Project import generated by Copybara.

PiperOrigin-RevId: 237361882
Change-Id: I109a68f44db867b20f8c6a7732b0ce657133e52a
diff --git a/quic/core/quic_interval_set.h b/quic/core/quic_interval_set.h
new file mode 100644
index 0000000..e2ca7a5
--- /dev/null
+++ b/quic/core/quic_interval_set.h
@@ -0,0 +1,913 @@
+// Copyright (c) 2019 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_
+#define QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_
+
+// QuicIntervalSet<T> is a data structure used to represent a sorted set of
+// non-empty, non-adjacent, and mutually disjoint intervals. Mutations to an
+// interval set preserve these properties, altering the set as needed. For
+// example, adding [2, 3) to a set containing only [1, 2) would result in the
+// set containing the single interval [1, 3).
+//
+// Supported operations include testing whether an Interval is contained in the
+// QuicIntervalSet, comparing two QuicIntervalSets, and performing
+// QuicIntervalSet union, intersection, and difference.
+//
+// QuicIntervalSet maintains the minimum number of entries needed to represent
+// the set of underlying intervals. When the QuicIntervalSet is modified (e.g.
+// due to an Add operation), other interval entries may be coalesced, removed,
+// or otherwise modified in order to maintain this invariant. The intervals are
+// maintained in sorted order, by ascending min() value.
+//
+// The reader is cautioned to beware of the terminology used here: this library
+// uses the terms "min" and "max" rather than "begin" and "end" as is
+// conventional for the STL. The terminology [min, max) refers to the half-open
+// interval which (if the interval is not empty) contains min but does not
+// contain max. An interval is considered empty if min >= max.
+//
+// T is required to be default- and copy-constructible, to have an assignment
+// operator, a difference operator (operator-()), and the full complement of
+// comparison operators (<, <=, ==, !=, >=, >). These requirements are inherited
+// from value_type.
+//
+// QuicIntervalSet has constant-time move operations.
+//
+//
+// Examples:
+//   QuicIntervalSet<int> intervals;
+//   intervals.Add(Interval<int>(10, 20));
+//   intervals.Add(Interval<int>(30, 40));
+//   // intervals contains [10,20) and [30,40).
+//   intervals.Add(Interval<int>(15, 35));
+//   // intervals has been coalesced. It now contains the single range [10,40).
+//   EXPECT_EQ(1, intervals.Size());
+//   EXPECT_TRUE(intervals.Contains(Interval<int>(10, 40)));
+//
+//   intervals.Difference(Interval<int>(10, 20));
+//   // intervals should now contain the single range [20, 40).
+//   EXPECT_EQ(1, intervals.Size());
+//   EXPECT_TRUE(intervals.Contains(Interval<int>(20, 40)));
+
+#include <stddef.h>
+#include <algorithm>
+#include <initializer_list>
+#include <set>
+#include <utility>
+#include <vector>
+
+#include "net/third_party/quiche/src/quic/core/quic_interval.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_logging.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_string.h"
+
+namespace quic {
+
+template <typename T>
+class QuicIntervalSet {
+ public:
+  typedef QuicInterval<T> value_type;
+
+ private:
+  struct IntervalLess {
+    bool operator()(const value_type& a, const value_type& b) const;
+  };
+  typedef std::set<value_type, IntervalLess> Set;
+
+ public:
+  typedef typename Set::const_iterator const_iterator;
+  typedef typename Set::const_reverse_iterator const_reverse_iterator;
+
+  // Instantiates an empty QuicIntervalSet.
+  QuicIntervalSet() {}
+
+  // Instantiates an QuicIntervalSet containing exactly one initial half-open
+  // interval [min, max), unless the given interval is empty, in which case the
+  // QuicIntervalSet will be empty.
+  explicit QuicIntervalSet(const value_type& interval) { Add(interval); }
+
+  // Instantiates an QuicIntervalSet containing the half-open interval [min,
+  // max).
+  QuicIntervalSet(const T& min, const T& max) { Add(min, max); }
+
+  QuicIntervalSet(std::initializer_list<value_type> il) { assign(il); }
+
+  // Clears this QuicIntervalSet.
+  void Clear() { intervals_.clear(); }
+
+  // Returns the number of disjoint intervals contained in this QuicIntervalSet.
+  size_t Size() const { return intervals_.size(); }
+
+  // Returns the smallest interval that contains all intervals in this
+  // QuicIntervalSet, or the empty interval if the set is empty.
