Project import generated by Copybara.
PiperOrigin-RevId: 237361882
Change-Id: I109a68f44db867b20f8c6a7732b0ce657133e52a
diff --git a/quic/core/quic_interval_set.h b/quic/core/quic_interval_set.h
new file mode 100644
index 0000000..e2ca7a5
--- /dev/null
+++ b/quic/core/quic_interval_set.h
@@ -0,0 +1,913 @@
+// Copyright (c) 2019 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_
+#define QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_
+
+// QuicIntervalSet<T> is a data structure used to represent a sorted set of
+// non-empty, non-adjacent, and mutually disjoint intervals. Mutations to an
+// interval set preserve these properties, altering the set as needed. For
+// example, adding [2, 3) to a set containing only [1, 2) would result in the
+// set containing the single interval [1, 3).
+//
+// Supported operations include testing whether an Interval is contained in the
+// QuicIntervalSet, comparing two QuicIntervalSets, and performing
+// QuicIntervalSet union, intersection, and difference.
+//
+// QuicIntervalSet maintains the minimum number of entries needed to represent
+// the set of underlying intervals. When the QuicIntervalSet is modified (e.g.
+// due to an Add operation), other interval entries may be coalesced, removed,
+// or otherwise modified in order to maintain this invariant. The intervals are
+// maintained in sorted order, by ascending min() value.
+//
+// The reader is cautioned to beware of the terminology used here: this library
+// uses the terms "min" and "max" rather than "begin" and "end" as is
+// conventional for the STL. The terminology [min, max) refers to the half-open
+// interval which (if the interval is not empty) contains min but does not
+// contain max. An interval is considered empty if min >= max.
+//
+// T is required to be default- and copy-constructible, to have an assignment
+// operator, a difference operator (operator-()), and the full complement of
+// comparison operators (<, <=, ==, !=, >=, >). These requirements are inherited
+// from value_type.
+//
+// QuicIntervalSet has constant-time move operations.
+//
+//
+// Examples:
+// QuicIntervalSet<int> intervals;
+// intervals.Add(Interval<int>(10, 20));
+// intervals.Add(Interval<int>(30, 40));
+// // intervals contains [10,20) and [30,40).
+// intervals.Add(Interval<int>(15, 35));
+// // intervals has been coalesced. It now contains the single range [10,40).
+// EXPECT_EQ(1, intervals.Size());
+// EXPECT_TRUE(intervals.Contains(Interval<int>(10, 40)));
+//
+// intervals.Difference(Interval<int>(10, 20));
+// // intervals should now contain the single range [20, 40).
+// EXPECT_EQ(1, intervals.Size());
+// EXPECT_TRUE(intervals.Contains(Interval<int>(20, 40)));
+
+#include <stddef.h>
+#include <algorithm>
+#include <initializer_list>
+#include <set>
+#include <utility>
+#include <vector>
+
+#include "net/third_party/quiche/src/quic/core/quic_interval.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_logging.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_string.h"
+
+namespace quic {
+
+template <typename T>
+class QuicIntervalSet {
+ public:
+ typedef QuicInterval<T> value_type;
+
+ private:
+ struct IntervalLess {
+ bool operator()(const value_type& a, const value_type& b) const;
+ };
+ typedef std::set<value_type, IntervalLess> Set;
+
+ public:
+ typedef typename Set::const_iterator const_iterator;
+ typedef typename Set::const_reverse_iterator const_reverse_iterator;
+
+ // Instantiates an empty QuicIntervalSet.
+ QuicIntervalSet() {}
+
+ // Instantiates an QuicIntervalSet containing exactly one initial half-open
+ // interval [min, max), unless the given interval is empty, in which case the
+ // QuicIntervalSet will be empty.
+ explicit QuicIntervalSet(const value_type& interval) { Add(interval); }
+
+ // Instantiates an QuicIntervalSet containing the half-open interval [min,
+ // max).
+ QuicIntervalSet(const T& min, const T& max) { Add(min, max); }
+
+ QuicIntervalSet(std::initializer_list<value_type> il) { assign(il); }
+
+ // Clears this QuicIntervalSet.
+ void Clear() { intervals_.clear(); }
+
+ // Returns the number of disjoint intervals contained in this QuicIntervalSet.
+ size_t Size() const { return intervals_.size(); }
+
+ // Returns the smallest interval that contains all intervals in this
+ // QuicIntervalSet, or the empty interval if the set is empty.
