a handshake message that also enables silent close.
+  CryptoHandshakeMessage msg;
+  std::string error_details;
+  QuicConfig client_config;
+  client_config.SetInitialStreamFlowControlWindowToSend(
+      kInitialStreamFlowControlWindowForTest);
+  client_config.SetInitialSessionFlowControlWindowToSend(
+      kInitialSessionFlowControlWindowForTest);
+  client_config.SetIdleNetworkTimeout(
+      QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs));
+  client_config.ToHandshakeMessage(&msg, connection_.transport_version());
+  const QuicErrorCode error =
+      config.ProcessPeerHello(msg, CLIENT, &error_details);
+  EXPECT_THAT(error, IsQuicNoError());
+
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  connection_.SetFromConfig(config);
+
+  const QuicTime::Delta default_idle_timeout =
+      QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1);
+  const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+  QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
+
+  // When we send a packet, the timeout will change to 5ms +
+  // kInitialIdleTimeoutSecs.
+  clock_.AdvanceTime(five_ms);
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  EXPECT_EQ(default_timeout + five_ms,
+            connection_.GetTimeoutAlarm()->deadline());
+
+  // Now send more data. This will not move the timeout because
+  // no data has been received since the previous write.
+  clock_.AdvanceTime(five_ms);
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      3, FIN, nullptr);
+  EXPECT_EQ(default_timeout + five_ms,
+            connection_.GetTimeoutAlarm()->deadline());
+
+  // The original alarm will fire.  We should not time out because we had a
+  // network event at t=5ms.  The alarm will reregister.
+  clock_.AdvanceTime(default_idle_timeout - five_ms - five_ms);
+  EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+  EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_EQ(default_timeout + five_ms,
+            connection_.GetTimeoutAlarm()->deadline());
+
+  // This time, we should time out.
+  // This results in a SILENT_CLOSE, so the writer will not be invoked
+  // and will not save the frame. Grab the frame from OnConnectionClosed
+  // directly.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+
+  clock_.AdvanceTime(five_ms);
+  EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
+  connection_.GetTimeoutAlarm()->Fire();
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_NETWORK_IDLE_TIMEOUT));
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseAndTLP) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  // Same test as above, but sending TLPs causes a connection close to be sent.
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+
+  // Create a handshake message that also enables silent close.
+  CryptoHandshakeMessage msg;
+  std::string error_details;
+  QuicConfig client_config;
+  client_config.SetInitialStreamFlowControlWindowToSend(
+      kInitialStreamFlowControlWindowForTest);
+  client_config.SetInitialSessionFlowControlWindowToSend(
+      kInitialSessionFlowControlWindowForTest);
+  client_config.SetIdleNetworkTimeout(
+      QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs));
+  client_config.ToHandshakeMessage(&msg, connection_.transport_version());
+  const QuicErrorCode error =
+      config.ProcessPeerHello(msg, CLIENT, &error_details);
+  EXPECT_THAT(error, IsQuicNoError());
+
+  connection_.SetFromConfig(config);
+
+  const QuicTime::Delta default_idle_timeout =
+      QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1);
+  const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+  QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
+
+  // When we send a packet, the timeout will change to 5ms +
+  // kInitialIdleTimeoutSecs.
+  clock_.AdvanceTime(five_ms);
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  EXPECT_EQ(default_timeout + five_ms,
+            connection_.GetTimeoutAlarm()->deadline());
+
+  // Retransmit the packet via tail loss probe.
+  clock_.AdvanceTime(connection_.GetRetransmissionAlarm()->deadline() -
+                     clock_.Now());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+
+  // This time, we should time out and send a connection close due to the TLP.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() -
+                     clock_.ApproximateNow() + five_ms);
+  connection_.GetTimeoutAlarm()->Fire();
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseWithOpenStreams) {
+  // Same test as above, but having open streams causes a connection close
+  // to be sent.
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+
+  // Create a handshake message that also enables silent close.
+  CryptoHandshakeMessage msg;
+  std::string error_details;
+  QuicConfig client_config;
+  client_config.SetInitialStreamFlowControlWindowToSend(
+      kInitialStreamFlowControlWindowForTest);
+  client_config.SetInitialSessionFlowControlWindowToSend(
+      kInitialSessionFlowControlWindowForTest);
+  client_config.SetIdleNetworkTimeout(
+      QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs));
+  client_config.ToHandshakeMessage(&msg, connection_.transport_version());
+  const QuicErrorCode error =
+      config.ProcessPeerHello(msg, CLIENT, &error_details);
+  EXPECT_THAT(error, IsQuicNoError());
+
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  connection_.SetFromConfig(config);
+
+  const QuicTime::Delta default_idle_timeout =
+      QuicTime::Delta::FromSeconds(kMaximumIdleTimeoutSecs - 1);
+  const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+  QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
+
+  // When we send a packet, the timeout will change to 5ms +
+  // kInitialIdleTimeoutSecs.
+  clock_.AdvanceTime(five_ms);
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  EXPECT_EQ(default_timeout + five_ms,
+            connection_.GetTimeoutAlarm()->deadline());
+
+  // Indicate streams are still open.
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(true));
+  if (GetQuicReloadableFlag(quic_add_stream_info_to_idle_close_detail)) {
+    EXPECT_CALL(visitor_, GetStreamsInfoForLogging()).WillOnce(Return(""));
+  }
+
+  // This time, we should time out and send a connection close due to the TLP.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() -
+                     clock_.ApproximateNow() + five_ms);
+  connection_.GetTimeoutAlarm()->Fire();
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterReceive) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+
+  const QuicTime::Delta initial_idle_timeout =
+      QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+  const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+  QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
+
+  connection_.SendStreamDataWithString(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, NO_FIN);
+  connection_.SendStreamDataWithString(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      3, NO_FIN);
+
+  EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+  clock_.AdvanceTime(five_ms);
+
+  // When we receive a packet, the timeout will change to 5ms +
+  // kInitialIdleTimeoutSecs.
+  QuicAckFrame ack = InitAckFrame(2);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  ProcessAckPacket(&ack);
+
+  // The original alarm will fire.  We should not time out because we had a
+  // network event at t=5ms.  The alarm will reregister.
+  clock_.AdvanceTime(initial_idle_timeout - five_ms);
+  EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_EQ(default_timeout + five_ms,
+            connection_.GetTimeoutAlarm()->deadline());
+
+  // This time, we should time out.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  clock_.AdvanceTime(five_ms);
+  EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
+  connection_.GetTimeoutAlarm()->Fire();
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterReceiveNotSendWhenUnacked) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+
+  const QuicTime::Delta initial_idle_timeout =
+      QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+  connection_.SetNetworkTimeouts(
+      QuicTime::Delta::Infinite(),
+      initial_idle_timeout + QuicTime::Delta::FromSeconds(1));
+  const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+  QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+  connection_.SendStreamDataWithString(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, NO_FIN);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+  connection_.SendStreamDataWithString(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      3, NO_FIN);
+
+  EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+  clock_.AdvanceTime(five_ms);
+
+  // When we receive a packet, the timeout will change to 5ms +
+  // kInitialIdleTimeoutSecs.
+  QuicAckFrame ack = InitAckFrame(2);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  ProcessAckPacket(&ack);
+
+  // The original alarm will fire.  We should not time out because we had a
+  // network event at t=5ms.  The alarm will reregister.
+  clock_.AdvanceTime(initial_idle_timeout - five_ms);
+  EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_EQ(default_timeout + five_ms,
+            connection_.GetTimeoutAlarm()->deadline());
+
+  // Now, send packets while advancing the time and verify that the connection
+  // eventually times out.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+  for (int i = 0; i < 100 && connection_.connected(); ++i) {
+    QUIC_LOG(INFO) << "sending data packet";
+    connection_.SendStreamDataWithString(
+        GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+        "foo", 0, NO_FIN);
+    connection_.GetTimeoutAlarm()->Fire();
+    clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+  }
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  TestConnectionCloseQuicErrorCode(QUIC_NETWORK_IDLE_TIMEOUT);
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfter5ClientRTOs) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  connection_.SetMaxTailLossProbes(2);
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k5RTO);
+  config.SetConnectionOptionsToSend(connection_options);
+  QuicConfigPeer::SetNegotiated(&config, true);
+  if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    EXPECT_CALL(visitor_, GetHandshakeState())
+        .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+  }
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  connection_.SetFromConfig(config);
+
+  // Send stream data.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+
+  // Fire the retransmission alarm 6 times, twice for TLP and 4 times for RTO.
+  for (int i = 0; i < 6; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+    connection_.GetRetransmissionAlarm()->Fire();
+    EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+    EXPECT_TRUE(connection_.connected());
+  }
+  EXPECT_CALL(visitor_, OnPathDegrading());
+  connection_.PathDegradingTimeout();
+
+  EXPECT_EQ(2u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
+  EXPECT_EQ(4u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
+  // This time, we should time out.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+  connection_.GetBlackholeDetectorAlarm()->Fire();
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
+}
+
+TEST_P(QuicConnectionTest, SendScheduler) {
+  // Test that if we send a packet without delay, it is not queued.
+  QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
+  std::unique_ptr<QuicPacket> packet =
+      ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
+  QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+  connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet),
+                         HAS_RETRANSMITTABLE_DATA, false, false);
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, FailToSendFirstPacket) {
+  // Test that the connection does not crash when it fails to send the first
+  // packet at which point self_address_ might be uninitialized.
+  QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1);
+  std::unique_ptr<QuicPacket> packet =
+      ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
+  QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
+  writer_->SetShouldWriteFail();
+  connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet),
+                         HAS_RETRANSMITTABLE_DATA, false, false);
+}
+
+TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) {
+  QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
+  std::unique_ptr<QuicPacket> packet =
+      ConstructDataPacket(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
+  QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
+  BlockOnNextWrite();
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _))
+      .Times(0);
+  connection_.SendPacket(ENCRYPTION_INITIAL, 1, std::move(packet),
+                         HAS_RETRANSMITTABLE_DATA, false, false);
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) {
+  // Queue the first packet.
+  size_t payload_length = connection_.max_packet_length();
+  EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(testing::Return(false));
+  const std::string payload(payload_length, 'a');
+  QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId(
+      connection_.version().transport_version, Perspective::IS_CLIENT));
+  EXPECT_EQ(0u, connection_
+                    .SendStreamDataWithString(first_bidi_stream_id, payload, 0,
+                                              NO_FIN)
+                    .bytes_consumed);
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, SendingThreePackets) {
+  // Make the payload twice the size of the packet, so 3 packets are written.
+  size_t total_payload_length = 2 * connection_.max_packet_length();
+  const std::string payload(total_payload_length, 'a');
+  QuicStreamId first_bidi_stream_id(QuicUtils::GetFirstBidirectionalStreamId(
+      connection_.version().transport_version, Perspective::IS_CLIENT));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
+  EXPECT_EQ(payload.size(), connection_
+                                .SendStreamDataWithString(first_bidi_stream_id,
+                                                          payload, 0, NO_FIN)
+                                .bytes_consumed);
+}
+
+TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) {
+  set_perspective(Perspective::IS_SERVER);
+  if (!GetParam().version.HasIetfInvariantHeader()) {
+    // For IETF QUIC, encryption level will be switched to FORWARD_SECURE in
+    // SendStreamDataWithString.
+    QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  }
+  // Set up a larger payload than will fit in one packet.
+  const std::string payload(connection_.max_packet_length(), 'a');
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
+
+  // Now send some packets with no truncation.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  EXPECT_EQ(payload.size(),
+            connection_.SendStreamDataWithString(3, payload, 0, NO_FIN)
+                .bytes_consumed);
+  // Track the size of the second packet here.  The overhead will be the largest
+  // we see in this test, due to the non-truncated connection id.
+  size_t non_truncated_packet_size = writer_->last_packet_size();
+
+  // Change to a 0 byte connection id.
+  QuicConfig config;
+  QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0);
+  connection_.SetFromConfig(config);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  EXPECT_EQ(payload.size(),
+            connection_.SendStreamDataWithString(3, payload, 1350, NO_FIN)
+                .bytes_consumed);
+  if (connection_.version().HasIetfInvariantHeader()) {
+    // Short header packets sent from server omit connection ID already, and
+    // stream offset size increases from 0 to 2.
+    EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() - 2);
+  } else {
+    // Just like above, we save 8 bytes on payload, and 8 on truncation. -2
+    // because stream offset size is 2 instead of 0.
+    EXPECT_EQ(non_truncated_packet_size,
+              writer_->last_packet_size() + 8 * 2 - 2);
+  }
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAck) {
+  QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  const uint8_t tag = 0x07;
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(tag));
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(tag));
+  // Process a packet from the non-crypto stream.
+  frame1_.stream_id = 3;
+
+  // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+  // instead of ENCRYPTION_INITIAL.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+  // Check if delayed ack timer is running for the expected interval.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+  // Simulate delayed ack alarm firing.
+  clock_.AdvanceTime(DefaultDelayedAckTime());
+  connection_.GetAckAlarm()->Fire();
+  // Check that ack is sent and that delayed ack alarm is reset.
+  size_t padding_frame_count = writer_->padding_frames().size();
+  if (GetParam().no_stop_waiting) {
+    EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+    EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+  } else {
+    EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
+    EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+  }
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimation) {
+  EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+
+  const size_t kMinRttMs = 40;
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+                       QuicTime::Delta::Zero(), QuicTime::Zero());
+  // The ack time should be based on min_rtt/4, since it's less than the
+  // default delayed ack time.
+  QuicTime ack_time = clock_.ApproximateNow() +
+                      QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  const uint8_t tag = 0x07;
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(tag));
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(tag));
+  // Process a packet from the non-crypto stream.
+  frame1_.stream_id = 3;
+
+  // Process all the initial packets in order so there aren't missing packets.
+  uint64_t kFirstDecimatedPacket = 101;
+  for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+    ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+  }
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+  // instead of ENCRYPTION_INITIAL.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+                           ENCRYPTION_ZERO_RTT);
+
+  // Check if delayed ack timer is running for the expected interval.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+  // The 10th received packet causes an ack to be sent.
+  for (int i = 0; i < 9; ++i) {
+    EXPECT_TRUE(connection_.HasPendingAcks());
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+    ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+                             ENCRYPTION_ZERO_RTT);
+  }
+  // Check that ack is sent and that delayed ack alarm is reset.
+  size_t padding_frame_count = writer_->padding_frames().size();
+  if (GetParam().no_stop_waiting) {
+    EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+    EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+  } else {
+    EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
+    EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+  }
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimationUnlimitedAggregation) {
+  EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  QuicTagVector connection_options;
+  // No limit on the number of packets received before sending an ack.
+  connection_options.push_back(kAKDU);
+  config.SetConnectionOptionsToSend(connection_options);
+  connection_.SetFromConfig(config);
+
+  const size_t kMinRttMs = 40;
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+                       QuicTime::Delta::Zero(), QuicTime::Zero());
+  // The ack time should be based on min_rtt/4, since it's less than the
+  // default delayed ack time.
+  QuicTime ack_time = clock_.ApproximateNow() +
+                      QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  const uint8_t tag = 0x07;
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(tag));
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(tag));
+  // Process a packet from the non-crypto stream.
+  frame1_.stream_id = 3;
+
+  // Process all the initial packets in order so there aren't missing packets.
+  uint64_t kFirstDecimatedPacket = 101;
+  for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+    ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+  }
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+  // instead of ENCRYPTION_INITIAL.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+                           ENCRYPTION_ZERO_RTT);
+
+  // Check if delayed ack timer is running for the expected interval.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+  // 18 packets will not cause an ack to be sent.  19 will because when
+  // stop waiting frames are in use, we ack every 20 packets no matter what.
+  for (int i = 0; i < 18; ++i) {
+    EXPECT_TRUE(connection_.HasPendingAcks());
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+    ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+                             ENCRYPTION_ZERO_RTT);
+  }
+  // The delayed ack timer should still be set to the expected deadline.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimationEighthRtt) {
+  EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+  QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125);
+
+  const size_t kMinRttMs = 40;
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+                       QuicTime::Delta::Zero(), QuicTime::Zero());
+  // The ack time should be based on min_rtt/8, since it's less than the
+  // default delayed ack time.
+  QuicTime ack_time = clock_.ApproximateNow() +
+                      QuicTime::Delta::FromMilliseconds(kMinRttMs / 8);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  const uint8_t tag = 0x07;
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(tag));
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(tag));
+  // Process a packet from the non-crypto stream.
+  frame1_.stream_id = 3;
+
+  // Process all the initial packets in order so there aren't missing packets.
+  uint64_t kFirstDecimatedPacket = 101;
+  for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+    ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+  }
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+  // instead of ENCRYPTION_INITIAL.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+                           ENCRYPTION_ZERO_RTT);
+
+  // Check if delayed ack timer is running for the expected interval.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+  // The 10th received packet causes an ack to be sent.
+  for (int i = 0; i < 9; ++i) {
+    EXPECT_TRUE(connection_.HasPendingAcks());
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+    ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+                             ENCRYPTION_ZERO_RTT);
+  }
+  // Check that ack is sent and that delayed ack alarm is reset.
+  size_t padding_frame_count = writer_->padding_frames().size();
+  if (GetParam().no_stop_waiting) {
+    EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+    EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+  } else {
+    EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
+    EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+  }
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  ProcessPacket(1);
+  // Check that ack is sent and that delayed ack alarm is set.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
+  EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+  // Completing the handshake as the server does nothing.
+  QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER);
+  connection_.OnHandshakeComplete();
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+  // Complete the handshake as the client decreases the delayed ack time to 0ms.
+  QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_CLIENT);
+  connection_.OnHandshakeComplete();
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    EXPECT_EQ(clock_.ApproximateNow() + DefaultDelayedAckTime(),
+              connection_.GetAckAlarm()->deadline());
+  } else {
+    EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline());
+  }
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  ProcessPacket(1);
+  ProcessPacket(2);
+  // Check that ack is sent and that delayed ack alarm is reset.
+  size_t padding_frame_count = writer_->padding_frames().size();
+  if (GetParam().no_stop_waiting) {
+    EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+    EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+  } else {
+    EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
+    EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+  }
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, NoAckOnOldNacks) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  ProcessPacket(2);
+  size_t frames_per_ack = GetParam().no_stop_waiting ? 1 : 2;
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessPacket(3);
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count());
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  writer_->Reset();
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  ProcessPacket(4);
+  EXPECT_EQ(0u, writer_->frame_count());
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessPacket(5);
+  padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + frames_per_ack, writer_->frame_count());
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  writer_->Reset();
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  // Now only set the timer on the 6th packet, instead of sending another ack.
+  ProcessPacket(6);
+  padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count, writer_->frame_count());
+  EXPECT_TRUE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnStreamFrame(_));
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(0x01));
+  SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+               std::make_unique<StrictTaggingDecrypter>(0x01));
+  ProcessDataPacket(1);
+  connection_.SendStreamDataWithString(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, NO_FIN);
+  // Check that ack is bundled with outgoing data and that delayed ack
+  // alarm is reset.
+  if (GetParam().no_stop_waiting) {
+    EXPECT_EQ(2u, writer_->frame_count());
+    EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+  } else {
+    EXPECT_EQ(3u, writer_->frame_count());
+    EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+  }
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  }
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+  connection_.SendCryptoDataWithString("foo", 0);
+  // Check that ack is bundled with outgoing crypto data.
+  if (GetParam().no_stop_waiting) {
+    EXPECT_EQ(3u, writer_->frame_count());
+    EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+  } else {
+    EXPECT_EQ(4u, writer_->frame_count());
+    EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+  }
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  ProcessPacket(1);
+  BlockOnNextWrite();
+  writer_->set_is_write_blocked_data_buffered(true);
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  } else {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  }
+  connection_.SendCryptoDataWithString("foo", 0);
+  EXPECT_TRUE(writer_->IsWriteBlocked());
+  EXPECT_FALSE(connection_.HasQueuedData());
+  connection_.SendCryptoDataWithString("bar", 3);
+  EXPECT_TRUE(writer_->IsWriteBlocked());
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    // CRYPTO frames are not flushed when writer is blocked.
+    EXPECT_FALSE(connection_.HasQueuedData());
+  } else {
+    EXPECT_TRUE(connection_.HasQueuedData());
+  }
+}
+
+TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  EXPECT_CALL(visitor_, OnCanWrite())
+      .WillOnce(IgnoreResult(InvokeWithoutArgs(
+          &connection_, &TestConnection::SendCryptoStreamData)));
+  // Process a packet from the crypto stream, which is frame1_'s default.
+  // Receiving the CHLO as packet 2 first will cause the connection to
+  // immediately send an ack, due to the packet gap.
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  }
+  ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+  // Check that ack is sent and that delayed ack alarm is reset.
+  if (GetParam().no_stop_waiting) {
+    EXPECT_EQ(3u, writer_->frame_count());
+    EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+  } else {
+    EXPECT_EQ(4u, writer_->frame_count());
+    EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+  }
+  if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_EQ(1u, writer_->stream_frames().size());
+  } else {
+    EXPECT_EQ(1u, writer_->crypto_frames().size());
+  }
+  EXPECT_EQ(1u, writer_->padding_frames().size());
+  ASSERT_FALSE(writer_->ack_frames().empty());
+  EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front()));
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, BundleAckForSecondCHLOTwoPacketReject) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_FALSE(connection_.HasPendingAcks());
+
+  // Process two packets from the crypto stream, which is frame1_'s default,
+  // simulating a 2 packet reject.
+  {
+    if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+      EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+    } else {
+      EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+    }
+    ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+    // Send the new CHLO when the REJ is processed.
+    if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+      EXPECT_CALL(visitor_, OnCryptoFrame(_))
+          .WillOnce(IgnoreResult(InvokeWithoutArgs(
+              &connection_, &TestConnection::SendCryptoStreamData)));
+    } else {
+      EXPECT_CALL(visitor_, OnStreamFrame(_))
+          .WillOnce(IgnoreResult(InvokeWithoutArgs(
+              &connection_, &TestConnection::SendCryptoStreamData)));
+    }
+    ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+  }
+  // Check that ack is sent and that delayed ack alarm is reset.
+  if (GetParam().no_stop_waiting) {
+    EXPECT_EQ(3u, writer_->frame_count());
+    EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+  } else {
+    EXPECT_EQ(4u, writer_->frame_count());
+    EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+  }
+  if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_EQ(1u, writer_->stream_frames().size());
+  } else {
+    EXPECT_EQ(1u, writer_->crypto_frames().size());
+  }
+  EXPECT_EQ(1u, writer_->padding_frames().size());
+  ASSERT_FALSE(writer_->ack_frames().empty());
+  EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front()));
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  connection_.SendStreamDataWithString(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, NO_FIN);
+  connection_.SendStreamDataWithString(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      3, NO_FIN);
+  // Ack the second packet, which will retransmit the first packet.
+  QuicAckFrame ack = ConstructAckFrame(2, 1);
+  LostPacketVector lost_packets;
+  lost_packets.push_back(
+      LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+                      Return(LossDetectionInterface::DetectionStats())));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  ProcessAckPacket(&ack);
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  EXPECT_EQ(1u, writer_->stream_frames().size());
+  writer_->Reset();
+
+  // Now ack the retransmission, which will both raise the high water mark
+  // and see if there is more data to send.
+  ack = ConstructAckFrame(3, 1);
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  ProcessAckPacket(&ack);
+
+  // Check that no packet is sent and the ack alarm isn't set.
+  EXPECT_EQ(0u, writer_->frame_count());
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  writer_->Reset();
+
+  // Send the same ack, but send both data and an ack together.
+  ack = ConstructAckFrame(3, 1);
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  EXPECT_CALL(visitor_, OnCanWrite())
+      .WillOnce(IgnoreResult(InvokeWithoutArgs(
+          &connection_, &TestConnection::EnsureWritableAndSendStreamData5)));
+  ProcessAckPacket(&ack);
+
+  // Check that ack is bundled with outgoing data and the delayed ack
+  // alarm is reset.
+  if (GetParam().no_stop_waiting) {
+    // Do not ACK acks.
+    EXPECT_EQ(1u, writer_->frame_count());
+  } else {
+    EXPECT_EQ(3u, writer_->frame_count());
+    EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+  }
+  if (GetParam().no_stop_waiting) {
+    EXPECT_TRUE(writer_->ack_frames().empty());
+  } else {
+    EXPECT_FALSE(writer_->ack_frames().empty());
+    EXPECT_EQ(QuicPacketNumber(3u),
+              LargestAcked(writer_->ack_frames().front()));
+  }
+  EXPECT_EQ(1u, writer_->stream_frames().size());
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, NoAckSentForClose) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  ProcessPacket(1);
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  ProcessClosePacket(2);
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_PEER_GOING_AWAY));
+}
+
+TEST_P(QuicConnectionTest, SendWhenDisconnected) {
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+                              ConnectionCloseBehavior::SILENT_CLOSE);
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
+  EXPECT_EQ(DISCARD, connection_.GetSerializedPacketFate(
+                         /*is_mtu_discovery=*/false, ENCRYPTION_INITIAL));
+}
+
+TEST_P(QuicConnectionTest, SendConnectivityProbingWhenDisconnected) {
+  // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+  if (!IsDefaultTestConfiguration()) {
+    return;
+  }
+
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+                              ConnectionCloseBehavior::SILENT_CLOSE);
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+      .Times(0);
+
+  EXPECT_QUIC_BUG(connection_.SendConnectivityProbingPacket(
+                      writer_.get(), connection_.peer_address()),
+                  "Not sending connectivity probing packet as connection is "
+                  "disconnected.");
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_PEER_GOING_AWAY));
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedAfterClientSendsConnectivityProbe) {
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  TestPacketWriter probing_writer(version(), &clock_, Perspective::IS_CLIENT);
+  // Block next write so that sending connectivity probe will encounter a
+  // blocked write when send a connectivity probe to the peer.
+  probing_writer.BlockOnNextWrite();
+  // Connection will not be marked as write blocked as connectivity probe only
+  // affects the probing_writer which is not the default.
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+      .Times(1);
+  connection_.SendConnectivityProbingPacket(&probing_writer,
+                                            connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, WriterBlockedAfterServerSendsConnectivityProbe) {
+  PathProbeTestInit(Perspective::IS_SERVER);
+  if (version().SupportsAntiAmplificationLimit()) {
+    QuicConnectionPeer::SetAddressValidated(&connection_);
+  }
+
+  // Block next write so that sending connectivity probe will encounter a
+  // blocked write when send a connectivity probe to the peer.
+  writer_->BlockOnNextWrite();
+  // Connection will be marked as write blocked as server uses the default
+  // writer to send connectivity probes.
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+      .Times(1);
+  if (VersionHasIetfQuicFrames(GetParam().version.transport_version)) {
+    QuicPathFrameBuffer payload{
+        {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}};
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    connection_.SendPathChallenge(
+        payload, connection_.self_address(), connection_.peer_address(),
+        connection_.effective_peer_address(), writer_.get());
+  } else {
+    connection_.SendConnectivityProbingPacket(writer_.get(),
+                                              connection_.peer_address());
+  }
+}
+
+TEST_P(QuicConnectionTest, WriterErrorWhenClientSendsConnectivityProbe) {
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  TestPacketWriter probing_writer(version(), &clock_, Perspective::IS_CLIENT);
+  probing_writer.SetShouldWriteFail();
+
+  // Connection should not be closed if a connectivity probe is failed to be
+  // sent.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+      .Times(0);
+  connection_.SendConnectivityProbingPacket(&probing_writer,
+                                            connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, WriterErrorWhenServerSendsConnectivityProbe) {
+  PathProbeTestInit(Perspective::IS_SERVER);
+
+  writer_->SetShouldWriteFail();
+  // Connection should not be closed if a connectivity probe is failed to be
+  // sent.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+      .Times(0);
+  connection_.SendConnectivityProbingPacket(writer_.get(),
+                                            connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, PublicReset) {
+  if (GetParam().version.HasIetfInvariantHeader()) {
+    return;
+  }
+  QuicPublicResetPacket header;
+  // Public reset packet in only built by server.
+  header.connection_id = connection_id_;
+  std::unique_ptr<QuicEncryptedPacket> packet(
+      framer_.BuildPublicResetPacket(header));
+  std::unique_ptr<QuicReceivedPacket> received(
+      ConstructReceivedPacket(*packet, QuicTime::Zero()));
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_PUBLIC_RESET));
+}
+
+TEST_P(QuicConnectionTest, IetfStatelessReset) {
+  if (!GetParam().version.HasIetfInvariantHeader()) {
+    return;
+  }
+  QuicConfig config;
+  QuicConfigPeer::SetReceivedStatelessResetToken(&config,
+                                                 kTestStatelessResetToken);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  std::unique_ptr<QuicEncryptedPacket> packet(
+      QuicFramer::BuildIetfStatelessResetPacket(connection_id_,
+                                                /*received_packet_length=*/100,
+                                                kTestStatelessResetToken));
+  std::unique_ptr<QuicReceivedPacket> received(
+      ConstructReceivedPacket(*packet, QuicTime::Zero()));
+  if (!connection_.use_path_validator()) {
+    EXPECT_CALL(visitor_, ValidateStatelessReset(_, _)).WillOnce(Return(true));
+  }
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_PUBLIC_RESET));
+}
+
+TEST_P(QuicConnectionTest, GoAway) {
+  if (VersionHasIetfQuicFrames(GetParam().version.transport_version)) {
+    // GoAway is not available in version 99.
+    return;
+  }
+
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  QuicGoAwayFrame* goaway = new QuicGoAwayFrame();
+  goaway->last_good_stream_id = 1;
+  goaway->error_code = QUIC_PEER_GOING_AWAY;
+  goaway->reason_phrase = "Going away.";
+  EXPECT_CALL(visitor_, OnGoAway(_));
+  ProcessGoAwayPacket(goaway);
+}
+
+TEST_P(QuicConnectionTest, WindowUpdate) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  QuicWindowUpdateFrame window_update;
+  window_update.stream_id = 3;
+  window_update.max_data = 1234;
+  EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
+  ProcessFramePacket(QuicFrame(window_update));
+}
+
+TEST_P(QuicConnectionTest, Blocked) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  QuicBlockedFrame blocked;
+  blocked.stream_id = 3;
+  EXPECT_CALL(visitor_, OnBlockedFrame(_));
+  ProcessFramePacket(QuicFrame(blocked));
+  EXPECT_EQ(1u, connection_.GetStats().blocked_frames_received);
+  EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
+}
+
+TEST_P(QuicConnectionTest, ZeroBytePacket) {
+  // Don't close the connection for zero byte packets.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+  QuicReceivedPacket encrypted(nullptr, 0, QuicTime::Zero());
+  connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, encrypted);
+}
+
+TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) {
+  if (GetParam().version.HasIetfInvariantHeader()) {
+    return;
+  }
+  // Set the packet number of the ack packet to be least unacked (4).
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 3);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  ProcessStopWaitingPacket(InitStopWaitingFrame(4));
+  EXPECT_FALSE(connection_.ack_frame().packets.Empty());
+}
+
+TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) {
+  // All supported versions except the one the connection supports.
+  ParsedQuicVersionVector versions;
+  for (auto version : AllSupportedVersions()) {
+    if (version != connection_.version()) {
+      versions.push_back(version);
+    }
+  }
+
+  // Send a version negotiation packet.
+  std::unique_ptr<QuicEncryptedPacket> encrypted(
+      QuicFramer::BuildVersionNegotiationPacket(
+          connection_id_, EmptyQuicConnectionId(),
+          connection_.version().HasIetfInvariantHeader(),
+          connection_.version().HasLengthPrefixedConnectionIds(), versions));
+  std::unique_ptr<QuicReceivedPacket> received(
+      ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  // Verify no connection close packet gets sent.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_INVALID_VERSION));
+}
+
+TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiationWithConnectionClose) {
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(kINVC);
+  config.SetClientConnectionOptions(connection_options);
+  connection_.SetFromConfig(config);
+
+  // All supported versions except the one the connection supports.
+  ParsedQuicVersionVector versions;
+  for (auto version : AllSupportedVersions()) {
+    if (version != connection_.version()) {
+      versions.push_back(version);
+    }
+  }
+
+  // Send a version negotiation packet.
+  std::unique_ptr<QuicEncryptedPacket> encrypted(
+      QuicFramer::BuildVersionNegotiationPacket(
+          connection_id_, EmptyQuicConnectionId(),
+          connection_.version().HasIetfInvariantHeader(),
+          connection_.version().HasLengthPrefixedConnectionIds(), versions));
+  std::unique_ptr<QuicReceivedPacket> received(
+      ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  // Verify connection close packet gets sent.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1u));
+  connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_INVALID_VERSION));
+}
+
+TEST_P(QuicConnectionTest, BadVersionNegotiation) {
+  // Send a version negotiation packet with the version the client started with.
+  // It should be rejected.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  std::unique_ptr<QuicEncryptedPacket> encrypted(
+      QuicFramer::BuildVersionNegotiationPacket(
+          connection_id_, EmptyQuicConnectionId(),
+          connection_.version().HasIetfInvariantHeader(),
+          connection_.version().HasLengthPrefixedConnectionIds(),
+          AllSupportedVersions()));
+  std::unique_ptr<QuicReceivedPacket> received(
+      ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
+  connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET));
+}
+
+TEST_P(QuicConnectionTest, CheckSendStats) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  connection_.SetMaxTailLossProbes(0);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+  connection_.SendStreamDataWithString(3, "first", 0, NO_FIN);
+  size_t first_packet_size = writer_->last_packet_size();
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+  connection_.SendStreamDataWithString(5, "second", 0, NO_FIN);
+  size_t second_packet_size = writer_->last_packet_size();
+
+  // 2 retransmissions due to rto, 1 due to explicit nack.
+  EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
+
+  // Retransmit due to RTO.
+  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
+  connection_.GetRetransmissionAlarm()->Fire();
+
+  // Retransmit due to explicit nacks.
+  QuicAckFrame nack_three =
+      InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)},
+                    {QuicPacketNumber(4), QuicPacketNumber(5)}});
+
+  LostPacketVector lost_packets;
+  lost_packets.push_back(
+      LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize));
+  lost_packets.push_back(
+      LostPacket(QuicPacketNumber(3), kMaxOutgoingPacketSize));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+                      Return(LossDetectionInterface::DetectionStats())));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  ProcessAckPacket(&nack_three);
+
+  EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+      .WillOnce(Return(QuicBandwidth::Zero()));
+
+  const QuicConnectionStats& stats = connection_.GetStats();
+  // For IETF QUIC, version is not included as the encryption level switches to
+  // FORWARD_SECURE in SendStreamDataWithString.
+  size_t save_on_version =
+      GetParam().version.HasIetfInvariantHeader() ? 0 : kQuicVersionSize;
+  EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - save_on_version,
+            stats.bytes_sent);
+  EXPECT_EQ(5u, stats.packets_sent);
+  EXPECT_EQ(2 * first_packet_size + second_packet_size - save_on_version,
+            stats.bytes_retransmitted);
+  EXPECT_EQ(3u, stats.packets_retransmitted);
+  EXPECT_EQ(1u, stats.rto_count);
+  EXPECT_EQ(kDefaultMaxPacketSize, stats.egress_mtu);
+}
+
+TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) {
+  // Construct a packet with stream frame and connection close frame.
+  QuicPacketHeader header;
+  if (peer_framer_.perspective() == Perspective::IS_SERVER) {
+    header.source_connection_id = connection_id_;
+    header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+    if (!peer_framer_.version().HasIetfInvariantHeader()) {
+      header.source_connection_id_included = CONNECTION_ID_PRESENT;
+    }
+  } else {
+    header.destination_connection_id = connection_id_;
+    if (peer_framer_.version().HasIetfInvariantHeader()) {
+      header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+    }
+  }
+  header.packet_number = QuicPacketNumber(1);
+  header.version_flag = false;
+
+  QuicErrorCode kQuicErrorCode = QUIC_PEER_GOING_AWAY;
+  // This QuicConnectionCloseFrame will default to being for a Google QUIC
+  // close. If doing IETF QUIC then set fields appropriately for CC/T or CC/A,
+  // depending on the mapping.
+  QuicConnectionCloseFrame qccf(peer_framer_.transport_version(),
+                                kQuicErrorCode, NO_IETF_QUIC_ERROR, "",
+                                /*transport_close_frame_type=*/0);
+  QuicFrames frames;
+  frames.push_back(QuicFrame(frame1_));
+  frames.push_back(QuicFrame(&qccf));
+  std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+  EXPECT_TRUE(nullptr != packet);
+  char buffer[kMaxOutgoingPacketSize];
+  size_t encrypted_length = peer_framer_.EncryptPayload(
+      ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer,
+      kMaxOutgoingPacketSize);
+
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_PEER))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  connection_.ProcessUdpPacket(
+      kSelfAddress, kPeerAddress,
+      QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_PEER_GOING_AWAY));
+}
+
+TEST_P(QuicConnectionTest, SelectMutualVersion) {
+  connection_.SetSupportedVersions(AllSupportedVersions());
+  // Set the connection to speak the lowest quic version.
+  connection_.set_version(QuicVersionMin());
+  EXPECT_EQ(QuicVersionMin(), connection_.version());
+
+  // Pass in available versions which includes a higher mutually supported
+  // version.  The higher mutually supported version should be selected.
+  ParsedQuicVersionVector supported_versions = AllSupportedVersions();
+  EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions));
+  EXPECT_EQ(QuicVersionMax(), connection_.version());
+
+  // Expect that the lowest version is selected.
+  // Ensure the lowest supported version is less than the max, unless they're
+  // the same.
+  ParsedQuicVersionVector lowest_version_vector;
+  lowest_version_vector.push_back(QuicVersionMin());
+  EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector));
+  EXPECT_EQ(QuicVersionMin(), connection_.version());
+
+  // Shouldn't be able to find a mutually supported version.
+  ParsedQuicVersionVector unsupported_version;
+  unsupported_version.push_back(UnsupportedQuicVersion());
+  EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version));
+}
+
+TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) {
+  EXPECT_FALSE(writer_->IsWriteBlocked());
+
+  // Send a packet.
+  connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+  TriggerConnectionClose();
+  EXPECT_LE(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) {
+  BlockOnNextWrite();
+  TriggerConnectionClose();
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  EXPECT_TRUE(writer_->IsWriteBlocked());
+}
+
+TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) {
+  BlockOnNextWrite();
+  connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  EXPECT_TRUE(writer_->IsWriteBlocked());
+  TriggerConnectionClose();
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, OnPacketSentDebugVisitor) {
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  MockQuicConnectionDebugVisitor debug_visitor;
+  connection_.set_debug_visitor(&debug_visitor);
+
+  EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1);
+  connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+
+  EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1);
+  connection_.SendConnectivityProbingPacket(writer_.get(),
+                                            connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) {
+  QuicPacketHeader header;
+  header.packet_number = QuicPacketNumber(1);
+  if (GetParam().version.HasIetfInvariantHeader()) {
+    header.form = IETF_QUIC_LONG_HEADER_PACKET;
+  }
+
+  MockQuicConnectionDebugVisitor debug_visitor;
+  connection_.set_debug_visitor(&debug_visitor);
+  EXPECT_CALL(debug_visitor, OnPacketHeader(Ref(header), _, _)).Times(1);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(1);
+  EXPECT_CALL(debug_visitor, OnSuccessfulVersionNegotiation(_)).Times(1);
+  connection_.OnPacketHeader(header);
+}
+
+TEST_P(QuicConnectionTest, Pacing) {
+  TestConnection server(connection_id_, kPeerAddress, kSelfAddress,
+                        helper_.get(), alarm_factory_.get(), writer_.get(),
+                        Perspective::IS_SERVER, version());
+  TestConnection client(connection_id_, kSelfAddress, kPeerAddress,
+                        helper_.get(), alarm_factory_.get(), writer_.get(),
+                        Perspective::IS_CLIENT, version());
+  EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing(
+      static_cast<const QuicSentPacketManager*>(
+          &client.sent_packet_manager())));
+  EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing(
+      static_cast<const QuicSentPacketManager*>(
+          &server.sent_packet_manager())));
+}
+
+TEST_P(QuicConnectionTest, WindowUpdateInstigateAcks) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  // Send a WINDOW_UPDATE frame.
