blob: 80b651e1e4bf8b1a3817cd203cd0367958f8cbac [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/third_party/quiche/src/quic/core/http/quic_spdy_session.h"
#include <cstdint>
#include <set>
#include <string>
#include <utility>
#include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h"
#include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h"
#include "net/third_party/quiche/src/quic/core/frames/quic_stream_frame.h"
#include "net/third_party/quiche/src/quic/core/http/http_constants.h"
#include "net/third_party/quiche/src/quic/core/quic_config.h"
#include "net/third_party/quiche/src/quic/core/quic_crypto_stream.h"
#include "net/third_party/quiche/src/quic/core/quic_data_writer.h"
#include "net/third_party/quiche/src/quic/core/quic_packets.h"
#include "net/third_party/quiche/src/quic/core/quic_stream.h"
#include "net/third_party/quiche/src/quic/core/quic_utils.h"
#include "net/third_party/quiche/src/quic/core/quic_versions.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_arraysize.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_expect_bug.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_flags.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_str_cat.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_string_piece.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_test.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_text_utils.h"
#include "net/third_party/quiche/src/quic/test_tools/qpack_encoder_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/qpack_header_table_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_config_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_connection_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_flow_controller_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_session_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_spdy_session_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_stream_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_stream_send_buffer_peer.h"
#include "net/third_party/quiche/src/quic/test_tools/quic_test_utils.h"
#include "net/third_party/quiche/src/spdy/core/spdy_framer.h"
using spdy::kV3HighestPriority;
using spdy::Spdy3PriorityToHttp2Weight;
using spdy::SpdyFramer;
using spdy::SpdyHeaderBlock;
using spdy::SpdyPriority;
using spdy::SpdyPriorityIR;
using spdy::SpdySerializedFrame;
using testing::_;
using testing::AtLeast;
using testing::InSequence;
using testing::Invoke;
using testing::Return;
using testing::StrictMock;
namespace quic {
namespace test {
namespace {
bool VerifyAndClearStopSendingFrame(const QuicFrame& frame) {
EXPECT_EQ(STOP_SENDING_FRAME, frame.type);
return ClearControlFrame(frame);
}
class TestCryptoStream : public QuicCryptoStream, public QuicCryptoHandshaker {
public:
explicit TestCryptoStream(QuicSession* session)
: QuicCryptoStream(session),
QuicCryptoHandshaker(this, session),
encryption_established_(false),
handshake_confirmed_(false),
params_(new QuicCryptoNegotiatedParameters) {}
void OnHandshakeMessage(const CryptoHandshakeMessage& /*message*/) override {
encryption_established_ = true;
handshake_confirmed_ = true;
QuicErrorCode error;
std::string error_details;
session()->config()->SetInitialStreamFlowControlWindowToSend(
kInitialStreamFlowControlWindowForTest);
session()->config()->SetInitialSessionFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
if (session()->connection()->version().handshake_protocol ==
PROTOCOL_TLS1_3) {
TransportParameters transport_parameters;
EXPECT_TRUE(
session()->config()->FillTransportParameters(&transport_parameters));
error = session()->config()->ProcessTransportParameters(
transport_parameters, CLIENT, &error_details);
} else {
CryptoHandshakeMessage msg;
session()->config()->ToHandshakeMessage(&msg, transport_version());
error =
session()->config()->ProcessPeerHello(msg, CLIENT, &error_details);
}
EXPECT_EQ(QUIC_NO_ERROR, error);
session()->OnConfigNegotiated();
session()->connection()->SetDefaultEncryptionLevel(
ENCRYPTION_FORWARD_SECURE);
session()->OnCryptoHandshakeEvent(QuicSession::HANDSHAKE_CONFIRMED);
}
// QuicCryptoStream implementation
bool encryption_established() const override {
return encryption_established_;
}
bool handshake_confirmed() const override { return handshake_confirmed_; }
const QuicCryptoNegotiatedParameters& crypto_negotiated_params()
const override {
return *params_;
}
CryptoMessageParser* crypto_message_parser() override {
return QuicCryptoHandshaker::crypto_message_parser();
}
MOCK_METHOD0(OnCanWrite, void());
bool HasPendingCryptoRetransmission() const override { return false; }
MOCK_CONST_METHOD0(HasPendingRetransmission, bool());
private:
using QuicCryptoStream::session;
bool encryption_established_;
bool handshake_confirmed_;
QuicReferenceCountedPointer<QuicCryptoNegotiatedParameters> params_;
};
class TestHeadersStream : public QuicHeadersStream {
public:
explicit TestHeadersStream(QuicSpdySession* session)
: QuicHeadersStream(session) {}
MOCK_METHOD0(OnCanWrite, void());
};
class MockHttp3DebugVisitor : public Http3DebugVisitor {
public:
MOCK_METHOD1(OnPeerControlStreamCreated, void(QuicStreamId));
MOCK_METHOD1(OnPeerQpackEncoderStreamCreated, void(QuicStreamId));
MOCK_METHOD1(OnPeerQpackDecoderStreamCreated, void(QuicStreamId));
MOCK_METHOD1(OnSettingsFrameReceived, void(const SettingsFrame&));
MOCK_METHOD1(OnSettingsFrameSent, void(const SettingsFrame&));
};
class TestStream : public QuicSpdyStream {
public:
TestStream(QuicStreamId id, QuicSpdySession* session, StreamType type)
: QuicSpdyStream(id, session, type) {}
TestStream(PendingStream* pending, QuicSpdySession* session, StreamType type)
: QuicSpdyStream(pending, session, type) {}
using QuicStream::CloseWriteSide;
void OnBodyAvailable() override {}
MOCK_METHOD0(OnCanWrite, void());
MOCK_METHOD3(RetransmitStreamData,
bool(QuicStreamOffset, QuicByteCount, bool));
MOCK_CONST_METHOD0(HasPendingRetransmission, bool());
};
class TestSession : public QuicSpdySession {
public:
explicit TestSession(QuicConnection* connection)
: QuicSpdySession(connection,
nullptr,
DefaultQuicConfig(),
CurrentSupportedVersions()),
crypto_stream_(this),
writev_consumes_all_data_(false) {
Initialize();
this->connection()->SetEncrypter(
ENCRYPTION_FORWARD_SECURE,
std::make_unique<NullEncrypter>(connection->perspective()));
}
~TestSession() override { delete connection(); }
TestCryptoStream* GetMutableCryptoStream() override {
return &crypto_stream_;
}
const TestCryptoStream* GetCryptoStream() const override {
return &crypto_stream_;
}
TestStream* CreateOutgoingBidirectionalStream() override {
TestStream* stream = new TestStream(GetNextOutgoingBidirectionalStreamId(),
this, BIDIRECTIONAL);
ActivateStream(QuicWrapUnique(stream));
return stream;
}
TestStream* CreateOutgoingUnidirectionalStream() override {
TestStream* stream = new TestStream(GetNextOutgoingUnidirectionalStreamId(),
this, WRITE_UNIDIRECTIONAL);
ActivateStream(QuicWrapUnique(stream));
return stream;
}
TestStream* CreateIncomingStream(QuicStreamId id) override {
// Enforce the limit on the number of open streams.