+ value_type SpanningInterval() const;
+
+ // Adds "interval" to this QuicIntervalSet. Adding the empty interval has no
+ // effect.
+ void Add(const value_type& interval);
+
+ // Adds the interval [min, max) to this QuicIntervalSet. Adding the empty
+ // interval has no effect.
+ void Add(const T& min, const T& max) { Add(value_type(min, max)); }
+
+ // Same semantics as Add(const value_type&), but optimized for the case where
+ // rbegin()->min() <= |interval|.min() <= rbegin()->max().
+ void AddOptimizedForAppend(const value_type& interval) {
+ if (Empty()) {
+ Add(interval);
+ return;
+ }
+
+ const_reverse_iterator last_interval = intervals_.rbegin();
+
+ // If interval.min() is outside of [last_interval->min, last_interval->max],
+ // we can not simply extend last_interval->max.
+ if (interval.min() < last_interval->min() ||
+ interval.min() > last_interval->max()) {
+ Add(interval);
+ return;
+ }
+
+ if (interval.max() <= last_interval->max()) {
+ // interval is fully contained by last_interval.
+ return;
+ }
+
+ // Extend last_interval.max to interval.max, in place.
+ //
+ // Set does not allow in-place updates due to the potential of violating its
+ // ordering requirements. But we know setting the max of the last interval
+ // is safe w.r.t set ordering and other invariants of QuicIntervalSet, so we
+ // force an in-place update for performance.
+ const_cast<value_type*>(&(*last_interval))->SetMax(interval.max());
+ }
+
+ // Same semantics as Add(const T&, const T&), but optimized for the case where
+ // rbegin()->max() == |min|.
+ void AddOptimizedForAppend(const T& min, const T& max) {
+ AddOptimizedForAppend(value_type(min, max));
+ }
+
+ // TODO(wub): Similar to AddOptimizedForAppend, we can also have a
+ // AddOptimizedForPrepend if there is a use case.
+
+ // Returns true if this QuicIntervalSet is empty.
+ bool Empty() const { return intervals_.empty(); }
+
+ // Returns true if any interval in this QuicIntervalSet contains the indicated
+ // value.
+ bool Contains(const T& value) const;
+
+ // Returns true if there is some interval in this QuicIntervalSet that wholly
+ // contains the given interval. An interval O "wholly contains" a non-empty
+ // interval I if O.Contains(p) is true for every p in I. This is the same
+ // definition used by value_type::Contains(). This method returns false on
+ // the empty interval, due to a (perhaps unintuitive) convention inherited
+ // from value_type.
+ // Example:
+ // Assume an QuicIntervalSet containing the entries { [10,20), [30,40) }.
+ // Contains(Interval(15, 16)) returns true, because [10,20) contains
+ // [15,16). However, Contains(Interval(15, 35)) returns false.
+ bool Contains(const value_type& interval) const;
+
+ // Returns true if for each interval in "other", there is some (possibly
+ // different) interval in this QuicIntervalSet which wholly contains it. See
+ // Contains(const value_type& interval) for the meaning of "wholly contains".
+ // Perhaps unintuitively, this method returns false if "other" is the empty
+ // set. The algorithmic complexity of this method is O(other.Size() *
+ // log(this->Size())). The method could be rewritten to run in O(other.Size()
+ // + this->Size()), and this alternative could be implemented as a free
+ // function using the public API.
+ bool Contains(const QuicIntervalSet<T>& other) const;
+
+ // Returns true if there is some interval in this QuicIntervalSet that wholly
+ // contains the interval [min, max). See Contains(const value_type&).
+ bool Contains(const T& min, const T& max) const {
+ return Contains(value_type(min, max));
+ }
+
+ // Returns true if for some interval in "other", there is some interval in
+ // this QuicIntervalSet that intersects with it. See value_type::Intersects()
+ // for the definition of interval intersection.
+ bool Intersects(const QuicIntervalSet& other) const;
+
+ // Returns an iterator to the value_type in the QuicIntervalSet that contains
+ // the given value. In other words, returns an iterator to the unique interval
+ // [min, max) in the QuicIntervalSet that has the property min <= value < max.
+ // If there is no such interval, this method returns end().
+ const_iterator Find(const T& value) const;
+
+ // Returns an iterator to the value_type in the QuicIntervalSet that wholly
+ // contains the given interval. In other words, returns an iterator to the
+ // unique interval outer in the QuicIntervalSet that has the property that
+ // outer.Contains(interval). If there is no such interval, or if interval is
+ // empty, returns end().
