Project import generated by Copybara.
PiperOrigin-RevId: 237361882
Change-Id: I109a68f44db867b20f8c6a7732b0ce657133e52a
diff --git a/quic/core/quic_connection_test.cc b/quic/core/quic_connection_test.cc
new file mode 100644
index 0000000..62056a0
--- /dev/null
+++ b/quic/core/quic_connection_test.cc
@@ -0,0 +1,7826 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "net/third_party/quiche/src/quic/core/quic_connection.h"
+
+#include <errno.h>
+#include <memory>
+#include <ostream>
+#include <utility>
+
+#include "base/macros.h"
+#include "net/third_party/quiche/src/quic/core/congestion_control/loss_detection_interface.h"
+#include "net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h"
+#include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h"
+#include "net/third_party/quiche/src/quic/core/crypto/quic_decrypter.h"
+#include "net/third_party/quiche/src/quic/core/crypto/quic_encrypter.h"
+#include "net/third_party/quiche/src/quic/core/quic_connection_id.h"
+#include "net/third_party/quiche/src/quic/core/quic_packets.h"
+#include "net/third_party/quiche/src/quic/core/quic_simple_buffer_allocator.h"
+#include "net/third_party/quiche/src/quic/core/quic_types.h"
+#include "net/third_party/quiche/src/quic/core/quic_utils.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_error_code_wrappers.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_expect_bug.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_flags.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_logging.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_reference_counted.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_string.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_string_piece.h"
+#include "net/third_party/quiche/src/quic/platform/api/quic_test.h"
+#include "net/third_party/quiche/src/quic/test_tools/mock_clock.h"
+#include "net/third_party/quiche/src/quic/test_tools/mock_random.h"
+#include "net/third_party/quiche/src/quic/test_tools/quic_config_peer.h"
+#include "net/third_party/quiche/src/quic/test_tools/quic_connection_peer.h"
+#include "net/third_party/quiche/src/quic/test_tools/quic_framer_peer.h"
+#include "net/third_party/quiche/src/quic/test_tools/quic_packet_creator_peer.h"
+#include "net/third_party/quiche/src/quic/test_tools/quic_packet_generator_peer.h"
+#include "net/third_party/quiche/src/quic/test_tools/quic_sent_packet_manager_peer.h"
+#include "net/third_party/quiche/src/quic/test_tools/quic_test_utils.h"
+#include "net/third_party/quiche/src/quic/test_tools/simple_data_producer.h"
+#include "net/third_party/quiche/src/quic/test_tools/simple_quic_framer.h"
+#include "net/third_party/quiche/src/quic/test_tools/simple_session_notifier.h"
+
+using testing::_;
+using testing::AnyNumber;
+using testing::AtLeast;
+using testing::DoAll;
+using testing::Exactly;
+using testing::Ge;
+using testing::IgnoreResult;
+using testing::InSequence;
+using testing::Invoke;
+using testing::InvokeWithoutArgs;
+using testing::Lt;
+using testing::Ref;
+using testing::Return;
+using testing::SaveArg;
+using testing::SetArgPointee;
+using testing::StrictMock;
+
+namespace quic {
+namespace test {
+namespace {
+
+const char data1[] = "foo";
+const char data2[] = "bar";
+
+const bool kHasStopWaiting = true;
+
+const int kDefaultRetransmissionTimeMs = 500;
+
+const QuicSocketAddress kPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(),
+ /*port=*/12345);
+const QuicSocketAddress kSelfAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(),
+ /*port=*/443);
+
+Perspective InvertPerspective(Perspective perspective) {
+ return perspective == Perspective::IS_CLIENT ? Perspective::IS_SERVER
+ : Perspective::IS_CLIENT;
+}
+
+QuicStreamId GetNthClientInitiatedStreamId(int n,
+ QuicTransportVersion version) {
+ return QuicUtils::GetHeadersStreamId(version) + n * 2;
+}
+
+// TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message.
+class TaggingEncrypter : public QuicEncrypter {
+ public:
+ explicit TaggingEncrypter(uint8_t tag) : tag_(tag) {}
+ TaggingEncrypter(const TaggingEncrypter&) = delete;
+ TaggingEncrypter& operator=(const TaggingEncrypter&) = delete;
+
+ ~TaggingEncrypter() override {}
+
+ // QuicEncrypter interface.
+ bool SetKey(QuicStringPiece key) override { return true; }
+
+ bool SetNoncePrefix(QuicStringPiece nonce_prefix) override { return true; }
+
+ bool SetIV(QuicStringPiece iv) override { return true; }
+
+ bool EncryptPacket(uint64_t packet_number,
+ QuicStringPiece associated_data,
+ QuicStringPiece plaintext,
+ char* output,
+ size_t* output_length,
+ size_t max_output_length) override {
+ const size_t len = plaintext.size() + kTagSize;
+ if (max_output_length < len) {
+ return false;
+ }
+ // Memmove is safe for inplace encryption.
+ memmove(output, plaintext.data(), plaintext.size());
+ output += plaintext.size();
+ memset(output, tag_, kTagSize);
+ *output_length = len;
+ return true;
+ }
+
+ size_t GetKeySize() const override { return 0; }
+ size_t GetNoncePrefixSize() const override { return 0; }
+ size_t GetIVSize() const override { return 0; }
+
+ size_t GetMaxPlaintextSize(size_t ciphertext_size) const override {
+ return ciphertext_size - kTagSize;
+ }
+
+ size_t GetCiphertextSize(size_t plaintext_size) const override {
+ return plaintext_size + kTagSize;
+ }
+
+ QuicStringPiece GetKey() const override { return QuicStringPiece(); }
+
+ QuicStringPiece GetNoncePrefix() const override { return QuicStringPiece(); }
+
+ private:
+ enum {
+ kTagSize = 12,
+ };
+
+ const uint8_t tag_;
+};
+
+// TaggingDecrypter ensures that the final kTagSize bytes of the message all
+// have the same value and then removes them.
+class TaggingDecrypter : public QuicDecrypter {
+ public:
+ ~TaggingDecrypter() override {}
+
+ // QuicDecrypter interface
+ bool SetKey(QuicStringPiece key) override { return true; }
+
+ bool SetNoncePrefix(QuicStringPiece nonce_prefix) override { return true; }
+
+ bool SetIV(QuicStringPiece iv) override { return true; }
+
+ bool SetPreliminaryKey(QuicStringPiece key) override {
+ QUIC_BUG << "should not be called";
+ return false;
+ }
+
+ bool SetDiversificationNonce(const DiversificationNonce& key) override {
+ return true;
+ }
+
+ bool DecryptPacket(uint64_t packet_number,
+ QuicStringPiece associated_data,
+ QuicStringPiece ciphertext,
+ char* output,
+ size_t* output_length,
+ size_t max_output_length) override {
+ if (ciphertext.size() < kTagSize) {
+ return false;
+ }
+ if (!CheckTag(ciphertext, GetTag(ciphertext))) {
+ return false;
+ }
+ *output_length = ciphertext.size() - kTagSize;
+ memcpy(output, ciphertext.data(), *output_length);
+ return true;
+ }
+
+ size_t GetKeySize() const override { return 0; }
+ size_t GetIVSize() const override { return 0; }
+ QuicStringPiece GetKey() const override { return QuicStringPiece(); }
+ QuicStringPiece GetNoncePrefix() const override { return QuicStringPiece(); }
+ // Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
+ uint32_t cipher_id() const override { return 0xFFFFFFF0; }
+
+ protected:
+ virtual uint8_t GetTag(QuicStringPiece ciphertext) {
+ return ciphertext.data()[ciphertext.size() - 1];
+ }
+
+ private:
+ enum {
+ kTagSize = 12,
+ };
+
+ bool CheckTag(QuicStringPiece ciphertext, uint8_t tag) {
+ for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) {
+ if (ciphertext.data()[i] != tag) {
+ return false;
+ }
+ }
+
+ return true;
+ }
+};
+
+// StringTaggingDecrypter ensures that the final kTagSize bytes of the message
+// match the expected value.
+class StrictTaggingDecrypter : public TaggingDecrypter {
+ public:
+ explicit StrictTaggingDecrypter(uint8_t tag) : tag_(tag) {}
+ ~StrictTaggingDecrypter() override {}
+
+ // TaggingQuicDecrypter
+ uint8_t GetTag(QuicStringPiece ciphertext) override { return tag_; }
+
+ // Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
+ uint32_t cipher_id() const override { return 0xFFFFFFF1; }
+
+ private:
+ const uint8_t tag_;
+};
+
+class TestConnectionHelper : public QuicConnectionHelperInterface {
+ public:
+ TestConnectionHelper(MockClock* clock, MockRandom* random_generator)
+ : clock_(clock), random_generator_(random_generator) {
+ clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ }
+ TestConnectionHelper(const TestConnectionHelper&) = delete;
+ TestConnectionHelper& operator=(const TestConnectionHelper&) = delete;
+
+ // QuicConnectionHelperInterface
+ const QuicClock* GetClock() const override { return clock_; }
+
+ QuicRandom* GetRandomGenerator() override { return random_generator_; }
+
+ QuicBufferAllocator* GetStreamSendBufferAllocator() override {
+ return &buffer_allocator_;
+ }
+
+ private:
+ MockClock* clock_;
+ MockRandom* random_generator_;
+ SimpleBufferAllocator buffer_allocator_;
+};
+
+class TestAlarmFactory : public QuicAlarmFactory {
+ public:
+ class TestAlarm : public QuicAlarm {
+ public:
+ explicit TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate> delegate)
+ : QuicAlarm(std::move(delegate)) {}
+
+ void SetImpl() override {}
+ void CancelImpl() override {}
+ using QuicAlarm::Fire;
+ };
+
+ TestAlarmFactory() {}
+ TestAlarmFactory(const TestAlarmFactory&) = delete;
+ TestAlarmFactory& operator=(const TestAlarmFactory&) = delete;
+
+ QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) override {
+ return new TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate>(delegate));
+ }
+
+ QuicArenaScopedPtr<QuicAlarm> CreateAlarm(
+ QuicArenaScopedPtr<QuicAlarm::Delegate> delegate,
+ QuicConnectionArena* arena) override {
+ return arena->New<TestAlarm>(std::move(delegate));
+ }
+};
+
+class TestPacketWriter : public QuicPacketWriter {
+ public:
+ TestPacketWriter(ParsedQuicVersion version, MockClock* clock)
+ : version_(version),
+ framer_(SupportedVersions(version_), Perspective::IS_SERVER),
+ last_packet_size_(0),
+ write_blocked_(false),
+ write_should_fail_(false),
+ block_on_next_flush_(false),
+ block_on_next_write_(false),
+ next_packet_too_large_(false),
+ always_get_packet_too_large_(false),
+ is_write_blocked_data_buffered_(false),
+ is_batch_mode_(false),
+ final_bytes_of_last_packet_(0),
+ final_bytes_of_previous_packet_(0),
+ use_tagging_decrypter_(false),
+ packets_write_attempts_(0),
+ clock_(clock),
+ write_pause_time_delta_(QuicTime::Delta::Zero()),
+ max_packet_size_(kMaxPacketSize),
+ supports_release_time_(false) {}
+ TestPacketWriter(const TestPacketWriter&) = delete;
+ TestPacketWriter& operator=(const TestPacketWriter&) = delete;
+
+ // QuicPacketWriter interface
+ WriteResult WritePacket(const char* buffer,
+ size_t buf_len,
+ const QuicIpAddress& self_address,
+ const QuicSocketAddress& peer_address,
+ PerPacketOptions* options) override {
+ QuicEncryptedPacket packet(buffer, buf_len);
+ ++packets_write_attempts_;
+
+ if (packet.length() >= sizeof(final_bytes_of_last_packet_)) {
+ final_bytes_of_previous_packet_ = final_bytes_of_last_packet_;
+ memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4,
+ sizeof(final_bytes_of_last_packet_));
+ }
+
+ if (use_tagging_decrypter_) {
+ framer_.framer()->SetDecrypter(ENCRYPTION_NONE,
+ QuicMakeUnique<TaggingDecrypter>());
+ }
+ EXPECT_TRUE(framer_.ProcessPacket(packet));
+ if (block_on_next_write_) {
+ write_blocked_ = true;
+ block_on_next_write_ = false;
+ }
+ if (next_packet_too_large_) {
+ next_packet_too_large_ = false;
+ return WriteResult(WRITE_STATUS_ERROR, QUIC_EMSGSIZE);
+ }
+ if (always_get_packet_too_large_) {
+ return WriteResult(WRITE_STATUS_ERROR, QUIC_EMSGSIZE);
+ }
+ if (IsWriteBlocked()) {
+ return WriteResult(is_write_blocked_data_buffered_
+ ? WRITE_STATUS_BLOCKED_DATA_BUFFERED
+ : WRITE_STATUS_BLOCKED,
+ 0);
+ }
+
+ if (ShouldWriteFail()) {
+ return WriteResult(WRITE_STATUS_ERROR, 0);
+ }
+
+ last_packet_size_ = packet.length();
+ last_packet_header_ = framer_.header();
+
+ if (!write_pause_time_delta_.IsZero()) {
+ clock_->AdvanceTime(write_pause_time_delta_);
+ }
+ return WriteResult(WRITE_STATUS_OK, last_packet_size_);
+ }
+
+ bool ShouldWriteFail() { return write_should_fail_; }
+
+ bool IsWriteBlocked() const override { return write_blocked_; }
+
+ void SetWriteBlocked() { write_blocked_ = true; }
+
+ void SetWritable() override { write_blocked_ = false; }
+
+ void SetShouldWriteFail() { write_should_fail_ = true; }
+
+ QuicByteCount GetMaxPacketSize(
+ const QuicSocketAddress& /*peer_address*/) const override {
+ return max_packet_size_;
+ }
+
+ bool SupportsReleaseTime() const { return supports_release_time_; }
+
+ bool IsBatchMode() const override { return is_batch_mode_; }
+
+ char* GetNextWriteLocation(const QuicIpAddress& self_address,
+ const QuicSocketAddress& peer_address) override {
+ return nullptr;
+ }
+
+ WriteResult Flush() override {
+ if (block_on_next_flush_) {
+ block_on_next_flush_ = false;
+ SetWriteBlocked();
+ return WriteResult(WRITE_STATUS_BLOCKED, /*errno*/ -1);
+ }
+ return WriteResult(WRITE_STATUS_OK, 0);
+ }
+
+ void BlockOnNextFlush() { block_on_next_flush_ = true; }
+
+ void BlockOnNextWrite() { block_on_next_write_ = true; }
+
+ void SimulateNextPacketTooLarge() { next_packet_too_large_ = true; }
+
+ void AlwaysGetPacketTooLarge() { always_get_packet_too_large_ = true; }
+
+ // Sets the amount of time that the writer should before the actual write.
+ void SetWritePauseTimeDelta(QuicTime::Delta delta) {
+ write_pause_time_delta_ = delta;
+ }
+
+ void SetBatchMode(bool new_value) { is_batch_mode_ = new_value; }
+
+ const QuicPacketHeader& header() { return framer_.header(); }
+
+ size_t frame_count() const { return framer_.num_frames(); }
+
+ const std::vector<QuicAckFrame>& ack_frames() const {
+ return framer_.ack_frames();
+ }
+
+ const std::vector<QuicStopWaitingFrame>& stop_waiting_frames() const {
+ return framer_.stop_waiting_frames();
+ }
+
+ const std::vector<QuicConnectionCloseFrame>& connection_close_frames() const {
+ return framer_.connection_close_frames();
+ }
+
+ const std::vector<QuicRstStreamFrame>& rst_stream_frames() const {
+ return framer_.rst_stream_frames();
+ }
+
+ const std::vector<std::unique_ptr<QuicStreamFrame>>& stream_frames() const {
+ return framer_.stream_frames();
+ }
+
+ const std::vector<std::unique_ptr<QuicCryptoFrame>>& crypto_frames() const {
+ return framer_.crypto_frames();
+ }
+
+ const std::vector<QuicPingFrame>& ping_frames() const {
+ return framer_.ping_frames();
+ }
+
+ const std::vector<QuicMessageFrame>& message_frames() const {
+ return framer_.message_frames();
+ }
+
+ const std::vector<QuicWindowUpdateFrame>& window_update_frames() const {
+ return framer_.window_update_frames();
+ }
+
+ const std::vector<QuicPaddingFrame>& padding_frames() const {
+ return framer_.padding_frames();
+ }
+
+ const std::vector<QuicPathChallengeFrame>& path_challenge_frames() const {
+ return framer_.path_challenge_frames();
+ }
+
+ const std::vector<QuicPathResponseFrame>& path_response_frames() const {
+ return framer_.path_response_frames();
+ }
+
+ size_t last_packet_size() { return last_packet_size_; }
+
+ const QuicPacketHeader& last_packet_header() const {
+ return last_packet_header_;
+ }
+
+ const QuicVersionNegotiationPacket* version_negotiation_packet() {
+ return framer_.version_negotiation_packet();
+ }
+
+ void set_is_write_blocked_data_buffered(bool buffered) {
+ is_write_blocked_data_buffered_ = buffered;
+ }
+
+ void set_perspective(Perspective perspective) {
+ // We invert perspective here, because the framer needs to parse packets
+ // we send.
+ QuicFramerPeer::SetPerspective(framer_.framer(),
+ InvertPerspective(perspective));
+ }
+
+ // final_bytes_of_last_packet_ returns the last four bytes of the previous
+ // packet as a little-endian, uint32_t. This is intended to be used with a
+ // TaggingEncrypter so that tests can determine which encrypter was used for
+ // a given packet.
+ uint32_t final_bytes_of_last_packet() { return final_bytes_of_last_packet_; }
+
+ // Returns the final bytes of the second to last packet.
+ uint32_t final_bytes_of_previous_packet() {
+ return final_bytes_of_previous_packet_;
+ }
+
+ void use_tagging_decrypter() { use_tagging_decrypter_ = true; }
+
+ uint32_t packets_write_attempts() { return packets_write_attempts_; }
+
+ void Reset() { framer_.Reset(); }
+
+ void SetSupportedVersions(const ParsedQuicVersionVector& versions) {
+ framer_.SetSupportedVersions(versions);
+ }
+
+ void set_max_packet_size(QuicByteCount max_packet_size) {
+ max_packet_size_ = max_packet_size;
+ }
+
+ void set_supports_release_time(bool supports_release_time) {
+ supports_release_time_ = supports_release_time;
+ }
+
+ SimpleQuicFramer* framer() { return &framer_; }
+
+ private:
+ ParsedQuicVersion version_;
+ SimpleQuicFramer framer_;
+ size_t last_packet_size_;
+ QuicPacketHeader last_packet_header_;
+ bool write_blocked_;
+ bool write_should_fail_;
+ bool block_on_next_flush_;
+ bool block_on_next_write_;
+ bool next_packet_too_large_;
+ bool always_get_packet_too_large_;
+ bool is_write_blocked_data_buffered_;
+ bool is_batch_mode_;
+ uint32_t final_bytes_of_last_packet_;
+ uint32_t final_bytes_of_previous_packet_;
+ bool use_tagging_decrypter_;
+ uint32_t packets_write_attempts_;
+ MockClock* clock_;
+ // If non-zero, the clock will pause during WritePacket for this amount of
+ // time.
+ QuicTime::Delta write_pause_time_delta_;
+ QuicByteCount max_packet_size_;
+ bool supports_release_time_;
+};
+
+class TestConnection : public QuicConnection {
+ public:
+ TestConnection(QuicConnectionId connection_id,
+ QuicSocketAddress address,
+ TestConnectionHelper* helper,
+ TestAlarmFactory* alarm_factory,
+ TestPacketWriter* writer,
+ Perspective perspective,
+ ParsedQuicVersion version)
+ : QuicConnection(connection_id,
+ address,
+ helper,
+ alarm_factory,
+ writer,
+ /* owns_writer= */ false,
+ perspective,
+ SupportedVersions(version)),
+ notifier_(nullptr) {
+ writer->set_perspective(perspective);
+ SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ QuicMakeUnique<NullEncrypter>(perspective));
+ SetDataProducer(&producer_);
+ }
+ TestConnection(const TestConnection&) = delete;
+ TestConnection& operator=(const TestConnection&) = delete;
+
+ void SendAck() { QuicConnectionPeer::SendAck(this); }
+
+ void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) {
+ QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm);
+ }
+
+ void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) {
+ QuicConnectionPeer::SetLossAlgorithm(this, loss_algorithm);
+ }
+
+ void SendPacket(EncryptionLevel level,
+ uint64_t packet_number,
+ std::unique_ptr<QuicPacket> packet,
+ HasRetransmittableData retransmittable,
+ bool has_ack,
+ bool has_pending_frames) {
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length =
+ QuicConnectionPeer::GetFramer(this)->EncryptPayload(
+ ENCRYPTION_NONE, QuicPacketNumber(packet_number), *packet, buffer,
+ kMaxPacketSize);
+ SerializedPacket serialized_packet(
+ QuicPacketNumber(packet_number), PACKET_4BYTE_PACKET_NUMBER, buffer,
+ encrypted_length, has_ack, has_pending_frames);
+ if (retransmittable == HAS_RETRANSMITTABLE_DATA) {
+ serialized_packet.retransmittable_frames.push_back(
+ QuicFrame(QuicStreamFrame()));
+ }
+ OnSerializedPacket(&serialized_packet);
+ }
+
+ QuicConsumedData SaveAndSendStreamData(QuicStreamId id,
+ const struct iovec* iov,
+ int iov_count,
+ size_t total_length,
+ QuicStreamOffset offset,
+ StreamSendingState state) {
+ ScopedPacketFlusher flusher(this, NO_ACK);
+ producer_.SaveStreamData(id, iov, iov_count, 0u, total_length);
+ if (notifier_ != nullptr) {
+ return notifier_->WriteOrBufferData(id, total_length, state);
+ }
+ return QuicConnection::SendStreamData(id, total_length, offset, state);
+ }
+
+ QuicConsumedData SendStreamDataWithString(QuicStreamId id,
+ QuicStringPiece data,
+ QuicStreamOffset offset,
+ StreamSendingState state) {
+ ScopedPacketFlusher flusher(this, NO_ACK);
+ if (id != QuicUtils::GetCryptoStreamId(transport_version()) &&
+ this->encryption_level() == ENCRYPTION_NONE) {
+ this->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ }
+ struct iovec iov;
+ MakeIOVector(data, &iov);
+ return SaveAndSendStreamData(id, &iov, 1, data.length(), offset, state);
+ }
+
+ QuicConsumedData SendStreamData3() {
+ return SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, transport_version()), "food", 0,
+ NO_FIN);
+ }
+
+ QuicConsumedData SendStreamData5() {
+ return SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(2, transport_version()), "food2", 0,
+ NO_FIN);
+ }
+
+ // Ensures the connection can write stream data before writing.
+ QuicConsumedData EnsureWritableAndSendStreamData5() {
+ EXPECT_TRUE(CanWriteStreamData());
+ return SendStreamData5();
+ }
+
+ // The crypto stream has special semantics so that it is not blocked by a
+ // congestion window limitation, and also so that it gets put into a separate
+ // packet (so that it is easier to reason about a crypto frame not being
+ // split needlessly across packet boundaries). As a result, we have separate
+ // tests for some cases for this stream.
+ QuicConsumedData SendCryptoStreamData() {
+ QuicStreamOffset offset = 0;
+ QuicStringPiece data("chlo");
+ if (transport_version() < QUIC_VERSION_47) {
+ return SendStreamDataWithString(
+ QuicUtils::GetCryptoStreamId(transport_version()), data, offset,
+ NO_FIN);
+ }
+ producer_.SaveCryptoData(ENCRYPTION_NONE, offset, data);
+ size_t bytes_written;
+ if (notifier_) {
+ bytes_written =
+ notifier_->WriteCryptoData(ENCRYPTION_NONE, data.length(), offset);
+ } else {
+ bytes_written = QuicConnection::SendCryptoData(ENCRYPTION_NONE,
+ data.length(), offset);
+ }
+ return QuicConsumedData(bytes_written, /*fin_consumed*/ false);
+ }
+
+ void set_version(ParsedQuicVersion version) {
+ QuicConnectionPeer::GetFramer(this)->set_version(version);
+ }
+
+ void SetSupportedVersions(const ParsedQuicVersionVector& versions) {
+ QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions);
+ QuicConnectionPeer::SetNoVersionNegotiation(this, versions.size() == 1);
+ writer()->SetSupportedVersions(versions);
+ }
+
+ void set_perspective(Perspective perspective) {
+ writer()->set_perspective(perspective);
+ QuicConnectionPeer::SetPerspective(this, perspective);
+ }
+
+ // Enable path MTU discovery. Assumes that the test is performed from the
+ // client perspective and the higher value of MTU target is used.
+ void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) {
+ ASSERT_EQ(Perspective::IS_CLIENT, perspective());
+
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(kMTUH);
+ config.SetConnectionOptionsToSend(connection_options);
+ EXPECT_CALL(*send_algorithm, SetFromConfig(_, _));
+ SetFromConfig(config);
+
+ // Normally, the pacing would be disabled in the test, but calling
+ // SetFromConfig enables it. Set nearly-infinite bandwidth to make the
+ // pacing algorithm work.
+ EXPECT_CALL(*send_algorithm, PacingRate(_))
+ .WillRepeatedly(Return(QuicBandwidth::Infinite()));
+ }
+
+ TestAlarmFactory::TestAlarm* GetAckAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetAckAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetPingAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetPingAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetRetransmissionAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetRetransmissionAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetSendAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetSendAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetTimeoutAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetTimeoutAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetMtuDiscoveryAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetMtuDiscoveryAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetPathDegradingAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetPathDegradingAlarm(this));
+ }
+
+ TestAlarmFactory::TestAlarm* GetProcessUndecryptablePacketsAlarm() {
+ return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
+ QuicConnectionPeer::GetProcessUndecryptablePacketsAlarm(this));
+ }
+
+ void SetMaxTailLossProbes(size_t max_tail_loss_probes) {
+ QuicSentPacketManagerPeer::SetMaxTailLossProbes(
+ QuicConnectionPeer::GetSentPacketManager(this), max_tail_loss_probes);
+ }
+
+ QuicByteCount GetBytesInFlight() {
+ return QuicSentPacketManagerPeer::GetBytesInFlight(
+ QuicConnectionPeer::GetSentPacketManager(this));
+ }
+
+ void set_notifier(SimpleSessionNotifier* notifier) { notifier_ = notifier; }
+
+ void ReturnEffectivePeerAddressForNextPacket(const QuicSocketAddress& addr) {
+ next_effective_peer_addr_ = QuicMakeUnique<QuicSocketAddress>(addr);
+ }
+
+ using QuicConnection::active_effective_peer_migration_type;
+ using QuicConnection::IsCurrentPacketConnectivityProbing;
+ using QuicConnection::SelectMutualVersion;
+ using QuicConnection::SendProbingRetransmissions;
+ using QuicConnection::set_defer_send_in_response_to_packets;
+
+ protected:
+ QuicSocketAddress GetEffectivePeerAddressFromCurrentPacket() const override {
+ if (next_effective_peer_addr_) {
+ return *std::move(next_effective_peer_addr_);
+ }
+ return QuicConnection::GetEffectivePeerAddressFromCurrentPacket();
+ }
+
+ private:
+ TestPacketWriter* writer() {
+ return static_cast<TestPacketWriter*>(QuicConnection::writer());
+ }
+
+ SimpleDataProducer producer_;
+
+ SimpleSessionNotifier* notifier_;
+
+ std::unique_ptr<QuicSocketAddress> next_effective_peer_addr_;
+};
+
+enum class AckResponse { kDefer, kImmediate };
+
+// Run tests with combinations of {ParsedQuicVersion, AckResponse}.