if (GetNumOpenIncomingStreams() + 1 >
max_open_incoming_bidirectional_streams() &&
!VersionHasIetfQuicFrames(connection()->transport_version())) {
connection()->CloseConnection(
QUIC_TOO_MANY_OPEN_STREAMS, "Too many streams!",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
return nullptr;
} else {
TestStream* stream = new TestStream(
id, this,
DetermineStreamType(id, connection()->transport_version(),
perspective(), /*is_incoming=*/true,
BIDIRECTIONAL));
ActivateStream(QuicWrapUnique(stream));
return stream;
}
}
TestStream* CreateIncomingStream(PendingStream* pending) override {
QuicStreamId id = pending->id();
TestStream* stream =
new TestStream(pending, this,
DetermineStreamType(
id, connection()->transport_version(), perspective(),
/*is_incoming=*/true, BIDIRECTIONAL));
ActivateStream(QuicWrapUnique(stream));
return stream;
}
bool ShouldCreateIncomingStream(QuicStreamId /*id*/) override { return true; }
bool ShouldCreateOutgoingBidirectionalStream() override { return true; }
bool ShouldCreateOutgoingUnidirectionalStream() override { return true; }
bool IsClosedStream(QuicStreamId id) {
return QuicSession::IsClosedStream(id);
}
QuicStream* GetOrCreateStream(QuicStreamId stream_id) {
return QuicSpdySession::GetOrCreateStream(stream_id);
}
QuicConsumedData WritevData(QuicStream* stream,
QuicStreamId id,
size_t write_length,
QuicStreamOffset offset,
StreamSendingState state) override {
bool fin = state != NO_FIN;
QuicConsumedData consumed(write_length, fin);
if (!writev_consumes_all_data_) {
consumed =
QuicSession::WritevData(stream, id, write_length, offset, state);
}
if (fin && consumed.fin_consumed) {
stream->set_fin_sent(true);
}
QuicSessionPeer::GetWriteBlockedStreams(this)->UpdateBytesForStream(
id, consumed.bytes_consumed);
return consumed;
}
void set_writev_consumes_all_data(bool val) {
writev_consumes_all_data_ = val;
}
QuicConsumedData SendStreamData(QuicStream* stream) {
struct iovec iov;
if (!QuicUtils::IsCryptoStreamId(connection()->transport_version(),
stream->id()) &&
connection()->encryption_level() != ENCRYPTION_FORWARD_SECURE) {
this->connection()->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
}
MakeIOVector("not empty", &iov);
QuicStreamPeer::SendBuffer(stream).SaveStreamData(&iov, 1, 0, 9);
QuicConsumedData consumed = WritevData(stream, stream->id(), 9, 0, FIN);
QuicStreamPeer::SendBuffer(stream).OnStreamDataConsumed(
consumed.bytes_consumed);
return consumed;
}
QuicConsumedData SendLargeFakeData(QuicStream* stream, int bytes) {
DCHECK(writev_consumes_all_data_);
return WritevData(stream, stream->id(), bytes, 0, FIN);
}
using QuicSession::closed_streams;
using QuicSession::ShouldKeepConnectionAlive;
using QuicSession::zombie_streams;
using QuicSpdySession::ProcessPendingStream;
using QuicSpdySession::UsesPendingStreams;
private:
StrictMock<TestCryptoStream> crypto_stream_;
bool writev_consumes_all_data_;
};
class QuicSpdySessionTestBase : public QuicTestWithParam<ParsedQuicVersion> {
public:
bool ClearMaxStreamsControlFrame(const QuicFrame& frame) {
if (frame.type == MAX_STREAMS_FRAME) {
DeleteFrame(&const_cast<QuicFrame&>(frame));
return true;
}
return false;
}
protected:
explicit QuicSpdySessionTestBase(Perspective perspective)
: connection_(
new StrictMock<MockQuicConnection>(&helper_,
&alarm_factory_,
perspective,
SupportedVersions(GetParam()))),
session_(connection_) {
session_.config()->SetInitialStreamFlowControlWindowToSend(
kInitialStreamFlowControlWindowForTest);
session_.config()->SetInitialSessionFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
if (VersionUsesHttp3(transport_version())) {
QuicConfigPeer::SetReceivedMaxIncomingUnidirectionalStreams(
session_.config(),
session_.num_expected_unidirectional_static_streams());
}
QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow(
session_.config(), kMinimumFlowControlSendWindow);
QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesUnidirectional(
session_.config(), kMinimumFlowControlSendWindow);
QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesIncomingBidirectional(
session_.config(), kMinimumFlowControlSendWindow);
QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesOutgoingBidirectional(
session_.config(), kMinimumFlowControlSendWindow);
session_.OnConfigNegotiated();
connection_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream();
EXPECT_CALL(*crypto_stream, HasPendingRetransmission())
.Times(testing::AnyNumber());
}
void CheckClosedStreams() {
QuicStreamId first_stream_id = QuicUtils::GetFirstBidirectionalStreamId(
connection_->transport_version(), Perspective::IS_CLIENT);
if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) {
first_stream_id =
QuicUtils::GetCryptoStreamId(connection_->transport_version());
}
for (QuicStreamId i = first_stream_id; i < 100; i++) {
if (!QuicContainsKey(closed_streams_, i)) {
EXPECT_FALSE(session_.IsClosedStream(i)) << " stream id: " << i;
} else {
EXPECT_TRUE(session_.IsClosedStream(i)) << " stream id: " << i;
}
}
}
void CloseStream(QuicStreamId id) {
if (!VersionHasIetfQuicFrames(transport_version())) {
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&ClearControlFrame));
} else {
// V99 has two frames, RST_STREAM and STOP_SENDING
EXPECT_CALL(*connection_, SendControlFrame(_))
.Times(2)
.WillRepeatedly(Invoke(&ClearControlFrame));
}
EXPECT_CALL(*connection_, OnStreamReset(id, _));
session_.CloseStream(id);
closed_streams_.insert(id);
}
QuicTransportVersion transport_version() const {
return connection_->transport_version();
}
QuicStreamId GetNthClientInitiatedBidirectionalId(int n) {
return GetNthClientInitiatedBidirectionalStreamId(transport_version(), n);
}
QuicStreamId GetNthServerInitiatedBidirectionalId(int n) {
return GetNthServerInitiatedBidirectionalStreamId(
connection_->transport_version(), n);
}
QuicStreamId IdDelta() {
return QuicUtils::StreamIdDelta(connection_->transport_version());
}
std::string EncodeSettings(const SettingsFrame& settings) {
HttpEncoder encoder;
std::unique_ptr<char[]> buffer;
auto header_length = encoder.SerializeSettingsFrame(settings, &buffer);
return std::string(buffer.get(), header_length);
}
QuicStreamId StreamCountToId(QuicStreamCount stream_count,
Perspective perspective,
bool bidirectional) {
// Calculate and build up stream ID rather than use
// GetFirst... because the test that relies on this method
// needs to do the stream count where #1 is 0/1/2/3, and not
// take into account that stream 0 is special.