+ const_iterator Find(const value_type& interval) const;
+
+ // Returns an iterator to the value_type in the QuicIntervalSet that wholly
+ // contains [min, max). In other words, returns an iterator to the unique
+ // interval outer in the QuicIntervalSet that has the property that
+ // outer.Contains(Interval<T>(min, max)). If there is no such interval, or if
+ // interval is empty, returns end().
+ const_iterator Find(const T& min, const T& max) const {
+ return Find(value_type(min, max));
+ }
+
+ // Returns an iterator pointing to the first value_type which contains or
+ // goes after the given value.
+ //
+ // Example:
+ // [10, 20) [30, 40)
+ // ^ LowerBound(10)
+ // ^ LowerBound(15)
+ // ^ LowerBound(20)
+ // ^ LowerBound(25)
+ const_iterator LowerBound(const T& value) const;
+
+ // Returns an iterator pointing to the first value_type which goes after
+ // the given value.
+ //
+ // Example:
+ // [10, 20) [30, 40)
+ // ^ UpperBound(10)
+ // ^ UpperBound(15)
+ // ^ UpperBound(20)
+ // ^ UpperBound(25)
+ const_iterator UpperBound(const T& value) const;
+
+ // Returns true if every value within the passed interval is not Contained
+ // within the QuicIntervalSet.
+ // Note that empty intervals are always considered disjoint from the
+ // QuicIntervalSet (even though the QuicIntervalSet doesn't `Contain` them).
+ bool IsDisjoint(const value_type& interval) const;
+
+ // Merges all the values contained in "other" into this QuicIntervalSet.
+ void Union(const QuicIntervalSet& other);
+
+ // Modifies this QuicIntervalSet so that it contains only those values that
+ // are currently present both in *this and in the QuicIntervalSet "other".
+ void Intersection(const QuicIntervalSet& other);
+
+ // Mutates this QuicIntervalSet so that it contains only those values that are
+ // currently in *this but not in "interval".
+ void Difference(const value_type& interval);
+
+ // Mutates this QuicIntervalSet so that it contains only those values that are
+ // currently in *this but not in the interval [min, max).
+ void Difference(const T& min, const T& max);
+
+ // Mutates this QuicIntervalSet so that it contains only those values that are
+ // currently in *this but not in the QuicIntervalSet "other".
+ void Difference(const QuicIntervalSet& other);
+
+ // Mutates this QuicIntervalSet so that it contains only those values that are
+ // in [min, max) but not currently in *this.
+ void Complement(const T& min, const T& max);
+
+ // QuicIntervalSet's begin() iterator. The invariants of QuicIntervalSet
+ // guarantee that for each entry e in the set, e.min() < e.max() (because the
+ // entries are non-empty) and for each entry f that appears later in the set,
+ // e.max() < f.min() (because the entries are ordered, pairwise-disjoint, and
+ // non-adjacent). Modifications to this QuicIntervalSet invalidate these
+ // iterators.
+ const_iterator begin() const { return intervals_.begin(); }
+
+ // QuicIntervalSet's end() iterator.
+ const_iterator end() const { return intervals_.end(); }
+
+ // QuicIntervalSet's rbegin() and rend() iterators. Iterator invalidation
+ // semantics are the same as those for begin() / end().
+ const_reverse_iterator rbegin() const { return intervals_.rbegin(); }
+
+ const_reverse_iterator rend() const { return intervals_.rend(); }
+
+ template <typename Iter>
+ void assign(Iter first, Iter last) {
+ Clear();
+ for (; first != last; ++first)
+ Add(*first);
+ }
+
+ void assign(std::initializer_list<value_type> il) {
+ assign(il.begin(), il.end());
+ }
+
+ // Returns a human-readable representation of this set. This will typically be
+ // (though is not guaranteed to be) of the form
+ // "[a1, b1) [a2, b2) ... [an, bn)"
+ // where the intervals are in the same order as given by traversal from
+ // begin() to end(). This representation is intended for human consumption;
+ // computer programs should not rely on the output being in exactly this form.
+ QuicString ToString() const;
+
+ QuicIntervalSet& operator=(std::initializer_list<value_type> il) {
+ assign(il.begin(), il.end());
+ return *this;
+ }
+
+ // Swap this QuicIntervalSet with *other. This is a constant-time operation.