+  QuicWindowUpdateFrame window_update;
+  window_update.stream_id = 3;
+  window_update.max_data = 1234;
+  EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
+  ProcessFramePacket(QuicFrame(window_update));
+
+  // Ensure that this has caused the ACK alarm to be set.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, BlockedFrameInstigateAcks) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  // Send a BLOCKED frame.
+  QuicBlockedFrame blocked;
+  blocked.stream_id = 3;
+  EXPECT_CALL(visitor_, OnBlockedFrame(_));
+  ProcessFramePacket(QuicFrame(blocked));
+
+  // Ensure that this has caused the ACK alarm to be set.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, ReevaluateTimeUntilSendOnAck) {
+  // Enable pacing.
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+
+  // Send two packets.  One packet is not sufficient because if it gets acked,
+  // there will be no packets in flight after that and the pacer will always
+  // allow the next packet in that situation.
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+  connection_.SendStreamDataWithString(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, NO_FIN);
+  connection_.SendStreamDataWithString(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "bar",
+      3, NO_FIN);
+  connection_.OnCanWrite();
+
+  // Schedule the next packet for a few milliseconds in future.
+  QuicSentPacketManagerPeer::DisablePacerBursts(manager_);
+  QuicTime scheduled_pacing_time =
+      clock_.Now() + QuicTime::Delta::FromMilliseconds(5);
+  QuicSentPacketManagerPeer::SetNextPacedPacketTime(manager_,
+                                                    scheduled_pacing_time);
+
+  // Send a packet and have it be blocked by congestion control.
+  EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(false));
+  connection_.SendStreamDataWithString(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "baz",
+      6, NO_FIN);
+  EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+
+  // Process an ack and the send alarm will be set to the new 5ms delay.
+  QuicAckFrame ack = InitAckFrame(1);
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+  ProcessAckPacket(&ack);
+  size_t padding_frame_count = writer_->padding_frames().size();
+  EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  EXPECT_EQ(1u, writer_->stream_frames().size());
+  EXPECT_TRUE(connection_.GetSendAlarm()->IsSet());
+  EXPECT_EQ(scheduled_pacing_time, connection_.GetSendAlarm()->deadline());
+  writer_->Reset();
+}
+
+TEST_P(QuicConnectionTest, SendAcksImmediately) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacket(1);
+  CongestionBlockWrites();
+  SendAckPacketToPeer();
+}
+
+TEST_P(QuicConnectionTest, SendPingImmediately) {
+  MockQuicConnectionDebugVisitor debug_visitor;
+  connection_.set_debug_visitor(&debug_visitor);
+
+  CongestionBlockWrites();
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1);
+  EXPECT_CALL(debug_visitor, OnPingSent()).Times(1);
+  connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
+  EXPECT_FALSE(connection_.HasQueuedData());
+}
+
+TEST_P(QuicConnectionTest, SendBlockedImmediately) {
+  MockQuicConnectionDebugVisitor debug_visitor;
+  connection_.set_debug_visitor(&debug_visitor);
+
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1);
+  EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
+  connection_.SendControlFrame(QuicFrame(QuicBlockedFrame(1, 3)));
+  EXPECT_EQ(1u, connection_.GetStats().blocked_frames_sent);
+  EXPECT_FALSE(connection_.HasQueuedData());
+}
+
+TEST_P(QuicConnectionTest, FailedToSendBlockedFrames) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  MockQuicConnectionDebugVisitor debug_visitor;
+  connection_.set_debug_visitor(&debug_visitor);
+  QuicBlockedFrame blocked(1, 3);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(0);
+  EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
+  connection_.SendControlFrame(QuicFrame(blocked));
+  EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
+  EXPECT_FALSE(connection_.HasQueuedData());
+}
+
+TEST_P(QuicConnectionTest, SendingUnencryptedStreamDataFails) {
+  // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+  if (!IsDefaultTestConfiguration()) {
+    return;
+  }
+
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  EXPECT_QUIC_BUG(connection_.SaveAndSendStreamData(3, {}, 0, FIN),
+                  "Cannot send stream data with level: ENCRYPTION_INITIAL");
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA));
+}
+
+TEST_P(QuicConnectionTest, SetRetransmissionAlarmForCryptoPacket) {
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendCryptoStreamData();
+
+  // Verify retransmission timer is correctly set after crypto packet has been
+  // sent.
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  QuicTime retransmission_time =
+      QuicConnectionPeer::GetSentPacketManager(&connection_)
+          ->GetRetransmissionTime();
+  EXPECT_NE(retransmission_time, clock_.ApproximateNow());
+  EXPECT_EQ(retransmission_time,
+            connection_.GetRetransmissionAlarm()->deadline());
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.GetRetransmissionAlarm()->Fire();
+}
+
+// Includes regression test for b/69979024.
+TEST_P(QuicConnectionTest, PathDegradingDetectionForNonCryptoPackets) {
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_FALSE(connection_.IsPathDegrading());
+
+  const char data[] = "data";
+  size_t data_size = strlen(data);
+  QuicStreamOffset offset = 0;
+
+  for (int i = 0; i < 2; ++i) {
+    // Send a packet. Now there's a retransmittable packet on the wire, so the
+    // path degrading detection should be set.
+    connection_.SendStreamDataWithString(
+        GetNthClientInitiatedStreamId(1, connection_.transport_version()), data,
+        offset, NO_FIN);
+    offset += data_size;
+    EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+    // Check the deadline of the path degrading detection.
+    QuicTime::Delta delay =
+        QuicConnectionPeer::GetSentPacketManager(&connection_)
+            ->GetPathDegradingDelay();
+    EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+                         clock_.ApproximateNow());
+
+    // Send a second packet. The path degrading detection's deadline should
+    // remain the same.
+    // Regression test for b/69979024.
+    clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+    QuicTime prev_deadline =
+        connection_.GetBlackholeDetectorAlarm()->deadline();
+    connection_.SendStreamDataWithString(
+        GetNthClientInitiatedStreamId(1, connection_.transport_version()), data,
+        offset, NO_FIN);
+    offset += data_size;
+    EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+    EXPECT_EQ(prev_deadline,
+              connection_.GetBlackholeDetectorAlarm()->deadline());
+
+    // Now receive an ACK of the first packet. This should advance the path
+    // degrading detection's deadline since forward progress has been made.
+    clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+    if (i == 0) {
+      EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+    }
+    EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+    QuicAckFrame frame = InitAckFrame(
+        {{QuicPacketNumber(1u + 2u * i), QuicPacketNumber(2u + 2u * i)}});
+    ProcessAckPacket(&frame);
+    EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+    // Check the deadline of the path degrading detection.
+    delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+                ->GetPathDegradingDelay();
+    EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+                         clock_.ApproximateNow());
+
+    if (i == 0) {
+      // Now receive an ACK of the second packet. Since there are no more
+      // retransmittable packets on the wire, this should cancel the path
+      // degrading detection.
+      clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+      EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+      frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+      ProcessAckPacket(&frame);
+      EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+    } else {
+      // Advance time to the path degrading alarm's deadline and simulate
+      // firing the alarm.
+      clock_.AdvanceTime(delay);
+      EXPECT_CALL(visitor_, OnPathDegrading());
+      connection_.PathDegradingTimeout();
+      EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+    }
+  }
+  EXPECT_TRUE(connection_.IsPathDegrading());
+}
+
+TEST_P(QuicConnectionTest, RetransmittableOnWireSetsPingAlarm) {
+  const QuicTime::Delta retransmittable_on_wire_timeout =
+      QuicTime::Delta::FromMilliseconds(50);
+  connection_.set_initial_retransmittable_on_wire_timeout(
+      retransmittable_on_wire_timeout);
+
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(true));
+
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_FALSE(connection_.IsPathDegrading());
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+
+  const char data[] = "data";
+  size_t data_size = strlen(data);
+  QuicStreamOffset offset = 0;
+
+  // Send a packet.
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+  // Now there's a retransmittable packet on the wire, so the path degrading
+  // alarm should be set.
+  // The retransmittable-on-wire alarm should not be set.
+  EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+  QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+                              ->GetPathDegradingDelay();
+  EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+                       clock_.ApproximateNow());
+  ASSERT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+  // The ping alarm is set for the ping timeout, not the shorter
+  // retransmittable_on_wire_timeout.
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
+  EXPECT_EQ(ping_delay,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Now receive an ACK of the packet.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame =
+      InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+  ProcessAckPacket(&frame);
+  // No more retransmittable packets on the wire, so the path degrading alarm
+  // should be cancelled, and the ping alarm should be set to the
+  // retransmittable_on_wire_timeout.
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(retransmittable_on_wire_timeout,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Simulate firing the ping alarm and sending a PING.
+  clock_.AdvanceTime(retransmittable_on_wire_timeout);
+  connection_.GetPingAlarm()->Fire();
+
+  // Now there's a retransmittable packet (PING) on the wire, so the path
+  // degrading alarm should be set.
+  EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+  delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+              ->GetPathDegradingDelay();
+  EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+                       clock_.ApproximateNow());
+}
+
+TEST_P(QuicConnectionTest, ServerRetransmittableOnWire) {
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  SetQuicReloadableFlag(quic_enable_server_on_wire_ping, true);
+
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(kSRWP);
+  config.SetInitialReceivedConnectionOptions(connection_options);
+  connection_.SetFromConfig(config);
+
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(true));
+
+  ProcessPacket(1);
+
+  ASSERT_TRUE(connection_.GetPingAlarm()->IsSet());
+  QuicTime::Delta ping_delay = QuicTime::Delta::FromMilliseconds(200);
+  EXPECT_EQ(ping_delay,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10));
+  connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+  // Verify PING alarm gets cancelled.
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+
+  // Now receive an ACK of the packet.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame =
+      InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+  ProcessAckPacket(2, &frame);
+  // Verify PING alarm gets scheduled.
+  ASSERT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(ping_delay,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+}
+
+// This test verifies that the connection marks path as degrading and does not
+// spin timer to detect path degrading when a new packet is sent on the
+// degraded path.
+TEST_P(QuicConnectionTest, NoPathDegradingDetectionIfPathIsDegrading) {
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_FALSE(connection_.IsPathDegrading());
+
+  const char data[] = "data";
+  size_t data_size = strlen(data);
+  QuicStreamOffset offset = 0;
+
+  // Send the first packet. Now there's a retransmittable packet on the wire, so
+  // the path degrading alarm should be set.
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+  EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+  // Check the deadline of the path degrading detection.
+  QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+                              ->GetPathDegradingDelay();
+  EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+                       clock_.ApproximateNow());
+
+  // Send a second packet. The path degrading detection's deadline should remain
+  // the same.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  QuicTime prev_deadline = connection_.GetBlackholeDetectorAlarm()->deadline();
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+  EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_EQ(prev_deadline, connection_.GetBlackholeDetectorAlarm()->deadline());
+
+  // Now receive an ACK of the first packet. This should advance the path
+  // degrading detection's deadline since forward progress has been made.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame =
+      InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+  // Check the deadline of the path degrading alarm.
+  delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+              ->GetPathDegradingDelay();
+  EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+                       clock_.ApproximateNow());
+
+  // Advance time to the path degrading detection's deadline and simulate
+  // firing the path degrading detection. This path will be considered as
+  // degrading.
+  clock_.AdvanceTime(delay);
+  EXPECT_CALL(visitor_, OnPathDegrading()).Times(1);
+  connection_.PathDegradingTimeout();
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_TRUE(connection_.IsPathDegrading());
+
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+  // Send a third packet. The path degrading detection is no longer set but path
+  // should still be marked as degrading.
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_TRUE(connection_.IsPathDegrading());
+}
+
+// This test verifies that the connection unmarks path as degrarding and spins
+// the timer to detect future path degrading when forward progress is made
+// after path has been marked degrading.
+TEST_P(QuicConnectionTest, UnmarkPathDegradingOnForwardProgress) {
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_FALSE(connection_.IsPathDegrading());
+
+  const char data[] = "data";
+  size_t data_size = strlen(data);
+  QuicStreamOffset offset = 0;
+
+  // Send the first packet. Now there's a retransmittable packet on the wire, so
+  // the path degrading alarm should be set.
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+  EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+  // Check the deadline of the path degrading alarm.
+  QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+                              ->GetPathDegradingDelay();
+  EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+                       clock_.ApproximateNow());
+
+  // Send a second packet. The path degrading alarm's deadline should remain
+  // the same.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  QuicTime prev_deadline = connection_.GetBlackholeDetectorAlarm()->deadline();
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+  EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_EQ(prev_deadline, connection_.GetBlackholeDetectorAlarm()->deadline());
+
+  // Now receive an ACK of the first packet. This should advance the path
+  // degrading alarm's deadline since forward progress has been made.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame =
+      InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+  // Check the deadline of the path degrading alarm.
+  delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+              ->GetPathDegradingDelay();
+  EXPECT_EQ(delay, connection_.GetBlackholeDetectorAlarm()->deadline() -
+                       clock_.ApproximateNow());
+
+  // Advance time to the path degrading alarm's deadline and simulate
+  // firing the alarm.
+  clock_.AdvanceTime(delay);
+  EXPECT_CALL(visitor_, OnPathDegrading()).Times(1);
+  connection_.PathDegradingTimeout();
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_TRUE(connection_.IsPathDegrading());
+
+  // Send a third packet. The path degrading alarm is no longer set but path
+  // should still be marked as degrading.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_TRUE(connection_.IsPathDegrading());
+
+  // Now receive an ACK of the second packet. This should unmark the path as
+  // degrading. And will set a timer to detect new path degrading.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading()).Times(1);
+  frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+  ProcessAckPacket(&frame);
+  EXPECT_FALSE(connection_.IsPathDegrading());
+  EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+}
+
+TEST_P(QuicConnectionTest, NoPathDegradingOnServer) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+  EXPECT_FALSE(connection_.IsPathDegrading());
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+
+  // Send data.
+  const char data[] = "data";
+  connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
+  EXPECT_FALSE(connection_.IsPathDegrading());
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+
+  // Ack data.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame =
+      InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
+  ProcessAckPacket(&frame);
+  EXPECT_FALSE(connection_.IsPathDegrading());
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+}
+
+TEST_P(QuicConnectionTest, NoPathDegradingAfterSendingAck) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacket(1);
+  SendAckPacketToPeer();
+  EXPECT_FALSE(connection_.sent_packet_manager().unacked_packets().empty());
+  EXPECT_FALSE(connection_.sent_packet_manager().HasInFlightPackets());
+  EXPECT_FALSE(connection_.IsPathDegrading());
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+}
+
+TEST_P(QuicConnectionTest, MultipleCallsToCloseConnection) {
+  // Verifies that multiple calls to CloseConnection do not
+  // result in multiple attempts to close the connection - it will be marked as
+  // disconnected after the first call.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1);
+  connection_.CloseConnection(QUIC_NO_ERROR, "no reason",
+                              ConnectionCloseBehavior::SILENT_CLOSE);
+  connection_.CloseConnection(QUIC_NO_ERROR, "no reason",
+                              ConnectionCloseBehavior::SILENT_CLOSE);
+}
+
+TEST_P(QuicConnectionTest, ServerReceivesChloOnNonCryptoStream) {
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+  CryptoHandshakeMessage message;
+  CryptoFramer framer;
+  message.set_tag(kCHLO);
+  std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message);
+  frame1_.stream_id = 10;
+  frame1_.data_buffer = data->data();
+  frame1_.data_length = data->length();
+
+  if (version().handshake_protocol == PROTOCOL_TLS1_3) {
+    EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  }
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  ForceProcessFramePacket(QuicFrame(frame1_));
+  if (VersionHasIetfQuicFrames(version().transport_version)) {
+    // INITIAL packet should not contain STREAM frame.
+    TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+  } else {
+    TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY);
+  }
+}
+
+TEST_P(QuicConnectionTest, ClientReceivesRejOnNonCryptoStream) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  CryptoHandshakeMessage message;
+  CryptoFramer framer;
+  message.set_tag(kREJ);
+  std::unique_ptr<QuicData> data = framer.ConstructHandshakeMessage(message);
+  frame1_.stream_id = 10;
+  frame1_.data_buffer = data->data();
+  frame1_.data_length = data->length();
+
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  ForceProcessFramePacket(QuicFrame(frame1_));
+  if (VersionHasIetfQuicFrames(version().transport_version)) {
+    // INITIAL packet should not contain STREAM frame.
+    TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+  } else {
+    TestConnectionCloseQuicErrorCode(QUIC_MAYBE_CORRUPTED_MEMORY);
+  }
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOnPacketTooLarge) {
+  SimulateNextPacketTooLarge();
+  // A connection close packet is sent
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .Times(1);
+  connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+  TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
+}
+
+TEST_P(QuicConnectionTest, AlwaysGetPacketTooLarge) {
+  // Test even we always get packet too large, we do not infinitely try to send
+  // close packet.
+  AlwaysGetPacketTooLarge();
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .Times(1);
+  connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+  TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOnQueuedWriteError) {
+  // Regression test for crbug.com/979507.
+  //
+  // If we get a write error when writing queued packets, we should attempt to
+  // send a connection close packet, but if sending that fails, it shouldn't get
+  // queued.
+
+  // Queue a packet to write.
+  BlockOnNextWrite();
+  connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+  // Configure writer to always fail.
+  AlwaysGetPacketTooLarge();
+
+  // Expect that we attempt to close the connection exactly once.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .Times(1);
+
+  // Unblock the writes and actually send.
+  writer_->SetWritable();
+  connection_.OnCanWrite();
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+
+  TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
+}
+
+// Verify that if connection has no outstanding data, it notifies the send
+// algorithm after the write.
+TEST_P(QuicConnectionTest, SendDataAndBecomeApplicationLimited) {
+  EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
+  {
+    InSequence seq;
+    EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+    EXPECT_CALL(visitor_, WillingAndAbleToWrite())
+        .WillRepeatedly(Return(false));
+  }
+
+  connection_.SendStreamData3();
+}
+
+// Verify that the connection does not become app-limited if there is
+// outstanding data to send after the write.
+TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedIfMoreDataAvailable) {
+  EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
+  {
+    InSequence seq;
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+    EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+  }
+
+  connection_.SendStreamData3();
+}
+
+// Verify that the connection does not become app-limited after blocked write
+// even if there is outstanding data to send after the write.
+TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedDueToWriteBlock) {
+  EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
+  EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+  BlockOnNextWrite();
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendStreamData3();
+
+  // Now unblock the writer, become congestion control blocked,
+  // and ensure we become app-limited after writing.
+  writer_->SetWritable();
+  CongestionBlockWrites();
+  EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
+  connection_.OnCanWrite();
+}
+
+// Test the mode in which the link is filled up with probing retransmissions if
+// the connection becomes application-limited.
+TEST_P(QuicConnectionTest, SendDataWhenApplicationLimited) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
+      .WillRepeatedly(Return(true));
+  {
+    InSequence seq;
+    EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+    EXPECT_CALL(visitor_, WillingAndAbleToWrite())
+        .WillRepeatedly(Return(false));
+  }
+  EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] {
+    return connection_.sent_packet_manager().MaybeRetransmitOldestPacket(
+        PROBING_RETRANSMISSION);
+  });
+  // Fix congestion window to be 20,000 bytes.
+  EXPECT_CALL(*send_algorithm_, CanSend(Ge(20000u)))
+      .WillRepeatedly(Return(false));
+  EXPECT_CALL(*send_algorithm_, CanSend(Lt(20000u)))
+      .WillRepeatedly(Return(true));
+
+  EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
+  ASSERT_EQ(0u, connection_.GetStats().packets_sent);
+  connection_.set_fill_up_link_during_probing(true);
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  connection_.OnHandshakeComplete();
+  connection_.SendStreamData3();
+
+  // We expect a lot of packets from a 20 kbyte window.
+  EXPECT_GT(connection_.GetStats().packets_sent, 10u);
+  // Ensure that the packets are padded.
+  QuicByteCount average_packet_size =
+      connection_.GetStats().bytes_sent / connection_.GetStats().packets_sent;
+  EXPECT_GT(average_packet_size, 1000u);
+
+  // Acknowledge all packets sent, except for the last one.
+  QuicAckFrame ack = InitAckFrame(
+      connection_.sent_packet_manager().GetLargestSentPacket() - 1);
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+  // Ensure that since we no longer have retransmittable bytes in flight, this
+  // will not cause any responses to be sent.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
+  ProcessAckPacket(&ack);
+}
+
+TEST_P(QuicConnectionTest, DoNotForceSendingAckOnPacketTooLarge) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  // Send an ack by simulating delayed ack alarm firing.
+  ProcessPacket(1);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  connection_.GetAckAlarm()->Fire();
+  // Simulate data packet causes write error.
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  SimulateNextPacketTooLarge();
+  connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+  EXPECT_EQ(1u, writer_->connection_close_frames().size());
+  // Ack frame is not bundled in connection close packet.
+  EXPECT_TRUE(writer_->ack_frames().empty());
+  if (writer_->padding_frames().empty()) {
+    EXPECT_EQ(1u, writer_->frame_count());
+  } else {
+    EXPECT_EQ(2u, writer_->frame_count());
+  }
+
+  TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionAllLevels) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
+  connection_.CloseConnection(
+      kQuicErrorCode, "Some random error message",
+      ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+
+  EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
+
+  TestConnectionCloseQuicErrorCode(kQuicErrorCode);
+  EXPECT_EQ(1u, writer_->connection_close_frames().size());
+
+  if (!connection_.version().CanSendCoalescedPackets()) {
+    // Each connection close packet should be sent in distinct UDP packets.
+    EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
+              writer_->connection_close_packets());
+    EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
+              writer_->packets_write_attempts());
+    return;
+  }
+
+  // A single UDP packet should be sent with multiple connection close packets
+  // coalesced together.
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+  // Only the first packet has been processed yet.
+  EXPECT_EQ(1u, writer_->connection_close_packets());
+
+  // ProcessPacket resets the visitor and frees the coalesced packet.
+  ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+  auto packet = writer_->coalesced_packet()->Clone();
+  writer_->framer()->ProcessPacket(*packet);
+  EXPECT_EQ(1u, writer_->connection_close_packets());
+  ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOneLevel) {
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
+  connection_.CloseConnection(
+      kQuicErrorCode, "Some random error message",
+      ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+
+  EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
+
+  TestConnectionCloseQuicErrorCode(kQuicErrorCode);
+  EXPECT_EQ(1u, writer_->connection_close_frames().size());
+  EXPECT_EQ(1u, writer_->connection_close_packets());
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+}
+
+TEST_P(QuicConnectionTest, DoNotPadServerInitialConnectionClose) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+
+  if (version().handshake_protocol == PROTOCOL_TLS1_3) {
+    EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  }
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
+  connection_.CloseConnection(
+      kQuicErrorCode, "Some random error message",
+      ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+
+  EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
+
+  TestConnectionCloseQuicErrorCode(kQuicErrorCode);
+  EXPECT_EQ(1u, writer_->connection_close_frames().size());
+  EXPECT_TRUE(writer_->padding_frames().empty());
+  EXPECT_EQ(ENCRYPTION_INITIAL, writer_->framer()->last_decrypted_level());
+}
+
+// Regression test for b/63620844.
+TEST_P(QuicConnectionTest, FailedToWriteHandshakePacket) {
+  SimulateNextPacketTooLarge();
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .Times(1);
+
+  connection_.SendCryptoStreamData();
+  TestConnectionCloseQuicErrorCode(QUIC_PACKET_WRITE_ERROR);
+}
+
+TEST_P(QuicConnectionTest, MaxPacingRate) {
+  EXPECT_EQ(0, connection_.MaxPacingRate().ToBytesPerSecond());
+  connection_.SetMaxPacingRate(QuicBandwidth::FromBytesPerSecond(100));
+  EXPECT_EQ(100, connection_.MaxPacingRate().ToBytesPerSecond());
+}
+
+TEST_P(QuicConnectionTest, ClientAlwaysSendConnectionId) {
+  EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+  EXPECT_EQ(CONNECTION_ID_PRESENT,
+            writer_->last_packet_header().destination_connection_id_included);
+
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0);
+  connection_.SetFromConfig(config);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendStreamDataWithString(3, "bar", 3, NO_FIN);
+  // Verify connection id is still sent in the packet.
+  EXPECT_EQ(CONNECTION_ID_PRESENT,
+            writer_->last_packet_header().destination_connection_id_included);
+}
+
+TEST_P(QuicConnectionTest, SendProbingRetransmissions) {
+  MockQuicConnectionDebugVisitor debug_visitor;
+  connection_.set_debug_visitor(&debug_visitor);
+
+  const QuicStreamId stream_id = 2;
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+  SendStreamDataToPeer(stream_id, "bar", 3, NO_FIN, &last_packet);
+  SendStreamDataToPeer(stream_id, "test", 6, NO_FIN, &last_packet);
+
+  const QuicByteCount old_bytes_in_flight =
+      connection_.sent_packet_manager().GetBytesInFlight();
+
+  // Allow 9 probing retransmissions to be sent.
+  {
+    InSequence seq;
+    EXPECT_CALL(*send_algorithm_, CanSend(_))
+        .Times(9 * 2)
+        .WillRepeatedly(Return(true));
+    EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
+  }
+  // Expect them retransmitted in cyclic order (foo, bar, test, foo, bar...).
+  QuicPacketCount sent_count = 0;
+
+  EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _))
+      .WillRepeatedly(Invoke(
+          [this, &sent_count](QuicPacketNumber, QuicPacketLength, bool,
+                              TransmissionType, EncryptionLevel,
+                              const QuicFrames&, const QuicFrames&, QuicTime) {
+            ASSERT_EQ(1u, writer_->stream_frames().size());
+            if (connection_.version().CanSendCoalescedPackets()) {
+              // There is a delay of sending coalesced packet, so (6, 0, 3, 6,
+              // 0...).
+              EXPECT_EQ(3 * ((sent_count + 2) % 3),
+                        writer_->stream_frames()[0]->offset);
+            } else {
+              // Identify the frames by stream offset (0, 3, 6, 0, 3...).
+              EXPECT_EQ(3 * (sent_count % 3),
+                        writer_->stream_frames()[0]->offset);
+            }
+            sent_count++;
+          }));
+
+  EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
+      .WillRepeatedly(Return(true));
+  EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] {
+    return connection_.sent_packet_manager().MaybeRetransmitOldestPacket(
+        PROBING_RETRANSMISSION);
+  });
+
+  connection_.SendProbingRetransmissions();
+
+  // Ensure that the in-flight has increased.
+  const QuicByteCount new_bytes_in_flight =
+      connection_.sent_packet_manager().GetBytesInFlight();
+  EXPECT_GT(new_bytes_in_flight, old_bytes_in_flight);
+}
+
+// Ensure that SendProbingRetransmissions() does not retransmit anything when
+// there are no outstanding packets.
+TEST_P(QuicConnectionTest,
+       SendProbingRetransmissionsFailsWhenNothingToRetransmit) {
+  ASSERT_TRUE(connection_.sent_packet_manager().unacked_packets().empty());
+
+  MockQuicConnectionDebugVisitor debug_visitor;
+  connection_.set_debug_visitor(&debug_visitor);
+  EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(0);
+  EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
+      .WillRepeatedly(Return(true));
+  EXPECT_CALL(visitor_, SendProbingData()).WillRepeatedly([this] {
+    return connection_.sent_packet_manager().MaybeRetransmitOldestPacket(
+        PROBING_RETRANSMISSION);
+  });
+
+  connection_.SendProbingRetransmissions();
+}
+
+TEST_P(QuicConnectionTest, PingAfterLastRetransmittablePacketAcked) {
+  const QuicTime::Delta retransmittable_on_wire_timeout =
+      QuicTime::Delta::FromMilliseconds(50);
+  connection_.set_initial_retransmittable_on_wire_timeout(
+      retransmittable_on_wire_timeout);
+
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(true));
+
+  const char data[] = "data";
+  size_t data_size = strlen(data);
+  QuicStreamOffset offset = 0;
+
+  // Advance 5ms, send a retransmittable packet to the peer.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+  EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+  // The ping alarm is set for the ping timeout, not the shorter
+  // retransmittable_on_wire_timeout.
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
+  EXPECT_EQ(ping_delay,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Advance 5ms, send a second retransmittable packet to the peer.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+
+  // Now receive an ACK of the first packet. This should not set the
+  // retransmittable-on-wire alarm since packet 2 is still on the wire.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame =
+      InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+  // The ping alarm is set for the ping timeout, not the shorter
+  // retransmittable_on_wire_timeout.
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  // The ping alarm has a 1 second granularity, and the clock has been advanced
+  // 10ms since it was originally set.
+  EXPECT_EQ(ping_delay - QuicTime::Delta::FromMilliseconds(10),
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Now receive an ACK of the second packet. This should set the
+  // retransmittable-on-wire alarm now that no retransmittable packets are on
+  // the wire.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(retransmittable_on_wire_timeout,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Now receive a duplicate ACK of the second packet. This should not update
+  // the ping alarm.
+  QuicTime prev_deadline = connection_.GetPingAlarm()->deadline();
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline());
+
+  // Now receive a non-ACK packet.  This should not update the ping alarm.
+  prev_deadline = connection_.GetPingAlarm()->deadline();
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  ProcessPacket(4);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline());
+
+  // Simulate the alarm firing and check that a PING is sent.
+  connection_.GetPingAlarm()->Fire();
+  size_t padding_frame_count = writer_->padding_frames().size();
+  if (GetParam().no_stop_waiting) {
+    EXPECT_EQ(padding_frame_count + 2u, writer_->frame_count());
+  } else {
+    EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count());
+  }
+  ASSERT_EQ(1u, writer_->ping_frames().size());
+}
+
+TEST_P(QuicConnectionTest, NoPingIfRetransmittablePacketSent) {
+  const QuicTime::Delta retransmittable_on_wire_timeout =
+      QuicTime::Delta::FromMilliseconds(50);
+  connection_.set_initial_retransmittable_on_wire_timeout(
+      retransmittable_on_wire_timeout);
+
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(true));
+
+  const char data[] = "data";
+  size_t data_size = strlen(data);
+  QuicStreamOffset offset = 0;
+
+  // Advance 5ms, send a retransmittable packet to the peer.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+  EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+  // The ping alarm is set for the ping timeout, not the shorter
+  // retransmittable_on_wire_timeout.
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
+  EXPECT_EQ(ping_delay,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Now receive an ACK of the first packet. This should set the
+  // retransmittable-on-wire alarm now that no retransmittable packets are on
+  // the wire.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame =
+      InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(retransmittable_on_wire_timeout,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Before the alarm fires, send another retransmittable packet. This should
+  // cancel the retransmittable-on-wire alarm since now there's a
+  // retransmittable packet on the wire.
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+
+  // Now receive an ACK of the second packet. This should set the
+  // retransmittable-on-wire alarm now that no retransmittable packets are on
+  // the wire.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(retransmittable_on_wire_timeout,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Simulate the alarm firing and check that a PING is sent.
+  writer_->Reset();
+  connection_.GetPingAlarm()->Fire();
+  size_t padding_frame_count = writer_->padding_frames().size();
+  if (GetParam().no_stop_waiting) {
+    // Do not ACK acks.
+    EXPECT_EQ(padding_frame_count + 1u, writer_->frame_count());
+  } else {
+    EXPECT_EQ(padding_frame_count + 3u, writer_->frame_count());
+  }
+  ASSERT_EQ(1u, writer_->ping_frames().size());
+}
+
+// When there is no stream data received but are open streams, send the
+// first few consecutive pings with aggressive retransmittable-on-wire
+// timeout. Exponentially back off the retransmittable-on-wire ping timeout
+// afterwards until it exceeds the default ping timeout.
+TEST_P(QuicConnectionTest, BackOffRetransmittableOnWireTimeout) {
+  int max_aggressive_retransmittable_on_wire_ping_count = 5;
+  SetQuicFlag(FLAGS_quic_max_aggressive_retransmittable_on_wire_ping_count,
+              max_aggressive_retransmittable_on_wire_ping_count);
+  const QuicTime::Delta initial_retransmittable_on_wire_timeout =
+      QuicTime::Delta::FromMilliseconds(200);
+  connection_.set_initial_retransmittable_on_wire_timeout(
+      initial_retransmittable_on_wire_timeout);
+
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(true));
+
+  const char data[] = "data";
+  // Advance 5ms, send a retransmittable data packet to the peer.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+  connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
+  EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+  // The ping alarm is set for the ping timeout, not the shorter
+  // retransmittable_on_wire_timeout.
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(connection_.ping_timeout(),
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+      .Times(AnyNumber());
+
+  // Verify that the first few consecutive retransmittable on wire pings are
+  // sent with aggressive timeout.
+  for (int i = 0; i <= max_aggressive_retransmittable_on_wire_ping_count; i++) {
+    // Receive an ACK of the previous packet. This should set the ping alarm
+    // with the initial retransmittable-on-wire timeout.
+    clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+    QuicPacketNumber ack_num = creator_->packet_number();
+    QuicAckFrame frame = InitAckFrame(
+        {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+    ProcessAckPacket(&frame);
+    EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+    EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+              connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+    // Simulate the alarm firing and check that a PING is sent.
+    writer_->Reset();
+    clock_.AdvanceTime(initial_retransmittable_on_wire_timeout);
+    connection_.GetPingAlarm()->Fire();
+  }
+
+  QuicTime::Delta retransmittable_on_wire_timeout =
+      initial_retransmittable_on_wire_timeout;
+
+  // Verify subsequent pings are sent with timeout that is exponentially backed
+  // off.
+  while (retransmittable_on_wire_timeout * 2 < connection_.ping_timeout()) {
+    // Receive an ACK for the previous PING. This should set the
+    // ping alarm with backed off retransmittable-on-wire timeout.
+    retransmittable_on_wire_timeout = retransmittable_on_wire_timeout * 2;
+    clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+    QuicPacketNumber ack_num = creator_->packet_number();
+    QuicAckFrame frame = InitAckFrame(
+        {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+    ProcessAckPacket(&frame);
+    EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+    EXPECT_EQ(retransmittable_on_wire_timeout,
+              connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+    // Simulate the alarm firing and check that a PING is sent.
+    writer_->Reset();
+    clock_.AdvanceTime(retransmittable_on_wire_timeout);
+    connection_.GetPingAlarm()->Fire();
+  }
+
+  // The ping alarm is set with default ping timeout.
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(connection_.ping_timeout(),
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Receive an ACK for the previous PING. The ping alarm is set with an
+  // earlier deadline.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  QuicPacketNumber ack_num = creator_->packet_number();
+  QuicAckFrame frame = InitAckFrame(
+      {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(connection_.ping_timeout() - QuicTime::Delta::FromMilliseconds(5),
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+}
+
+// This test verify that the count of consecutive aggressive pings is reset
+// when new data is received. And it also verifies the connection resets
+// the exponential back-off of the retransmittable-on-wire ping timeout
+// after receiving new stream data.
+TEST_P(QuicConnectionTest, ResetBackOffRetransmitableOnWireTimeout) {
+  int max_aggressive_retransmittable_on_wire_ping_count = 3;
+  SetQuicFlag(FLAGS_quic_max_aggressive_retransmittable_on_wire_ping_count, 3);
+  const QuicTime::Delta initial_retransmittable_on_wire_timeout =
+      QuicTime::Delta::FromMilliseconds(200);
+  connection_.set_initial_retransmittable_on_wire_timeout(
+      initial_retransmittable_on_wire_timeout);
+
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(true));
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+      .Times(AnyNumber());
+
+  const char data[] = "data";
+  // Advance 5ms, send a retransmittable data packet to the peer.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+  connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
+  EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+  // The ping alarm is set for the ping timeout, not the shorter
+  // retransmittable_on_wire_timeout.
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(connection_.ping_timeout(),
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Receive an ACK of the first packet. This should set the ping alarm with
+  // initial retransmittable-on-wire timeout since there is no retransmittable
+  // packet on the wire.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  QuicAckFrame frame =
+      InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Simulate the alarm firing and check that a PING is sent.
+  writer_->Reset();
+  clock_.AdvanceTime(initial_retransmittable_on_wire_timeout);
+  connection_.GetPingAlarm()->Fire();
+
+  // Receive an ACK for the previous PING. Ping alarm will be set with
+  // aggressive timeout.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  QuicPacketNumber ack_num = creator_->packet_number();
+  frame = InitAckFrame(
+      {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Process a data packet.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacket(peer_creator_.packet_number() + 1);
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_,
+                                         peer_creator_.packet_number() + 1);
+  EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Verify the count of consecutive aggressive pings is reset.
+  for (int i = 0; i < max_aggressive_retransmittable_on_wire_ping_count; i++) {
+    // Receive an ACK of the previous packet. This should set the ping alarm
+    // with the initial retransmittable-on-wire timeout.
+    QuicPacketNumber ack_num = creator_->packet_number();
+    QuicAckFrame frame = InitAckFrame(
+        {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+    ProcessAckPacket(&frame);
+    EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+    EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+              connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+    // Simulate the alarm firing and check that a PING is sent.
+    writer_->Reset();
+    clock_.AdvanceTime(initial_retransmittable_on_wire_timeout);
+    connection_.GetPingAlarm()->Fire();
+    // Advance 5ms to receive next packet.
+    clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  }
+
+  // Receive another ACK for the previous PING. This should set the
+  // ping alarm with backed off retransmittable-on-wire timeout.
+  ack_num = creator_->packet_number();
+  frame = InitAckFrame(
+      {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(initial_retransmittable_on_wire_timeout * 2,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  writer_->Reset();
+  clock_.AdvanceTime(2 * initial_retransmittable_on_wire_timeout);
+  connection_.GetPingAlarm()->Fire();
+
+  // Process another data packet and a new ACK packet. The ping alarm is set
+  // with aggressive ping timeout again.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  ProcessDataPacket(peer_creator_.packet_number() + 1);
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_,
+                                         peer_creator_.packet_number() + 1);
+  ack_num = creator_->packet_number();
+  frame = InitAckFrame(
+      {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+}
+
+// Make sure that we never send more retransmissible on the wire pings than
+// the limit in FLAGS_quic_max_retransmittable_on_wire_ping_count.
+TEST_P(QuicConnectionTest, RetransmittableOnWirePingLimit) {
+  static constexpr int kMaxRetransmittableOnWirePingCount = 3;
+  SetQuicFlag(FLAGS_quic_max_retransmittable_on_wire_ping_count,
+              kMaxRetransmittableOnWirePingCount);
+  static constexpr QuicTime::Delta initial_retransmittable_on_wire_timeout =
+      QuicTime::Delta::FromMilliseconds(200);
+  static constexpr QuicTime::Delta short_delay =
+      QuicTime::Delta::FromMilliseconds(5);
+  ASSERT_LT(short_delay * 10, initial_retransmittable_on_wire_timeout);
+  connection_.set_initial_retransmittable_on_wire_timeout(
+      initial_retransmittable_on_wire_timeout);
+
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(true));
+
+  const char data[] = "data";
+  // Advance 5ms, send a retransmittable data packet to the peer.