QuicStreamId id =
((stream_count - 1) * QuicUtils::StreamIdDelta(transport_version()));
if (!bidirectional) {
id |= 0x2;
}
if (perspective == Perspective::IS_SERVER) {
id |= 0x1;
}
return id;
}
MockQuicConnectionHelper helper_;
MockAlarmFactory alarm_factory_;
StrictMock<MockQuicConnection>* connection_;
TestSession session_;
std::set<QuicStreamId> closed_streams_;
};
class QuicSpdySessionTestServer : public QuicSpdySessionTestBase {
protected:
QuicSpdySessionTestServer()
: QuicSpdySessionTestBase(Perspective::IS_SERVER) {}
};
INSTANTIATE_TEST_SUITE_P(Tests,
QuicSpdySessionTestServer,
::testing::ValuesIn(AllSupportedVersions()),
::testing::PrintToStringParamName());
TEST_P(QuicSpdySessionTestServer, UsesPendingStreams) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
EXPECT_TRUE(session_.UsesPendingStreams());
}
TEST_P(QuicSpdySessionTestServer, PeerAddress) {
EXPECT_EQ(QuicSocketAddress(QuicIpAddress::Loopback4(), kTestPort),
session_.peer_address());
}
TEST_P(QuicSpdySessionTestServer, SelfAddress) {
EXPECT_TRUE(session_.self_address().IsInitialized());
}
TEST_P(QuicSpdySessionTestServer, IsCryptoHandshakeConfirmed) {
if (VersionUsesHttp3(transport_version())) {
MockPacketWriter* writer = static_cast<MockPacketWriter*>(
QuicConnectionPeer::GetWriter(session_.connection()));
EXPECT_CALL(*writer, WritePacket(_, _, _, _, _))
.Times(1)
.WillRepeatedly(Return(WriteResult(WRITE_STATUS_OK, 0)));
}
EXPECT_FALSE(session_.IsCryptoHandshakeConfirmed());
CryptoHandshakeMessage message;
session_.GetMutableCryptoStream()->OnHandshakeMessage(message);
EXPECT_TRUE(session_.IsCryptoHandshakeConfirmed());
}
TEST_P(QuicSpdySessionTestServer, IsClosedStreamDefault) {
// Ensure that no streams are initially closed.
QuicStreamId first_stream_id = QuicUtils::GetFirstBidirectionalStreamId(
connection_->transport_version(), Perspective::IS_CLIENT);
if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) {
first_stream_id =
QuicUtils::GetCryptoStreamId(connection_->transport_version());
}
for (QuicStreamId i = first_stream_id; i < 100; i++) {
EXPECT_FALSE(session_.IsClosedStream(i)) << "stream id: " << i;
}
}
TEST_P(QuicSpdySessionTestServer, AvailableStreams) {
ASSERT_TRUE(session_.GetOrCreateStream(
GetNthClientInitiatedBidirectionalId(2)) != nullptr);
// Both client initiated streams with smaller stream IDs are available.
EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable(
&session_, GetNthClientInitiatedBidirectionalId(0)));
EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable(
&session_, GetNthClientInitiatedBidirectionalId(1)));
ASSERT_TRUE(session_.GetOrCreateStream(
GetNthClientInitiatedBidirectionalId(1)) != nullptr);
ASSERT_TRUE(session_.GetOrCreateStream(
GetNthClientInitiatedBidirectionalId(0)) != nullptr);
}
TEST_P(QuicSpdySessionTestServer, IsClosedStreamLocallyCreated) {
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
EXPECT_EQ(GetNthServerInitiatedBidirectionalId(0), stream2->id());
QuicSpdyStream* stream4 = session_.CreateOutgoingBidirectionalStream();
EXPECT_EQ(GetNthServerInitiatedBidirectionalId(1), stream4->id());
CheckClosedStreams();
CloseStream(GetNthServerInitiatedBidirectionalId(0));
CheckClosedStreams();
CloseStream(GetNthServerInitiatedBidirectionalId(1));
CheckClosedStreams();
}
TEST_P(QuicSpdySessionTestServer, IsClosedStreamPeerCreated) {
QuicStreamId stream_id1 = GetNthClientInitiatedBidirectionalId(0);
QuicStreamId stream_id2 = GetNthClientInitiatedBidirectionalId(1);
session_.GetOrCreateStream(stream_id1);
session_.GetOrCreateStream(stream_id2);
CheckClosedStreams();
CloseStream(stream_id1);
CheckClosedStreams();
CloseStream(stream_id2);
// Create a stream, and make another available.