+ void Swap(QuicIntervalSet<T>* other) { intervals_.swap(other->intervals_); }
+
+ friend bool operator==(const QuicIntervalSet& a, const QuicIntervalSet& b) {
+ return a.Size() == b.Size() &&
+ std::equal(a.begin(), a.end(), b.begin(), NonemptyIntervalEq());
+ }
+
+ friend bool operator!=(const QuicIntervalSet& a, const QuicIntervalSet& b) {
+ return !(a == b);
+ }
+
+ private:
+ // Simple member-wise equality, since all intervals are non-empty.
+ struct NonemptyIntervalEq {
+ bool operator()(const value_type& a, const value_type& b) const {
+ return a.min() == b.min() && a.max() == b.max();
+ }
+ };
+
+ // Removes overlapping ranges and coalesces adjacent intervals as needed.
+ void Compact(const typename Set::iterator& begin,
+ const typename Set::iterator& end);
+
+ // Returns true if this set is valid (i.e. all intervals in it are non-empty,
+ // non-adjacent, and mutually disjoint). Currently this is used as an
+ // integrity check by the Intersection() and Difference() methods, but is only
+ // invoked for debug builds (via DCHECK).
+ bool Valid() const;
+
+ // Finds the first interval that potentially intersects 'other'.
+ const_iterator FindIntersectionCandidate(const QuicIntervalSet& other) const;
+
+ // Finds the first interval that potentially intersects 'interval'.
+ const_iterator FindIntersectionCandidate(const value_type& interval) const;
+
+ // Helper for Intersection() and Difference(): Finds the next pair of
+ // intervals from 'x' and 'y' that intersect. 'mine' is an iterator
+ // over x->intervals_. 'theirs' is an iterator over y.intervals_. 'mine'
+ // and 'theirs' are advanced until an intersecting pair is found.
+ // Non-intersecting intervals (aka "holes") from x->intervals_ can be
+ // optionally erased by "on_hole".
+ template <typename X, typename Func>
+ static bool FindNextIntersectingPairImpl(X* x,
+ const QuicIntervalSet& y,
+ const_iterator* mine,
+ const_iterator* theirs,
+ Func on_hole);
+
+ // The variant of the above method that doesn't mutate this QuicIntervalSet.
+ bool FindNextIntersectingPair(const QuicIntervalSet& other,
+ const_iterator* mine,
+ const_iterator* theirs) const {
+ return FindNextIntersectingPairImpl(
+ this, other, mine, theirs,
+ [](const QuicIntervalSet*, const_iterator, const_iterator) {});
+ }
+
+ // The variant of the above method that mutates this QuicIntervalSet by
+ // erasing holes.
+ bool FindNextIntersectingPairAndEraseHoles(const QuicIntervalSet& other,
+ const_iterator* mine,
+ const_iterator* theirs) {
+ return FindNextIntersectingPairImpl(
+ this, other, mine, theirs,
+ [](QuicIntervalSet* x, const_iterator from, const_iterator to) {
+ x->intervals_.erase(from, to);
+ });
+ }
+
+ // The representation for the intervals. The intervals in this set are
+ // non-empty, pairwise-disjoint, non-adjacent and ordered in ascending order
+ // by min().
+ Set intervals_;
+};
+
+template <typename T>
+auto operator<<(std::ostream& out, const QuicIntervalSet<T>& seq)
+ -> decltype(out << *seq.begin()) {
+ out << "{";
+ for (const auto& interval : seq) {
+ out << " " << interval;
+ }
+ out << " }";
+
+ return out;
+}
+
+template <typename T>
+void swap(QuicIntervalSet<T>& x, QuicIntervalSet<T>& y);
+
+//==============================================================================
+// Implementation details: Clients can stop reading here.
+
+template <typename T>
+typename QuicIntervalSet<T>::value_type QuicIntervalSet<T>::SpanningInterval()
+ const {
+ value_type result;
+ if (!intervals_.empty()) {
+ result.SetMin(intervals_.begin()->min());
+ result.SetMax(intervals_.rbegin()->max());
+ }
+ return result;
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Add(const value_type& interval) {
+ if (interval.Empty())
+ return;
+ std::pair<typename Set::iterator, bool> ins = intervals_.insert(interval);
+ if (!ins.second) {
+ // This interval already exists.
+ return;
+ }
+ // Determine the minimal range that will have to be compacted. We know that
+ // the QuicIntervalSet was valid before the addition of the interval, so only
+ // need to start with the interval itself (although Compact takes an open
+ // range so begin needs to be the interval to the left). We don't know how
+ // many ranges this interval may cover, so we need to find the appropriate
+ // interval to end with on the right.
