blob: 1aabe0e642b2a550ae6f777380227b413f30ac99 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/third_party/quiche/src/quic/core/http/quic_spdy_stream.h"
#include <memory>
#include <utility>
#include "net/third_party/quiche/src/quic/core/http/http_encoder.h"
#include "net/third_party/quiche/src/quic/core/http/spdy_utils.h"
#include "net/third_party/quiche/src/quic/core/quic_connection.h"
#include "net/third_party/quiche/src/quic/core/quic_stream_sequencer_buffer.h"
#include "net/third_party/quiche/src/quic/core/quic_utils.h"
#include "net/third_party/quiche/src/quic/core/quic_versions.h"
#include "net/third_party/quiche/src/quic/core/quic_write_blocked_list.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_arraysize.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_expect_bug.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_string.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_string_piece.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_test.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_text_utils.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_flow_controller_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_session_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_spdy_session_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_spdy_stream_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_stream_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_test_utils.h"
using spdy::kV3HighestPriority;
using spdy::kV3LowestPriority;
using spdy::SpdyHeaderBlock;
using spdy::SpdyPriority;
using testing::_;
using testing::AtLeast;
using testing::Invoke;
using testing::Return;
using testing::StrictMock;
namespace quic {
namespace test {
namespace {
const bool kShouldProcessData = true;
class TestStream : public QuicSpdyStream {
public:
TestStream(QuicStreamId id,
QuicSpdySession* session,
bool should_process_data)
: QuicSpdyStream(id, session, BIDIRECTIONAL),
should_process_data_(should_process_data) {}
~TestStream() override = default;
using QuicSpdyStream::set_ack_listener;
using QuicStream::CloseWriteSide;
using QuicStream::WriteOrBufferData;
void OnBodyAvailable() override {
if (!should_process_data_) {
return;
}
char buffer[2048];
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = QUIC_ARRAYSIZE(buffer);
size_t bytes_read = Readv(&vec, 1);
data_ += QuicString(buffer, bytes_read);
}
MOCK_METHOD1(WriteHeadersMock, void(bool fin));
size_t WriteHeadersImpl(spdy::SpdyHeaderBlock header_block,
bool fin,
QuicReferenceCountedPointer<QuicAckListenerInterface>
ack_listener) override {
saved_headers_ = std::move(header_block);
WriteHeadersMock(fin);
return 0;
}
const QuicString& data() const { return data_; }
const spdy::SpdyHeaderBlock& saved_headers() const { return saved_headers_; }
private:
bool should_process_data_;
spdy::SpdyHeaderBlock saved_headers_;
QuicString data_;
};
class TestMockUpdateStreamSession : public MockQuicSpdySession {
public:
explicit TestMockUpdateStreamSession(QuicConnection* connection)
: MockQuicSpdySession(connection) {}
void UpdateStreamPriority(QuicStreamId id, SpdyPriority priority) override {
EXPECT_EQ(id, expected_stream_->id());
EXPECT_EQ(expected_priority_, priority);
EXPECT_EQ(expected_priority_, expected_stream_->priority());
}
void SetExpectedStream(QuicSpdyStream* stream) { expected_stream_ = stream; }
void SetExpectedPriority(SpdyPriority priority) {
expected_priority_ = priority;
}
private:
QuicSpdyStream* expected_stream_;
SpdyPriority expected_priority_;
};
class QuicSpdyStreamTest : public QuicTestWithParam<ParsedQuicVersion> {
public:
QuicSpdyStreamTest() {
headers_[":host"] = "www.google.com";
headers_[":path"] = "/index.hml";
headers_[":scheme"] = "https";
headers_["cookie"] =
"__utma=208381060.1228362404.1372200928.1372200928.1372200928.1; "
"__utmc=160408618; "
"GX=DQAAAOEAAACWJYdewdE9rIrW6qw3PtVi2-d729qaa-74KqOsM1NVQblK4VhX"
"hoALMsy6HOdDad2Sz0flUByv7etmo3mLMidGrBoljqO9hSVA40SLqpG_iuKKSHX"
"RW3Np4bq0F0SDGDNsW0DSmTS9ufMRrlpARJDS7qAI6M3bghqJp4eABKZiRqebHT"
"pMU-RXvTI5D5oCF1vYxYofH_l1Kviuiy3oQ1kS1enqWgbhJ2t61_SNdv-1XJIS0"
"O3YeHLmVCs62O6zp89QwakfAWK9d3IDQvVSJzCQsvxvNIvaZFa567MawWlXg0Rh"
"1zFMi5vzcns38-8_Sns; "
"GA=v*2%2Fmem*57968640*47239936%2Fmem*57968640*47114716%2Fno-nm-"
"yj*15%2Fno-cc-yj*5%2Fpc-ch*133685%2Fpc-s-cr*133947%2Fpc-s-t*1339"
"47%2Fno-nm-yj*4%2Fno-cc-yj*1%2Fceft-as*1%2Fceft-nqas*0%2Fad-ra-c"
"v_p%2Fad-nr-cv_p-f*1%2Fad-v-cv_p*859%2Fad-ns-cv_p-f*1%2Ffn-v-ad%"
"2Fpc-t*250%2Fpc-cm*461%2Fpc-s-cr*722%2Fpc-s-t*722%2Fau_p*4"
"SICAID=AJKiYcHdKgxum7KMXG0ei2t1-W4OD1uW-ecNsCqC0wDuAXiDGIcT_HA2o1"
"3Rs1UKCuBAF9g8rWNOFbxt8PSNSHFuIhOo2t6bJAVpCsMU5Laa6lewuTMYI8MzdQP"
"ARHKyW-koxuhMZHUnGBJAM1gJODe0cATO_KGoX4pbbFxxJ5IicRxOrWK_5rU3cdy6"
"edlR9FsEdH6iujMcHkbE5l18ehJDwTWmBKBzVD87naobhMMrF6VvnDGxQVGp9Ir_b"
"Rgj3RWUoPumQVCxtSOBdX0GlJOEcDTNCzQIm9BSfetog_eP_TfYubKudt5eMsXmN6"
"QnyXHeGeK2UINUzJ-D30AFcpqYgH9_1BvYSpi7fc7_ydBU8TaD8ZRxvtnzXqj0RfG"
"tuHghmv3aD-uzSYJ75XDdzKdizZ86IG6Fbn1XFhYZM-fbHhm3mVEXnyRW4ZuNOLFk"
"Fas6LMcVC6Q8QLlHYbXBpdNFuGbuZGUnav5C-2I_-46lL0NGg3GewxGKGHvHEfoyn"
"EFFlEYHsBQ98rXImL8ySDycdLEFvBPdtctPmWCfTxwmoSMLHU2SCVDhbqMWU5b0yr"
"JBCScs_ejbKaqBDoB7ZGxTvqlrB__2ZmnHHjCr8RgMRtKNtIeuZAo ";
}
void Initialize(bool stream_should_process_data) {
connection_ = new StrictMock<MockQuicConnection>(
&helper_, &alarm_factory_, Perspective::IS_SERVER,
SupportedVersions(GetParam()));
session_ = QuicMakeUnique<StrictMock<MockQuicSpdySession>>(connection_);
session_->Initialize();
ON_CALL(*session_, WritevData(_, _, _, _, _))
.WillByDefault(Invoke(MockQuicSession::ConsumeData));
stream_ =
new StrictMock<TestStream>(GetNthClientInitiatedBidirectionalId(0),
session_.get(), stream_should_process_data);
session_->ActivateStream(QuicWrapUnique(stream_));
stream2_ =
new StrictMock<TestStream>(GetNthClientInitiatedBidirectionalId(1),
session_.get(), stream_should_process_data);
session_->ActivateStream(QuicWrapUnique(stream2_));
}
QuicHeaderList ProcessHeaders(bool fin, const SpdyHeaderBlock& headers) {
QuicHeaderList h = AsHeaderList(headers);
stream_->OnStreamHeaderList(fin, h.uncompressed_header_bytes(), h);
return h;
}
QuicStreamId GetNthClientInitiatedBidirectionalId(int n) {
return GetNthClientInitiatedBidirectionalStreamId(
connection_->transport_version(), n);
}
bool HasFrameHeader() const {
return VersionHasDataFrameHeader(connection_->transport_version());
}
protected:
MockQuicConnectionHelper helper_;
MockAlarmFactory alarm_factory_;
MockQuicConnection* connection_;
std::unique_ptr<MockQuicSpdySession> session_;
// Owned by the |session_|.