QuicStream* stream3 = session_.GetOrCreateStream(stream_id2 + 4);
CheckClosedStreams();
// Close one, but make sure the other is still not closed
CloseStream(stream3->id());
CheckClosedStreams();
}
TEST_P(QuicSpdySessionTestServer, MaximumAvailableOpenedStreams) {
if (VersionHasIetfQuicFrames(transport_version())) {
// For IETF QUIC, we should be able to obtain the max allowed
// stream ID, the next ID should fail. Since the actual limit
// is not the number of open streams, we allocate the max and the max+2.
// Get the max allowed stream ID, this should succeed.
QuicStreamId stream_id = StreamCountToId(
QuicSessionPeer::v99_streamid_manager(&session_)
->max_incoming_bidirectional_streams(),
Perspective::IS_CLIENT, // Client initates stream, allocs stream id.
/*bidirectional=*/true);
EXPECT_NE(nullptr, session_.GetOrCreateStream(stream_id));
stream_id = StreamCountToId(QuicSessionPeer::v99_streamid_manager(&session_)
->max_incoming_unidirectional_streams(),
Perspective::IS_CLIENT,
/*bidirectional=*/false);
EXPECT_NE(nullptr, session_.GetOrCreateStream(stream_id));
EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(2);
// Get the (max allowed stream ID)++. These should all fail.
stream_id = StreamCountToId(QuicSessionPeer::v99_streamid_manager(&session_)
->max_incoming_bidirectional_streams() +
1,
Perspective::IS_CLIENT,
/*bidirectional=*/true);
EXPECT_EQ(nullptr, session_.GetOrCreateStream(stream_id));
stream_id =
StreamCountToId(QuicSessionPeer::v99_streamid_manager(&session_)
->max_incoming_unidirectional_streams() +
1,
Perspective::IS_CLIENT,
/*bidirectional=*/false);
EXPECT_EQ(nullptr, session_.GetOrCreateStream(stream_id));
} else {
QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0);
session_.GetOrCreateStream(stream_id);
EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0);
EXPECT_NE(
nullptr,
session_.GetOrCreateStream(
stream_id +
IdDelta() *
(session_.max_open_incoming_bidirectional_streams() - 1)));
}
}
TEST_P(QuicSpdySessionTestServer, TooManyAvailableStreams) {
QuicStreamId stream_id1 = GetNthClientInitiatedBidirectionalId(0);
QuicStreamId stream_id2;
EXPECT_NE(nullptr, session_.GetOrCreateStream(stream_id1));
// A stream ID which is too large to create.
stream_id2 = GetNthClientInitiatedBidirectionalId(
2 * session_.MaxAvailableBidirectionalStreams() + 4);
if (VersionHasIetfQuicFrames(transport_version())) {
EXPECT_CALL(*connection_, CloseConnection(QUIC_INVALID_STREAM_ID, _, _));
} else {
EXPECT_CALL(*connection_,
CloseConnection(QUIC_TOO_MANY_AVAILABLE_STREAMS, _, _));
}
EXPECT_EQ(nullptr, session_.GetOrCreateStream(stream_id2));
}
TEST_P(QuicSpdySessionTestServer, ManyAvailableStreams) {
// When max_open_streams_ is 200, should be able to create 200 streams
// out-of-order, that is, creating the one with the largest stream ID first.
if (VersionHasIetfQuicFrames(transport_version())) {
QuicSessionPeer::SetMaxOpenIncomingBidirectionalStreams(&session_, 200);
} else {
QuicSessionPeer::SetMaxOpenIncomingStreams(&session_, 200);
}
QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0);
// Create one stream.
session_.GetOrCreateStream(stream_id);
EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0);
// Stream count is 200, GetNth... starts counting at 0, so the 200'th stream
// is 199. BUT actually we need to do 198 because the crypto stream (Stream
// ID 0) has not been registered, but GetNth... assumes that it has.
EXPECT_NE(nullptr, session_.GetOrCreateStream(
GetNthClientInitiatedBidirectionalId(198)));
}
TEST_P(QuicSpdySessionTestServer,
DebugDFatalIfMarkingClosedStreamWriteBlocked) {
// EXPECT_QUIC_BUG tests are expensive so only run one instance of them.
if (GetParam() != AllSupportedVersions()[0]) {
return;
}
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
QuicStreamId closed_stream_id = stream2->id();
// Close the stream.
EXPECT_CALL(*connection_, SendControlFrame(_));
EXPECT_CALL(*connection_, OnStreamReset(closed_stream_id, _));
stream2->Reset(QUIC_BAD_APPLICATION_PAYLOAD);
std::string msg =
QuicStrCat("Marking unknown stream ", closed_stream_id, " blocked.");
EXPECT_QUIC_BUG(session_.MarkConnectionLevelWriteBlocked(closed_stream_id),
msg);
}
TEST_P(QuicSpdySessionTestServer, OnCanWrite) {
session_.set_writev_consumes_all_data(true);
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream4 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream6 = session_.CreateOutgoingBidirectionalStream();
session_.MarkConnectionLevelWriteBlocked(stream2->id());
session_.MarkConnectionLevelWriteBlocked(stream6->id());
session_.MarkConnectionLevelWriteBlocked(stream4->id());
InSequence s;
// Reregister, to test the loop limit.
EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() {
session_.SendStreamData(stream2);
session_.MarkConnectionLevelWriteBlocked(stream2->id());
}));
// 2 will get called a second time as it didn't finish its block
EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() {
session_.SendStreamData(stream2);
}));
EXPECT_CALL(*stream6, OnCanWrite()).WillOnce(Invoke([this, stream6]() {
session_.SendStreamData(stream6);
}));
// 4 will not get called, as we exceeded the loop limit.
session_.OnCanWrite();
EXPECT_TRUE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSpdySessionTestServer, TestBatchedWrites) {
session_.set_writev_consumes_all_data(true);
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream4 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream6 = session_.CreateOutgoingBidirectionalStream();
session_.set_writev_consumes_all_data(true);
session_.MarkConnectionLevelWriteBlocked(stream2->id());
session_.MarkConnectionLevelWriteBlocked(stream4->id());
// With two sessions blocked, we should get two write calls. They should both
// go to the first stream as it will only write 6k and mark itself blocked
// again.
InSequence s;
EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() {
session_.SendLargeFakeData(stream2, 6000);
session_.MarkConnectionLevelWriteBlocked(stream2->id());
}));
EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() {
session_.SendLargeFakeData(stream2, 6000);
session_.MarkConnectionLevelWriteBlocked(stream2->id());
}));
session_.OnCanWrite();
// We should get one more call for stream2, at which point it has used its
// write quota and we move over to stream 4.
EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() {
session_.SendLargeFakeData(stream2, 6000);
session_.MarkConnectionLevelWriteBlocked(stream2->id());
}));
EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() {
session_.SendLargeFakeData(stream4, 6000);
session_.MarkConnectionLevelWriteBlocked(stream4->id());
}));
session_.OnCanWrite();
// Now let stream 4 do the 2nd of its 3 writes, but add a block for a high
// priority stream 6. 4 should be preempted. 6 will write but *not* block so
// will cede back to 4.
stream6->SetPriority(spdy::SpdyStreamPrecedence(kV3HighestPriority));
EXPECT_CALL(*stream4, OnCanWrite())
.WillOnce(Invoke([this, stream4, stream6]() {
session_.SendLargeFakeData(stream4, 6000);
session_.MarkConnectionLevelWriteBlocked(stream4->id());
session_.MarkConnectionLevelWriteBlocked(stream6->id());
}));
EXPECT_CALL(*stream6, OnCanWrite())
.WillOnce(Invoke([this, stream4, stream6]() {
session_.SendStreamData(stream6);
session_.SendLargeFakeData(stream4, 6000);
}));
session_.OnCanWrite();
// Stream4 alread did 6k worth of writes, so after doing another 12k it should
// cede and 2 should resume.
EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() {
session_.SendLargeFakeData(stream4, 12000);
session_.MarkConnectionLevelWriteBlocked(stream4->id());
}));
EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() {
session_.SendLargeFakeData(stream2, 6000);
session_.MarkConnectionLevelWriteBlocked(stream2->id());
}));
session_.OnCanWrite();
}
TEST_P(QuicSpdySessionTestServer, OnCanWriteBundlesStreams) {
if (VersionHasIetfQuicFrames(transport_version())) {
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillRepeatedly(Invoke(
this, &QuicSpdySessionTestServer::ClearMaxStreamsControlFrame));
}
// Encryption needs to be established before data can be sent.
CryptoHandshakeMessage msg;
MockPacketWriter* writer = static_cast<MockPacketWriter*>(
QuicConnectionPeer::GetWriter(session_.connection()));
EXPECT_CALL(*writer, WritePacket(_, _, _, _, _))
.Times(testing::AnyNumber())
.WillRepeatedly(Return(WriteResult(WRITE_STATUS_OK, 0)));
session_.GetMutableCryptoStream()->OnHandshakeMessage(msg);
testing::Mock::VerifyAndClearExpectations(writer);
// Drive congestion control manually.
MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>;
QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm);
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream4 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream6 = session_.CreateOutgoingBidirectionalStream();
session_.MarkConnectionLevelWriteBlocked(stream2->id());
session_.MarkConnectionLevelWriteBlocked(stream6->id());
session_.MarkConnectionLevelWriteBlocked(stream4->id());
EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(true));
EXPECT_CALL(*send_algorithm, GetCongestionWindow())
.WillRepeatedly(Return(kMaxOutgoingPacketSize * 10));
EXPECT_CALL(*send_algorithm, InRecovery()).WillRepeatedly(Return(false));
EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() {
session_.SendStreamData(stream2);
}));
EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() {
session_.SendStreamData(stream4);
}));
EXPECT_CALL(*stream6, OnCanWrite()).WillOnce(Invoke([this, stream6]() {
session_.SendStreamData(stream6);
}));
// Expect that we only send one packet, the writes from different streams
// should be bundled together.
EXPECT_CALL(*writer, WritePacket(_, _, _, _, _))
.WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0)));
EXPECT_CALL(*send_algorithm, OnPacketSent(_, _, _, _, _));
EXPECT_CALL(*send_algorithm, OnApplicationLimited(_));
session_.OnCanWrite();
EXPECT_FALSE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSpdySessionTestServer, OnCanWriteCongestionControlBlocks) {
session_.set_writev_consumes_all_data(true);
InSequence s;
// Drive congestion control manually.
MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>;
QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm);
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream4 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream6 = session_.CreateOutgoingBidirectionalStream();
session_.MarkConnectionLevelWriteBlocked(stream2->id());
session_.MarkConnectionLevelWriteBlocked(stream6->id());
session_.MarkConnectionLevelWriteBlocked(stream4->id());
EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true));
EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() {
session_.SendStreamData(stream2);
}));
EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true));
EXPECT_CALL(*stream6, OnCanWrite()).WillOnce(Invoke([this, stream6]() {
session_.SendStreamData(stream6);
}));
EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(false));
// stream4->OnCanWrite is not called.
session_.OnCanWrite();
EXPECT_TRUE(session_.WillingAndAbleToWrite());
// Still congestion-control blocked.
EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(false));
session_.OnCanWrite();
EXPECT_TRUE(session_.WillingAndAbleToWrite());
// stream4->OnCanWrite is called once the connection stops being
// congestion-control blocked.
EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true));
EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() {
session_.SendStreamData(stream4);
}));
EXPECT_CALL(*send_algorithm, OnApplicationLimited(_));
session_.OnCanWrite();
EXPECT_FALSE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSpdySessionTestServer, OnCanWriteWriterBlocks) {
// Drive congestion control manually in order to ensure that
// application-limited signaling is handled correctly.
MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>;
QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm);
EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(true));
// Drive packet writer manually.
MockPacketWriter* writer = static_cast<MockPacketWriter*>(
QuicConnectionPeer::GetWriter(session_.connection()));
EXPECT_CALL(*writer, IsWriteBlocked()).WillRepeatedly(Return(true));
EXPECT_CALL(*writer, WritePacket(_, _, _, _, _)).Times(0);
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
session_.MarkConnectionLevelWriteBlocked(stream2->id());
EXPECT_CALL(*stream2, OnCanWrite()).Times(0);
EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)).Times(0);
session_.OnCanWrite();
EXPECT_TRUE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSpdySessionTestServer, BufferedHandshake) {
// This tests prioritization of the crypto stream when flow control limits are
// reached. When CRYPTO frames are in use, there is no flow control for the
// crypto handshake, so this test is irrelevant.
if (QuicVersionUsesCryptoFrames(connection_->transport_version())) {
return;
}
session_.set_writev_consumes_all_data(true);
EXPECT_FALSE(session_.HasPendingHandshake()); // Default value.