+ typename Set::iterator begin = ins.first;
+ if (begin != intervals_.begin())
+ --begin;
+ const value_type target_end(interval.max(), interval.max());
+ const typename Set::iterator end = intervals_.upper_bound(target_end);
+ Compact(begin, end);
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::Contains(const T& value) const {
+ value_type tmp(value, value);
+ // Find the first interval with min() > value, then move back one step
+ const_iterator it = intervals_.upper_bound(tmp);
+ if (it == intervals_.begin())
+ return false;
+ --it;
+ return it->Contains(value);
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::Contains(const value_type& interval) const {
+ // Find the first interval with min() > value, then move back one step.
+ const_iterator it = intervals_.upper_bound(interval);
+ if (it == intervals_.begin())
+ return false;
+ --it;
+ return it->Contains(interval);
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::Contains(const QuicIntervalSet<T>& other) const {
+ if (!SpanningInterval().Contains(other.SpanningInterval())) {
+ return false;
+ }
+
+ for (const_iterator i = other.begin(); i != other.end(); ++i) {
+ // If we don't contain the interval, can return false now.
+ if (!Contains(*i)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+// This method finds the interval that Contains() "value", if such an interval
+// exists in the QuicIntervalSet. The way this is done is to locate the
+// "candidate interval", the only interval that could *possibly* contain value,
+// and test it using Contains(). The candidate interval is the interval with the
+// largest min() having min() <= value.
+//
+// Determining the candidate interval takes a couple of steps. First, since the
+// underlying std::set stores intervals, not values, we need to create a "probe
+// interval" suitable for use as a search key. The probe interval used is
+// [value, value). Now we can restate the problem as finding the largest
+// interval in the QuicIntervalSet that is <= the probe interval.
+//
+// This restatement only works if the set's comparator behaves in a certain way.
+// In particular it needs to order first by ascending min(), and then by
+// descending max(). The comparator used by this library is defined in exactly
+// this way. To see why descending max() is required, consider the following
+// example. Assume an QuicIntervalSet containing these intervals:
+//
+// [0, 5) [10, 20) [50, 60)
+//
+// Consider searching for the value 15. The probe interval [15, 15) is created,
+// and [10, 20) is identified as the largest interval in the set <= the probe
+// interval. This is the correct interval needed for the Contains() test, which
+// will then return true.
+//
+// Now consider searching for the value 30. The probe interval [30, 30) is
+// created, and again [10, 20] is identified as the largest interval <= the
+// probe interval. This is again the correct interval needed for the Contains()
+// test, which in this case returns false.
+//
+// Finally, consider searching for the value 10. The probe interval [10, 10) is
+// created. Here the ordering relationship between [10, 10) and [10, 20) becomes
+// vitally important. If [10, 10) were to come before [10, 20), then [0, 5)
+// would be the largest interval <= the probe, leading to the wrong choice of
+// interval for the Contains() test. Therefore [10, 10) needs to come after
+// [10, 20). The simplest way to make this work in the general case is to order
+// by ascending min() but descending max(). In this ordering, the empty interval
+// is larger than any non-empty interval with the same min(). The comparator
+// used by this library is careful to induce this ordering.
+//
+// Another detail involves the choice of which std::set method to use to try to
+// find the candidate interval. The most appropriate entry point is
+// set::upper_bound(), which finds the smallest interval which is > the probe
+// interval. The semantics of upper_bound() are slightly different from what we
+// want (namely, to find the largest interval which is <= the probe interval)
+// but they are close enough; the interval found by upper_bound() will always be
+// one step past the interval we are looking for (if it exists) or at begin()
+// (if it does not). Getting to the proper interval is a simple matter of
+// decrementing the iterator.
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::Find(
+ const T& value) const {
+ value_type tmp(value, value);
+ const_iterator it = intervals_.upper_bound(tmp);
+ if (it == intervals_.begin())
+ return intervals_.end();
+ --it;
+ if (it->Contains(value))
+ return it;
+ else
+ return intervals_.end();
+}
+
+// This method finds the interval that Contains() the interval "probe", if such
+// an interval exists in the QuicIntervalSet. The way this is done is to locate
+// the "candidate interval", the only interval that could *possibly* contain
+// "probe", and test it using Contains(). The candidate interval is the largest
+// interval that is <= the probe interval.