TestStream* stream_;
TestStream* stream2_;
SpdyHeaderBlock headers_;
HttpEncoder encoder_;
};
INSTANTIATE_TEST_SUITE_P(Tests, QuicSpdyStreamTest,
::testing::ValuesIn(AllSupportedVersions()));
TEST_P(QuicSpdyStreamTest, ProcessHeaderList) {
Initialize(kShouldProcessData);
stream_->OnStreamHeadersPriority(kV3HighestPriority);
ProcessHeaders(false, headers_);
EXPECT_EQ("", stream_->data());
EXPECT_FALSE(stream_->header_list().empty());
EXPECT_FALSE(stream_->IsDoneReading());
}
TEST_P(QuicSpdyStreamTest, ProcessTooLargeHeaderList) {
Initialize(kShouldProcessData);
QuicHeaderList headers;
stream_->OnStreamHeadersPriority(kV3HighestPriority);
EXPECT_CALL(*session_,
SendRstStream(stream_->id(), QUIC_HEADERS_TOO_LARGE, 0));
stream_->OnStreamHeaderList(false, 1 << 20, headers);
EXPECT_EQ(QUIC_HEADERS_TOO_LARGE, stream_->stream_error());
}
TEST_P(QuicSpdyStreamTest, ProcessHeaderListWithFin) {
Initialize(kShouldProcessData);
size_t total_bytes = 0;
QuicHeaderList headers;
for (auto p : headers_) {
headers.OnHeader(p.first, p.second);
total_bytes += p.first.size() + p.second.size();
}
stream_->OnStreamHeadersPriority(kV3HighestPriority);
stream_->OnStreamHeaderList(true, total_bytes, headers);
EXPECT_EQ("", stream_->data());
EXPECT_FALSE(stream_->header_list().empty());
EXPECT_FALSE(stream_->IsDoneReading());
EXPECT_TRUE(stream_->HasFinalReceivedByteOffset());
}
TEST_P(QuicSpdyStreamTest, ParseHeaderStatusCode) {
// A valid status code should be 3-digit integer. The first digit should be in
// the range of [1, 5]. All the others are invalid.
Initialize(kShouldProcessData);
int status_code = 0;
// Valid status codes.
headers_[":status"] = "404";
EXPECT_TRUE(stream_->ParseHeaderStatusCode(headers_, &status_code));
EXPECT_EQ(404, status_code);
headers_[":status"] = "100";
EXPECT_TRUE(stream_->ParseHeaderStatusCode(headers_, &status_code));
EXPECT_EQ(100, status_code);
headers_[":status"] = "599";
EXPECT_TRUE(stream_->ParseHeaderStatusCode(headers_, &status_code));
EXPECT_EQ(599, status_code);
// Invalid status codes.
headers_[":status"] = "010";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "600";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "200 ok";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "2000";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "+200";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "+20";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "-10";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "-100";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
// Leading or trailing spaces are also invalid.
headers_[":status"] = " 200";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = "200 ";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = " 200 ";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
headers_[":status"] = " ";
EXPECT_FALSE(stream_->ParseHeaderStatusCode(headers_, &status_code));
}
TEST_P(QuicSpdyStreamTest, MarkHeadersConsumed) {
Initialize(kShouldProcessData);
QuicString body = "this is the body";
QuicHeaderList headers = ProcessHeaders(false, headers_);
EXPECT_EQ(headers, stream_->header_list());
stream_->ConsumeHeaderList();
EXPECT_EQ(QuicHeaderList(), stream_->header_list());
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBody) {
Initialize(kShouldProcessData);
QuicString body = "this is the body";
std::unique_ptr<char[]> buffer;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buffer);
QuicString header = QuicString(buffer.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
EXPECT_EQ("", stream_->data());
QuicHeaderList headers = ProcessHeaders(false, headers_);
EXPECT_EQ(headers, stream_->header_list());
stream_->ConsumeHeaderList();
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data));
stream_->OnStreamFrame(frame);
EXPECT_EQ(QuicHeaderList(), stream_->header_list());
EXPECT_EQ(body, stream_->data());
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyFragments) {
Initialize(kShouldProcessData);
QuicString body = "this is the body";
std::unique_ptr<char[]> buffer;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buffer);
QuicString header = QuicString(buffer.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
for (size_t fragment_size = 1; fragment_size < data.size(); ++fragment_size) {
Initialize(kShouldProcessData);
QuicHeaderList headers = ProcessHeaders(false, headers_);
ASSERT_EQ(headers, stream_->header_list());
stream_->ConsumeHeaderList();
for (size_t offset = 0; offset < data.size(); offset += fragment_size) {
size_t remaining_data = data.size() - offset;
QuicStringPiece fragment(data.data() + offset,
std::min(fragment_size, remaining_data));
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false,
offset, QuicStringPiece(fragment));
stream_->OnStreamFrame(frame);
}
ASSERT_EQ(body, stream_->data()) << "fragment_size: " << fragment_size;
}
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyFragmentsSplit) {
Initialize(kShouldProcessData);
QuicString body = "this is the body";
std::unique_ptr<char[]> buffer;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buffer);
QuicString header = QuicString(buffer.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
for (size_t split_point = 1; split_point < data.size() - 1; ++split_point) {
Initialize(kShouldProcessData);
QuicHeaderList headers = ProcessHeaders(false, headers_);
ASSERT_EQ(headers, stream_->header_list());
stream_->ConsumeHeaderList();
QuicStringPiece fragment1(data.data(), split_point);
QuicStreamFrame frame1(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(fragment1));
stream_->OnStreamFrame(frame1);
QuicStringPiece fragment2(data.data() + split_point,
data.size() - split_point);
QuicStreamFrame frame2(GetNthClientInitiatedBidirectionalId(0), false,
split_point, QuicStringPiece(fragment2));
stream_->OnStreamFrame(frame2);
ASSERT_EQ(body, stream_->data()) << "split_point: " << split_point;
}
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyReadv) {
Initialize(!kShouldProcessData);
QuicString body = "this is the body";
std::unique_ptr<char[]> buf;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buf);
QuicString header = QuicString(buf.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
ProcessHeaders(false, headers_);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data));