+struct TestParams {
+ TestParams(ParsedQuicVersion version,
+ AckResponse ack_response,
+ bool no_stop_waiting)
+ : version(version),
+ ack_response(ack_response),
+ no_stop_waiting(no_stop_waiting) {}
+
+ friend std::ostream& operator<<(std::ostream& os, const TestParams& p) {
+ os << "{ client_version: " << ParsedQuicVersionToString(p.version)
+ << " ack_response: "
+ << (p.ack_response == AckResponse::kDefer ? "defer" : "immediate")
+ << " no_stop_waiting: " << p.no_stop_waiting << " }";
+ return os;
+ }
+
+ ParsedQuicVersion version;
+ AckResponse ack_response;
+ bool no_stop_waiting;
+};
+
+// Constructs various test permutations.
+std::vector<TestParams> GetTestParams() {
+ QuicFlagSaver flags;
+ SetQuicFlag(&FLAGS_quic_supports_tls_handshake, true);
+ std::vector<TestParams> params;
+ ParsedQuicVersionVector all_supported_versions = AllSupportedVersions();
+ for (size_t i = 0; i < all_supported_versions.size(); ++i) {
+ for (AckResponse ack_response :
+ {AckResponse::kDefer, AckResponse::kImmediate}) {
+ for (bool no_stop_waiting : {true, false}) {
+ // After version 43, never use STOP_WAITING.
+ if (all_supported_versions[i].transport_version <= QUIC_VERSION_43 ||
+ no_stop_waiting) {
+ params.push_back(TestParams(all_supported_versions[i], ack_response,
+ no_stop_waiting));
+ }
+ }
+ }
+ }
+ return params;
+}
+
+class QuicConnectionTest : public QuicTestWithParam<TestParams> {
+ protected:
+ QuicConnectionTest()
+ : connection_id_(TestConnectionId()),
+ framer_(SupportedVersions(version()),
+ QuicTime::Zero(),
+ Perspective::IS_CLIENT,
+ connection_id_.length()),
+ send_algorithm_(new StrictMock<MockSendAlgorithm>),
+ loss_algorithm_(new MockLossAlgorithm()),
+ helper_(new TestConnectionHelper(&clock_, &random_generator_)),
+ alarm_factory_(new TestAlarmFactory()),
+ peer_framer_(SupportedVersions(version()),
+ QuicTime::Zero(),
+ Perspective::IS_SERVER,
+ connection_id_.length()),
+ peer_creator_(connection_id_,
+ &peer_framer_,
+ /*delegate=*/nullptr),
+ writer_(new TestPacketWriter(version(), &clock_)),
+ connection_(connection_id_,
+ kPeerAddress,
+ helper_.get(),
+ alarm_factory_.get(),
+ writer_.get(),
+ Perspective::IS_CLIENT,
+ version()),
+ creator_(QuicConnectionPeer::GetPacketCreator(&connection_)),
+ generator_(QuicConnectionPeer::GetPacketGenerator(&connection_)),
+ manager_(QuicConnectionPeer::GetSentPacketManager(&connection_)),
+ frame1_(QuicUtils::GetCryptoStreamId(version().transport_version),
+ false,
+ 0,
+ QuicStringPiece(data1)),
+ frame2_(QuicUtils::GetCryptoStreamId(version().transport_version),
+ false,
+ 3,
+ QuicStringPiece(data2)),
+ packet_number_length_(PACKET_4BYTE_PACKET_NUMBER),
+ connection_id_included_(CONNECTION_ID_PRESENT),
+ notifier_(&connection_) {
+ SetQuicFlag(&FLAGS_quic_supports_tls_handshake, true);
+ connection_.set_defer_send_in_response_to_packets(GetParam().ack_response ==
+ AckResponse::kDefer);
+ QuicFramerPeer::SetLastSerializedConnectionId(
+ QuicConnectionPeer::GetFramer(&connection_), connection_id_);
+ if (version().transport_version > QUIC_VERSION_43) {
+ EXPECT_TRUE(QuicConnectionPeer::GetNoStopWaitingFrames(&connection_));
+ } else {
+ QuicConnectionPeer::SetNoStopWaitingFrames(&connection_,
+ GetParam().no_stop_waiting);
+ }
+ connection_.set_visitor(&visitor_);
+ if (connection_.session_decides_what_to_write()) {
+ connection_.SetSessionNotifier(¬ifier_);
+ connection_.set_notifier(¬ifier_);
+ }
+ connection_.SetSendAlgorithm(send_algorithm_);
+ connection_.SetLossAlgorithm(loss_algorithm_.get());
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
+ .WillRepeatedly(Return(kDefaultTCPMSS));
+ EXPECT_CALL(*send_algorithm_, PacingRate(_))
+ .WillRepeatedly(Return(QuicBandwidth::Zero()));
+ EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate())
+ .Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+ .Times(AnyNumber())
+ .WillRepeatedly(Return(QuicBandwidth::Zero()));
+ EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber());
+ EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber());
+ if (connection_.session_decides_what_to_write()) {
+ EXPECT_CALL(visitor_, OnCanWrite())
+ .WillRepeatedly(
+ Invoke(¬ifier_, &SimpleSessionNotifier::OnCanWrite));
+ } else {
+ EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber());
+ }
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(false));
+ EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(AnyNumber());
+ EXPECT_CALL(visitor_, OnForwardProgressConfirmed()).Times(AnyNumber());
+
+ EXPECT_CALL(*loss_algorithm_, GetLossTimeout())
+ .WillRepeatedly(Return(QuicTime::Zero()));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .Times(AnyNumber());
+ }
+
+ QuicConnectionTest(const QuicConnectionTest&) = delete;
+ QuicConnectionTest& operator=(const QuicConnectionTest&) = delete;
+
+ ParsedQuicVersion version() { return GetParam().version; }
+
+ QuicAckFrame* outgoing_ack() {
+ QuicFrame ack_frame = QuicConnectionPeer::GetUpdatedAckFrame(&connection_);
+ ack_ = *ack_frame.ack_frame;
+ return &ack_;
+ }
+
+ QuicStopWaitingFrame* stop_waiting() {
+ QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_);
+ return &stop_waiting_;
+ }
+
+ QuicPacketNumber least_unacked() {
+ if (writer_->stop_waiting_frames().empty()) {
+ return QuicPacketNumber();
+ }
+ return writer_->stop_waiting_frames()[0].least_unacked;
+ }
+
+ void use_tagging_decrypter() { writer_->use_tagging_decrypter(); }
+
+ void ProcessPacket(uint64_t number) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(number);
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ }
+
+ void ProcessReceivedPacket(const QuicSocketAddress& self_address,
+ const QuicSocketAddress& peer_address,
+ const QuicReceivedPacket& packet) {
+ connection_.ProcessUdpPacket(self_address, peer_address, packet);
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ }
+
+ void ProcessFramePacket(QuicFrame frame) {
+ ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
+ }
+
+ void ProcessFramePacketWithAddresses(QuicFrame frame,
+ QuicSocketAddress self_address,
+ QuicSocketAddress peer_address) {
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame));
+ QuicPacketCreatorPeer::SetSendVersionInPacket(
+ &peer_creator_, connection_.perspective() == Perspective::IS_SERVER);
+ if (QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_) >
+ ENCRYPTION_NONE) {
+ // Set peer_framer_'s corresponding encrypter.
+ peer_creator_.SetEncrypter(
+ QuicPacketCreatorPeer::GetEncryptionLevel(&peer_creator_),
+ QuicMakeUnique<NullEncrypter>(peer_framer_.perspective()));
+ }
+
+ char buffer[kMaxPacketSize];
+ SerializedPacket serialized_packet =
+ QuicPacketCreatorPeer::SerializeAllFrames(&peer_creator_, frames,
+ buffer, kMaxPacketSize);
+ connection_.ProcessUdpPacket(
+ self_address, peer_address,
+ QuicReceivedPacket(serialized_packet.encrypted_buffer,
+ serialized_packet.encrypted_length, clock_.Now()));
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ }
+
+ // Bypassing the packet creator is unrealistic, but allows us to process
+ // packets the QuicPacketCreator won't allow us to create.
+ void ForceProcessFramePacket(QuicFrame frame) {
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame));
+ QuicPacketCreatorPeer::SetSendVersionInPacket(
+ &peer_creator_, connection_.perspective() == Perspective::IS_SERVER);
+ QuicPacketHeader header;
+ QuicPacketCreatorPeer::FillPacketHeader(&peer_creator_, &header);
+ char encrypted_buffer[kMaxPacketSize];
+ size_t length = peer_framer_.BuildDataPacket(
+ header, frames, encrypted_buffer, kMaxPacketSize, ENCRYPTION_NONE);
+ DCHECK_GT(length, 0u);
+
+ const size_t encrypted_length = peer_framer_.EncryptInPlace(
+ ENCRYPTION_NONE, header.packet_number,
+ GetStartOfEncryptedData(peer_framer_.version().transport_version,
+ header),
+ length, kMaxPacketSize, encrypted_buffer);
+ DCHECK_GT(encrypted_length, 0u);
+
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(encrypted_buffer, encrypted_length, clock_.Now()));
+ }
+
+ size_t ProcessFramePacketAtLevel(uint64_t number,
+ QuicFrame frame,
+ EncryptionLevel level) {
+ QuicPacketHeader header;
+ header.destination_connection_id = connection_id_;
+ header.packet_number_length = packet_number_length_;
+ header.destination_connection_id_included = connection_id_included_;
+ if (peer_framer_.transport_version() > QUIC_VERSION_43 &&
+ peer_framer_.perspective() == Perspective::IS_SERVER) {
+ header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+ }
+ header.packet_number = QuicPacketNumber(number);
+ QuicFrames frames;
+ frames.push_back(frame);
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length = framer_.EncryptPayload(
+ level, QuicPacketNumber(number), *packet, buffer, kMaxPacketSize);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+ return encrypted_length;
+ }
+
+ size_t ProcessDataPacket(uint64_t number) {
+ return ProcessDataPacketAtLevel(number, false, ENCRYPTION_NONE);
+ }
+
+ size_t ProcessDataPacket(QuicPacketNumber packet_number) {
+ return ProcessDataPacketAtLevel(packet_number, false, ENCRYPTION_NONE);
+ }
+
+ size_t ProcessDataPacketAtLevel(QuicPacketNumber packet_number,
+ bool has_stop_waiting,
+ EncryptionLevel level) {
+ return ProcessDataPacketAtLevel(packet_number.ToUint64(), has_stop_waiting,
+ level);
+ }
+
+ size_t ProcessDataPacketAtLevel(uint64_t number,
+ bool has_stop_waiting,
+ EncryptionLevel level) {
+ std::unique_ptr<QuicPacket> packet(
+ ConstructDataPacket(number, has_stop_waiting));
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ level, QuicPacketNumber(number), *packet, buffer, kMaxPacketSize);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+ if (connection_.GetSendAlarm()->IsSet()) {
+ connection_.GetSendAlarm()->Fire();
+ }
+ return encrypted_length;
+ }
+
+ void ProcessClosePacket(uint64_t number) {
+ std::unique_ptr<QuicPacket> packet(ConstructClosePacket(number));
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(ENCRYPTION_NONE, QuicPacketNumber(number),
+ *packet, buffer, kMaxPacketSize);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+ }
+
+ QuicByteCount SendStreamDataToPeer(QuicStreamId id,
+ QuicStringPiece data,
+ QuicStreamOffset offset,
+ StreamSendingState state,
+ QuicPacketNumber* last_packet) {
+ QuicByteCount packet_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&packet_size));
+ connection_.SendStreamDataWithString(id, data, offset, state);
+ if (last_packet != nullptr) {
+ *last_packet = creator_->packet_number();
+ }
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AnyNumber());
+ return packet_size;
+ }
+
+ void SendAckPacketToPeer() {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_,
+ QuicConnection::NO_ACK);
+ connection_.SendAck();
+ }
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(AnyNumber());
+ }
+
+ void SendRstStream(QuicStreamId id,
+ QuicRstStreamErrorCode error,
+ QuicStreamOffset bytes_written) {
+ if (connection_.session_decides_what_to_write()) {
+ notifier_.WriteOrBufferRstStream(id, error, bytes_written);
+ connection_.OnStreamReset(id, error);
+ return;
+ }
+ std::unique_ptr<QuicRstStreamFrame> rst_stream =
+ QuicMakeUnique<QuicRstStreamFrame>(1, id, error, bytes_written);
+ if (connection_.SendControlFrame(QuicFrame(rst_stream.get()))) {
+ rst_stream.release();
+ }
+ connection_.OnStreamReset(id, error);
+ }
+
+ void ProcessAckPacket(uint64_t packet_number, QuicAckFrame* frame) {
+ if (packet_number > 1) {
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, packet_number - 1);
+ } else {
+ QuicPacketCreatorPeer::ClearPacketNumber(&peer_creator_);
+ }
+ ProcessFramePacket(QuicFrame(frame));
+ }
+
+ void ProcessAckPacket(QuicAckFrame* frame) {
+ ProcessFramePacket(QuicFrame(frame));
+ }
+
+ void ProcessStopWaitingPacket(QuicStopWaitingFrame frame) {
+ ProcessFramePacket(QuicFrame(frame));
+ }
+
+ size_t ProcessStopWaitingPacketAtLevel(uint64_t number,
+ QuicStopWaitingFrame frame,
+ EncryptionLevel level) {
+ return ProcessFramePacketAtLevel(number, QuicFrame(frame),
+ ENCRYPTION_ZERO_RTT);
+ }
+
+ void ProcessGoAwayPacket(QuicGoAwayFrame* frame) {
+ ProcessFramePacket(QuicFrame(frame));
+ }
+
+ bool IsMissing(uint64_t number) {
+ return IsAwaitingPacket(*outgoing_ack(), QuicPacketNumber(number),
+ QuicPacketNumber());
+ }
+
+ std::unique_ptr<QuicPacket> ConstructPacket(const QuicPacketHeader& header,
+ const QuicFrames& frames) {
+ auto packet = BuildUnsizedDataPacket(&peer_framer_, header, frames);
+ EXPECT_NE(nullptr, packet.get());
+ return packet;
+ }
+
+ std::unique_ptr<QuicPacket> ConstructDataPacket(uint64_t number,
+ bool has_stop_waiting) {
+ QuicPacketHeader header;
+ // Set connection_id to peer's in memory representation as this data packet
+ // is created by peer_framer.
+ header.destination_connection_id = connection_id_;
+ header.packet_number_length = packet_number_length_;
+ header.destination_connection_id_included = connection_id_included_;
+ if (peer_framer_.transport_version() > QUIC_VERSION_43 &&
+ peer_framer_.perspective() == Perspective::IS_SERVER) {
+ header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+ }
+ header.packet_number = QuicPacketNumber(number);
+
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ if (has_stop_waiting) {
+ frames.push_back(QuicFrame(stop_waiting_));
+ }
+ return ConstructPacket(header, frames);
+ }
+
+ OwningSerializedPacketPointer ConstructProbingPacket() {
+ if (version().transport_version == QUIC_VERSION_99) {
+ QuicPathFrameBuffer payload = {
+ {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}};
+ return QuicPacketCreatorPeer::
+ SerializePathChallengeConnectivityProbingPacket(&peer_creator_,
+ &payload);
+ }
+ return QuicPacketCreatorPeer::SerializeConnectivityProbingPacket(
+ &peer_creator_);
+ }
+
+ std::unique_ptr<QuicPacket> ConstructClosePacket(uint64_t number) {
+ QuicPacketHeader header;
+ // Set connection_id to peer's in memory representation as this connection
+ // close packet is created by peer_framer.
+ header.destination_connection_id = connection_id_;
+ header.packet_number = QuicPacketNumber(number);
+ if (peer_framer_.transport_version() > QUIC_VERSION_43 &&
+ peer_framer_.perspective() == Perspective::IS_SERVER) {
+ header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+ }
+
+ QuicConnectionCloseFrame qccf;
+ qccf.error_code = QUIC_PEER_GOING_AWAY;
+
+ QuicFrames frames;
+ frames.push_back(QuicFrame(&qccf));
+ return ConstructPacket(header, frames);
+ }
+
+ QuicTime::Delta DefaultRetransmissionTime() {
+ return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
+ }
+
+ QuicTime::Delta DefaultDelayedAckTime() {
+ return QuicTime::Delta::FromMilliseconds(kDefaultDelayedAckTimeMs);
+ }
+
+ const QuicStopWaitingFrame InitStopWaitingFrame(uint64_t least_unacked) {
+ QuicStopWaitingFrame frame;
+ frame.least_unacked = QuicPacketNumber(least_unacked);
+ return frame;
+ }
+
+ // Construct a ack_frame that acks all packet numbers between 1 and
+ // |largest_acked|, except |missing|.
+ // REQUIRES: 1 <= |missing| < |largest_acked|
+ QuicAckFrame ConstructAckFrame(uint64_t largest_acked, uint64_t missing) {
+ return ConstructAckFrame(QuicPacketNumber(largest_acked),
+ QuicPacketNumber(missing));
+ }
+
+ QuicAckFrame ConstructAckFrame(QuicPacketNumber largest_acked,
+ QuicPacketNumber missing) {
+ if (missing == QuicPacketNumber(1)) {
+ return InitAckFrame({{missing + 1, largest_acked + 1}});
+ }
+ return InitAckFrame(
+ {{QuicPacketNumber(1), missing}, {missing + 1, largest_acked + 1}});
+ }
+
+ // Undo nacking a packet within the frame.
+ void AckPacket(QuicPacketNumber arrived, QuicAckFrame* frame) {
+ EXPECT_FALSE(frame->packets.Contains(arrived));
+ frame->packets.Add(arrived);
+ }
+
+ void TriggerConnectionClose() {
+ // Send an erroneous packet to close the connection.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, _,
+ ConnectionCloseSource::FROM_SELF));
+ // Call ProcessDataPacket rather than ProcessPacket, as we should not get a
+ // packet call to the visitor.
+ if (GetQuicRestartFlag(quic_enable_accept_random_ipn)) {
+ ProcessDataPacket(MaxRandomInitialPacketNumber() + 6000);
+ } else {
+ ProcessDataPacket(6000);
+ }
+
+ EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
+ nullptr);
+ }
+
+ void BlockOnNextWrite() {
+ writer_->BlockOnNextWrite();
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+ }
+
+ void SimulateNextPacketTooLarge() { writer_->SimulateNextPacketTooLarge(); }
+
+ void AlwaysGetPacketTooLarge() { writer_->AlwaysGetPacketTooLarge(); }
+
+ void SetWritePauseTimeDelta(QuicTime::Delta delta) {
+ writer_->SetWritePauseTimeDelta(delta);
+ }
+
+ void CongestionBlockWrites() {
+ EXPECT_CALL(*send_algorithm_, CanSend(_))
+ .WillRepeatedly(testing::Return(false));
+ }
+
+ void CongestionUnblockWrites() {
+ EXPECT_CALL(*send_algorithm_, CanSend(_))
+ .WillRepeatedly(testing::Return(true));
+ }
+
+ void set_perspective(Perspective perspective) {
+ connection_.set_perspective(perspective);
+ if (perspective == Perspective::IS_SERVER) {
+ connection_.set_can_truncate_connection_ids(true);
+ }
+ QuicFramerPeer::SetPerspective(&peer_framer_,
+ InvertPerspective(perspective));
+ }
+
+ void set_packets_between_probes_base(
+ const QuicPacketCount packets_between_probes_base) {
+ QuicConnectionPeer::SetPacketsBetweenMtuProbes(&connection_,
+ packets_between_probes_base);
+ QuicConnectionPeer::SetNextMtuProbeAt(
+ &connection_, QuicPacketNumber(packets_between_probes_base));
+ }
+
+ bool IsDefaultTestConfiguration() {
+ TestParams p = GetParam();
+ return p.ack_response == AckResponse::kImmediate &&
+ p.version == AllSupportedVersions()[0] && p.no_stop_waiting;
+ }
+
+ QuicConnectionId connection_id_;
+ QuicFramer framer_;
+
+ MockSendAlgorithm* send_algorithm_;
+ std::unique_ptr<MockLossAlgorithm> loss_algorithm_;
+ MockClock clock_;
+ MockRandom random_generator_;
+ SimpleBufferAllocator buffer_allocator_;
+ std::unique_ptr<TestConnectionHelper> helper_;
+ std::unique_ptr<TestAlarmFactory> alarm_factory_;
+ QuicFramer peer_framer_;
+ QuicPacketCreator peer_creator_;
+ std::unique_ptr<TestPacketWriter> writer_;
+ TestConnection connection_;
+ QuicPacketCreator* creator_;
+ QuicPacketGenerator* generator_;
+ QuicSentPacketManager* manager_;
+ StrictMock<MockQuicConnectionVisitor> visitor_;
+
+ QuicStreamFrame frame1_;
+ QuicStreamFrame frame2_;
+ QuicAckFrame ack_;
+ QuicStopWaitingFrame stop_waiting_;
+ QuicPacketNumberLength packet_number_length_;
+ QuicConnectionIdIncluded connection_id_included_;
+
+ SimpleSessionNotifier notifier_;
+};
+
+// Run all end to end tests with all supported versions.
+INSTANTIATE_TEST_SUITE_P(SupportedVersion,
+ QuicConnectionTest,
+ ::testing::ValuesIn(GetTestParams()));
+
+TEST_P(QuicConnectionTest, SelfAddressChangeAtClient) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+ EXPECT_TRUE(connection_.connected());
+
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_));
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ // Cause change in self_address.
+ QuicIpAddress host;
+ host.FromString("1.1.1.1");
+ QuicSocketAddress self_address(host, 123);
+ EXPECT_CALL(visitor_, OnStreamFrame(_));
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), self_address,
+ kPeerAddress);
+ EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, SelfAddressChangeAtServer) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+ EXPECT_TRUE(connection_.connected());
+
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_));
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ // Cause change in self_address.
+ QuicIpAddress host;
+ host.FromString("1.1.1.1");
+ QuicSocketAddress self_address(host, 123);
+ EXPECT_CALL(visitor_, AllowSelfAddressChange()).WillOnce(Return(false));
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_ERROR_MIGRATING_ADDRESS, _, _));
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), self_address,
+ kPeerAddress);
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, AllowSelfAddressChangeToMappedIpv4AddressAtServer) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+ EXPECT_TRUE(connection_.connected());
+
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3);
+ QuicIpAddress host;
+ host.FromString("1.1.1.1");
+ QuicSocketAddress self_address1(host, 443);
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), self_address1,
+ kPeerAddress);
+ // Cause self_address change to mapped Ipv4 address.
+ QuicIpAddress host2;
+ host2.FromString(
+ QuicStrCat("::ffff:", connection_.self_address().host().ToString()));
+ QuicSocketAddress self_address2(host2, connection_.self_address().port());
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), self_address2,
+ kPeerAddress);
+ EXPECT_TRUE(connection_.connected());
+ // self_address change back to Ipv4 address.
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), self_address1,
+ kPeerAddress);
+ EXPECT_TRUE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, ClientAddressChangeAndPacketReordered) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(),
+ /*port=*/23456);
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kNewPeerAddress);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+
+ // Decrease packet number to simulate out-of-order packets.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4);
+ // This is an old packet, do not migrate.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, PeerAddressChangeAtServer) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Process another packet with a different peer address on server side will
+ // start connection migration.
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kNewPeerAddress);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, EffectivePeerAddressChangeAtServer) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is different from direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ const QuicSocketAddress kEffectivePeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/43210);
+ connection_.ReturnEffectivePeerAddressForNextPacket(kEffectivePeerAddress);
+
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kEffectivePeerAddress, connection_.effective_peer_address());
+
+ // Process another packet with the same direct peer address and different
+ // effective peer address on server side will start connection migration.
+ const QuicSocketAddress kNewEffectivePeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/54321);
+ connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress);
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address());
+
+ // Process another packet with a different direct peer address and the same
+ // effective peer address on server side will not start connection migration.
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+ connection_.ReturnEffectivePeerAddressForNextPacket(kNewEffectivePeerAddress);
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ // ack_frame is used to complete the migration started by the last packet, we
+ // need to make sure a new migration does not start after the previous one is
+ // completed.
+ QuicAckFrame ack_frame = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessFramePacketWithAddresses(QuicFrame(&ack_frame), kSelfAddress,
+ kNewPeerAddress);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewEffectivePeerAddress, connection_.effective_peer_address());
+
+ // Process another packet with different direct peer address and different
+ // effective peer address on server side will start connection migration.
+ const QuicSocketAddress kNewerEffectivePeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/65432);
+ const QuicSocketAddress kFinalPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/34567);
+ connection_.ReturnEffectivePeerAddressForNextPacket(
+ kNewerEffectivePeerAddress);
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kFinalPeerAddress);
+ EXPECT_EQ(kFinalPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewerEffectivePeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(PORT_CHANGE, connection_.active_effective_peer_migration_type());
+
+ // While the previous migration is ongoing, process another packet with the
+ // same direct peer address and different effective peer address on server
+ // side will start a new connection migration.
+ const QuicSocketAddress kNewestEffectivePeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback4(), /*port=*/65430);
+ connection_.ReturnEffectivePeerAddressForNextPacket(
+ kNewestEffectivePeerAddress);
+ EXPECT_CALL(visitor_, OnConnectionMigration(IPV6_TO_IPV4_CHANGE)).Times(1);
+ EXPECT_CALL(*send_algorithm_, OnConnectionMigration()).Times(1);
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kFinalPeerAddress);
+ EXPECT_EQ(kFinalPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewestEffectivePeerAddress, connection_.effective_peer_address());
+ EXPECT_EQ(IPV6_TO_IPV4_CHANGE,
+ connection_.active_effective_peer_migration_type());
+}
+
+TEST_P(QuicConnectionTest, ReceivePaddedPingAtServer) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(0);
+
+ // Process a padded PING or PATH CHALLENGE packet with no peer address change
+ // on server side will be ignored.