+  clock_.AdvanceTime(short_delay);
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+  connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
+  EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+  // The ping alarm is set for the ping timeout, not the shorter
+  // retransmittable_on_wire_timeout.
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(connection_.ping_timeout(),
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+      .Times(AnyNumber());
+
+  // Verify that the first few consecutive retransmittable on wire pings are
+  // sent with aggressive timeout.
+  for (int i = 0; i <= kMaxRetransmittableOnWirePingCount; i++) {
+    // Receive an ACK of the previous packet. This should set the ping alarm
+    // with the initial retransmittable-on-wire timeout.
+    clock_.AdvanceTime(short_delay);
+    QuicPacketNumber ack_num = creator_->packet_number();
+    QuicAckFrame frame = InitAckFrame(
+        {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+    ProcessAckPacket(&frame);
+    EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+    EXPECT_EQ(initial_retransmittable_on_wire_timeout,
+              connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+    // Simulate the alarm firing and check that a PING is sent.
+    writer_->Reset();
+    clock_.AdvanceTime(initial_retransmittable_on_wire_timeout);
+    connection_.GetPingAlarm()->Fire();
+  }
+
+  // Receive an ACK of the previous packet. This should set the ping alarm
+  // but this time with the default ping timeout.
+  QuicPacketNumber ack_num = creator_->packet_number();
+  QuicAckFrame frame = InitAckFrame(
+      {{QuicPacketNumber(ack_num), QuicPacketNumber(ack_num + 1)}});
+  ProcessAckPacket(&frame);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_EQ(connection_.ping_timeout(),
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+}
+
+TEST_P(QuicConnectionTest, ValidStatelessResetToken) {
+  const StatelessResetToken kTestToken{0, 1, 0, 1, 0, 1, 0, 1,
+                                       0, 1, 0, 1, 0, 1, 0, 1};
+  const StatelessResetToken kWrongTestToken{0, 1, 0, 1, 0, 1, 0, 1,
+                                            0, 1, 0, 1, 0, 1, 0, 2};
+  QuicConfig config;
+  // No token has been received.
+  EXPECT_FALSE(connection_.IsValidStatelessResetToken(kTestToken));
+
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(2);
+  // Token is different from received token.
+  QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken);
+  connection_.SetFromConfig(config);
+  EXPECT_FALSE(connection_.IsValidStatelessResetToken(kWrongTestToken));
+
+  QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken);
+  connection_.SetFromConfig(config);
+  EXPECT_TRUE(connection_.IsValidStatelessResetToken(kTestToken));
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedWithInvalidAck) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+  BlockOnNextWrite();
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendStreamDataWithString(5, "foo", 0, FIN);
+  // This causes connection to be closed because packet 1 has not been sent yet.
+  QuicAckFrame frame = InitAckFrame(1);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  ProcessAckPacket(1, &frame);
+  EXPECT_EQ(0, connection_close_frame_count_);
+}
+
+TEST_P(QuicConnectionTest, SendMessage) {
+  if (!VersionSupportsMessageFrames(connection_.transport_version())) {
+    return;
+  }
+  if (connection_.version().UsesTls()) {
+    QuicConfig config;
+    QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
+        &config, kMaxAcceptedDatagramFrameSize);
+    EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+    connection_.SetFromConfig(config);
+  }
+  std::string message(connection_.GetCurrentLargestMessagePayload() * 2, 'a');
+  quiche::QuicheMemSlice slice;
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    connection_.SendStreamData3();
+    // Send a message which cannot fit into current open packet, and 2 packets
+    // get sent, one contains stream frame, and the other only contains the
+    // message frame.
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+    slice = MemSliceFromString(absl::string_view(
+        message.data(), connection_.GetCurrentLargestMessagePayload()));
+    EXPECT_EQ(MESSAGE_STATUS_SUCCESS,
+              connection_.SendMessage(1, absl::MakeSpan(&slice, 1), false));
+  }
+  // Fail to send a message if connection is congestion control blocked.
+  EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
+  slice = MemSliceFromString("message");
+  EXPECT_EQ(MESSAGE_STATUS_BLOCKED,
+            connection_.SendMessage(2, absl::MakeSpan(&slice, 1), false));
+
+  // Always fail to send a message which cannot fit into one packet.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  slice = MemSliceFromString(absl::string_view(
+      message.data(), connection_.GetCurrentLargestMessagePayload() + 1));
+  EXPECT_EQ(MESSAGE_STATUS_TOO_LARGE,
+            connection_.SendMessage(3, absl::MakeSpan(&slice, 1), false));
+}
+
+TEST_P(QuicConnectionTest, GetCurrentLargestMessagePayload) {
+  if (!connection_.version().SupportsMessageFrames()) {
+    return;
+  }
+  // Force use of this encrypter to simplify test expectations by making sure
+  // that the encryption overhead is constant across versions.
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x00));
+  QuicPacketLength expected_largest_payload = 1219;
+  if (connection_.version().SendsVariableLengthPacketNumberInLongHeader()) {
+    expected_largest_payload += 3;
+  }
+  if (connection_.version().HasLongHeaderLengths()) {
+    expected_largest_payload -= 2;
+  }
+  if (connection_.version().HasLengthPrefixedConnectionIds()) {
+    expected_largest_payload -= 1;
+  }
+  if (connection_.version().UsesTls()) {
+    // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake.
+    EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), 0);
+    QuicConfig config;
+    QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
+        &config, kMaxAcceptedDatagramFrameSize);
+    EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+    connection_.SetFromConfig(config);
+    // Verify the value post-handshake.
+    EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(),
+              expected_largest_payload);
+  } else {
+    EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(),
+              expected_largest_payload);
+  }
+}
+
+TEST_P(QuicConnectionTest, GetGuaranteedLargestMessagePayload) {
+  if (!connection_.version().SupportsMessageFrames()) {
+    return;
+  }
+  // Force use of this encrypter to simplify test expectations by making sure
+  // that the encryption overhead is constant across versions.
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x00));
+  QuicPacketLength expected_largest_payload = 1219;
+  if (connection_.version().HasLongHeaderLengths()) {
+    expected_largest_payload -= 2;
+  }
+  if (connection_.version().HasLengthPrefixedConnectionIds()) {
+    expected_largest_payload -= 1;
+  }
+  if (connection_.version().UsesTls()) {
+    // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake.
+    EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), 0);
+    QuicConfig config;
+    QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
+        &config, kMaxAcceptedDatagramFrameSize);
+    EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+    connection_.SetFromConfig(config);
+    // Verify the value post-handshake.
+    EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(),
+              expected_largest_payload);
+  } else {
+    EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(),
+              expected_largest_payload);
+  }
+}
+
+TEST_P(QuicConnectionTest, LimitedLargestMessagePayload) {
+  if (!connection_.version().SupportsMessageFrames() ||
+      !connection_.version().UsesTls()) {
+    return;
+  }
+  constexpr QuicPacketLength kFrameSizeLimit = 1000;
+  constexpr QuicPacketLength kPayloadSizeLimit =
+      kFrameSizeLimit - kQuicFrameTypeSize;
+  // QUIC+TLS disallows DATAGRAM/MESSAGE frames before the handshake.
+  EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), 0);
+  EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(), 0);
+  QuicConfig config;
+  QuicConfigPeer::SetReceivedMaxDatagramFrameSize(&config, kFrameSizeLimit);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  // Verify the value post-handshake.
+  EXPECT_EQ(connection_.GetCurrentLargestMessagePayload(), kPayloadSizeLimit);
+  EXPECT_EQ(connection_.GetGuaranteedLargestMessagePayload(),
+            kPayloadSizeLimit);
+}
+
+// Test to check that the path challenge/path response logic works
+// correctly. This test is only for version-99
+TEST_P(QuicConnectionTest, ServerResponseToPathChallenge) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_SERVER);
+  QuicConnectionPeer::SetAddressValidated(&connection_);
+  // First check if the server can send probing packet.
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+  // Create and send the probe request (PATH_CHALLENGE frame).
+  // SendConnectivityProbingPacket ends up calling
+  // TestPacketWriter::WritePacket() which in turns receives and parses the
+  // packet by calling framer_.ProcessPacket() -- which in turn calls
+  // SimpleQuicFramer::OnPathChallengeFrame(). SimpleQuicFramer saves
+  // the packet in writer_->path_challenge_frames()
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendConnectivityProbingPacket(writer_.get(),
+                                            connection_.peer_address());
+  // Save the random contents of the challenge for later comparison to the
+  // response.
+  ASSERT_GE(writer_->path_challenge_frames().size(), 1u);
+  QuicPathFrameBuffer challenge_data =
+      writer_->path_challenge_frames().front().data_buffer;
+
+  // Normally, QuicConnection::OnPathChallengeFrame and OnPaddingFrame would be
+  // called and it will perform actions to ensure that the rest of the protocol
+  // is performed.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  EXPECT_TRUE(connection_.OnPathChallengeFrame(
+      writer_->path_challenge_frames().front()));
+  EXPECT_TRUE(connection_.OnPaddingFrame(writer_->padding_frames().front()));
+  creator_->FlushCurrentPacket();
+
+  // The final check is to ensure that the random data in the response matches
+  // the random data from the challenge.
+  EXPECT_EQ(1u, writer_->path_response_frames().size());
+  EXPECT_EQ(0, memcmp(&challenge_data,
+                      &(writer_->path_response_frames().front().data_buffer),
+                      sizeof(challenge_data)));
+}
+
+TEST_P(QuicConnectionTest, ClientResponseToPathChallengeOnDefaulSocket) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  // First check if the client can send probing packet.
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+  // Create and send the probe request (PATH_CHALLENGE frame).
+  // SendConnectivityProbingPacket ends up calling
+  // TestPacketWriter::WritePacket() which in turns receives and parses the
+  // packet by calling framer_.ProcessPacket() -- which in turn calls
+  // SimpleQuicFramer::OnPathChallengeFrame(). SimpleQuicFramer saves
+  // the packet in writer_->path_challenge_frames()
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.SendConnectivityProbingPacket(writer_.get(),
+                                            connection_.peer_address());
+  // Save the random contents of the challenge for later validation against the
+  // response.
+  ASSERT_GE(writer_->path_challenge_frames().size(), 1u);
+  QuicPathFrameBuffer challenge_data =
+      writer_->path_challenge_frames().front().data_buffer;
+
+  // Normally, QuicConnection::OnPathChallengeFrame would be
+  // called and it will perform actions to ensure that the rest of the protocol
+  // is performed.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  EXPECT_TRUE(connection_.OnPathChallengeFrame(
+      writer_->path_challenge_frames().front()));
+  EXPECT_TRUE(connection_.OnPaddingFrame(writer_->padding_frames().front()));
+  creator_->FlushCurrentPacket();
+
+  // The final check is to ensure that the random data in the response matches
+  // the random data from the challenge.
+  EXPECT_EQ(1u, writer_->path_response_frames().size());
+  EXPECT_EQ(0, memcmp(&challenge_data,
+                      &(writer_->path_response_frames().front().data_buffer),
+                      sizeof(challenge_data)));
+}
+
+TEST_P(QuicConnectionTest, ClientResponseToPathChallengeOnAlternativeSocket) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.use_path_validator()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+  QuicSocketAddress kNewSelfAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(AtLeast(1u))
+      .WillOnce(Invoke([&]() {
+        EXPECT_EQ(1u, new_writer.packets_write_attempts());
+        EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+        EXPECT_EQ(1u, new_writer.padding_frames().size());
+        EXPECT_EQ(kNewSelfAddress.host(),
+                  new_writer.last_write_source_address());
+      }));
+  bool success = false;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kNewSelfAddress, connection_.peer_address(), &new_writer),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+
+  // Receiving a PATH_CHALLENGE on the alternative path. Response to this
+  // PATH_CHALLENGE should be sent via the alternative writer.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(AtLeast(1u))
+      .WillOnce(Invoke([&]() {
+        EXPECT_EQ(2u, new_writer.packets_write_attempts());
+        EXPECT_EQ(1u, new_writer.path_response_frames().size());
+        EXPECT_EQ(1u, new_writer.padding_frames().size());
+        EXPECT_EQ(kNewSelfAddress.host(),
+                  new_writer.last_write_source_address());
+      }));
+  std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+  std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+      QuicEncryptedPacket(probing_packet->encrypted_buffer,
+                          probing_packet->encrypted_length),
+      clock_.Now()));
+  ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received);
+
+  QuicSocketAddress kNewerSelfAddress(QuicIpAddress::Loopback6(),
+                                      /*port=*/34567);
+  // Receiving a PATH_CHALLENGE on an unknown socket should be ignored.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u);
+  ProcessReceivedPacket(kNewerSelfAddress, kPeerAddress, *received);
+}
+
+TEST_P(QuicConnectionTest,
+       RestartPathDegradingDetectionAfterMigrationWithProbe) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  PathProbeTestInit(Perspective::IS_CLIENT);
+
+  // Send data and verify the path degrading detection is set.
+  const char data[] = "data";
+  size_t data_size = strlen(data);
+  QuicStreamOffset offset = 0;
+  connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+  offset += data_size;
+
+  // Verify the path degrading detection is in progress.
+  EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+  EXPECT_FALSE(connection_.IsPathDegrading());
+  QuicTime ddl = connection_.GetBlackholeDetectorAlarm()->deadline();
+
+  // Simulate the firing of path degrading.
+  clock_.AdvanceTime(ddl - clock_.ApproximateNow());
+  EXPECT_CALL(visitor_, OnPathDegrading()).Times(1);
+  connection_.PathDegradingTimeout();
+  EXPECT_TRUE(connection_.IsPathDegrading());
+  EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+
+  if (!GetParam().version.HasIetfQuicFrames()) {
+    // Simulate path degrading handling by sending a probe on an alternet path.
+    clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+    TestPacketWriter probing_writer(version(), &clock_, Perspective::IS_CLIENT);
+    connection_.SendConnectivityProbingPacket(&probing_writer,
+                                              connection_.peer_address());
+    // Verify that path degrading detection is not reset.
+    EXPECT_FALSE(connection_.PathDegradingDetectionInProgress());
+
+    // Simulate successful path degrading handling by receiving probe response.
+    clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+
+    EXPECT_CALL(visitor_,
+                OnPacketReceived(_, _, /*is_connectivity_probe=*/true))
+        .Times(1);
+    const QuicSocketAddress kNewSelfAddress =
+        QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+    std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+    std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+        QuicEncryptedPacket(probing_packet->encrypted_buffer,
+                            probing_packet->encrypted_length),
+        clock_.Now()));
+    uint64_t num_probing_received =
+        connection_.GetStats().num_connectivity_probing_received;
+    ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received);
+
+    EXPECT_EQ(num_probing_received + 1,
+              connection_.GetStats().num_connectivity_probing_received);
+    EXPECT_EQ(kPeerAddress, connection_.peer_address());
+    EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+    EXPECT_TRUE(connection_.IsPathDegrading());
+  }
+
+  // Verify new path degrading detection is activated.
+  EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading()).Times(1);
+  connection_.OnSuccessfulMigration(/*is_port_change*/ true);
+  EXPECT_FALSE(connection_.IsPathDegrading());
+  EXPECT_TRUE(connection_.PathDegradingDetectionInProgress());
+}
+
+TEST_P(QuicConnectionTest, ClientsResetCwndAfterConnectionMigration) {
+  if (!GetParam().version.HasIetfQuicFrames()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  EXPECT_EQ(kSelfAddress, connection_.self_address());
+
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  QuicTime::Delta default_init_rtt = rtt_stats->initial_rtt();
+  rtt_stats->set_initial_rtt(default_init_rtt * 2);
+  EXPECT_EQ(2 * default_init_rtt, rtt_stats->initial_rtt());
+
+  QuicSentPacketManagerPeer::SetConsecutiveRtoCount(manager_, 1);
+  EXPECT_EQ(1u, manager_->GetConsecutiveRtoCount());
+  QuicSentPacketManagerPeer::SetConsecutiveTlpCount(manager_, 2);
+  EXPECT_EQ(2u, manager_->GetConsecutiveTlpCount());
+  const SendAlgorithmInterface* send_algorithm = manager_->GetSendAlgorithm();
+
+  // Migrate to a new address with different IP.
+  const QuicSocketAddress kNewSelfAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  connection_.MigratePath(kNewSelfAddress, connection_.peer_address(),
+                          &new_writer, false);
+  EXPECT_EQ(default_init_rtt, manager_->GetRttStats()->initial_rtt());
+  EXPECT_EQ(0u, manager_->GetConsecutiveRtoCount());
+  EXPECT_EQ(0u, manager_->GetConsecutiveTlpCount());
+  EXPECT_NE(send_algorithm, manager_->GetSendAlgorithm());
+}
+
+// Regression test for b/110259444
+TEST_P(QuicConnectionTest, DoNotScheduleSpuriousAckAlarm) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+  writer_->SetWriteBlocked();
+
+  ProcessPacket(1);
+  // Verify ack alarm is set.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  // Fire the ack alarm, verify no packet is sent because the writer is blocked.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.GetAckAlarm()->Fire();
+
+  writer_->SetWritable();
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessPacket(2);
+  // Verify ack alarm is not set.
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, DisablePacingOffloadConnectionOptions) {
+  EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
+  writer_->set_supports_release_time(true);
+  QuicConfig config;
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  EXPECT_TRUE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
+
+  QuicTagVector connection_options;
+  connection_options.push_back(kNPCO);
+  config.SetConnectionOptionsToSend(connection_options);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  // Verify pacing offload is disabled.
+  EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
+}
+
+// Regression test for b/110259444
+// Get a path response without having issued a path challenge...
+TEST_P(QuicConnectionTest, OrphanPathResponse) {
+  QuicPathFrameBuffer data = {{0, 1, 2, 3, 4, 5, 6, 7}};
+
+  QuicPathResponseFrame frame(99, data);
+  EXPECT_TRUE(connection_.OnPathResponseFrame(frame));
+  // If PATH_RESPONSE was accepted (payload matches the payload saved
+  // in QuicConnection::transmitted_connectivity_probe_payload_) then
+  // current_packet_content_ would be set to FIRST_FRAME_IS_PING.
+  // Since this PATH_RESPONSE does not match, current_packet_content_
+  // must not be FIRST_FRAME_IS_PING.
+  EXPECT_NE(QuicConnection::FIRST_FRAME_IS_PING,
+            QuicConnectionPeer::GetCurrentPacketContent(&connection_));
+}
+
+// Regression test for b/120791670
+TEST_P(QuicConnectionTest, StopProcessingGQuicPacketInIetfQuicConnection) {
+  // This test mimics a problematic scenario where a QUIC connection using a
+  // modern version received a Q043 packet and processed it incorrectly.
+  // We can remove this test once Q043 is deprecated.
+  if (!version().HasIetfInvariantHeader()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  }
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+
+  // Let connection process a Google QUIC packet.
+  peer_framer_.set_version_for_tests(ParsedQuicVersion::Q043());
+  std::unique_ptr<QuicPacket> packet(
+      ConstructDataPacket(2, !kHasStopWaiting, ENCRYPTION_INITIAL));
+  char buffer[kMaxOutgoingPacketSize];
+  size_t encrypted_length =
+      peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(2),
+                                  *packet, buffer, kMaxOutgoingPacketSize);
+  // Make sure no stream frame is processed.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(0);
+  connection_.ProcessUdpPacket(
+      kSelfAddress, kPeerAddress,
+      QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+
+  EXPECT_EQ(2u, connection_.GetStats().packets_received);
+  EXPECT_EQ(1u, connection_.GetStats().packets_processed);
+}
+
+TEST_P(QuicConnectionTest, AcceptPacketNumberZero) {
+  if (!VersionHasIetfQuicFrames(version().transport_version)) {
+    return;
+  }
+  // Set first_sending_packet_number to be 0 to allow successfully processing
+  // acks which ack packet number 0.
+  QuicFramerPeer::SetFirstSendingPacketNumber(writer_->framer()->framer(), 0);
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  ProcessPacket(0);
+  EXPECT_EQ(QuicPacketNumber(0), LargestAcked(connection_.ack_frame()));
+  EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+
+  ProcessPacket(1);
+  EXPECT_EQ(QuicPacketNumber(1), LargestAcked(connection_.ack_frame()));
+  EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+
+  ProcessPacket(2);
+  EXPECT_EQ(QuicPacketNumber(2), LargestAcked(connection_.ack_frame()));
+  EXPECT_EQ(1u, connection_.ack_frame().packets.NumIntervals());
+}
+
+TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicSending) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+
+  connection_.SendCryptoStreamData();
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  QuicAckFrame frame1 = InitAckFrame(1);
+  // Received ACK for packet 1.
+  ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(4);
+  connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0,
+                                         NO_FIN);
+  connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4,
+                                         NO_FIN);
+  connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
+                                         8, NO_FIN);
+  connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
+                                         12, FIN);
+  // Received ACK for packets 2, 4, 5.
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  QuicAckFrame frame2 =
+      InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)},
+                    {QuicPacketNumber(4), QuicPacketNumber(6)}});
+  // Make sure although the same packet number is used, but they are in
+  // different packet number spaces.
+  ProcessFramePacketAtLevel(30, QuicFrame(&frame2), ENCRYPTION_FORWARD_SECURE);
+}
+
+TEST_P(QuicConnectionTest, PeerAcksPacketsInWrongPacketNumberSpace) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x01));
+
+  connection_.SendCryptoStreamData();
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  QuicAckFrame frame1 = InitAckFrame(1);
+  // Received ACK for packet 1.
+  ProcessFramePacketAtLevel(30, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 0,
+                                         NO_FIN);
+  connection_.SendApplicationDataAtLevel(ENCRYPTION_ZERO_RTT, 5, "data", 4,
+                                         NO_FIN);
+
+  // Received ACK for packets 2 and 3 in wrong packet number space.
+  QuicAckFrame invalid_ack =
+      InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(4)}});
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  ProcessFramePacketAtLevel(300, QuicFrame(&invalid_ack), ENCRYPTION_INITIAL);
+  TestConnectionCloseQuicErrorCode(QUIC_INVALID_ACK_DATA);
+}
+
+TEST_P(QuicConnectionTest, MultiplePacketNumberSpacesBasicReceiving) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  }
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+  // Receives packet 1000 in initial data.
+  ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(0x02));
+  SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  // Receives packet 1000 in application data.
+  ProcessDataPacketAtLevel(1000, false, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
+                                         0, NO_FIN);
+  // Verify application data ACK gets bundled with outgoing data.
+  EXPECT_EQ(2u, writer_->frame_count());
+  // Make sure ACK alarm is still set because initial data is not ACKed.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  // Receive packet 1001 in application data.
+  ProcessDataPacketAtLevel(1001, false, ENCRYPTION_FORWARD_SECURE);
+  clock_.AdvanceTime(DefaultRetransmissionTime());
+  // Simulates ACK alarm fires and verify two ACKs are flushed.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.GetAckAlarm()->Fire();
+  EXPECT_FALSE(connection_.HasPendingAcks());
+  // Receives more packets in application data.
+  ProcessDataPacketAtLevel(1002, false, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  // Verify zero rtt and forward secure packets get acked in the same packet.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessDataPacket(1003);
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, CancelAckAlarmOnWriteBlocked) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  }
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+  // Receives packet 1000 in initial data.
+  ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(0x02));
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  // Receives packet 1000 in application data.
+  ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  writer_->SetWriteBlocked();
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AnyNumber());
+  // Simulates ACK alarm fires and verify no ACK is flushed because of write
+  // blocked.
+  clock_.AdvanceTime(DefaultDelayedAckTime());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.GetAckAlarm()->Fire();
+  // Verify ACK alarm is not set.
+  EXPECT_FALSE(connection_.HasPendingAcks());
+
+  writer_->SetWritable();
+  // Verify 2 ACKs are sent when connection gets unblocked.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  connection_.OnCanWrite();
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+// Make sure a packet received with the right client connection ID is processed.
+TEST_P(QuicConnectionTest, ValidClientConnectionId) {
+  if (!framer_.version().SupportsClientConnectionIds()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  SetClientConnectionId(TestConnectionId(0x33));
+  QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE);
+  header.destination_connection_id = TestConnectionId(0x33);
+  header.destination_connection_id_included = CONNECTION_ID_PRESENT;
+  header.source_connection_id_included = CONNECTION_ID_ABSENT;
+  QuicFrames frames;
+  QuicPingFrame ping_frame;
+  QuicPaddingFrame padding_frame;
+  frames.push_back(QuicFrame(ping_frame));
+  frames.push_back(QuicFrame(padding_frame));
+  std::unique_ptr<QuicPacket> packet =
+      BuildUnsizedDataPacket(&peer_framer_, header, frames);
+  char buffer[kMaxOutgoingPacketSize];
+  size_t encrypted_length = peer_framer_.EncryptPayload(
+      ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer,
+      kMaxOutgoingPacketSize);
+  QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
+                                     false);
+  EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+  ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
+  EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+}
+
+// Make sure a packet received with a different client connection ID is dropped.
+TEST_P(QuicConnectionTest, InvalidClientConnectionId) {
+  if (!framer_.version().SupportsClientConnectionIds()) {
+    return;
+  }
+  SetClientConnectionId(TestConnectionId(0x33));
+  QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_FORWARD_SECURE);
+  header.destination_connection_id = TestConnectionId(0xbad);
+  header.destination_connection_id_included = CONNECTION_ID_PRESENT;
+  header.source_connection_id_included = CONNECTION_ID_ABSENT;
+  QuicFrames frames;
+  QuicPingFrame ping_frame;
+  QuicPaddingFrame padding_frame;
+  frames.push_back(QuicFrame(ping_frame));
+  frames.push_back(QuicFrame(padding_frame));
+  std::unique_ptr<QuicPacket> packet =
+      BuildUnsizedDataPacket(&peer_framer_, header, frames);
+  char buffer[kMaxOutgoingPacketSize];
+  size_t encrypted_length = peer_framer_.EncryptPayload(
+      ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(1), *packet, buffer,
+      kMaxOutgoingPacketSize);
+  QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
+                                     false);
+  EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+  ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
+  EXPECT_EQ(1u, connection_.GetStats().packets_dropped);
+}
+
+// Make sure the first packet received with a different client connection ID on
+// the server is processed and it changes the client connection ID.
+TEST_P(QuicConnectionTest, UpdateClientConnectionIdFromFirstPacket) {
+  if (!framer_.version().SupportsClientConnectionIds()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_INITIAL);
+  header.source_connection_id = TestConnectionId(0x33);
+  header.source_connection_id_included = CONNECTION_ID_PRESENT;
+  QuicFrames frames;
+  QuicPingFrame ping_frame;
+  QuicPaddingFrame padding_frame;
+  frames.push_back(QuicFrame(ping_frame));
+  frames.push_back(QuicFrame(padding_frame));
+  std::unique_ptr<QuicPacket> packet =
+      BuildUnsizedDataPacket(&peer_framer_, header, frames);
+  char buffer[kMaxOutgoingPacketSize];
+  size_t encrypted_length =
+      peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(1),
+                                  *packet, buffer, kMaxOutgoingPacketSize);
+  QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
+                                     false);
+  EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+  ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
+  EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+  EXPECT_EQ(TestConnectionId(0x33), connection_.client_connection_id());
+}
+void QuicConnectionTest::TestReplaceConnectionIdFromInitial() {
+  if (!framer_.version().AllowsVariableLengthConnectionIds()) {
+    return;
+  }
+  // We start with a known connection ID.
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+  EXPECT_NE(TestConnectionId(0x33), connection_.connection_id());
+  // Receiving an initial can replace the connection ID once.
+  {
+    QuicPacketHeader header = ConstructPacketHeader(1, ENCRYPTION_INITIAL);
+    header.source_connection_id = TestConnectionId(0x33);
+    header.source_connection_id_included = CONNECTION_ID_PRESENT;
+    QuicFrames frames;
+    QuicPingFrame ping_frame;
+    QuicPaddingFrame padding_frame;
+    frames.push_back(QuicFrame(ping_frame));
+    frames.push_back(QuicFrame(padding_frame));
+    std::unique_ptr<QuicPacket> packet =
+        BuildUnsizedDataPacket(&peer_framer_, header, frames);
+    char buffer[kMaxOutgoingPacketSize];
+    size_t encrypted_length =
+        peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(1),
+                                    *packet, buffer, kMaxOutgoingPacketSize);
+    QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
+                                       false);
+    ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
+  }
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_EQ(0u, connection_.GetStats().packets_dropped);
+  EXPECT_EQ(TestConnectionId(0x33), connection_.connection_id());
+  // Trying to replace the connection ID a second time drops the packet.
+  {
+    QuicPacketHeader header = ConstructPacketHeader(2, ENCRYPTION_INITIAL);
+    header.source_connection_id = TestConnectionId(0x66);
+    header.source_connection_id_included = CONNECTION_ID_PRESENT;
+    QuicFrames frames;
+    QuicPingFrame ping_frame;
+    QuicPaddingFrame padding_frame;
+    frames.push_back(QuicFrame(ping_frame));
+    frames.push_back(QuicFrame(padding_frame));
+    std::unique_ptr<QuicPacket> packet =
+        BuildUnsizedDataPacket(&peer_framer_, header, frames);
+    char buffer[kMaxOutgoingPacketSize];
+    size_t encrypted_length =
+        peer_framer_.EncryptPayload(ENCRYPTION_INITIAL, QuicPacketNumber(2),
+                                    *packet, buffer, kMaxOutgoingPacketSize);
+    QuicReceivedPacket received_packet(buffer, encrypted_length, clock_.Now(),
+                                       false);
+    ProcessReceivedPacket(kSelfAddress, kPeerAddress, received_packet);
+  }
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_EQ(1u, connection_.GetStats().packets_dropped);
+  EXPECT_EQ(TestConnectionId(0x33), connection_.connection_id());
+}
+
+TEST_P(QuicConnectionTest, ReplaceServerConnectionIdFromInitial) {
+  TestReplaceConnectionIdFromInitial();
+}
+
+TEST_P(QuicConnectionTest, ReplaceServerConnectionIdFromRetryAndInitial) {
+  // First make the connection process a RETRY and replace the server connection
+  // ID a first time.
+  TestClientRetryHandling(/*invalid_retry_tag=*/false,
+                          /*missing_original_id_in_config=*/false,
+                          /*wrong_original_id_in_config=*/false,
+                          /*missing_retry_id_in_config=*/false,
+                          /*wrong_retry_id_in_config=*/false);
+  // Reset the test framer to use the right connection ID.
+  peer_framer_.SetInitialObfuscators(connection_.connection_id());
+  // Now process an INITIAL and replace the server connection ID a second time.
+  TestReplaceConnectionIdFromInitial();
+}
+
+// Regression test for b/134416344.
+TEST_P(QuicConnectionTest, CheckConnectedBeforeFlush) {
+  // This test mimics a scenario where a connection processes 2 packets and the
+  // 2nd packet contains connection close frame. When the 2nd flusher goes out
+  // of scope, a delayed ACK is pending, and ACK alarm should not be scheduled
+  // because connection is disconnected.
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+  const QuicErrorCode kErrorCode = QUIC_INTERNAL_ERROR;
+  std::unique_ptr<QuicConnectionCloseFrame> connection_close_frame(
+      new QuicConnectionCloseFrame(connection_.transport_version(), kErrorCode,
+                                   NO_IETF_QUIC_ERROR, "",
+                                   /*transport_close_frame_type=*/0));
+
+  // Received 2 packets.
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  }
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  ProcessFramePacketWithAddresses(QuicFrame(connection_close_frame.release()),
+                                  kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+  // Verify ack alarm is not set.
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+// Verify that a packet containing three coalesced packets is parsed correctly.
+TEST_P(QuicConnectionTest, CoalescedPacket) {
+  if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) {
+    // Coalesced packets can only be encoded using long header lengths.
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_TRUE(connection_.connected());
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(3);
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3);
+  }
+
+  uint64_t packet_numbers[3] = {1, 2, 3};
+  EncryptionLevel encryption_levels[3] = {
+      ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE};
+  char buffer[kMaxOutgoingPacketSize] = {};
+  size_t total_encrypted_length = 0;
+  for (int i = 0; i < 3; i++) {
+    QuicPacketHeader header =
+        ConstructPacketHeader(packet_numbers[i], encryption_levels[i]);
+    QuicFrames frames;
+    if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+      frames.push_back(QuicFrame(&crypto_frame_));
+    } else {
+      frames.push_back(QuicFrame(frame1_));
+    }
+    std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames);
+    peer_creator_.set_encryption_level(encryption_levels[i]);
+    size_t encrypted_length = peer_framer_.EncryptPayload(
+        encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet,
+        buffer + total_encrypted_length,
+        sizeof(buffer) - total_encrypted_length);
+    EXPECT_GT(encrypted_length, 0u);
+    total_encrypted_length += encrypted_length;
+  }
+  connection_.ProcessUdpPacket(
+      kSelfAddress, kPeerAddress,
+      QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false));
+  if (connection_.GetSendAlarm()->IsSet()) {
+    connection_.GetSendAlarm()->Fire();
+  }
+
+  EXPECT_TRUE(connection_.connected());
+}
+
+// Regression test for crbug.com/992831.
+TEST_P(QuicConnectionTest, CoalescedPacketThatSavesFrames) {
+  if (!QuicVersionHasLongHeaderLengths(connection_.transport_version())) {
+    // Coalesced packets can only be encoded using long header lengths.
+    return;
+  }
+  if (connection_.SupportsMultiplePacketNumberSpaces()) {
+    // TODO(b/129151114) Enable this test with multiple packet number spaces.
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_TRUE(connection_.connected());
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_))
+        .Times(3)
+        .WillRepeatedly([this](const QuicCryptoFrame& /*frame*/) {
+          // QuicFrame takes ownership of the QuicBlockedFrame.
+          connection_.SendControlFrame(QuicFrame(QuicBlockedFrame(1, 3)));
+        });
+  } else {
+    EXPECT_CALL(visitor_, OnStreamFrame(_))
+        .Times(3)
+        .WillRepeatedly([this](const QuicStreamFrame& /*frame*/) {
+          // QuicFrame takes ownership of the QuicBlockedFrame.
+          connection_.SendControlFrame(QuicFrame(QuicBlockedFrame(1, 3)));
+        });
+  }
+
+  uint64_t packet_numbers[3] = {1, 2, 3};
+  EncryptionLevel encryption_levels[3] = {
+      ENCRYPTION_INITIAL, ENCRYPTION_INITIAL, ENCRYPTION_FORWARD_SECURE};
+  char buffer[kMaxOutgoingPacketSize] = {};
+  size_t total_encrypted_length = 0;
+  for (int i = 0; i < 3; i++) {
+    QuicPacketHeader header =
+        ConstructPacketHeader(packet_numbers[i], encryption_levels[i]);
+    QuicFrames frames;
+    if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+      frames.push_back(QuicFrame(&crypto_frame_));
+    } else {
+      frames.push_back(QuicFrame(frame1_));
+    }
+    std::unique_ptr<QuicPacket> packet = ConstructPacket(header, frames);
+    peer_creator_.set_encryption_level(encryption_levels[i]);
+    size_t encrypted_length = peer_framer_.EncryptPayload(
+        encryption_levels[i], QuicPacketNumber(packet_numbers[i]), *packet,
+        buffer + total_encrypted_length,
+        sizeof(buffer) - total_encrypted_length);
+    EXPECT_GT(encrypted_length, 0u);
+    total_encrypted_length += encrypted_length;
+  }
+  connection_.ProcessUdpPacket(
+      kSelfAddress, kPeerAddress,
+      QuicReceivedPacket(buffer, total_encrypted_length, clock_.Now(), false));
+  if (connection_.GetSendAlarm()->IsSet()) {
+    connection_.GetSendAlarm()->Fire();
+  }
+
+  EXPECT_TRUE(connection_.connected());
+
+  SendAckPacketToPeer();
+}
+
+// Regresstion test for b/138962304.
+TEST_P(QuicConnectionTest, RtoAndWriteBlocked) {
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  QuicStreamId stream_id = 2;
+  QuicPacketNumber last_data_packet;
+  SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Writer gets blocked.
+  writer_->SetWriteBlocked();
+
+  // Cancel the stream.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+  EXPECT_CALL(visitor_, WillingAndAbleToWrite())
+      .WillRepeatedly(
+          Invoke(&notifier_, &SimpleSessionNotifier::WillingToWrite));
+  SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+  // Retransmission timer fires in RTO mode.
+  connection_.GetRetransmissionAlarm()->Fire();
+  // Verify no packets get flushed when writer is blocked.
+  EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+// Regresstion test for b/138962304.
+TEST_P(QuicConnectionTest, TlpAndWriteBlocked) {
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+  connection_.SetMaxTailLossProbes(1);
+
+  QuicStreamId stream_id = 2;
+  QuicPacketNumber last_data_packet;
+  SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet);
+  SendStreamDataToPeer(4, "foo", 0, NO_FIN, &last_data_packet);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Writer gets blocked.
+  writer_->SetWriteBlocked();
+
+  // Cancel stream 2.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+  SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  // Retransmission timer fires in TLP mode.
+  connection_.GetRetransmissionAlarm()->Fire();
+  // Verify one packets is forced flushed when writer is blocked.
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+}
+
+// Regresstion test for b/139375344.
+TEST_P(QuicConnectionTest, RtoForcesSendingPing) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  connection_.SetMaxTailLossProbes(2);
+  EXPECT_EQ(0u, connection_.GetStats().tlp_count);
+  EXPECT_EQ(0u, connection_.GetStats().rto_count);
+
+  SendStreamDataToPeer(2, "foo", 0, NO_FIN, nullptr);
+  QuicTime retransmission_time =
+      connection_.GetRetransmissionAlarm()->deadline();
+  EXPECT_NE(QuicTime::Zero(), retransmission_time);
+  // TLP fires.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _));
+  clock_.AdvanceTime(retransmission_time - clock_.Now());
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_EQ(1u, connection_.GetStats().tlp_count);
+  EXPECT_EQ(0u, connection_.GetStats().rto_count);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Packet 1 gets acked.
+  QuicAckFrame frame = InitAckFrame(1);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  ProcessAckPacket(1, &frame);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  retransmission_time = connection_.GetRetransmissionAlarm()->deadline();
+
+  // RTO fires, verify a PING packet gets sent because there is no data to send.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _));
+  clock_.AdvanceTime(retransmission_time - clock_.Now());
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_EQ(1u, connection_.GetStats().tlp_count);
+  EXPECT_EQ(1u, connection_.GetStats().rto_count);
+  EXPECT_EQ(1u, writer_->ping_frames().size());
+}
+
+TEST_P(QuicConnectionTest, ProbeTimeout) {
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k2PTO);
+  config.SetConnectionOptionsToSend(connection_options);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  QuicStreamId stream_id = 2;
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet);
+  SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Reset stream.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+  // Fire the PTO and verify only the RST_STREAM is resent, not stream data.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_EQ(0u, writer_->stream_frames().size());
+  EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionAfter6ClientPTOs) {
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k1PTO);
+  connection_options.push_back(k6PTO);
+  config.SetConnectionOptionsToSend(connection_options);
+  QuicConfigPeer::SetNegotiated(&config, true);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    EXPECT_CALL(visitor_, GetHandshakeState())
+        .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  }
+  connection_.OnHandshakeComplete();
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Send stream data.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+
+  // Fire the retransmission alarm 5 times.