+//
+// The search for the candidate interval only works if the comparator used
+// behaves in a certain way. In particular it needs to order first by ascending
+// min(), and then by descending max(). The comparator used by this library is
+// defined in exactly this way. To see why descending max() is required,
+// consider the following example. Assume an QuicIntervalSet containing these
+// intervals:
+//
+// [0, 5) [10, 20) [50, 60)
+//
+// Consider searching for the probe [15, 17). [10, 20) is the largest interval
+// in the set which is <= the probe interval. This is the correct interval
+// needed for the Contains() test, which will then return true, because [10, 20)
+// contains [15, 17).
+//
+// Now consider searching for the probe [30, 32). Again [10, 20] is the largest
+// interval <= the probe interval. This is again the correct interval needed for
+// the Contains() test, which in this case returns false, because [10, 20) does
+// not contain [30, 32).
+//
+// Finally, consider searching for the probe [10, 12). Here the ordering
+// relationship between [10, 12) and [10, 20) becomes vitally important. If
+// [10, 12) were to come before [10, 20), then [0, 5) would be the largest
+// interval <= the probe, leading to the wrong choice of interval for the
+// Contains() test. Therefore [10, 12) needs to come after [10, 20). The
+// simplest way to make this work in the general case is to order by ascending
+// min() but descending max(). In this ordering, given two intervals with the
+// same min(), the wider one goes before the narrower one. The comparator used
+// by this library is careful to induce this ordering.
+//
+// Another detail involves the choice of which std::set method to use to try to
+// find the candidate interval. The most appropriate entry point is
+// set::upper_bound(), which finds the smallest interval which is > the probe
+// interval. The semantics of upper_bound() are slightly different from what we
+// want (namely, to find the largest interval which is <= the probe interval)
+// but they are close enough; the interval found by upper_bound() will always be
+// one step past the interval we are looking for (if it exists) or at begin()
+// (if it does not). Getting to the proper interval is a simple matter of
+// decrementing the iterator.
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::Find(
+ const value_type& probe) const {
+ const_iterator it = intervals_.upper_bound(probe);
+ if (it == intervals_.begin())
+ return intervals_.end();
+ --it;
+ if (it->Contains(probe))
+ return it;
+ else
+ return intervals_.end();
+}
+
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::LowerBound(
+ const T& value) const {
+ const_iterator it = intervals_.lower_bound(value_type(value, value));
+ if (it == intervals_.begin()) {
+ return it;
+ }
+
+ // The previous intervals_.lower_bound() checking is essentially based on
+ // interval.min(), so we need to check whether the `value` is contained in
+ // the previous interval.
+ --it;
+ if (it->Contains(value)) {
+ return it;
+ } else {
+ return ++it;
+ }
+}
+
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator QuicIntervalSet<T>::UpperBound(
+ const T& value) const {
+ return intervals_.upper_bound(value_type(value, value));
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::IsDisjoint(const value_type& interval) const {
+ if (interval.Empty())
+ return true;
+ value_type tmp(interval.min(), interval.min());
+ // Find the first interval with min() > interval.min()
+ const_iterator it = intervals_.upper_bound(tmp);
+ if (it != intervals_.end() && interval.max() > it->min())
+ return false;
+ if (it == intervals_.begin())
+ return true;
+ --it;
+ return it->max() <= interval.min();
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Union(const QuicIntervalSet& other) {
+ intervals_.insert(other.begin(), other.end());
+ Compact(intervals_.begin(), intervals_.end());
+}
+
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator
+QuicIntervalSet<T>::FindIntersectionCandidate(
+ const QuicIntervalSet& other) const {
+ return FindIntersectionCandidate(*other.intervals_.begin());
+}
+
+template <typename T>
+typename QuicIntervalSet<T>::const_iterator
+QuicIntervalSet<T>::FindIntersectionCandidate(
+ const value_type& interval) const {
+ // Use upper_bound to efficiently find the first interval in intervals_
+ // where min() is greater than interval.min(). If the result
+ // isn't the beginning of intervals_ then move backwards one interval since
+ // the interval before it is the first candidate where max() may be
+ // greater than interval.min().
+ // In other words, no interval before that can possibly intersect with any
+ // of other.intervals_.