stream_->OnStreamFrame(frame);
stream_->ConsumeHeaderList();
char buffer[2048];
ASSERT_LT(data.length(), QUIC_ARRAYSIZE(buffer));
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = QUIC_ARRAYSIZE(buffer);
size_t bytes_read = stream_->Readv(&vec, 1);
EXPECT_EQ(body.length(), bytes_read);
EXPECT_EQ(body, QuicString(buffer, bytes_read));
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndLargeBodySmallReadv) {
Initialize(kShouldProcessData);
QuicString body(12 * 1024, 'a');
std::unique_ptr<char[]> buf;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buf);
QuicString header = QuicString(buf.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
ProcessHeaders(false, headers_);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data));
stream_->OnStreamFrame(frame);
stream_->ConsumeHeaderList();
char buffer[2048];
char buffer2[2048];
struct iovec vec[2];
vec[0].iov_base = buffer;
vec[0].iov_len = QUIC_ARRAYSIZE(buffer);
vec[1].iov_base = buffer2;
vec[1].iov_len = QUIC_ARRAYSIZE(buffer2);
size_t bytes_read = stream_->Readv(vec, 2);
EXPECT_EQ(2048u * 2, bytes_read);
EXPECT_EQ(body.substr(0, 2048), QuicString(buffer, 2048));
EXPECT_EQ(body.substr(2048, 2048), QuicString(buffer2, 2048));
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyMarkConsumed) {
Initialize(!kShouldProcessData);
QuicString body = "this is the body";
std::unique_ptr<char[]> buf;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buf);
QuicString header = QuicString(buf.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
ProcessHeaders(false, headers_);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data));
stream_->OnStreamFrame(frame);
stream_->ConsumeHeaderList();
struct iovec vec;
EXPECT_EQ(1, stream_->GetReadableRegions(&vec, 1));
EXPECT_EQ(body.length(), vec.iov_len);
EXPECT_EQ(body, QuicString(static_cast<char*>(vec.iov_base), vec.iov_len));
stream_->MarkConsumed(body.length());
EXPECT_EQ(data.length(), stream_->flow_controller()->bytes_consumed());
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndConsumeMultipleBody) {
Initialize(!kShouldProcessData);
QuicString body1 = "this is body 1";
QuicString body2 = "body 2";
std::unique_ptr<char[]> buf;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body1.length(), &buf);
QuicString header = QuicString(buf.get(), header_length);
QuicString data1 = HasFrameHeader() ? header + body1 : body1;
header_length = encoder_.SerializeDataFrameHeader(body2.length(), &buf);
QuicString data2 = HasFrameHeader() ? header + body2 : body2;
ProcessHeaders(false, headers_);
QuicStreamFrame frame1(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data1));
QuicStreamFrame frame2(GetNthClientInitiatedBidirectionalId(0), false,
data1.length(), QuicStringPiece(data2));
stream_->OnStreamFrame(frame1);
stream_->OnStreamFrame(frame2);
stream_->ConsumeHeaderList();
stream_->MarkConsumed(body1.length() + body2.length());
EXPECT_EQ(data1.length() + data2.length(),
stream_->flow_controller()->bytes_consumed());
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersAndBodyIncrementalReadv) {
Initialize(!kShouldProcessData);
QuicString body = "this is the body";
std::unique_ptr<char[]> buf;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buf);
QuicString header = QuicString(buf.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
ProcessHeaders(false, headers_);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data));
stream_->OnStreamFrame(frame);
stream_->ConsumeHeaderList();
char buffer[1];
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = QUIC_ARRAYSIZE(buffer);
for (size_t i = 0; i < body.length(); ++i) {
size_t bytes_read = stream_->Readv(&vec, 1);
ASSERT_EQ(1u, bytes_read);
EXPECT_EQ(body.data()[i], buffer[0]);
}
}
TEST_P(QuicSpdyStreamTest, ProcessHeadersUsingReadvWithMultipleIovecs) {
Initialize(!kShouldProcessData);
QuicString body = "this is the body";
std::unique_ptr<char[]> buf;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buf);
QuicString header = QuicString(buf.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
ProcessHeaders(false, headers_);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data));
stream_->OnStreamFrame(frame);
stream_->ConsumeHeaderList();
char buffer1[1];
char buffer2[1];
struct iovec vec[2];
vec[0].iov_base = buffer1;
vec[0].iov_len = QUIC_ARRAYSIZE(buffer1);
vec[1].iov_base = buffer2;
vec[1].iov_len = QUIC_ARRAYSIZE(buffer2);
for (size_t i = 0; i < body.length(); i += 2) {
size_t bytes_read = stream_->Readv(vec, 2);
ASSERT_EQ(2u, bytes_read) << i;
ASSERT_EQ(body.data()[i], buffer1[0]) << i;
ASSERT_EQ(body.data()[i + 1], buffer2[0]) << i;
}
}
TEST_P(QuicSpdyStreamTest, StreamFlowControlBlocked) {
testing::InSequence seq;
// Tests that we send a BLOCKED frame to the peer when we attempt to write,
// but are flow control blocked.
Initialize(kShouldProcessData);
// Set a small flow control limit.
const uint64_t kWindow = 36;
QuicFlowControllerPeer::SetSendWindowOffset(stream_->flow_controller(),
kWindow);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::SendWindowOffset(
stream_->flow_controller()));
// Try to send more data than the flow control limit allows.
const uint64_t kOverflow = 15;
QuicString body(kWindow + kOverflow, 'a');
const uint64_t kHeaderLength = HasFrameHeader() ? 2 : 0;
if (HasFrameHeader()) {
EXPECT_CALL(*session_, WritevData(_, _, kHeaderLength, _, NO_FIN));
}
EXPECT_CALL(*session_, WritevData(_, _, _, _, _))
.WillOnce(Return(QuicConsumedData(kWindow - kHeaderLength, true)));
EXPECT_CALL(*connection_, SendControlFrame(_));
stream_->WriteOrBufferBody(body, false);
// Should have sent as much as possible, resulting in no send window left.
EXPECT_EQ(0u,
QuicFlowControllerPeer::SendWindowSize(stream_->flow_controller()));
// And we should have queued the overflowed data.
EXPECT_EQ(kOverflow + kHeaderLength,
QuicStreamPeer::SizeOfQueuedData(stream_));
}
TEST_P(QuicSpdyStreamTest, StreamFlowControlNoWindowUpdateIfNotConsumed) {
// The flow control receive window decreases whenever we add new bytes to the
// sequencer, whether they are consumed immediately or buffered. However we
// only send WINDOW_UPDATE frames based on increasing number of bytes
// consumed.
// Don't process data - it will be buffered instead.
Initialize(!kShouldProcessData);
// Expect no WINDOW_UPDATE frames to be sent.