// Test that blocking other streams does not change our status.
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
session_.MarkConnectionLevelWriteBlocked(stream2->id());
EXPECT_FALSE(session_.HasPendingHandshake());
TestStream* stream3 = session_.CreateOutgoingBidirectionalStream();
session_.MarkConnectionLevelWriteBlocked(stream3->id());
EXPECT_FALSE(session_.HasPendingHandshake());
// Blocking (due to buffering of) the Crypto stream is detected.
session_.MarkConnectionLevelWriteBlocked(
QuicUtils::GetCryptoStreamId(connection_->transport_version()));
EXPECT_TRUE(session_.HasPendingHandshake());
TestStream* stream4 = session_.CreateOutgoingBidirectionalStream();
session_.MarkConnectionLevelWriteBlocked(stream4->id());
EXPECT_TRUE(session_.HasPendingHandshake());
InSequence s;
// Force most streams to re-register, which is common scenario when we block
// the Crypto stream, and only the crypto stream can "really" write.
// Due to prioritization, we *should* be asked to write the crypto stream
// first.
// Don't re-register the crypto stream (which signals complete writing).
TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream();
EXPECT_CALL(*crypto_stream, OnCanWrite());
EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() {
session_.SendStreamData(stream2);
}));
EXPECT_CALL(*stream3, OnCanWrite()).WillOnce(Invoke([this, stream3]() {
session_.SendStreamData(stream3);
}));
EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() {
session_.SendStreamData(stream4);
session_.MarkConnectionLevelWriteBlocked(stream4->id());
}));
session_.OnCanWrite();
EXPECT_TRUE(session_.WillingAndAbleToWrite());
EXPECT_FALSE(session_.HasPendingHandshake()); // Crypto stream wrote.
}
TEST_P(QuicSpdySessionTestServer, OnCanWriteWithClosedStream) {
session_.set_writev_consumes_all_data(true);
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream4 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream6 = session_.CreateOutgoingBidirectionalStream();
session_.MarkConnectionLevelWriteBlocked(stream2->id());
session_.MarkConnectionLevelWriteBlocked(stream6->id());
session_.MarkConnectionLevelWriteBlocked(stream4->id());
CloseStream(stream6->id());
InSequence s;
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillRepeatedly(Invoke(&ClearControlFrame));
EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() {
session_.SendStreamData(stream2);
}));
EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() {
session_.SendStreamData(stream4);
}));
session_.OnCanWrite();
EXPECT_FALSE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSpdySessionTestServer,
OnCanWriteLimitsNumWritesIfFlowControlBlocked) {
// Drive congestion control manually in order to ensure that
// application-limited signaling is handled correctly.
MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>;
QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm);
EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(true));
// Ensure connection level flow control blockage.
QuicFlowControllerPeer::SetSendWindowOffset(session_.flow_controller(), 0);
EXPECT_TRUE(session_.flow_controller()->IsBlocked());
EXPECT_TRUE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
// Mark the crypto and headers streams as write blocked, we expect them to be
// allowed to write later.
if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) {
session_.MarkConnectionLevelWriteBlocked(
QuicUtils::GetCryptoStreamId(connection_->transport_version()));
}
// Create a data stream, and although it is write blocked we never expect it
// to be allowed to write as we are connection level flow control blocked.
TestStream* stream = session_.CreateOutgoingBidirectionalStream();
session_.MarkConnectionLevelWriteBlocked(stream->id());
EXPECT_CALL(*stream, OnCanWrite()).Times(0);
// The crypto and headers streams should be called even though we are
// connection flow control blocked.
if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) {
TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream();
EXPECT_CALL(*crypto_stream, OnCanWrite());
}
if (!VersionUsesHttp3(connection_->transport_version())) {
TestHeadersStream* headers_stream;
QuicSpdySessionPeer::SetHeadersStream(&session_, nullptr);
headers_stream = new TestHeadersStream(&session_);
QuicSpdySessionPeer::SetHeadersStream(&session_, headers_stream);
session_.MarkConnectionLevelWriteBlocked(
QuicUtils::GetHeadersStreamId(connection_->transport_version()));
EXPECT_CALL(*headers_stream, OnCanWrite());
}
// After the crypto and header streams perform a write, the connection will be
// blocked by the flow control, hence it should become application-limited.
EXPECT_CALL(*send_algorithm, OnApplicationLimited(_));
session_.OnCanWrite();
EXPECT_FALSE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSpdySessionTestServer, SendGoAway) {
if (VersionHasIetfQuicFrames(transport_version())) {
// HTTP/3 GOAWAY has different semantic and thus has its own test.
return;
}
connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
MockPacketWriter* writer = static_cast<MockPacketWriter*>(
QuicConnectionPeer::GetWriter(session_.connection()));
EXPECT_CALL(*writer, WritePacket(_, _, _, _, _))
.WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0)));
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(
Invoke(connection_, &MockQuicConnection::ReallySendControlFrame));
session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away.");
EXPECT_TRUE(session_.goaway_sent());
const QuicStreamId kTestStreamId = 5u;
EXPECT_CALL(*connection_, SendControlFrame(_)).Times(0);
EXPECT_CALL(*connection_,
OnStreamReset(kTestStreamId, QUIC_STREAM_PEER_GOING_AWAY))
.Times(0);
EXPECT_TRUE(session_.GetOrCreateStream(kTestStreamId));
}
TEST_P(QuicSpdySessionTestServer, SendHttp3GoAway) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
session_.SendHttp3GoAway();
EXPECT_TRUE(session_.http3_goaway_sent());
const QuicStreamId kTestStreamId =
GetNthClientInitiatedBidirectionalStreamId(transport_version(), 0);
EXPECT_CALL(*connection_, OnStreamReset(kTestStreamId, _)).Times(0);
EXPECT_TRUE(session_.GetOrCreateStream(kTestStreamId));
}
TEST_P(QuicSpdySessionTestServer, DoNotSendGoAwayTwice) {
if (VersionHasIetfQuicFrames(transport_version())) {
// HTTP/3 GOAWAY doesn't have such restriction.
return;
}
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&ClearControlFrame));
session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away.");
EXPECT_TRUE(session_.goaway_sent());
session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away.");
}
TEST_P(QuicSpdySessionTestServer, InvalidGoAway) {
if (VersionHasIetfQuicFrames(transport_version())) {
// HTTP/3 GOAWAY has different semantics and thus has its own test.
return;
}
QuicGoAwayFrame go_away(kInvalidControlFrameId, QUIC_PEER_GOING_AWAY,
session_.next_outgoing_bidirectional_stream_id(), "");
session_.OnGoAway(go_away);
}
// Test that server session will send a connectivity probe in response to a
// connectivity probe on the same path.