+ const_iterator mine = intervals_.upper_bound(interval);
+ if (mine != intervals_.begin()) {
+ --mine;
+ }
+ return mine;
+}
+
+template <typename T>
+template <typename X, typename Func>
+bool QuicIntervalSet<T>::FindNextIntersectingPairImpl(X* x,
+ const QuicIntervalSet& y,
+ const_iterator* mine,
+ const_iterator* theirs,
+ Func on_hole) {
+ CHECK(x != nullptr);
+ if ((*mine == x->intervals_.end()) || (*theirs == y.intervals_.end())) {
+ return false;
+ }
+ while (!(**mine).Intersects(**theirs)) {
+ const_iterator erase_first = *mine;
+ // Skip over intervals in 'mine' that don't reach 'theirs'.
+ while (*mine != x->intervals_.end() && (**mine).max() <= (**theirs).min()) {
+ ++(*mine);
+ }
+ on_hole(x, erase_first, *mine);
+ // We're done if the end of intervals_ is reached.
+ if (*mine == x->intervals_.end()) {
+ return false;
+ }
+ // Skip over intervals 'theirs' that don't reach 'mine'.
+ while (*theirs != y.intervals_.end() &&
+ (**theirs).max() <= (**mine).min()) {
+ ++(*theirs);
+ }
+ // If the end of other.intervals_ is reached, we're done.
+ if (*theirs == y.intervals_.end()) {
+ on_hole(x, *mine, x->intervals_.end());
+ return false;
+ }
+ }
+ return true;
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Intersection(const QuicIntervalSet& other) {
+ if (!SpanningInterval().Intersects(other.SpanningInterval())) {
+ intervals_.clear();
+ return;
+ }
+
+ const_iterator mine = FindIntersectionCandidate(other);
+ // Remove any intervals that cannot possibly intersect with other.intervals_.
+ intervals_.erase(intervals_.begin(), mine);
+ const_iterator theirs = other.FindIntersectionCandidate(*this);
+
+ while (FindNextIntersectingPairAndEraseHoles(other, &mine, &theirs)) {
+ // OK, *mine and *theirs intersect. Now, we find the largest
+ // span of intervals in other (starting at theirs) - say [a..b]
+ // - that intersect *mine, and we replace *mine with (*mine
+ // intersect x) for all x in [a..b] Note that subsequent
+ // intervals in this can't intersect any intervals in [a..b) --
+ // they may only intersect b or subsequent intervals in other.
+ value_type i(*mine);
+ intervals_.erase(mine);
+ mine = intervals_.end();
+ value_type intersection;
+ while (theirs != other.intervals_.end() &&
+ i.Intersects(*theirs, &intersection)) {
+ std::pair<typename Set::iterator, bool> ins =
+ intervals_.insert(intersection);
+ DCHECK(ins.second);
+ mine = ins.first;
+ ++theirs;
+ }
+ DCHECK(mine != intervals_.end());
+ --theirs;
+ ++mine;
+ }
+ DCHECK(Valid());
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::Intersects(const QuicIntervalSet& other) const {
+ if (!SpanningInterval().Intersects(other.SpanningInterval())) {
+ return false;
+ }
+
+ const_iterator mine = FindIntersectionCandidate(other);
+ if (mine == intervals_.end()) {
+ return false;
+ }
+ const_iterator theirs = other.FindIntersectionCandidate(*mine);
+
+ return FindNextIntersectingPair(other, &mine, &theirs);
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Difference(const value_type& interval) {
+ if (!SpanningInterval().Intersects(interval)) {
+ return;
+ }
+ Difference(QuicIntervalSet<T>(interval));
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Difference(const T& min, const T& max) {
+ Difference(value_type(min, max));
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Difference(const QuicIntervalSet& other) {
+ if (!SpanningInterval().Intersects(other.SpanningInterval())) {
+ return;
+ }
+
+ const_iterator mine = FindIntersectionCandidate(other);
+ // If no interval in mine reaches the first interval of theirs then we're
+ // done.
+ if (mine == intervals_.end()) {
+ return;
+ }
+ const_iterator theirs = other.FindIntersectionCandidate(*this);
+
+ while (FindNextIntersectingPair(other, &mine, &theirs)) {
+ // At this point *mine and *theirs overlap. Remove mine from
+ // intervals_ and replace it with the possibly two intervals that are
+ // the difference between mine and theirs.
+ value_type i(*mine);
+ intervals_.erase(mine++);
+ value_type lo;
+ value_type hi;
+ i.Difference(*theirs, &lo, &hi);
+
+ if (!lo.Empty()) {
+ // We have a low end. This can't intersect anything else.