EXPECT_CALL(*connection_, SendWindowUpdate(_, _)).Times(0);
// Set a small flow control receive window.
const uint64_t kWindow = 36;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(),
kWindow);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowOffset(
stream_->flow_controller()));
// Stream receives enough data to fill a fraction of the receive window.
QuicString body(kWindow / 3, 'a');
QuicByteCount header_length = 0;
QuicString data;
if (HasFrameHeader()) {
std::unique_ptr<char[]> buffer;
header_length = encoder_.SerializeDataFrameHeader(body.length(), &buffer);
QuicString header = QuicString(buffer.get(), header_length);
data = header + body;
} else {
data = body;
}
ProcessHeaders(false, headers_);
QuicStreamFrame frame1(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data));
stream_->OnStreamFrame(frame1);
EXPECT_EQ(
kWindow - (kWindow / 3) - header_length,
QuicFlowControllerPeer::ReceiveWindowSize(stream_->flow_controller()));
// Now receive another frame which results in the receive window being over
// half full. This should all be buffered, decreasing the receive window but
// not sending WINDOW_UPDATE.
QuicStreamFrame frame2(GetNthClientInitiatedBidirectionalId(0), false,
kWindow / 3 + header_length, QuicStringPiece(data));
stream_->OnStreamFrame(frame2);
EXPECT_EQ(
kWindow - (2 * kWindow / 3) - 2 * header_length,
QuicFlowControllerPeer::ReceiveWindowSize(stream_->flow_controller()));
}
TEST_P(QuicSpdyStreamTest, StreamFlowControlWindowUpdate) {
// Tests that on receipt of data, the stream updates its receive window offset
// appropriately, and sends WINDOW_UPDATE frames when its receive window drops
// too low.
Initialize(kShouldProcessData);
// Set a small flow control limit.
const uint64_t kWindow = 36;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(),
kWindow);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowOffset(
stream_->flow_controller()));
// Stream receives enough data to fill a fraction of the receive window.
QuicString body(kWindow / 3, 'a');
QuicByteCount header_length = 0;
QuicString data;
if (HasFrameHeader()) {
std::unique_ptr<char[]> buffer;
header_length = encoder_.SerializeDataFrameHeader(body.length(), &buffer);
QuicString header = QuicString(buffer.get(), header_length);
data = header + body;
} else {
data = body;
}
ProcessHeaders(false, headers_);
stream_->ConsumeHeaderList();
QuicStreamFrame frame1(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data));
stream_->OnStreamFrame(frame1);
EXPECT_EQ(
kWindow - (kWindow / 3) - header_length,
QuicFlowControllerPeer::ReceiveWindowSize(stream_->flow_controller()));
// Now receive another frame which results in the receive window being over
// half full. This will trigger the stream to increase its receive window
// offset and send a WINDOW_UPDATE. The result will be again an available
// window of kWindow bytes.
QuicStreamFrame frame2(GetNthClientInitiatedBidirectionalId(0), false,
kWindow / 3 + header_length, QuicStringPiece(data));
EXPECT_CALL(*connection_, SendControlFrame(_));
stream_->OnStreamFrame(frame2);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowSize(
stream_->flow_controller()));
}
TEST_P(QuicSpdyStreamTest, ConnectionFlowControlWindowUpdate) {
// Tests that on receipt of data, the connection updates its receive window
// offset appropriately, and sends WINDOW_UPDATE frames when its receive
// window drops too low.
Initialize(kShouldProcessData);
// Set a small flow control limit for streams and connection.
const uint64_t kWindow = 36;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetReceiveWindowOffset(stream2_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream2_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetReceiveWindowOffset(session_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(session_->flow_controller(),
kWindow);
// Supply headers to both streams so that they are happy to receive data.
auto headers = AsHeaderList(headers_);
stream_->OnStreamHeaderList(false, headers.uncompressed_header_bytes(),
headers);
stream_->ConsumeHeaderList();
stream2_->OnStreamHeaderList(false, headers.uncompressed_header_bytes(),
headers);
stream2_->ConsumeHeaderList();
// Each stream gets a quarter window of data. This should not trigger a
// WINDOW_UPDATE for either stream, nor for the connection.
QuicByteCount header_length = 0;
QuicString body;
QuicString data;
QuicString data2;
QuicString body2(1, 'a');
if (HasFrameHeader()) {
body = QuicString(kWindow / 4 - 2, 'a');
std::unique_ptr<char[]> buffer;
header_length = encoder_.SerializeDataFrameHeader(body.length(), &buffer);
QuicString header = QuicString(buffer.get(), header_length);
data = header + body;
std::unique_ptr<char[]> buffer2;
QuicByteCount header_length2 =
encoder_.SerializeDataFrameHeader(body2.length(), &buffer2);
QuicString header2 = QuicString(buffer2.get(), header_length2);
data2 = header2 + body2;
} else {
body = QuicString(kWindow / 4, 'a');
data = body;
data2 = body2;
}
QuicStreamFrame frame1(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data));
stream_->OnStreamFrame(frame1);
QuicStreamFrame frame2(GetNthClientInitiatedBidirectionalId(1), false, 0,
QuicStringPiece(data));
stream2_->OnStreamFrame(frame2);
// Now receive a further single byte on one stream - again this does not
// trigger a stream WINDOW_UPDATE, but now the connection flow control window
// is over half full and thus a connection WINDOW_UPDATE is sent.
EXPECT_CALL(*connection_, SendControlFrame(_));
QuicStreamFrame frame3(GetNthClientInitiatedBidirectionalId(0), false,
body.length() + header_length, QuicStringPiece(data2));
stream_->OnStreamFrame(frame3);
}
TEST_P(QuicSpdyStreamTest, StreamFlowControlViolation) {
// Tests that on if the peer sends too much data (i.e. violates the flow
// control protocol), then we terminate the connection.
// Stream should not process data, so that data gets buffered in the
// sequencer, triggering flow control limits.
Initialize(!kShouldProcessData);
// Set a small flow control limit.
const uint64_t kWindow = 50;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
ProcessHeaders(false, headers_);
// Receive data to overflow the window, violating flow control.
QuicString body(kWindow + 1, 'a');
std::unique_ptr<char[]> buf;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buf);
QuicString header = QuicString(buf.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data));
EXPECT_CALL(*connection_,
CloseConnection(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA, _, _));
stream_->OnStreamFrame(frame);
}
TEST_P(QuicSpdyStreamTest, TestHandlingQuicRstStreamNoError) {
Initialize(kShouldProcessData);
ProcessHeaders(false, headers_);
stream_->OnStreamReset(QuicRstStreamFrame(
kInvalidControlFrameId, stream_->id(), QUIC_STREAM_NO_ERROR, 0));
EXPECT_TRUE(stream_->write_side_closed());
EXPECT_FALSE(stream_->reading_stopped());
}
TEST_P(QuicSpdyStreamTest, ConnectionFlowControlViolation) {
// Tests that on if the peer sends too much data (i.e. violates the flow
// control protocol), at the connection level (rather than the stream level)
// then we terminate the connection.
// Stream should not process data, so that data gets buffered in the
// sequencer, triggering flow control limits.