TEST_P(QuicSpdySessionTestServer, ServerReplyToConnecitivityProbe) {
QuicSocketAddress old_peer_address =
QuicSocketAddress(QuicIpAddress::Loopback4(), kTestPort);
EXPECT_EQ(old_peer_address, session_.peer_address());
QuicSocketAddress new_peer_address =
QuicSocketAddress(QuicIpAddress::Loopback4(), kTestPort + 1);
EXPECT_CALL(*connection_,
SendConnectivityProbingResponsePacket(new_peer_address));
if (VersionHasIetfQuicFrames(transport_version())) {
// Need to explicitly do this to emulate the reception of a PathChallenge,
// which stores its payload for use in generating the response.
connection_->OnPathChallengeFrame(
QuicPathChallengeFrame(0, {{0, 1, 2, 3, 4, 5, 6, 7}}));
}
session_.OnPacketReceived(session_.self_address(), new_peer_address,
/*is_connectivity_probe=*/true);
EXPECT_EQ(old_peer_address, session_.peer_address());
}
TEST_P(QuicSpdySessionTestServer, IncreasedTimeoutAfterCryptoHandshake) {
if (VersionUsesHttp3(transport_version())) {
MockPacketWriter* writer = static_cast<MockPacketWriter*>(
QuicConnectionPeer::GetWriter(session_.connection()));
EXPECT_CALL(*writer, WritePacket(_, _, _, _, _))
.Times(1)
.WillRepeatedly(Return(WriteResult(WRITE_STATUS_OK, 0)));
}
EXPECT_EQ(kInitialIdleTimeoutSecs + 3,
QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds());
CryptoHandshakeMessage msg;
session_.GetMutableCryptoStream()->OnHandshakeMessage(msg);
EXPECT_EQ(kMaximumIdleTimeoutSecs + 3,
QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds());
}
TEST_P(QuicSpdySessionTestServer, RstStreamBeforeHeadersDecompressed) {
// Send two bytes of payload.
QuicStreamFrame data1(GetNthClientInitiatedBidirectionalId(0), false, 0,
QuicStringPiece("HT"));
session_.OnStreamFrame(data1);
EXPECT_EQ(1u, session_.GetNumOpenIncomingStreams());
EXPECT_CALL(*connection_, SendControlFrame(_));
if (!VersionHasIetfQuicFrames(transport_version())) {
// For version99, OnStreamReset gets called because of the STOP_SENDING,
// below. EXPECT the call there.
EXPECT_CALL(*connection_,
OnStreamReset(GetNthClientInitiatedBidirectionalId(0), _));
}
QuicRstStreamFrame rst1(kInvalidControlFrameId,
GetNthClientInitiatedBidirectionalId(0),
QUIC_ERROR_PROCESSING_STREAM, 0);
session_.OnRstStream(rst1);
// Create and inject a STOP_SENDING frame. In GOOGLE QUIC, receiving a
// RST_STREAM frame causes a two-way close. For IETF QUIC, RST_STREAM causes a
// one-way close.
if (VersionHasIetfQuicFrames(transport_version())) {
// Only needed for version 99/IETF QUIC.
QuicStopSendingFrame stop_sending(
kInvalidControlFrameId, GetNthClientInitiatedBidirectionalId(0),
static_cast<QuicApplicationErrorCode>(QUIC_ERROR_PROCESSING_STREAM));
// Expect the RESET_STREAM that is generated in response to receiving a
// STOP_SENDING.
EXPECT_CALL(*connection_,
OnStreamReset(GetNthClientInitiatedBidirectionalId(0),
QUIC_ERROR_PROCESSING_STREAM));
session_.OnStopSendingFrame(stop_sending);
}
EXPECT_EQ(0u, session_.GetNumOpenIncomingStreams());
// Connection should remain alive.
EXPECT_TRUE(connection_->connected());
}
TEST_P(QuicSpdySessionTestServer, OnStreamFrameFinStaticStreamId) {
QuicStreamId id;
// Initialize HTTP/3 control stream.
if (VersionUsesHttp3(transport_version())) {
id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3);
char type[] = {kControlStream};
QuicStreamFrame data1(id, false, 0, QuicStringPiece(type, 1));
session_.OnStreamFrame(data1);
} else {
id = QuicUtils::GetHeadersStreamId(connection_->transport_version());
}
// Send two bytes of payload.
QuicStreamFrame data1(id, true, 0, QuicStringPiece("HT"));
EXPECT_CALL(*connection_,
CloseConnection(
QUIC_INVALID_STREAM_ID, "Attempt to close a static stream",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET));
session_.OnStreamFrame(data1);
}
TEST_P(QuicSpdySessionTestServer, OnRstStreamStaticStreamId) {
QuicStreamId id;
// Initialize HTTP/3 control stream.
if (VersionUsesHttp3(transport_version())) {
id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3);
char type[] = {kControlStream};
QuicStreamFrame data1(id, false, 0, QuicStringPiece(type, 1));
session_.OnStreamFrame(data1);
} else {
id = QuicUtils::GetHeadersStreamId(connection_->transport_version());
}
// Send two bytes of payload.
QuicRstStreamFrame rst1(kInvalidControlFrameId, id,
QUIC_ERROR_PROCESSING_STREAM, 0);
EXPECT_CALL(*connection_,
CloseConnection(
QUIC_INVALID_STREAM_ID, "Attempt to reset a static stream",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET));
session_.OnRstStream(rst1);
}
TEST_P(QuicSpdySessionTestServer, OnStreamFrameInvalidStreamId) {
// Send two bytes of payload.
QuicStreamFrame data1(
QuicUtils::GetInvalidStreamId(connection_->transport_version()), true, 0,
QuicStringPiece("HT"));
EXPECT_CALL(*connection_,
CloseConnection(
QUIC_INVALID_STREAM_ID, "Received data for an invalid stream",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET));
session_.OnStreamFrame(data1);
}
TEST_P(QuicSpdySessionTestServer, OnRstStreamInvalidStreamId) {
// Send two bytes of payload.