+  for (int i = 0; i < 5; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    connection_.GetRetransmissionAlarm()->Fire();
+    EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+    EXPECT_TRUE(connection_.connected());
+  }
+  EXPECT_CALL(visitor_, OnPathDegrading());
+  connection_.PathDegradingTimeout();
+
+  EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
+  EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
+  EXPECT_EQ(5u, connection_.sent_packet_manager().GetConsecutivePtoCount());
+  // Closes connection on 6th PTO.
+  // May send multiple connecction close packets with multiple PN spaces.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+  connection_.GetBlackholeDetectorAlarm()->Fire();
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionAfter7ClientPTOs) {
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k2PTO);
+  connection_options.push_back(k7PTO);
+  config.SetConnectionOptionsToSend(connection_options);
+  QuicConfigPeer::SetNegotiated(&config, true);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    EXPECT_CALL(visitor_, GetHandshakeState())
+        .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  }
+  connection_.OnHandshakeComplete();
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Send stream data.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+
+  // Fire the retransmission alarm 6 times.
+  for (int i = 0; i < 6; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+    connection_.GetRetransmissionAlarm()->Fire();
+    EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+    EXPECT_TRUE(connection_.connected());
+  }
+  EXPECT_CALL(visitor_, OnPathDegrading());
+  connection_.PathDegradingTimeout();
+
+  EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
+  EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
+  EXPECT_EQ(6u, connection_.sent_packet_manager().GetConsecutivePtoCount());
+  // Closes connection on 7th PTO.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+  connection_.GetBlackholeDetectorAlarm()->Fire();
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionAfter8ClientPTOs) {
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k2PTO);
+  connection_options.push_back(k8PTO);
+  QuicConfigPeer::SetNegotiated(&config, true);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  config.SetConnectionOptionsToSend(connection_options);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    EXPECT_CALL(visitor_, GetHandshakeState())
+        .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  }
+  connection_.OnHandshakeComplete();
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Send stream data.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+
+  // Fire the retransmission alarm 7 times.
+  for (int i = 0; i < 7; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+    connection_.GetRetransmissionAlarm()->Fire();
+    EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+    EXPECT_TRUE(connection_.connected());
+  }
+  EXPECT_CALL(visitor_, OnPathDegrading());
+  connection_.PathDegradingTimeout();
+
+  EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
+  EXPECT_EQ(0u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
+  EXPECT_EQ(7u, connection_.sent_packet_manager().GetConsecutivePtoCount());
+  // Closes connection on 8th PTO.
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+  ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+  connection_.GetBlackholeDetectorAlarm()->Fire();
+  EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_TOO_MANY_RTOS);
+}
+
+TEST_P(QuicConnectionTest, DeprecateHandshakeMode) {
+  if (!connection_.version().SupportsAntiAmplificationLimit()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Send CHLO.
+  connection_.SendCryptoStreamData();
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  QuicAckFrame frame1 = InitAckFrame(1);
+  // Received ACK for packet 1.
+  ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+
+  // Verify retransmission alarm is still set because handshake is not
+  // confirmed although there is nothing in flight.
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  EXPECT_EQ(0u, connection_.GetStats().pto_count);
+  EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count);
+
+  // PTO fires, verify a PING packet gets sent because there is no data to send.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_EQ(1u, connection_.GetStats().pto_count);
+  EXPECT_EQ(1u, connection_.GetStats().crypto_retransmit_count);
+  EXPECT_EQ(1u, writer_->ping_frames().size());
+}
+
+TEST_P(QuicConnectionTest, AntiAmplificationLimit) {
+  if (!connection_.version().SupportsAntiAmplificationLimit()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+
+  set_perspective(Perspective::IS_SERVER);
+  // Verify no data can be sent at the beginning because bytes received is 0.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.SendCryptoDataWithString("foo", 0);
+  EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
+  EXPECT_FALSE(connection_.CanWrite(NO_RETRANSMITTABLE_DATA));
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Receives packet 1.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+  const size_t anti_amplification_factor =
+      GetQuicFlag(FLAGS_quic_anti_amplification_factor);
+  // Verify now packets can be sent.
+  for (size_t i = 1; i < anti_amplification_factor; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    connection_.SendCryptoDataWithString("foo", i * 3);
+    // Verify retransmission alarm is not set if throttled by anti-amplification
+    // limit.
+    EXPECT_EQ(i != anti_amplification_factor - 1,
+              connection_.GetRetransmissionAlarm()->IsSet());
+  }
+  // Verify server is throttled by anti-amplification limit.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3);
+
+  // Receives packet 2.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+  // Verify more packets can be sent.
+  for (size_t i = anti_amplification_factor + 1;
+       i < anti_amplification_factor * 2; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    connection_.SendCryptoDataWithString("foo", i * 3);
+  }
+  // Verify server is throttled by anti-amplification limit.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.SendCryptoDataWithString("foo",
+                                       2 * anti_amplification_factor * 3);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessPacket(3);
+  // Verify anti-amplification limit is gone after address validation.
+  for (size_t i = 0; i < 100; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN);
+  }
+}
+
+TEST_P(QuicConnectionTest, 3AntiAmplificationLimit) {
+  if (!connection_.version().SupportsAntiAmplificationLimit()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+
+  set_perspective(Perspective::IS_SERVER);
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k3AFF);
+  config.SetInitialReceivedConnectionOptions(connection_options);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config,
+                                                         QuicConnectionId());
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+
+  // Verify no data can be sent at the beginning because bytes received is 0.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.SendCryptoDataWithString("foo", 0);
+  EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
+  EXPECT_FALSE(connection_.CanWrite(NO_RETRANSMITTABLE_DATA));
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Receives packet 1.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+  const size_t anti_amplification_factor = 3;
+  // Verify now packets can be sent.
+  for (size_t i = 1; i < anti_amplification_factor; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    connection_.SendCryptoDataWithString("foo", i * 3);
+    // Verify retransmission alarm is not set if throttled by anti-amplification
+    // limit.
+    EXPECT_EQ(i != anti_amplification_factor - 1,
+              connection_.GetRetransmissionAlarm()->IsSet());
+  }
+  // Verify server is throttled by anti-amplification limit.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3);
+
+  // Receives packet 2.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+  // Verify more packets can be sent.
+  for (size_t i = anti_amplification_factor + 1;
+       i < anti_amplification_factor * 2; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    connection_.SendCryptoDataWithString("foo", i * 3);
+  }
+  // Verify server is throttled by anti-amplification limit.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.SendCryptoDataWithString("foo",
+                                       2 * anti_amplification_factor * 3);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessPacket(3);
+  // Verify anti-amplification limit is gone after address validation.
+  for (size_t i = 0; i < 100; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN);
+  }
+}
+
+TEST_P(QuicConnectionTest, 10AntiAmplificationLimit) {
+  if (!connection_.version().SupportsAntiAmplificationLimit()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+
+  set_perspective(Perspective::IS_SERVER);
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k10AF);
+  config.SetInitialReceivedConnectionOptions(connection_options);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config,
+                                                         QuicConnectionId());
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+
+  // Verify no data can be sent at the beginning because bytes received is 0.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.SendCryptoDataWithString("foo", 0);
+  EXPECT_FALSE(connection_.CanWrite(HAS_RETRANSMITTABLE_DATA));
+  EXPECT_FALSE(connection_.CanWrite(NO_RETRANSMITTABLE_DATA));
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Receives packet 1.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+  const size_t anti_amplification_factor = 10;
+  // Verify now packets can be sent.
+  for (size_t i = 1; i < anti_amplification_factor; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    connection_.SendCryptoDataWithString("foo", i * 3);
+    // Verify retransmission alarm is not set if throttled by anti-amplification
+    // limit.
+    EXPECT_EQ(i != anti_amplification_factor - 1,
+              connection_.GetRetransmissionAlarm()->IsSet());
+  }
+  // Verify server is throttled by anti-amplification limit.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.SendCryptoDataWithString("foo", anti_amplification_factor * 3);
+
+  // Receives packet 2.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+  // Verify more packets can be sent.
+  for (size_t i = anti_amplification_factor + 1;
+       i < anti_amplification_factor * 2; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    connection_.SendCryptoDataWithString("foo", i * 3);
+  }
+  // Verify server is throttled by anti-amplification limit.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.SendCryptoDataWithString("foo",
+                                       2 * anti_amplification_factor * 3);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessPacket(3);
+  // Verify anti-amplification limit is gone after address validation.
+  for (size_t i = 0; i < 100; ++i) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+    connection_.SendStreamDataWithString(3, "first", i * 0, NO_FIN);
+  }
+}
+
+TEST_P(QuicConnectionTest, AckPendingWithAmplificationLimited) {
+  if (!connection_.version().SupportsAntiAmplificationLimit()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber());
+  set_perspective(Perspective::IS_SERVER);
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  // Receives packet 1.
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  // Send response in different encryption level and cause amplification factor
+  // throttled.
+  size_t i = 0;
+  while (connection_.CanWrite(HAS_RETRANSMITTABLE_DATA)) {
+    connection_.SendCryptoDataWithString(std::string(1024, 'a'), i * 1024,
+                                         ENCRYPTION_HANDSHAKE);
+    ++i;
+  }
+  // Verify ACK is still pending.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  // Fire ACK alarm and verify ACK cannot be sent due to amplification factor.
+  clock_.AdvanceTime(connection_.GetAckAlarm()->deadline() - clock_.Now());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.GetAckAlarm()->Fire();
+  // Verify ACK alarm is cancelled.
+  EXPECT_FALSE(connection_.HasPendingAcks());
+
+  // Receives packet 2 and verify ACK gets flushed.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+  EXPECT_FALSE(writer_->ack_frames().empty());
+}
+
+TEST_P(QuicConnectionTest, ConnectionCloseFrameType) {
+  if (!VersionHasIetfQuicFrames(version().transport_version)) {
+    // Test relevent only for IETF QUIC.
+    return;
+  }
+  const QuicErrorCode kQuicErrorCode = IETF_QUIC_PROTOCOL_VIOLATION;
+  // Use the (unknown) frame type of 9999 to avoid triggering any logic
+  // which might be associated with the processing of a known frame type.
+  const uint64_t kTransportCloseFrameType = 9999u;
+  QuicFramerPeer::set_current_received_frame_type(
+      QuicConnectionPeer::GetFramer(&connection_), kTransportCloseFrameType);
+  // Do a transport connection close
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  connection_.CloseConnection(
+      kQuicErrorCode, "Some random error message",
+      ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+  const std::vector<QuicConnectionCloseFrame>& connection_close_frames =
+      writer_->connection_close_frames();
+  ASSERT_EQ(1u, connection_close_frames.size());
+  EXPECT_EQ(IETF_QUIC_TRANSPORT_CONNECTION_CLOSE,
+            connection_close_frames[0].close_type);
+  EXPECT_EQ(kQuicErrorCode, connection_close_frames[0].quic_error_code);
+  EXPECT_EQ(kTransportCloseFrameType,
+            connection_close_frames[0].transport_close_frame_type);
+}
+
+// Regression test for b/137401387 and b/138962304.
+TEST_P(QuicConnectionTest, RtoPacketAsTwo) {
+  if (connection_.PtoEnabled()) {
+    return;
+  }
+  connection_.SetMaxTailLossProbes(1);
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  std::string stream_data(3000, 's');
+  // Send packets 1 - 66 and exhaust cwnd.
+  for (size_t i = 0; i < 22; ++i) {
+    // 3 packets for each stream, the first 2 are guaranteed to be full packets.
+    SendStreamDataToPeer(i + 2, stream_data, 0, FIN, nullptr);
+  }
+  CongestionBlockWrites();
+
+  // Fires TLP. Please note, this tail loss probe has 1 byte less stream data
+  // compared to packet 1 because packet number length increases.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(67), _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+  // Fires RTO. Please note, although packets 2 and 3 *should* be RTOed, but
+  // packet 2 gets RTOed to two packets because packet number length increases.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(68), _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(69), _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  // Resets all streams except 2 and ack packets 1 and 2. Now, packet 3 is the
+  // only one containing retransmittable frames.
+  for (size_t i = 1; i < 22; ++i) {
+    notifier_.OnStreamReset(i + 2, QUIC_STREAM_CANCELLED);
+  }
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  QuicAckFrame frame =
+      InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(3)}});
+  ProcessAckPacket(1, &frame);
+  CongestionUnblockWrites();
+
+  // Fires TLP, verify a PING gets sent because packet 3 is marked
+  // RTO_RETRANSMITTED.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(70), _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+}
+
+TEST_P(QuicConnectionTest, PtoSkipsPacketNumber) {
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k1PTO);
+  connection_options.push_back(kPTOS);
+  config.SetConnectionOptionsToSend(connection_options);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  QuicStreamId stream_id = 2;
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(stream_id, "foooooo", 0, NO_FIN, &last_packet);
+  SendStreamDataToPeer(stream_id, "foooooo", 7, NO_FIN, &last_packet);
+  EXPECT_EQ(QuicPacketNumber(2), last_packet);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Fire PTO and verify the PTO retransmission skips one packet number.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_EQ(1u, writer_->stream_frames().size());
+  EXPECT_EQ(QuicPacketNumber(4), writer_->last_packet_header().packet_number);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, SendCoalescedPackets) {
+  if (!connection_.version().CanSendCoalescedPackets()) {
+    return;
+  }
+  MockQuicConnectionDebugVisitor debug_visitor;
+  connection_.set_debug_visitor(&debug_visitor);
+  EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(3);
+  EXPECT_CALL(debug_visitor, OnCoalescedPacketSent(_, _)).Times(1);
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    use_tagging_decrypter();
+    connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                             std::make_unique<TaggingEncrypter>(0x01));
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+    connection_.SendCryptoDataWithString("foo", 0);
+    // Verify this packet is on hold.
+    EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+    connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                             std::make_unique<TaggingEncrypter>(0x02));
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+    connection_.SendCryptoDataWithString("bar", 3);
+    EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+    connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                             std::make_unique<TaggingEncrypter>(0x03));
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    SendStreamDataToPeer(2, "baz", 3, NO_FIN, nullptr);
+  }
+  // Verify all 3 packets are coalesced in the same UDP datagram.
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
+  // Verify the packet is padded to full.
+  EXPECT_EQ(connection_.max_packet_length(), writer_->last_packet_size());
+
+  // Verify packet process.
+  EXPECT_EQ(1u, writer_->crypto_frames().size());
+  EXPECT_EQ(0u, writer_->stream_frames().size());
+  // Verify there is coalesced packet.
+  EXPECT_NE(nullptr, writer_->coalesced_packet());
+}
+
+TEST_P(QuicConnectionTest, FailToCoalescePacket) {
+  // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+  if (!IsDefaultTestConfiguration() ||
+      !connection_.version().CanSendCoalescedPackets()) {
+    return;
+  }
+
+  set_perspective(Perspective::IS_SERVER);
+  use_tagging_decrypter();
+
+  EXPECT_CALL(visitor_, OnHandshakePacketSent());
+
+  if (GetQuicReloadableFlag(
+          quic_close_connection_if_fail_to_serialzie_coalesced_packet2)) {
+    EXPECT_CALL(visitor_,
+                OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+        .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  }
+
+  ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_INITIAL);
+  auto test_body = [&] {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                             std::make_unique<TaggingEncrypter>(0x01));
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+    connection_.SendCryptoDataWithString("foo", 0);
+    // Verify this packet is on hold.
+    EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+    connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                             std::make_unique<TaggingEncrypter>(0x02));
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+    connection_.SendCryptoDataWithString("bar", 3);
+    EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+    connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                             std::make_unique<TaggingEncrypter>(0x03));
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    SendStreamDataToPeer(2, "baz", 3, NO_FIN, nullptr);
+
+    creator_->Flush();
+
+    auto& coalesced_packet =
+        QuicConnectionPeer::GetCoalescedPacket(&connection_);
+    QuicPacketLength coalesced_packet_max_length =
+        coalesced_packet.max_packet_length();
+    QuicCoalescedPacketPeer::SetMaxPacketLength(coalesced_packet,
+                                                coalesced_packet.length());
+
+    // Make the coalescer's FORWARD_SECURE packet longer.
+    *QuicCoalescedPacketPeer::GetMutableEncryptedBuffer(
+        coalesced_packet, ENCRYPTION_FORWARD_SECURE) += "!!! TEST !!!";
+
+    QUIC_LOG(INFO) << "Reduced coalesced_packet_max_length from "
+                   << coalesced_packet_max_length << " to "
+                   << coalesced_packet.max_packet_length()
+                   << ", coalesced_packet.length:" << coalesced_packet.length()
+                   << ", coalesced_packet.packet_lengths:"
+                   << absl::StrJoin(coalesced_packet.packet_lengths(), ":");
+  };
+
+  EXPECT_QUIC_BUG(test_body(), "SerializeCoalescedPacket failed.");
+
+  if (GetQuicReloadableFlag(
+          quic_close_connection_if_fail_to_serialzie_coalesced_packet2)) {
+    EXPECT_FALSE(connection_.connected());
+    EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+                IsError(QUIC_FAILED_TO_SERIALIZE_PACKET));
+    EXPECT_EQ(saved_connection_close_frame_.error_details,
+              "Failed to serialize coalesced packet.");
+  } else {
+    EXPECT_TRUE(connection_.connected());
+  }
+}
+
+TEST_P(QuicConnectionTest, LegacyVersionEncapsulation) {
+  connection_.EnableLegacyVersionEncapsulation("test.example.org");
+
+  MockQuicConnectionDebugVisitor debug_visitor;
+  connection_.set_debug_visitor(&debug_visitor);
+  EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _)).Times(1);
+
+  // Our TestPacketWriter normally parses the sent packet using the version
+  // from the connection, so here we need to tell it to use the encapsulation
+  // version, and reset the initial decrypter for that version.
+  writer_->framer()->SetSupportedVersions(
+      SupportedVersions(LegacyVersionForEncapsulation()));
+  writer_->framer()->framer()->SetInitialObfuscators(
+      connection_.connection_id());
+
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    connection_.SendCryptoDataWithString("TEST_CRYPTO_DATA", /*offset=*/0);
+  }
+
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  // Verify that the packet is fully padded.
+  EXPECT_EQ(connection_.max_packet_length(), writer_->last_packet_size());
+
+  // Check that the connection stats show Legacy Version Encapsulation was used.
+  EXPECT_GT(connection_.GetStats().sent_legacy_version_encapsulated_packets,
+            0u);
+
+  // Verify that the sent packet was in fact encapsulated, and check header.
+  const QuicPacketHeader& encapsulated_header = writer_->last_packet_header();
+  EXPECT_TRUE(encapsulated_header.version_flag);
+  EXPECT_EQ(encapsulated_header.version, LegacyVersionForEncapsulation());
+  EXPECT_EQ(encapsulated_header.destination_connection_id,
+            connection_.connection_id());
+
+  // Encapsulated packet should contain a stream frame for the crypto stream,
+  // optionally padding, and nothing else.
+  EXPECT_EQ(0u, writer_->crypto_frames().size());
+  EXPECT_EQ(1u, writer_->stream_frames().size());
+  EXPECT_EQ(writer_->frame_count(), writer_->framer()->padding_frames().size() +
+                                        writer_->stream_frames().size());
+}
+
+TEST_P(QuicConnectionTest, ClientReceivedHandshakeDone) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnHandshakeDoneReceived());
+  QuicFrames frames;
+  frames.push_back(QuicFrame(QuicHandshakeDoneFrame()));
+  frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
+  ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
+}
+
+TEST_P(QuicConnectionTest, ServerReceivedHandshakeDone) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  EXPECT_CALL(visitor_, OnHandshakeDoneReceived()).Times(0);
+  if (version().handshake_protocol == PROTOCOL_TLS1_3) {
+    EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  }
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  QuicFrames frames;
+  frames.push_back(QuicFrame(QuicHandshakeDoneFrame()));
+  frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
+  ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(1, connection_close_frame_count_);
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(IETF_QUIC_PROTOCOL_VIOLATION));
+}
+
+TEST_P(QuicConnectionTest, MultiplePacketNumberSpacePto) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  use_tagging_decrypter();
+  // Send handshake packet.
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+  EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
+
+  // Send application data.
+  connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
+                                         0, NO_FIN);
+  EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+  QuicTime retransmission_time =
+      connection_.GetRetransmissionAlarm()->deadline();
+  EXPECT_NE(QuicTime::Zero(), retransmission_time);
+
+  // Retransmit handshake data.
+  clock_.AdvanceTime(retransmission_time - clock_.Now());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+  // Verify 1-RTT packet gets coalesced with handshake retransmission.
+  EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+
+  // Send application data.
+  connection_.SendApplicationDataAtLevel(ENCRYPTION_FORWARD_SECURE, 5, "data",
+                                         4, NO_FIN);
+  EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+  retransmission_time = connection_.GetRetransmissionAlarm()->deadline();
+  EXPECT_NE(QuicTime::Zero(), retransmission_time);
+
+  // Retransmit handshake data again.
+  clock_.AdvanceTime(retransmission_time - clock_.Now());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(9), _, _));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(8), _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+  // Verify 1-RTT packet gets coalesced with handshake retransmission.
+  EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+
+  // Discard handshake key.
+  connection_.OnHandshakeComplete();
+  retransmission_time = connection_.GetRetransmissionAlarm()->deadline();
+  EXPECT_NE(QuicTime::Zero(), retransmission_time);
+
+  // Retransmit application data.
+  clock_.AdvanceTime(retransmission_time - clock_.Now());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(11), _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+}
+
+void QuicConnectionTest::TestClientRetryHandling(
+    bool invalid_retry_tag, bool missing_original_id_in_config,
+    bool wrong_original_id_in_config, bool missing_retry_id_in_config,
+    bool wrong_retry_id_in_config) {
+  if (invalid_retry_tag) {
+    ASSERT_FALSE(missing_original_id_in_config);
+    ASSERT_FALSE(wrong_original_id_in_config);
+    ASSERT_FALSE(missing_retry_id_in_config);
+    ASSERT_FALSE(wrong_retry_id_in_config);
+  } else {
+    ASSERT_FALSE(missing_original_id_in_config && wrong_original_id_in_config);
+    ASSERT_FALSE(missing_retry_id_in_config && wrong_retry_id_in_config);
+  }
+  if (!version().UsesTls()) {
+    return;
+  }
+
+  // These values come from draft-ietf-quic-v2 Appendix A.4.
+  uint8_t retry_packet_rfcv2[] = {
+      0xcf, 0x70, 0x9a, 0x50, 0xc4, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a,
+      0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x1d, 0xc7, 0x11, 0x30,
+      0xcd, 0x1e, 0xd3, 0x9d, 0x6e, 0xfc, 0xee, 0x5c, 0x85, 0x80, 0x65, 0x01};
+  // These values come from RFC9001 Appendix A.4.
+  uint8_t retry_packet_rfcv1[] = {
+      0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a,
+      0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x04, 0xa2, 0x65, 0xba,
+      0x2e, 0xff, 0x4d, 0x82, 0x90, 0x58, 0xfb, 0x3f, 0x0f, 0x24, 0x96, 0xba};
+  uint8_t retry_packet29[] = {
+      0xff, 0xff, 0x00, 0x00, 0x1d, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a,
+      0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0xd1, 0x69, 0x26, 0xd8,
+      0x1f, 0x6f, 0x9c, 0xa2, 0x95, 0x3a, 0x8a, 0xa4, 0x57, 0x5e, 0x1e, 0x49};
+
+  uint8_t* retry_packet;
+  size_t retry_packet_length;
+  if (version() == ParsedQuicVersion::V2Draft01()) {
+    retry_packet = retry_packet_rfcv2;
+    retry_packet_length = ABSL_ARRAYSIZE(retry_packet_rfcv2);
+  } else if (version() == ParsedQuicVersion::RFCv1()) {
+    retry_packet = retry_packet_rfcv1;
+    retry_packet_length = ABSL_ARRAYSIZE(retry_packet_rfcv1);
+  } else if (version() == ParsedQuicVersion::Draft29()) {
+    retry_packet = retry_packet29;
+    retry_packet_length = ABSL_ARRAYSIZE(retry_packet29);
+  } else {
+    // TODO(dschinazi) generate retry packets for all versions once we have
+    // server-side support for generating these programmatically.
+    return;
+  }
+
+  uint8_t original_connection_id_bytes[] = {0x83, 0x94, 0xc8, 0xf0,
+                                            0x3e, 0x51, 0x57, 0x08};
+  uint8_t new_connection_id_bytes[] = {0xf0, 0x67, 0xa5, 0x50,
+                                       0x2a, 0x42, 0x62, 0xb5};
+  uint8_t retry_token_bytes[] = {0x74, 0x6f, 0x6b, 0x65, 0x6e};
+
+  QuicConnectionId original_connection_id(
+      reinterpret_cast<char*>(original_connection_id_bytes),
+      ABSL_ARRAYSIZE(original_connection_id_bytes));
+  QuicConnectionId new_connection_id(
+      reinterpret_cast<char*>(new_connection_id_bytes),
+      ABSL_ARRAYSIZE(new_connection_id_bytes));
+
+  std::string retry_token(reinterpret_cast<char*>(retry_token_bytes),
+                          ABSL_ARRAYSIZE(retry_token_bytes));
+
+  if (invalid_retry_tag) {
+    // Flip the last bit of the retry packet to prevent the integrity tag
+    // from validating correctly.
+    retry_packet[retry_packet_length - 1] ^= 1;
+  }
+
+  QuicConnectionId config_original_connection_id = original_connection_id;
+  if (wrong_original_id_in_config) {
+    // Flip the first bit of the connection ID.
+    ASSERT_FALSE(config_original_connection_id.IsEmpty());
+    config_original_connection_id.mutable_data()[0] ^= 0x80;
+  }
+  QuicConnectionId config_retry_source_connection_id = new_connection_id;
+  if (wrong_retry_id_in_config) {
+    // Flip the first bit of the connection ID.
+    ASSERT_FALSE(config_retry_source_connection_id.IsEmpty());
+    config_retry_source_connection_id.mutable_data()[0] ^= 0x80;
+  }
+
+  // Make sure the connection uses the connection ID from the test vectors,
+  QuicConnectionPeer::SetServerConnectionId(&connection_,
+                                            original_connection_id);
+  // Make sure our fake framer has the new post-retry INITIAL keys so that any
+  // retransmission triggered by retry can be decrypted.
+  writer_->framer()->framer()->SetInitialObfuscators(new_connection_id);
+
+  // Process the RETRY packet.
+  connection_.ProcessUdpPacket(
+      kSelfAddress, kPeerAddress,
+      QuicReceivedPacket(reinterpret_cast<char*>(retry_packet),
+                         retry_packet_length, clock_.Now()));
+
+  if (invalid_retry_tag) {
+    // Make sure we refuse to process a RETRY with invalid tag.
+    EXPECT_FALSE(connection_.GetStats().retry_packet_processed);
+    EXPECT_EQ(connection_.connection_id(), original_connection_id);
+    EXPECT_TRUE(QuicPacketCreatorPeer::GetRetryToken(
+                    QuicConnectionPeer::GetPacketCreator(&connection_))
+                    .empty());
+    return;
+  }
+
+  // Make sure we correctly parsed the RETRY.
+  EXPECT_TRUE(connection_.GetStats().retry_packet_processed);
+  EXPECT_EQ(connection_.connection_id(), new_connection_id);
+  EXPECT_EQ(QuicPacketCreatorPeer::GetRetryToken(
+                QuicConnectionPeer::GetPacketCreator(&connection_)),
+            retry_token);
+
+  // Test validating the original_connection_id from the config.
+  QuicConfig received_config;
+  QuicConfigPeer::SetNegotiated(&received_config, true);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &received_config, connection_.connection_id());
+    if (!missing_retry_id_in_config) {
+      QuicConfigPeer::SetReceivedRetrySourceConnectionId(
+          &received_config, config_retry_source_connection_id);
+    }
+  }
+  if (!missing_original_id_in_config) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &received_config, config_original_connection_id);
+  }
+
+  if (missing_original_id_in_config || wrong_original_id_in_config ||
+      missing_retry_id_in_config || wrong_retry_id_in_config) {
+    EXPECT_CALL(visitor_,
+                OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+        .Times(1);
+  } else {
+    EXPECT_CALL(visitor_,
+                OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+        .Times(0);
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
+  connection_.SetFromConfig(received_config);
+  if (missing_original_id_in_config || wrong_original_id_in_config ||
+      missing_retry_id_in_config || wrong_retry_id_in_config) {
+    ASSERT_FALSE(connection_.connected());
+    TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+  } else {
+    EXPECT_TRUE(connection_.connected());
+  }
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetry) {
+  TestClientRetryHandling(/*invalid_retry_tag=*/false,
+                          /*missing_original_id_in_config=*/false,
+                          /*wrong_original_id_in_config=*/false,
+                          /*missing_retry_id_in_config=*/false,
+                          /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetryInvalidTag) {
+  TestClientRetryHandling(/*invalid_retry_tag=*/true,
+                          /*missing_original_id_in_config=*/false,
+                          /*wrong_original_id_in_config=*/false,
+                          /*missing_retry_id_in_config=*/false,
+                          /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetryMissingOriginalId) {
+  TestClientRetryHandling(/*invalid_retry_tag=*/false,
+                          /*missing_original_id_in_config=*/true,
+                          /*wrong_original_id_in_config=*/false,
+                          /*missing_retry_id_in_config=*/false,
+                          /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetryWrongOriginalId) {
+  TestClientRetryHandling(/*invalid_retry_tag=*/false,
+                          /*missing_original_id_in_config=*/false,
+                          /*wrong_original_id_in_config=*/true,
+                          /*missing_retry_id_in_config=*/false,
+                          /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetryMissingRetryId) {
+  if (!connection_.version().UsesTls()) {
+    // Versions that do not authenticate connection IDs never send the
+    // retry_source_connection_id transport parameter.
+    return;
+  }
+  TestClientRetryHandling(/*invalid_retry_tag=*/false,
+                          /*missing_original_id_in_config=*/false,
+                          /*wrong_original_id_in_config=*/false,
+                          /*missing_retry_id_in_config=*/true,
+                          /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, ClientParsesRetryWrongRetryId) {
+  if (!connection_.version().UsesTls()) {
+    // Versions that do not authenticate connection IDs never send the
+    // retry_source_connection_id transport parameter.
+    return;
+  }
+  TestClientRetryHandling(/*invalid_retry_tag=*/false,
+                          /*missing_original_id_in_config=*/false,
+                          /*wrong_original_id_in_config=*/false,
+                          /*missing_retry_id_in_config=*/false,
+                          /*wrong_retry_id_in_config=*/true);
+}
+
+TEST_P(QuicConnectionTest, ClientRetransmitsInitialPacketsOnRetry) {
+  if (!connection_.version().HasIetfQuicFrames()) {
+    // TestClientRetryHandling() currently only supports IETF draft versions.
+    return;
+  }
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+
+  connection_.SendCryptoStreamData();
+
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  TestClientRetryHandling(/*invalid_retry_tag=*/false,
+                          /*missing_original_id_in_config=*/false,
+                          /*wrong_original_id_in_config=*/false,
+                          /*missing_retry_id_in_config=*/false,
+                          /*wrong_retry_id_in_config=*/false);
+
+  // Verify that initial data is retransmitted immediately after receiving
+  // RETRY.
+  if (GetParam().ack_response == AckResponse::kImmediate) {
+    EXPECT_EQ(2u, writer_->packets_write_attempts());
+    EXPECT_EQ(1u, writer_->framer()->crypto_frames().size());
+  }
+}
+
+TEST_P(QuicConnectionTest, NoInitialPacketsRetransmissionOnInvalidRetry) {
+  if (!connection_.version().HasIetfQuicFrames()) {
+    return;
+  }
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+
+  connection_.SendCryptoStreamData();
+
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  TestClientRetryHandling(/*invalid_retry_tag=*/true,
+                          /*missing_original_id_in_config=*/false,
+                          /*wrong_original_id_in_config=*/false,
+                          /*missing_retry_id_in_config=*/false,
+                          /*wrong_retry_id_in_config=*/false);
+
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, ClientReceivesOriginalConnectionIdWithoutRetry) {
+  if (!connection_.version().UsesTls()) {
+    // QUIC+TLS is required to transmit connection ID transport parameters.
+    return;
+  }
+  if (connection_.version().UsesTls()) {
+    // Versions that authenticate connection IDs always send the
+    // original_destination_connection_id transport parameter.
+    return;
+  }
+  // Make sure that receiving the original_destination_connection_id transport
+  // parameter fails the handshake when no RETRY packet was received before it.
+  QuicConfig received_config;
+  QuicConfigPeer::SetNegotiated(&received_config, true);
+  QuicConfigPeer::SetReceivedOriginalConnectionId(&received_config,
+                                                  TestConnectionId(0x12345));
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .Times(1);
+  connection_.SetFromConfig(received_config);
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+}
+
+TEST_P(QuicConnectionTest, ClientReceivesRetrySourceConnectionIdWithoutRetry) {
+  if (!connection_.version().UsesTls()) {
+    // Versions that do not authenticate connection IDs never send the
+    // retry_source_connection_id transport parameter.
+    return;
+  }
+  // Make sure that receiving the retry_source_connection_id transport parameter
+  // fails the handshake when no RETRY packet was received before it.
+  QuicConfig received_config;
+  QuicConfigPeer::SetNegotiated(&received_config, true);
+  QuicConfigPeer::SetReceivedRetrySourceConnectionId(&received_config,
+                                                     TestConnectionId(0x12345));
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .Times(1);
+  connection_.SetFromConfig(received_config);
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(IETF_QUIC_PROTOCOL_VIOLATION);
+}
+
+// Regression test for http://crbug/1047977
+TEST_P(QuicConnectionTest, MaxStreamsFrameCausesConnectionClose) {
+  if (!VersionHasIetfQuicFrames(connection_.transport_version())) {
+    return;
+  }
+  // Received frame causes connection close.
+  EXPECT_CALL(visitor_, OnMaxStreamsFrame(_))
+      .WillOnce(InvokeWithoutArgs([this]() {
+        EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+        connection_.CloseConnection(
+            QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES, "error",
+            ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+        return true;
+      }));
+  QuicFrames frames;
+  frames.push_back(QuicFrame(QuicMaxStreamsFrame()));
+  frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
+  ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
+}
+
+TEST_P(QuicConnectionTest, StreamsBlockedFrameCausesConnectionClose) {
+  if (!VersionHasIetfQuicFrames(connection_.transport_version())) {
+    return;
+  }
+  // Received frame causes connection close.
+  EXPECT_CALL(visitor_, OnStreamsBlockedFrame(_))
+      .WillOnce(InvokeWithoutArgs([this]() {
+        EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+        connection_.CloseConnection(
+            QUIC_TOO_MANY_BUFFERED_CONTROL_FRAMES, "error",
+            ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+        return true;
+      }));
+  QuicFrames frames;
+  frames.push_back(
+      QuicFrame(QuicStreamsBlockedFrame(kInvalidControlFrameId, 10, false)));
+  frames.push_back(QuicFrame(QuicPaddingFrame(-1)));
+  ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
+}
+
+TEST_P(QuicConnectionTest,
+       BundleAckWithConnectionCloseMultiplePacketNumberSpace) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  // Receives packet 1000 in initial data.
+  ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+  // Receives packet 2000 in application data.
+  ProcessDataPacketAtLevel(2000, false, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  const QuicErrorCode kQuicErrorCode = QUIC_INTERNAL_ERROR;
+  connection_.CloseConnection(
+      kQuicErrorCode, "Some random error message",
+      ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+
+  EXPECT_EQ(2u, QuicConnectionPeer::GetNumEncryptionLevels(&connection_));
+
+  TestConnectionCloseQuicErrorCode(kQuicErrorCode);
+  EXPECT_EQ(1u, writer_->connection_close_frames().size());
+  // Verify ack is bundled.
+  EXPECT_EQ(1u, writer_->ack_frames().size());
+
+  if (!connection_.version().CanSendCoalescedPackets()) {
+    // Each connection close packet should be sent in distinct UDP packets.
+    EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
+              writer_->connection_close_packets());
+    EXPECT_EQ(QuicConnectionPeer::GetNumEncryptionLevels(&connection_),
+              writer_->packets_write_attempts());
+    return;
+  }
+
+  // A single UDP packet should be sent with multiple connection close packets
+  // coalesced together.
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+  // Only the first packet has been processed yet.
+  EXPECT_EQ(1u, writer_->connection_close_packets());
+
+  // ProcessPacket resets the visitor and frees the coalesced packet.
+  ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+  auto packet = writer_->coalesced_packet()->Clone();
+  writer_->framer()->ProcessPacket(*packet);
+  EXPECT_EQ(1u, writer_->connection_close_packets());
+  EXPECT_EQ(1u, writer_->connection_close_frames().size());
+  // Verify ack is bundled.
+  EXPECT_EQ(1u, writer_->ack_frames().size());
+  ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+}
+
+// Regression test for b/151220135.
+TEST_P(QuicConnectionTest, SendPingWhenSkipPacketNumberForPto) {
+  if (!VersionSupportsMessageFrames(connection_.transport_version())) {
+    return;
+  }
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(kPTOS);
+  connection_options.push_back(k1PTO);
+  config.SetConnectionOptionsToSend(connection_options);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedMaxDatagramFrameSize(
+        &config, kMaxAcceptedDatagramFrameSize);
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  connection_.OnHandshakeComplete();
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  EXPECT_EQ(MESSAGE_STATUS_SUCCESS, SendMessage("message"));
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // PTO fires, verify a PING packet gets sent because there is no data to
+  // send.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(3), _, _));
+  connection_.GetRetransmissionAlarm()->Fire();
+  EXPECT_EQ(1u, connection_.GetStats().pto_count);
+  EXPECT_EQ(0u, connection_.GetStats().crypto_retransmit_count);
+  EXPECT_EQ(1u, writer_->ping_frames().size());
+}
+
+// Regression test for b/155757133
+TEST_P(QuicConnectionTest, DonotChangeQueuedAcks) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  const size_t kMinRttMs = 40;
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+                       QuicTime::Delta::Zero(), QuicTime::Zero());
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  // Discard INITIAL key.
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.NeuterUnencryptedPackets();
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+  ProcessPacket(2);
+  ProcessPacket(3);
+  ProcessPacket(4);
+  // Process a packet containing stream frame followed by ACK of packets 1.
+  QuicFrames frames;
+  frames.push_back(QuicFrame(QuicStreamFrame(
+      QuicUtils::GetFirstBidirectionalStreamId(
+          connection_.version().transport_version, Perspective::IS_CLIENT),
+      false, 0u, absl::string_view())));
+  QuicAckFrame ack_frame = InitAckFrame(1);
+  frames.push_back(QuicFrame(&ack_frame));
+  // Receiving stream frame causes something to send.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([this]() {
+    connection_.SendControlFrame(QuicFrame(QuicWindowUpdateFrame(1, 0, 0)));
+    // Verify now the queued ACK contains packet number 2.
+    EXPECT_TRUE(QuicPacketCreatorPeer::QueuedFrames(
+                    QuicConnectionPeer::GetPacketCreator(&connection_))[0]
+                    .ack_frame->packets.Contains(QuicPacketNumber(2)));
+  }));
+  ProcessFramesPacketAtLevel(9, frames, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_TRUE(writer_->ack_frames()[0].packets.Contains(QuicPacketNumber(2)));
+}
+
+TEST_P(QuicConnectionTest, DonotExtendIdleTimeOnUndecryptablePackets) {
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+  // Subtract a second from the idle timeout on the client side.