+  value_type SpanningInterval() const;
+
+  // Adds "interval" to this QuicIntervalSet. Adding the empty interval has no
+  // effect.
+  void Add(const value_type& interval);
+
+  // Adds the interval [min, max) to this QuicIntervalSet. Adding the empty
+  // interval has no effect.
+  void Add(const T& min, const T& max) { Add(value_type(min, max)); }
+
+  // Same semantics as Add(const value_type&), but optimized for the case where
+  // rbegin()->min() <= |interval|.min() <= rbegin()->max().
+  void AddOptimizedForAppend(const value_type& interval) {
+    if (Empty()) {
+      Add(interval);
+      return;
+    }
+
+    const_reverse_iterator last_interval = intervals_.rbegin();
+
+    // If interval.min() is outside of [last_interval->min, last_interval->max],
+    // we can not simply extend last_interval->max.
+    if (interval.min() < last_interval->min() ||
+        interval.min() > last_interval->max()) {
+      Add(interval);
+      return;
+    }
+
+    if (interval.max() <= last_interval->max()) {
+      // interval is fully contained by last_interval.
+      return;
+    }
+
+    // Extend last_interval.max to interval.max, in place.
+    //
+    // Set does not allow in-place updates due to the potential of violating its
+    // ordering requirements. But we know setting the max of the last interval
+    // is safe w.r.t set ordering and other invariants of QuicIntervalSet, so we
+    // force an in-place update for performance.
+    const_cast<value_type*>(&(*last_interval))->SetMax(interval.max());
+  }
+
+  // Same semantics as Add(const T&, const T&), but optimized for the case where
+  // rbegin()->max() == |min|.
+  void AddOptimizedForAppend(const T& min, const T& max) {
+    AddOptimizedForAppend(value_type(min, max));
+  }
+
+  // TODO(wub): Similar to AddOptimizedForAppend, we can also have a
+  // AddOptimizedForPrepend if there is a use case.
+
+  // Returns true if this QuicIntervalSet is empty.
+  bool Empty() const { return intervals_.empty(); }
+
+  // Returns true if any interval in this QuicIntervalSet contains the indicated
+  // value.
+  bool Contains(const T& value) const;
+
+  // Returns true if there is some interval in this QuicIntervalSet that wholly
+  // contains the given interval. An interval O "wholly contains" a non-empty
+  // interval I if O.Contains(p) is true for every p in I. This is the same
+  // definition used by value_type::Contains(). This method returns false on
+  // the empty interval, due to a (perhaps unintuitive) convention inherited
+  // from value_type.
+  // Example:
+  //   Assume an QuicIntervalSet containing the entries { [10,20), [30,40) }.
+  //   Contains(Interval(15, 16)) returns true, because [10,20) contains
+  //   [15,16). However, Contains(Interval(15, 35)) returns false.
+  bool Contains(const value_type& interval) const;
+
+  // Returns true if for each interval in "other", there is some (possibly
+  // different) interval in this QuicIntervalSet which wholly contains it. See
+  // Contains(const value_type& interval) for the meaning of "wholly contains".
+  // Perhaps unintuitively, this method returns false if "other" is the empty
+  // set. The algorithmic complexity of this method is O(other.Size() *
+  // log(this->Size())). The method could be rewritten to run in O(other.Size()
+  // + this->Size()), and this alternative could be implemented as a free
+  // function using the public API.
+  bool Contains(const QuicIntervalSet<T>& other) const;
+
+  // Returns true if there is some interval in this QuicIntervalSet that wholly
+  // contains the interval [min, max). See Contains(const value_type&).
+  bool Contains(const T& min, const T& max) const {
+    return Contains(value_type(min, max));
+  }
+
+  // Returns true if for some interval in "other", there is some interval in
+  // this QuicIntervalSet that intersects with it. See value_type::Intersects()
+  // for the definition of interval intersection.
+  bool Intersects(const QuicIntervalSet& other) const;
+
+  // Returns an iterator to the value_type in the QuicIntervalSet that contains
+  // the given value. In other words, returns an iterator to the unique interval
+  // [min, max) in the QuicIntervalSet that has the property min <= value < max.
+  // If there is no such interval, this method returns end().
+  const_iterator Find(const T& value) const;
+
+  // Returns an iterator to the value_type in the QuicIntervalSet that wholly
+  // contains the given interval. In other words, returns an iterator to the
+  // unique interval outer in the QuicIntervalSet that has the property that
+  // outer.Contains(interval). If there is no such interval, or if interval is
+  // empty, returns end().