+ OwningSerializedPacketPointer probing_packet;
+ if (version().transport_version == QUIC_VERSION_99) {
+ QuicPathFrameBuffer payload = {
+ {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}};
+ probing_packet =
+ QuicPacketCreatorPeer::SerializePathChallengeConnectivityProbingPacket(
+ &peer_creator_, &payload);
+ } else {
+ probing_packet = QuicPacketCreatorPeer::SerializeConnectivityProbingPacket(
+ &peer_creator_);
+ }
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+ ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received);
+
+ EXPECT_EQ(num_probing_received,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, WriteOutOfOrderQueuedPackets) {
+ // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+ if (!IsDefaultTestConfiguration()) {
+ return;
+ }
+
+ set_perspective(Perspective::IS_CLIENT);
+
+ BlockOnNextWrite();
+
+ QuicStreamId stream_id = 2;
+ connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
+
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ writer_->SetWritable();
+ connection_.SendConnectivityProbingPacket(writer_.get(),
+ connection_.peer_address());
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INTERNAL_ERROR,
+ "Packet written out of order.",
+ ConnectionCloseSource::FROM_SELF));
+ EXPECT_QUIC_BUG(connection_.OnCanWrite(),
+ "Attempt to write packet:1 after:2");
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, DiscardQueuedPacketsAfterConnectionClose) {
+ // Regression test for b/74073386.
+ {
+ InSequence seq;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(1);
+ }
+
+ set_perspective(Perspective::IS_CLIENT);
+
+ writer_->SimulateNextPacketTooLarge();
+
+ // This packet write should fail, which should cause the connection to close
+ // after sending a connection close packet, then the failed packet should be
+ // queued.
+ connection_.SendStreamDataWithString(/*id=*/2, "foo", 0, NO_FIN);
+
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ EXPECT_EQ(0u, connection_.GetStats().packets_discarded);
+ connection_.OnCanWrite();
+ EXPECT_EQ(1u, connection_.GetStats().packets_discarded);
+}
+
+TEST_P(QuicConnectionTest, ReceiveConnectivityProbingAtServer) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(1);
+
+ // Process a padded PING packet from a new peer address on server side
+ // is effectively receiving a connectivity probing.
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+ OwningSerializedPacketPointer probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+ ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
+
+ EXPECT_EQ(num_probing_received + 1,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Process another packet with the old peer address on server side will not
+ // start peer migration.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, ReceiveReorderedConnectivityProbingAtServer) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Decrease packet number to simulate out-of-order packets.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4);
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(1);
+
+ // Process a padded PING packet from a new peer address on server side
+ // is effectively receiving a connectivity probing, even if a newer packet has
+ // been received before this one.
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+ OwningSerializedPacketPointer probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+ ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
+
+ EXPECT_EQ(num_probing_received + 1,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, MigrateAfterProbingAtServer) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(1);
+
+ // Process a padded PING packet from a new peer address on server side
+ // is effectively receiving a connectivity probing.
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+ OwningSerializedPacketPointer probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ ProcessReceivedPacket(kSelfAddress, kNewPeerAddress, *received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Process another non-probing packet with the new peer address on server
+ // side will start peer migration.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(1);
+
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kNewPeerAddress);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, ReceivePaddedPingAtClient) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ set_perspective(Perspective::IS_CLIENT);
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Client takes all padded PING packet as speculative connectivity
+ // probing packet, and reports to visitor.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(1);
+
+ OwningSerializedPacketPointer probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+ ProcessReceivedPacket(kSelfAddress, kPeerAddress, *received);
+
+ EXPECT_EQ(num_probing_received,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, ReceiveConnectivityProbingAtClient) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ set_perspective(Perspective::IS_CLIENT);
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Process a padded PING packet with a different self address on client side
+ // is effectively receiving a connectivity probing.
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ EXPECT_CALL(visitor_, OnConnectivityProbeReceived(_, _)).Times(1);
+
+ const QuicSocketAddress kNewSelfAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+
+ OwningSerializedPacketPointer probing_packet = ConstructProbingPacket();
+ std::unique_ptr<QuicReceivedPacket> received(ConstructReceivedPacket(
+ QuicEncryptedPacket(probing_packet->encrypted_buffer,
+ probing_packet->encrypted_length),
+ clock_.Now()));
+ uint64_t num_probing_received =
+ connection_.GetStats().num_connectivity_probing_received;
+ ProcessReceivedPacket(kNewSelfAddress, kPeerAddress, *received);
+
+ EXPECT_EQ(num_probing_received + 1,
+ connection_.GetStats().num_connectivity_probing_received);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, PeerAddressChangeAtClient) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ set_perspective(Perspective::IS_CLIENT);
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+
+ // Clear direct_peer_address.
+ QuicConnectionPeer::SetDirectPeerAddress(&connection_, QuicSocketAddress());
+ // Clear effective_peer_address, it is the same as direct_peer_address for
+ // this test.
+ QuicConnectionPeer::SetEffectivePeerAddress(&connection_,
+ QuicSocketAddress());
+ EXPECT_FALSE(connection_.effective_peer_address().IsInitialized());
+
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+ EXPECT_EQ(kPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kPeerAddress, connection_.effective_peer_address());
+
+ // Process another packet with a different peer address on client side will
+ // only update peer address.
+ const QuicSocketAddress kNewPeerAddress =
+ QuicSocketAddress(QuicIpAddress::Loopback6(), /*port=*/23456);
+ EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kNewPeerAddress);
+ EXPECT_EQ(kNewPeerAddress, connection_.peer_address());
+ EXPECT_EQ(kNewPeerAddress, connection_.effective_peer_address());
+}
+
+TEST_P(QuicConnectionTest, MaxPacketSize) {
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+ EXPECT_EQ(1350u, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) {
+ TestConnection connection(TestConnectionId(), kPeerAddress, helper_.get(),
+ alarm_factory_.get(), writer_.get(),
+ Perspective::IS_SERVER, version());
+ EXPECT_EQ(Perspective::IS_SERVER, connection.perspective());
+ EXPECT_EQ(1000u, connection.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ set_perspective(Perspective::IS_SERVER);
+ connection_.SetMaxPacketLength(1000);
+
+ QuicPacketHeader header;
+ header.destination_connection_id = connection_id_;
+ header.version_flag = true;
+ header.packet_number = QuicPacketNumber(1);
+
+ if (QuicVersionHasLongHeaderLengths(
+ peer_framer_.version().transport_version)) {
+ header.long_packet_type = INITIAL;
+ header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
+ header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
+ }
+
+ QuicFrames frames;
+ QuicPaddingFrame padding;
+ frames.push_back(QuicFrame(frame1_));
+ frames.push_back(QuicFrame(padding));
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ ENCRYPTION_NONE, QuicPacketNumber(12), *packet, buffer, kMaxPacketSize);
+ EXPECT_EQ(kMaxPacketSize, encrypted_length);
+
+ framer_.set_version(version());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+
+ EXPECT_EQ(kMaxPacketSize, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSizeWhileWriterLimited) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ const QuicByteCount lower_max_packet_size = 1240;
+ writer_->set_max_packet_size(lower_max_packet_size);
+ set_perspective(Perspective::IS_SERVER);
+ connection_.SetMaxPacketLength(1000);
+ EXPECT_EQ(1000u, connection_.max_packet_length());
+
+ QuicPacketHeader header;
+ header.destination_connection_id = connection_id_;
+ header.version_flag = true;
+ header.packet_number = QuicPacketNumber(1);
+
+ if (QuicVersionHasLongHeaderLengths(
+ peer_framer_.version().transport_version)) {
+ header.long_packet_type = INITIAL;
+ header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
+ header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
+ }
+
+ QuicFrames frames;
+ QuicPaddingFrame padding;
+ frames.push_back(QuicFrame(frame1_));
+ frames.push_back(QuicFrame(padding));
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ ENCRYPTION_NONE, QuicPacketNumber(12), *packet, buffer, kMaxPacketSize);
+ EXPECT_EQ(kMaxPacketSize, encrypted_length);
+
+ framer_.set_version(version());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+
+ // Here, the limit imposed by the writer is lower than the size of the packet
+ // received, so the writer max packet size is used.
+ EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriter) {
+ const QuicByteCount lower_max_packet_size = 1240;
+ writer_->set_max_packet_size(lower_max_packet_size);
+
+ static_assert(lower_max_packet_size < kDefaultMaxPacketSize,
+ "Default maximum packet size is too low");
+ connection_.SetMaxPacketLength(kDefaultMaxPacketSize);
+
+ EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriterForNewConnection) {
+ const QuicConnectionId connection_id = TestConnectionId(17);
+ const QuicByteCount lower_max_packet_size = 1240;
+ writer_->set_max_packet_size(lower_max_packet_size);
+ TestConnection connection(connection_id, kPeerAddress, helper_.get(),
+ alarm_factory_.get(), writer_.get(),
+ Perspective::IS_CLIENT, version());
+ EXPECT_EQ(Perspective::IS_CLIENT, connection.perspective());
+ EXPECT_EQ(lower_max_packet_size, connection.max_packet_length());
+}
+
+TEST_P(QuicConnectionTest, PacketsInOrder) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(1);
+ EXPECT_EQ(QuicPacketNumber(1u), LargestAcked(*outgoing_ack()));
+ EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals());
+
+ ProcessPacket(2);
+ EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(*outgoing_ack()));
+ EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals());
+
+ ProcessPacket(3);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(*outgoing_ack()));
+ EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals());
+}
+
+TEST_P(QuicConnectionTest, PacketsOutOfOrder) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(3);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(*outgoing_ack()));
+ EXPECT_TRUE(IsMissing(2));
+ EXPECT_TRUE(IsMissing(1));
+
+ ProcessPacket(2);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(*outgoing_ack()));
+ EXPECT_FALSE(IsMissing(2));
+ EXPECT_TRUE(IsMissing(1));
+
+ ProcessPacket(1);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(*outgoing_ack()));
+ EXPECT_FALSE(IsMissing(2));
+ EXPECT_FALSE(IsMissing(1));
+}
+
+TEST_P(QuicConnectionTest, DuplicatePacket) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(3);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(*outgoing_ack()));
+ EXPECT_TRUE(IsMissing(2));
+ EXPECT_TRUE(IsMissing(1));
+
+ // Send packet 3 again, but do not set the expectation that
+ // the visitor OnStreamFrame() will be called.
+ ProcessDataPacket(3);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(*outgoing_ack()));
+ EXPECT_TRUE(IsMissing(2));
+ EXPECT_TRUE(IsMissing(1));
+}
+
+TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(3);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(*outgoing_ack()));
+ EXPECT_TRUE(IsMissing(2));
+ EXPECT_TRUE(IsMissing(1));
+
+ ProcessPacket(2);
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(*outgoing_ack()));
+ EXPECT_TRUE(IsMissing(1));
+
+ ProcessPacket(5);
+ EXPECT_EQ(QuicPacketNumber(5u), LargestAcked(*outgoing_ack()));
+ EXPECT_TRUE(IsMissing(1));
+ EXPECT_TRUE(IsMissing(4));
+
+ // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
+ // packet the peer will not retransmit. It indicates this by sending 'least
+ // awaiting' is 4. The connection should then realize 1 will not be
+ // retransmitted, and will remove it from the missing list.
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ ProcessAckPacket(6, &frame);
+
+ // Force an ack to be sent.
+ SendAckPacketToPeer();
+ EXPECT_TRUE(IsMissing(4));
+}
+
+TEST_P(QuicConnectionTest, RejectPacketTooFarOut) {
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, _,
+ ConnectionCloseSource::FROM_SELF));
+
+ // Call ProcessDataPacket rather than ProcessPacket, as we should not get a
+ // packet call to the visitor.
+ if (GetQuicRestartFlag(quic_enable_accept_random_ipn)) {
+ ProcessDataPacket(MaxRandomInitialPacketNumber() + 6000);
+ } else {
+ ProcessDataPacket(6000);
+ }
+ EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
+ nullptr);
+}
+
+TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) {
+ // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+ if (!IsDefaultTestConfiguration()) {
+ return;
+ }
+
+ // Process an unencrypted packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA, _,
+ ConnectionCloseSource::FROM_SELF));
+ EXPECT_QUIC_PEER_BUG(ProcessDataPacket(1), "");
+ EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
+ nullptr);
+ const std::vector<QuicConnectionCloseFrame>& connection_close_frames =
+ writer_->connection_close_frames();
+ EXPECT_EQ(1u, connection_close_frames.size());
+ EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA,
+ connection_close_frames[0].error_code);
+}
+
+TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(3);
+ if (GetQuicRestartFlag(quic_enable_accept_random_ipn)) {
+ // Should not cause an ack.
+ EXPECT_EQ(0u, writer_->packets_write_attempts());
+ } else {
+ // Should ack immediately since we have missing packets.
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ }
+
+ ProcessPacket(2);
+ if (GetQuicRestartFlag(quic_enable_accept_random_ipn)) {
+ // Should ack immediately, since this fills the last hole.
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ } else {
+ // Should ack immediately since we have missing packets.
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+ }
+
+ ProcessPacket(1);
+ // Should ack immediately, since this fills the last hole.
+ if (GetQuicRestartFlag(quic_enable_accept_random_ipn)) {
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+ } else {
+ EXPECT_EQ(3u, writer_->packets_write_attempts());
+ }
+
+ ProcessPacket(4);
+ // Should not cause an ack.
+ if (GetQuicRestartFlag(quic_enable_accept_random_ipn)) {
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+ } else {
+ EXPECT_EQ(3u, writer_->packets_write_attempts());
+ }
+}
+
+TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+ SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+
+ QuicAckFrame ack1 = InitAckFrame(1);
+ QuicAckFrame ack2 = InitAckFrame(2);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(2, &ack2);
+ // Should ack immediately since we have missing packets.
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+
+ ProcessAckPacket(1, &ack1);
+ // Should not ack an ack filling a missing packet.
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ QuicPacketNumber original, second;
+
+ QuicByteCount packet_size =
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original); // 1st packet.
+ SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second); // 2nd packet.
+
+ QuicAckFrame frame = InitAckFrame({{second, second + 1}});
+ // First nack triggers early retransmit.
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(original, kMaxPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(SetArgPointee<5>(lost_packets));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicPacketNumber retransmission;
+ // Packet 1 is short header for IETF QUIC because the encryption level
+ // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer.
+ EXPECT_CALL(
+ *send_algorithm_,
+ OnPacketSent(_, _, _,
+ GetParam().version.transport_version > QUIC_VERSION_43
+ ? packet_size
+ : packet_size - kQuicVersionSize,
+ _))
+ .WillOnce(SaveArg<2>(&retransmission));
+
+ ProcessAckPacket(&frame);
+
+ QuicAckFrame frame2 = ConstructAckFrame(retransmission, original);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ ProcessAckPacket(&frame2);
+
+ // Now if the peer sends an ack which still reports the retransmitted packet
+ // as missing, that will bundle an ack with data after two acks in a row
+ // indicate the high water mark needs to be raised.
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
+ connection_.SendStreamDataWithString(3, "foo", 6, NO_FIN);
+ // No ack sent.
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+
+ // No more packet loss for the rest of the test.
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .Times(AnyNumber());
+ ProcessAckPacket(&frame2);
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
+ connection_.SendStreamDataWithString(3, "foo", 9, NO_FIN);
+ // Ack bundled.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(2u, writer_->frame_count());
+ } else {
+ EXPECT_EQ(3u, writer_->frame_count());
+ }
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_FALSE(writer_->ack_frames().empty());
+
+ // But an ack with no missing packets will not send an ack.
+ AckPacket(original, &frame2);
+ ProcessAckPacket(&frame2);
+ ProcessAckPacket(&frame2);
+}
+
+TEST_P(QuicConnectionTest, AckSentEveryNthPacket) {
+ connection_.set_ack_frequency_before_ack_decimation(3);
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(39);
+
+ // Expect 13 acks, every 3rd packet.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(13);
+ // Receives packets 1 - 39.
+ for (size_t i = 1; i <= 39; ++i) {
+ ProcessDataPacket(i);
+ }
+}
+
+TEST_P(QuicConnectionTest, AckDecimationReducesAcks) {
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+
+ QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING);
+
+ // Start ack decimation from 10th packet.
+ connection_.set_min_received_before_ack_decimation(10);
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(30);
+
+ // Expect 6 acks: 5 acks between packets 1-10, and ack at 20.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6);
+ // Receives packets 1 - 29.
+ for (size_t i = 1; i <= 29; ++i) {
+ ProcessDataPacket(i);
+ }
+
+ // We now receive the 30th packet, and so we send an ack.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessDataPacket(30);
+}
+
+TEST_P(QuicConnectionTest, AckNeedsRetransmittableFrames) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(99);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19);
+ // Receives packets 1 - 39.
+ for (size_t i = 1; i <= 39; ++i) {
+ ProcessDataPacket(i);
+ }
+ // Receiving Packet 40 causes 20th ack to send. Session is informed and adds
+ // WINDOW_UPDATE.
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
+ .WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(
+ QuicFrame(new QuicWindowUpdateFrame(1, 0, 0)));
+ }));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_EQ(0u, writer_->window_update_frames().size());
+ ProcessDataPacket(40);
+ EXPECT_EQ(1u, writer_->window_update_frames().size());
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(9);
+ // Receives packets 41 - 59.
+ for (size_t i = 41; i <= 59; ++i) {
+ ProcessDataPacket(i);
+ }
+ // Send a packet containing stream frame.
+ SendStreamDataToPeer(1, "bar", 0, NO_FIN, nullptr);
+
+ // Session will not be informed until receiving another 20 packets.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(19);
+ for (size_t i = 60; i <= 98; ++i) {
+ ProcessDataPacket(i);
+ EXPECT_EQ(0u, writer_->window_update_frames().size());
+ }
+ // Session does not add a retransmittable frame.
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame())
+ .WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
+ }));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_EQ(0u, writer_->ping_frames().size());
+ ProcessDataPacket(99);
+ EXPECT_EQ(0u, writer_->window_update_frames().size());
+ // A ping frame will be added.
+ EXPECT_EQ(1u, writer_->ping_frames().size());
+}
+
+TEST_P(QuicConnectionTest, LeastUnackedLower) {
+ if (GetParam().version.transport_version > QUIC_VERSION_43) {
+ return;
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+ SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
+ SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr);
+
+ // Start out saying the least unacked is 2.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
+ ProcessStopWaitingPacket(InitStopWaitingFrame(2));
+
+ // Change it to 1, but lower the packet number to fake out-of-order packets.
+ // This should be fine.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1);
+ // The scheduler will not process out of order acks, but all packet processing
+ // causes the connection to try to write.
+ if (!GetParam().no_stop_waiting) {
+ EXPECT_CALL(visitor_, OnCanWrite());
+ }
+ ProcessStopWaitingPacket(InitStopWaitingFrame(1));
+
+ // Now claim it's one, but set the ordering so it was sent "after" the first
+ // one. This should cause a connection error.
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 7);
+ if (!GetParam().no_stop_waiting) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA, _,
+ ConnectionCloseSource::FROM_SELF));
+ }
+ ProcessStopWaitingPacket(InitStopWaitingFrame(1));
+}
+
+TEST_P(QuicConnectionTest, TooManySentPackets) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ QuicPacketCount max_tracked_packets = 50;
+ QuicConnectionPeer::SetMaxTrackedPackets(&connection_, max_tracked_packets);
+
+ const int num_packets = max_tracked_packets + 5;
+
+ for (int i = 0; i < num_packets; ++i) {
+ SendStreamDataToPeer(1, "foo", 3 * i, NO_FIN, nullptr);
+ }
+
+ // Ack packet 1, which leaves more than the limit outstanding.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS, _,
+ ConnectionCloseSource::FROM_SELF));
+
+ // Nack the first packet and ack the rest, leaving a huge gap.
+ QuicAckFrame frame1 = ConstructAckFrame(num_packets, 1);
+ ProcessAckPacket(&frame1);
+}
+
+TEST_P(QuicConnectionTest, LargestObservedLower) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+ SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr);
+ SendStreamDataToPeer(1, "eep", 6, NO_FIN, nullptr);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+ // Start out saying the largest observed is 2.
+ QuicAckFrame frame1 = InitAckFrame(1);
+ QuicAckFrame frame2 = InitAckFrame(2);
+ ProcessAckPacket(&frame2);
+
+ // Now change it to 1, and it should cause a connection error.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, _,
+ ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
+ ProcessAckPacket(&frame1);
+}
+
+TEST_P(QuicConnectionTest, AckUnsentData) {
+ // Ack a packet which has not been sent.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, _,
+ ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
+ ProcessAckPacket(&frame);
+}
+
+TEST_P(QuicConnectionTest, BasicSending) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(1);
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1
+ EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+ SendAckPacketToPeer(); // Packet 2
+
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
+ }
+
+ SendAckPacketToPeer(); // Packet 3
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
+ }
+
+ SendStreamDataToPeer(1, "bar", 3, NO_FIN, &last_packet); // Packet 4
+ EXPECT_EQ(QuicPacketNumber(4u), last_packet);
+ SendAckPacketToPeer(); // Packet 5
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(1u), least_unacked());
+ }
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+ // Peer acks up to packet 3.
+ QuicAckFrame frame = InitAckFrame(3);
+ ProcessAckPacket(&frame);
+ SendAckPacketToPeer(); // Packet 6
+
+ // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
+ // ack for 4.
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
+ }
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+ // Peer acks up to packet 4, the last packet.
+ QuicAckFrame frame2 = InitAckFrame(6);
+ ProcessAckPacket(&frame2); // Acks don't instigate acks.
+
+ // Verify that we did not send an ack.
+ EXPECT_EQ(QuicPacketNumber(6u), writer_->header().packet_number);
+
+ // So the last ack has not changed.
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
+ }
+
+ // If we force an ack, we shouldn't change our retransmit state.
+ SendAckPacketToPeer(); // Packet 7
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(7u), least_unacked());
+ }
+
+ // But if we send more data it should.
+ SendStreamDataToPeer(1, "eep", 6, NO_FIN, &last_packet); // Packet 8
+ EXPECT_EQ(QuicPacketNumber(8u), last_packet);
+ SendAckPacketToPeer(); // Packet 9
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(7u), least_unacked());
+ }
+}
+
+// QuicConnection should record the packet sent-time prior to sending the
+// packet.
+TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) {
+ // We're using a MockClock for the tests, so we have complete control over the
+ // time.
+ // Our recorded timestamp for the last packet sent time will be passed in to
+ // the send_algorithm. Make sure that it is set to the correct value.
+ QuicTime actual_recorded_send_time = QuicTime::Zero();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<0>(&actual_recorded_send_time));
+
+ // First send without any pause and check the result.
+ QuicTime expected_recorded_send_time = clock_.Now();
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
+ << "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
+ << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue();
+
+ // Now pause during the write, and check the results.
+ actual_recorded_send_time = QuicTime::Zero();
+ const QuicTime::Delta write_pause_time_delta =
+ QuicTime::Delta::FromMilliseconds(5000);
+ SetWritePauseTimeDelta(write_pause_time_delta);
+ expected_recorded_send_time = clock_.Now();
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<0>(&actual_recorded_send_time));
+ connection_.SendStreamDataWithString(2, "baz", 0, NO_FIN);
+ EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
+ << "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
+ << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue();
+}
+
+TEST_P(QuicConnectionTest, FramePacking) {
+ // Send two stream frames in 1 packet by queueing them.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_,
+ QuicConnection::SEND_ACK);
+ connection_.SendStreamData3();
+ connection_.SendStreamData5();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ }
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure it's an ack and two stream frames from
+ // two different streams.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ }
+
+ EXPECT_TRUE(writer_->ack_frames().empty());
+
+ ASSERT_EQ(2u, writer_->stream_frames().size());
+ EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+ EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
+ writer_->stream_frames()[1]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) {
+ // Send two stream frames (one non-crypto, then one crypto) in 2 packets by
+ // queueing them.
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ QuicConnection::ScopedPacketFlusher flusher(&connection_,
+ QuicConnection::SEND_ACK);
+ connection_.SendStreamData3();
+ connection_.SendCryptoStreamData();
+ }
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure it's the crypto stream frame.
+ EXPECT_EQ(2u, writer_->frame_count());
+ ASSERT_EQ(1u, writer_->padding_frames().size());
+ if (connection_.transport_version() < QUIC_VERSION_47) {
+ ASSERT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(QuicUtils::GetCryptoStreamId(connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+ } else {
+ EXPECT_EQ(1u, writer_->crypto_frames().size());
+ }
+}
+
+TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) {
+ // Send two stream frames (one crypto, then one non-crypto) in 2 packets by
+ // queueing them.
+ {
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ QuicConnection::ScopedPacketFlusher flusher(&connection_,
+ QuicConnection::SEND_ACK);
+ connection_.SendCryptoStreamData();
+ connection_.SendStreamData3();
+ }
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure it's the stream frame from stream 3.
+ EXPECT_EQ(1u, writer_->frame_count());
+ ASSERT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, FramePackingAckResponse) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ // Process a data packet to queue up a pending ack.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(1);
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+ // Verify ack is bundled with outging packet.
+ EXPECT_FALSE(writer_->ack_frames().empty());
+
+ EXPECT_CALL(visitor_, OnCanWrite())
+ .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendStreamData3)),
+ IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendStreamData5))));
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+
+ // Process a data packet to cause the visitor's OnCanWrite to be invoked.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(2);
+
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure it's an ack and two stream frames from
+ // two different streams.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(4u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ ASSERT_EQ(2u, writer_->stream_frames().size());
+ EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+ EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
+ writer_->stream_frames()[1]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, FramePackingSendv) {
+ // Send data in 1 packet by writing multiple blocks in a single iovector
+ // using writev.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+
+ char data[] = "ABCDEF";
+ struct iovec iov[2];
+ iov[0].iov_base = data;
+ iov[0].iov_len = 4;
+ iov[1].iov_base = data + 4;
+ iov[1].iov_len = 2;
+ connection_.SaveAndSendStreamData(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), iov, 2, 6,
+ 0, NO_FIN);
+
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure multiple iovector blocks have
+ // been packed into a single stream frame from one stream.