+ std::pair<typename Set::iterator, bool> ins = intervals_.insert(lo);
+ DCHECK(ins.second);
+ }
+
+ if (!hi.Empty()) {
+ std::pair<typename Set::iterator, bool> ins = intervals_.insert(hi);
+ DCHECK(ins.second);
+ mine = ins.first;
+ }
+ }
+ DCHECK(Valid());
+}
+
+template <typename T>
+void QuicIntervalSet<T>::Complement(const T& min, const T& max) {
+ QuicIntervalSet<T> span(min, max);
+ span.Difference(*this);
+ intervals_.swap(span.intervals_);
+}
+
+template <typename T>
+QuicString QuicIntervalSet<T>::ToString() const {
+ std::ostringstream os;
+ os << *this;
+ return os.str();
+}
+
+// This method compacts the QuicIntervalSet, merging pairs of overlapping
+// intervals into a single interval. In the steady state, the QuicIntervalSet
+// does not contain any such pairs. However, the way the Union() and Add()
+// methods work is to temporarily put the QuicIntervalSet into such a state and
+// then to call Compact() to "fix it up" so that it is no longer in that state.
+//
+// Compact() needs the interval set to allow two intervals [a,b) and [a,c)
+// (having the same min() but different max()) to briefly coexist in the set at
+// the same time, and be adjacent to each other, so that they can be efficiently
+// located and merged into a single interval. This state would be impossible
+// with a comparator which only looked at min(), as such a comparator would
+// consider such pairs equal. Fortunately, the comparator used by
+// QuicIntervalSet does exactly what is needed, ordering first by ascending
+// min(), then by descending max().
+template <typename T>
+void QuicIntervalSet<T>::Compact(const typename Set::iterator& begin,
+ const typename Set::iterator& end) {
+ if (begin == end)
+ return;
+ typename Set::iterator next = begin;
+ typename Set::iterator prev = begin;
+ typename Set::iterator it = begin;
+ ++it;
+ ++next;
+ while (it != end) {
+ ++next;
+ if (prev->max() >= it->min()) {
+ // Overlapping / coalesced range; merge the two intervals.
+ T min = prev->min();
+ T max = std::max(prev->max(), it->max());
+ value_type i(min, max);
+ intervals_.erase(prev);
+ intervals_.erase(it);
+ std::pair<typename Set::iterator, bool> ins = intervals_.insert(i);
+ DCHECK(ins.second);
+ prev = ins.first;
+ } else {
+ prev = it;
+ }
+ it = next;
+ }
+}
+
+template <typename T>
+bool QuicIntervalSet<T>::Valid() const {
+ const_iterator prev = end();
+ for (const_iterator it = begin(); it != end(); ++it) {
+ // invalid or empty interval.
+ if (it->min() >= it->max())
+ return false;
+ // Not sorted, not disjoint, or adjacent.
+ if (prev != end() && prev->max() >= it->min())
+ return false;
+ prev = it;
+ }
+ return true;
+}
+
+template <typename T>
+void swap(QuicIntervalSet<T>& x, QuicIntervalSet<T>& y) {
+ x.Swap(&y);
+}
+
+// This comparator orders intervals first by ascending min() and then by
+// descending max(). Readers who are satisified with that explanation can stop
+// reading here. The remainder of this comment is for the benefit of future
+// maintainers of this library.
+//
+// The reason for this ordering is that this comparator has to serve two
+// masters. First, it has to maintain the intervals in its internal set in the
+// order that clients expect to see them. Clients see these intervals via the
+// iterators provided by begin()/end() or as a result of invoking Get(). For
+// this reason, the comparator orders intervals by ascending min().
+//
+// If client iteration were the only consideration, then ordering by ascending
+// min() would be good enough. This is because the intervals in the
+// QuicIntervalSet are non-empty, non-adjacent, and mutually disjoint; such
+// intervals happen to always have disjoint min() values, so such a comparator
+// would never even have to look at max() in order to work correctly for this
+// class.
+//
+// However, in addition to ordering by ascending min(), this comparator also has
+// a second responsibility: satisfying the special needs of this library's
+// peculiar internal implementation. These needs require the comparator to order
+// first by ascending min() and then by descending max(). The best way to
+// understand why this is so is to check out the comments associated with the
+// Find() and Compact() methods.
+template <typename T>
+bool QuicIntervalSet<T>::IntervalLess::operator()(const value_type& a,
+ const value_type& b) const {
+ return a.min() < b.min() || (a.min() == b.min() && a.max() > b.max());
+}
+
+} // namespace quic
+
+#endif // QUICHE_QUIC_CORE_QUIC_INTERVAL_SET_H_