+  const_iterator Find(const value_type& interval) const;
+
+  // Returns an iterator to the value_type in the QuicIntervalSet that wholly
+  // contains [min, max). In other words, returns an iterator to the unique
+  // interval outer in the QuicIntervalSet that has the property that
+  // outer.Contains(Interval<T>(min, max)). If there is no such interval, or if
+  // interval is empty, returns end().
+  const_iterator Find(const T& min, const T& max) const {
+    return Find(value_type(min, max));
+  }
+
+  // Returns an iterator pointing to the first value_type which contains or
+  // goes after the given value.
+  //
+  // Example:
+  //   [10, 20)  [30, 40)
+  //   ^                    LowerBound(10)
+  //   ^                    LowerBound(15)
+  //             ^          LowerBound(20)
+  //             ^          LowerBound(25)
+  const_iterator LowerBound(const T& value) const;
+
+  // Returns an iterator pointing to the first value_type which goes after
+  // the given value.
+  //
+  // Example:
+  //   [10, 20)  [30, 40)
+  //             ^          UpperBound(10)
+  //             ^          UpperBound(15)
+  //             ^          UpperBound(20)
+  //             ^          UpperBound(25)
+  const_iterator UpperBound(const T& value) const;
+
+  // Returns true if every value within the passed interval is not Contained
+  // within the QuicIntervalSet.
+  // Note that empty intervals are always considered disjoint from the
+  // QuicIntervalSet (even though the QuicIntervalSet doesn't `Contain` them).
+  bool IsDisjoint(const value_type& interval) const;
+
+  // Merges all the values contained in "other" into this QuicIntervalSet.
+  void Union(const QuicIntervalSet& other);
+
+  // Modifies this QuicIntervalSet so that it contains only those values that
+  // are currently present both in *this and in the QuicIntervalSet "other".
+  void Intersection(const QuicIntervalSet& other);
+
+  // Mutates this QuicIntervalSet so that it contains only those values that are
+  // currently in *this but not in "interval".
+  void Difference(const value_type& interval);
+
+  // Mutates this QuicIntervalSet so that it contains only those values that are
+  // currently in *this but not in the interval [min, max).
+  void Difference(const T& min, const T& max);
+
+  // Mutates this QuicIntervalSet so that it contains only those values that are
+  // currently in *this but not in the QuicIntervalSet "other".
+  void Difference(const QuicIntervalSet& other);
+
+  // Mutates this QuicIntervalSet so that it contains only those values that are
+  // in [min, max) but not currently in *this.
+  void Complement(const T& min, const T& max);
+
+  // QuicIntervalSet's begin() iterator. The invariants of QuicIntervalSet
+  // guarantee that for each entry e in the set, e.min() < e.max() (because the
+  // entries are non-empty) and for each entry f that appears later in the set,
+  // e.max() < f.min() (because the entries are ordered, pairwise-disjoint, and
+  // non-adjacent). Modifications to this QuicIntervalSet invalidate these
+  // iterators.
+  const_iterator begin() const { return intervals_.begin(); }
+
+  // QuicIntervalSet's end() iterator.
+  const_iterator end() const { return intervals_.end(); }
+
+  // QuicIntervalSet's rbegin() and rend() iterators. Iterator invalidation
+  // semantics are the same as those for begin() / end().
+  const_reverse_iterator rbegin() const { return intervals_.rbegin(); }
+
+  const_reverse_iterator rend() const { return intervals_.rend(); }
+
+  template <typename Iter>
+  void assign(Iter first, Iter last) {
+    Clear();
+    for (; first != last; ++first)
+      Add(*first);
+  }
+
+  void assign(std::initializer_list<value_type> il) {
+    assign(il.begin(), il.end());
+  }
+
+  // Returns a human-readable representation of this set. This will typically be
+  // (though is not guaranteed to be) of the form
+  //   "[a1, b1) [a2, b2) ... [an, bn)"
+  // where the intervals are in the same order as given by traversal from
+  // begin() to end(). This representation is intended for human consumption;
+  // computer programs should not rely on the output being in exactly this form.
+  QuicString ToString() const;
+
+  QuicIntervalSet& operator=(std::initializer_list<value_type> il) {
+    assign(il.begin(), il.end());
+    return *this;
+  }
+
+  // Swap this QuicIntervalSet with *other. This is a constant-time operation.