+  QuicTime initial_deadline =
+      clock_.ApproximateNow() +
+      QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+  EXPECT_EQ(initial_deadline, connection_.GetTimeoutAlarm()->deadline());
+
+  // Received an undecryptable packet.
+  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+  const uint8_t tag = 0x07;
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(tag));
+  ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+  // Verify deadline does not get extended.
+  EXPECT_EQ(initial_deadline, connection_.GetTimeoutAlarm()->deadline());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(1);
+  QuicTime::Delta delay = initial_deadline - clock_.ApproximateNow();
+  clock_.AdvanceTime(delay);
+  connection_.GetTimeoutAlarm()->Fire();
+  // Verify connection gets closed.
+  EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, BundleAckWithImmediateResponse) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([this]() {
+    notifier_.WriteOrBufferWindowUpate(0, 0);
+  }));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  ProcessDataPacket(1);
+  // Verify ACK is bundled with WINDOW_UPDATE.
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  EXPECT_FALSE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, AckAlarmFiresEarly) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  }
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+  // Receives packet 1000 in initial data.
+  ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(0x02));
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  // Receives packet 1000 in application data.
+  ProcessDataPacketAtLevel(1000, false, ENCRYPTION_ZERO_RTT);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  // Verify ACK deadline does not change.
+  EXPECT_EQ(clock_.ApproximateNow() + kAlarmGranularity,
+            connection_.GetAckAlarm()->deadline());
+
+  // Ack alarm fires early.
+  // Verify the earliest ACK is flushed.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  connection_.GetAckAlarm()->Fire();
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  EXPECT_EQ(clock_.ApproximateNow() + DefaultDelayedAckTime(),
+            connection_.GetAckAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, ClientOnlyBlackholeDetectionClient) {
+  if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    return;
+  }
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(kCBHD);
+  config.SetConnectionOptionsToSend(connection_options);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+  EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+  // Send stream data.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  // Verify blackhole detection is in progress.
+  EXPECT_TRUE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, ClientOnlyBlackholeDetectionServer) {
+  if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  if (version().SupportsAntiAmplificationLimit()) {
+    QuicConnectionPeer::SetAddressValidated(&connection_);
+  }
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(kCBHD);
+  config.SetInitialReceivedConnectionOptions(connection_options);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+  EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+  // Send stream data.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  // Verify blackhole detection is disabled.
+  EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, 2RtoBlackholeDetection) {
+  if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    return;
+  }
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k2RTO);
+  config.SetConnectionOptionsToSend(connection_options);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  const size_t kMinRttMs = 40;
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+                       QuicTime::Delta::Zero(), QuicTime::Zero());
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+  EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+  // Send stream data.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  // Verify blackhole delay is expected.
+  EXPECT_EQ(clock_.Now() +
+                connection_.sent_packet_manager().GetNetworkBlackholeDelay(2),
+            QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
+}
+
+TEST_P(QuicConnectionTest, 3RtoBlackholeDetection) {
+  if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    return;
+  }
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k3RTO);
+  config.SetConnectionOptionsToSend(connection_options);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  const size_t kMinRttMs = 40;
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+                       QuicTime::Delta::Zero(), QuicTime::Zero());
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+  EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+  // Send stream data.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  // Verify blackhole delay is expected.
+  EXPECT_EQ(clock_.Now() +
+                connection_.sent_packet_manager().GetNetworkBlackholeDelay(3),
+            QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
+}
+
+TEST_P(QuicConnectionTest, 4RtoBlackholeDetection) {
+  if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    return;
+  }
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k4RTO);
+  config.SetConnectionOptionsToSend(connection_options);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  const size_t kMinRttMs = 40;
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+                       QuicTime::Delta::Zero(), QuicTime::Zero());
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+  EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+  // Send stream data.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  // Verify blackhole delay is expected.
+  EXPECT_EQ(clock_.Now() +
+                connection_.sent_packet_manager().GetNetworkBlackholeDelay(4),
+            QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
+}
+
+TEST_P(QuicConnectionTest, 6RtoBlackholeDetection) {
+  if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    return;
+  }
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k6RTO);
+  config.SetConnectionOptionsToSend(connection_options);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  const size_t kMinRttMs = 40;
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+                       QuicTime::Delta::Zero(), QuicTime::Zero());
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+  EXPECT_FALSE(connection_.GetBlackholeDetectorAlarm()->IsSet());
+  // Send stream data.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  // Verify blackhole delay is expected.
+  EXPECT_EQ(clock_.Now() +
+                connection_.sent_packet_manager().GetNetworkBlackholeDelay(6),
+            QuicConnectionPeer::GetBlackholeDetectionDeadline(&connection_));
+}
+
+// Regresstion test for b/158491591.
+TEST_P(QuicConnectionTest, MadeForwardProgressOnDiscardingKeys) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  use_tagging_decrypter();
+  // Send handshake packet.
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+  QuicConfig config;
+  QuicTagVector connection_options;
+  connection_options.push_back(k5RTO);
+  config.SetConnectionOptionsToSend(connection_options);
+  QuicConfigPeer::SetNegotiated(&config, true);
+  if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    EXPECT_CALL(visitor_, GetHandshakeState())
+        .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+  }
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+  EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
+  // Discard handshake keys.
+  connection_.OnHandshakeComplete();
+  if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    // Verify blackhole detection stops.
+    EXPECT_FALSE(connection_.BlackholeDetectionInProgress());
+  } else {
+    // Problematic: although there is nothing in flight, blackhole detection is
+    // still in progress.
+    EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
+  }
+}
+
+TEST_P(QuicConnectionTest, ProcessUndecryptablePacketsBasedOnEncryptionLevel) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  // SetFromConfig is always called after construction from InitializeSession.
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber());
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE);
+  use_tagging_decrypter();
+
+  peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                            std::make_unique<TaggingEncrypter>(0x01));
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(0x02));
+
+  for (uint64_t i = 1; i <= 3; ++i) {
+    ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+  }
+  ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+  for (uint64_t j = 5; j <= 7; ++j) {
+    ProcessDataPacketAtLevel(j, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+  }
+  EXPECT_EQ(7u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+  EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypter>(0x01));
+  EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  // Verify all ENCRYPTION_HANDSHAKE packets get processed.
+  if (!VersionHasIetfQuicFrames(version().transport_version)) {
+    EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(6);
+  }
+  connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+  EXPECT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+
+  SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  // Verify the 1-RTT packet gets processed.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+  EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+}
+
+TEST_P(QuicConnectionTest, ServerBundlesInitialDataWithInitialAck) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  }
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+  // Receives packet 1000 in initial data.
+  ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+  QuicTime expected_pto_time =
+      connection_.sent_packet_manager().GetRetransmissionTime();
+
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+  // Verify PTO time does not change.
+  EXPECT_EQ(expected_pto_time,
+            connection_.sent_packet_manager().GetRetransmissionTime());
+
+  // Receives packet 1001 in initial data.
+  ProcessCryptoPacketAtLevel(1001, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  // Receives packet 1002 in initial data.
+  ProcessCryptoPacketAtLevel(1002, ENCRYPTION_INITIAL);
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  // Verify CRYPTO frame is bundled with INITIAL ACK.
+  EXPECT_FALSE(writer_->crypto_frames().empty());
+  // Verify PTO time changes.
+  EXPECT_NE(expected_pto_time,
+            connection_.sent_packet_manager().GetRetransmissionTime());
+}
+
+TEST_P(QuicConnectionTest, ClientBundlesHandshakeDataWithHandshakeAck) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  }
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                            std::make_unique<TaggingEncrypter>(0x02));
+  // Receives packet 1000 in handshake data.
+  ProcessCryptoPacketAtLevel(1000, ENCRYPTION_HANDSHAKE);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+
+  // Receives packet 1001 in handshake data.
+  ProcessCryptoPacketAtLevel(1001, ENCRYPTION_HANDSHAKE);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  // Receives packet 1002 in handshake data.
+  ProcessCryptoPacketAtLevel(1002, ENCRYPTION_HANDSHAKE);
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  // Verify CRYPTO frame is bundled with HANDSHAKE ACK.
+  EXPECT_FALSE(writer_->crypto_frames().empty());
+}
+
+// Regresstion test for b/156232673.
+TEST_P(QuicConnectionTest, CoalescePacketOfLowerEncryptionLevel) {
+  if (!connection_.version().CanSendCoalescedPackets()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    use_tagging_decrypter();
+    connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                             std::make_unique<TaggingEncrypter>(0x01));
+    connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                             std::make_unique<TaggingEncrypter>(0x02));
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    SendStreamDataToPeer(2, std::string(1286, 'a'), 0, NO_FIN, nullptr);
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+    // Try to coalesce a HANDSHAKE packet after 1-RTT packet.
+    // Verify soft max packet length gets resumed and handshake packet gets
+    // successfully sent.
+    connection_.SendCryptoDataWithString("a", 0, ENCRYPTION_HANDSHAKE);
+  }
+}
+
+// Regression test for b/160790422.
+TEST_P(QuicConnectionTest, ServerRetransmitsHandshakeDataEarly) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  }
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+  // Receives packet 1000 in initial data.
+  ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  // Send INITIAL 1.
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+  QuicTime expected_pto_time =
+      connection_.sent_packet_manager().GetRetransmissionTime();
+
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+  // Send HANDSHAKE 2 and 3.
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+  connection_.SendCryptoDataWithString("bar", 3, ENCRYPTION_HANDSHAKE);
+  // Verify PTO time does not change.
+  EXPECT_EQ(expected_pto_time,
+            connection_.sent_packet_manager().GetRetransmissionTime());
+
+  // Receives ACK for HANDSHAKE 2.
+  QuicFrames frames;
+  auto ack_frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+  frames.push_back(QuicFrame(&ack_frame));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  ProcessFramesPacketAtLevel(30, frames, ENCRYPTION_HANDSHAKE);
+  // Discard INITIAL key.
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.NeuterUnencryptedPackets();
+  // Receives PING from peer.
+  frames.clear();
+  frames.push_back(QuicFrame(QuicPingFrame()));
+  frames.push_back(QuicFrame(QuicPaddingFrame(3)));
+  ProcessFramesPacketAtLevel(31, frames, ENCRYPTION_HANDSHAKE);
+  EXPECT_EQ(clock_.Now() + kAlarmGranularity,
+            connection_.GetAckAlarm()->deadline());
+  // Fire ACK alarm.
+  clock_.AdvanceTime(kAlarmGranularity);
+  connection_.GetAckAlarm()->Fire();
+  EXPECT_FALSE(writer_->ack_frames().empty());
+  // Verify handshake data gets retransmitted early.
+  EXPECT_FALSE(writer_->crypto_frames().empty());
+}
+
+// Regression test for b/161228202
+TEST_P(QuicConnectionTest, InflatedRttSample) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  // 30ms RTT.
+  const QuicTime::Delta kTestRTT = QuicTime::Delta::FromMilliseconds(30);
+  set_perspective(Perspective::IS_SERVER);
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  use_tagging_decrypter();
+  // Receives packet 1000 in initial data.
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  }
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  // Send INITIAL 1.
+  std::string initial_crypto_data(512, 'a');
+  connection_.SendCryptoDataWithString(initial_crypto_data, 0,
+                                       ENCRYPTION_INITIAL);
+  ASSERT_TRUE(connection_.sent_packet_manager()
+                  .GetRetransmissionTime()
+                  .IsInitialized());
+  QuicTime::Delta pto_timeout =
+      connection_.sent_packet_manager().GetRetransmissionTime() - clock_.Now();
+  // Send Handshake 2.
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+  std::string handshake_crypto_data(1024, 'a');
+  connection_.SendCryptoDataWithString(handshake_crypto_data, 0,
+                                       ENCRYPTION_HANDSHAKE);
+
+  // INITIAL 1 gets lost and PTO fires.
+  clock_.AdvanceTime(pto_timeout);
+  connection_.GetRetransmissionAlarm()->Fire();
+
+  clock_.AdvanceTime(kTestRTT);
+  // Assume retransmitted INITIAL gets received.
+  QuicFrames frames;
+  auto ack_frame = InitAckFrame({{QuicPacketNumber(4), QuicPacketNumber(5)}});
+  frames.push_back(QuicFrame(&ack_frame));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _))
+      .Times(AnyNumber());
+  ProcessFramesPacketAtLevel(1001, frames, ENCRYPTION_INITIAL);
+  EXPECT_EQ(kTestRTT, rtt_stats->latest_rtt());
+  // Because retransmitted INITIAL gets received so HANDSHAKE 2 gets processed.
+  frames.clear();
+  // HANDSHAKE 5 is also processed.
+  QuicAckFrame ack_frame2 =
+      InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)},
+                    {QuicPacketNumber(5), QuicPacketNumber(6)}});
+  ack_frame2.ack_delay_time = QuicTime::Delta::Zero();
+  frames.push_back(QuicFrame(&ack_frame2));
+  ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_HANDSHAKE);
+  // Verify RTT inflation gets mitigated.
+  EXPECT_EQ(rtt_stats->latest_rtt(), kTestRTT);
+}
+
+// Regression test for b/161228202
+TEST_P(QuicConnectionTest, CoalscingPacketCausesInfiniteLoop) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  use_tagging_decrypter();
+  // Receives packet 1000 in initial data.
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  }
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+
+  // Set anti amplification factor to 2, such that RetransmitDataOfSpaceIfAny
+  // makes no forward progress and causes infinite loop.
+  SetQuicFlag(FLAGS_quic_anti_amplification_factor, 2);
+
+  ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  // Send INITIAL 1.
+  std::string initial_crypto_data(512, 'a');
+  connection_.SendCryptoDataWithString(initial_crypto_data, 0,
+                                       ENCRYPTION_INITIAL);
+  ASSERT_TRUE(connection_.sent_packet_manager()
+                  .GetRetransmissionTime()
+                  .IsInitialized());
+  QuicTime::Delta pto_timeout =
+      connection_.sent_packet_manager().GetRetransmissionTime() - clock_.Now();
+  // Send Handshake 2.
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  // Verify HANDSHAKE packet is coalesced with INITIAL retransmission.
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+  std::string handshake_crypto_data(1024, 'a');
+  connection_.SendCryptoDataWithString(handshake_crypto_data, 0,
+                                       ENCRYPTION_HANDSHAKE);
+
+  // INITIAL 1 gets lost and PTO fires.
+  clock_.AdvanceTime(pto_timeout);
+  connection_.GetRetransmissionAlarm()->Fire();
+}
+
+TEST_P(QuicConnectionTest, ClientAckDelayForAsyncPacketProcessing) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  // SetFromConfig is always called after construction from InitializeSession.
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() {
+    connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+    connection_.NeuterUnencryptedPackets();
+  }));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                            std::make_unique<TaggingEncrypter>(0x01));
+  EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+
+  // Received undecryptable HANDSHAKE 2.
+  ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+  ASSERT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+  // Received INITIAL 4 (which is retransmission of INITIAL 1) after 100ms.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100));
+  ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_INITIAL);
+  // Generate HANDSHAKE key.
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypter>(0x01));
+  EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  // Verify HANDSHAKE packet gets processed.
+  if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  } else {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  }
+  connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+  if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) {
+    // Verify immediate ACK has been sent out when flush went out of scope.
+    ASSERT_FALSE(connection_.HasPendingAcks());
+  } else {
+    ASSERT_TRUE(connection_.HasPendingAcks());
+    // Send ACKs.
+    clock_.AdvanceTime(connection_.GetAckAlarm()->deadline() - clock_.Now());
+    connection_.GetAckAlarm()->Fire();
+  }
+  ASSERT_FALSE(writer_->ack_frames().empty());
+  if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) {
+    // Verify the ack_delay_time in the sent HANDSHAKE ACK frame is 100ms.
+    EXPECT_EQ(QuicTime::Delta::FromMilliseconds(100),
+              writer_->ack_frames()[0].ack_delay_time);
+    ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+    return;
+  }
+  // Verify the ack_delay_time in the INITIAL ACK frame is 1ms.
+  EXPECT_EQ(QuicTime::Delta::FromMilliseconds(1),
+            writer_->ack_frames()[0].ack_delay_time);
+  // Process the coalesced HANDSHAKE packet.
+  ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+  auto packet = writer_->coalesced_packet()->Clone();
+  writer_->framer()->ProcessPacket(*packet);
+  ASSERT_FALSE(writer_->ack_frames().empty());
+  // Verify the ack_delay_time in the HANDSHAKE ACK frame includes the
+  // buffering time.
+  EXPECT_EQ(QuicTime::Delta::FromMilliseconds(101),
+            writer_->ack_frames()[0].ack_delay_time);
+  ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+}
+
+TEST_P(QuicConnectionTest, TestingLiveness) {
+  const size_t kMinRttMs = 40;
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+                       QuicTime::Delta::Zero(), QuicTime::Zero());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+
+  CryptoHandshakeMessage msg;
+  std::string error_details;
+  QuicConfig client_config;
+  client_config.SetInitialStreamFlowControlWindowToSend(
+      kInitialStreamFlowControlWindowForTest);
+  client_config.SetInitialSessionFlowControlWindowToSend(
+      kInitialSessionFlowControlWindowForTest);
+  client_config.SetIdleNetworkTimeout(QuicTime::Delta::FromSeconds(30));
+  client_config.ToHandshakeMessage(&msg, connection_.transport_version());
+  const QuicErrorCode error =
+      config.ProcessPeerHello(msg, CLIENT, &error_details);
+  EXPECT_THAT(error, IsQuicNoError());
+
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+
+  connection_.SetFromConfig(config);
+  connection_.OnHandshakeComplete();
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  ASSERT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_FALSE(connection_.MaybeTestLiveness());
+
+  QuicTime deadline = connection_.GetTimeoutAlarm()->deadline();
+  QuicTime::Delta timeout = deadline - clock_.ApproximateNow();
+  // Advance time to near the idle timeout.
+  clock_.AdvanceTime(timeout - QuicTime::Delta::FromMilliseconds(1));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  EXPECT_TRUE(connection_.MaybeTestLiveness());
+  // Verify idle deadline does not change.
+  EXPECT_EQ(deadline, connection_.GetTimeoutAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, SilentIdleTimeout) {
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  if (version().SupportsAntiAmplificationLimit()) {
+    QuicConnectionPeer::SetAddressValidated(&connection_);
+  }
+
+  QuicConfig config;
+  QuicConfigPeer::SetNegotiated(&config, true);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(&config,
+                                                         QuicConnectionId());
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+
+  if (version().handshake_protocol == PROTOCOL_TLS1_3) {
+    EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  }
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.GetTimeoutAlarm()->Fire();
+  // Verify the connection close packets get serialized and added to
+  // termination packets list.
+  EXPECT_NE(nullptr,
+            QuicConnectionPeer::GetConnectionClosePacket(&connection_));
+}
+
+TEST_P(QuicConnectionTest, DonotSendPing) {
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  connection_.OnHandshakeComplete();
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(true));
+  EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(0, connection_.transport_version()),
+      "GET /", 0, FIN, nullptr);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  EXPECT_EQ(QuicTime::Delta::FromSeconds(15),
+            connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  // Now recevie an ACK and response of the previous packet, which will move the
+  // ping alarm forward.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  QuicFrames frames;
+  QuicAckFrame ack_frame = InitAckFrame(1);
+  frames.push_back(QuicFrame(&ack_frame));
+  frames.push_back(QuicFrame(QuicStreamFrame(
+      GetNthClientInitiatedStreamId(0, connection_.transport_version()), true,
+      0u, absl::string_view())));
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessFramesPacketAtLevel(1, frames, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+  // The ping timer is set slightly less than 15 seconds in the future, because
+  // of the 1s ping timer alarm granularity.
+  EXPECT_EQ(
+      QuicTime::Delta::FromSeconds(15) - QuicTime::Delta::FromMilliseconds(5),
+      connection_.GetPingAlarm()->deadline() - clock_.ApproximateNow());
+
+  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15));
+  // Suppose now ShouldKeepConnectionAlive returns false.
+  EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+      .WillRepeatedly(Return(false));
+  // Verify PING does not get sent.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+  connection_.GetPingAlarm()->Fire();
+}
+
+// Regression test for b/159698337
+TEST_P(QuicConnectionTest, DuplicateAckCausesLostPackets) {
+  if (!GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    return;
+  }
+  // Finish handshake.
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  notifier_.NeuterUnencryptedData();
+  connection_.NeuterUnencryptedPackets();
+  connection_.OnHandshakeComplete();
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+  std::string data(1200, 'a');
+  // Send data packets 1 - 5.
+  for (size_t i = 0; i < 5; ++i) {
+    SendStreamDataToPeer(
+        GetNthClientInitiatedStreamId(1, connection_.transport_version()), data,
+        i * 1200, i == 4 ? FIN : NO_FIN, nullptr);
+  }
+  ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)).Times(3);
+
+  // ACK packet 5 and 1 and 2 are detected lost.
+  QuicAckFrame frame =
+      InitAckFrame({{QuicPacketNumber(5), QuicPacketNumber(6)}});
+  LostPacketVector lost_packets;
+  lost_packets.push_back(
+      LostPacket(QuicPacketNumber(1), kMaxOutgoingPacketSize));
+  lost_packets.push_back(
+      LostPacket(QuicPacketNumber(2), kMaxOutgoingPacketSize));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .Times(AnyNumber())
+      .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+                      Return(LossDetectionInterface::DetectionStats())));
+  ProcessAckPacket(1, &frame);
+  EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
+  QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm();
+  EXPECT_TRUE(retransmission_alarm->IsSet());
+
+  // ACK packet 1 - 5 and 7.
+  QuicAckFrame frame2 =
+      InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(6)},
+                    {QuicPacketNumber(7), QuicPacketNumber(8)}});
+  ProcessAckPacket(2, &frame2);
+  EXPECT_TRUE(connection_.BlackholeDetectionInProgress());
+
+  // ACK packet 7 again and assume packet 6 is detected lost.
+  QuicAckFrame frame3 =
+      InitAckFrame({{QuicPacketNumber(7), QuicPacketNumber(8)}});
+  lost_packets.clear();
+  lost_packets.push_back(
+      LostPacket(QuicPacketNumber(6), kMaxOutgoingPacketSize));
+  EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+      .Times(AnyNumber())
+      .WillOnce(DoAll(SetArgPointee<5>(lost_packets),
+                      Return(LossDetectionInterface::DetectionStats())));
+  ProcessAckPacket(3, &frame3);
+  // Make sure loss detection is cancelled even there is no new acked packets.
+  EXPECT_FALSE(connection_.BlackholeDetectionInProgress());
+}
+
+TEST_P(QuicConnectionTest, ShorterIdleTimeoutOnSentPackets) {
+  EXPECT_TRUE(connection_.connected());
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(100),
+                       QuicTime::Delta::Zero(), QuicTime::Zero());
+
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  config.SetClientConnectionOptions(QuicTagVector{kFIDT});
+  QuicConfigPeer::SetNegotiated(&config, true);
+  if (GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    EXPECT_CALL(visitor_, GetHandshakeState())
+        .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+  }
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  connection_.SetFromConfig(config);
+
+  ASSERT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  // Send a packet close to timeout.
+  QuicTime::Delta timeout =
+      connection_.GetTimeoutAlarm()->deadline() - clock_.Now();
+  clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(1));
+  // Send stream data.
+  SendStreamDataToPeer(
+      GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+      0, FIN, nullptr);
+  // Verify this sent packet does not extend idle timeout since 1s is > PTO
+  // delay.
+  ASSERT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+  EXPECT_EQ(QuicTime::Delta::FromSeconds(1),
+            connection_.GetTimeoutAlarm()->deadline() - clock_.Now());
+
+  // Received an ACK 100ms later.
+  clock_.AdvanceTime(timeout - QuicTime::Delta::FromMilliseconds(100));
+  QuicAckFrame ack = InitAckFrame(1);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  ProcessAckPacket(1, &ack);
+  // Verify idle timeout gets extended.
+  EXPECT_EQ(clock_.Now() + timeout, connection_.GetTimeoutAlarm()->deadline());
+}
+
+// Regression test for b/166255274
+TEST_P(QuicConnectionTest,
+       ReserializeInitialPacketInCoalescerAfterDiscardingInitialKey) {
+  if (!connection_.version().CanSendCoalescedPackets()) {
+    return;
+  }
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() {
+    connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+    connection_.NeuterUnencryptedPackets();
+  }));
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+    // Verify the packet is on hold.
+    EXPECT_EQ(0u, writer_->packets_write_attempts());
+    // Flush pending ACKs.
+    connection_.GetAckAlarm()->Fire();
+  }
+  EXPECT_FALSE(connection_.packet_creator().HasPendingFrames());
+  // The ACK frame is deleted along with initial_packet_ in coalescer. Sending
+  // connection close would cause this (released) ACK frame be serialized (and
+  // crashes).
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(1000, false, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, PathValidationOnNewSocketSuccess) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.use_path_validator()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+  EXPECT_NE(kNewSelfAddress, connection_.self_address());
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(AtLeast(1u))
+      .WillOnce(Invoke([&]() {
+        EXPECT_EQ(1u, new_writer.packets_write_attempts());
+        EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+        EXPECT_EQ(1u, new_writer.padding_frames().size());
+        EXPECT_EQ(kNewSelfAddress.host(),
+                  new_writer.last_write_source_address());
+      }));
+  bool success = false;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kNewSelfAddress, connection_.peer_address(), &new_writer),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+  EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+  QuicFrames frames;
+  frames.push_back(QuicFrame(new QuicPathResponseFrame(
+      99, new_writer.path_challenge_frames().front().data_buffer)));
+  ProcessFramesPacketWithAddresses(frames, kNewSelfAddress, kPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_TRUE(success);
+}
+
+TEST_P(QuicConnectionTest, NewPathValidationCancelsPreviousOne) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.use_path_validator()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+  EXPECT_NE(kNewSelfAddress, connection_.self_address());
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(AtLeast(1u))
+      .WillOnce(Invoke([&]() {
+        EXPECT_EQ(1u, new_writer.packets_write_attempts());
+        EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+        EXPECT_EQ(1u, new_writer.padding_frames().size());
+        EXPECT_EQ(kNewSelfAddress.host(),
+                  new_writer.last_write_source_address());
+      }));
+  bool success = true;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kNewSelfAddress, connection_.peer_address(), &new_writer),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+  EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+  // Start another path validation request.
+  const QuicSocketAddress kNewSelfAddress2(QuicIpAddress::Any4(), 12346);
+  EXPECT_NE(kNewSelfAddress2, connection_.self_address());
+  TestPacketWriter new_writer2(version(), &clock_, Perspective::IS_CLIENT);
+  if (!connection_.connection_migration_use_new_cid()) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+        .Times(AtLeast(1u))
+        .WillOnce(Invoke([&]() {
+          EXPECT_EQ(1u, new_writer2.packets_write_attempts());
+          EXPECT_EQ(1u, new_writer2.path_challenge_frames().size());
+          EXPECT_EQ(1u, new_writer2.padding_frames().size());
+          EXPECT_EQ(kNewSelfAddress2.host(),
+                    new_writer2.last_write_source_address());
+        }));
+  }
+  bool success2 = false;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kNewSelfAddress2, connection_.peer_address(), &new_writer2),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kNewSelfAddress2, connection_.peer_address(),
+          &success2));
+  EXPECT_FALSE(success);
+  if (connection_.connection_migration_use_new_cid()) {
+    // There is no pening path validation as there is no available connection
+    // ID.
+    EXPECT_FALSE(connection_.HasPendingPathValidation());
+  } else {
+    EXPECT_TRUE(connection_.HasPendingPathValidation());
+  }
+}
+
+// Regression test for b/182571515.
+TEST_P(QuicConnectionTest, PathValidationRetry) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.use_path_validator()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(2u)
+      .WillRepeatedly(Invoke([&]() {
+        EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+        EXPECT_EQ(1u, writer_->padding_frames().size());
+      }));
+  bool success = true;
+  connection_.ValidatePath(std::make_unique<TestQuicPathValidationContext>(
+                               connection_.self_address(),
+                               connection_.peer_address(), writer_.get()),
+                           std::make_unique<TestValidationResultDelegate>(
+                               &connection_, connection_.self_address(),
+                               connection_.peer_address(), &success));
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  EXPECT_TRUE(connection_.HasPendingPathValidation());
+
+  // Retry after time out.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs));
+  static_cast<test::MockRandom*>(helper_->GetRandomGenerator())->ChangeValue();
+  static_cast<TestAlarmFactory::TestAlarm*>(
+      QuicPathValidatorPeer::retry_timer(
+          QuicConnectionPeer::path_validator(&connection_)))
+      ->Fire();
+  EXPECT_EQ(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, PathValidationReceivesStatelessReset) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.use_path_validator()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  QuicConfig config;
+  QuicConfigPeer::SetReceivedStatelessResetToken(&config,
+                                                 kTestStatelessResetToken);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+  EXPECT_NE(kNewSelfAddress, connection_.self_address());
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(AtLeast(1u))
+      .WillOnce(Invoke([&]() {
+        EXPECT_EQ(1u, new_writer.packets_write_attempts());
+        EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+        EXPECT_EQ(1u, new_writer.padding_frames().size());
+        EXPECT_EQ(kNewSelfAddress.host(),
+                  new_writer.last_write_source_address());
+      }));
+  bool success = true;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kNewSelfAddress, connection_.peer_address(), &new_writer),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+  EXPECT_EQ(0u, writer_->packets_write_attempts());
+  EXPECT_TRUE(connection_.HasPendingPathValidation());
+
+  std::unique_ptr<QuicEncryptedPacket> packet(
+      QuicFramer::BuildIetfStatelessResetPacket(connection_id_,
+                                                /*received_packet_length=*/100,
+                                                kTestStatelessResetToken));
+  std::unique_ptr<QuicReceivedPacket> received(
+      ConstructReceivedPacket(*packet, QuicTime::Zero()));
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0);
+  connection_.ProcessUdpPacket(kNewSelfAddress, kPeerAddress, *received);
+  EXPECT_FALSE(connection_.HasPendingPathValidation());
+  EXPECT_FALSE(success);
+}
+
+// Tests that PATH_CHALLENGE is dropped if it is sent via a blocked alternative
+// writer.
+TEST_P(QuicConnectionTest, SendPathChallengeUsingBlockedNewSocket) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+  EXPECT_NE(kNewSelfAddress, connection_.self_address());
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  new_writer.BlockOnNextWrite();
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(AtLeast(1))
+      .WillOnce(Invoke([&]() {
+        // Even though the socket is blocked, the PATH_CHALLENGE should still be
+        // treated as sent.
+        EXPECT_EQ(1u, new_writer.packets_write_attempts());
+        EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+        EXPECT_EQ(1u, new_writer.padding_frames().size());
+        EXPECT_EQ(kNewSelfAddress.host(),
+                  new_writer.last_write_source_address());
+      }));
+  bool success = false;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kNewSelfAddress, connection_.peer_address(), &new_writer),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+  EXPECT_EQ(0u, writer_->packets_write_attempts());
+
+  new_writer.SetWritable();
+  // Write event on the default socket shouldn't make any difference.
+  connection_.OnCanWrite();
+  // A NEW_CONNECTION_ID frame is received in PathProbeTestInit and OnCanWrite
+  // will write a acking packet.
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  EXPECT_EQ(1u, new_writer.packets_write_attempts());
+}
+
+//  Tests that PATH_CHALLENGE is dropped if it is sent via the default writer
+//  and the writer is blocked.
+TEST_P(QuicConnectionTest, SendPathChallengeUsingBlockedDefaultSocket) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.use_path_validator()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_SERVER);
+  const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Any4(), 12345);
+  writer_->BlockOnNextWrite();
+  // 1st time is after writer returns WRITE_STATUS_BLOCKED. 2nd time is in
+  // ShouldGeneratePacket().
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(2));
+  QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7};
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(AtLeast(1u))
+      .WillOnce(Invoke([&]() {
+        // This packet isn't sent actually, instead it is buffered in the
+        // connection.
+        EXPECT_EQ(1u, writer_->packets_write_attempts());
+        if (connection_.validate_client_address()) {
+          EXPECT_EQ(1u, writer_->path_response_frames().size());
+          EXPECT_EQ(0,
+                    memcmp(&path_challenge_payload,
+                           &writer_->path_response_frames().front().data_buffer,
+                           sizeof(path_challenge_payload)));
+        }
+        EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+        EXPECT_EQ(1u, writer_->padding_frames().size());
+        EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+      }))
+      .WillRepeatedly(Invoke([&]() {
+        // Only one PATH_CHALLENGE should be sent out.
+        EXPECT_EQ(0u, writer_->path_challenge_frames().size());
+      }));
+  bool success = false;
+  if (connection_.validate_client_address()) {
+    // Receiving a PATH_CHALLENGE from the new peer address should trigger
+    // address validation.
+    QuicFrames frames;
+    frames.push_back(
+        QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload)));
+    ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+                                     ENCRYPTION_FORWARD_SECURE);
+  } else {
+    // Manually start to validate the new peer address.
+    connection_.ValidatePath(
+        std::make_unique<TestQuicPathValidationContext>(
+            connection_.self_address(), kNewPeerAddress, writer_.get()),
+        std::make_unique<TestValidationResultDelegate>(
+            &connection_, connection_.self_address(), kNewPeerAddress,
+            &success));
+  }
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+  // Try again with the new socket blocked from the beginning. The 2nd
+  // PATH_CHALLENGE shouldn't be serialized, but be dropped.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs));
+  static_cast<test::MockRandom*>(helper_->GetRandomGenerator())->ChangeValue();
+  static_cast<TestAlarmFactory::TestAlarm*>(
+      QuicPathValidatorPeer::retry_timer(
+          QuicConnectionPeer::path_validator(&connection_)))
+      ->Fire();
+
+  // No more write attempt should be made.
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+  writer_->SetWritable();
+  // OnCanWrite() should actually write out the 1st PATH_CHALLENGE packet
+  // buffered earlier, thus incrementing the write counter. It may also send
+  // ACKs to previously received packets.
+  connection_.OnCanWrite();
+  EXPECT_LE(2u, writer_->packets_write_attempts());
+}
+
+// Tests that write error on the alternate socket should be ignored.
+TEST_P(QuicConnectionTest, SendPathChallengeFailOnNewSocket) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.use_path_validator()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+  EXPECT_NE(kNewSelfAddress, connection_.self_address());
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  new_writer.SetShouldWriteFail();
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .Times(0);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u);
+
+  bool success = false;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kNewSelfAddress, connection_.peer_address(), &new_writer),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+  EXPECT_EQ(1u, new_writer.packets_write_attempts());
+  EXPECT_EQ(1u, new_writer.path_challenge_frames().size());
+  EXPECT_EQ(1u, new_writer.padding_frames().size());
+  EXPECT_EQ(kNewSelfAddress.host(), new_writer.last_write_source_address());
+
+  EXPECT_EQ(0u, writer_->packets_write_attempts());
+  //  Regardless of the write error, the connection should still be connected.
+  EXPECT_TRUE(connection_.connected());
+}
+
+// Tests that write error while sending PATH_CHALLANGE from the default socket
+// should close the connection.
+TEST_P(QuicConnectionTest, SendPathChallengeFailOnDefaultPath) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.use_path_validator()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+
+  writer_->SetShouldWriteFail();
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(
+          Invoke([](QuicConnectionCloseFrame frame, ConnectionCloseSource) {
+            EXPECT_EQ(QUIC_PACKET_WRITE_ERROR, frame.quic_error_code);
+          }));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u);
+  {
+    // Add a flusher to force flush, otherwise the frames will remain in the
+    // packet creator.
+    bool success = false;
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    connection_.ValidatePath(std::make_unique<TestQuicPathValidationContext>(
+                                 connection_.self_address(),
+                                 connection_.peer_address(), writer_.get()),
+                             std::make_unique<TestValidationResultDelegate>(
+                                 &connection_, connection_.self_address(),
+                                 connection_.peer_address(), &success));
+  }
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+  EXPECT_EQ(1u, writer_->padding_frames().size());
+  EXPECT_EQ(connection_.peer_address(), writer_->last_write_peer_address());
+  EXPECT_FALSE(connection_.connected());
+  // Closing connection should abandon ongoing path validation.
+  EXPECT_FALSE(connection_.HasPendingPathValidation());
+}
+
+TEST_P(QuicConnectionTest, SendPathChallengeFailOnAlternativePeerAddress) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.use_path_validator()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+
+  writer_->SetShouldWriteFail();
+  const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Any4(), 12345);
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(
+          Invoke([](QuicConnectionCloseFrame frame, ConnectionCloseSource) {
+            EXPECT_EQ(QUIC_PACKET_WRITE_ERROR, frame.quic_error_code);
+          }));
+  // Sending PATH_CHALLENGE to trigger a flush write which will fail and close
+  // the connection.
+  bool success = false;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          connection_.self_address(), kNewPeerAddress, writer_.get()),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, connection_.self_address(), kNewPeerAddress, &success));
+
+  EXPECT_EQ(1u, writer_->packets_write_attempts());
+  EXPECT_FALSE(connection_.HasPendingPathValidation());
+  EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+  EXPECT_EQ(1u, writer_->padding_frames().size());
+  EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+  EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest,
+       SendPathChallengeFailPacketTooBigOnAlternativePeerAddress) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.use_path_validator()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  // Make sure there is no outstanding ACK_FRAME to write.
+  connection_.OnCanWrite();
+  uint32_t num_packets_write_attempts = writer_->packets_write_attempts();
+
+  writer_->SetShouldWriteFail();
+  writer_->SetWriteError(*writer_->MessageTooBigErrorCode());
+  const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Any4(), 12345);
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .Times(0u);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0u);
+  // Sending PATH_CHALLENGE to trigger a flush write which will fail with
+  // MSG_TOO_BIG.
+  bool success = false;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          connection_.self_address(), kNewPeerAddress, writer_.get()),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, connection_.self_address(), kNewPeerAddress, &success));
+  EXPECT_TRUE(connection_.HasPendingPathValidation());
+  // Connection shouldn't be closed.
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_EQ(++num_packets_write_attempts, writer_->packets_write_attempts());
+  EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+  EXPECT_EQ(1u, writer_->padding_frames().size());
+  EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+}
+
+// Check that if there are two PATH_CHALLENGE frames in the packet, the latter
+// one is ignored.
+TEST_P(QuicConnectionTest, ReceiveMultiplePathChallenge) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_SERVER);
+
+  QuicPathFrameBuffer path_frame_buffer1{0, 1, 2, 3, 4, 5, 6, 7};
+  QuicPathFrameBuffer path_frame_buffer2{8, 9, 10, 11, 12, 13, 14, 15};
+  QuicFrames frames;
+  frames.push_back(
+      QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer1)));
+  frames.push_back(
+      QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer2)));
+  const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback6(),
+                                          /*port=*/23456);
+
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+
+  // Expect 2 packets to be sent: the first are padded PATH_RESPONSE(s) to the
+  // alternative peer address. The 2nd is a ACK-only packet to the original
+  // peer address.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(2)
+      .WillOnce(Invoke([=]() {
+        EXPECT_EQ(1u, writer_->path_response_frames().size());
+        // The final check is to ensure that the random data in the response
+        // matches the random data from the challenge.
+        EXPECT_EQ(0,
+                  memcmp(path_frame_buffer1.data(),
+                         &(writer_->path_response_frames().front().data_buffer),
+                         sizeof(path_frame_buffer1)));
+        EXPECT_EQ(1u, writer_->padding_frames().size());
+        EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+      }))
+      .WillOnce(Invoke([=]() {
+        // The last write of ACK-only packet should still use the old peer
+        // address.