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ QuicStreamFrame* frame = writer_->stream_frames()[0].get();
+ EXPECT_EQ(QuicUtils::GetCryptoStreamId(connection_.transport_version()),
+ frame->stream_id);
+ EXPECT_EQ("ABCDEF", QuicStringPiece(frame->data_buffer, frame->data_length));
+}
+
+TEST_P(QuicConnectionTest, FramePackingSendvQueued) {
+ // Try to send two stream frames in 1 packet by using writev.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+
+ BlockOnNextWrite();
+ char data[] = "ABCDEF";
+ struct iovec iov[2];
+ iov[0].iov_base = data;
+ iov[0].iov_len = 4;
+ iov[1].iov_base = data + 4;
+ iov[1].iov_len = 2;
+ connection_.SaveAndSendStreamData(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), iov, 2, 6,
+ 0, NO_FIN);
+
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+ EXPECT_TRUE(connection_.HasQueuedData());
+
+ // Unblock the writes and actually send.
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+
+ // Parse the last packet and ensure it's one stream frame from one stream.
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ EXPECT_EQ(QuicUtils::GetCryptoStreamId(connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, SendingZeroBytes) {
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Send a zero byte write with a fin using writev.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SaveAndSendStreamData(
+ QuicUtils::GetHeadersStreamId(connection_.transport_version()), nullptr,
+ 0, 0, 0, FIN);
+
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure it's one stream frame from one stream.
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(QuicUtils::GetHeadersStreamId(connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+ EXPECT_TRUE(writer_->stream_frames()[0]->fin);
+}
+
+TEST_P(QuicConnectionTest, LargeSendWithPendingAck) {
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ // Set the ack alarm by processing a ping frame.
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Processs a PING frame.
+ ProcessFramePacket(QuicFrame(QuicPingFrame()));
+ // Ensure that this has caused the ACK alarm to be set.
+ QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
+ EXPECT_TRUE(ack_alarm->IsSet());
+
+ // Send data and ensure the ack is bundled.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(8);
+ size_t len = 10000;
+ std::unique_ptr<char[]> data_array(new char[len]);
+ memset(data_array.get(), '?', len);
+ struct iovec iov;
+ iov.iov_base = data_array.get();
+ iov.iov_len = len;
+ QuicConsumedData consumed = connection_.SaveAndSendStreamData(
+ QuicUtils::GetHeadersStreamId(connection_.transport_version()), &iov, 1,
+ len, 0, FIN);
+ EXPECT_EQ(len, consumed.bytes_consumed);
+ EXPECT_TRUE(consumed.fin_consumed);
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.HasQueuedData());
+
+ // Parse the last packet and ensure it's one stream frame with a fin.
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_EQ(QuicUtils::GetHeadersStreamId(connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+ EXPECT_TRUE(writer_->stream_frames()[0]->fin);
+ // Ensure the ack alarm was cancelled when the ack was sent.
+ EXPECT_FALSE(ack_alarm->IsSet());
+}
+
+TEST_P(QuicConnectionTest, OnCanWrite) {
+ // Visitor's OnCanWrite will send data, but will have more pending writes.
+ EXPECT_CALL(visitor_, OnCanWrite())
+ .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendStreamData3)),
+ IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendStreamData5))));
+ {
+ InSequence seq;
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true));
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite())
+ .WillRepeatedly(Return(false));
+ }
+
+ EXPECT_CALL(*send_algorithm_, CanSend(_))
+ .WillRepeatedly(testing::Return(true));
+
+ connection_.OnCanWrite();
+
+ // Parse the last packet and ensure it's the two stream frames from
+ // two different streams.
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_EQ(2u, writer_->stream_frames().size());
+ EXPECT_EQ(GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+ writer_->stream_frames()[0]->stream_id);
+ EXPECT_EQ(GetNthClientInitiatedStreamId(2, connection_.transport_version()),
+ writer_->stream_frames()[1]->stream_id);
+}
+
+TEST_P(QuicConnectionTest, RetransmitOnNack) {
+ QuicPacketNumber last_packet;
+ QuicByteCount second_packet_size;
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet); // Packet 1
+ second_packet_size =
+ SendStreamDataToPeer(3, "foos", 3, NO_FIN, &last_packet); // Packet 2
+ SendStreamDataToPeer(3, "fooos", 7, NO_FIN, &last_packet); // Packet 3
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Don't lose a packet on an ack, and nothing is retransmitted.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame ack_one = InitAckFrame(1);
+ ProcessAckPacket(&ack_one);
+
+ // Lose a packet and ensure it triggers retransmission.
+ QuicAckFrame nack_two = ConstructAckFrame(3, 2);
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(QuicPacketNumber(2), kMaxPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(SetArgPointee<5>(lost_packets));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_));
+ ProcessAckPacket(&nack_two);
+}
+
+TEST_P(QuicConnectionTest, DoNotSendQueuedPacketForResetStream) {
+ // Block the connection to queue the packet.
+ BlockOnNextWrite();
+
+ QuicStreamId stream_id = 2;
+ connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
+
+ // Now that there is a queued packet, reset the stream.
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+ // Unblock the connection and verify that only the RST_STREAM is sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ if (!connection_.session_decides_what_to_write()) {
+ // OnCanWrite will cause RST_STREAM be sent again.
+ connection_.SendControlFrame(QuicFrame(new QuicRstStreamFrame(
+ 1, stream_id, QUIC_ERROR_PROCESSING_STREAM, 14)));
+ }
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+}
+
+TEST_P(QuicConnectionTest, SendQueuedPacketForQuicRstStreamNoError) {
+ // Block the connection to queue the packet.
+ BlockOnNextWrite();
+
+ QuicStreamId stream_id = 2;
+ connection_.SendStreamDataWithString(stream_id, "foo", 0, NO_FIN);
+
+ // Now that there is a queued packet, reset the stream.
+ SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3);
+
+ // Unblock the connection and verify that the RST_STREAM is sent and the data
+ // packet is sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2));
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ if (!connection_.session_decides_what_to_write()) {
+ // OnCanWrite will cause RST_STREAM be sent again.
+ connection_.SendControlFrame(QuicFrame(
+ new QuicRstStreamFrame(1, stream_id, QUIC_STREAM_NO_ERROR, 14)));
+ }
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+}
+
+TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnNack) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12);
+
+ // Lose a packet and ensure it does not trigger retransmission.
+ QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessAckPacket(&nack_two);
+}
+
+TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnNack) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "fooos", 7, NO_FIN, &last_packet);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12);
+
+ // Lose a packet, ensure it triggers retransmission.
+ QuicAckFrame nack_two = ConstructAckFrame(last_packet, last_packet - 1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(last_packet - 1, kMaxPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(SetArgPointee<5>(lost_packets));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
+ ProcessAckPacket(&nack_two);
+}
+
+TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnRTO) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+ // Fire the RTO and verify that the RST_STREAM is resent, not stream data.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+ EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
+}
+
+// Ensure that if the only data in flight is non-retransmittable, the
+// retransmission alarm is not set.
+TEST_P(QuicConnectionTest, CancelRetransmissionAlarmAfterResetStream) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_data_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_data_packet);
+
+ // Cancel the stream.
+ const QuicPacketNumber rst_packet = last_data_packet + 1;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, rst_packet, _, _)).Times(1);
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 3);
+
+ // Ack the RST_STREAM frame (since it's retransmittable), but not the data
+ // packet, which is no longer retransmittable since the stream was cancelled.
+ QuicAckFrame nack_stream_data =
+ ConstructAckFrame(rst_packet, last_data_packet);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessAckPacket(&nack_stream_data);
+
+ // Ensure that the data is still in flight, but the retransmission alarm is no
+ // longer set.
+ EXPECT_GT(QuicSentPacketManagerPeer::GetBytesInFlight(manager_), 0u);
+ if (GetQuicReloadableFlag(quic_optimize_inflight_check)) {
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ // Firing the alarm should remove all bytes_in_flight.
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
+ }
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnRTO) {
+ connection_.SetMaxTailLossProbes(0);
+
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 3);
+
+ // Fire the RTO and verify that the RST_STREAM is resent, the stream data
+ // is sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2));
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(1u, writer_->frame_count());
+ ASSERT_EQ(1u, writer_->rst_stream_frames().size());
+ EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
+}
+
+TEST_P(QuicConnectionTest, DoNotSendPendingRetransmissionForResetStream) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN);
+
+ // Lose a packet which will trigger a pending retransmission.
+ QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessAckPacket(&ack);
+
+ SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 12);
+
+ // Unblock the connection and verify that the RST_STREAM is sent but not the
+ // second data packet nor a retransmit.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ if (!connection_.session_decides_what_to_write()) {
+ // OnCanWrite will cause this RST_STREAM_FRAME be sent again.
+ connection_.SendControlFrame(QuicFrame(new QuicRstStreamFrame(
+ 1, stream_id, QUIC_ERROR_PROCESSING_STREAM, 14)));
+ }
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+ EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
+}
+
+TEST_P(QuicConnectionTest, SendPendingRetransmissionForQuicRstStreamNoError) {
+ QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "foos", 3, NO_FIN, &last_packet);
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(stream_id, "fooos", 7, NO_FIN);
+
+ // Lose a packet which will trigger a pending retransmission.
+ QuicAckFrame ack = ConstructAckFrame(last_packet, last_packet - 1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(last_packet - 1, kMaxPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(SetArgPointee<5>(lost_packets));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessAckPacket(&ack);
+
+ SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 12);
+
+ // Unblock the connection and verify that the RST_STREAM is sent and the
+ // second data packet or a retransmit is sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2));
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ // The RST_STREAM_FRAME is sent after queued packets and pending
+ // retransmission.
+ connection_.SendControlFrame(QuicFrame(
+ new QuicRstStreamFrame(1, stream_id, QUIC_STREAM_NO_ERROR, 14)));
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->rst_stream_frames().size());
+}
+
+TEST_P(QuicConnectionTest, RetransmitAckedPacket) {
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1
+ SendStreamDataToPeer(1, "foos", 3, NO_FIN, &last_packet); // Packet 2
+ SendStreamDataToPeer(1, "fooos", 7, NO_FIN, &last_packet); // Packet 3
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Instigate a loss with an ack.
+ QuicAckFrame nack_two = ConstructAckFrame(3, 2);
+ // The first nack should trigger a fast retransmission, but we'll be
+ // write blocked, so the packet will be queued.
+ BlockOnNextWrite();
+
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(QuicPacketNumber(2), kMaxPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(SetArgPointee<5>(lost_packets));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&nack_two);
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ // Now, ack the previous transmission.
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(false, _, _, _, _));
+ QuicAckFrame ack_all = InitAckFrame(3);
+ ProcessAckPacket(&ack_all);
+
+ // Unblock the socket and attempt to send the queued packets. We will always
+ // send the retransmission.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(4), _, _))
+ .Times(1);
+
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ // We do not store retransmittable frames of this retransmission.
+ EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, 4));
+}
+
+TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ QuicPacketNumber original, second;
+
+ QuicByteCount packet_size =
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, &original); // 1st packet.
+ SendStreamDataToPeer(3, "bar", 3, NO_FIN, &second); // 2nd packet.
+
+ QuicAckFrame frame = InitAckFrame({{second, second + 1}});
+ // The first nack should retransmit the largest observed packet.
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(original, kMaxPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(SetArgPointee<5>(lost_packets));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ // Packet 1 is short header for IETF QUIC because the encryption level
+ // switched to ENCRYPTION_FORWARD_SECURE in SendStreamDataToPeer.
+ EXPECT_CALL(
+ *send_algorithm_,
+ OnPacketSent(_, _, _,
+ GetParam().version.transport_version > QUIC_VERSION_43
+ ? packet_size
+ : packet_size - kQuicVersionSize,
+ _));
+ ProcessAckPacket(&frame);
+}
+
+TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) {
+ connection_.SetMaxTailLossProbes(0);
+
+ for (int i = 0; i < 10; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(3, "foo", i * 3, NO_FIN);
+ }
+
+ // Block the writer and ensure they're queued.
+ BlockOnNextWrite();
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ // Only one packet should be retransmitted.
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_TRUE(connection_.HasQueuedData());
+
+ // Unblock the writer.
+ writer_->SetWritable();
+ clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(
+ 2 * DefaultRetransmissionTime().ToMicroseconds()));
+ // Retransmit already retransmitted packets event though the packet number
+ // greater than the largest observed.
+ if (connection_.session_decides_what_to_write()) {
+ // 2 RTOs + 1 TLP.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
+ } else {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ }
+ connection_.GetRetransmissionAlarm()->Fire();
+ connection_.OnCanWrite();
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedBufferedThenSent) {
+ BlockOnNextWrite();
+ writer_->set_is_write_blocked_data_buffered(true);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedThenSent) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ // The second packet should also be queued, in order to ensure packets are
+ // never sent out of order.
+ writer_->SetWritable();
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_EQ(2u, connection_.NumQueuedPackets());
+
+ // Now both are sent in order when we unblock.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ connection_.OnCanWrite();
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ BlockOnNextWrite();
+ writer_->set_is_write_blocked_data_buffered(true);
+ // Simulate the retransmission alarm firing.
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // Ack the sent packet before the callback returns, which happens in
+ // rare circumstances with write blocked sockets.
+ QuicAckFrame ack = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&ack);
+
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ // There is now a pending packet, but with no retransmittable frames.
+ if (GetQuicReloadableFlag(quic_optimize_inflight_check)) {
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ // Firing the alarm should remove all bytes_in_flight.
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_));
+ }
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, 2));
+}
+
+TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) {
+ // Block the connection.
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+
+ // Set the send alarm. Fire the alarm and ensure it doesn't attempt to write.
+ connection_.GetSendAlarm()->Set(clock_.ApproximateNow());
+ connection_.GetSendAlarm()->Fire();
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, NoSendAlarmAfterProcessPacketWhenWriteBlocked) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Block the connection.
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ // Process packet number 1. Can not call ProcessPacket or ProcessDataPacket
+ // here, because they will fire the alarm after QuicConnection::ProcessPacket
+ // is returned.
+ const uint64_t received_packet_num = 1;
+ const bool has_stop_waiting = false;
+ const EncryptionLevel level = ENCRYPTION_NONE;
+ std::unique_ptr<QuicPacket> packet(
+ ConstructDataPacket(received_packet_num, has_stop_waiting));
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length =
+ peer_framer_.EncryptPayload(level, QuicPacketNumber(received_packet_num),
+ *packet, buffer, kMaxPacketSize);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, AddToWriteBlockedListIfWriterBlockedWhenProcessing) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr);
+
+ // Simulate the case where a shared writer gets blocked by another connection.
+ writer_->SetWriteBlocked();
+
+ // Process an ACK, make sure the connection calls visitor_->OnWriteBlocked().
+ QuicAckFrame ack1 = InitAckFrame(1);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _));
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+ ProcessAckPacket(1, &ack1);
+}
+
+TEST_P(QuicConnectionTest, DoNotAddToWriteBlockedListAfterDisconnect) {
+ writer_->SetBatchMode(true);
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, _,
+ ConnectionCloseSource::FROM_SELF));
+
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0);
+
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_,
+ QuicConnection::NO_ACK);
+ connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+
+ EXPECT_FALSE(connection_.connected());
+ writer_->SetWriteBlocked();
+ }
+}
+
+TEST_P(QuicConnectionTest, AddToWriteBlockedListIfBlockedOnFlushPackets) {
+ writer_->SetBatchMode(true);
+ writer_->BlockOnNextFlush();
+
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_,
+ QuicConnection::NO_ACK);
+ // flusher's destructor will call connection_.FlushPackets, which should add
+ // the connection to the write blocked list.
+ }
+}
+
+TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ int offset = 0;
+ // Send packets 1 to 15.
+ for (int i = 0; i < 15; ++i) {
+ SendStreamDataToPeer(1, "foo", offset, NO_FIN, nullptr);
+ offset += 3;
+ }
+
+ // Ack 15, nack 1-14.
+
+ QuicAckFrame nack =
+ InitAckFrame({{QuicPacketNumber(15), QuicPacketNumber(16)}});
+
+ // 14 packets have been NACK'd and lost.
+ LostPacketVector lost_packets;
+ for (int i = 1; i < 15; ++i) {
+ lost_packets.push_back(LostPacket(QuicPacketNumber(i), kMaxPacketSize));
+ }
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(SetArgPointee<5>(lost_packets));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ if (connection_.session_decides_what_to_write()) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ } else {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(14);
+ }
+ ProcessAckPacket(&nack);
+}
+
+// Test sending multiple acks from the connection to the session.
+TEST_P(QuicConnectionTest, MultipleAcks) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(1);
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet); // Packet 1
+ EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, &last_packet); // Packet 2
+ EXPECT_EQ(QuicPacketNumber(2u), last_packet);
+ SendAckPacketToPeer(); // Packet 3
+ SendStreamDataToPeer(5, "foo", 0, NO_FIN, &last_packet); // Packet 4
+ EXPECT_EQ(QuicPacketNumber(4u), last_packet);
+ SendStreamDataToPeer(1, "foo", 3, NO_FIN, &last_packet); // Packet 5
+ EXPECT_EQ(QuicPacketNumber(5u), last_packet);
+ SendStreamDataToPeer(3, "foo", 3, NO_FIN, &last_packet); // Packet 6
+ EXPECT_EQ(QuicPacketNumber(6u), last_packet);
+
+ // Client will ack packets 1, 2, [!3], 4, 5.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame1 = ConstructAckFrame(5, 3);
+ ProcessAckPacket(&frame1);
+
+ // Now the client implicitly acks 3, and explicitly acks 6.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame2 = InitAckFrame(6);
+ ProcessAckPacket(&frame2);
+}
+
+TEST_P(QuicConnectionTest, DontLatchUnackedPacket) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(1);
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 2);
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, nullptr); // Packet 1;
+ // From now on, we send acks, so the send algorithm won't mark them pending.
+ SendAckPacketToPeer(); // Packet 2
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame = InitAckFrame(1);
+ ProcessAckPacket(&frame);
+
+ // Verify that our internal state has least-unacked as 2, because we're still
+ // waiting for a potential ack for 2.
+
+ EXPECT_EQ(QuicPacketNumber(2u), stop_waiting()->least_unacked);
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame(2);
+ ProcessAckPacket(&frame);
+ EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked);
+
+ // When we send an ack, we make sure our least-unacked makes sense. In this
+ // case since we're not waiting on an ack for 2 and all packets are acked, we
+ // set it to 3.
+ SendAckPacketToPeer(); // Packet 3
+ // Least_unacked remains at 3 until another ack is received.
+ EXPECT_EQ(QuicPacketNumber(3u), stop_waiting()->least_unacked);
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ // Check that the outgoing ack had its packet number as least_unacked.
+ EXPECT_EQ(QuicPacketNumber(3u), least_unacked());
+ }
+
+ // Ack the ack, which updates the rtt and raises the least unacked.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame(3);
+ ProcessAckPacket(&frame);
+
+ SendStreamDataToPeer(1, "bar", 3, NO_FIN, nullptr); // Packet 4
+ EXPECT_EQ(QuicPacketNumber(4u), stop_waiting()->least_unacked);
+ SendAckPacketToPeer(); // Packet 5
+ if (GetParam().no_stop_waiting) {
+ // Expect no stop waiting frame is sent.
+ EXPECT_FALSE(least_unacked().IsInitialized());
+ } else {
+ EXPECT_EQ(QuicPacketNumber(4u), least_unacked());
+ }
+
+ // Send two data packets at the end, and ensure if the last one is acked,
+ // the least unacked is raised above the ack packets.
+ SendStreamDataToPeer(1, "bar", 6, NO_FIN, nullptr); // Packet 6
+ SendStreamDataToPeer(1, "bar", 9, NO_FIN, nullptr); // Packet 7
+
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(5)},
+ {QuicPacketNumber(7), QuicPacketNumber(8)}});
+ ProcessAckPacket(&frame);
+
+ EXPECT_EQ(QuicPacketNumber(6u), stop_waiting()->least_unacked);
+}
+
+TEST_P(QuicConnectionTest, TLP) {
+ connection_.SetMaxTailLossProbes(1);
+
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
+ EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+ QuicTime retransmission_time =
+ connection_.GetRetransmissionAlarm()->deadline();
+ EXPECT_NE(QuicTime::Zero(), retransmission_time);
+
+ EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number);
+ // Simulate the retransmission alarm firing and sending a tlp,
+ // so send algorithm's OnRetransmissionTimeout is not called.
+ clock_.AdvanceTime(retransmission_time - clock_.Now());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number);
+ // We do not raise the high water mark yet.
+ EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+}
+
+TEST_P(QuicConnectionTest, RTO) {
+ connection_.SetMaxTailLossProbes(0);
+
+ QuicTime default_retransmission_time =
+ clock_.ApproximateNow() + DefaultRetransmissionTime();
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
+ EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+
+ EXPECT_EQ(QuicPacketNumber(1u), writer_->header().packet_number);
+ EXPECT_EQ(default_retransmission_time,
+ connection_.GetRetransmissionAlarm()->deadline());
+ // Simulate the retransmission alarm firing.
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_EQ(QuicPacketNumber(2u), writer_->header().packet_number);
+ // We do not raise the high water mark yet.
+ EXPECT_EQ(QuicPacketNumber(1u), stop_waiting()->least_unacked);
+}
+
+TEST_P(QuicConnectionTest, RetransmitWithSameEncryptionLevel) {
+ use_tagging_decrypter();
+
+ // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
+ // the end of the packet. We can test this to check which encrypter was used.
+ connection_.SetEncrypter(ENCRYPTION_NONE,
+ QuicMakeUnique<TaggingEncrypter>(0x01));
+ SendStreamDataToPeer(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), "foo", 0,
+ NO_FIN, nullptr);
+ EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+ SendStreamDataToPeer(3, "foo", 0, NO_FIN, nullptr);
+ EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
+
+ {
+ InSequence s;
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, QuicPacketNumber(3), _, _));
+ EXPECT_CALL(*send_algorithm_,
+ OnPacketSent(_, _, QuicPacketNumber(4), _, _));
+ }
+
+ // Manually mark both packets for retransmission.
+ connection_.RetransmitUnackedPackets(ALL_UNACKED_RETRANSMISSION);
+
+ // Packet should have been sent with ENCRYPTION_NONE.
+ EXPECT_EQ(0x01010101u, writer_->final_bytes_of_previous_packet());
+
+ // Packet should have been sent with ENCRYPTION_ZERO_RTT.
+ EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
+}
+
+TEST_P(QuicConnectionTest, SendHandshakeMessages) {
+ use_tagging_decrypter();
+ // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
+ // the end of the packet. We can test this to check which encrypter was used.
+ connection_.SetEncrypter(ENCRYPTION_NONE,
+ QuicMakeUnique<TaggingEncrypter>(0x01));
+
+ // Attempt to send a handshake message and have the socket block.
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), "foo", 0,
+ NO_FIN);
+ // The packet should be serialized, but not queued.
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ // Switch to the new encrypter.
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+
+ // Now become writeable and flush the packets.
+ writer_->SetWritable();
+ EXPECT_CALL(visitor_, OnCanWrite());
+ connection_.OnCanWrite();
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+
+ // Verify that the handshake packet went out at the null encryption.
+ EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
+}
+
+TEST_P(QuicConnectionTest,
+ DropRetransmitsForNullEncryptedPacketAfterForwardSecure) {
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_NONE,
+ QuicMakeUnique<TaggingEncrypter>(0x01));
+ QuicPacketNumber packet_number;
+ connection_.SendCryptoStreamData();
+
+ // Simulate the retransmission alarm firing and the socket blocking.
+ BlockOnNextWrite();
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // Go forward secure.
+ connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
+ QuicMakeUnique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
+ notifier_.NeuterUnencryptedData();
+ connection_.NeuterUnencryptedPackets();
+
+ EXPECT_EQ(QuicTime::Zero(), connection_.GetRetransmissionAlarm()->deadline());
+ // Unblock the socket and ensure that no packets are sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+}
+
+TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) {
+ use_tagging_decrypter();
+ connection_.SetEncrypter(ENCRYPTION_NONE,
+ QuicMakeUnique<TaggingEncrypter>(0x01));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE);
+
+ SendStreamDataToPeer(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), "foo", 0,
+ NO_FIN, nullptr);
+
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(0x02));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+
+ SendStreamDataToPeer(2, "bar", 0, NO_FIN, nullptr);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+
+ connection_.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION);
+}
+
+TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) {
+ // SetFromConfig is always called after construction from InitializeSession.
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ use_tagging_decrypter();
+
+ const uint8_t tag = 0x07;
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+
+ // Process an encrypted packet which can not yet be decrypted which should
+ // result in the packet being buffered.
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Transition to the new encryption state and process another encrypted packet
+ // which should result in the original packet being processed.
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2);
+ ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Finally, process a third packet and note that we do not reprocess the
+ // buffered packet.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+}
+
+TEST_P(QuicConnectionTest, TestRetransmitOrder) {
+ connection_.SetMaxTailLossProbes(0);
+
+ QuicByteCount first_packet_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&first_packet_size));
+
+ connection_.SendStreamDataWithString(3, "first_packet", 0, NO_FIN);
+ QuicByteCount second_packet_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&second_packet_size));
+ connection_.SendStreamDataWithString(3, "second_packet", 12, NO_FIN);
+ EXPECT_NE(first_packet_size, second_packet_size);
+ // Advance the clock by huge time to make sure packets will be retransmitted.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
+ {
+ InSequence s;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _));
+ }
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // Advance again and expect the packets to be sent again in the same order.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20));
+ {
+ InSequence s;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _));
+ }
+ connection_.GetRetransmissionAlarm()->Fire();
+}
+
+TEST_P(QuicConnectionTest, Buffer100NonDecryptablePacketsThenKeyChange) {
+ // SetFromConfig is always called after construction from InitializeSession.
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ config.set_max_undecryptable_packets(100);
+ connection_.SetFromConfig(config);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ use_tagging_decrypter();
+
+ const uint8_t tag = 0x07;
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+
+ // Process an encrypted packet which can not yet be decrypted which should
+ // result in the packet being buffered.
+ for (uint64_t i = 1; i <= 100; ++i) {
+ ProcessDataPacketAtLevel(i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+
+ // Transition to the new encryption state and process another encrypted packet
+ // which should result in the original packets being processed.
+ EXPECT_FALSE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ EXPECT_TRUE(connection_.GetProcessUndecryptablePacketsAlarm()->IsSet());
+ connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT);
+ connection_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(100);
+ connection_.GetProcessUndecryptablePacketsAlarm()->Fire();
+
+ // Finally, process a third packet and note that we do not reprocess the
+ // buffered packet.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(102, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+}
+
+TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) {
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ // Make sure that RTO is not started when the packet is queued.
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ // Test that RTO is started once we write to the socket.