+  void Swap(QuicIntervalSet<T>* other) { intervals_.swap(other->intervals_); }
+
+  friend bool operator==(const QuicIntervalSet& a, const QuicIntervalSet& b) {
+    return a.Size() == b.Size() &&
+           std::equal(a.begin(), a.end(), b.begin(), NonemptyIntervalEq());
+  }
+
+  friend bool operator!=(const QuicIntervalSet& a, const QuicIntervalSet& b) {
+    return !(a == b);
+  }
+
+ private:
+  // Simple member-wise equality, since all intervals are non-empty.
+  struct NonemptyIntervalEq {
+    bool operator()(const value_type& a, const value_type& b) const {
+      return a.min() == b.min() && a.max() == b.max();
+    }
+  };
+
+  // Removes overlapping ranges and coalesces adjacent intervals as needed.
+  void Compact(const typename Set::iterator& begin,
+               const typename Set::iterator& end);
+
+  // Returns true if this set is valid (i.e. all intervals in it are non-empty,
+  // non-adjacent, and mutually disjoint). Currently this is used as an
+  // integrity check by the Intersection() and Difference() methods, but is only
+  // invoked for debug builds (via DCHECK).
+  bool Valid() const;
+
+  // Finds the first interval that potentially intersects 'other'.
+  const_iterator FindIntersectionCandidate(const QuicIntervalSet& other) const;
+
+  // Finds the first interval that potentially intersects 'interval'.
+  const_iterator FindIntersectionCandidate(const value_type& interval) const;
+
+  // Helper for Intersection() and Difference(): Finds the next pair of
+  // intervals from 'x' and 'y' that intersect. 'mine' is an iterator
+  // over x->intervals_. 'theirs' is an iterator over y.intervals_. 'mine'
+  // and 'theirs' are advanced until an intersecting pair is found.
+  // Non-intersecting intervals (aka "holes") from x->intervals_ can be
+  // optionally erased by "on_hole".
+  template <typename X, typename Func>
+  static bool FindNextIntersectingPairImpl(X* x,
+                                           const QuicIntervalSet& y,
+                                           const_iterator* mine,
+                                           const_iterator* theirs,
+                                           Func on_hole);
+
+  // The variant of the above method that doesn't mutate this QuicIntervalSet.
+  bool FindNextIntersectingPair(const QuicIntervalSet& other,
+                                const_iterator* mine,
+                                const_iterator* theirs) const {
+    return FindNextIntersectingPairImpl(
+        this, other, mine, theirs,
+        [](const QuicIntervalSet*, const_iterator, const_iterator) {});
+  }
+
+  // The variant of the above method that mutates this QuicIntervalSet by
+  // erasing holes.
+  bool FindNextIntersectingPairAndEraseHoles(const QuicIntervalSet& other,
+                                             const_iterator* mine,
+                                             const_iterator* theirs) {
+    return FindNextIntersectingPairImpl(
+        this, other, mine, theirs,
+        [](QuicIntervalSet* x, const_iterator from, const_iterator to) {
+          x->intervals_.erase(from, to);
+        });
+  }
+
+  // The representation for the intervals. The intervals in this set are
+  // non-empty, pairwise-disjoint, non-adjacent and ordered in ascending order
+  // by min().
+  Set intervals_;
+};
+
+template <typename T>
+auto operator<<(std::ostream& out, const QuicIntervalSet<T>& seq)
+    -> decltype(out << *seq.begin()) {
+  out << "{";
+  for (const auto& interval : seq) {
+    out << " " << interval;
+  }
+  out << " }";
+
+  return out;
+}
+
+template <typename T>
+void swap(QuicIntervalSet<T>& x, QuicIntervalSet<T>& y);
+
+//==============================================================================
+// Implementation details: Clients can stop reading here.
+
+template <typename T>
+typename QuicIntervalSet<T>::value_type QuicIntervalSet<T>::SpanningInterval()
+    const {
+  value_type result;
+  if (!intervals_.empty()) {
+    result.SetMin(intervals_.begin()->min());
+    result.SetMax(intervals_.rbegin()->max());
+  }
+  return result;
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Add(const value_type& interval) {
+  if (interval.Empty())
+    return;
+  std::pair<typename Set::iterator, bool> ins = intervals_.insert(interval);
+  if (!ins.second) {
+    // This interval already exists.