+        EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address());
+      }));
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+}
+
+TEST_P(QuicConnectionTest, ReceiveStreamFrameBeforePathChallenge) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_SERVER);
+
+  QuicFrames frames;
+  frames.push_back(QuicFrame(frame1_));
+  QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7};
+  frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer)));
+  const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(),
+                                          /*port=*/23456);
+
+  EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE));
+  EXPECT_CALL(*send_algorithm_, OnConnectionMigration())
+      .Times(connection_.validate_client_address() ? 0u : 1u);
+  EXPECT_CALL(visitor_, OnStreamFrame(_))
+      .WillOnce(Invoke([=](const QuicStreamFrame& frame) {
+        // Send some data on the stream. The STREAM_FRAME should be built into
+        // one packet together with the latter PATH_RESPONSE and PATH_CHALLENGE.
+        const std::string data{"response body"};
+        connection_.producer()->SaveStreamData(frame.stream_id, data);
+        return notifier_.WriteOrBufferData(frame.stream_id, data.length(),
+                                           NO_FIN);
+      }));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(connection_.validate_client_address() ? 0u : 1u);
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+
+  // Verify that this packet contains a STREAM_FRAME and a
+  // PATH_RESPONSE_FRAME.
+  EXPECT_EQ(1u, writer_->stream_frames().size());
+  EXPECT_EQ(1u, writer_->path_response_frames().size());
+  EXPECT_EQ(connection_.validate_client_address() ? 1u : 0u,
+            writer_->path_challenge_frames().size());
+  // The final check is to ensure that the random data in the response
+  // matches the random data from the challenge.
+  EXPECT_EQ(0, memcmp(path_frame_buffer.data(),
+                      &(writer_->path_response_frames().front().data_buffer),
+                      sizeof(path_frame_buffer)));
+  EXPECT_EQ(connection_.validate_client_address() ? 1u : 0u,
+            writer_->path_challenge_frames().size());
+  EXPECT_EQ(1u, writer_->padding_frames().size());
+  EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+  if (connection_.validate_client_address()) {
+    EXPECT_TRUE(connection_.HasPendingPathValidation());
+  }
+}
+
+TEST_P(QuicConnectionTest, ReceiveStreamFrameFollowingPathChallenge) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_SERVER);
+
+  QuicFrames frames;
+  QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7};
+  frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer)));
+  // PATH_RESPONSE should be flushed out before the rest packet is parsed.
+  frames.push_back(QuicFrame(frame1_));
+  const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(),
+                                          /*port=*/23456);
+  QuicByteCount received_packet_size;
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(AtLeast(1u))
+      .WillOnce(Invoke([=, &received_packet_size]() {
+        // Verify that this packet contains a PATH_RESPONSE_FRAME.
+        EXPECT_EQ(0u, writer_->stream_frames().size());
+        EXPECT_EQ(1u, writer_->path_response_frames().size());
+        // The final check is to ensure that the random data in the response
+        // matches the random data from the challenge.
+        EXPECT_EQ(0,
+                  memcmp(path_frame_buffer.data(),
+                         &(writer_->path_response_frames().front().data_buffer),
+                         sizeof(path_frame_buffer)));
+        EXPECT_EQ(connection_.validate_client_address() ? 1u : 0u,
+                  writer_->path_challenge_frames().size());
+        EXPECT_EQ(1u, writer_->padding_frames().size());
+        EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+        received_packet_size =
+            QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_);
+      }));
+  EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE));
+  EXPECT_CALL(*send_algorithm_, OnConnectionMigration())
+      .Times(connection_.validate_client_address() ? 0u : 1u);
+  EXPECT_CALL(visitor_, OnStreamFrame(_))
+      .WillOnce(Invoke([=](const QuicStreamFrame& frame) {
+        // Send some data on the stream. The STREAM_FRAME should be built into a
+        // new packet but throttled by anti-amplifciation limit.
+        const std::string data{"response body"};
+        connection_.producer()->SaveStreamData(frame.stream_id, data);
+        return notifier_.WriteOrBufferData(frame.stream_id, data.length(),
+                                           NO_FIN);
+      }));
+
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  if (!connection_.validate_client_address()) {
+    return;
+  }
+  EXPECT_TRUE(connection_.HasPendingPathValidation());
+  EXPECT_EQ(0u,
+            QuicConnectionPeer::BytesReceivedOnAlternativePath(&connection_));
+  EXPECT_EQ(
+      received_packet_size,
+      QuicConnectionPeer::BytesReceivedBeforeAddressValidation(&connection_));
+}
+
+// Tests that a PATH_CHALLENGE is received in between other frames in an out of
+// order packet.
+TEST_P(QuicConnectionTest, PathChallengeWithDataInOutOfOrderPacket) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_SERVER);
+
+  QuicFrames frames;
+  frames.push_back(QuicFrame(frame1_));
+  QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7};
+  frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer)));
+  frames.push_back(QuicFrame(frame2_));
+  const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback6(),
+                                          /*port=*/23456);
+
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0u);
+  EXPECT_CALL(visitor_, OnStreamFrame(_))
+      .Times(2)
+      .WillRepeatedly(Invoke([=](const QuicStreamFrame& frame) {
+        // Send some data on the stream. The STREAM_FRAME should be built into
+        // one packet together with the latter PATH_RESPONSE.
+        const std::string data{"response body"};
+        connection_.producer()->SaveStreamData(frame.stream_id, data);
+        return notifier_.WriteOrBufferData(frame.stream_id, data.length(),
+                                           NO_FIN);
+      }));
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(Invoke([=]() {
+        // Verify that this packet contains a STREAM_FRAME and is sent to the
+        // original peer address.
+        EXPECT_EQ(1u, writer_->stream_frames().size());
+        // No connection migration should happen because the packet is received
+        // out of order.
+        EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address());
+      }))
+      .WillOnce(Invoke([=]() {
+        EXPECT_EQ(1u, writer_->path_response_frames().size());
+        // The final check is to ensure that the random data in the response
+        // matches the random data from the challenge.
+        EXPECT_EQ(0,
+                  memcmp(path_frame_buffer.data(),
+                         &(writer_->path_response_frames().front().data_buffer),
+                         sizeof(path_frame_buffer)));
+        EXPECT_EQ(1u, writer_->padding_frames().size());
+        // PATH_RESPONSE should be sent in another packet to a different peer
+        // address.
+        EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+      }))
+      .WillOnce(Invoke([=]() {
+        // Verify that this packet contains a STREAM_FRAME and is sent to the
+        // original peer address.
+        EXPECT_EQ(1u, writer_->stream_frames().size());
+        // No connection migration should happen because the packet is received
+        // out of order.
+        EXPECT_EQ(kPeerAddress, writer_->last_write_peer_address());
+      }));
+  // Lower the packet number so that receiving this packet shouldn't trigger
+  // peer migration.
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1);
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+}
+
+// Tests that a PATH_CHALLENGE is cached if its PATH_RESPONSE can't be sent.
+TEST_P(QuicConnectionTest, FailToWritePathResponse) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version)) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_SERVER);
+
+  QuicFrames frames;
+  QuicPathFrameBuffer path_frame_buffer{0, 1, 2, 3, 4, 5, 6, 7};
+  frames.push_back(QuicFrame(new QuicPathChallengeFrame(0, path_frame_buffer)));
+  const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback6(),
+                                          /*port=*/23456);
+
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0u);
+  // Lower the packet number so that receiving this packet shouldn't trigger
+  // peer migration.
+  QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1);
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+  writer_->SetWriteBlocked();
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+}
+
+// Regression test for b/168101557.
+TEST_P(QuicConnectionTest, HandshakeDataDoesNotGetPtoed) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  }
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  // Send INITIAL 1.
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  // Send HANDSHAKE packets.
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x03));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  // Send half RTT packet.
+  connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+
+  // Receives HANDSHAKE 1.
+  peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                            std::make_unique<TaggingEncrypter>(0x02));
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_HANDSHAKE);
+  // Discard INITIAL key.
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.NeuterUnencryptedPackets();
+  // Verify there is pending ACK.
+  ASSERT_TRUE(connection_.HasPendingAcks());
+  // Set the send alarm.
+  connection_.GetSendAlarm()->Set(clock_.ApproximateNow());
+
+  // Fire ACK alarm.
+  connection_.GetAckAlarm()->Fire();
+  // Verify 1-RTT packet is coalesced with handshake packet.
+  EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
+  connection_.GetSendAlarm()->Fire();
+
+  ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  connection_.GetRetransmissionAlarm()->Fire();
+  // Verify a handshake packet gets PTOed and 1-RTT packet gets coalesced.
+  EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
+}
+
+// Regression test for b/168294218.
+TEST_P(QuicConnectionTest, CoalescerHandlesInitialKeyDiscard) {
+  if (!connection_.version().CanSendCoalescedPackets()) {
+    return;
+  }
+  SetQuicReloadableFlag(quic_discard_initial_packet_with_key_dropped, true);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() {
+    connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+    connection_.NeuterUnencryptedPackets();
+  }));
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+
+  EXPECT_EQ(0u, connection_.GetStats().packets_discarded);
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    use_tagging_decrypter();
+    ProcessCryptoPacketAtLevel(1000, ENCRYPTION_INITIAL);
+    clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1));
+    connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                             std::make_unique<TaggingEncrypter>(0x01));
+    connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                             std::make_unique<TaggingEncrypter>(0x02));
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+    connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0);
+    // Verify this packet is on hold.
+    EXPECT_EQ(0u, writer_->packets_write_attempts());
+  }
+  EXPECT_TRUE(connection_.connected());
+}
+
+// Regresstion test for b/168294218
+TEST_P(QuicConnectionTest, ZeroRttRejectionAndMissingInitialKeys) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  // Not defer send in response to packet.
+  connection_.set_defer_send_in_response_to_packets(false);
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).WillOnce(Invoke([this]() {
+    connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+    connection_.NeuterUnencryptedPackets();
+  }));
+  EXPECT_CALL(visitor_, OnCryptoFrame(_))
+      .WillRepeatedly(Invoke([=](const QuicCryptoFrame& frame) {
+        if (frame.level == ENCRYPTION_HANDSHAKE) {
+          // 0-RTT gets rejected.
+          connection_.MarkZeroRttPacketsForRetransmission(0);
+          // Send Crypto data.
+          connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                                   std::make_unique<TaggingEncrypter>(0x03));
+          connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+          connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+          connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                                   std::make_unique<TaggingEncrypter>(0x04));
+          connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+          // Advance INITIAL ack delay to trigger initial ACK to be sent AFTER
+          // the retransmission of rejected 0-RTT packets while the HANDSHAKE
+          // packet is still in the coalescer, such that the INITIAL key gets
+          // dropped between SendAllPendingAcks and actually send the ack frame,
+          // bummer.
+          clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1));
+        }
+      }));
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+  // Send 0-RTT packet.
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+  connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+
+  QuicAckFrame frame1 = InitAckFrame(1);
+  // Received ACK for packet 1.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Fire retransmission alarm.
+  connection_.GetRetransmissionAlarm()->Fire();
+
+  QuicFrames frames1;
+  frames1.push_back(QuicFrame(&crypto_frame_));
+  QuicFrames frames2;
+  QuicCryptoFrame crypto_frame(ENCRYPTION_HANDSHAKE, 0,
+                               absl::string_view(data1));
+  frames2.push_back(QuicFrame(&crypto_frame));
+  ProcessCoalescedPacket(
+      {{2, frames1, ENCRYPTION_INITIAL}, {3, frames2, ENCRYPTION_HANDSHAKE}});
+}
+
+TEST_P(QuicConnectionTest, OnZeroRttPacketAcked) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+  MockQuicConnectionDebugVisitor debug_visitor;
+  connection_.set_debug_visitor(&debug_visitor);
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SendCryptoStreamData();
+  // Send 0-RTT packet.
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+  connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+  connection_.SendStreamDataWithString(4, "bar", 0, NO_FIN);
+  // Received ACK for packet 1, HANDSHAKE packet and 1-RTT ACK.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _))
+      .Times(AnyNumber());
+  QuicFrames frames1;
+  QuicAckFrame ack_frame1 = InitAckFrame(1);
+  frames1.push_back(QuicFrame(&ack_frame1));
+
+  QuicFrames frames2;
+  QuicCryptoFrame crypto_frame(ENCRYPTION_HANDSHAKE, 0,
+                               absl::string_view(data1));
+  frames2.push_back(QuicFrame(&crypto_frame));
+  EXPECT_CALL(debug_visitor, OnZeroRttPacketAcked()).Times(0);
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(1);
+  ProcessCoalescedPacket(
+      {{1, frames1, ENCRYPTION_INITIAL}, {2, frames2, ENCRYPTION_HANDSHAKE}});
+
+  QuicFrames frames3;
+  QuicAckFrame ack_frame2 =
+      InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+  frames3.push_back(QuicFrame(&ack_frame2));
+  EXPECT_CALL(debug_visitor, OnZeroRttPacketAcked()).Times(1);
+  ProcessCoalescedPacket({{3, frames3, ENCRYPTION_FORWARD_SECURE}});
+
+  QuicFrames frames4;
+  QuicAckFrame ack_frame3 =
+      InitAckFrame({{QuicPacketNumber(3), QuicPacketNumber(4)}});
+  frames4.push_back(QuicFrame(&ack_frame3));
+  EXPECT_CALL(debug_visitor, OnZeroRttPacketAcked()).Times(0);
+  ProcessCoalescedPacket({{4, frames4, ENCRYPTION_FORWARD_SECURE}});
+}
+
+TEST_P(QuicConnectionTest, InitiateKeyUpdate) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+
+  TransportParameters params;
+  QuicConfig config;
+  std::string error_details;
+  EXPECT_THAT(config.ProcessTransportParameters(
+                  params, /* is_resumption = */ false, &error_details),
+              IsQuicNoError());
+  QuicConfigPeer::SetNegotiated(&config, true);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+
+  EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+
+  MockFramerVisitor peer_framer_visitor_;
+  peer_framer_.set_visitor(&peer_framer_visitor_);
+
+  use_tagging_decrypter();
+
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+               std::make_unique<StrictTaggingDecrypter>(0x01));
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  connection_.OnHandshakeComplete();
+
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(0x01));
+
+  // Key update should still not be allowed, since no packet has been acked
+  // from the current key phase.
+  EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+  EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+  // Send packet 1.
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+  EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+
+  // Key update should still not be allowed, even though a packet was sent in
+  // the current key phase it hasn't been acked yet.
+  EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+  EXPECT_TRUE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+  EXPECT_FALSE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+  // Receive ack for packet 1.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame1 = InitAckFrame(1);
+  ProcessAckPacket(&frame1);
+
+  // OnDecryptedFirstPacketInKeyPhase is called even on the first key phase,
+  // so discard_previous_keys_alarm_ should be set now.
+  EXPECT_TRUE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+  EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+  // Key update should now be allowed.
+  EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter())
+      .WillOnce(
+          []() { return std::make_unique<StrictTaggingDecrypter>(0x02); });
+  EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() {
+    return std::make_unique<TaggingEncrypter>(0x02);
+  });
+  EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests));
+  EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests));
+  // discard_previous_keys_alarm_ should not be set until a packet from the new
+  // key phase has been received. (The alarm that was set above should be
+  // cleared if it hasn't fired before the next key update happened.)
+  EXPECT_FALSE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+  EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+  // Pretend that peer accepts the key update.
+  EXPECT_CALL(peer_framer_visitor_,
+              AdvanceKeysAndCreateCurrentOneRttDecrypter())
+      .WillOnce(
+          []() { return std::make_unique<StrictTaggingDecrypter>(0x02); });
+  EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter())
+      .WillOnce([]() { return std::make_unique<TaggingEncrypter>(0x02); });
+  peer_framer_.SetKeyUpdateSupportForConnection(true);
+  peer_framer_.DoKeyUpdate(KeyUpdateReason::kRemote);
+
+  // Another key update should not be allowed yet.
+  EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+
+  // Send packet 2.
+  SendStreamDataToPeer(2, "bar", 0, NO_FIN, &last_packet);
+  EXPECT_EQ(QuicPacketNumber(2u), last_packet);
+  EXPECT_TRUE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+  // Receive ack for packet 2.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame2 = InitAckFrame(2);
+  ProcessAckPacket(&frame2);
+  EXPECT_TRUE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+  EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+  // Key update should be allowed again now that a packet has been acked from
+  // the current key phase.
+  EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter())
+      .WillOnce(
+          []() { return std::make_unique<StrictTaggingDecrypter>(0x03); });
+  EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() {
+    return std::make_unique<TaggingEncrypter>(0x03);
+  });
+  EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests));
+  EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests));
+
+  // Pretend that peer accepts the key update.
+  EXPECT_CALL(peer_framer_visitor_,
+              AdvanceKeysAndCreateCurrentOneRttDecrypter())
+      .WillOnce(
+          []() { return std::make_unique<StrictTaggingDecrypter>(0x03); });
+  EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter())
+      .WillOnce([]() { return std::make_unique<TaggingEncrypter>(0x03); });
+  peer_framer_.DoKeyUpdate(KeyUpdateReason::kRemote);
+
+  // Another key update should not be allowed yet.
+  EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+
+  // Send packet 3.
+  SendStreamDataToPeer(3, "baz", 0, NO_FIN, &last_packet);
+  EXPECT_EQ(QuicPacketNumber(3u), last_packet);
+
+  // Another key update should not be allowed yet.
+  EXPECT_FALSE(connection_.IsKeyUpdateAllowed());
+  EXPECT_TRUE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+  // Receive ack for packet 3.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame3 = InitAckFrame(3);
+  ProcessAckPacket(&frame3);
+  EXPECT_TRUE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+  EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+
+  // Key update should be allowed now.
+  EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter())
+      .WillOnce(
+          []() { return std::make_unique<StrictTaggingDecrypter>(0x04); });
+  EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() {
+    return std::make_unique<TaggingEncrypter>(0x04);
+  });
+  EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests));
+  EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests));
+  EXPECT_FALSE(connection_.GetDiscardPreviousOneRttKeysAlarm()->IsSet());
+  EXPECT_FALSE(connection_.HaveSentPacketsInCurrentKeyPhaseButNoneAcked());
+}
+
+TEST_P(QuicConnectionTest, InitiateKeyUpdateApproachingConfidentialityLimit) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+
+  SetQuicFlag(FLAGS_quic_key_update_confidentiality_limit, 3U);
+
+  std::string error_details;
+  TransportParameters params;
+  // Key update is enabled.
+  QuicConfig config;
+  EXPECT_THAT(config.ProcessTransportParameters(
+                  params, /* is_resumption = */ false, &error_details),
+              IsQuicNoError());
+  QuicConfigPeer::SetNegotiated(&config, true);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+
+  MockFramerVisitor peer_framer_visitor_;
+  peer_framer_.set_visitor(&peer_framer_visitor_);
+
+  use_tagging_decrypter();
+
+  uint8_t current_tag = 0x01;
+
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(current_tag));
+  SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+               std::make_unique<StrictTaggingDecrypter>(current_tag));
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  connection_.OnHandshakeComplete();
+
+  peer_framer_.SetKeyUpdateSupportForConnection(true);
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(current_tag));
+
+  const QuicConnectionStats& stats = connection_.GetStats();
+
+  for (int packet_num = 1; packet_num <= 8; ++packet_num) {
+    if (packet_num == 3 || packet_num == 6) {
+      current_tag++;
+      EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter())
+          .WillOnce([current_tag]() {
+            return std::make_unique<StrictTaggingDecrypter>(current_tag);
+          });
+      EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter())
+          .WillOnce([current_tag]() {
+            return std::make_unique<TaggingEncrypter>(current_tag);
+          });
+      EXPECT_CALL(visitor_,
+                  OnKeyUpdate(KeyUpdateReason::kLocalKeyUpdateLimitOverride));
+    }
+    // Send packet.
+    QuicPacketNumber last_packet;
+    SendStreamDataToPeer(packet_num, "foo", 0, NO_FIN, &last_packet);
+    EXPECT_EQ(QuicPacketNumber(packet_num), last_packet);
+    if (packet_num >= 6) {
+      EXPECT_EQ(2U, stats.key_update_count);
+    } else if (packet_num >= 3) {
+      EXPECT_EQ(1U, stats.key_update_count);
+    } else {
+      EXPECT_EQ(0U, stats.key_update_count);
+    }
+
+    if (packet_num == 4 || packet_num == 7) {
+      // Pretend that peer accepts the key update.
+      EXPECT_CALL(peer_framer_visitor_,
+                  AdvanceKeysAndCreateCurrentOneRttDecrypter())
+          .WillOnce([current_tag]() {
+            return std::make_unique<StrictTaggingDecrypter>(current_tag);
+          });
+      EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter())
+          .WillOnce([current_tag]() {
+            return std::make_unique<TaggingEncrypter>(current_tag);
+          });
+      peer_framer_.DoKeyUpdate(KeyUpdateReason::kRemote);
+    }
+    // Receive ack for packet.
+    EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+    QuicAckFrame frame1 = InitAckFrame(packet_num);
+    ProcessAckPacket(&frame1);
+  }
+}
+
+TEST_P(QuicConnectionTest,
+       CloseConnectionOnConfidentialityLimitKeyUpdateNotAllowed) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+
+  // Set key update confidentiality limit to 1 packet.
+  SetQuicFlag(FLAGS_quic_key_update_confidentiality_limit, 1U);
+  // Use confidentiality limit for connection close of 3 packets.
+  constexpr size_t kConfidentialityLimit = 3U;
+
+  std::string error_details;
+  TransportParameters params;
+  // Key update is enabled.
+  QuicConfig config;
+  EXPECT_THAT(config.ProcessTransportParameters(
+                  params, /* is_resumption = */ false, &error_details),
+              IsQuicNoError());
+  QuicConfigPeer::SetNegotiated(&config, true);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  connection_.SetEncrypter(
+      ENCRYPTION_FORWARD_SECURE,
+      std::make_unique<NullEncrypterWithConfidentialityLimit>(
+          Perspective::IS_CLIENT, kConfidentialityLimit));
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  connection_.OnHandshakeComplete();
+
+  QuicPacketNumber last_packet;
+  // Send 3 packets without receiving acks for any of them. Key update will not
+  // be allowed, so the confidentiality limit should be reached, forcing the
+  // connection to be closed.
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+  EXPECT_TRUE(connection_.connected());
+  SendStreamDataToPeer(2, "foo", 0, NO_FIN, &last_packet);
+  EXPECT_TRUE(connection_.connected());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet);
+  EXPECT_FALSE(connection_.connected());
+  const QuicConnectionStats& stats = connection_.GetStats();
+  EXPECT_EQ(0U, stats.key_update_count);
+  TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOnIntegrityLimitDuringHandshake) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+
+  constexpr uint8_t correct_tag = 0x01;
+  constexpr uint8_t wrong_tag = 0xFE;
+  constexpr QuicPacketCount kIntegrityLimit = 3;
+
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+                   correct_tag, kIntegrityLimit));
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(correct_tag));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                            std::make_unique<TaggingEncrypter>(wrong_tag));
+  for (uint64_t i = 1; i <= kIntegrityLimit; ++i) {
+    EXPECT_TRUE(connection_.connected());
+    if (i == kIntegrityLimit) {
+      EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+      EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(AnyNumber());
+    }
+    ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+    EXPECT_EQ(
+        i, connection_.GetStats().num_failed_authentication_packets_received);
+  }
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED);
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOnIntegrityLimitAfterHandshake) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+
+  constexpr uint8_t correct_tag = 0x01;
+  constexpr uint8_t wrong_tag = 0xFE;
+  constexpr QuicPacketCount kIntegrityLimit = 3;
+
+  use_tagging_decrypter();
+  SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+               std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+                   correct_tag, kIntegrityLimit));
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(correct_tag));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  connection_.OnHandshakeComplete();
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(wrong_tag));
+  for (uint64_t i = 1; i <= kIntegrityLimit; ++i) {
+    EXPECT_TRUE(connection_.connected());
+    if (i == kIntegrityLimit) {
+      EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+    }
+    ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+    EXPECT_EQ(
+        i, connection_.GetStats().num_failed_authentication_packets_received);
+  }
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED);
+}
+
+TEST_P(QuicConnectionTest,
+       CloseConnectionOnIntegrityLimitAcrossEncryptionLevels) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+
+  constexpr uint8_t correct_tag = 0x01;
+  constexpr uint8_t wrong_tag = 0xFE;
+  constexpr QuicPacketCount kIntegrityLimit = 4;
+
+  use_tagging_decrypter();
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+                   correct_tag, kIntegrityLimit));
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(correct_tag));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                            std::make_unique<TaggingEncrypter>(wrong_tag));
+  for (uint64_t i = 1; i <= 2; ++i) {
+    EXPECT_TRUE(connection_.connected());
+    ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+    EXPECT_EQ(
+        i, connection_.GetStats().num_failed_authentication_packets_received);
+  }
+
+  SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+               std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+                   correct_tag, kIntegrityLimit));
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(correct_tag));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  connection_.OnHandshakeComplete();
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.RemoveEncrypter(ENCRYPTION_HANDSHAKE);
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(wrong_tag));
+  for (uint64_t i = 3; i <= kIntegrityLimit; ++i) {
+    EXPECT_TRUE(connection_.connected());
+    if (i == kIntegrityLimit) {
+      EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+    }
+    ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+    EXPECT_EQ(
+        i, connection_.GetStats().num_failed_authentication_packets_received);
+  }
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED);
+}
+
+TEST_P(QuicConnectionTest, IntegrityLimitDoesNotApplyWithoutDecryptionKey) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+
+  constexpr uint8_t correct_tag = 0x01;
+  constexpr uint8_t wrong_tag = 0xFE;
+  constexpr QuicPacketCount kIntegrityLimit = 3;
+
+  use_tagging_decrypter();
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+                   correct_tag, kIntegrityLimit));
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(correct_tag));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE);
+
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(wrong_tag));
+  for (uint64_t i = 1; i <= kIntegrityLimit * 2; ++i) {
+    EXPECT_TRUE(connection_.connected());
+    ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+    EXPECT_EQ(
+        0u, connection_.GetStats().num_failed_authentication_packets_received);
+  }
+  EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOnIntegrityLimitAcrossKeyPhases) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+
+  constexpr QuicPacketCount kIntegrityLimit = 4;
+
+  TransportParameters params;
+  QuicConfig config;
+  std::string error_details;
+  EXPECT_THAT(config.ProcessTransportParameters(
+                  params, /* is_resumption = */ false, &error_details),
+              IsQuicNoError());
+  QuicConfigPeer::SetNegotiated(&config, true);
+  if (connection_.version().UsesTls()) {
+    QuicConfigPeer::SetReceivedOriginalConnectionId(
+        &config, connection_.connection_id());
+    QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+        &config, connection_.connection_id());
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+
+  MockFramerVisitor peer_framer_visitor_;
+  peer_framer_.set_visitor(&peer_framer_visitor_);
+
+  use_tagging_decrypter();
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+               std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+                   0x01, kIntegrityLimit));
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  connection_.OnHandshakeComplete();
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(0xFF));
+  for (uint64_t i = 1; i <= 2; ++i) {
+    EXPECT_TRUE(connection_.connected());
+    ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+    EXPECT_EQ(
+        i, connection_.GetStats().num_failed_authentication_packets_received);
+  }
+
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(0x01));
+  // Send packet 1.
+  QuicPacketNumber last_packet;
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+  EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+  // Receive ack for packet 1.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame1 = InitAckFrame(1);
+  ProcessAckPacket(&frame1);
+  // Key update should now be allowed, initiate it.
+  EXPECT_CALL(visitor_, AdvanceKeysAndCreateCurrentOneRttDecrypter())
+      .WillOnce([kIntegrityLimit]() {
+        return std::make_unique<StrictTaggingDecrypterWithIntegrityLimit>(
+            0x02, kIntegrityLimit);
+      });
+  EXPECT_CALL(visitor_, CreateCurrentOneRttEncrypter()).WillOnce([]() {
+    return std::make_unique<TaggingEncrypter>(0x02);
+  });
+  EXPECT_CALL(visitor_, OnKeyUpdate(KeyUpdateReason::kLocalForTests));
+  EXPECT_TRUE(connection_.InitiateKeyUpdate(KeyUpdateReason::kLocalForTests));
+
+  // Pretend that peer accepts the key update.
+  EXPECT_CALL(peer_framer_visitor_,
+              AdvanceKeysAndCreateCurrentOneRttDecrypter())
+      .WillOnce(
+          []() { return std::make_unique<StrictTaggingDecrypter>(0x02); });
+  EXPECT_CALL(peer_framer_visitor_, CreateCurrentOneRttEncrypter())
+      .WillOnce([]() { return std::make_unique<TaggingEncrypter>(0x02); });
+  peer_framer_.SetKeyUpdateSupportForConnection(true);
+  peer_framer_.DoKeyUpdate(KeyUpdateReason::kLocalForTests);
+
+  // Send packet 2.
+  SendStreamDataToPeer(2, "bar", 0, NO_FIN, &last_packet);
+  EXPECT_EQ(QuicPacketNumber(2u), last_packet);
+  // Receive ack for packet 2.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+  QuicAckFrame frame2 = InitAckFrame(2);
+  ProcessAckPacket(&frame2);
+
+  EXPECT_EQ(2u,
+            connection_.GetStats().num_failed_authentication_packets_received);
+
+  // Do two more undecryptable packets. Integrity limit should be reached.
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(0xFF));
+  for (uint64_t i = 3; i <= kIntegrityLimit; ++i) {
+    EXPECT_TRUE(connection_.connected());
+    if (i == kIntegrityLimit) {
+      EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+    }
+    ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+    EXPECT_EQ(
+        i, connection_.GetStats().num_failed_authentication_packets_received);
+  }
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(QUIC_AEAD_LIMIT_REACHED);
+}
+
+TEST_P(QuicConnectionTest, SendAckFrequencyFrame) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  SetQuicReloadableFlag(quic_can_send_ack_frequency, true);
+  set_perspective(Perspective::IS_SERVER);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _))
+      .Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+
+  QuicConfig config;
+  QuicConfigPeer::SetReceivedMinAckDelayMs(&config, /*min_ack_delay_ms=*/1);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  QuicConnectionPeer::SetAddressValidated(&connection_);
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+
+  connection_.OnHandshakeComplete();
+
+  writer_->SetWritable();
+  QuicPacketCreatorPeer::SetPacketNumber(creator_, 99);
+  // Send packet 100
+  SendStreamDataToPeer(/*id=*/1, "foo", /*offset=*/0, NO_FIN, nullptr);
+
+  QuicAckFrequencyFrame captured_frame;
+  EXPECT_CALL(visitor_, SendAckFrequency(_))
+      .WillOnce(Invoke([&captured_frame](const QuicAckFrequencyFrame& frame) {
+        captured_frame = frame;
+      }));
+  // Send packet 101.
+  SendStreamDataToPeer(/*id=*/1, "bar", /*offset=*/3, NO_FIN, nullptr);
+
+  EXPECT_EQ(captured_frame.packet_tolerance, 10u);
+  EXPECT_EQ(captured_frame.max_ack_delay,
+            QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs));
+
+  // Sending packet 102 does not trigger sending another AckFrequencyFrame.
+  SendStreamDataToPeer(/*id=*/1, "baz", /*offset=*/6, NO_FIN, nullptr);
+}
+
+TEST_P(QuicConnectionTest, SendAckFrequencyFrameUponHandshakeCompletion) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  SetQuicReloadableFlag(quic_can_send_ack_frequency, true);
+  set_perspective(Perspective::IS_SERVER);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _))
+      .Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+
+  QuicConfig config;
+  QuicConfigPeer::SetReceivedMinAckDelayMs(&config, /*min_ack_delay_ms=*/1);
+  QuicTagVector quic_tag_vector;
+  // Enable sending AckFrequency upon handshake completion.
+  quic_tag_vector.push_back(kAFF2);
+  QuicConfigPeer::SetReceivedConnectionOptions(&config, quic_tag_vector);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  QuicConnectionPeer::SetAddressValidated(&connection_);
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  peer_creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE);
+
+  QuicAckFrequencyFrame captured_frame;
+  EXPECT_CALL(visitor_, SendAckFrequency(_))
+      .WillOnce(Invoke([&captured_frame](const QuicAckFrequencyFrame& frame) {
+        captured_frame = frame;
+      }));
+
+  connection_.OnHandshakeComplete();
+
+  EXPECT_EQ(captured_frame.packet_tolerance, 2u);
+  EXPECT_EQ(captured_frame.max_ack_delay,
+            QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs));
+}
+
+TEST_P(QuicConnectionTest, FastRecoveryOfLostServerHello) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  connection_.SendCryptoStreamData();
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+
+  // Assume ServerHello gets lost.
+  peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                            std::make_unique<TaggingEncrypter>(0x02));
+  ProcessCryptoPacketAtLevel(2, ENCRYPTION_HANDSHAKE);
+  ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  // Shorten PTO for fast recovery from lost ServerHello.
+  EXPECT_EQ(clock_.ApproximateNow() + kAlarmGranularity,
+            connection_.GetRetransmissionAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, ServerHelloGetsReordered) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  connection_.SetFromConfig(config);
+  EXPECT_CALL(visitor_, OnCryptoFrame(_))
+      .WillRepeatedly(Invoke([=](const QuicCryptoFrame& frame) {
+        if (frame.level == ENCRYPTION_INITIAL) {
+          // Install handshake read keys.
+          SetDecrypter(ENCRYPTION_HANDSHAKE,
+                       std::make_unique<StrictTaggingDecrypter>(0x02));
+          connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                                   std::make_unique<TaggingEncrypter>(0x02));
+          connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+        }
+      }));
+
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  connection_.SendCryptoStreamData();
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+
+  // Assume ServerHello gets reordered.
+  peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                            std::make_unique<TaggingEncrypter>(0x02));
+  ProcessCryptoPacketAtLevel(2, ENCRYPTION_HANDSHAKE);
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+  // Verify fast recovery is not enabled.
+  EXPECT_EQ(connection_.sent_packet_manager().GetRetransmissionTime(),
+            connection_.GetRetransmissionAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, MigratePath) {
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+  EXPECT_CALL(visitor_, OnPathDegrading());
+  connection_.OnPathDegradingDetected();
+  const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+  EXPECT_NE(kNewSelfAddress, connection_.self_address());
+
+  // Buffer a packet.
+  EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+  writer_->SetWriteBlocked();
+  connection_.SendMtuDiscoveryPacket(kMaxOutgoingPacketSize);
+  EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  EXPECT_CALL(visitor_, OnForwardProgressMadeAfterPathDegrading());
+  connection_.MigratePath(kNewSelfAddress, connection_.peer_address(),
+                          &new_writer, /*owns_writer=*/false);
+
+  EXPECT_EQ(kNewSelfAddress, connection_.self_address());
+  EXPECT_EQ(&new_writer, QuicConnectionPeer::GetWriter(&connection_));
+  EXPECT_FALSE(connection_.IsPathDegrading());
+  // Buffered packet on the old path should be discarded.
+  if (connection_.connection_migration_use_new_cid()) {
+    EXPECT_EQ(0u, connection_.NumQueuedPackets());
+  } else {
+    EXPECT_EQ(1u, connection_.NumQueuedPackets());
+  }
+}
+
+TEST_P(QuicConnectionTest, MigrateToNewPathDuringProbing) {
+  if (!VersionHasIetfQuicFrames(connection_.version().transport_version) ||
+      !connection_.use_path_validator()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+  const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Any4(), 12345);
+  EXPECT_NE(kNewSelfAddress, connection_.self_address());
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+  bool success = false;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kNewSelfAddress, connection_.peer_address(), &new_writer),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+  EXPECT_TRUE(connection_.HasPendingPathValidation());
+  EXPECT_TRUE(QuicConnectionPeer::IsAlternativePath(
+      &connection_, kNewSelfAddress, connection_.peer_address()));
+
+  connection_.MigratePath(kNewSelfAddress, connection_.peer_address(),
+                          &new_writer, /*owns_writer=*/false);
+  EXPECT_EQ(kNewSelfAddress, connection_.self_address());
+  EXPECT_TRUE(connection_.HasPendingPathValidation());
+  EXPECT_FALSE(QuicConnectionPeer::IsAlternativePath(
+      &connection_, kNewSelfAddress, connection_.peer_address()));
+}
+
+TEST_P(QuicConnectionTest, SingleAckInPacket) {
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.NeuterUnencryptedPackets();
+  connection_.OnHandshakeComplete();
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() {
+    connection_.SendStreamData3();
+    connection_.CloseConnection(
+        QUIC_INTERNAL_ERROR, "error",
+        ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
+  }));
+  QuicFrames frames;
+  frames.push_back(QuicFrame(frame1_));
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  ASSERT_FALSE(writer_->ack_frames().empty());
+  EXPECT_EQ(1u, writer_->ack_frames().size());
+}
+
+TEST_P(QuicConnectionTest,
+       ServerReceivedZeroRttPacketAfterOneRttPacketWithRetainedKey) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+
+  set_perspective(Perspective::IS_SERVER);
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<NullDecrypter>(Perspective::IS_SERVER));
+
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+  // Finish handshake.
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  notifier_.NeuterUnencryptedData();
+  connection_.NeuterUnencryptedPackets();
+  connection_.OnHandshakeComplete();
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_TRUE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet());
+
+  // 0-RTT packet received out of order should be decoded since the decrypter
+  // is temporarily retained.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+  EXPECT_EQ(
+      0u,
+      connection_.GetStats()
+          .num_tls_server_zero_rtt_packets_received_after_discarding_decrypter);
+
+  // Simulate the timeout for discarding 0-RTT keys passing.
+  connection_.GetDiscardZeroRttDecryptionKeysAlarm()->Fire();
+
+  // Another 0-RTT packet received now should not be decoded.
+  EXPECT_FALSE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet());
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(0);
+  ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+  EXPECT_EQ(
+      1u,
+      connection_.GetStats()
+          .num_tls_server_zero_rtt_packets_received_after_discarding_decrypter);
+
+  // The |discard_zero_rtt_decryption_keys_alarm_| should only be set on the
+  // first 1-RTT packet received.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(5, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_FALSE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, NewTokenFrameInstigateAcks) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+  QuicNewTokenFrame* new_token = new QuicNewTokenFrame();
+  EXPECT_CALL(visitor_, OnNewTokenReceived(_));
+  ProcessFramePacket(QuicFrame(new_token));
+
+  // Ensure that this has caused the ACK alarm to be set.
+  EXPECT_TRUE(connection_.HasPendingAcks());
+}
+
+TEST_P(QuicConnectionTest, ServerClosesConnectionOnNewTokenFrame) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  QuicNewTokenFrame* new_token = new QuicNewTokenFrame();
+  EXPECT_CALL(visitor_, OnNewTokenReceived(_)).Times(0);
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  ProcessFramePacket(QuicFrame(new_token));
+  EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, OverrideRetryTokenWithRetryPacket) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  std::string address_token = "TestAddressToken";
+  connection_.SetSourceAddressTokenToSend(address_token);
+  EXPECT_EQ(QuicPacketCreatorPeer::GetRetryToken(
+                QuicConnectionPeer::GetPacketCreator(&connection_)),
+            address_token);
+  // Passes valid retry and verify token gets overridden.
+  TestClientRetryHandling(/*invalid_retry_tag=*/false,
+                          /*missing_original_id_in_config=*/false,
+                          /*wrong_original_id_in_config=*/false,
+                          /*missing_retry_id_in_config=*/false,
+                          /*wrong_retry_id_in_config=*/false);
+}
+
+TEST_P(QuicConnectionTest, DonotOverrideRetryTokenWithAddressToken) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  // Passes valid retry and verify token gets overridden.