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) {
+ connection_.SetMaxTailLossProbes(0);
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ connection_.SendStreamDataWithString(2, "foo", 0, NO_FIN);
+ connection_.SendStreamDataWithString(3, "bar", 0, NO_FIN);
+ QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm();
+ EXPECT_TRUE(retransmission_alarm->IsSet());
+ EXPECT_EQ(clock_.Now() + DefaultRetransmissionTime(),
+ retransmission_alarm->deadline());
+
+ // Advance the time right before the RTO, then receive an ack for the first
+ // packet to delay the RTO.
+ clock_.AdvanceTime(DefaultRetransmissionTime());
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame ack = InitAckFrame(1);
+ ProcessAckPacket(&ack);
+ // Now we have an RTT sample of DefaultRetransmissionTime(500ms),
+ // so the RTO has increased to 2 * SRTT.
+ EXPECT_TRUE(retransmission_alarm->IsSet());
+ EXPECT_EQ(retransmission_alarm->deadline(),
+ clock_.Now() + 2 * DefaultRetransmissionTime());
+
+ // Move forward past the original RTO and ensure the RTO is still pending.
+ clock_.AdvanceTime(2 * DefaultRetransmissionTime());
+
+ // Ensure the second packet gets retransmitted when it finally fires.
+ EXPECT_TRUE(retransmission_alarm->IsSet());
+ EXPECT_EQ(retransmission_alarm->deadline(), clock_.ApproximateNow());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ // Manually cancel the alarm to simulate a real test.
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // The new retransmitted packet number should set the RTO to a larger value
+ // than previously.
+ EXPECT_TRUE(retransmission_alarm->IsSet());
+ QuicTime next_rto_time = retransmission_alarm->deadline();
+ QuicTime expected_rto_time =
+ connection_.sent_packet_manager().GetRetransmissionTime();
+ EXPECT_EQ(next_rto_time, expected_rto_time);
+}
+
+TEST_P(QuicConnectionTest, TestQueued) {
+ connection_.SetMaxTailLossProbes(0);
+
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+
+ // Unblock the writes and actually send.
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, InitialTimeout) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+
+ // SetFromConfig sets the initial timeouts before negotiation.
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ // Subtract a second from the idle timeout on the client side.
+ QuicTime default_timeout =
+ clock_.ApproximateNow() +
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ // Simulate the timeout alarm firing.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1));
+ connection_.GetTimeoutAlarm()->Fire();
+
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, IdleTimeoutAfterFirstSentPacket) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ QuicTime initial_ddl =
+ clock_.ApproximateNow() +
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline());
+ EXPECT_TRUE(connection_.connected());
+
+ // Advance the time and send the first packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(20));
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+ // This will be the updated deadline for the connection to idle time out.
+ QuicTime new_ddl = clock_.ApproximateNow() +
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+
+ // Simulate the timeout alarm firing, the connection should not be closed as
+ // a new packet has been sent.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(0);
+ QuicTime::Delta delay = initial_ddl - clock_.ApproximateNow();
+ clock_.AdvanceTime(delay);
+ connection_.GetTimeoutAlarm()->Fire();
+ // Verify the timeout alarm deadline is updated.
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_EQ(new_ddl, connection_.GetTimeoutAlarm()->deadline());
+
+ // Simulate the timeout alarm firing again, the connection now should be
+ // closed.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ clock_.AdvanceTime(new_ddl - clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, IdleTimeoutAfterSendTwoPackets) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ QuicTime initial_ddl =
+ clock_.ApproximateNow() +
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ EXPECT_EQ(initial_ddl, connection_.GetTimeoutAlarm()->deadline());
+ EXPECT_TRUE(connection_.connected());
+
+ // Immediately send the first packet, this is a rare case but test code will
+ // hit this issue often as MockClock used for tests doesn't move with code
+ // execution until manually adjusted.
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(1u), last_packet);
+
+ // Advance the time and send the second packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+ SendStreamDataToPeer(1, "foo", 0, NO_FIN, &last_packet);
+ EXPECT_EQ(QuicPacketNumber(2u), last_packet);
+
+ if (GetQuicReloadableFlag(
+ quic_fix_time_of_first_packet_sent_after_receiving)) {
+ // Simulate the timeout alarm firing, the connection will be closed.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ clock_.AdvanceTime(initial_ddl - clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ } else {
+ // Simulate the timeout alarm firing, the connection will not be closed.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(0);
+ clock_.AdvanceTime(initial_ddl - clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+
+ // Advance another 20ms, and fire the alarm again. The connection will be
+ // closed.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20));
+ connection_.GetTimeoutAlarm()->Fire();
+ }
+
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, HandshakeTimeout) {
+ // Use a shorter handshake timeout than idle timeout for this test.
+ const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
+ connection_.SetNetworkTimeouts(timeout, timeout);
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+
+ QuicTime handshake_timeout =
+ clock_.ApproximateNow() + timeout - QuicTime::Delta::FromSeconds(1);
+ EXPECT_EQ(handshake_timeout, connection_.GetTimeoutAlarm()->deadline());
+ EXPECT_TRUE(connection_.connected());
+
+ // Send and ack new data 3 seconds later to lengthen the idle timeout.
+ SendStreamDataToPeer(
+ QuicUtils::GetHeadersStreamId(connection_.transport_version()), "GET /",
+ 0, FIN, nullptr);
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3));
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&frame);
+
+ // Fire early to verify it wouldn't timeout yet.
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+
+ clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(2));
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_HANDSHAKE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ // Simulate the timeout alarm firing.
+ connection_.GetTimeoutAlarm()->Fire();
+
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, PingAfterSend) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+
+ // Advance to 5ms, and send a packet to the peer, which will set
+ // the ping alarm.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ SendStreamDataToPeer(
+ QuicUtils::GetHeadersStreamId(connection_.transport_version()), "GET /",
+ 0, FIN, nullptr);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(15),
+ connection_.GetPingAlarm()->deadline());
+
+ // Now recevie an ACK of the previous packet, which will move the
+ // ping alarm forward.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ // The ping timer is set slightly less than 15 seconds in the future, because
+ // of the 1s ping timer alarm granularity.
+ EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(15) -
+ QuicTime::Delta::FromMilliseconds(5),
+ connection_.GetPingAlarm()->deadline());
+
+ writer_->Reset();
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15));
+ EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
+ }));
+ connection_.GetPingAlarm()->Fire();
+ EXPECT_EQ(1u, writer_->frame_count());
+ ASSERT_EQ(1u, writer_->ping_frames().size());
+ writer_->Reset();
+
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(false));
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ SendAckPacketToPeer();
+
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, ReducedPingTimeout) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+
+ // Use a reduced ping timeout for this connection.
+ connection_.set_ping_timeout(QuicTime::Delta::FromSeconds(10));
+
+ // Advance to 5ms, and send a packet to the peer, which will set
+ // the ping alarm.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+ SendStreamDataToPeer(
+ QuicUtils::GetHeadersStreamId(connection_.transport_version()), "GET /",
+ 0, FIN, nullptr);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(10),
+ connection_.GetPingAlarm()->deadline());
+
+ // Now recevie an ACK of the previous packet, which will move the
+ // ping alarm forward.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicAckFrame frame = InitAckFrame(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ // The ping timer is set slightly less than 10 seconds in the future, because
+ // of the 1s ping timer alarm granularity.
+ EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(10) -
+ QuicTime::Delta::FromMilliseconds(5),
+ connection_.GetPingAlarm()->deadline());
+
+ writer_->Reset();
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
+ EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
+ }));
+ connection_.GetPingAlarm()->Fire();
+ EXPECT_EQ(1u, writer_->frame_count());
+ ASSERT_EQ(1u, writer_->ping_frames().size());
+ writer_->Reset();
+
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(false));
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ SendAckPacketToPeer();
+
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+}
+
+// Tests whether sending an MTU discovery packet to peer successfully causes the
+// maximum packet size to increase.
+TEST_P(QuicConnectionTest, SendMtuDiscoveryPacket) {
+ EXPECT_TRUE(connection_.connected());
+
+ // Send an MTU probe.
+ const size_t new_mtu = kDefaultMaxPacketSize + 100;
+ QuicByteCount mtu_probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&mtu_probe_size));
+ connection_.SendMtuDiscoveryPacket(new_mtu);
+ EXPECT_EQ(new_mtu, mtu_probe_size);
+ EXPECT_EQ(QuicPacketNumber(1u), creator_->packet_number());
+
+ // Send more than MTU worth of data. No acknowledgement was received so far,
+ // so the MTU should be at its old value.
+ const QuicString data(kDefaultMaxPacketSize + 1, '.');
+ QuicByteCount size_before_mtu_change;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(2)
+ .WillOnce(SaveArg<3>(&size_before_mtu_change))
+ .WillOnce(Return());
+ connection_.SendStreamDataWithString(3, data, 0, FIN);
+ EXPECT_EQ(QuicPacketNumber(3u), creator_->packet_number());
+ EXPECT_EQ(kDefaultMaxPacketSize, size_before_mtu_change);
+
+ // Acknowledge all packets so far.
+ QuicAckFrame probe_ack = InitAckFrame(3);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&probe_ack);
+ EXPECT_EQ(new_mtu, connection_.max_packet_length());
+
+ // Send the same data again. Check that it fits into a single packet now.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(3, data, 0, FIN);
+ EXPECT_EQ(QuicPacketNumber(4u), creator_->packet_number());
+}
+
+// Tests whether MTU discovery does not happen when it is not explicitly enabled
+// by the connection options.
+TEST_P(QuicConnectionTest, MtuDiscoveryDisabled) {
+ EXPECT_TRUE(connection_.connected());
+
+ const QuicPacketCount packets_between_probes_base = 10;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ const QuicPacketCount number_of_packets = packets_between_probes_base * 2;
+ for (QuicPacketCount i = 0; i < number_of_packets; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ EXPECT_EQ(0u, connection_.mtu_probe_count());
+ }
+}
+
+// Tests whether MTU discovery works when the probe gets acknowledged on the
+// first try.
+TEST_P(QuicConnectionTest, MtuDiscoveryEnabled) {
+ EXPECT_TRUE(connection_.connected());
+
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ const QuicPacketCount packets_between_probes_base = 5;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ // Send enough packets so that the next one triggers path MTU discovery.
+ for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the probe.
+ SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+ nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ QuicByteCount probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&probe_size));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh, probe_size);
+
+ const QuicPacketNumber probe_packet_number =
+ FirstSendingPacketNumber() + packets_between_probes_base;
+ ASSERT_EQ(probe_packet_number, creator_->packet_number());
+
+ // Acknowledge all packets sent so far.
+ QuicAckFrame probe_ack = InitAckFrame(probe_packet_number);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&probe_ack);
+ EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh, connection_.max_packet_length());
+ EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+ // Send more packets, and ensure that none of them sets the alarm.
+ for (QuicPacketCount i = 0; i < 4 * packets_between_probes_base; i++) {
+ SendStreamDataToPeer(3, ".", packets_between_probes_base + i, NO_FIN,
+ nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ EXPECT_EQ(1u, connection_.mtu_probe_count());
+}
+
+// Tests whether MTU discovery works correctly when the probes never get
+// acknowledged.
+TEST_P(QuicConnectionTest, MtuDiscoveryFailed) {
+ EXPECT_TRUE(connection_.connected());
+
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100);
+
+ EXPECT_EQ(kPacketsBetweenMtuProbesBase,
+ QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_));
+ // Lower the number of probes between packets in order to make the test go
+ // much faster.
+ const QuicPacketCount packets_between_probes_base = 5;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ // This tests sends more packets than strictly necessary to make sure that if
+ // the connection was to send more discovery packets than needed, those would
+ // get caught as well.
+ const QuicPacketCount number_of_packets =
+ packets_between_probes_base * (1 << (kMtuDiscoveryAttempts + 1));
+ std::vector<QuicPacketNumber> mtu_discovery_packets;
+ // Called by the first ack.
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ // Called on many acks.
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _))
+ .Times(AnyNumber());
+ for (QuicPacketCount i = 0; i < number_of_packets; i++) {
+ SendStreamDataToPeer(3, "!", i, NO_FIN, nullptr);
+ clock_.AdvanceTime(rtt);
+
+ // Receive an ACK, which marks all data packets as received, and all MTU
+ // discovery packets as missing.
+
+ QuicAckFrame ack;
+
+ if (!mtu_discovery_packets.empty()) {
+ QuicPacketNumber min_packet = *min_element(mtu_discovery_packets.begin(),
+ mtu_discovery_packets.end());
+ QuicPacketNumber max_packet = *max_element(mtu_discovery_packets.begin(),
+ mtu_discovery_packets.end());
+ ack.packets.AddRange(QuicPacketNumber(1), min_packet);
+ ack.packets.AddRange(QuicPacketNumber(max_packet + 1),
+ creator_->packet_number() + 1);
+ ack.largest_acked = creator_->packet_number();
+
+ } else {
+ ack.packets.AddRange(QuicPacketNumber(1), creator_->packet_number() + 1);
+ ack.largest_acked = creator_->packet_number();
+ }
+
+ ProcessAckPacket(&ack);
+
+ // Trigger MTU probe if it would be scheduled now.
+ if (!connection_.GetMtuDiscoveryAlarm()->IsSet()) {
+ continue;
+ }
+
+ // Fire the alarm. The alarm should cause a packet to be sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ // Record the packet number of the MTU discovery packet in order to
+ // mark it as NACK'd.
+ mtu_discovery_packets.push_back(creator_->packet_number());
+ }
+
+ // Ensure the number of packets between probes grows exponentially by checking
+ // it against the closed-form expression for the packet number.
+ ASSERT_EQ(kMtuDiscoveryAttempts, mtu_discovery_packets.size());
+ for (uint64_t i = 0; i < kMtuDiscoveryAttempts; i++) {
+ // 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1
+ const QuicPacketCount packets_between_probes =
+ packets_between_probes_base * ((1 << (i + 1)) - 1);
+ EXPECT_EQ(QuicPacketNumber(packets_between_probes + (i + 1)),
+ mtu_discovery_packets[i]);
+ }
+
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length());
+ EXPECT_EQ(kMtuDiscoveryAttempts, connection_.mtu_probe_count());
+}
+
+// Tests whether MTU discovery works when the writer has a limit on how large a
+// packet can be.
+TEST_P(QuicConnectionTest, MtuDiscoveryWriterLimited) {
+ EXPECT_TRUE(connection_.connected());
+
+ const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1;
+ writer_->set_max_packet_size(mtu_limit);
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ const QuicPacketCount packets_between_probes_base = 5;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ // Send enough packets so that the next one triggers path MTU discovery.
+ for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the probe.
+ SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+ nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ QuicByteCount probe_size;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .WillOnce(SaveArg<3>(&probe_size));
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ EXPECT_EQ(mtu_limit, probe_size);
+
+ const QuicPacketNumber probe_sequence_number =
+ FirstSendingPacketNumber() + packets_between_probes_base;
+ ASSERT_EQ(probe_sequence_number, creator_->packet_number());
+
+ // Acknowledge all packets sent so far.
+ QuicAckFrame probe_ack = InitAckFrame(probe_sequence_number);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&probe_ack);
+ EXPECT_EQ(mtu_limit, connection_.max_packet_length());
+ EXPECT_EQ(0u, connection_.GetBytesInFlight());
+
+ // Send more packets, and ensure that none of them sets the alarm.
+ for (QuicPacketCount i = 0; i < 4 * packets_between_probes_base; i++) {
+ SendStreamDataToPeer(3, ".", packets_between_probes_base + i, NO_FIN,
+ nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ EXPECT_EQ(1u, connection_.mtu_probe_count());
+}
+
+// Tests whether MTU discovery works when the writer returns an error despite
+// advertising higher packet length.
+TEST_P(QuicConnectionTest, MtuDiscoveryWriterFailed) {
+ EXPECT_TRUE(connection_.connected());
+
+ const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1;
+ const QuicByteCount initial_mtu = connection_.max_packet_length();
+ EXPECT_LT(initial_mtu, mtu_limit);
+ writer_->set_max_packet_size(mtu_limit);
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ const QuicPacketCount packets_between_probes_base = 5;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ // Send enough packets so that the next one triggers path MTU discovery.
+ for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Trigger the probe.
+ SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+ nullptr);
+ ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ writer_->SimulateNextPacketTooLarge();
+ connection_.GetMtuDiscoveryAlarm()->Fire();
+ ASSERT_TRUE(connection_.connected());
+
+ // Send more data.
+ QuicPacketNumber probe_number = creator_->packet_number();
+ QuicPacketCount extra_packets = packets_between_probes_base * 3;
+ for (QuicPacketCount i = 0; i < extra_packets; i++) {
+ connection_.EnsureWritableAndSendStreamData5();
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ // Acknowledge all packets sent so far, except for the lost probe.
+ QuicAckFrame probe_ack =
+ ConstructAckFrame(creator_->packet_number(), probe_number);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&probe_ack);
+ EXPECT_EQ(initial_mtu, connection_.max_packet_length());
+
+ // Send more packets, and ensure that none of them sets the alarm.
+ for (QuicPacketCount i = 0; i < 4 * packets_between_probes_base; i++) {
+ connection_.EnsureWritableAndSendStreamData5();
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ EXPECT_EQ(initial_mtu, connection_.max_packet_length());
+ EXPECT_EQ(1u, connection_.mtu_probe_count());
+}
+
+TEST_P(QuicConnectionTest, NoMtuDiscoveryAfterConnectionClosed) {
+ EXPECT_TRUE(connection_.connected());
+
+ connection_.EnablePathMtuDiscovery(send_algorithm_);
+
+ const QuicPacketCount packets_between_probes_base = 10;
+ set_packets_between_probes_base(packets_between_probes_base);
+
+ // Send enough packets so that the next one triggers path MTU discovery.
+ for (QuicPacketCount i = 0; i < packets_between_probes_base - 1; i++) {
+ SendStreamDataToPeer(3, ".", i, NO_FIN, nullptr);
+ ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+ }
+
+ SendStreamDataToPeer(3, "!", packets_between_probes_base - 1, NO_FIN,
+ nullptr);
+ EXPECT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _));
+ connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+ EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterSend) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
+
+ const QuicTime::Delta initial_idle_timeout =
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
+
+ // When we send a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+ // Now send more data. This will not move the timeout because
+ // no data has been received since the previous write.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 3, FIN, nullptr);
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+ // The original alarm will fire. We should not time out because we had a
+ // network event at t=5ms. The alarm will reregister.
+ clock_.AdvanceTime(initial_idle_timeout - five_ms - five_ms);
+ EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // This time, we should time out.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ clock_.AdvanceTime(five_ms);
+ EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterRetransmission) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
+
+ const QuicTime start_time = clock_.Now();
+ const QuicTime::Delta initial_idle_timeout =
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ QuicTime default_timeout = clock_.Now() + initial_idle_timeout;
+
+ connection_.SetMaxTailLossProbes(0);
+ const QuicTime default_retransmission_time =
+ start_time + DefaultRetransmissionTime();
+
+ ASSERT_LT(default_retransmission_time, default_timeout);
+
+ // When we send a packet, the timeout will change to 5 ms +
+ // kInitialIdleTimeoutSecs (but it will not reschedule the alarm).
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ const QuicTime send_time = start_time + five_ms;
+ clock_.AdvanceTime(five_ms);
+ ASSERT_EQ(send_time, clock_.Now());
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+ // Move forward 5 ms and receive a packet, which will move the timeout
+ // forward 5 ms more (but will not reschedule the alarm).
+ const QuicTime receive_time = send_time + five_ms;
+ clock_.AdvanceTime(receive_time - clock_.Now());
+ ASSERT_EQ(receive_time, clock_.Now());
+ ProcessPacket(1);
+
+ // Now move forward to the retransmission time and retransmit the
+ // packet, which should move the timeout forward again (but will not
+ // reschedule the alarm).
+ EXPECT_EQ(default_retransmission_time + five_ms,
+ connection_.GetRetransmissionAlarm()->deadline());
+ // Simulate the retransmission alarm firing.
+ const QuicTime rto_time = send_time + DefaultRetransmissionTime();
+ const QuicTime final_timeout = rto_time + initial_idle_timeout;
+ clock_.AdvanceTime(rto_time - clock_.Now());
+ ASSERT_EQ(rto_time, clock_.Now());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // Advance to the original timeout and fire the alarm. The connection should
+ // timeout, and the alarm should be registered based on the time of the
+ // retransmission.
+ clock_.AdvanceTime(default_timeout - clock_.Now());
+ ASSERT_EQ(default_timeout.ToDebuggingValue(),
+ clock_.Now().ToDebuggingValue());
+ EXPECT_EQ(default_timeout, clock_.Now());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+ ASSERT_EQ(final_timeout.ToDebuggingValue(),
+ connection_.GetTimeoutAlarm()->deadline().ToDebuggingValue());
+
+ // This time, we should time out.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ clock_.AdvanceTime(final_timeout - clock_.Now());
+ EXPECT_EQ(connection_.GetTimeoutAlarm()->deadline(), clock_.Now());
+ EXPECT_EQ(final_timeout, clock_.Now());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, NewTimeoutAfterSendSilentClose) {
+ // Same test as above, but complete a handshake which enables silent close,
+ // causing no connection close packet to be sent.
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+
+ // Create a handshake message that also enables silent close.
+ CryptoHandshakeMessage msg;
+ QuicString error_details;
+ QuicConfig client_config;
+ client_config.SetInitialStreamFlowControlWindowToSend(
+ kInitialStreamFlowControlWindowForTest);
+ client_config.SetInitialSessionFlowControlWindowToSend(
+ kInitialSessionFlowControlWindowForTest);
+ client_config.SetIdleNetworkTimeout(
+ QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs),
+ QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs));
+ client_config.ToHandshakeMessage(&msg);
+ const QuicErrorCode error =
+ config.ProcessPeerHello(msg, CLIENT, &error_details);
+ EXPECT_EQ(QUIC_NO_ERROR, error);
+
+ connection_.SetFromConfig(config);
+ EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
+
+ const QuicTime::Delta default_idle_timeout =
+ QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs - 1);
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
+
+ // When we send a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+ // Now send more data. This will not move the timeout because
+ // no data has been received since the previous write.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 3, FIN, nullptr);
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+ // The original alarm will fire. We should not time out because we had a
+ // network event at t=5ms. The alarm will reregister.
+ clock_.AdvanceTime(default_idle_timeout - five_ms - five_ms);
+ EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // This time, we should time out.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ clock_.AdvanceTime(five_ms);
+ EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseAndTLP) {
+ // Same test as above, but complete a handshake which enables silent close,
+ // but sending TLPs causes the connection close to be sent.
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+
+ // Create a handshake message that also enables silent close.
+ CryptoHandshakeMessage msg;
+ QuicString error_details;
+ QuicConfig client_config;
+ client_config.SetInitialStreamFlowControlWindowToSend(
+ kInitialStreamFlowControlWindowForTest);
+ client_config.SetInitialSessionFlowControlWindowToSend(
+ kInitialSessionFlowControlWindowForTest);
+ client_config.SetIdleNetworkTimeout(
+ QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs),
+ QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs));
+ client_config.ToHandshakeMessage(&msg);
+ const QuicErrorCode error =
+ config.ProcessPeerHello(msg, CLIENT, &error_details);
+ EXPECT_EQ(QUIC_NO_ERROR, error);
+
+ connection_.SetFromConfig(config);
+ EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
+
+ const QuicTime::Delta default_idle_timeout =
+ QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs - 1);
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
+
+ // When we send a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+ // Retransmit the packet via tail loss probe.
+ clock_.AdvanceTime(connection_.GetRetransmissionAlarm()->deadline() -
+ clock_.Now());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // This time, we should time out and send a connection close due to the TLP.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() -
+ clock_.ApproximateNow() + five_ms);
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterSendSilentCloseWithOpenStreams) {
+ // Same test as above, but complete a handshake which enables silent close,
+ // but having open streams causes the connection close to be sent.
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+
+ // Create a handshake message that also enables silent close.
+ CryptoHandshakeMessage msg;
+ QuicString error_details;
+ QuicConfig client_config;
+ client_config.SetInitialStreamFlowControlWindowToSend(
+ kInitialStreamFlowControlWindowForTest);
+ client_config.SetInitialSessionFlowControlWindowToSend(
+ kInitialSessionFlowControlWindowForTest);
+ client_config.SetIdleNetworkTimeout(
+ QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs),
+ QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs));
+ client_config.ToHandshakeMessage(&msg);
+ const QuicErrorCode error =
+ config.ProcessPeerHello(msg, CLIENT, &error_details);
+ EXPECT_EQ(QUIC_NO_ERROR, error);
+
+ connection_.SetFromConfig(config);
+ EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
+
+ const QuicTime::Delta default_idle_timeout =
+ QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs - 1);
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
+
+ // When we send a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ clock_.AdvanceTime(five_ms);
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+ // Indicate streams are still open.
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+
+ // This time, we should time out and send a connection close due to the TLP.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ clock_.AdvanceTime(connection_.GetTimeoutAlarm()->deadline() -
+ clock_.ApproximateNow() + five_ms);
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterReceive) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
+
+ const QuicTime::Delta initial_idle_timeout =
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
+
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, NO_FIN);
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 3, NO_FIN);
+
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+ clock_.AdvanceTime(five_ms);
+
+ // When we receive a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ QuicAckFrame ack = InitAckFrame(2);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&ack);
+
+ // The original alarm will fire. We should not time out because we had a
+ // network event at t=5ms. The alarm will reregister.
+ clock_.AdvanceTime(initial_idle_timeout - five_ms);
+ EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // This time, we should time out.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ clock_.AdvanceTime(five_ms);
+ EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfterReceiveNotSendWhenUnacked) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+ EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
+
+ const QuicTime::Delta initial_idle_timeout =
+ QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
+ connection_.SetNetworkTimeouts(
+ QuicTime::Delta::Infinite(),
+ initial_idle_timeout + QuicTime::Delta::FromSeconds(1));
+ const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
+ QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, NO_FIN);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 3, NO_FIN);
+
+ EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
+
+ clock_.AdvanceTime(five_ms);
+
+ // When we receive a packet, the timeout will change to 5ms +
+ // kInitialIdleTimeoutSecs.
+ QuicAckFrame ack = InitAckFrame(2);
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&ack);
+
+ // The original alarm will fire. We should not time out because we had a
+ // network event at t=5ms. The alarm will reregister.