+    return;
+  }
+  // Determine the minimal range that will have to be compacted.  We know that
+  // the QuicIntervalSet was valid before the addition of the interval, so only
+  // need to start with the interval itself (although Compact takes an open
+  // range so begin needs to be the interval to the left).  We don't know how
+  // many ranges this interval may cover, so we need to find the appropriate
+  // interval to end with on the right.
+  typename Set::iterator begin = ins.first;
+  if (begin != intervals_.begin())
+    --begin;
+  const value_type target_end(interval.max(), interval.max());
+  const typename Set::iterator end = intervals_.upper_bound(target_end);
+  Compact(begin, end);
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::Contains(const T& value) const {
+  value_type tmp(value, value);
+  // Find the first interval with min() > value, then move back one step
+  const_iterator it = intervals_.upper_bound(tmp);
+  if (it == intervals_.begin())
+    return false;
+  --it;
+  return it->Contains(value);
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::Contains(const value_type& interval) const {
+  // Find the first interval with min() > value, then move back one step.
+  const_iterator it = intervals_.upper_bound(interval);
+  if (it == intervals_.begin())
+    return false;
+  --it;
+  return it->Contains(interval);
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::Contains(const QuicIntervalSet<T>& other) const {
+  if (!SpanningInterval().Contains(other.SpanningInterval())) {
+    return false;
+  }
+
+  for (const_iterator i = other.begin(); i != other.end(); ++i) {
+    // If we don't contain the interval, can return false now.
+    if (!Contains(*i)) {
+      return false;
+    }
+  }
+  return true;
+}
+
+// This method finds the interval that Contains() "value", if such an interval
+// exists in the QuicIntervalSet. The way this is done is to locate the
+// "candidate interval", the only interval that could *possibly* contain value,
+// and test it using Contains(). The candidate interval is the interval with the
+// largest min() having min() <= value.
+//
+// Determining the candidate interval takes a couple of steps. First, since the
+// underlying std::set stores intervals, not values, we need to create a "probe
+// interval" suitable for use as a search key. The probe interval used is
+// [value, value). Now we can restate the problem as finding the largest
+// interval in the QuicIntervalSet that is <= the probe interval.
+//
+// This restatement only works if the set's comparator behaves in a certain way.
+// In particular it needs to order first by ascending min(), and then by
+// descending max(). The comparator used by this library is defined in exactly
+// this way. To see why descending max() is required, consider the following
+// example. Assume an QuicIntervalSet containing these intervals:
+//
+//   [0, 5)  [10, 20)  [50, 60)
+//
+// Consider searching for the value 15. The probe interval [15, 15) is created,
+// and [10, 20) is identified as the largest interval in the set <= the probe
+// interval. This is the correct interval needed for the Contains() test, which
+// will then return true.
+//
+// Now consider searching for the value 30. The probe interval [30, 30) is
+// created, and again [10, 20] is identified as the largest interval <= the
+// probe interval. This is again the correct interval needed for the Contains()
+// test, which in this case returns false.
+//
+// Finally, consider searching for the value 10. The probe interval [10, 10) is
+// created. Here the ordering relationship between [10, 10) and [10, 20) becomes
+// vitally important. If [10, 10) were to come before [10, 20), then [0, 5)
+// would be the largest interval <= the probe, leading to the wrong choice of
+// interval for the Contains() test. Therefore [10, 10) needs to come after
+// [10, 20). The simplest way to make this work in the general case is to order
+// by ascending min() but descending max(). In this ordering, the empty interval
+// is larger than any non-empty interval with the same min(). The comparator
+// used by this library is careful to induce this ordering.
+//
+// Another detail involves the choice of which std::set method to use to try to
+// find the candidate interval. The most appropriate entry point is
+// set::upper_bound(), which finds the smallest interval which is > the probe
+// interval. The semantics of upper_bound() are slightly different from what we
+// want (namely, to find the largest interval which is <= the probe interval)
+// but they are close enough; the interval found by upper_bound() will always be
+// one step past the interval we are looking for (if it exists) or at begin()
+// (if it does not). Getting to the proper interval is a simple matter of
+// decrementing the iterator.
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::Find(
+    const T& value) const {
+  value_type tmp(value, value);
+  const_iterator it = intervals_.upper_bound(tmp);
+  if (it == intervals_.begin())
+    return intervals_.end();
+  --it;
+  if (it->Contains(value))
+    return it;
+  else
+    return intervals_.end();
+}
+
+// This method finds the interval that Contains() the interval "probe", if such
+// an interval exists in the QuicIntervalSet. The way this is done is to locate
+// the "candidate interval", the only interval that could *possibly* contain
+// "probe", and test it using Contains(). The candidate interval is the largest
+// interval that is <= the probe interval.