Initialize(!kShouldProcessData);
// Set a small flow control window on streams, and connection.
const uint64_t kStreamWindow = 50;
const uint64_t kConnectionWindow = 10;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kStreamWindow);
QuicFlowControllerPeer::SetReceiveWindowOffset(session_->flow_controller(),
kConnectionWindow);
ProcessHeaders(false, headers_);
// Send enough data to overflow the connection level flow control window.
QuicString body(kConnectionWindow + 1, 'a');
std::unique_ptr<char[]> buf;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buf);
QuicString header = QuicString(buf.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
EXPECT_LT(data.size(), kStreamWindow);
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece(data));
EXPECT_CALL(*connection_,
CloseConnection(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA, _, _));
stream_->OnStreamFrame(frame);
}
TEST_P(QuicSpdyStreamTest, StreamFlowControlFinNotBlocked) {
// An attempt to write a FIN with no data should not be flow control blocked,
// even if the send window is 0.
Initialize(kShouldProcessData);
// Set a flow control limit of zero.
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(), 0);
EXPECT_EQ(0u, QuicFlowControllerPeer::ReceiveWindowOffset(
stream_->flow_controller()));
// Send a frame with a FIN but no data. This should not be blocked.
QuicString body = "";
bool fin = true;
EXPECT_CALL(*connection_,
SendBlocked(GetNthClientInitiatedBidirectionalId(0)))
.Times(0);
EXPECT_CALL(*session_, WritevData(_, _, 0, _, FIN));
stream_->WriteOrBufferBody(body, fin);
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersViaHeaderList) {
// Test that receiving trailing headers from the peer via
// OnStreamHeaderList() works, and can be read from the stream and consumed.
Initialize(kShouldProcessData);
// Receive initial headers.
size_t total_bytes = 0;
QuicHeaderList headers;
for (const auto& p : headers_) {
headers.OnHeader(p.first, p.second);
total_bytes += p.first.size() + p.second.size();
}
stream_->OnStreamHeadersPriority(kV3HighestPriority);
stream_->OnStreamHeaderList(/*fin=*/false, total_bytes, headers);
stream_->ConsumeHeaderList();
// Receive trailing headers.
SpdyHeaderBlock trailers_block;
trailers_block["key1"] = "value1";
trailers_block["key2"] = "value2";
trailers_block["key3"] = "value3";
SpdyHeaderBlock trailers_block_with_final_offset = trailers_block.Clone();
trailers_block_with_final_offset[kFinalOffsetHeaderKey] = "0";
total_bytes = 0;
QuicHeaderList trailers;
for (const auto& p : trailers_block_with_final_offset) {
trailers.OnHeader(p.first, p.second);
total_bytes += p.first.size() + p.second.size();
}
stream_->OnStreamHeaderList(/*fin=*/true, total_bytes, trailers);
// The trailers should be decompressed, and readable from the stream.
EXPECT_TRUE(stream_->trailers_decompressed());
EXPECT_EQ(trailers_block, stream_->received_trailers());
// IsDoneReading() returns false until trailers marked consumed.
EXPECT_FALSE(stream_->IsDoneReading());
stream_->MarkTrailersConsumed();
EXPECT_TRUE(stream_->IsDoneReading());
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersWithOffset) {
// Test that when receiving trailing headers with an offset before response
// body, stream is closed at the right offset.
Initialize(kShouldProcessData);
// Receive initial headers.
QuicHeaderList headers = ProcessHeaders(false, headers_);
stream_->ConsumeHeaderList();
const QuicString body = "this is the body";
std::unique_ptr<char[]> buf;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buf);
QuicString header = QuicString(buf.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
// Receive trailing headers.
SpdyHeaderBlock trailers_block;
trailers_block["key1"] = "value1";
trailers_block["key2"] = "value2";
trailers_block["key3"] = "value3";
trailers_block[kFinalOffsetHeaderKey] =
QuicTextUtils::Uint64ToString(data.size());
QuicHeaderList trailers = ProcessHeaders(true, trailers_block);
// The trailers should be decompressed, and readable from the stream.
EXPECT_TRUE(stream_->trailers_decompressed());
// The final offset trailer will be consumed by QUIC.
trailers_block.erase(kFinalOffsetHeaderKey);
EXPECT_EQ(trailers_block, stream_->received_trailers());
// Consuming the trailers erases them from the stream.
stream_->MarkTrailersConsumed();
EXPECT_TRUE(stream_->FinishedReadingTrailers());
EXPECT_FALSE(stream_->IsDoneReading());
// Receive and consume body.
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), /*fin=*/false,
0, data);
stream_->OnStreamFrame(frame);
EXPECT_EQ(body, stream_->data());
EXPECT_TRUE(stream_->IsDoneReading());
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersWithoutOffset) {
// Test that receiving trailers without a final offset field is an error.
Initialize(kShouldProcessData);
// Receive initial headers.
ProcessHeaders(false, headers_);
stream_->ConsumeHeaderList();
// Receive trailing headers, without kFinalOffsetHeaderKey.
SpdyHeaderBlock trailers_block;
trailers_block["key1"] = "value1";
trailers_block["key2"] = "value2";
trailers_block["key3"] = "value3";
auto trailers = AsHeaderList(trailers_block);
// Verify that the trailers block didn't contain a final offset.
EXPECT_EQ("", trailers_block[kFinalOffsetHeaderKey].as_string());
// Receipt of the malformed trailers will close the connection.
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
stream_->OnStreamHeaderList(/*fin=*/true,
trailers.uncompressed_header_bytes(), trailers);
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersWithoutFin) {
// Test that received Trailers must always have the FIN set.
Initialize(kShouldProcessData);
// Receive initial headers.
auto headers = AsHeaderList(headers_);
stream_->OnStreamHeaderList(/*fin=*/false,
headers.uncompressed_header_bytes(), headers);
stream_->ConsumeHeaderList();
// Receive trailing headers with FIN deliberately set to false.
SpdyHeaderBlock trailers_block;
trailers_block["foo"] = "bar";
auto trailers = AsHeaderList(trailers_block);
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
stream_->OnStreamHeaderList(/*fin=*/false,
trailers.uncompressed_header_bytes(), trailers);
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersAfterHeadersWithFin) {
// If headers are received with a FIN, no trailers should then arrive.
Initialize(kShouldProcessData);
// Receive initial headers with FIN set.
ProcessHeaders(true, headers_);
stream_->ConsumeHeaderList();
// Receive trailing headers after FIN already received.
SpdyHeaderBlock trailers_block;
trailers_block["foo"] = "bar";
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
ProcessHeaders(true, trailers_block);
}
TEST_P(QuicSpdyStreamTest, ReceivingTrailersAfterBodyWithFin) {
// If body data are received with a FIN, no trailers should then arrive.
Initialize(kShouldProcessData);
// Receive initial headers without FIN set.
ProcessHeaders(false, headers_);
stream_->ConsumeHeaderList();
// Receive body data, with FIN.
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), /*fin=*/true,
0, "body");
stream_->OnStreamFrame(frame);
// Receive trailing headers after FIN already received.