+  TestClientRetryHandling(/*invalid_retry_tag=*/false,
+                          /*missing_original_id_in_config=*/false,
+                          /*wrong_original_id_in_config=*/false,
+                          /*missing_retry_id_in_config=*/false,
+                          /*wrong_retry_id_in_config=*/false);
+  std::string retry_token = QuicPacketCreatorPeer::GetRetryToken(
+      QuicConnectionPeer::GetPacketCreator(&connection_));
+
+  std::string address_token = "TestAddressToken";
+  connection_.SetSourceAddressTokenToSend(address_token);
+  EXPECT_EQ(QuicPacketCreatorPeer::GetRetryToken(
+                QuicConnectionPeer::GetPacketCreator(&connection_)),
+            retry_token);
+}
+
+TEST_P(QuicConnectionTest,
+       ServerReceivedZeroRttWithHigherPacketNumberThanOneRtt) {
+  if (!connection_.version().UsesTls()) {
+    return;
+  }
+
+  // The code that checks for this error piggybacks on some book-keeping state
+  // kept for key update, so enable key update for the test.
+  std::string error_details;
+  TransportParameters params;
+  QuicConfig config;
+  EXPECT_THAT(config.ProcessTransportParameters(
+                  params, /* is_resumption = */ false, &error_details),
+              IsQuicNoError());
+  QuicConfigPeer::SetNegotiated(&config, true);
+  QuicConfigPeer::SetReceivedOriginalConnectionId(&config,
+                                                  connection_.connection_id());
+  QuicConfigPeer::SetReceivedInitialSourceConnectionId(
+      &config, connection_.connection_id());
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+
+  set_perspective(Perspective::IS_SERVER);
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<NullDecrypter>(Perspective::IS_SERVER));
+
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+  // Finish handshake.
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  notifier_.NeuterUnencryptedData();
+  connection_.NeuterUnencryptedPackets();
+  connection_.OnHandshakeComplete();
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+  // Decrypt a 1-RTT packet.
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_TRUE(connection_.GetDiscardZeroRttDecryptionKeysAlarm()->IsSet());
+
+  // 0-RTT packet with higher packet number than a 1-RTT packet is invalid and
+  // should cause the connection to be closed.
+  EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+  EXPECT_FALSE(connection_.connected());
+  TestConnectionCloseQuicErrorCode(
+      QUIC_INVALID_0RTT_PACKET_NUMBER_OUT_OF_ORDER);
+}
+
+// Regression test for b/177312785
+TEST_P(QuicConnectionTest, PeerMigrateBeforeHandshakeConfirm) {
+  if (!VersionHasIetfQuicFrames(version().transport_version)) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_START));
+
+  // Clear direct_peer_address.
+  QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+  // Clear effective_peer_address, it is the same as direct_peer_address for
+  // this test.
+  QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+                                              QuicSocketAddress());
+  EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  ProcessFramePacketWithAddresses(MakeCryptoFrame(), kSelfAddress, kPeerAddress,
+                                  ENCRYPTION_INITIAL);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+  // Process another packet with a different peer address on server side will
+  // close connection.
+  QuicAckFrame frame = InitAckFrame(1);
+  EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  EXPECT_CALL(visitor_,
+              OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF));
+  EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0u);
+
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)).Times(0);
+  ProcessFramePacketWithAddresses(QuicFrame(&frame), kSelfAddress,
+                                  kNewPeerAddress, ENCRYPTION_INITIAL);
+  EXPECT_FALSE(connection_.connected());
+}
+
+// Regresstion test for b/175685916
+TEST_P(QuicConnectionTest, TryToFlushAckWithAckQueued) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  SetQuicReloadableFlag(quic_can_send_ack_frequency, true);
+  set_perspective(Perspective::IS_SERVER);
+
+  QuicConfig config;
+  QuicConfigPeer::SetReceivedMinAckDelayMs(&config, /*min_ack_delay_ms=*/1);
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  connection_.SetFromConfig(config);
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  connection_.OnHandshakeComplete();
+  QuicPacketCreatorPeer::SetPacketNumber(creator_, 200);
+
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+  ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+  // Sending ACK_FREQUENCY bundles ACK. QuicConnectionPeer::SendPing
+  // will try to bundle ACK but there is no pending ACK.
+  EXPECT_CALL(visitor_, SendAckFrequency(_))
+      .WillOnce(Invoke(&notifier_,
+                       &SimpleSessionNotifier::WriteOrBufferAckFrequency));
+  QuicConnectionPeer::SendPing(&connection_);
+}
+
+TEST_P(QuicConnectionTest, PathChallengeBeforePeerIpAddressChangeAtServer) {
+  set_perspective(Perspective::IS_SERVER);
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_SERVER);
+  SetClientConnectionId(TestConnectionId(1));
+  connection_.CreateConnectionIdManager();
+
+  QuicConnectionId server_cid0 = connection_.connection_id();
+  QuicConnectionId client_cid0 = connection_.client_connection_id();
+  QuicConnectionId client_cid1 = TestConnectionId(2);
+  QuicConnectionId server_cid1;
+  // Sends new server CID to client.
+  EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+      .WillOnce(
+          Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; }));
+  EXPECT_CALL(visitor_, SendNewConnectionId(_));
+  connection_.MaybeSendConnectionIdToClient();
+  // Receives new client CID from client.
+  QuicNewConnectionIdFrame new_cid_frame;
+  new_cid_frame.connection_id = client_cid1;
+  new_cid_frame.sequence_number = 1u;
+  new_cid_frame.retire_prior_to = 0u;
+  connection_.OnNewConnectionIdFrame(new_cid_frame);
+  auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_);
+  ASSERT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0);
+  ASSERT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+
+  peer_creator_.SetServerConnectionId(server_cid1);
+  const QuicSocketAddress kNewPeerAddress =
+      QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/23456);
+  QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7};
+  QuicFrames frames1;
+  frames1.push_back(
+      QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload)));
+  QuicPathFrameBuffer payload;
+  EXPECT_CALL(*send_algorithm_,
+              OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+      .Times(AtLeast(1))
+      .WillOnce(Invoke([&]() {
+        EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+        EXPECT_EQ(kPeerAddress, connection_.peer_address());
+        EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+        EXPECT_FALSE(writer_->path_response_frames().empty());
+        EXPECT_FALSE(writer_->path_challenge_frames().empty());
+        payload = writer_->path_challenge_frames().front().data_buffer;
+      }));
+  ProcessFramesPacketWithAddresses(frames1, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+  EXPECT_TRUE(connection_.HasPendingPathValidation());
+  const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+  const auto* alternative_path =
+      QuicConnectionPeer::GetAlternativePath(&connection_);
+  EXPECT_EQ(default_path->client_connection_id, client_cid0);
+  EXPECT_EQ(default_path->server_connection_id, server_cid0);
+  EXPECT_EQ(alternative_path->client_connection_id, client_cid1);
+  EXPECT_EQ(alternative_path->server_connection_id, server_cid1);
+  EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid0);
+  EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+
+  // Process another packet with a different peer address on server side will
+  // start connection migration.
+  EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() {
+    EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  }));
+  // IETF QUIC send algorithm should be changed to a different object, so no
+  // OnPacketSent() called on the old send algorithm.
+  EXPECT_CALL(*send_algorithm_,
+              OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+      .Times(0);
+  QuicFrames frames2;
+  frames2.push_back(QuicFrame(frame2_));
+  ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+  EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+            connection_.active_effective_peer_migration_type());
+  EXPECT_TRUE(writer_->path_challenge_frames().empty());
+  EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(),
+            send_algorithm_);
+  // Switch to use the mock send algorithm.
+  send_algorithm_ = new StrictMock<MockSendAlgorithm>();
+  EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+  EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
+      .WillRepeatedly(Return(kDefaultTCPMSS));
+  EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+      .Times(AnyNumber())
+      .WillRepeatedly(Return(QuicBandwidth::Zero()));
+  EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber());
+  connection_.SetSendAlgorithm(send_algorithm_);
+  EXPECT_EQ(default_path->client_connection_id, client_cid1);
+  EXPECT_EQ(default_path->server_connection_id, server_cid1);
+  // The previous default path is kept as alternative path before reverse path
+  // validation finishes.
+  EXPECT_EQ(alternative_path->client_connection_id, client_cid0);
+  EXPECT_EQ(alternative_path->server_connection_id, server_cid0);
+  EXPECT_EQ(packet_creator->GetDestinationConnectionId(), client_cid1);
+  EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid1);
+
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+  EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+            connection_.active_effective_peer_migration_type());
+  EXPECT_EQ(1u, connection_.GetStats()
+                    .num_peer_migration_to_proactively_validated_address);
+
+  // The PATH_CHALLENGE and PATH_RESPONSE is expanded upto the max packet size
+  // which may exceeds the anti-amplification limit. Verify server is throttled
+  // by anti-amplification limit.
+  connection_.SendCryptoDataWithString("foo", 0);
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+  // Receiving PATH_RESPONSE should lift the anti-amplification limit.
+  QuicFrames frames3;
+  frames3.push_back(QuicFrame(new QuicPathResponseFrame(99, payload)));
+  EXPECT_CALL(visitor_, MaybeSendAddressToken());
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .Times(testing::AtLeast(1u));
+  ProcessFramesPacketWithAddresses(frames3, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+  // Verify that alternative_path_ is cleared and the peer CID is retired.
+  EXPECT_TRUE(alternative_path->client_connection_id.IsEmpty());
+  EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty());
+  EXPECT_FALSE(alternative_path->stateless_reset_token.has_value());
+  auto* retire_peer_issued_cid_alarm =
+      connection_.GetRetirePeerIssuedConnectionIdAlarm();
+  ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+  EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+  retire_peer_issued_cid_alarm->Fire();
+
+  // Verify the anti-amplification limit is lifted by sending a packet larger
+  // than the anti-amplification limit.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  EXPECT_CALL(*send_algorithm_, PacingRate(_))
+      .WillRepeatedly(Return(QuicBandwidth::Zero()));
+  connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0);
+  EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration);
+}
+
+TEST_P(QuicConnectionTest,
+       PathValidationSucceedsBeforePeerIpAddressChangeAtServer) {
+  set_perspective(Perspective::IS_SERVER);
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_SERVER);
+  connection_.CreateConnectionIdManager();
+
+  QuicConnectionId server_cid0 = connection_.connection_id();
+  QuicConnectionId server_cid1;
+  // Sends new server CID to client.
+  EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+      .WillOnce(
+          Invoke([&](const QuicConnectionId& cid) { server_cid1 = cid; }));
+  EXPECT_CALL(visitor_, SendNewConnectionId(_));
+  connection_.MaybeSendConnectionIdToClient();
+  auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_);
+  ASSERT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+
+  // Receive probing packet with new peer address.
+  peer_creator_.SetServerConnectionId(server_cid1);
+  const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(),
+                                          /*port=*/23456);
+  QuicPathFrameBuffer payload;
+  EXPECT_CALL(*send_algorithm_,
+              OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+      .WillOnce(Invoke([&]() {
+        EXPECT_EQ(kNewPeerAddress, writer_->last_write_peer_address());
+        EXPECT_EQ(kPeerAddress, connection_.peer_address());
+        EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+        EXPECT_FALSE(writer_->path_response_frames().empty());
+        EXPECT_FALSE(writer_->path_challenge_frames().empty());
+        payload = writer_->path_challenge_frames().front().data_buffer;
+      }))
+      .WillRepeatedly(Invoke([&]() {
+        // Only start reverse path validation once.
+        EXPECT_TRUE(writer_->path_challenge_frames().empty());
+      }));
+  QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7};
+  QuicFrames frames1;
+  frames1.push_back(
+      QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload)));
+  ProcessFramesPacketWithAddresses(frames1, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_TRUE(connection_.HasPendingPathValidation());
+  const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+  const auto* alternative_path =
+      QuicConnectionPeer::GetAlternativePath(&connection_);
+  EXPECT_EQ(default_path->server_connection_id, server_cid0);
+  EXPECT_EQ(alternative_path->server_connection_id, server_cid1);
+  EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid0);
+
+  // Receive PATH_RESPONSE should mark the new peer address validated.
+  QuicFrames frames3;
+  frames3.push_back(QuicFrame(new QuicPathResponseFrame(99, payload)));
+  ProcessFramesPacketWithAddresses(frames3, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+
+  // Process another packet with a newer peer address with the same port will
+  // start connection migration.
+  EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+  // IETF QUIC send algorithm should be changed to a different object, so no
+  // OnPacketSent() called on the old send algorithm.
+  EXPECT_CALL(*send_algorithm_,
+              OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+      .Times(0);
+  const QuicSocketAddress kNewerPeerAddress(QuicIpAddress::Loopback4(),
+                                            /*port=*/34567);
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() {
+    EXPECT_EQ(kNewerPeerAddress, connection_.peer_address());
+  }));
+  EXPECT_CALL(visitor_, MaybeSendAddressToken());
+  QuicFrames frames2;
+  frames2.push_back(QuicFrame(frame2_));
+  ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewerPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kNewerPeerAddress, connection_.peer_address());
+  EXPECT_EQ(kNewerPeerAddress, connection_.effective_peer_address());
+  // Since the newer address has the same IP as the previously validated probing
+  // address. The peer migration becomes validated immediately.
+  EXPECT_EQ(NO_CHANGE, connection_.active_effective_peer_migration_type());
+  EXPECT_EQ(kNewerPeerAddress, writer_->last_write_peer_address());
+  EXPECT_EQ(1u, connection_.GetStats()
+                    .num_peer_migration_to_proactively_validated_address);
+  EXPECT_FALSE(connection_.HasPendingPathValidation());
+  EXPECT_NE(connection_.sent_packet_manager().GetSendAlgorithm(),
+            send_algorithm_);
+
+  EXPECT_EQ(default_path->server_connection_id, server_cid1);
+  EXPECT_EQ(packet_creator->GetSourceConnectionId(), server_cid1);
+  // Verify that alternative_path_ is cleared.
+  EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty());
+  EXPECT_FALSE(alternative_path->stateless_reset_token.has_value());
+
+  // Switch to use the mock send algorithm.
+  send_algorithm_ = new StrictMock<MockSendAlgorithm>();
+  EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+  EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
+      .WillRepeatedly(Return(kDefaultTCPMSS));
+  EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+      .Times(AnyNumber())
+      .WillRepeatedly(Return(QuicBandwidth::Zero()));
+  EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber());
+  connection_.SetSendAlgorithm(send_algorithm_);
+
+  // Verify the server is not throttled by the anti-amplification limit by
+  // sending a packet larger than the anti-amplification limit.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+  connection_.SendCryptoDataWithString(std::string(1200, 'a'), 0);
+  EXPECT_EQ(1u, connection_.GetStats().num_validated_peer_migration);
+}
+
+TEST_P(QuicConnectionTest,
+       ProbedOnAnotherPathAfterPeerIpAddressChangeAtServer) {
+  PathProbeTestInit(Perspective::IS_SERVER);
+  if (!connection_.validate_client_address()) {
+    return;
+  }
+
+  const QuicSocketAddress kNewPeerAddress(QuicIpAddress::Loopback4(),
+                                          /*port=*/23456);
+
+  // Process a packet with a new peer address will start connection migration.
+  EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+  // IETF QUIC send algorithm should be changed to a different object, so no
+  // OnPacketSent() called on the old send algorithm.
+  EXPECT_CALL(*send_algorithm_,
+              OnPacketSent(_, _, _, _, NO_RETRANSMITTABLE_DATA))
+      .Times(0);
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).WillOnce(Invoke([=]() {
+    EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  }));
+  QuicFrames frames2;
+  frames2.push_back(QuicFrame(frame2_));
+  ProcessFramesPacketWithAddresses(frames2, kSelfAddress, kNewPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_TRUE(QuicConnectionPeer::IsAlternativePathValidated(&connection_));
+  EXPECT_TRUE(connection_.HasPendingPathValidation());
+
+  // Switch to use the mock send algorithm.
+  send_algorithm_ = new StrictMock<MockSendAlgorithm>();
+  EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+  EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
+      .WillRepeatedly(Return(kDefaultTCPMSS));
+  EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+      .Times(AnyNumber())
+      .WillRepeatedly(Return(QuicBandwidth::Zero()));
+  EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
+  EXPECT_CALL(*send_algorithm_, PopulateConnectionStats(_)).Times(AnyNumber());
+  connection_.SetSendAlgorithm(send_algorithm_);
+
+  // Receive probing packet with a newer peer address shouldn't override the
+  // on-going path validation.
+  const QuicSocketAddress kNewerPeerAddress(QuicIpAddress::Loopback4(),
+                                            /*port=*/34567);
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+      .WillOnce(Invoke([&]() {
+        EXPECT_EQ(kNewerPeerAddress, writer_->last_write_peer_address());
+        EXPECT_FALSE(writer_->path_response_frames().empty());
+        EXPECT_TRUE(writer_->path_challenge_frames().empty());
+      }));
+  QuicPathFrameBuffer path_challenge_payload{0, 1, 2, 3, 4, 5, 6, 7};
+  QuicFrames frames1;
+  frames1.push_back(
+      QuicFrame(new QuicPathChallengeFrame(0, path_challenge_payload)));
+  ProcessFramesPacketWithAddresses(frames1, kSelfAddress, kNewerPeerAddress,
+                                   ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+  EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+  EXPECT_TRUE(QuicConnectionPeer::IsAlternativePathValidated(&connection_));
+  EXPECT_TRUE(connection_.HasPendingPathValidation());
+}
+
+TEST_P(QuicConnectionTest,
+       PathValidationFailedOnClientDueToLackOfServerConnectionId) {
+  if (!GetQuicReloadableFlag(
+          quic_remove_connection_migration_connection_option)) {
+    QuicConfig config;
+    EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+    connection_.SetFromConfig(config);
+    config.SetConnectionOptionsToSend({kRVCM});
+  }
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT,
+                    /*receive_new_server_connection_id=*/false);
+
+  const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Loopback4(),
+                                          /*port=*/34567);
+
+  bool success;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kNewSelfAddress, connection_.peer_address(), writer_.get()),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+
+  EXPECT_FALSE(success);
+}
+
+TEST_P(QuicConnectionTest,
+       PathValidationFailedOnClientDueToLackOfClientConnectionIdTheSecondTime) {
+  if (!GetQuicReloadableFlag(
+          quic_remove_connection_migration_connection_option)) {
+    QuicConfig config;
+    config.SetConnectionOptionsToSend({kRVCM});
+    EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+    connection_.SetFromConfig(config);
+  }
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT,
+                    /*receive_new_server_connection_id=*/false);
+  SetClientConnectionId(TestConnectionId(1));
+
+  // Make sure server connection ID is available for the 1st validation.
+  QuicConnectionId server_cid0 = connection_.connection_id();
+  QuicConnectionId server_cid1 = TestConnectionId(2);
+  QuicConnectionId server_cid2 = TestConnectionId(4);
+  QuicConnectionId client_cid1;
+  QuicNewConnectionIdFrame frame1;
+  frame1.connection_id = server_cid1;
+  frame1.sequence_number = 1u;
+  frame1.retire_prior_to = 0u;
+  frame1.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame1.connection_id);
+  connection_.OnNewConnectionIdFrame(frame1);
+  const auto* packet_creator =
+      QuicConnectionPeer::GetPacketCreator(&connection_);
+  ASSERT_EQ(packet_creator->GetDestinationConnectionId(), server_cid0);
+
+  // Client will issue a new client connection ID to server.
+  EXPECT_CALL(visitor_, SendNewConnectionId(_))
+      .WillOnce(Invoke([&](const QuicNewConnectionIdFrame& frame) {
+        client_cid1 = frame.connection_id;
+      }));
+
+  const QuicSocketAddress kSelfAddress1(QuicIpAddress::Any4(), 12345);
+  ASSERT_NE(kSelfAddress1, connection_.self_address());
+  bool success1;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kSelfAddress1, connection_.peer_address(), writer_.get()),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kSelfAddress1, connection_.peer_address(), &success1));
+
+  // Migrate upon 1st validation success.
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  ASSERT_TRUE(connection_.MigratePath(kSelfAddress1, connection_.peer_address(),
+                                      &new_writer, /*owns_writer=*/false));
+  QuicConnectionPeer::RetirePeerIssuedConnectionIdsNoLongerOnPath(&connection_);
+  const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+  EXPECT_EQ(default_path->client_connection_id, client_cid1);
+  EXPECT_EQ(default_path->server_connection_id, server_cid1);
+  EXPECT_EQ(default_path->stateless_reset_token, frame1.stateless_reset_token);
+  const auto* alternative_path =
+      QuicConnectionPeer::GetAlternativePath(&connection_);
+  EXPECT_TRUE(alternative_path->client_connection_id.IsEmpty());
+  EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty());
+  EXPECT_FALSE(alternative_path->stateless_reset_token.has_value());
+  ASSERT_EQ(packet_creator->GetDestinationConnectionId(), server_cid1);
+
+  // Client will retire server connection ID on old default_path.
+  auto* retire_peer_issued_cid_alarm =
+      connection_.GetRetirePeerIssuedConnectionIdAlarm();
+  ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+  EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+  retire_peer_issued_cid_alarm->Fire();
+
+  // Another server connection ID is available to client.
+  QuicNewConnectionIdFrame frame2;
+  frame2.connection_id = server_cid2;
+  frame2.sequence_number = 2u;
+  frame2.retire_prior_to = 1u;
+  frame2.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame2.connection_id);
+  connection_.OnNewConnectionIdFrame(frame2);
+
+  const QuicSocketAddress kSelfAddress2(QuicIpAddress::Loopback4(),
+                                        /*port=*/45678);
+  bool success2;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kSelfAddress2, connection_.peer_address(), writer_.get()),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kSelfAddress2, connection_.peer_address(), &success2));
+  // Since server does not retire any client connection ID yet, 2nd validation
+  // would fail due to lack of client connection ID.
+  EXPECT_FALSE(success2);
+}
+
+TEST_P(QuicConnectionTest, ServerConnectionIdRetiredUponPathValidationFailure) {
+  if (!GetQuicReloadableFlag(
+          quic_remove_connection_migration_connection_option)) {
+    QuicConfig config;
+    config.SetConnectionOptionsToSend({kRVCM});
+    EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+    connection_.SetFromConfig(config);
+  }
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT);
+
+  // Make sure server connection ID is available for validation.
+  QuicNewConnectionIdFrame frame;
+  frame.connection_id = TestConnectionId(2);
+  frame.sequence_number = 1u;
+  frame.retire_prior_to = 0u;
+  frame.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+  connection_.OnNewConnectionIdFrame(frame);
+
+  const QuicSocketAddress kNewSelfAddress(QuicIpAddress::Loopback4(),
+                                          /*port=*/34567);
+  bool success;
+  connection_.ValidatePath(
+      std::make_unique<TestQuicPathValidationContext>(
+          kNewSelfAddress, connection_.peer_address(), writer_.get()),
+      std::make_unique<TestValidationResultDelegate>(
+          &connection_, kNewSelfAddress, connection_.peer_address(), &success));
+
+  auto* path_validator = QuicConnectionPeer::path_validator(&connection_);
+  path_validator->CancelPathValidation();
+  QuicConnectionPeer::RetirePeerIssuedConnectionIdsNoLongerOnPath(&connection_);
+  EXPECT_FALSE(success);
+  const auto* alternative_path =
+      QuicConnectionPeer::GetAlternativePath(&connection_);
+  EXPECT_TRUE(alternative_path->client_connection_id.IsEmpty());
+  EXPECT_TRUE(alternative_path->server_connection_id.IsEmpty());
+  EXPECT_FALSE(alternative_path->stateless_reset_token.has_value());
+
+  // Client will retire server connection ID on alternative_path.
+  auto* retire_peer_issued_cid_alarm =
+      connection_.GetRetirePeerIssuedConnectionIdAlarm();
+  ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+  EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/1u));
+  retire_peer_issued_cid_alarm->Fire();
+}
+
+TEST_P(QuicConnectionTest,
+       MigratePathDirectlyFailedDueToLackOfServerConnectionId) {
+  if (!GetQuicReloadableFlag(
+          quic_remove_connection_migration_connection_option)) {
+    QuicConfig config;
+    config.SetConnectionOptionsToSend({kRVCM});
+    EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+    connection_.SetFromConfig(config);
+  }
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT,
+                    /*receive_new_server_connection_id=*/false);
+  const QuicSocketAddress kSelfAddress1(QuicIpAddress::Any4(), 12345);
+  ASSERT_NE(kSelfAddress1, connection_.self_address());
+
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  ASSERT_FALSE(connection_.MigratePath(kSelfAddress1,
+                                       connection_.peer_address(), &new_writer,
+                                       /*owns_writer=*/false));
+}
+
+TEST_P(QuicConnectionTest,
+       MigratePathDirectlyFailedDueToLackOfClientConnectionIdTheSecondTime) {
+  if (!GetQuicReloadableFlag(
+          quic_remove_connection_migration_connection_option)) {
+    QuicConfig config;
+    config.SetConnectionOptionsToSend({kRVCM});
+    EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+    connection_.SetFromConfig(config);
+  }
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_CLIENT,
+                    /*receive_new_server_connection_id=*/false);
+  SetClientConnectionId(TestConnectionId(1));
+
+  // Make sure server connection ID is available for the 1st migration.
+  QuicNewConnectionIdFrame frame1;
+  frame1.connection_id = TestConnectionId(2);
+  frame1.sequence_number = 1u;
+  frame1.retire_prior_to = 0u;
+  frame1.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame1.connection_id);
+  connection_.OnNewConnectionIdFrame(frame1);
+
+  // Client will issue a new client connection ID to server.
+  QuicConnectionId new_client_connection_id;
+  EXPECT_CALL(visitor_, SendNewConnectionId(_))
+      .WillOnce(Invoke([&](const QuicNewConnectionIdFrame& frame) {
+        new_client_connection_id = frame.connection_id;
+      }));
+
+  // 1st migration is successful.
+  const QuicSocketAddress kSelfAddress1(QuicIpAddress::Any4(), 12345);
+  ASSERT_NE(kSelfAddress1, connection_.self_address());
+  TestPacketWriter new_writer(version(), &clock_, Perspective::IS_CLIENT);
+  ASSERT_TRUE(connection_.MigratePath(kSelfAddress1, connection_.peer_address(),
+                                      &new_writer,
+                                      /*owns_writer=*/false));
+  QuicConnectionPeer::RetirePeerIssuedConnectionIdsNoLongerOnPath(&connection_);
+  const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+  EXPECT_EQ(default_path->client_connection_id, new_client_connection_id);
+  EXPECT_EQ(default_path->server_connection_id, frame1.connection_id);
+  EXPECT_EQ(default_path->stateless_reset_token, frame1.stateless_reset_token);
+
+  // Client will retire server connection ID on old default_path.
+  auto* retire_peer_issued_cid_alarm =
+      connection_.GetRetirePeerIssuedConnectionIdAlarm();
+  ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+  EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+  retire_peer_issued_cid_alarm->Fire();
+
+  // Another server connection ID is available to client.
+  QuicNewConnectionIdFrame frame2;
+  frame2.connection_id = TestConnectionId(4);
+  frame2.sequence_number = 2u;
+  frame2.retire_prior_to = 1u;
+  frame2.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame2.connection_id);
+  connection_.OnNewConnectionIdFrame(frame2);
+
+  // Since server does not retire any client connection ID yet, 2nd migration
+  // would fail due to lack of client connection ID.
+  const QuicSocketAddress kSelfAddress2(QuicIpAddress::Loopback4(),
+                                        /*port=*/45678);
+  auto new_writer2 = std::make_unique<TestPacketWriter>(version(), &clock_,
+                                                        Perspective::IS_CLIENT);
+  ASSERT_FALSE(connection_.MigratePath(
+      kSelfAddress2, connection_.peer_address(), new_writer2.release(),
+      /*owns_writer=*/true));
+}
+
+TEST_P(QuicConnectionTest,
+       CloseConnectionAfterReceiveNewConnectionIdFromPeerUsingEmptyCID) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  ASSERT_TRUE(connection_.client_connection_id().IsEmpty());
+
+  EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  QuicNewConnectionIdFrame frame;
+  frame.sequence_number = 1u;
+  frame.connection_id = TestConnectionId(1);
+  frame.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+  frame.retire_prior_to = 0u;
+
+  EXPECT_FALSE(connection_.OnNewConnectionIdFrame(frame));
+
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(IETF_QUIC_PROTOCOL_VIOLATION));
+}
+
+TEST_P(QuicConnectionTest, NewConnectionIdFrameResultsInError) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  connection_.CreateConnectionIdManager();
+  ASSERT_FALSE(connection_.connection_id().IsEmpty());
+
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  QuicNewConnectionIdFrame frame;
+  frame.sequence_number = 1u;
+  frame.connection_id = connection_id_;  // Reuses connection ID casuing error.
+  frame.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+  frame.retire_prior_to = 0u;
+
+  EXPECT_FALSE(connection_.OnNewConnectionIdFrame(frame));
+
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(IETF_QUIC_PROTOCOL_VIOLATION));
+}
+
+TEST_P(QuicConnectionTest,
+       ClientRetirePeerIssuedConnectionIdTriggeredByNewConnectionIdFrame) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  connection_.CreateConnectionIdManager();
+
+  QuicNewConnectionIdFrame frame;
+  frame.sequence_number = 1u;
+  frame.connection_id = TestConnectionId(1);
+  frame.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+  frame.retire_prior_to = 0u;
+
+  EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+  auto* retire_peer_issued_cid_alarm =
+      connection_.GetRetirePeerIssuedConnectionIdAlarm();
+  ASSERT_FALSE(retire_peer_issued_cid_alarm->IsSet());
+
+  frame.sequence_number = 2u;
+  frame.connection_id = TestConnectionId(2);
+  frame.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+  frame.retire_prior_to = 1u;  // CID associated with #1 will be retired.
+
+  EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+  ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+  EXPECT_EQ(connection_.connection_id(), connection_id_);
+
+  EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+  retire_peer_issued_cid_alarm->Fire();
+  EXPECT_EQ(connection_.connection_id(), TestConnectionId(2));
+  EXPECT_EQ(connection_.packet_creator().GetDestinationConnectionId(),
+            TestConnectionId(2));
+}
+
+TEST_P(QuicConnectionTest,
+       ServerRetirePeerIssuedConnectionIdTriggeredByNewConnectionIdFrame) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  SetClientConnectionId(TestConnectionId(0));
+
+  QuicNewConnectionIdFrame frame;
+  frame.sequence_number = 1u;
+  frame.connection_id = TestConnectionId(1);
+  frame.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+  frame.retire_prior_to = 0u;
+
+  EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+  auto* retire_peer_issued_cid_alarm =
+      connection_.GetRetirePeerIssuedConnectionIdAlarm();
+  ASSERT_FALSE(retire_peer_issued_cid_alarm->IsSet());
+
+  frame.sequence_number = 2u;
+  frame.connection_id = TestConnectionId(2);
+  frame.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+  frame.retire_prior_to = 1u;  // CID associated with #1 will be retired.
+
+  EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+  ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+  EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(0));
+
+  EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+  retire_peer_issued_cid_alarm->Fire();
+  EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(2));
+  EXPECT_EQ(connection_.packet_creator().GetDestinationConnectionId(),
+            TestConnectionId(2));
+}
+
+TEST_P(
+    QuicConnectionTest,
+    ReplacePeerIssuedConnectionIdOnBothPathsTriggeredByNewConnectionIdFrame) {
+  if (!version().HasIetfQuicFrames() || !connection_.use_path_validator() ||
+      !connection_.count_bytes_on_alternative_path_separately()) {
+    return;
+  }
+  PathProbeTestInit(Perspective::IS_SERVER);
+  SetClientConnectionId(TestConnectionId(0));
+
+  // Populate alternative_path_ with probing packet.
+  std::unique_ptr<SerializedPacket> probing_packet = ConstructProbingPacket();
+
+  std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+      QuicEncryptedPacket(probing_packet->encrypted_buffer,
+                          probing_packet->encrypted_length),
+      clock_.Now()));
+  QuicIpAddress new_host;
+  new_host.FromString("1.1.1.1");
+  ProcessReceivedPacket(kSelfAddress,
+                        QuicSocketAddress(new_host, /*port=*/23456), *received);
+
+  EXPECT_EQ(
+      TestConnectionId(0),
+      QuicConnectionPeer::GetClientConnectionIdOnAlternativePath(&connection_));
+
+  QuicNewConnectionIdFrame frame;
+  frame.sequence_number = 1u;
+  frame.connection_id = TestConnectionId(1);
+  frame.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+  frame.retire_prior_to = 0u;
+
+  EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+  auto* retire_peer_issued_cid_alarm =
+      connection_.GetRetirePeerIssuedConnectionIdAlarm();
+  ASSERT_FALSE(retire_peer_issued_cid_alarm->IsSet());
+
+  frame.sequence_number = 2u;
+  frame.connection_id = TestConnectionId(2);
+  frame.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+  frame.retire_prior_to = 1u;  // CID associated with #1 will be retired.
+
+  EXPECT_TRUE(connection_.OnNewConnectionIdFrame(frame));
+  ASSERT_TRUE(retire_peer_issued_cid_alarm->IsSet());
+  EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(0));
+
+  EXPECT_CALL(visitor_, SendRetireConnectionId(/*sequence_number=*/0u));
+  retire_peer_issued_cid_alarm->Fire();
+  EXPECT_EQ(connection_.client_connection_id(), TestConnectionId(2));
+  EXPECT_EQ(connection_.packet_creator().GetDestinationConnectionId(),
+            TestConnectionId(2));
+  // Clean up alternative path connection ID.
+  EXPECT_EQ(
+      TestConnectionId(2),
+      QuicConnectionPeer::GetClientConnectionIdOnAlternativePath(&connection_));
+}
+
+TEST_P(QuicConnectionTest,
+       CloseConnectionAfterReceiveRetireConnectionIdWhenNoCIDIssued) {
+  if (!version().HasIetfQuicFrames() ||
+      !connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+
+  EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  QuicRetireConnectionIdFrame frame;
+  frame.sequence_number = 1u;
+
+  EXPECT_FALSE(connection_.OnRetireConnectionIdFrame(frame));
+
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(IETF_QUIC_PROTOCOL_VIOLATION));
+}
+
+TEST_P(QuicConnectionTest, RetireConnectionIdFrameResultsInError) {
+  if (!version().HasIetfQuicFrames() ||
+      !connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  connection_.CreateConnectionIdManager();
+
+  EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_));
+  EXPECT_CALL(visitor_, SendNewConnectionId(_));
+  connection_.MaybeSendConnectionIdToClient();
+
+  EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, ConnectionCloseSource::FROM_SELF))
+      .WillOnce(Invoke(this, &QuicConnectionTest::SaveConnectionCloseFrame));
+  QuicRetireConnectionIdFrame frame;
+  frame.sequence_number = 2u;  // The corresponding ID is never issued.
+
+  EXPECT_FALSE(connection_.OnRetireConnectionIdFrame(frame));
+
+  EXPECT_FALSE(connection_.connected());
+  EXPECT_THAT(saved_connection_close_frame_.quic_error_code,
+              IsError(IETF_QUIC_PROTOCOL_VIOLATION));
+}
+
+TEST_P(QuicConnectionTest,
+       ServerRetireSelfIssuedConnectionIdWithoutSendingNewConnectionIdBefore) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  connection_.CreateConnectionIdManager();
+
+  auto* retire_self_issued_cid_alarm =
+      connection_.GetRetireSelfIssuedConnectionIdAlarm();
+  ASSERT_FALSE(retire_self_issued_cid_alarm->IsSet());
+
+  QuicConnectionId cid0 = connection_id_;
+  QuicRetireConnectionIdFrame frame;
+  frame.sequence_number = 0u;
+  if (connection_.connection_migration_use_new_cid()) {
+    EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_)).Times(2);
+    EXPECT_CALL(visitor_, SendNewConnectionId(_)).Times(2);
+  }
+  EXPECT_TRUE(connection_.OnRetireConnectionIdFrame(frame));
+}
+
+TEST_P(QuicConnectionTest, ServerRetireSelfIssuedConnectionId) {
+  if (!GetQuicReloadableFlag(
+          quic_remove_connection_migration_connection_option)) {
+    QuicConfig config;
+    config.SetConnectionOptionsToSend({kRVCM});
+    EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+    connection_.SetFromConfig(config);
+  }
+  if (!connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  connection_.CreateConnectionIdManager();
+  QuicConnectionId recorded_cid;
+  auto cid_recorder = [&recorded_cid](const QuicConnectionId& cid) {
+    recorded_cid = cid;
+  };
+  QuicConnectionId cid0 = connection_id_;
+  QuicConnectionId cid1;
+  QuicConnectionId cid2;
+  EXPECT_EQ(connection_.connection_id(), cid0);
+  EXPECT_EQ(connection_.GetOneActiveServerConnectionId(), cid0);
+
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+      .WillOnce(Invoke(cid_recorder));
+  EXPECT_CALL(visitor_, SendNewConnectionId(_));
+  connection_.MaybeSendConnectionIdToClient();
+  cid1 = recorded_cid;
+
+  auto* retire_self_issued_cid_alarm =
+      connection_.GetRetireSelfIssuedConnectionIdAlarm();
+  ASSERT_FALSE(retire_self_issued_cid_alarm->IsSet());
+
+  // Generate three packets with different connection IDs that will arrive out
+  // of order (2, 1, 3) later.
+  char buffers[3][kMaxOutgoingPacketSize];
+  // Destination connection ID of packet1 is cid0.
+  auto packet1 =
+      ConstructPacket({QuicFrame(QuicPingFrame())}, ENCRYPTION_FORWARD_SECURE,
+                      buffers[0], kMaxOutgoingPacketSize);
+  peer_creator_.SetServerConnectionId(cid1);
+  auto retire_cid_frame = std::make_unique<QuicRetireConnectionIdFrame>();
+  retire_cid_frame->sequence_number = 0u;
+  // Destination connection ID of packet2 is cid1.
+  auto packet2 = ConstructPacket({QuicFrame(retire_cid_frame.release())},
+                                 ENCRYPTION_FORWARD_SECURE, buffers[1],
+                                 kMaxOutgoingPacketSize);
+  // Destination connection ID of packet3 is cid1.
+  auto packet3 =
+      ConstructPacket({QuicFrame(QuicPingFrame())}, ENCRYPTION_FORWARD_SECURE,
+                      buffers[2], kMaxOutgoingPacketSize);
+
+  // Packet2 with RetireConnectionId frame trigers sending NewConnectionId
+  // immediately.
+  EXPECT_CALL(visitor_, OnServerConnectionIdIssued(_))
+      .WillOnce(Invoke(cid_recorder));
+  EXPECT_CALL(visitor_, SendNewConnectionId(_));
+  peer_creator_.SetServerConnectionId(cid1);
+  connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *packet2);
+  cid2 = recorded_cid;
+  // cid0 is not retired immediately.
+  EXPECT_THAT(connection_.GetActiveServerConnectionIds(),
+              ElementsAre(cid0, cid1, cid2));
+  ASSERT_TRUE(retire_self_issued_cid_alarm->IsSet());
+  EXPECT_EQ(connection_.connection_id(), cid1);
+  EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid0 ||
+              connection_.GetOneActiveServerConnectionId() == cid1 ||
+              connection_.GetOneActiveServerConnectionId() == cid2);
+
+  // Packet1 updates the connection ID on the default path but not the active
+  // connection ID.