+//
+// The search for the candidate interval only works if the comparator used
+// behaves in a certain way. In particular it needs to order first by ascending
+// min(), and then by descending max(). The comparator used by this library is
+// defined in exactly this way. To see why descending max() is required,
+// consider the following example. Assume an QuicIntervalSet containing these
+// intervals:
+//
+//   [0, 5)  [10, 20)  [50, 60)
+//
+// Consider searching for the probe [15, 17). [10, 20) is the largest interval
+// in the set which is <= the probe interval. This is the correct interval
+// needed for the Contains() test, which will then return true, because [10, 20)
+// contains [15, 17).
+//
+// Now consider searching for the probe [30, 32). Again [10, 20] is the largest
+// interval <= the probe interval. This is again the correct interval needed for
+// the Contains() test, which in this case returns false, because [10, 20) does
+// not contain [30, 32).
+//
+// Finally, consider searching for the probe [10, 12). Here the ordering
+// relationship between [10, 12) and [10, 20) becomes vitally important. If
+// [10, 12) were to come before [10, 20), then [0, 5) would be the largest
+// interval <= the probe, leading to the wrong choice of interval for the
+// Contains() test. Therefore [10, 12) needs to come after [10, 20). The
+// simplest way to make this work in the general case is to order by ascending
+// min() but descending max(). In this ordering, given two intervals with the
+// same min(), the wider one goes before the narrower one. The comparator used
+// by this library is careful to induce this ordering.
+//
+// Another detail involves the choice of which std::set method to use to try to
+// find the candidate interval. The most appropriate entry point is
+// set::upper_bound(), which finds the smallest interval which is > the probe
+// interval. The semantics of upper_bound() are slightly different from what we
+// want (namely, to find the largest interval which is <= the probe interval)
+// but they are close enough; the interval found by upper_bound() will always be
+// one step past the interval we are looking for (if it exists) or at begin()
+// (if it does not). Getting to the proper interval is a simple matter of
+// decrementing the iterator.
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::Find(
+    const value_type& probe) const {
+  const_iterator it = intervals_.upper_bound(probe);
+  if (it == intervals_.begin())
+    return intervals_.end();
+  --it;
+  if (it->Contains(probe))
+    return it;
+  else
+    return intervals_.end();
+}
+
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::LowerBound(
+    const T& value) const {
+  const_iterator it = intervals_.lower_bound(value_type(value, value));
+  if (it == intervals_.begin()) {
+    return it;
+  }
+
+  // The previous intervals_.lower_bound() checking is essentially based on
+  // interval.min(), so we need to check whether the `value` is contained in
+  // the previous interval.
+  --it;
+  if (it->Contains(value)) {
+    return it;
+  } else {
+    return ++it;
+  }
+}
+
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::UpperBound(
+    const T& value) const {
+  return intervals_.upper_bound(value_type(value, value));
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::IsDisjoint(const value_type& interval) const {
+  if (interval.Empty())
+    return true;
+  value_type tmp(interval.min(), interval.min());
+  // Find the first interval with min() > interval.min()
+  const_iterator it = intervals_.upper_bound(tmp);
+  if (it != intervals_.end() && interval.max() > it->min())
+    return false;
+  if (it == intervals_.begin())
+    return true;
+  --it;
+  return it->max() <= interval.min();
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Union(const QuicIntervalSet& other) {
+  intervals_.insert(other.begin(), other.end());
+  Compact(intervals_.begin(), intervals_.end());
+}
+
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator
+QuicIntervalSet<T>::FindIntersectionCandidate(
+    const QuicIntervalSet& other) const {
+  return FindIntersectionCandidate(*other.intervals_.begin());
+}
+
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator
+QuicIntervalSet<T>::FindIntersectionCandidate(
+    const value_type& interval) const {
+  // Use upper_bound to efficiently find the first interval in intervals_
+  // where min() is greater than interval.min().  If the result
+  // isn't the beginning of intervals_ then move backwards one interval since
+  // the interval before it is the first candidate where max() may be
+  // greater than interval.min().
+  // In other words, no interval before that can possibly intersect with any
+  // of other.intervals_.