+ clock_.AdvanceTime(initial_idle_timeout - five_ms);
+ EXPECT_EQ(default_timeout, clock_.ApproximateNow());
+ connection_.GetTimeoutAlarm()->Fire();
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_EQ(default_timeout + five_ms,
+ connection_.GetTimeoutAlarm()->deadline());
+
+ // Now, send packets while advancing the time and verify that the connection
+ // eventually times out.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
+ ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
+ for (int i = 0; i < 100 && connection_.connected(); ++i) {
+ QUIC_LOG(INFO) << "sending data packet";
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()),
+ "foo", 0, NO_FIN);
+ connection_.GetTimeoutAlarm()->Fire();
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ }
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, TimeoutAfter5ClientRTOs) {
+ connection_.SetMaxTailLossProbes(2);
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(k5RTO);
+ config.SetConnectionOptionsToSend(connection_options);
+ connection_.SetFromConfig(config);
+
+ // Send stream data.
+ SendStreamDataToPeer(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, FIN, nullptr);
+
+ // Fire the retransmission alarm 6 times, twice for TLP and 4 times for RTO.
+ for (int i = 0; i < 6; ++i) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_TRUE(connection_.connected());
+ }
+
+ EXPECT_EQ(2u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
+ EXPECT_EQ(4u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
+ // This time, we should time out.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_TOO_MANY_RTOS, _,
+ ConnectionCloseSource::FROM_SELF));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.GetRetransmissionAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, SendScheduler) {
+ // Test that if we send a packet without delay, it is not queued.
+ QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
+ std::unique_ptr<QuicPacket> packet = ConstructDataPacket(1, !kHasStopWaiting);
+ QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SendPacket(ENCRYPTION_NONE, 1, std::move(packet),
+ HAS_RETRANSMITTABLE_DATA, false, false);
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, FailToSendFirstPacket) {
+ // Test that the connection does not crash when it fails to send the first
+ // packet at which point self_address_ might be uninitialized.
+ QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(1);
+ std::unique_ptr<QuicPacket> packet = ConstructDataPacket(1, !kHasStopWaiting);
+ QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
+ writer_->SetShouldWriteFail();
+ connection_.SendPacket(ENCRYPTION_NONE, 1, std::move(packet),
+ HAS_RETRANSMITTABLE_DATA, false, false);
+}
+
+TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) {
+ QuicFramerPeer::SetPerspective(&peer_framer_, Perspective::IS_CLIENT);
+ std::unique_ptr<QuicPacket> packet = ConstructDataPacket(1, !kHasStopWaiting);
+ QuicPacketCreatorPeer::SetPacketNumber(creator_, 1);
+ BlockOnNextWrite();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(2u), _, _))
+ .Times(0);
+ connection_.SendPacket(ENCRYPTION_NONE, 1, std::move(packet),
+ HAS_RETRANSMITTABLE_DATA, false, false);
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) {
+ // All packets carry version info till version is negotiated.
+ size_t payload_length;
+ size_t length = GetPacketLengthForOneStream(
+ connection_.version().transport_version, kIncludeVersion,
+ !kIncludeDiversificationNonce, PACKET_8BYTE_CONNECTION_ID,
+ PACKET_0BYTE_CONNECTION_ID,
+ QuicPacketCreatorPeer::GetPacketNumberLength(creator_),
+ QuicPacketCreatorPeer::GetRetryTokenLengthLength(creator_),
+ QuicPacketCreatorPeer::GetLengthLength(creator_), &payload_length);
+ connection_.SetMaxPacketLength(length);
+
+ // Queue the first packet.
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(testing::Return(false));
+ const QuicString payload(payload_length, 'a');
+ EXPECT_EQ(0u, connection_.SendStreamDataWithString(3, payload, 0, NO_FIN)
+ .bytes_consumed);
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+}
+
+TEST_P(QuicConnectionTest, LoopThroughSendingPackets) {
+ // All packets carry version info till version is negotiated.
+ size_t payload_length;
+
+ // Number of packets this test generates. The goal is to have
+ // kPacketCount packets, each the same size (overhead and payload).
+ // The payload will vary depending on the overhead (which in turn
+ // varies per the QUIC packet encoding rules).
+ const int kPacketCount = 7;
+
+ // Get the basic packet size. This assumes, among other things, a
+ // stream offset of 0.
+ size_t length = GetPacketLengthForOneStream(
+ connection_.version().transport_version, kIncludeVersion,
+ !kIncludeDiversificationNonce, PACKET_8BYTE_CONNECTION_ID,
+ PACKET_0BYTE_CONNECTION_ID,
+ QuicPacketCreatorPeer::GetPacketNumberLength(creator_),
+ QuicPacketCreatorPeer::GetRetryTokenLengthLength(creator_),
+ QuicPacketCreatorPeer::GetLengthLength(creator_), &payload_length);
+ // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
+ // packet length. The size of the offset field in a stream frame is
+ // 0 for offset 0, and 2 for non-zero offsets up through 16K (for
+ // versions other than 99) and 1 for non-zero offsets through 16K
+ // for version 99. Increase the length by 1 or 2, as apporpriate, so
+ // that subsequent packets containing subsequent stream frames with
+ // non-zero offsets will fit within the packet length.
+ if (connection_.version().transport_version == QUIC_VERSION_99) {
+ length = length + 1;
+ } else {
+ length = length + 2;
+ }
+
+ connection_.SetMaxPacketLength(length);
+
+ // Queue the first packet.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
+ .Times(kPacketCount);
+
+ size_t total_payload_length = payload_length * kPacketCount;
+ // The first frame of the stream is at offset 0. When the offset is
+ // 0, it is not included in the stream frame. Increase the total
+ // payload so that the "missing" offset byte in the first packet is
+ // occupied by a payload byte. The net result is that each of the N
+ // packets of the test will contain a single stream frame, each of
+ // which will be the same size (overhead + data).
+ if (connection_.version().transport_version == QUIC_VERSION_99) {
+ // Version 99 encodes the offset in 1 byte for the scope of this test.
+ total_payload_length = total_payload_length + 1;
+ } else {
+ // Versions other than 99 encode the offset in 2 bytes for the
+ // scope of this test.
+ total_payload_length = total_payload_length + 2;
+ }
+ const QuicString payload(total_payload_length, 'a');
+
+ EXPECT_EQ(payload.size(),
+ connection_
+ .SendStreamDataWithString(QuicUtils::GetCryptoStreamId(
+ connection_.transport_version()),
+ payload, 0, NO_FIN)
+ .bytes_consumed);
+}
+
+TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) {
+ set_perspective(Perspective::IS_SERVER);
+ if (GetParam().version.transport_version <= QUIC_VERSION_43) {
+ // For IETF QUIC, encryption level will be switched to FORWARD_SECURE in
+ // SendStreamDataWithString.
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+ }
+ // Set up a larger payload than will fit in one packet.
+ const QuicString payload(connection_.max_packet_length(), 'a');
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
+
+ // Now send some packets with no truncation.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ EXPECT_EQ(payload.size(),
+ connection_.SendStreamDataWithString(3, payload, 0, NO_FIN)
+ .bytes_consumed);
+ // Track the size of the second packet here. The overhead will be the largest
+ // we see in this test, due to the non-truncated connection id.
+ size_t non_truncated_packet_size = writer_->last_packet_size();
+
+ // Change to a 0 byte connection id.
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0);
+ connection_.SetFromConfig(config);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ EXPECT_EQ(payload.size(),
+ connection_.SendStreamDataWithString(3, payload, 1350, NO_FIN)
+ .bytes_consumed);
+ if (connection_.transport_version() > QUIC_VERSION_43) {
+ // Short header packets sent from server omit connection ID already, and
+ // stream offset size increases from 0 to 2.
+ EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() - 2);
+ } else {
+ // Just like above, we save 8 bytes on payload, and 8 on truncation. -2
+ // because stream offset size is 2 instead of 0.
+ EXPECT_EQ(non_truncated_packet_size,
+ writer_->last_packet_size() + 8 * 2 - 2);
+ }
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAck) {
+ QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ const uint8_t tag = 0x07;
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_NONE.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+ // Simulate delayed ack alarm firing.
+ connection_.GetAckAlarm()->Fire();
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAfterQuiescence) {
+ QuicConnectionPeer::SetFastAckAfterQuiescence(&connection_, true);
+
+ // The beginning of the connection counts as quiescence.
+ QuicTime ack_time =
+ clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ const uint8_t tag = 0x07;
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_NONE.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+ // Simulate delayed ack alarm firing.
+ connection_.GetAckAlarm()->Fire();
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+
+ // Process another packet immedately after sending the ack and expect the
+ // ack alarm to be set delayed ack time in the future.
+ ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+ // Simulate delayed ack alarm firing.
+ connection_.GetAckAlarm()->Fire();
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+
+ // Wait 1 second and enesure the ack alarm is set to 1ms in the future.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1);
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimation) {
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+ QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION);
+
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ // The ack time should be based on min_rtt/4, since it's less than the
+ // default delayed ack time.
+ QuicTime ack_time = clock_.ApproximateNow() +
+ QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ const uint8_t tag = 0x07;
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // Process all the initial packets in order so there aren't missing packets.
+ uint64_t kFirstDecimatedPacket = 101;
+ for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_NONE.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // The 10th received packet causes an ack to be sent.
+ for (int i = 0; i < 9; ++i) {
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ }
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckAckDecimationAfterQuiescence) {
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+ QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION);
+ QuicConnectionPeer::SetFastAckAfterQuiescence(&connection_, true);
+
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+
+ // The beginning of the connection counts as quiescence.
+ QuicTime ack_time =
+ clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ const uint8_t tag = 0x07;
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_NONE.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+ // Simulate delayed ack alarm firing.
+ connection_.GetAckAlarm()->Fire();
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+
+ // Process another packet immedately after sending the ack and expect the
+ // ack alarm to be set delayed ack time in the future.
+ ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(2, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+ // Simulate delayed ack alarm firing.
+ connection_.GetAckAlarm()->Fire();
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+
+ // Wait 1 second and enesure the ack alarm is set to 1ms in the future.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1);
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(3, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // Process enough packets to get into ack decimation behavior.
+ // The ack time should be based on min_rtt/4, since it's less than the
+ // default delayed ack time.
+ ack_time = clock_.ApproximateNow() +
+ QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
+ uint64_t kFirstDecimatedPacket = 101;
+ for (unsigned int i = 0; i < kFirstDecimatedPacket - 4; ++i) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(4 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_NONE.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // The 10th received packet causes an ack to be sent.
+ for (int i = 0; i < 9; ++i) {
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ }
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+
+ // Wait 1 second and enesure the ack alarm is set to 1ms in the future.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1);
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimationUnlimitedAggregation) {
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ QuicTagVector connection_options;
+ connection_options.push_back(kACKD);
+ // No limit on the number of packets received before sending an ack.
+ connection_options.push_back(kAKDU);
+ config.SetConnectionOptionsToSend(connection_options);
+ connection_.SetFromConfig(config);
+
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ // The ack time should be based on min_rtt/4, since it's less than the
+ // default delayed ack time.
+ QuicTime ack_time = clock_.ApproximateNow() +
+ QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ const uint8_t tag = 0x07;
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // Process all the initial packets in order so there aren't missing packets.
+ uint64_t kFirstDecimatedPacket = 101;
+ for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_NONE.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // 18 packets will not cause an ack to be sent. 19 will because when
+ // stop waiting frames are in use, we ack every 20 packets no matter what.
+ for (int i = 0; i < 18; ++i) {
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ }
+ // The delayed ack timer should still be set to the expected deadline.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimationEighthRtt) {
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+ QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION);
+ QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125);
+
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ // The ack time should be based on min_rtt/8, since it's less than the
+ // default delayed ack time.
+ QuicTime ack_time = clock_.ApproximateNow() +
+ QuicTime::Delta::FromMilliseconds(kMinRttMs / 8);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ const uint8_t tag = 0x07;
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // Process all the initial packets in order so there aren't missing packets.
+ uint64_t kFirstDecimatedPacket = 101;
+ for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_NONE.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // The 10th received packet causes an ack to be sent.
+ for (int i = 0; i < 9; ++i) {
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ }
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReordering) {
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+ QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING);
+
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ // The ack time should be based on min_rtt/4, since it's less than the
+ // default delayed ack time.
+ QuicTime ack_time = clock_.ApproximateNow() +
+ QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ const uint8_t tag = 0x07;
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // Process all the initial packets in order so there aren't missing packets.
+ uint64_t kFirstDecimatedPacket = 101;
+ for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+
+ // Receive one packet out of order and then the rest in order.
+ // The loop leaves a one packet gap between acks sent to simulate some loss.
+ for (int j = 0; j < 3; ++j) {
+ // Process packet 10 first and ensure the alarm is one eighth min_rtt.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 9 + (j * 11),
+ !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // The 10th received packet causes an ack to be sent.
+ writer_->Reset();
+ for (int i = 0; i < 9; ++i) {
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ // The ACK shouldn't be sent until the 10th packet is processed.
+ EXPECT_TRUE(writer_->ack_frames().empty());
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + i + (j * 11),
+ !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ }
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithLargeReordering) {
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+ QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING);
+
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ // The ack time should be based on min_rtt/4, since it's less than the
+ // default delayed ack time.
+ QuicTime ack_time = clock_.ApproximateNow() +
+ QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ const uint8_t tag = 0x07;
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // Process all the initial packets in order so there aren't missing packets.
+ uint64_t kFirstDecimatedPacket = 101;
+ for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_NONE.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // Process packet 10 first and ensure the alarm is one eighth min_rtt.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 19, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // The 10th received packet causes an ack to be sent.
+ for (int i = 0; i < 8; ++i) {
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ }
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+
+ // The next packet received in order will cause an immediate ack,
+ // because it fills a hole.
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReorderingEighthRtt) {
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+ QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING);
+ QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125);
+
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ // The ack time should be based on min_rtt/8, since it's less than the
+ // default delayed ack time.
+ QuicTime ack_time = clock_.ApproximateNow() +
+ QuicTime::Delta::FromMilliseconds(kMinRttMs / 8);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ const uint8_t tag = 0x07;
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // Process all the initial packets in order so there aren't missing packets.
+ uint64_t kFirstDecimatedPacket = 101;
+ for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_NONE.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // Process packet 10 first and ensure the alarm is one eighth min_rtt.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 9, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // The 10th received packet causes an ack to be sent.
+ for (int i = 0; i < 8; ++i) {
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ }
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest,
+ SendDelayedAckDecimationWithLargeReorderingEighthRtt) {
+ EXPECT_CALL(visitor_, OnAckNeedsRetransmittableFrame()).Times(AnyNumber());
+ QuicConnectionPeer::SetAckMode(&connection_, ACK_DECIMATION_WITH_REORDERING);
+ QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125);
+
+ const size_t kMinRttMs = 40;
+ RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
+ rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
+ QuicTime::Delta::Zero(), QuicTime::Zero());
+ // The ack time should be based on min_rtt/8, since it's less than the
+ // default delayed ack time.
+ QuicTime ack_time = clock_.ApproximateNow() +
+ QuicTime::Delta::FromMilliseconds(kMinRttMs / 8);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ const uint8_t tag = 0x07;
+ connection_.SetDecrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<StrictTaggingDecrypter>(tag));
+ peer_framer_.SetEncrypter(ENCRYPTION_ZERO_RTT,
+ QuicMakeUnique<TaggingEncrypter>(tag));
+ // Process a packet from the non-crypto stream.
+ frame1_.stream_id = 3;
+
+ // Process all the initial packets in order so there aren't missing packets.
+ uint64_t kFirstDecimatedPacket = 101;
+ for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(1 + i, !kHasStopWaiting, ENCRYPTION_ZERO_RTT);
+ }
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ // The same as ProcessPacket(1) except that ENCRYPTION_ZERO_RTT is used
+ // instead of ENCRYPTION_NONE.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+
+ // Check if delayed ack timer is running for the expected interval.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // Process packet 10 first and ensure the alarm is one eighth min_rtt.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 19, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // The 10th received packet causes an ack to be sent.
+ for (int i = 0; i < 8; ++i) {
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 1 + i, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ }
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+
+ // The next packet received in order will cause an immediate ack,
+ // because it fills a hole.
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacketAtLevel(kFirstDecimatedPacket + 10, !kHasStopWaiting,
+ ENCRYPTION_ZERO_RTT);
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessPacket(1);
+ // Check that ack is sent and that delayed ack alarm is set.
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // Completing the handshake as the server does nothing.
+ QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER);
+ connection_.OnHandshakeComplete();
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
+
+ // Complete the handshake as the client decreases the delayed ack time to 0ms.
+ QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_CLIENT);
+ connection_.OnHandshakeComplete();
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessPacket(1);
+ ProcessPacket(2);
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, NoAckOnOldNacks) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ // Drop one packet, triggering a sequence of acks.
+ if (GetQuicRestartFlag(quic_enable_accept_random_ipn)) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ } else {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ }
+ ProcessPacket(2);
+ size_t frames_per_ack = GetParam().no_stop_waiting ? 1 : 2;
+ if (!GetQuicRestartFlag(quic_enable_accept_random_ipn)) {
+ EXPECT_EQ(frames_per_ack, writer_->frame_count());
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ writer_->Reset();
+ }
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessPacket(3);
+ EXPECT_EQ(frames_per_ack, writer_->frame_count());
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ writer_->Reset();
+
+ if (GetQuicRestartFlag(quic_enable_accept_random_ipn)) {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ } else {
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ }
+ ProcessPacket(4);
+ if (GetQuicRestartFlag(quic_enable_accept_random_ipn)) {
+ EXPECT_EQ(0u, writer_->frame_count());
+ } else {
+ EXPECT_EQ(frames_per_ack, writer_->frame_count());
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ writer_->Reset();
+ }
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessPacket(5);
+ EXPECT_EQ(frames_per_ack, writer_->frame_count());
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ writer_->Reset();
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ // Now only set the timer on the 6th packet, instead of sending another ack.
+ ProcessPacket(6);
+ EXPECT_EQ(0u, writer_->frame_count());
+ EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessPacket(1);
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, NO_FIN);
+ // Check that ack is bundled with outgoing data and that delayed ack
+ // alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessPacket(1);
+ connection_.SendStreamDataWithString(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), "foo", 0,
+ NO_FIN);
+ // Check that ack is bundled with outgoing crypto data.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(4u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessPacket(1);
+ BlockOnNextWrite();
+ writer_->set_is_write_blocked_data_buffered(true);
+ connection_.SendStreamDataWithString(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), "foo", 0,
+ NO_FIN);
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ EXPECT_FALSE(connection_.HasQueuedData());
+ connection_.SendStreamDataWithString(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), "bar", 3,
+ NO_FIN);
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ EXPECT_TRUE(connection_.HasQueuedData());
+}
+
+TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ EXPECT_CALL(visitor_, OnCanWrite())
+ .WillOnce(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendCryptoStreamData)));
+ // Process a packet from the crypto stream, which is frame1_'s default.
+ // Receiving the CHLO as packet 2 first will cause the connection to
+ // immediately send an ack, due to the packet gap.
+ ProcessPacket(2);
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(4u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ if (connection_.transport_version() < QUIC_VERSION_47) {
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ } else {
+ EXPECT_EQ(1u, writer_->crypto_frames().size());
+ }
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ ASSERT_FALSE(writer_->ack_frames().empty());
+ EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front()));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, BundleAckForSecondCHLOTwoPacketReject) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+
+ // Process two packets from the crypto stream, which is frame1_'s default,
+ // simulating a 2 packet reject.
+ {
+ ProcessPacket(1);
+ // Send the new CHLO when the REJ is processed.
+ EXPECT_CALL(visitor_, OnStreamFrame(_))
+ .WillOnce(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::SendCryptoStreamData)));
+ ProcessDataPacket(2);
+ }
+ // Check that ack is sent and that delayed ack alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(4u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ if (connection_.transport_version() < QUIC_VERSION_47) {
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ } else {
+ EXPECT_EQ(1u, writer_->crypto_frames().size());
+ }
+ EXPECT_EQ(1u, writer_->padding_frames().size());
+ ASSERT_FALSE(writer_->ack_frames().empty());
+ EXPECT_EQ(QuicPacketNumber(2u), LargestAcked(writer_->ack_frames().front()));
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, NO_FIN);
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 3, NO_FIN);
+ // Ack the second packet, which will retransmit the first packet.
+ QuicAckFrame ack = ConstructAckFrame(2, 1);
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(QuicPacketNumber(1), kMaxPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(SetArgPointee<5>(lost_packets));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&ack);
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ writer_->Reset();
+
+ // Now ack the retransmission, which will both raise the high water mark
+ // and see if there is more data to send.
+ ack = ConstructAckFrame(3, 1);
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ ProcessAckPacket(&ack);
+
+ // Check that no packet is sent and the ack alarm isn't set.
+ EXPECT_EQ(0u, writer_->frame_count());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+ writer_->Reset();
+
+ // Send the same ack, but send both data and an ack together.
+ ack = ConstructAckFrame(3, 1);
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(visitor_, OnCanWrite())
+ .WillOnce(IgnoreResult(InvokeWithoutArgs(
+ &connection_, &TestConnection::EnsureWritableAndSendStreamData5)));
+ ProcessAckPacket(&ack);
+
+ // Check that ack is bundled with outgoing data and the delayed ack
+ // alarm is reset.
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(2u, writer_->frame_count());
+ EXPECT_TRUE(writer_->stop_waiting_frames().empty());
+ } else {
+ EXPECT_EQ(3u, writer_->frame_count());
+ EXPECT_FALSE(writer_->stop_waiting_frames().empty());
+ }
+ EXPECT_FALSE(writer_->ack_frames().empty());
+ EXPECT_EQ(QuicPacketNumber(3u), LargestAcked(writer_->ack_frames().front()));
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, NoAckSentForClose) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessPacket(1);
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, _,
+ ConnectionCloseSource::FROM_PEER));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ ProcessClosePacket(2);
+}
+
+TEST_P(QuicConnectionTest, SendWhenDisconnected) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, _,
+ ConnectionCloseSource::FROM_SELF));
+ connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_FALSE(connection_.CanWriteStreamData());
+ std::unique_ptr<QuicPacket> packet = ConstructDataPacket(1, !kHasStopWaiting);
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+ .Times(0);
+ connection_.SendPacket(ENCRYPTION_NONE, 1, std::move(packet),
+ HAS_RETRANSMITTABLE_DATA, false, false);
+}
+
+TEST_P(QuicConnectionTest, SendConnectivityProbingWhenDisconnected) {
+ // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+ if (!IsDefaultTestConfiguration()) {
+ return;
+ }
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, _,
+ ConnectionCloseSource::FROM_SELF));
+ connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+ EXPECT_FALSE(connection_.connected());
+ EXPECT_FALSE(connection_.CanWriteStreamData());
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+ .Times(0);
+
+ EXPECT_QUIC_BUG(connection_.SendConnectivityProbingPacket(
+ writer_.get(), connection_.peer_address()),
+ "Not sending connectivity probing packet as connection is "
+ "disconnected.");
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedAfterClientSendsConnectivityProbe) {
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+ TestPacketWriter probing_writer(version(), &clock_);
+ // Block next write so that sending connectivity probe will encounter a
+ // blocked write when send a connectivity probe to the peer.
+ probing_writer.BlockOnNextWrite();
+ // Connection will not be marked as write blocked as connectivity probe only
+ // affects the probing_writer which is not the default.
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(0);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+ .Times(1);
+ connection_.SendConnectivityProbingPacket(&probing_writer,
+ connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, WriterBlockedAfterServerSendsConnectivityProbe) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ // Block next write so that sending connectivity probe will encounter a
+ // blocked write when send a connectivity probe to the peer.
+ writer_->BlockOnNextWrite();
+ // Connection will be marked as write blocked as server uses the default
+ // writer to send connectivity probes.
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(1);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+ .Times(1);
+ connection_.SendConnectivityProbingPacket(writer_.get(),
+ connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, WriterErrorWhenClientSendsConnectivityProbe) {
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+ TestPacketWriter probing_writer(version(), &clock_);
+ probing_writer.SetShouldWriteFail();
+
+ // Connection should not be closed if a connectivity probe is failed to be
+ // sent.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(0);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+ .Times(0);
+ connection_.SendConnectivityProbingPacket(&probing_writer,
+ connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, WriterErrorWhenServerSendsConnectivityProbe) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ writer_->SetShouldWriteFail();
+ // Connection should not be closed if a connectivity probe is failed to be
+ // sent.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(0);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, QuicPacketNumber(1), _, _))
+ .Times(0);
+ connection_.SendConnectivityProbingPacket(writer_.get(),
+ connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, PublicReset) {
+ if (GetParam().version.transport_version > QUIC_VERSION_43) {
+ return;
+ }
+ QuicPublicResetPacket header;
+ // Public reset packet in only built by server.
+ header.connection_id = connection_id_;
+ std::unique_ptr<QuicEncryptedPacket> packet(
+ framer_.BuildPublicResetPacket(header));
+ std::unique_ptr<QuicReceivedPacket> received(
+ ConstructReceivedPacket(*packet, QuicTime::Zero()));
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PUBLIC_RESET, _,
+ ConnectionCloseSource::FROM_PEER));
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+}
+
+TEST_P(QuicConnectionTest, IetfStatelessReset) {
+ if (GetParam().version.transport_version <= QUIC_VERSION_43) {
+ return;
+ }
+ const QuicUint128 kTestStatelessResetToken = 1010101;
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedStatelessResetToken(&config,
+ kTestStatelessResetToken);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ std::unique_ptr<QuicEncryptedPacket> packet(
+ QuicFramer::BuildIetfStatelessResetPacket(connection_id_,
+ kTestStatelessResetToken));
+ std::unique_ptr<QuicReceivedPacket> received(
+ ConstructReceivedPacket(*packet, QuicTime::Zero()));
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PUBLIC_RESET, _,
+ ConnectionCloseSource::FROM_PEER));
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+}
+
+TEST_P(QuicConnectionTest, GoAway) {
+ if (GetParam().version.transport_version == QUIC_VERSION_99) {
+ // GoAway is not available in version 99.
+ return;
+ }
+
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ QuicGoAwayFrame goaway;
+ goaway.last_good_stream_id = 1;
+ goaway.error_code = QUIC_PEER_GOING_AWAY;
+ goaway.reason_phrase = "Going away.";
+ EXPECT_CALL(visitor_, OnGoAway(_));
+ ProcessGoAwayPacket(&goaway);
+}
+
+TEST_P(QuicConnectionTest, WindowUpdate) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ QuicWindowUpdateFrame window_update;
+ window_update.stream_id = 3;
+ window_update.byte_offset = 1234;
+ EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
+ ProcessFramePacket(QuicFrame(&window_update));
+}
+
+TEST_P(QuicConnectionTest, Blocked) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ QuicBlockedFrame blocked;
+ blocked.stream_id = 3;
+ EXPECT_CALL(visitor_, OnBlockedFrame(_));
+ ProcessFramePacket(QuicFrame(&blocked));
+ EXPECT_EQ(1u, connection_.GetStats().blocked_frames_received);
+ EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
+}
+
+TEST_P(QuicConnectionTest, ZeroBytePacket) {
+ // Don't close the connection for zero byte packets.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(0);
+ QuicReceivedPacket encrypted(nullptr, 0, QuicTime::Zero());
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, encrypted);
+}
+
+TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) {
+ if (GetParam().version.transport_version > QUIC_VERSION_43) {
+ return;
+ }
+ // Set the packet number of the ack packet to be least unacked (4).
+ QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 3);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessStopWaitingPacket(InitStopWaitingFrame(4));
+ EXPECT_FALSE(outgoing_ack()->packets.Empty());
+}
+
+TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacket) {
+ // Turn off QUIC_VERSION_99.
+ SetQuicReloadableFlag(quic_enable_version_99, false);
+ connection_.SetSupportedVersions(CurrentSupportedVersions());
+ set_perspective(Perspective::IS_SERVER);
+ if (GetParam().version.transport_version > QUIC_VERSION_43) {
+ peer_framer_.set_version_for_tests(
+ ParsedQuicVersion(PROTOCOL_QUIC_CRYPTO, QUIC_VERSION_99));
+ } else {
+ peer_framer_.set_version_for_tests(UnsupportedQuicVersion());
+ }
+
+ QuicPacketHeader header;
+ header.destination_connection_id = connection_id_;
+ header.version_flag = true;
+ header.packet_number = QuicPacketNumber(12);
+
+ if (QuicVersionHasLongHeaderLengths(
+ peer_framer_.version().transport_version)) {
+ header.long_packet_type = INITIAL;
+ header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
+ header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
+ }
+
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length = framer_.EncryptPayload(
+ ENCRYPTION_NONE, QuicPacketNumber(12), *packet, buffer, kMaxPacketSize);
+
+ framer_.set_version(version());
+ // Writer's framer's perspective is client, so that it needs to have the right
+ // version to process either IETF or GQUIC version negotiation packet.
+ writer_->SetSupportedVersions({version()});
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+ EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr);
+
+ ParsedQuicVersionVector supported_versions = CurrentSupportedVersions();
+ ASSERT_EQ(supported_versions.size(),
+ writer_->version_negotiation_packet()->versions.size());
+
+ // We expect all versions in supported_versions to be
+ // included in the packet.
+ for (size_t i = 0; i < supported_versions.size(); ++i) {
+ EXPECT_EQ(supported_versions[i],
+ writer_->version_negotiation_packet()->versions[i]);
+ }
+}
+
+TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlocked) {
+ // Turn off QUIC_VERSION_99.
+ SetQuicReloadableFlag(quic_enable_version_99, false);
+ connection_.SetSupportedVersions(CurrentSupportedVersions());
+ set_perspective(Perspective::IS_SERVER);
+ if (GetParam().version.transport_version > QUIC_VERSION_43) {
+ peer_framer_.set_version_for_tests(
+ ParsedQuicVersion(PROTOCOL_QUIC_CRYPTO, QUIC_VERSION_99));
+ } else {
+ peer_framer_.set_version_for_tests(UnsupportedQuicVersion());
+ }
+
+ QuicPacketHeader header;
+ header.destination_connection_id = connection_id_;
+ header.version_flag = true;
+ header.packet_number = QuicPacketNumber(12);
+
+ if (QuicVersionHasLongHeaderLengths(
+ peer_framer_.version().transport_version)) {
+ header.long_packet_type = INITIAL;
+ header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
+ header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
+ }
+
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length = framer_.EncryptPayload(
+ ENCRYPTION_NONE, QuicPacketNumber(12), *packet, buffer, kMaxPacketSize);
+
+ framer_.set_version(version());
+ BlockOnNextWrite();
+ // Writer's framer's perspective is client, so that it needs to have the right
+ // version to process either IETF or GQUIC version negotiation packet.
+ writer_->SetSupportedVersions({version()});
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+ EXPECT_EQ(0u, writer_->last_packet_size());
+ EXPECT_TRUE(connection_.HasQueuedData());
+
+ writer_->SetWritable();
+ connection_.OnCanWrite();
+ EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr);
+
+ ParsedQuicVersionVector supported_versions = CurrentSupportedVersions();
+ ASSERT_EQ(supported_versions.size(),
+ writer_->version_negotiation_packet()->versions.size());
+
+ // We expect all versions in supported_versions to be
+ // included in the packet.
+ for (size_t i = 0; i < supported_versions.size(); ++i) {
+ EXPECT_EQ(supported_versions[i],
+ writer_->version_negotiation_packet()->versions[i]);
+ }
+}
+
+TEST_P(QuicConnectionTest,
+ ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered) {
+ // Turn off QUIC_VERSION_99.
+ SetQuicReloadableFlag(quic_enable_version_99, false);
+ connection_.SetSupportedVersions(CurrentSupportedVersions());
+ set_perspective(Perspective::IS_SERVER);
+ if (GetParam().version.transport_version > QUIC_VERSION_43) {
+ peer_framer_.set_version_for_tests(
+ ParsedQuicVersion(PROTOCOL_QUIC_CRYPTO, QUIC_VERSION_99));
+ } else {
+ peer_framer_.set_version_for_tests(UnsupportedQuicVersion());
+ }
+
+ QuicPacketHeader header;
+ header.destination_connection_id = connection_id_;
+ header.version_flag = true;
+ header.packet_number = QuicPacketNumber(12);
+
+ if (QuicVersionHasLongHeaderLengths(
+ peer_framer_.version().transport_version)) {
+ header.long_packet_type = INITIAL;
+ header.retry_token_length_length = VARIABLE_LENGTH_INTEGER_LENGTH_1;
+ header.length_length = VARIABLE_LENGTH_INTEGER_LENGTH_2;
+ }
+
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+ char buffer[kMaxPacketSize];
+ size_t encryped_length = framer_.EncryptPayload(
+ ENCRYPTION_NONE, QuicPacketNumber(12), *packet, buffer, kMaxPacketSize);
+
+ framer_.set_version(version());
+ set_perspective(Perspective::IS_SERVER);
+ BlockOnNextWrite();
+ writer_->set_is_write_blocked_data_buffered(true);
+ // Writer's framer's perspective is client, so that it needs to have the right
+ // version to process either IETF or GQUIC version negotiation packet.
+ writer_->SetSupportedVersions({version()});
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encryped_length, QuicTime::Zero(), false));
+ EXPECT_EQ(0u, writer_->last_packet_size());
+ EXPECT_FALSE(connection_.HasQueuedData());
+}
+
+TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) {
+ // Start out with some unsupported version.
+ QuicConnectionPeer::GetFramer(&connection_)
+ ->set_version_for_tests(ParsedQuicVersion(
+ PROTOCOL_UNSUPPORTED,
+ GetParam().version.transport_version == QUIC_VERSION_99
+ ? QUIC_VERSION_99
+ : QUIC_VERSION_UNSUPPORTED));
+
+ // Send a version negotiation packet.
+ std::unique_ptr<QuicEncryptedPacket> encrypted(
+ peer_framer_.BuildVersionNegotiationPacket(
+ connection_id_, connection_.transport_version() > QUIC_VERSION_43,
+ AllSupportedVersions()));
+ std::unique_ptr<QuicReceivedPacket> received(
+ ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
+ if (GetQuicReloadableFlag(quic_no_client_conn_ver_negotiation)) {
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_VERSION, _,
+ ConnectionCloseSource::FROM_SELF));
+ }
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+ if (GetQuicReloadableFlag(quic_no_client_conn_ver_negotiation)) {
+ EXPECT_FALSE(connection_.connected());
+ return;
+ }
+
+ // Now force another packet. The connection should transition into
+ // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion.
+ QuicPacketHeader header;
+ header.destination_connection_id = connection_id_;
+ header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+ header.packet_number = QuicPacketNumber(12);
+ header.version_flag = false;
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ ENCRYPTION_NONE, QuicPacketNumber(12), *packet, buffer, kMaxPacketSize);
+ ASSERT_NE(0u, encrypted_length);
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+ if (GetParam().version.transport_version > QUIC_VERSION_43) {
+ // IETF QUIC stops sending version when switch to FORWARD_SECURE.
+ EXPECT_NE(ENCRYPTION_FORWARD_SECURE, connection_.encryption_level());
+ ASSERT_TRUE(QuicPacketCreatorPeer::SendVersionInPacket(creator_));
+ } else {
+ ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_));
+ }
+}
+
+TEST_P(QuicConnectionTest, BadVersionNegotiation) {
+ // Send a version negotiation packet with the version the client started with.
+ // It should be rejected.
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, _,
+ ConnectionCloseSource::FROM_SELF));
+ std::unique_ptr<QuicEncryptedPacket> encrypted(
+ framer_.BuildVersionNegotiationPacket(
+ connection_id_, connection_.transport_version() > QUIC_VERSION_43,
+ AllSupportedVersions()));
+ std::unique_ptr<QuicReceivedPacket> received(
+ ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
+ connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
+}
+
+TEST_P(QuicConnectionTest, CheckSendStats) {
+ connection_.SetMaxTailLossProbes(0);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SendStreamDataWithString(3, "first", 0, NO_FIN);
+ size_t first_packet_size = writer_->last_packet_size();
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ connection_.SendStreamDataWithString(5, "second", 0, NO_FIN);
+ size_t second_packet_size = writer_->last_packet_size();
+
+ // 2 retransmissions due to rto, 1 due to explicit nack.
+ EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
+
+ // Retransmit due to RTO.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
+ connection_.GetRetransmissionAlarm()->Fire();
+
+ // Retransmit due to explicit nacks.
+ QuicAckFrame nack_three =
+ InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)},
+ {QuicPacketNumber(4), QuicPacketNumber(5)}});
+
+ LostPacketVector lost_packets;
+ lost_packets.push_back(LostPacket(QuicPacketNumber(1), kMaxPacketSize));
+ lost_packets.push_back(LostPacket(QuicPacketNumber(3), kMaxPacketSize));
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _))
+ .WillOnce(SetArgPointee<5>(lost_packets));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ if (!connection_.session_decides_what_to_write()) {
+ EXPECT_CALL(visitor_, OnCanWrite());
+ }
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ ProcessAckPacket(&nack_three);
+
+ EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
+ .WillOnce(Return(QuicBandwidth::Zero()));
+
+ const QuicConnectionStats& stats = connection_.GetStats();
+ // For IETF QUIC, version is not included as the encryption level switches to
+ // FORWARD_SECURE in SendStreamDataWithString.
+ size_t save_on_version =
+ GetParam().version.transport_version > QUIC_VERSION_43 ? 0
+ : kQuicVersionSize;
+ EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - save_on_version,
+ stats.bytes_sent);
+ EXPECT_EQ(5u, stats.packets_sent);
+ EXPECT_EQ(2 * first_packet_size + second_packet_size - save_on_version,
+ stats.bytes_retransmitted);
+ EXPECT_EQ(3u, stats.packets_retransmitted);
+ EXPECT_EQ(1u, stats.rto_count);
+ EXPECT_EQ(kDefaultMaxPacketSize, stats.max_packet_size);
+}
+
+TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) {
+ // Construct a packet with stream frame and connection close frame.
+ QuicPacketHeader header;
+ header.destination_connection_id = connection_id_;
+ if (peer_framer_.transport_version() > QUIC_VERSION_43) {
+ header.destination_connection_id_included = CONNECTION_ID_ABSENT;
+ }
+ header.packet_number = QuicPacketNumber(1);
+ header.version_flag = false;
+
+ QuicConnectionCloseFrame qccf;
+ qccf.error_code = QUIC_PEER_GOING_AWAY;
+
+ QuicFrames frames;
+ frames.push_back(QuicFrame(frame1_));
+ frames.push_back(QuicFrame(&qccf));
+ std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
+ EXPECT_TRUE(nullptr != packet);
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ ENCRYPTION_NONE, QuicPacketNumber(1), *packet, buffer, kMaxPacketSize);
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, _,
+ ConnectionCloseSource::FROM_PEER));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
+}
+
+TEST_P(QuicConnectionTest, SelectMutualVersion) {
+ connection_.SetSupportedVersions(AllSupportedVersions());
+ // Set the connection to speak the lowest quic version.
+ connection_.set_version(QuicVersionMin());
+ EXPECT_EQ(QuicVersionMin(), connection_.version());
+
+ // Pass in available versions which includes a higher mutually supported
+ // version. The higher mutually supported version should be selected.
+ ParsedQuicVersionVector supported_versions = AllSupportedVersions();
+ EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions));
+ EXPECT_EQ(QuicVersionMax(), connection_.version());
+
+ // Expect that the lowest version is selected.
+ // Ensure the lowest supported version is less than the max, unless they're
+ // the same.
+ ParsedQuicVersionVector lowest_version_vector;
+ lowest_version_vector.push_back(QuicVersionMin());
+ EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector));
+ EXPECT_EQ(QuicVersionMin(), connection_.version());
+
+ // Shouldn't be able to find a mutually supported version.
+ ParsedQuicVersionVector unsupported_version;
+ unsupported_version.push_back(UnsupportedQuicVersion());
+ EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version));
+}
+
+TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) {
+ EXPECT_FALSE(writer_->IsWriteBlocked());
+
+ // Send a packet.
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_EQ(0u, connection_.NumQueuedPackets());
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+
+ TriggerConnectionClose();
+ EXPECT_EQ(2u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) {
+ BlockOnNextWrite();
+ TriggerConnectionClose();
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+}
+
+TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) {
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+ EXPECT_EQ(1u, connection_.NumQueuedPackets());
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+ EXPECT_TRUE(writer_->IsWriteBlocked());
+ TriggerConnectionClose();
+ EXPECT_EQ(1u, writer_->packets_write_attempts());
+}
+
+TEST_P(QuicConnectionTest, OnPacketSentDebugVisitor) {
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(1, "foo", 0, NO_FIN);
+
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)).Times(1);
+ connection_.SendConnectivityProbingPacket(writer_.get(),
+ connection_.peer_address());
+}
+
+TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) {
+ QuicPacketHeader header;
+ header.packet_number = QuicPacketNumber(1);
+ if (GetParam().version.transport_version > QUIC_VERSION_43) {
+ header.form = IETF_QUIC_LONG_HEADER_PACKET;
+ }
+
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+ EXPECT_CALL(debug_visitor, OnPacketHeader(Ref(header))).Times(1);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(1);
+ EXPECT_CALL(debug_visitor, OnSuccessfulVersionNegotiation(_)).Times(1);
+ connection_.OnPacketHeader(header);
+}
+
+TEST_P(QuicConnectionTest, Pacing) {
+ TestConnection server(connection_id_, kSelfAddress, helper_.get(),
+ alarm_factory_.get(), writer_.get(),
+ Perspective::IS_SERVER, version());
+ TestConnection client(connection_id_, kPeerAddress, helper_.get(),
+ alarm_factory_.get(), writer_.get(),
+ Perspective::IS_CLIENT, version());
+ EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing(
+ static_cast<const QuicSentPacketManager*>(
+ &client.sent_packet_manager())));
+ EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing(
+ static_cast<const QuicSentPacketManager*>(
+ &server.sent_packet_manager())));
+}
+
+TEST_P(QuicConnectionTest, WindowUpdateInstigateAcks) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Send a WINDOW_UPDATE frame.
+ QuicWindowUpdateFrame window_update;
+ window_update.stream_id = 3;
+ window_update.byte_offset = 1234;
+ EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
+ ProcessFramePacket(QuicFrame(&window_update));
+
+ // Ensure that this has caused the ACK alarm to be set.
+ QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
+ EXPECT_TRUE(ack_alarm->IsSet());
+}
+
+TEST_P(QuicConnectionTest, BlockedFrameInstigateAcks) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ // Send a BLOCKED frame.
+ QuicBlockedFrame blocked;
+ blocked.stream_id = 3;
+ EXPECT_CALL(visitor_, OnBlockedFrame(_));
+ ProcessFramePacket(QuicFrame(&blocked));
+
+ // Ensure that this has caused the ACK alarm to be set.
+ QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
+ EXPECT_TRUE(ack_alarm->IsSet());
+}
+
+TEST_P(QuicConnectionTest, ReevaluateTimeUntilSendOnAck) {
+ // Enable pacing.
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ connection_.SetFromConfig(config);
+
+ // Send two packets. One packet is not sufficient because if it gets acked,
+ // there will be no packets in flight after that and the pacer will always
+ // allow the next packet in that situation.
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "foo",
+ 0, NO_FIN);
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "bar",
+ 3, NO_FIN);
+ connection_.OnCanWrite();
+
+ // Schedule the next packet for a few milliseconds in future.
+ QuicSentPacketManagerPeer::DisablePacerBursts(manager_);
+ QuicTime scheduled_pacing_time =
+ clock_.Now() + QuicTime::Delta::FromMilliseconds(5);
+ QuicSentPacketManagerPeer::SetNextPacedPacketTime(manager_,
+ scheduled_pacing_time);
+
+ // Send a packet and have it be blocked by congestion control.
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(false));
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), "baz",
+ 6, NO_FIN);
+ EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
+
+ // Process an ack and the send alarm will be set to the new 5ms delay.
+ QuicAckFrame ack = InitAckFrame(1);
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillRepeatedly(Return(true));
+ ProcessAckPacket(&ack);
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_EQ(1u, writer_->stream_frames().size());
+ EXPECT_TRUE(connection_.GetSendAlarm()->IsSet());
+ EXPECT_EQ(scheduled_pacing_time, connection_.GetSendAlarm()->deadline());
+ writer_->Reset();
+}
+
+TEST_P(QuicConnectionTest, SendAcksImmediately) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(1);
+ CongestionBlockWrites();
+ SendAckPacketToPeer();
+}
+
+TEST_P(QuicConnectionTest, SendPingImmediately) {
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+
+ CongestionBlockWrites();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)).Times(1);
+ EXPECT_CALL(debug_visitor, OnPingSent()).Times(1);
+ connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
+ EXPECT_FALSE(connection_.HasQueuedData());
+}
+
+TEST_P(QuicConnectionTest, SendBlockedImmediately) {
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)).Times(1);
+ EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent);
+ connection_.SendControlFrame(QuicFrame(new QuicBlockedFrame(1, 3)));
+ EXPECT_EQ(1u, connection_.GetStats().blocked_frames_sent);
+ EXPECT_FALSE(connection_.HasQueuedData());
+}
+
+TEST_P(QuicConnectionTest, SendingUnencryptedStreamDataFails) {
+ // EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
+ if (!IsDefaultTestConfiguration()) {
+ return;
+ }
+
+ EXPECT_CALL(visitor_,
+ OnConnectionClosed(QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA,
+ _, ConnectionCloseSource::FROM_SELF));
+ struct iovec iov;
+ MakeIOVector("", &iov);
+ EXPECT_QUIC_BUG(connection_.SaveAndSendStreamData(3, &iov, 1, 0, 0, FIN),
+ "Cannot send stream data without encryption.");
+ EXPECT_FALSE(connection_.connected());
+}
+
+TEST_P(QuicConnectionTest, SetRetransmissionAlarmForCryptoPacket) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendCryptoStreamData();
+
+ // Verify retransmission timer is correctly set after crypto packet has been
+ // sent.
+ EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
+ QuicTime retransmission_time =
+ QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetRetransmissionTime();
+ EXPECT_NE(retransmission_time, clock_.ApproximateNow());
+ EXPECT_EQ(retransmission_time,
+ connection_.GetRetransmissionAlarm()->deadline());
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.GetRetransmissionAlarm()->Fire();
+}
+
+TEST_P(QuicConnectionTest, PathDegradingAlarmForCryptoPacket) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendCryptoStreamData();
+
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(clock_.ApproximateNow() + delay,
+ connection_.GetPathDegradingAlarm()->deadline());
+
+ // Fire the path degrading alarm, path degrading signal should be sent to
+ // the visitor.
+ EXPECT_CALL(visitor_, OnPathDegrading());
+ clock_.AdvanceTime(delay);
+ connection_.GetPathDegradingAlarm()->Fire();
+ EXPECT_TRUE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+}
+
+// Includes regression test for https://b.corp.google.com/issues/69979024.
+TEST_P(QuicConnectionTest, PathDegradingAlarmForNonCryptoPackets) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ for (int i = 0; i < 2; ++i) {
+ // Send a packet. Now there's a retransmittable packet on the wire, so the
+ // path degrading alarm should be set.
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), data,
+ offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ // Check the deadline of the path degrading alarm.
+ QuicTime::Delta delay =
+ QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(clock_.ApproximateNow() + delay,
+ connection_.GetPathDegradingAlarm()->deadline());
+
+ // Send a second packet. The path degrading alarm's deadline should remain
+ // the same.
+ // Regression test for https://b.corp.google.com/issues/69979024.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicTime prev_deadline = connection_.GetPathDegradingAlarm()->deadline();
+ connection_.SendStreamDataWithString(
+ GetNthClientInitiatedStreamId(1, connection_.transport_version()), data,
+ offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_EQ(prev_deadline, connection_.GetPathDegradingAlarm()->deadline());
+
+ // Now receive an ACK of the first packet. This should advance the path
+ // degrading alarm's deadline since forward progress has been made.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ if (i == 0) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ }
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame = InitAckFrame(
+ {{QuicPacketNumber(1u + 2u * i), QuicPacketNumber(2u + 2u * i)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ // Check the deadline of the path degrading alarm.
+ delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(clock_.ApproximateNow() + delay,
+ connection_.GetPathDegradingAlarm()->deadline());
+
+ if (i == 0) {
+ // Now receive an ACK of the second packet. Since there are no more
+ // retransmittable packets on the wire, this should cancel the path
+ // degrading alarm.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ ProcessAckPacket(&frame);
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ } else {
+ // Advance time to the path degrading alarm's deadline and simulate
+ // firing the alarm.
+ clock_.AdvanceTime(delay);
+ EXPECT_CALL(visitor_, OnPathDegrading());
+ connection_.GetPathDegradingAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ }
+ }
+ EXPECT_TRUE(connection_.IsPathDegrading());
+}
+
+TEST_P(QuicConnectionTest, RetransmittableOnWireSetsPingAlarm) {
+ const QuicTime::Delta retransmittable_on_wire_timeout =
+ QuicTime::Delta::FromMilliseconds(50);
+ connection_.set_retransmittable_on_wire_timeout(
+ retransmittable_on_wire_timeout);
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ // Send a packet.
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ // Now there's a retransmittable packet on the wire, so the path degrading
+ // alarm should be set.
+ // The retransmittable-on-wire alarm should not be set.
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(clock_.ApproximateNow() + delay,
+ connection_.GetPathDegradingAlarm()->deadline());
+ ASSERT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+ // The ping alarm is set for the ping timeout, not the shorter
+ // retransmittable_on_wire_timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
+ EXPECT_EQ((clock_.ApproximateNow() + ping_delay),
+ connection_.GetPingAlarm()->deadline());
+
+ // Now receive an ACK of the packet.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+ ProcessAckPacket(&frame);
+ // No more retransmittable packets on the wire, so the path degrading alarm
+ // should be cancelled, and the ping alarm should be set to the
+ // retransmittable_on_wire_timeout.
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(clock_.ApproximateNow() + retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline());
+
+ // Simulate firing the ping alarm and sending a PING.
+ clock_.AdvanceTime(retransmittable_on_wire_timeout);
+ EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
+ }));
+ connection_.GetPingAlarm()->Fire();
+
+ // Now there's a retransmittable packet (PING) on the wire, so the path
+ // degrading alarm should be set.
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(clock_.ApproximateNow() + delay,
+ connection_.GetPathDegradingAlarm()->deadline());
+}
+
+// This test verifies that the connection marks path as degrading and does not
+// spin timer to detect path degrading when a new packet is sent on the
+// degraded path.
+TEST_P(QuicConnectionTest, NoPathDegradingAlarmIfPathIsDegrading) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ // Send the first packet. Now there's a retransmittable packet on the wire, so
+ // the path degrading alarm should be set.
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ // Check the deadline of the path degrading alarm.
+ QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(clock_.ApproximateNow() + delay,
+ connection_.GetPathDegradingAlarm()->deadline());
+
+ // Send a second packet. The path degrading alarm's deadline should remain
+ // the same.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicTime prev_deadline = connection_.GetPathDegradingAlarm()->deadline();
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_EQ(prev_deadline, connection_.GetPathDegradingAlarm()->deadline());
+
+ // Now receive an ACK of the first packet. This should advance the path
+ // degrading alarm's deadline since forward progress has been made.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ // Check the deadline of the path degrading alarm.
+ delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(clock_.ApproximateNow() + delay,
+ connection_.GetPathDegradingAlarm()->deadline());
+
+ // Advance time to the path degrading alarm's deadline and simulate
+ // firing the path degrading alarm. This path will be considered as
+ // degrading.
+ clock_.AdvanceTime(delay);
+ EXPECT_CALL(visitor_, OnPathDegrading()).Times(1);
+ connection_.GetPathDegradingAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_TRUE(connection_.IsPathDegrading());
+
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ // Send a third packet. The path degrading alarm is no longer set but path
+ // should still be marked as degrading.
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_TRUE(connection_.IsPathDegrading());
+}
+
+// This test verifies that the connection unmarks path as degrarding and spins
+// the timer to detect future path degrading when forward progress is made
+// after path has been marked degrading.
+TEST_P(QuicConnectionTest, UnmarkPathDegradingOnForwardProgress) {
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ // Send the first packet. Now there's a retransmittable packet on the wire, so
+ // the path degrading alarm should be set.
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ // Check the deadline of the path degrading alarm.
+ QuicTime::Delta delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(clock_.ApproximateNow() + delay,
+ connection_.GetPathDegradingAlarm()->deadline());
+
+ // Send a second packet. The path degrading alarm's deadline should remain
+ // the same.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ QuicTime prev_deadline = connection_.GetPathDegradingAlarm()->deadline();
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_EQ(prev_deadline, connection_.GetPathDegradingAlarm()->deadline());
+
+ // Now receive an ACK of the first packet. This should advance the path
+ // degrading alarm's deadline since forward progress has been made.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+ // Check the deadline of the path degrading alarm.
+ delay = QuicConnectionPeer::GetSentPacketManager(&connection_)
+ ->GetPathDegradingDelay();
+ EXPECT_EQ(clock_.ApproximateNow() + delay,
+ connection_.GetPathDegradingAlarm()->deadline());
+
+ // Advance time to the path degrading alarm's deadline and simulate
+ // firing the alarm.