SpdyHeaderBlock trailers_block;
trailers_block["foo"] = "bar";
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_HEADERS_STREAM_DATA, _, _))
.Times(1);
ProcessHeaders(true, trailers_block);
}
TEST_P(QuicSpdyStreamTest, ClosingStreamWithNoTrailers) {
// Verify that a stream receiving headers, body, and no trailers is correctly
// marked as done reading on consumption of headers and body.
Initialize(kShouldProcessData);
// Receive and consume initial headers with FIN not set.
auto h = AsHeaderList(headers_);
stream_->OnStreamHeaderList(/*fin=*/false, h.uncompressed_header_bytes(), h);
stream_->ConsumeHeaderList();
// Receive and consume body with FIN set, and no trailers.
QuicString body(1024, 'x');
std::unique_ptr<char[]> buf;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buf);
QuicString header = QuicString(buf.get(), header_length);
QuicString data = HasFrameHeader() ? header + body : body;
QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(0), /*fin=*/true,
0, data);
stream_->OnStreamFrame(frame);
EXPECT_TRUE(stream_->IsDoneReading());
}
TEST_P(QuicSpdyStreamTest, WritingTrailersSendsAFin) {
// Test that writing trailers will send a FIN, as Trailers are the last thing
// to be sent on a stream.
Initialize(kShouldProcessData);
// Write the initial headers, without a FIN.
EXPECT_CALL(*stream_, WriteHeadersMock(false));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Writing trailers implicitly sends a FIN.
SpdyHeaderBlock trailers;
trailers["trailer key"] = "trailer value";
EXPECT_CALL(*stream_, WriteHeadersMock(true));
stream_->WriteTrailers(std::move(trailers), nullptr);
EXPECT_TRUE(stream_->fin_sent());
}
TEST_P(QuicSpdyStreamTest, WritingTrailersFinalOffset) {
// Test that when writing trailers, the trailers that are actually sent to the
// peer contain the final offset field indicating last byte of data.
Initialize(kShouldProcessData);
// Write the initial headers.
EXPECT_CALL(*stream_, WriteHeadersMock(false));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Write non-zero body data to force a non-zero final offset.
EXPECT_CALL(*session_, WritevData(_, _, _, _, _)).Times(AtLeast(1));
QuicString body(1024, 'x'); // 1 kB
QuicByteCount header_length = 0;
if (HasFrameHeader()) {
std::unique_ptr<char[]> buf;
header_length = encoder_.SerializeDataFrameHeader(body.length(), &buf);
}
stream_->WriteOrBufferBody(body, false);
// The final offset field in the trailing headers is populated with the
// number of body bytes written (including queued bytes).
SpdyHeaderBlock trailers;
trailers["trailer key"] = "trailer value";
SpdyHeaderBlock trailers_with_offset(trailers.Clone());
trailers_with_offset[kFinalOffsetHeaderKey] =
QuicTextUtils::Uint64ToString(body.length() + header_length);
EXPECT_CALL(*stream_, WriteHeadersMock(true));
stream_->WriteTrailers(std::move(trailers), nullptr);
EXPECT_EQ(trailers_with_offset, stream_->saved_headers());
}
TEST_P(QuicSpdyStreamTest, WritingTrailersClosesWriteSide) {
// Test that if trailers are written after all other data has been written
// (headers and body), that this closes the stream for writing.
Initialize(kShouldProcessData);
// Write the initial headers.
EXPECT_CALL(*stream_, WriteHeadersMock(false));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Write non-zero body data.
EXPECT_CALL(*session_, WritevData(_, _, _, _, _)).Times(AtLeast(1));
const int kBodySize = 1 * 1024; // 1 kB
stream_->WriteOrBufferBody(QuicString(kBodySize, 'x'), false);
EXPECT_EQ(0u, stream_->BufferedDataBytes());
// Headers and body have been fully written, there is no queued data. Writing
// trailers marks the end of this stream, and thus the write side is closed.
EXPECT_CALL(*stream_, WriteHeadersMock(true));
stream_->WriteTrailers(SpdyHeaderBlock(), nullptr);
EXPECT_TRUE(stream_->write_side_closed());
}
TEST_P(QuicSpdyStreamTest, WritingTrailersWithQueuedBytes) {
// Test that the stream is not closed for writing when trailers are sent
// while there are still body bytes queued.
testing::InSequence seq;
Initialize(kShouldProcessData);
// Write the initial headers.
EXPECT_CALL(*stream_, WriteHeadersMock(false));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/false, nullptr);
// Write non-zero body data, but only consume partially, ensuring queueing.
const int kBodySize = 1 * 1024; // 1 kB
if (HasFrameHeader()) {
EXPECT_CALL(*session_, WritevData(_, _, 3, _, NO_FIN));
}
EXPECT_CALL(*session_, WritevData(_, _, kBodySize, _, NO_FIN))
.WillOnce(Return(QuicConsumedData(kBodySize - 1, false)));
stream_->WriteOrBufferBody(QuicString(kBodySize, 'x'), false);
EXPECT_EQ(1u, stream_->BufferedDataBytes());
// Writing trailers will send a FIN, but not close the write side of the
// stream as there are queued bytes.
EXPECT_CALL(*stream_, WriteHeadersMock(true));
stream_->WriteTrailers(SpdyHeaderBlock(), nullptr);
EXPECT_TRUE(stream_->fin_sent());
EXPECT_FALSE(stream_->write_side_closed());
// Writing the queued bytes will close the write side of the stream.
EXPECT_CALL(*session_, WritevData(_, _, 1, _, NO_FIN));
stream_->OnCanWrite();
EXPECT_TRUE(stream_->write_side_closed());
}
TEST_P(QuicSpdyStreamTest, WritingTrailersAfterFIN) {
// EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
if (GetParam() != AllSupportedVersions()[0]) {
return;
}
// Test that it is not possible to write Trailers after a FIN has been sent.
Initialize(kShouldProcessData);
// Write the initial headers, with a FIN.
EXPECT_CALL(*stream_, WriteHeadersMock(true));
stream_->WriteHeaders(SpdyHeaderBlock(), /*fin=*/true, nullptr);
EXPECT_TRUE(stream_->fin_sent());
// Writing Trailers should fail, as the FIN has already been sent.
// populated with the number of body bytes written.