+  const_iterator mine = intervals_.upper_bound(interval);
+  if (mine != intervals_.begin()) {
+    --mine;
+  }
+  return mine;
+}
+
+template <typename T>
+template <typename X, typename Func>
+bool QuicIntervalSet<T>::FindNextIntersectingPairImpl(X* x,
+                                                      const QuicIntervalSet& y,
+                                                      const_iterator* mine,
+                                                      const_iterator* theirs,
+                                                      Func on_hole) {
+  CHECK(x != nullptr);
+  if ((*mine == x->intervals_.end()) || (*theirs == y.intervals_.end())) {
+    return false;
+  }
+  while (!(**mine).Intersects(**theirs)) {
+    const_iterator erase_first = *mine;
+    // Skip over intervals in 'mine' that don't reach 'theirs'.
+    while (*mine != x->intervals_.end() && (**mine).max() <= (**theirs).min()) {
+      ++(*mine);
+    }
+    on_hole(x, erase_first, *mine);
+    // We're done if the end of intervals_ is reached.
+    if (*mine == x->intervals_.end()) {
+      return false;
+    }
+    // Skip over intervals 'theirs' that don't reach 'mine'.
+    while (*theirs != y.intervals_.end() &&
+           (**theirs).max() <= (**mine).min()) {
+      ++(*theirs);
+    }
+    // If the end of other.intervals_ is reached, we're done.
+    if (*theirs == y.intervals_.end()) {
+      on_hole(x, *mine, x->intervals_.end());
+      return false;
+    }
+  }
+  return true;
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Intersection(const QuicIntervalSet& other) {
+  if (!SpanningInterval().Intersects(other.SpanningInterval())) {
+    intervals_.clear();
+    return;
+  }
+
+  const_iterator mine = FindIntersectionCandidate(other);
+  // Remove any intervals that cannot possibly intersect with other.intervals_.
+  intervals_.erase(intervals_.begin(), mine);
+  const_iterator theirs = other.FindIntersectionCandidate(*this);
+
+  while (FindNextIntersectingPairAndEraseHoles(other, &mine, &theirs)) {
+    // OK, *mine and *theirs intersect.  Now, we find the largest
+    // span of intervals in other (starting at theirs) - say [a..b]
+    // - that intersect *mine, and we replace *mine with (*mine
+    // intersect x) for all x in [a..b] Note that subsequent
+    // intervals in this can't intersect any intervals in [a..b) --
+    // they may only intersect b or subsequent intervals in other.
+    value_type i(*mine);
+    intervals_.erase(mine);
+    mine = intervals_.end();
+    value_type intersection;
+    while (theirs != other.intervals_.end() &&
+           i.Intersects(*theirs, &intersection)) {
+      std::pair<typename Set::iterator, bool> ins =
+          intervals_.insert(intersection);
+      DCHECK(ins.second);
+      mine = ins.first;
+      ++theirs;
+    }
+    DCHECK(mine != intervals_.end());
+    --theirs;
+    ++mine;
+  }
+  DCHECK(Valid());
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::Intersects(const QuicIntervalSet& other) const {
+  if (!SpanningInterval().Intersects(other.SpanningInterval())) {
+    return false;
+  }
+
+  const_iterator mine = FindIntersectionCandidate(other);
+  if (mine == intervals_.end()) {
+    return false;
+  }
+  const_iterator theirs = other.FindIntersectionCandidate(*mine);
+
+  return FindNextIntersectingPair(other, &mine, &theirs);
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Difference(const value_type& interval) {
+  if (!SpanningInterval().Intersects(interval)) {
+    return;
+  }
+  Difference(QuicIntervalSet<T>(interval));
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Difference(const T& min, const T& max) {
+  Difference(value_type(min, max));
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Difference(const QuicIntervalSet& other) {
+  if (!SpanningInterval().Intersects(other.SpanningInterval())) {
+    return;
+  }
+
+  const_iterator mine = FindIntersectionCandidate(other);
+  // If no interval in mine reaches the first interval of theirs then we're
+  // done.
+  if (mine == intervals_.end()) {
+    return;
+  }
+  const_iterator theirs = other.FindIntersectionCandidate(*this);
+
+  while (FindNextIntersectingPair(other, &mine, &theirs)) {
+    // At this point *mine and *theirs overlap.  Remove mine from
+    // intervals_ and replace it with the possibly two intervals that are
+    // the difference between mine and theirs.
+    value_type i(*mine);
+    intervals_.erase(mine++);
+    value_type lo;
+    value_type hi;
+    i.Difference(*theirs, &lo, &hi);
+
+    if (!lo.Empty()) {
+      // We have a low end.  This can't intersect anything else.