+  connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *packet1);
+  EXPECT_EQ(connection_.connection_id(), cid0);
+  EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid0 ||
+              connection_.GetOneActiveServerConnectionId() == cid1 ||
+              connection_.GetOneActiveServerConnectionId() == cid2);
+
+  // cid0 is retired when the retire CID alarm fires.
+  EXPECT_CALL(visitor_, OnServerConnectionIdRetired(cid0));
+  retire_self_issued_cid_alarm->Fire();
+  EXPECT_THAT(connection_.GetActiveServerConnectionIds(),
+              ElementsAre(cid1, cid2));
+  EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid1 ||
+              connection_.GetOneActiveServerConnectionId() == cid2);
+
+  // Packet3 updates the connection ID on the default path.
+  connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *packet3);
+  EXPECT_EQ(connection_.connection_id(), cid1);
+  EXPECT_TRUE(connection_.GetOneActiveServerConnectionId() == cid1 ||
+              connection_.GetOneActiveServerConnectionId() == cid2);
+}
+
+TEST_P(QuicConnectionTest, PatchMissingClientConnectionIdOntoAlternativePath) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  connection_.CreateConnectionIdManager();
+  connection_.set_client_connection_id(TestConnectionId(1));
+
+  // Set up the state after path probing.
+  const auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+  auto* alternative_path = QuicConnectionPeer::GetAlternativePath(&connection_);
+  QuicIpAddress new_host;
+  new_host.FromString("12.12.12.12");
+  alternative_path->self_address = default_path->self_address;
+  alternative_path->peer_address = QuicSocketAddress(new_host, 12345);
+  alternative_path->server_connection_id = TestConnectionId(3);
+  ASSERT_TRUE(alternative_path->client_connection_id.IsEmpty());
+  ASSERT_FALSE(alternative_path->stateless_reset_token.has_value());
+
+  QuicNewConnectionIdFrame frame;
+  frame.sequence_number = 1u;
+  frame.connection_id = TestConnectionId(5);
+  frame.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+  frame.retire_prior_to = 0u;
+  // New ID is patched onto the alternative path when the needed
+  // NEW_CONNECTION_ID frame is received after PATH_CHALLENGE frame.
+  connection_.OnNewConnectionIdFrame(frame);
+
+  ASSERT_EQ(alternative_path->client_connection_id, frame.connection_id);
+  ASSERT_EQ(alternative_path->stateless_reset_token,
+            frame.stateless_reset_token);
+}
+
+TEST_P(QuicConnectionTest, PatchMissingClientConnectionIdOntoDefaultPath) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  connection_.CreateConnectionIdManager();
+  connection_.set_client_connection_id(TestConnectionId(1));
+
+  // Set up the state after peer migration without probing.
+  auto* default_path = QuicConnectionPeer::GetDefaultPath(&connection_);
+  auto* alternative_path = QuicConnectionPeer::GetAlternativePath(&connection_);
+  auto* packet_creator = QuicConnectionPeer::GetPacketCreator(&connection_);
+  *alternative_path = std::move(*default_path);
+  QuicIpAddress new_host;
+  new_host.FromString("12.12.12.12");
+  default_path->self_address = default_path->self_address;
+  default_path->peer_address = QuicSocketAddress(new_host, 12345);
+  default_path->server_connection_id = TestConnectionId(3);
+  packet_creator->SetDefaultPeerAddress(default_path->peer_address);
+  packet_creator->SetServerConnectionId(default_path->server_connection_id);
+  packet_creator->SetClientConnectionId(default_path->client_connection_id);
+
+  ASSERT_FALSE(default_path->validated);
+  ASSERT_TRUE(default_path->client_connection_id.IsEmpty());
+  ASSERT_FALSE(default_path->stateless_reset_token.has_value());
+
+  QuicNewConnectionIdFrame frame;
+  frame.sequence_number = 1u;
+  frame.connection_id = TestConnectionId(5);
+  frame.stateless_reset_token =
+      QuicUtils::GenerateStatelessResetToken(frame.connection_id);
+  frame.retire_prior_to = 0u;
+  // New ID is patched onto the default path when the needed
+  // NEW_CONNECTION_ID frame is received after PATH_CHALLENGE frame.
+  connection_.OnNewConnectionIdFrame(frame);
+
+  ASSERT_EQ(default_path->client_connection_id, frame.connection_id);
+  ASSERT_EQ(default_path->stateless_reset_token, frame.stateless_reset_token);
+  ASSERT_EQ(packet_creator->GetDestinationConnectionId(), frame.connection_id);
+}
+
+TEST_P(QuicConnectionTest, ShouldGeneratePacketBlockedByMissingConnectionId) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  connection_.set_client_connection_id(TestConnectionId(1));
+  connection_.CreateConnectionIdManager();
+  if (version().SupportsAntiAmplificationLimit()) {
+    QuicConnectionPeer::SetAddressValidated(&connection_);
+  }
+
+  ASSERT_TRUE(
+      connection_.ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, NOT_HANDSHAKE));
+
+  QuicPacketCreator* packet_creator =
+      QuicConnectionPeer::GetPacketCreator(&connection_);
+  QuicIpAddress peer_host1;
+  peer_host1.FromString("12.12.12.12");
+  QuicSocketAddress peer_address1(peer_host1, 1235);
+
+  {
+    // No connection ID is available as context is created without any.
+    QuicPacketCreator::ScopedPeerAddressContext context(
+        packet_creator, peer_address1, EmptyQuicConnectionId(),
+        EmptyQuicConnectionId(),
+        /*update_connection_id=*/true);
+    ASSERT_FALSE(connection_.ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA,
+                                                  NOT_HANDSHAKE));
+  }
+  ASSERT_TRUE(
+      connection_.ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, NOT_HANDSHAKE));
+}
+
+// Regression test for b/182571515
+TEST_P(QuicConnectionTest, LostDataThenGetAcknowledged) {
+  set_perspective(Perspective::IS_SERVER);
+  if (!connection_.validate_client_address()) {
+    return;
+  }
+
+  QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+  if (version().SupportsAntiAmplificationLimit()) {
+    QuicConnectionPeer::SetAddressValidated(&connection_);
+  }
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  // Discard INITIAL key.
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.NeuterUnencryptedPackets();
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_CONFIRMED));
+
+  QuicPacketNumber last_packet;
+  // Send packets 1 to 4.
+  SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet);  // Packet 1
+  SendStreamDataToPeer(3, "foo", 3, NO_FIN, &last_packet);  // Packet 2
+  SendStreamDataToPeer(3, "foo", 6, NO_FIN, &last_packet);  // Packet 3
+  SendStreamDataToPeer(3, "foo", 9, NO_FIN, &last_packet);  // Packet 4
+
+  // Process a PING packet to set peer address.
+  ProcessFramePacket(QuicFrame(QuicPingFrame()));
+
+  // Process a packet containing a STREAM_FRAME and an ACK with changed peer
+  // address.
+  QuicFrames frames;
+  frames.push_back(QuicFrame(frame1_));
+  QuicAckFrame ack = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(5)}});
+  frames.push_back(QuicFrame(&ack));
+
+  EXPECT_CALL(visitor_, OnConnectionMigration(_)).Times(1);
+
+  // Invoke OnCanWrite.
+  EXPECT_CALL(visitor_, OnStreamFrame(_))
+      .WillOnce(
+          InvokeWithoutArgs(&notifier_, &SimpleSessionNotifier::OnCanWrite));
+  QuicIpAddress ip_address;
+  ASSERT_TRUE(ip_address.FromString("127.0.52.223"));
+  EXPECT_QUIC_BUG(ProcessFramesPacketWithAddresses(
+                      frames, kSelfAddress, QuicSocketAddress(ip_address, 1000),
+                      ENCRYPTION_FORWARD_SECURE),
+                  "Try to write mid packet processing");
+  EXPECT_EQ(1u, writer_->path_challenge_frames().size());
+  // Verify stream frame will not be retransmitted.
+  EXPECT_TRUE(writer_->stream_frames().empty());
+}
+
+TEST_P(QuicConnectionTest, PtoSendStreamData) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  if (QuicVersionUsesCryptoFrames(connection_.transport_version())) {
+    EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  }
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  // Send INITIAL 1.
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  // Send HANDSHAKE packets.
+  EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+  connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x03));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+
+  // Send half RTT packet with congestion control blocked.
+  EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(false));
+  connection_.SendStreamDataWithString(2, std::string(1500, 'a'), 0, NO_FIN);
+
+  ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  connection_.GetRetransmissionAlarm()->Fire();
+  // Verify INITIAL and HANDSHAKE get retransmitted.
+  EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
+}
+
+TEST_P(QuicConnectionTest, SendingZeroRttPacketsDoesNotPostponePTO) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  // Send CHLO.
+  connection_.SendCryptoStreamData();
+  ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  // Install 0-RTT keys.
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+
+  // CHLO gets acknowledged after 10ms.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10));
+  QuicAckFrame frame1 = InitAckFrame(1);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+  // Verify PTO is still armed since address validation is not finished yet.
+  ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  QuicTime pto_deadline = connection_.GetRetransmissionAlarm()->deadline();
+
+  // Send 0-RTT packet.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+  connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+  ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  // PTO deadline should be unchanged.
+  EXPECT_EQ(pto_deadline, connection_.GetRetransmissionAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, QueueingUndecryptablePacketsDoesntPostponePTO) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  config.set_max_undecryptable_packets(3);
+  connection_.SetFromConfig(config);
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE);
+  // Send CHLO.
+  connection_.SendCryptoStreamData();
+
+  // Send 0-RTT packet.
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+  connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+
+  // CHLO gets acknowledged after 10ms.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10));
+  QuicAckFrame frame1 = InitAckFrame(1);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+  // Verify PTO is still armed since address validation is not finished yet.
+  ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  QuicTime pto_deadline = connection_.GetRetransmissionAlarm()->deadline();
+
+  // Receive an undecryptable packets.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(0xFF));
+  ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+  // Verify PTO deadline is sooner.
+  EXPECT_GT(pto_deadline, connection_.GetRetransmissionAlarm()->deadline());
+  pto_deadline = connection_.GetRetransmissionAlarm()->deadline();
+
+  // PTO fires.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  clock_.AdvanceTime(pto_deadline - clock_.ApproximateNow());
+  connection_.GetRetransmissionAlarm()->Fire();
+  // Verify PTO is still armed since address validation is not finished yet.
+  ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  pto_deadline = connection_.GetRetransmissionAlarm()->deadline();
+
+  // Verify PTO deadline does not change.
+  ProcessDataPacketAtLevel(4, !kHasStopWaiting, ENCRYPTION_FORWARD_SECURE);
+  EXPECT_EQ(pto_deadline, connection_.GetRetransmissionAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, QueueUndecryptableHandshakePackets) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  config.set_max_undecryptable_packets(3);
+  connection_.SetFromConfig(config);
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  connection_.RemoveDecrypter(ENCRYPTION_HANDSHAKE);
+  // Send CHLO.
+  connection_.SendCryptoStreamData();
+
+  // Send 0-RTT packet.
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+  connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+  EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+
+  // Receive an undecryptable handshake packet.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+  peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                            std::make_unique<TaggingEncrypter>(0xFF));
+  ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_HANDSHAKE);
+  // Verify this handshake packet gets queued.
+  EXPECT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+}
+
+TEST_P(QuicConnectionTest, PingNotSentAt0RTTLevelWhenInitialAvailable) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  use_tagging_decrypter();
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+  // Send CHLO.
+  connection_.SendCryptoStreamData();
+  // Send 0-RTT packet.
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+  connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+
+  // CHLO gets acknowledged after 10ms.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10));
+  QuicAckFrame frame1 = InitAckFrame(1);
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  ProcessFramePacketAtLevel(1, QuicFrame(&frame1), ENCRYPTION_INITIAL);
+  // Verify PTO is still armed since address validation is not finished yet.
+  ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  QuicTime pto_deadline = connection_.GetRetransmissionAlarm()->deadline();
+
+  // PTO fires.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+  clock_.AdvanceTime(pto_deadline - clock_.ApproximateNow());
+  connection_.GetRetransmissionAlarm()->Fire();
+  // Verify the PING gets sent in ENCRYPTION_INITIAL.
+  EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+}
+
+TEST_P(QuicConnectionTest, AckElicitingFrames) {
+  if (!GetQuicReloadableFlag(
+          quic_remove_connection_migration_connection_option)) {
+    QuicConfig config;
+    config.SetConnectionOptionsToSend({kRVCM});
+    EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+    connection_.SetFromConfig(config);
+  }
+  if (!version().HasIetfQuicFrames() ||
+      !connection_.connection_migration_use_new_cid()) {
+    return;
+  }
+  EXPECT_CALL(visitor_, SendNewConnectionId(_)).Times(2);
+  EXPECT_CALL(visitor_, OnRstStream(_));
+  EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
+  EXPECT_CALL(visitor_, OnBlockedFrame(_));
+  EXPECT_CALL(visitor_, OnHandshakeDoneReceived());
+  EXPECT_CALL(visitor_, OnStreamFrame(_));
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  EXPECT_CALL(visitor_, OnMaxStreamsFrame(_));
+  EXPECT_CALL(visitor_, OnStreamsBlockedFrame(_));
+  EXPECT_CALL(visitor_, OnStopSendingFrame(_));
+  EXPECT_CALL(visitor_, OnMessageReceived(""));
+  EXPECT_CALL(visitor_, OnNewTokenReceived(""));
+
+  SetClientConnectionId(TestConnectionId(12));
+  connection_.CreateConnectionIdManager();
+  QuicConnectionPeer::GetSelfIssuedConnectionIdManager(&connection_)
+      ->MaybeSendNewConnectionIds();
+  connection_.set_can_receive_ack_frequency_frame();
+
+  QuicAckFrame ack_frame = InitAckFrame(1);
+  QuicRstStreamFrame rst_stream_frame;
+  QuicWindowUpdateFrame window_update_frame;
+  QuicPathChallengeFrame path_challenge_frame;
+  QuicNewConnectionIdFrame new_connection_id_frame;
+  QuicRetireConnectionIdFrame retire_connection_id_frame;
+  retire_connection_id_frame.sequence_number = 1u;
+  QuicStopSendingFrame stop_sending_frame;
+  QuicPathResponseFrame path_response_frame;
+  QuicMessageFrame message_frame;
+  QuicNewTokenFrame new_token_frame;
+  QuicAckFrequencyFrame ack_frequency_frame;
+  QuicBlockedFrame blocked_frame;
+  size_t packet_number = 1;
+
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+
+  for (uint8_t i = 0; i < NUM_FRAME_TYPES; ++i) {
+    QuicFrameType frame_type = static_cast<QuicFrameType>(i);
+    bool skipped = false;
+    QuicFrame frame;
+    QuicFrames frames;
+    // Add some padding to fullfill the min size requirement of header
+    // protection.
+    frames.push_back(QuicFrame(QuicPaddingFrame(10)));
+    switch (frame_type) {
+      case PADDING_FRAME:
+        frame = QuicFrame(QuicPaddingFrame(10));
+        break;
+      case MTU_DISCOVERY_FRAME:
+        frame = QuicFrame(QuicMtuDiscoveryFrame());
+        break;
+      case PING_FRAME:
+        frame = QuicFrame(QuicPingFrame());
+        break;
+      case MAX_STREAMS_FRAME:
+        frame = QuicFrame(QuicMaxStreamsFrame());
+        break;
+      case STOP_WAITING_FRAME:
+        // Not supported.
+        skipped = true;
+        break;
+      case STREAMS_BLOCKED_FRAME:
+        frame = QuicFrame(QuicStreamsBlockedFrame());
+        break;
+      case STREAM_FRAME:
+        frame = QuicFrame(QuicStreamFrame());
+        break;
+      case HANDSHAKE_DONE_FRAME:
+        frame = QuicFrame(QuicHandshakeDoneFrame());
+        break;
+      case ACK_FRAME:
+        frame = QuicFrame(&ack_frame);
+        break;
+      case RST_STREAM_FRAME:
+        frame = QuicFrame(&rst_stream_frame);
+        break;
+      case CONNECTION_CLOSE_FRAME:
+        // Do not test connection close.
+        skipped = true;
+        break;
+      case GOAWAY_FRAME:
+        // Does not exist in IETF QUIC.
+        skipped = true;
+        break;
+      case BLOCKED_FRAME:
+        frame = QuicFrame(blocked_frame);
+        break;
+      case WINDOW_UPDATE_FRAME:
+        frame = QuicFrame(window_update_frame);
+        break;
+      case PATH_CHALLENGE_FRAME:
+        frame = QuicFrame(&path_challenge_frame);
+        break;
+      case STOP_SENDING_FRAME:
+        frame = QuicFrame(stop_sending_frame);
+        break;
+      case NEW_CONNECTION_ID_FRAME:
+        frame = QuicFrame(&new_connection_id_frame);
+        break;
+      case RETIRE_CONNECTION_ID_FRAME:
+        frame = QuicFrame(&retire_connection_id_frame);
+        break;
+      case PATH_RESPONSE_FRAME:
+        frame = QuicFrame(&path_response_frame);
+        break;
+      case MESSAGE_FRAME:
+        frame = QuicFrame(&message_frame);
+        break;
+      case CRYPTO_FRAME:
+        // CRYPTO_FRAME is ack eliciting is covered by other tests.
+        skipped = true;
+        break;
+      case NEW_TOKEN_FRAME:
+        frame = QuicFrame(&new_token_frame);
+        break;
+      case ACK_FREQUENCY_FRAME:
+        frame = QuicFrame(&ack_frequency_frame);
+        break;
+      case NUM_FRAME_TYPES:
+        skipped = true;
+        break;
+    }
+    if (skipped) {
+      continue;
+    }
+    ASSERT_EQ(frame_type, frame.type);
+    frames.push_back(frame);
+    EXPECT_FALSE(connection_.HasPendingAcks());
+    // Process frame.
+    ProcessFramesPacketAtLevel(packet_number++, frames,
+                               ENCRYPTION_FORWARD_SECURE);
+    if (QuicUtils::IsAckElicitingFrame(frame_type)) {
+      ASSERT_TRUE(connection_.HasPendingAcks()) << frame;
+      // Flush ACK.
+      clock_.AdvanceTime(DefaultDelayedAckTime());
+      connection_.GetAckAlarm()->Fire();
+    }
+    EXPECT_FALSE(connection_.HasPendingAcks());
+    ASSERT_TRUE(connection_.connected());
+  }
+}
+
+TEST_P(QuicConnectionTest, ReceivedChloAndAck) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  QuicFrames frames;
+  QuicAckFrame ack_frame = InitAckFrame(1);
+  frames.push_back(MakeCryptoFrame());
+  frames.push_back(QuicFrame(&ack_frame));
+
+  EXPECT_CALL(visitor_, OnCryptoFrame(_))
+      .WillOnce(IgnoreResult(InvokeWithoutArgs(
+          &connection_, &TestConnection::SendCryptoStreamData)));
+  EXPECT_CALL(visitor_, BeforeConnectionCloseSent());
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  ProcessFramesPacketWithAddresses(frames, kSelfAddress, kPeerAddress,
+                                   ENCRYPTION_INITIAL);
+}
+
+// Regression test for b/201643321.
+TEST_P(QuicConnectionTest, FailedToRetransmitShlo) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+  // Received INITIAL 1.
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(0x02));
+
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x03));
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x04));
+  // Received ENCRYPTION_ZERO_RTT 1.
+  ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    // Send INITIAL 1.
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+    connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+    // Send HANDSHAKE 2.
+    EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+    connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_HANDSHAKE);
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    // Send half RTT data to exhaust amplification credit.
+    connection_.SendStreamDataWithString(0, std::string(100 * 1024, 'a'), 0,
+                                         NO_FIN);
+  }
+  // Received INITIAL 2.
+  ProcessCryptoPacketAtLevel(2, ENCRYPTION_INITIAL);
+  ASSERT_TRUE(connection_.HasPendingAcks());
+  // Verify ACK delay is 1ms.
+  EXPECT_EQ(clock_.Now() + kAlarmGranularity,
+            connection_.GetAckAlarm()->deadline());
+  // ACK is not throttled by amplification limit, and SHLO is bundled. Also
+  // HANDSHAKE + 1RTT packets get coalesced.
+  if (GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
+  } else {
+    EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+  }
+  // ACK alarm fires.
+  clock_.AdvanceTime(kAlarmGranularity);
+  connection_.GetAckAlarm()->Fire();
+  if (GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) {
+    // Verify 1-RTT packet is coalesced.
+    EXPECT_EQ(0x04040404u, writer_->final_bytes_of_last_packet());
+  } else {
+    // Verify HANDSHAKE packet is coalesced with INITIAL ACK + SHLO.
+    EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
+  }
+  // Only the first packet in the coalesced packet has been processed,
+  // verify SHLO is bundled with INITIAL ACK.
+  EXPECT_EQ(1u, writer_->ack_frames().size());
+  EXPECT_EQ(1u, writer_->crypto_frames().size());
+  // Process the coalesced HANDSHAKE packet.
+  ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+  auto packet = writer_->coalesced_packet()->Clone();
+  writer_->framer()->ProcessPacket(*packet);
+  EXPECT_EQ(0u, writer_->ack_frames().size());
+  EXPECT_EQ(1u, writer_->crypto_frames().size());
+  if (GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) {
+    // Process the coalesced 1-RTT packet.
+    ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+    packet = writer_->coalesced_packet()->Clone();
+    writer_->framer()->ProcessPacket(*packet);
+    EXPECT_EQ(0u, writer_->crypto_frames().size());
+    EXPECT_EQ(1u, writer_->stream_frames().size());
+  } else {
+    ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+  }
+
+  // Received INITIAL 3.
+  EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+  ProcessCryptoPacketAtLevel(3, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+}
+
+// Regression test for b/216133388.
+TEST_P(QuicConnectionTest, FailedToConsumeCryptoData) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+  // Received INITIAL 1.
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+  EXPECT_TRUE(connection_.HasPendingAcks());
+
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(0x02));
+
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x03));
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypter>(0x03));
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x04));
+  // Received ENCRYPTION_ZERO_RTT 1.
+  ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    // Send INITIAL 1.
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+    connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+    // Send HANDSHAKE 2.
+    EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+    connection_.SendCryptoDataWithString(std::string(200, 'a'), 0,
+                                         ENCRYPTION_HANDSHAKE);
+    // Send 1-RTT 3.
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    connection_.SendStreamDataWithString(0, std::string(40, 'a'), 0, NO_FIN);
+  }
+  // Received HANDSHAKE Ping, hence discard INITIAL keys.
+  peer_framer_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                            std::make_unique<TaggingEncrypter>(0x03));
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.NeuterUnencryptedPackets();
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_HANDSHAKE);
+  clock_.AdvanceTime(kAlarmGranularity);
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    // Sending this 1-RTT data would leave the coalescer only have space to
+    // accommodate the HANDSHAKE ACK. The crypto data cannot be bundled with the
+    // ACK.
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    connection_.SendStreamDataWithString(0, std::string(1395, 'a'), 40, NO_FIN);
+  }
+  // Verify retransmission alarm is armed.
+  ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+  const QuicTime retransmission_time =
+      connection_.GetRetransmissionAlarm()->deadline();
+  clock_.AdvanceTime(retransmission_time - clock_.Now());
+  connection_.GetRetransmissionAlarm()->Fire();
+
+  if (GetQuicRestartFlag(quic_set_packet_state_if_all_data_retransmitted)) {
+    // Verify the retransmission is a coalesced packet with HANDSHAKE 2 and
+    // 1-RTT 3.
+    EXPECT_EQ(0x04040404u, writer_->final_bytes_of_last_packet());
+    // Only the first packet in the coalesced packet has been processed.
+    EXPECT_EQ(1u, writer_->crypto_frames().size());
+    // Process the coalesced 1-RTT packet.
+    ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+    auto packet = writer_->coalesced_packet()->Clone();
+    writer_->framer()->ProcessPacket(*packet);
+    EXPECT_EQ(1u, writer_->stream_frames().size());
+    ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+  } else {
+    // Although packet 2 has not been retransmitted, it has been marked PTOed
+    // and a HANDHSAKE PING gets retransmitted.
+    EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
+    EXPECT_EQ(1u, writer_->ping_frames().size());
+    EXPECT_TRUE(writer_->stream_frames().empty());
+    ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+  }
+  // Verify retransmission alarm is still armed.
+  ASSERT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest,
+       RTTSampleDoesNotIncludeQueuingDelayWithPostponedAckProcessing) {
+  // An endpoint might postpone the processing of ACK when the corresponding
+  // decryption key is not available. This test makes sure the RTT sample does
+  // not include the queuing delay.
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  config.set_max_undecryptable_packets(3);
+  connection_.SetFromConfig(config);
+
+  // 30ms RTT.
+  const QuicTime::Delta kTestRTT = QuicTime::Delta::FromMilliseconds(30);
+  RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+  rtt_stats->UpdateRtt(kTestRTT, QuicTime::Delta::Zero(), QuicTime::Zero());
+  use_tagging_decrypter();
+
+  // Send 0-RTT packet.
+  connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE);
+  connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                           std::make_unique<TaggingEncrypter>(0x02));
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+  connection_.SendStreamDataWithString(0, std::string(10, 'a'), 0, FIN);
+
+  // Receives 1-RTT ACK for 0-RTT packet after RTT + ack_delay.
+  clock_.AdvanceTime(
+      kTestRTT + QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs));
+  EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(0x01));
+  QuicAckFrame ack_frame = InitAckFrame(1);
+  // Peer reported ACK delay.
+  ack_frame.ack_delay_time =
+      QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs);
+  QuicFrames frames;
+  frames.push_back(QuicFrame(&ack_frame));
+  QuicPacketHeader header =
+      ConstructPacketHeader(30, ENCRYPTION_FORWARD_SECURE);
+  std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+
+  char buffer[kMaxOutgoingPacketSize];
+  size_t encrypted_length = peer_framer_.EncryptPayload(
+      ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(30), *packet, buffer,
+      kMaxOutgoingPacketSize);
+  connection_.ProcessUdpPacket(
+      kSelfAddress, kPeerAddress,
+      QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+  if (connection_.GetSendAlarm()->IsSet()) {
+    connection_.GetSendAlarm()->Fire();
+  }
+  ASSERT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+
+  // Assume 1-RTT decrypter is available after 10ms.
+  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10));
+  EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+  SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+               std::make_unique<StrictTaggingDecrypter>(0x01));
+  ASSERT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+  connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+  // Verify RTT sample does not include queueing delay.
+  EXPECT_EQ(rtt_stats->latest_rtt(), kTestRTT);
+}
+
+// Regression test for b/112480134.
+TEST_P(QuicConnectionTest, NoExtraPaddingInReserializedInitial) {
+  // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+  if (!IsDefaultTestConfiguration() ||
+      !connection_.version().CanSendCoalescedPackets()) {
+    return;
+  }
+
+  set_perspective(Perspective::IS_SERVER);
+  MockQuicConnectionDebugVisitor debug_visitor;
+  connection_.set_debug_visitor(&debug_visitor);
+
+  uint64_t debug_visitor_sent_count = 0;
+  EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _, _, _, _))
+      .WillRepeatedly([&]() { debug_visitor_sent_count++; });
+
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+
+  // Received INITIAL 1.
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(0x02));
+
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x03));
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypter>(0x03));
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x04));
+
+  // Received ENCRYPTION_ZERO_RTT 2.
+  ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    // Send INITIAL 1.
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+    connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+    // Send HANDSHAKE 2.
+    EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+    connection_.SendCryptoDataWithString(std::string(200, 'a'), 0,
+                                         ENCRYPTION_HANDSHAKE);
+    // Send 1-RTT 3.
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    connection_.SendStreamDataWithString(0, std::string(400, 'b'), 0, NO_FIN);
+  }
+
+  // Arrange the stream data to be sent in response to ENCRYPTION_INITIAL 3.
+  const std::string data4(1000, '4');  // Data to send in stream id 4
+  const std::string data8(3000, '8');  // Data to send in stream id 8
+  EXPECT_CALL(visitor_, OnCanWrite()).WillOnce([&]() {
+    connection_.producer()->SaveStreamData(4, data4);
+    connection_.producer()->SaveStreamData(8, data8);
+
+    notifier_.WriteOrBufferData(4, data4.size(), FIN_AND_PADDING);
+
+    // This should trigger FlushCoalescedPacket.
+    notifier_.WriteOrBufferData(8, data8.size(), FIN);
+  });
+
+  QuicByteCount pending_padding_after_serialize_2nd_1rtt_packet = 0;
+  QuicPacketCount num_1rtt_packets_serialized = 0;
+  EXPECT_CALL(connection_, OnSerializedPacket(_))
+      .WillRepeatedly([&](SerializedPacket packet) {
+        if (packet.encryption_level == ENCRYPTION_FORWARD_SECURE) {
+          num_1rtt_packets_serialized++;
+          if (num_1rtt_packets_serialized == 2) {
+            pending_padding_after_serialize_2nd_1rtt_packet =
+                connection_.packet_creator().pending_padding_bytes();
+          }
+        }
+        connection_.QuicConnection::OnSerializedPacket(std::move(packet));
+      });
+
+  // Server receives INITIAL 3, this will serialzie FS 7 (stream 4, stream 8),
+  // which will trigger a flush of a coalesced packet consists of INITIAL 4,
+  // HS 5 and FS 6 (stream 4).
+  if (GetQuicReloadableFlag(
+          quic_close_connection_if_fail_to_serialzie_coalesced_packet2)) {
+    // Expect no QUIC_BUG.
+    ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_INITIAL);
+    EXPECT_EQ(
+        debug_visitor_sent_count,
+        connection_.sent_packet_manager().GetLargestSentPacket().ToUint64());
+  } else {
+    // Expect QUIC_BUG due to extra padding.
+    EXPECT_QUIC_BUG(
+        { ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_INITIAL); },
+        "Reserialize initial packet in coalescer has unexpected size");
+    EXPECT_EQ(
+        debug_visitor_sent_count + 1,
+        connection_.sent_packet_manager().GetLargestSentPacket().ToUint64());
+  }
+
+  // The error only happens if after serializing the second 1RTT packet(pkt #7),
+  // the pending padding bytes is non zero.
+  EXPECT_GT(pending_padding_after_serialize_2nd_1rtt_packet, 0u);
+  EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, ReportedAckDelayIncludesQueuingDelay) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+  QuicConfig config;
+  config.set_max_undecryptable_packets(3);
+  connection_.SetFromConfig(config);
+
+  // Receive 1-RTT ack-eliciting packet while keys are not available.
+  connection_.RemoveDecrypter(ENCRYPTION_FORWARD_SECURE);
+  peer_framer_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                            std::make_unique<TaggingEncrypter>(0x01));
+  QuicFrames frames;
+  frames.push_back(QuicFrame(QuicPingFrame()));
+  frames.push_back(QuicFrame(QuicPaddingFrame(100)));
+  QuicPacketHeader header =
+      ConstructPacketHeader(30, ENCRYPTION_FORWARD_SECURE);
+  std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+
+  char buffer[kMaxOutgoingPacketSize];
+  size_t encrypted_length = peer_framer_.EncryptPayload(
+      ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(30), *packet, buffer,
+      kMaxOutgoingPacketSize);
+  EXPECT_EQ(0u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+  const QuicTime packet_receipt_time = clock_.Now();
+  connection_.ProcessUdpPacket(
+      kSelfAddress, kPeerAddress,
+      QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+  if (connection_.GetSendAlarm()->IsSet()) {
+    connection_.GetSendAlarm()->Fire();
+  }
+  ASSERT_EQ(1u, QuicConnectionPeer::NumUndecryptablePackets(&connection_));
+  // 1-RTT keys become available after 10ms.
+  const QuicTime::Delta kQueuingDelay = QuicTime::Delta::FromMilliseconds(10);
+  clock_.AdvanceTime(kQueuingDelay);
+  EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  SetDecrypter(ENCRYPTION_FORWARD_SECURE,
+               std::make_unique<StrictTaggingDecrypter>(0x01));
+  ASSERT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+
+  connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+  ASSERT_TRUE(connection_.HasPendingAcks());
+  if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) {
+    EXPECT_EQ(packet_receipt_time + DefaultDelayedAckTime(),
+              connection_.GetAckAlarm()->deadline());
+    clock_.AdvanceTime(packet_receipt_time + DefaultDelayedAckTime() -
+                       clock_.Now());
+  } else {
+    EXPECT_EQ(clock_.Now() + DefaultDelayedAckTime(),
+              connection_.GetAckAlarm()->deadline());
+    clock_.AdvanceTime(DefaultDelayedAckTime());
+  }
+  // Fire ACK alarm.
+  connection_.GetAckAlarm()->Fire();
+  ASSERT_EQ(1u, writer_->ack_frames().size());
+  if (GetQuicReloadableFlag(quic_update_ack_timeout_on_receipt_time)) {
+    // Verify ACK delay time does not include queuing delay.
+    EXPECT_EQ(DefaultDelayedAckTime(), writer_->ack_frames()[0].ack_delay_time);
+  } else {
+    // Verify ACK delay time = queuing delay + ack delay
+    EXPECT_EQ(DefaultDelayedAckTime() + kQueuingDelay,
+              writer_->ack_frames()[0].ack_delay_time);
+  }
+}
+
+TEST_P(QuicConnectionTest, CoalesceOneRTTPacketWithInitialAndHandshakePackets) {
+  if (!version().HasIetfQuicFrames()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+
+  // Received INITIAL 1.
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+
+  peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+                            std::make_unique<TaggingEncrypter>(0x02));
+
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x03));
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypter>(0x03));
+  SetDecrypter(ENCRYPTION_ZERO_RTT,
+               std::make_unique<StrictTaggingDecrypter>(0x02));
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x04));
+
+  // Received ENCRYPTION_ZERO_RTT 2.
+  ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    // Send INITIAL 1.
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+    connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+    // Send HANDSHAKE 2.
+    EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+    connection_.SendCryptoDataWithString(std::string(200, 'a'), 0,
+                                         ENCRYPTION_HANDSHAKE);
+    // Send 1-RTT data.
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    connection_.SendStreamDataWithString(0, std::string(2000, 'b'), 0, FIN);
+  }
+  // Verify coalesced packet [INITIAL 1 + HANDSHAKE 2 + part of 1-RTT data] +
+  // rest of 1-RTT data get sent.
+  EXPECT_EQ(2u, writer_->packets_write_attempts());
+
+  // Received ENCRYPTION_INITIAL 3.
+  ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_INITIAL);
+
+  // Verify a coalesced packet gets sent.
+  EXPECT_EQ(3u, writer_->packets_write_attempts());
+
+  // Only the first INITIAL packet has been processed yet.
+  EXPECT_EQ(1u, writer_->ack_frames().size());
+  EXPECT_EQ(1u, writer_->crypto_frames().size());
+
+  // Process HANDSHAKE packet.
+  ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+  auto packet = writer_->coalesced_packet()->Clone();
+  writer_->framer()->ProcessPacket(*packet);
+  EXPECT_EQ(1u, writer_->crypto_frames().size());
+  if (!GetQuicReloadableFlag(quic_flush_after_coalesce_higher_space_packets)) {
+    ASSERT_TRUE(writer_->coalesced_packet() == nullptr);
+    return;
+  }
+  // Process 1-RTT packet.
+  ASSERT_TRUE(writer_->coalesced_packet() != nullptr);
+  packet = writer_->coalesced_packet()->Clone();
+  writer_->framer()->ProcessPacket(*packet);
+  EXPECT_EQ(1u, writer_->stream_frames().size());
+}
+
+// Regression test for b/180103273
+TEST_P(QuicConnectionTest, SendMultipleConnectionCloses) {
+  if (!version().HasIetfQuicFrames() ||
+      !GetQuicReloadableFlag(quic_default_enable_5rto_blackhole_detection2)) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  // Finish handshake.
+  QuicConnectionPeer::SetAddressValidated(&connection_);
+  connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+  notifier_.NeuterUnencryptedData();
+  connection_.NeuterUnencryptedPackets();
+  connection_.OnHandshakeComplete();
+  connection_.RemoveEncrypter(ENCRYPTION_INITIAL);
+  connection_.RemoveEncrypter(ENCRYPTION_HANDSHAKE);
+  EXPECT_CALL(visitor_, GetHandshakeState())
+      .WillRepeatedly(Return(HANDSHAKE_COMPLETE));
+
+  SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+  ASSERT_TRUE(connection_.BlackholeDetectionInProgress());
+  // Verify BeforeConnectionCloseSent gets called twice while OnConnectionClosed
+  // is called once.
+  EXPECT_CALL(visitor_, BeforeConnectionCloseSent()).Times(2);
+  EXPECT_CALL(visitor_, OnConnectionClosed(_, _));
+  // Send connection close w/o closing connection.
+  QuicConnectionPeer::SendConnectionClosePacket(
+      &connection_, INTERNAL_ERROR, QUIC_INTERNAL_ERROR, "internal error");
+  // Fire blackhole detection alarm.
+  EXPECT_QUIC_BUG(connection_.GetBlackholeDetectorAlarm()->Fire(),
+                  "Already sent connection close");
+}
+
+// Regression test for b/157895910.
+TEST_P(QuicConnectionTest, EarliestSentTimeNotInitializedWhenPtoFires) {
+  if (!connection_.SupportsMultiplePacketNumberSpaces()) {
+    return;
+  }
+  set_perspective(Perspective::IS_SERVER);
+  EXPECT_CALL(visitor_, OnCryptoFrame(_)).Times(AnyNumber());
+  EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+  use_tagging_decrypter();
+
+  // Received INITIAL 1.
+  ProcessCryptoPacketAtLevel(1, ENCRYPTION_INITIAL);
+  connection_.SetEncrypter(ENCRYPTION_INITIAL,
+                           std::make_unique<TaggingEncrypter>(0x01));
+  connection_.SetEncrypter(ENCRYPTION_HANDSHAKE,
+                           std::make_unique<TaggingEncrypter>(0x03));
+  SetDecrypter(ENCRYPTION_HANDSHAKE,
+               std::make_unique<StrictTaggingDecrypter>(0x03));
+  connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+                           std::make_unique<TaggingEncrypter>(0x04));
+  {
+    QuicConnection::ScopedPacketFlusher flusher(&connection_);
+    // Send INITIAL 1.
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
+    connection_.SendCryptoDataWithString("foo", 0, ENCRYPTION_INITIAL);
+    // Send HANDSHAKE 2.
+    EXPECT_CALL(visitor_, OnHandshakePacketSent()).Times(1);
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_HANDSHAKE);
+    connection_.SendCryptoDataWithString(std::string(200, 'a'), 0,
+                                         ENCRYPTION_HANDSHAKE);
+    // Send half RTT data.
+    connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+    connection_.SendStreamDataWithString(0, std::string(2000, 'b'), 0, FIN);
+  }
+
+  // Received ACKs for both INITIAL and HANDSHAKE packets.
+  EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _))
+      .Times(AnyNumber());
+  QuicFrames frames1;
+  QuicAckFrame ack_frame1 = InitAckFrame(1);
+  frames1.push_back(QuicFrame(&ack_frame1));
+
+  QuicFrames frames2;
+  QuicAckFrame ack_frame2 =
+      InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+  frames2.push_back(QuicFrame(&ack_frame2));
+  ProcessCoalescedPacket(
+      {{2, frames1, ENCRYPTION_INITIAL}, {3, frames2, ENCRYPTION_HANDSHAKE}});
+  // Verify PTO is not armed given the only outstanding data is half RTT data.
+  EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+}  // namespace
+}  // namespace test
+}  // namespace quic