EXPECT_QUIC_BUG(stream_->WriteTrailers(SpdyHeaderBlock(), nullptr),
"Trailers cannot be sent after a FIN");
}
TEST_P(QuicSpdyStreamTest, HeaderStreamNotiferCorrespondingSpdyStream) {
Initialize(kShouldProcessData);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _)).Times(AtLeast(1));
testing::InSequence s;
QuicReferenceCountedPointer<MockAckListener> ack_listener1(
new MockAckListener());
QuicReferenceCountedPointer<MockAckListener> ack_listener2(
new MockAckListener());
stream_->set_ack_listener(ack_listener1);
stream2_->set_ack_listener(ack_listener2);
session_->headers_stream()->WriteOrBufferData("Header1", false,
ack_listener1);
stream_->WriteOrBufferBody("Test1", true);
session_->headers_stream()->WriteOrBufferData("Header2", false,
ack_listener2);
stream2_->WriteOrBufferBody("Test2", false);
QuicStreamFrame frame1(
QuicUtils::GetHeadersStreamId(connection_->transport_version()), false, 0,
"Header1");
QuicString header = "";
if (HasFrameHeader()) {
std::unique_ptr<char[]> buffer;
QuicByteCount header_length = encoder_.SerializeDataFrameHeader(5, &buffer);
header = QuicString(buffer.get(), header_length);
}
QuicStreamFrame frame2(stream_->id(), true, 0, header + "Test1");
QuicStreamFrame frame3(
QuicUtils::GetHeadersStreamId(connection_->transport_version()), false, 7,
"Header2");
QuicStreamFrame frame4(stream2_->id(), false, 0, header + "Test2");
EXPECT_CALL(*ack_listener1, OnPacketRetransmitted(7));
session_->OnStreamFrameRetransmitted(frame1);
EXPECT_CALL(*ack_listener1, OnPacketAcked(7, _));
EXPECT_TRUE(
session_->OnFrameAcked(QuicFrame(frame1), QuicTime::Delta::Zero()));
EXPECT_CALL(*ack_listener1, OnPacketAcked(5, _));
EXPECT_TRUE(
session_->OnFrameAcked(QuicFrame(frame2), QuicTime::Delta::Zero()));
EXPECT_CALL(*ack_listener2, OnPacketAcked(7, _));
EXPECT_TRUE(
session_->OnFrameAcked(QuicFrame(frame3), QuicTime::Delta::Zero()));
EXPECT_CALL(*ack_listener2, OnPacketAcked(5, _));
EXPECT_TRUE(
session_->OnFrameAcked(QuicFrame(frame4), QuicTime::Delta::Zero()));
}
TEST_P(QuicSpdyStreamTest, StreamBecomesZombieWithWriteThatCloses) {
Initialize(kShouldProcessData);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _)).Times(AtLeast(1));
QuicStreamPeer::CloseReadSide(stream_);
// This write causes stream to be closed.
stream_->WriteOrBufferBody("Test1", true);
// stream_ has unacked data and should become zombie.
EXPECT_TRUE(QuicContainsKey(QuicSessionPeer::zombie_streams(session_.get()),
stream_->id()));
EXPECT_TRUE(QuicSessionPeer::closed_streams(session_.get()).empty());
}
TEST_P(QuicSpdyStreamTest, OnPriorityFrame) {
Initialize(kShouldProcessData);
stream_->OnPriorityFrame(kV3HighestPriority);
EXPECT_EQ(kV3HighestPriority, stream_->priority());
}
TEST_P(QuicSpdyStreamTest, OnPriorityFrameAfterSendingData) {
testing::InSequence seq;
Initialize(kShouldProcessData);
if (HasFrameHeader()) {
EXPECT_CALL(*session_, WritevData(_, _, 2, _, NO_FIN));
}
EXPECT_CALL(*session_, WritevData(_, _, 4, _, FIN));
stream_->WriteOrBufferBody("data", true);
stream_->OnPriorityFrame(kV3HighestPriority);
EXPECT_EQ(kV3HighestPriority, stream_->priority());
}
TEST_P(QuicSpdyStreamTest, SetPriorityBeforeUpdateStreamPriority) {
MockQuicConnection* connection = new StrictMock<MockQuicConnection>(
&helper_, &alarm_factory_, Perspective::IS_SERVER,
SupportedVersions(GetParam()));
std::unique_ptr<TestMockUpdateStreamSession> session(
new StrictMock<TestMockUpdateStreamSession>(connection));
auto stream = new StrictMock<TestStream>(
GetNthClientInitiatedBidirectionalStreamId(
session->connection()->transport_version(), 0),
session.get(),
/*should_process_data=*/true);
session->ActivateStream(QuicWrapUnique(stream));
// QuicSpdyStream::SetPriority() should eventually call UpdateStreamPriority()
// on the session. Make sure stream->priority() returns the updated priority
// if called within UpdateStreamPriority(). This expectation is enforced in
// TestMockUpdateStreamSession::UpdateStreamPriority().
session->SetExpectedStream(stream);
session->SetExpectedPriority(kV3HighestPriority);
stream->SetPriority(kV3HighestPriority);
session->SetExpectedPriority(kV3LowestPriority);
stream->SetPriority(kV3LowestPriority);
}
TEST_P(QuicSpdyStreamTest, StreamWaitsForAcks) {
Initialize(kShouldProcessData);
QuicReferenceCountedPointer<MockAckListener> mock_ack_listener(
new StrictMock<MockAckListener>);
stream_->set_ack_listener(mock_ack_listener);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _)).Times(AtLeast(1));
// Stream is not waiting for acks initially.
EXPECT_FALSE(stream_->IsWaitingForAcks());
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
// Send kData1.
stream_->WriteOrBufferData("FooAndBar", false, nullptr);
EXPECT_EQ(1u, QuicStreamPeer::SendBuffer(stream_).size());
EXPECT_TRUE(stream_->IsWaitingForAcks());
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(9, _));
QuicByteCount newly_acked_length = 0;
EXPECT_TRUE(stream_->OnStreamFrameAcked(0, 9, false, QuicTime::Delta::Zero(),
&newly_acked_length));
// Stream is not waiting for acks as all sent data is acked.
EXPECT_FALSE(stream_->IsWaitingForAcks());
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
// Send kData2.
stream_->WriteOrBufferData("FooAndBar", false, nullptr);
EXPECT_TRUE(stream_->IsWaitingForAcks());
EXPECT_EQ(1u, QuicStreamPeer::SendBuffer(stream_).size());
// Send FIN.
stream_->WriteOrBufferData("", true, nullptr);
// Fin only frame is not stored in send buffer.
EXPECT_EQ(1u, QuicStreamPeer::SendBuffer(stream_).size());
// kData2 is retransmitted.
EXPECT_CALL(*mock_ack_listener, OnPacketRetransmitted(9));
stream_->OnStreamFrameRetransmitted(9, 9, false);
// kData2 is acked.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(9, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(9, 9, false, QuicTime::Delta::Zero(),
&newly_acked_length));
// Stream is waiting for acks as FIN is not acked.
EXPECT_TRUE(stream_->IsWaitingForAcks());
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
// FIN is acked.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(0, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(18, 0, true, QuicTime::Delta::Zero(),
&newly_acked_length));
EXPECT_FALSE(stream_->IsWaitingForAcks());
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
}
TEST_P(QuicSpdyStreamTest, StreamDataGetAckedMultipleTimes) {
Initialize(kShouldProcessData);
QuicReferenceCountedPointer<MockAckListener> mock_ack_listener(
new StrictMock<MockAckListener>);
stream_->set_ack_listener(mock_ack_listener);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _)).Times(AtLeast(1));
// Send [0, 27) and fin.
stream_->WriteOrBufferData("FooAndBar", false, nullptr);
stream_->WriteOrBufferData("FooAndBar", false, nullptr);
stream_->WriteOrBufferData("FooAndBar", true, nullptr);
// Ack [0, 9), [5, 22) and [18, 26)
// Verify [0, 9) 9 bytes are acked.