+ clock_.AdvanceTime(delay);
+ EXPECT_CALL(visitor_, OnPathDegrading()).Times(1);
+ connection_.GetPathDegradingAlarm()->Fire();
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_TRUE(connection_.IsPathDegrading());
+
+ // Send a third packet. The path degrading alarm is no longer set but path
+ // should still be marked as degrading.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+ EXPECT_TRUE(connection_.IsPathDegrading());
+
+ // Now receive an ACK of the second packet. This should unmark the path as
+ // degrading. And will set a timer to detect new path degrading.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ ProcessAckPacket(&frame);
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_TRUE(connection_.GetPathDegradingAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, NoPathDegradingOnServer) {
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+
+ // Send data.
+ const char data[] = "data";
+ connection_.SendStreamDataWithString(1, data, 0, NO_FIN);
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+
+ // Ack data.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1u), QuicPacketNumber(2u)}});
+ ProcessAckPacket(&frame);
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, NoPathDegradingAfterSendingAck) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessDataPacket(1);
+ SendAckPacketToPeer();
+ EXPECT_FALSE(connection_.sent_packet_manager().unacked_packets().empty());
+ EXPECT_FALSE(connection_.sent_packet_manager().HasInFlightPackets());
+ EXPECT_FALSE(connection_.IsPathDegrading());
+ EXPECT_FALSE(connection_.GetPathDegradingAlarm()->IsSet());
+}
+
+TEST_P(QuicConnectionTest, MultipleCallsToCloseConnection) {
+ // Verifies that multiple calls to CloseConnection do not
+ // result in multiple attempts to close the connection - it will be marked as
+ // disconnected after the first call.
+ EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(1);
+ connection_.CloseConnection(QUIC_NO_ERROR, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+ connection_.CloseConnection(QUIC_NO_ERROR, "no reason",
+ ConnectionCloseBehavior::SILENT_CLOSE);
+}
+
+TEST_P(QuicConnectionTest, ServerReceivesChloOnNonCryptoStream) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ CryptoHandshakeMessage message;
+ CryptoFramer framer;
+ message.set_tag(kCHLO);
+ std::unique_ptr<QuicData> data(framer.ConstructHandshakeMessage(message));
+ frame1_.stream_id = 10;
+ frame1_.data_buffer = data->data();
+ frame1_.data_length = data->length();
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_MAYBE_CORRUPTED_MEMORY, _,
+ ConnectionCloseSource::FROM_SELF));
+ ForceProcessFramePacket(QuicFrame(frame1_));
+}
+
+TEST_P(QuicConnectionTest, ClientReceivesRejOnNonCryptoStream) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ CryptoHandshakeMessage message;
+ CryptoFramer framer;
+ message.set_tag(kREJ);
+ std::unique_ptr<QuicData> data(framer.ConstructHandshakeMessage(message));
+ frame1_.stream_id = 10;
+ frame1_.data_buffer = data->data();
+ frame1_.data_length = data->length();
+
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_MAYBE_CORRUPTED_MEMORY, _,
+ ConnectionCloseSource::FROM_SELF));
+ ForceProcessFramePacket(QuicFrame(frame1_));
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionOnPacketTooLarge) {
+ SimulateNextPacketTooLarge();
+ // A connection close packet is sent
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PACKET_WRITE_ERROR, _,
+ ConnectionCloseSource::FROM_SELF))
+ .Times(1);
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+}
+
+TEST_P(QuicConnectionTest, AlwaysGetPacketTooLarge) {
+ // Test even we always get packet too large, we do not infinitely try to send
+ // close packet.
+ AlwaysGetPacketTooLarge();
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PACKET_WRITE_ERROR, _,
+ ConnectionCloseSource::FROM_SELF))
+ .Times(1);
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+}
+
+// Verify that if connection has no outstanding data, it notifies the send
+// algorithm after the write.
+TEST_P(QuicConnectionTest, SendDataAndBecomeApplicationLimited) {
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
+ {
+ InSequence seq;
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite())
+ .WillRepeatedly(Return(false));
+ }
+
+ connection_.SendStreamData3();
+}
+
+// Verify that the connection does not become app-limited if there is
+// outstanding data to send after the write.
+TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedIfMoreDataAvailable) {
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
+ {
+ InSequence seq;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+ }
+
+ connection_.SendStreamData3();
+}
+
+// Verify that the connection does not become app-limited after blocked write
+// even if there is outstanding data to send after the write.
+TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedDueToWriteBlock) {
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+ BlockOnNextWrite();
+
+ connection_.SendStreamData3();
+
+ // Now unblock the writer, become congestion control blocked,
+ // and ensure we become app-limited after writing.
+ writer_->SetWritable();
+ CongestionBlockWrites();
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(false));
+ {
+ InSequence seq;
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
+ }
+ connection_.OnCanWrite();
+}
+
+// Test the mode in which the link is filled up with probing retransmissions if
+// the connection becomes application-limited.
+TEST_P(QuicConnectionTest, SendDataWhenApplicationLimited) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
+ .WillRepeatedly(Return(true));
+ {
+ InSequence seq;
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
+ EXPECT_CALL(visitor_, WillingAndAbleToWrite())
+ .WillRepeatedly(Return(false));
+ }
+ // Fix congestion window to be 20,000 bytes.
+ EXPECT_CALL(*send_algorithm_, CanSend(Ge(20000u)))
+ .WillRepeatedly(Return(false));
+ EXPECT_CALL(*send_algorithm_, CanSend(Lt(20000u)))
+ .WillRepeatedly(Return(true));
+
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
+ ASSERT_EQ(0u, connection_.GetStats().packets_sent);
+ connection_.set_fill_up_link_during_probing(true);
+ connection_.OnHandshakeComplete();
+ connection_.SendStreamData3();
+
+ // We expect a lot of packets from a 20 kbyte window.
+ EXPECT_GT(connection_.GetStats().packets_sent, 10u);
+ // Ensure that the packets are padded.
+ QuicByteCount average_packet_size =
+ connection_.GetStats().bytes_sent / connection_.GetStats().packets_sent;
+ EXPECT_GT(average_packet_size, 1000u);
+
+ // Acknowledge all packets sent, except for the last one.
+ QuicAckFrame ack = InitAckFrame(
+ connection_.sent_packet_manager().GetLargestSentPacket() - 1);
+ EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _, _));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+
+ // Ensure that since we no longer have retransmittable bytes in flight, this
+ // will not cause any responses to be sent.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
+ ProcessAckPacket(&ack);
+}
+
+TEST_P(QuicConnectionTest, DonotForceSendingAckOnPacketTooLarge) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ // Send an ack by simulating delayed ack alarm firing.
+ ProcessPacket(1);
+ QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
+ EXPECT_TRUE(ack_alarm->IsSet());
+ connection_.GetAckAlarm()->Fire();
+ // Simulate data packet causes write error.
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PACKET_WRITE_ERROR, _, _));
+ SimulateNextPacketTooLarge();
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ EXPECT_EQ(1u, writer_->frame_count());
+ EXPECT_FALSE(writer_->connection_close_frames().empty());
+ // Ack frame is not bundled in connection close packet.
+ EXPECT_TRUE(writer_->ack_frames().empty());
+}
+
+TEST_P(QuicConnectionTest, CloseConnectionForStatelessReject) {
+ QuicString error_details("stateless reject");
+ EXPECT_CALL(visitor_, OnConnectionClosed(
+ QUIC_CRYPTO_HANDSHAKE_STATELESS_REJECT,
+ error_details, ConnectionCloseSource::FROM_PEER));
+ connection_.set_perspective(Perspective::IS_CLIENT);
+ connection_.CloseConnection(QUIC_CRYPTO_HANDSHAKE_STATELESS_REJECT,
+ error_details,
+ ConnectionCloseBehavior::SILENT_CLOSE);
+}
+
+// Regression test for b/63620844.
+TEST_P(QuicConnectionTest, FailedToWriteHandshakePacket) {
+ SimulateNextPacketTooLarge();
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PACKET_WRITE_ERROR, _,
+ ConnectionCloseSource::FROM_SELF))
+ .Times(1);
+ connection_.SendCryptoStreamData();
+}
+
+TEST_P(QuicConnectionTest, MaxPacingRate) {
+ EXPECT_EQ(0, connection_.MaxPacingRate().ToBytesPerSecond());
+ connection_.SetMaxPacingRate(QuicBandwidth::FromBytesPerSecond(100));
+ EXPECT_EQ(100, connection_.MaxPacingRate().ToBytesPerSecond());
+}
+
+TEST_P(QuicConnectionTest, ClientAlwaysSendConnectionId) {
+ EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(3, "foo", 0, NO_FIN);
+ EXPECT_EQ(CONNECTION_ID_PRESENT,
+ writer_->last_packet_header().destination_connection_id_included);
+
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ QuicConfig config;
+ QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0);
+ connection_.SetFromConfig(config);
+
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendStreamDataWithString(3, "bar", 3, NO_FIN);
+ // Verify connection id is still sent in the packet.
+ EXPECT_EQ(CONNECTION_ID_PRESENT,
+ writer_->last_packet_header().destination_connection_id_included);
+}
+
+TEST_P(QuicConnectionTest, SendProbingRetransmissions) {
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+
+ const QuicStreamId stream_id = 2;
+ QuicPacketNumber last_packet;
+ SendStreamDataToPeer(stream_id, "foo", 0, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "bar", 3, NO_FIN, &last_packet);
+ SendStreamDataToPeer(stream_id, "test", 6, NO_FIN, &last_packet);
+
+ const QuicByteCount old_bytes_in_flight =
+ connection_.sent_packet_manager().GetBytesInFlight();
+
+ // Allow 9 probing retransmissions to be sent.
+ {
+ InSequence seq;
+ EXPECT_CALL(*send_algorithm_, CanSend(_))
+ .Times(9 * 2)
+ .WillRepeatedly(Return(true));
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
+ }
+ // Expect them retransmitted in cyclic order (foo, bar, test, foo, bar...).
+ QuicPacketCount sent_count = 0;
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _))
+ .WillRepeatedly(Invoke([this, &sent_count](const SerializedPacket&,
+ QuicPacketNumber,
+ TransmissionType, QuicTime) {
+ ASSERT_EQ(1u, writer_->stream_frames().size());
+ // Identify the frames by stream offset (0, 3, 6, 0, 3...).
+ EXPECT_EQ(3 * (sent_count % 3), writer_->stream_frames()[0]->offset);
+ sent_count++;
+ }));
+ EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
+ .WillRepeatedly(Return(true));
+
+ connection_.SendProbingRetransmissions();
+
+ // Ensure that the in-flight has increased.
+ const QuicByteCount new_bytes_in_flight =
+ connection_.sent_packet_manager().GetBytesInFlight();
+ EXPECT_GT(new_bytes_in_flight, old_bytes_in_flight);
+}
+
+// Ensure that SendProbingRetransmissions() does not retransmit anything when
+// there are no outstanding packets.
+TEST_P(QuicConnectionTest,
+ SendProbingRetransmissionsFailsWhenNothingToRetransmit) {
+ ASSERT_TRUE(connection_.sent_packet_manager().unacked_packets().empty());
+
+ MockQuicConnectionDebugVisitor debug_visitor;
+ connection_.set_debug_visitor(&debug_visitor);
+ EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _)).Times(0);
+ EXPECT_CALL(*send_algorithm_, ShouldSendProbingPacket())
+ .WillRepeatedly(Return(true));
+
+ connection_.SendProbingRetransmissions();
+}
+
+TEST_P(QuicConnectionTest, PingAfterLastRetransmittablePacketAcked) {
+ const QuicTime::Delta retransmittable_on_wire_timeout =
+ QuicTime::Delta::FromMilliseconds(50);
+ connection_.set_retransmittable_on_wire_timeout(
+ retransmittable_on_wire_timeout);
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ // Advance 5ms, send a retransmittable packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+ // The ping alarm is set for the ping timeout, not the shorter
+ // retransmittable_on_wire_timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
+ EXPECT_EQ((clock_.ApproximateNow() + ping_delay),
+ connection_.GetPingAlarm()->deadline());
+
+ // Advance 5ms, send a second retransmittable packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+
+ // Now receive an ACK of the first packet. This should not set the
+ // retransmittable-on-wire alarm since packet 2 is still on the wire.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+ // The ping alarm is set for the ping timeout, not the shorter
+ // retransmittable_on_wire_timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ // The ping alarm has a 1 second granularity, and the clock has been advanced
+ // 10ms since it was originally set.
+ EXPECT_EQ((clock_.ApproximateNow() + ping_delay -
+ QuicTime::Delta::FromMilliseconds(10)),
+ connection_.GetPingAlarm()->deadline());
+
+ // Now receive an ACK of the second packet. This should set the
+ // retransmittable-on-wire alarm now that no retransmittable packets are on
+ // the wire.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(clock_.ApproximateNow() + retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline());
+
+ // Now receive a duplicate ACK of the second packet. This should not update
+ // the ping alarm.
+ QuicTime prev_deadline = connection_.GetPingAlarm()->deadline();
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline());
+
+ // Now receive a non-ACK packet. This should not update the ping alarm.
+ prev_deadline = connection_.GetPingAlarm()->deadline();
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ ProcessPacket(4);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(prev_deadline, connection_.GetPingAlarm()->deadline());
+
+ // Simulate the alarm firing and check that a PING is sent.
+ EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
+ }));
+ connection_.GetPingAlarm()->Fire();
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(2u, writer_->frame_count());
+ } else {
+ EXPECT_EQ(3u, writer_->frame_count());
+ }
+ ASSERT_EQ(1u, writer_->ping_frames().size());
+}
+
+TEST_P(QuicConnectionTest, NoPingIfRetransmittablePacketSent) {
+ const QuicTime::Delta retransmittable_on_wire_timeout =
+ QuicTime::Delta::FromMilliseconds(50);
+ connection_.set_retransmittable_on_wire_timeout(
+ retransmittable_on_wire_timeout);
+
+ EXPECT_TRUE(connection_.connected());
+ EXPECT_CALL(visitor_, ShouldKeepConnectionAlive())
+ .WillRepeatedly(Return(true));
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ // Advance 5ms, send a retransmittable packet to the peer.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.sent_packet_manager().HasInFlightPackets());
+ // The ping alarm is set for the ping timeout, not the shorter
+ // retransmittable_on_wire_timeout.
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ QuicTime::Delta ping_delay = QuicTime::Delta::FromSeconds(kPingTimeoutSecs);
+ EXPECT_EQ((clock_.ApproximateNow() + ping_delay),
+ connection_.GetPingAlarm()->deadline());
+
+ // Now receive an ACK of the first packet. This should set the
+ // retransmittable-on-wire alarm now that no retransmittable packets are on
+ // the wire.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(clock_.ApproximateNow() + retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline());
+
+ // Before the alarm fires, send another retransmittable packet. This should
+ // cancel the retransmittable-on-wire alarm since now there's a
+ // retransmittable packet on the wire.
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+
+ // Now receive an ACK of the second packet. This should set the
+ // retransmittable-on-wire alarm now that no retransmittable packets are on
+ // the wire.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ ProcessAckPacket(&frame);
+ EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
+ EXPECT_EQ(clock_.ApproximateNow() + retransmittable_on_wire_timeout,
+ connection_.GetPingAlarm()->deadline());
+
+ // Simulate the alarm firing and check that a PING is sent.
+ writer_->Reset();
+ EXPECT_CALL(visitor_, SendPing()).WillOnce(Invoke([this]() {
+ connection_.SendControlFrame(QuicFrame(QuicPingFrame(1)));
+ }));
+ connection_.GetPingAlarm()->Fire();
+ if (GetParam().no_stop_waiting) {
+ EXPECT_EQ(2u, writer_->frame_count());
+ } else {
+ EXPECT_EQ(3u, writer_->frame_count());
+ }
+ ASSERT_EQ(1u, writer_->ping_frames().size());
+}
+
+TEST_P(QuicConnectionTest, OnForwardProgressConfirmed) {
+ EXPECT_CALL(visitor_, OnForwardProgressConfirmed()).Times(Exactly(0));
+ EXPECT_TRUE(connection_.connected());
+
+ const char data[] = "data";
+ size_t data_size = strlen(data);
+ QuicStreamOffset offset = 0;
+
+ // Send two packets.
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+ connection_.SendStreamDataWithString(1, data, offset, NO_FIN);
+ offset += data_size;
+
+ // Ack packet 1. This increases the largest_acked to 1, so
+ // OnForwardProgressConfirmed() should be called
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(visitor_, OnForwardProgressConfirmed());
+ QuicAckFrame frame =
+ InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+ ProcessAckPacket(&frame);
+
+ // Ack packet 1 again. largest_acked remains at 1, so
+ // OnForwardProgressConfirmed() should not be called.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ frame = InitAckFrame({{QuicPacketNumber(1), QuicPacketNumber(2)}});
+ ProcessAckPacket(&frame);
+
+ // Ack packet 2. This increases the largest_acked to 2, so
+ // OnForwardProgressConfirmed() should be called.
+ clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
+ EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _));
+ EXPECT_CALL(visitor_, OnForwardProgressConfirmed());
+ frame = InitAckFrame({{QuicPacketNumber(2), QuicPacketNumber(3)}});
+ ProcessAckPacket(&frame);
+}
+
+TEST_P(QuicConnectionTest, ValidStatelessResetToken) {
+ const QuicUint128 kTestToken = 1010101;
+ const QuicUint128 kWrongTestToken = 1010100;
+ QuicConfig config;
+ // No token has been received.
+ EXPECT_FALSE(connection_.IsValidStatelessResetToken(kTestToken));
+
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(2);
+ // Token is different from received token.
+ QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken);
+ connection_.SetFromConfig(config);
+ EXPECT_FALSE(connection_.IsValidStatelessResetToken(kWrongTestToken));
+
+ QuicConfigPeer::SetReceivedStatelessResetToken(&config, kTestToken);
+ connection_.SetFromConfig(config);
+ EXPECT_TRUE(connection_.IsValidStatelessResetToken(kTestToken));
+}
+
+TEST_P(QuicConnectionTest, WriteBlockedWithInvalidAck) {
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, _, _));
+
+ BlockOnNextWrite();
+ connection_.SendStreamDataWithString(5, "foo", 0, FIN);
+ // This causes connection to be closed because packet 1 has not been sent yet.
+ QuicAckFrame frame = InitAckFrame(1);
+ ProcessAckPacket(1, &frame);
+}
+
+TEST_P(QuicConnectionTest, SendMessage) {
+ if (connection_.transport_version() <= QUIC_VERSION_44) {
+ return;
+ }
+ QuicString message(connection_.GetLargestMessagePayload() * 2, 'a');
+ QuicStringPiece message_data(message);
+ QuicMemSliceStorage storage(nullptr, 0, nullptr, 0);
+ {
+ QuicConnection::ScopedPacketFlusher flusher(&connection_,
+ QuicConnection::SEND_ACK);
+ connection_.SendStreamData3();
+ // Send a message which cannot fit into current open packet, and 2 packets
+ // get sent, one contains stream frame, and the other only contains the
+ // message frame.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
+ EXPECT_EQ(
+ MESSAGE_STATUS_SUCCESS,
+ connection_.SendMessage(
+ 1, MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(),
+ QuicStringPiece(message_data.data(),
+ connection_.GetLargestMessagePayload()),
+ &storage)));
+ }
+ // Fail to send a message if connection is congestion control blocked.
+ EXPECT_CALL(*send_algorithm_, CanSend(_)).WillOnce(Return(false));
+ EXPECT_EQ(
+ MESSAGE_STATUS_BLOCKED,
+ connection_.SendMessage(
+ 2, MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(),
+ "message", &storage)));
+
+ // Always fail to send a message which cannot fit into one packet.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ EXPECT_EQ(
+ MESSAGE_STATUS_TOO_LARGE,
+ connection_.SendMessage(
+ 3,
+ MakeSpan(connection_.helper()->GetStreamSendBufferAllocator(),
+ QuicStringPiece(message_data.data(),
+ connection_.GetLargestMessagePayload() + 1),
+ &storage)));
+}
+
+// Test to check that the path challenge/path response logic works
+// correctly. This test is only for version-99
+TEST_P(QuicConnectionTest, PathChallengeResponse) {
+ if (connection_.version().transport_version != QUIC_VERSION_99) {
+ return;
+ }
+ // First check if we can probe from server to client and back
+ set_perspective(Perspective::IS_SERVER);
+ QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
+
+ // Create and send the probe request (PATH_CHALLENGE frame).
+ // SendConnectivityProbingPacket ends up calling
+ // TestPacketWriter::WritePacket() which in turns receives and parses the
+ // packet by calling framer_.ProcessPacket() -- which in turn calls
+ // SimpleQuicFramer::OnPathChallengeFrame(). SimpleQuicFramer saves
+ // the packet in writer_->path_challenge_frames()
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendConnectivityProbingPacket(writer_.get(),
+ connection_.peer_address());
+ // Save the random contents of the challenge for later comparison to the
+ // response.
+ QuicPathFrameBuffer challenge_data =
+ writer_->path_challenge_frames().front().data_buffer;
+
+ // Normally, QuicConnection::OnPathChallengeFrame and OnPaddingFrame would be
+ // called and it will perform actions to ensure that the rest of the protocol
+ // is performed (specifically, call UpdatePacketContent to say that this is a
+ // path challenge so that when QuicConnection::OnPacketComplete is called
+ // (again, out of the framer), the response is generated). Simulate those
+ // calls so that the right internal state is set up for generating
+ // the response.
+ EXPECT_TRUE(connection_.OnPathChallengeFrame(
+ writer_->path_challenge_frames().front()));
+ EXPECT_TRUE(connection_.OnPaddingFrame(writer_->padding_frames().front()));
+ // Cause the response to be created and sent. Result is that the response
+ // should be stashed in writer's path_response_frames.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ connection_.SendConnectivityProbingResponsePacket(connection_.peer_address());
+
+ // The final check is to ensure that the random data in the response matches
+ // the random data from the challenge.
+ EXPECT_EQ(0, memcmp(&challenge_data,
+ &(writer_->path_response_frames().front().data_buffer),
+ sizeof(challenge_data)));
+}
+
+// Regression test for b/110259444
+TEST_P(QuicConnectionTest, DoNotScheduleSpuriousAckAlarm) {
+ SetQuicReloadableFlag(quic_fix_spurious_ack_alarm, true);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
+ writer_->SetWriteBlocked();
+
+ ProcessPacket(1);
+ QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
+ // Verify ack alarm is set.
+ EXPECT_TRUE(ack_alarm->IsSet());
+ // Fire the ack alarm, verify no packet is sent because the writer is blocked.
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
+ connection_.GetAckAlarm()->Fire();
+
+ writer_->SetWritable();
+ EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
+ ProcessPacket(2);
+ // Verify ack alarm is not set.
+ EXPECT_FALSE(ack_alarm->IsSet());
+}
+
+TEST_P(QuicConnectionTest, DisablePacingOffloadConnectionOptions) {
+ EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
+ writer_->set_supports_release_time(true);
+ QuicConfig config;
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ EXPECT_TRUE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
+
+ QuicTagVector connection_options;
+ connection_options.push_back(kNPCO);
+ config.SetConnectionOptionsToSend(connection_options);
+ EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
+ connection_.SetFromConfig(config);
+ // Verify pacing offload is disabled.
+ EXPECT_FALSE(QuicConnectionPeer::SupportsReleaseTime(&connection_));
+}
+
+// Regression test for b/110259444
+// Get a path response without having issued a path challenge...
+TEST_P(QuicConnectionTest, OrphanPathResponse) {
+ QuicPathFrameBuffer data = {{0, 1, 2, 3, 4, 5, 6, 7}};
+
+ QuicPathResponseFrame frame(99, data);
+ EXPECT_TRUE(connection_.OnPathResponseFrame(frame));
+ // If PATH_RESPONSE was accepted (payload matches the payload saved
+ // in QuicConnection::transmitted_connectivity_probe_payload_) then
+ // current_packet_content_ would be set to FIRST_FRAME_IS_PING.
+ // Since this PATH_RESPONSE does not match, current_packet_content_
+ // must not be FIRST_FRAME_IS_PING.
+ EXPECT_NE(QuicConnection::FIRST_FRAME_IS_PING,
+ QuicConnectionPeer::GetCurrentPacketContent(&connection_));
+}
+
+// Regression test for b/120791670
+TEST_P(QuicConnectionTest, StopProcessingGQuicPacketInIetfQuicConnection) {
+ // This test mimics a problematic scenario where an IETF QUIC connection
+ // receives a Google QUIC packet and continue processing it using Google QUIC
+ // wire format.
+ if (version().transport_version <= QUIC_VERSION_43) {
+ return;
+ }
+ set_perspective(Perspective::IS_SERVER);
+ QuicStreamFrame stream_frame(
+ QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 0u,
+ QuicStringPiece());
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
+ ProcessFramePacketWithAddresses(QuicFrame(stream_frame), kSelfAddress,
+ kPeerAddress);
+
+ // Let connection process a Google QUIC packet.
+ peer_framer_.set_version_for_tests(
+ ParsedQuicVersion(PROTOCOL_QUIC_CRYPTO, QUIC_VERSION_43));
+ std::unique_ptr<QuicPacket> packet(ConstructDataPacket(2, !kHasStopWaiting));
+ char buffer[kMaxPacketSize];
+ size_t encrypted_length = peer_framer_.EncryptPayload(
+ ENCRYPTION_NONE, QuicPacketNumber(2), *packet, buffer, kMaxPacketSize);
+ // Make sure no stream frame is processed.
+ EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(0);
+ connection_.ProcessUdpPacket(
+ kSelfAddress, kPeerAddress,
+ QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
+
+ EXPECT_EQ(2u, connection_.GetStats().packets_received);
+ EXPECT_EQ(1u, connection_.GetStats().packets_processed);
+}
+
+TEST_P(QuicConnectionTest, AcceptPacketNumberZero) {
+ if (!GetQuicRestartFlag(quic_uint64max_uninitialized_pn) ||
+ version().transport_version != QUIC_VERSION_99) {
+ return;
+ }
+ // Set first_sending_packet_number to be 0 to allow successfully processing
+ // acks which ack packet number 0.
+ QuicFramerPeer::SetFirstSendingPacketNumber(writer_->framer()->framer(), 0);
+ EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
+
+ ProcessPacket(0);
+ EXPECT_EQ(QuicPacketNumber(0), LargestAcked(*outgoing_ack()));
+ EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals());
+
+ ProcessPacket(1);
+ EXPECT_EQ(QuicPacketNumber(1), LargestAcked(*outgoing_ack()));
+ EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals());
+
+ ProcessPacket(2);
+ EXPECT_EQ(QuicPacketNumber(2), LargestAcked(*outgoing_ack()));
+ EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals());
+}
+
+} // namespace
+} // namespace test
+} // namespace quic