+      std::pair<typename Set::iterator, bool> ins = intervals_.insert(lo);
+      DCHECK(ins.second);
+    }
+
+    if (!hi.Empty()) {
+      std::pair<typename Set::iterator, bool> ins = intervals_.insert(hi);
+      DCHECK(ins.second);
+      mine = ins.first;
+    }
+  }
+  DCHECK(Valid());
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Complement(const T& min, const T& max) {
+  QuicIntervalSet<T> span(min, max);
+  span.Difference(*this);
+  intervals_.swap(span.intervals_);
+}
+
+template <typename T>
+QuicString QuicIntervalSet<T>::ToString() const {
+  std::ostringstream os;
+  os << *this;
+  return os.str();
+}
+
+// This method compacts the QuicIntervalSet, merging pairs of overlapping
+// intervals into a single interval. In the steady state, the QuicIntervalSet
+// does not contain any such pairs. However, the way the Union() and Add()
+// methods work is to temporarily put the QuicIntervalSet into such a state and
+// then to call Compact() to "fix it up" so that it is no longer in that state.
+//
+// Compact() needs the interval set to allow two intervals [a,b) and [a,c)
+// (having the same min() but different max()) to briefly coexist in the set at
+// the same time, and be adjacent to each other, so that they can be efficiently
+// located and merged into a single interval. This state would be impossible
+// with a comparator which only looked at min(), as such a comparator would
+// consider such pairs equal. Fortunately, the comparator used by
+// QuicIntervalSet does exactly what is needed, ordering first by ascending
+// min(), then by descending max().
+template <typename T>
+void QuicIntervalSet<T>::Compact(const typename Set::iterator& begin,
+                                 const typename Set::iterator& end) {
+  if (begin == end)
+    return;
+  typename Set::iterator next = begin;
+  typename Set::iterator prev = begin;
+  typename Set::iterator it = begin;
+  ++it;
+  ++next;
+  while (it != end) {
+    ++next;
+    if (prev->max() >= it->min()) {
+      // Overlapping / coalesced range; merge the two intervals.
+      T min = prev->min();
+      T max = std::max(prev->max(), it->max());
+      value_type i(min, max);
+      intervals_.erase(prev);
+      intervals_.erase(it);
+      std::pair<typename Set::iterator, bool> ins = intervals_.insert(i);
+      DCHECK(ins.second);
+      prev = ins.first;
+    } else {
+      prev = it;
+    }
+    it = next;
+  }
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::Valid() const {
+  const_iterator prev = end();
+  for (const_iterator it = begin(); it != end(); ++it) {
+    // invalid or empty interval.
+    if (it->min() >= it->max())
+      return false;
+    // Not sorted, not disjoint, or adjacent.
+    if (prev != end() && prev->max() >= it->min())
+      return false;
+    prev = it;
+  }
+  return true;
+}
+
+template <typename T>
+void swap(QuicIntervalSet<T>& x, QuicIntervalSet<T>& y) {
+  x.Swap(&y);
+}
+
+// This comparator orders intervals first by ascending min() and then by
+// descending max(). Readers who are satisified with that explanation can stop
+// reading here. The remainder of this comment is for the benefit of future
+// maintainers of this library.
+//
+// The reason for this ordering is that this comparator has to serve two
+// masters. First, it has to maintain the intervals in its internal set in the
+// order that clients expect to see them. Clients see these intervals via the
+// iterators provided by begin()/end() or as a result of invoking Get(). For
+// this reason, the comparator orders intervals by ascending min().
+//
+// If client iteration were the only consideration, then ordering by ascending
+// min() would be good enough. This is because the intervals in the
+// QuicIntervalSet are non-empty, non-adjacent, and mutually disjoint; such
+// intervals happen to always have disjoint min() values, so such a comparator
+// would never even have to look at max() in order to work correctly for this
+// class.
+//
+// However, in addition to ordering by ascending min(), this comparator also has
+// a second responsibility: satisfying the special needs of this library's
+// peculiar internal implementation. These needs require the comparator to order
+// first by ascending min() and then by descending max(). The best way to
+// understand why this is so is to check out the comments associated with the
+// Find() and Compact() methods.
+template <typename T>
+bool QuicIntervalSet<T>::IntervalLess::operator()(const value_type& a,
+                                                  const value_type& b) const {
+  return a.min() < b.min() || (a.min() == b.min() && a.max() > b.max());
+}
+
+}  // namespace quic
+
+#endif  // QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_