QuicByteCount newly_acked_length = 0;
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(9, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(0, 9, false, QuicTime::Delta::Zero(),
&newly_acked_length));
EXPECT_EQ(2u, QuicStreamPeer::SendBuffer(stream_).size());
// Verify [9, 22) 13 bytes are acked.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(13, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(5, 17, false, QuicTime::Delta::Zero(),
&newly_acked_length));
EXPECT_EQ(1u, QuicStreamPeer::SendBuffer(stream_).size());
// Verify [22, 26) 4 bytes are acked.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(4, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(18, 8, false, QuicTime::Delta::Zero(),
&newly_acked_length));
EXPECT_EQ(1u, QuicStreamPeer::SendBuffer(stream_).size());
EXPECT_TRUE(stream_->IsWaitingForAcks());
// Ack [0, 27).
// Verify [26, 27) 1 byte is acked.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(1, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(26, 1, false, QuicTime::Delta::Zero(),
&newly_acked_length));
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
EXPECT_TRUE(stream_->IsWaitingForAcks());
// Ack Fin. Verify OnPacketAcked is called.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(0, _));
EXPECT_TRUE(stream_->OnStreamFrameAcked(27, 0, true, QuicTime::Delta::Zero(),
&newly_acked_length));
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
EXPECT_FALSE(stream_->IsWaitingForAcks());
// Ack [10, 27) and fin.
// No new data is acked, verify OnPacketAcked is not called.
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(_, _)).Times(0);
EXPECT_FALSE(stream_->OnStreamFrameAcked(
10, 17, true, QuicTime::Delta::Zero(), &newly_acked_length));
EXPECT_EQ(0u, QuicStreamPeer::SendBuffer(stream_).size());
EXPECT_FALSE(stream_->IsWaitingForAcks());
}
// HTTP/3 only.
TEST_P(QuicSpdyStreamTest, HeadersAckNotReportedWriteOrBufferBody) {
Initialize(kShouldProcessData);
if (!HasFrameHeader()) {
return;
}
QuicReferenceCountedPointer<MockAckListener> mock_ack_listener(
new StrictMock<MockAckListener>);
stream_->set_ack_listener(mock_ack_listener);
QuicString body = "Test1";
QuicString body2(100, 'x');
EXPECT_CALL(*session_, WritevData(_, _, _, _, _)).Times(AtLeast(1));
stream_->WriteOrBufferBody(body, false);
stream_->WriteOrBufferBody(body2, true);
std::unique_ptr<char[]> buffer;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buffer);
QuicString header = QuicString(buffer.get(), header_length);
header_length = encoder_.SerializeDataFrameHeader(body2.length(), &buffer);
QuicString header2 = QuicString(buffer.get(), header_length);
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(body.length(), _));
QuicStreamFrame frame(stream_->id(), false, 0, header + body);
EXPECT_TRUE(
session_->OnFrameAcked(QuicFrame(frame), QuicTime::Delta::Zero()));
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(0, _));
QuicStreamFrame frame2(stream_->id(), false, (header + body).length(),
header2);
EXPECT_TRUE(
session_->OnFrameAcked(QuicFrame(frame2), QuicTime::Delta::Zero()));
EXPECT_CALL(*mock_ack_listener, OnPacketAcked(body2.length(), _));
QuicStreamFrame frame3(stream_->id(), true,
(header + body).length() + header2.length(), body2);
EXPECT_TRUE(
session_->OnFrameAcked(QuicFrame(frame3), QuicTime::Delta::Zero()));
EXPECT_TRUE(
QuicSpdyStreamPeer::unacked_frame_headers_offsets(stream_).Empty());
}
// HTTP/3 only.
TEST_P(QuicSpdyStreamTest, HeadersAckNotReportedWriteBodySlices) {
Initialize(kShouldProcessData);
if (!HasFrameHeader()) {
return;
}
QuicReferenceCountedPointer<MockAckListener> mock_ack_listener(
new StrictMock<MockAckListener>);
stream_->set_ack_listener(mock_ack_listener);
QuicString body = "Test1";
QuicString body2(100, 'x');
struct iovec body1_iov = {const_cast<char*>(body.data()), body.length()};
struct iovec body2_iov = {const_cast<char*>(body2.data()), body2.length()};
QuicMemSliceStorage storage(&body1_iov, 1,
helper_.GetStreamSendBufferAllocator(), 1024);
QuicMemSliceStorage storage2(&body2_iov, 1,
helper_.GetStreamSendBufferAllocator(), 1024);
EXPECT_CALL(*session_, WritevData(_, _, _, _, _)).Times(AtLeast(1));
stream_->WriteBodySlices(storage.ToSpan(), false);
stream_->WriteBodySlices(storage2.ToSpan(), true);
std::unique_ptr<char[]> buffer;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buffer);
QuicString header = QuicString(buffer.get(), header_length);
header_length = encoder_.SerializeDataFrameHeader(body2.length(), &buffer);
QuicString header2 = QuicString(buffer.get(), header_length);
EXPECT_CALL(*mock_ack_listener,
OnPacketAcked(body.length() + body2.length(), _));
QuicStreamFrame frame(stream_->id(), true, 0,
header + body + header2 + body2);
EXPECT_TRUE(
session_->OnFrameAcked(QuicFrame(frame), QuicTime::Delta::Zero()));
EXPECT_TRUE(
QuicSpdyStreamPeer::unacked_frame_headers_offsets(stream_).Empty());
}
// HTTP/3 only.
TEST_P(QuicSpdyStreamTest, HeaderBytesNotReportedOnRetransmission) {
Initialize(kShouldProcessData);
if (!HasFrameHeader()) {
return;
}
QuicReferenceCountedPointer<MockAckListener> mock_ack_listener(
new StrictMock<MockAckListener>);
stream_->set_ack_listener(mock_ack_listener);
QuicString body = "Test1";
QuicString body2(100, 'x');
EXPECT_CALL(*session_, WritevData(_, _, _, _, _)).Times(AtLeast(1));
stream_->WriteOrBufferBody(body, false);
stream_->WriteOrBufferBody(body2, true);
std::unique_ptr<char[]> buffer;
QuicByteCount header_length =
encoder_.SerializeDataFrameHeader(body.length(), &buffer);
QuicString header = QuicString(buffer.get(), header_length);
header_length = encoder_.SerializeDataFrameHeader(body2.length(), &buffer);
QuicString header2 = QuicString(buffer.get(), header_length);
EXPECT_CALL(*mock_ack_listener, OnPacketRetransmitted(body.length()));
QuicStreamFrame frame(stream_->id(), false, 0, header + body);
session_->OnStreamFrameRetransmitted(frame);
EXPECT_CALL(*mock_ack_listener, OnPacketRetransmitted(body2.length()));
QuicStreamFrame frame2(stream_->id(), true, (header + body).length(),
header2 + body2);
session_->OnStreamFrameRetransmitted(frame2);
EXPECT_FALSE(
QuicSpdyStreamPeer::unacked_frame_headers_offsets(stream_).Empty());
}
} // namespace
} // namespace test
} // namespace quic