QuicRstStreamFrame rst1(
kInvalidControlFrameId,
QuicUtils::GetInvalidStreamId(connection_->transport_version()),
QUIC_ERROR_PROCESSING_STREAM, 0);
EXPECT_CALL(*connection_,
CloseConnection(
QUIC_INVALID_STREAM_ID, "Received data for an invalid stream",
ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET));
session_.OnRstStream(rst1);
}
TEST_P(QuicSpdySessionTestServer, HandshakeUnblocksFlowControlBlockedStream) {
if (connection_->version().handshake_protocol == PROTOCOL_TLS1_3) {
// This test requires Google QUIC crypto because it assumes streams start
// off unblocked.
return;
}
// Test that if a stream is flow control blocked, then on receipt of the SHLO
// containing a suitable send window offset, the stream becomes unblocked.
// Ensure that Writev consumes all the data it is given (simulate no socket
// blocking).
session_.set_writev_consumes_all_data(true);
// Create a stream, and send enough data to make it flow control blocked.
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
std::string body(kMinimumFlowControlSendWindow, '.');
EXPECT_FALSE(stream2->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
EXPECT_CALL(*connection_, SendControlFrame(_)).Times(AtLeast(1));
stream2->WriteOrBufferBody(body, false);
EXPECT_TRUE(stream2->flow_controller()->IsBlocked());
EXPECT_TRUE(session_.IsConnectionFlowControlBlocked());
EXPECT_TRUE(session_.IsStreamFlowControlBlocked());
// Now complete the crypto handshake, resulting in an increased flow control
// send window.
CryptoHandshakeMessage msg;
session_.GetMutableCryptoStream()->OnHandshakeMessage(msg);
EXPECT_TRUE(QuicSessionPeer::IsStreamWriteBlocked(&session_, stream2->id()));
// Stream is now unblocked.
EXPECT_FALSE(stream2->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
}
TEST_P(QuicSpdySessionTestServer,
HandshakeUnblocksFlowControlBlockedCryptoStream) {
if (QuicVersionUsesCryptoFrames(GetParam().transport_version)) {
// QUIC version 47 onwards uses CRYPTO frames for the handshake, so this
// test doesn't make sense for those versions.
return;
}
// Test that if the crypto stream is flow control blocked, then if the SHLO
// contains a larger send window offset, the stream becomes unblocked.
session_.set_writev_consumes_all_data(true);
TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream();
EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
QuicHeadersStream* headers_stream =
QuicSpdySessionPeer::GetHeadersStream(&session_);
EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&ClearControlFrame));
for (QuicStreamId i = 0;
!crypto_stream->flow_controller()->IsBlocked() && i < 1000u; i++) {
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
QuicStreamOffset offset = crypto_stream->stream_bytes_written();
QuicConfig config;
CryptoHandshakeMessage crypto_message;
config.ToHandshakeMessage(&crypto_message, transport_version());
crypto_stream->SendHandshakeMessage(crypto_message);
char buf[1000];
QuicDataWriter writer(1000, buf, NETWORK_BYTE_ORDER);
crypto_stream->WriteStreamData(offset, crypto_message.size(), &writer);
}
EXPECT_TRUE(crypto_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_TRUE(session_.IsStreamFlowControlBlocked());
EXPECT_FALSE(session_.HasDataToWrite());
EXPECT_TRUE(crypto_stream->HasBufferedData());
// Now complete the crypto handshake, resulting in an increased flow control
// send window.
CryptoHandshakeMessage msg;
session_.GetMutableCryptoStream()->OnHandshakeMessage(msg);
EXPECT_TRUE(QuicSessionPeer::IsStreamWriteBlocked(
&session_,
QuicUtils::GetCryptoStreamId(connection_->transport_version())));
// Stream is now unblocked and will no longer have buffered data.
EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
}
#if !defined(OS_IOS)
// This test is failing flakily for iOS bots.
// http://crbug.com/425050
// NOTE: It's not possible to use the standard MAYBE_ convention to disable
// this test on iOS because when this test gets instantiated it ends up with
// various names that are dependent on the parameters passed.
TEST_P(QuicSpdySessionTestServer,
HandshakeUnblocksFlowControlBlockedHeadersStream) {
// This test depends on stream-level flow control for the crypto stream, which
// doesn't exist when CRYPTO frames are used.
if (QuicVersionUsesCryptoFrames(connection_->transport_version())) {
return;
}
// This test depends on the headers stream, which does not exist when QPACK is
// used.
if (VersionUsesHttp3(transport_version())) {
return;
}
// Test that if the header stream is flow control blocked, then if the SHLO
// contains a larger send window offset, the stream becomes unblocked.
session_.set_writev_consumes_all_data(true);
TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream();
EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
QuicHeadersStream* headers_stream =
QuicSpdySessionPeer::GetHeadersStream(&session_);
EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
QuicStreamId stream_id = 5;
// Write until the header stream is flow control blocked.
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&ClearControlFrame));
SpdyHeaderBlock headers;
SimpleRandom random;
while (!headers_stream->flow_controller()->IsBlocked() && stream_id < 2000) {
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
headers["header"] = QuicStrCat(random.RandUint64(), random.RandUint64(),
random.RandUint64());
session_.WriteHeadersOnHeadersStream(stream_id, headers.Clone(), true,
spdy::SpdyStreamPrecedence(0),
nullptr);
stream_id += IdDelta();
}
// Write once more to ensure that the headers stream has buffered data. The
// random headers may have exactly filled the flow control window.
session_.WriteHeadersOnHeadersStream(stream_id, std::move(headers), true,
spdy::SpdyStreamPrecedence(0), nullptr);
EXPECT_TRUE(headers_stream->HasBufferedData());
EXPECT_TRUE(headers_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_TRUE(session_.IsStreamFlowControlBlocked());
EXPECT_FALSE(session_.HasDataToWrite());
// Now complete the crypto handshake, resulting in an increased flow control
// send window.
CryptoHandshakeMessage msg;
session_.GetMutableCryptoStream()->OnHandshakeMessage(msg);
// Stream is now unblocked and will no longer have buffered data.
EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
EXPECT_TRUE(headers_stream->HasBufferedData());
EXPECT_TRUE(QuicSessionPeer::IsStreamWriteBlocked(
&session_,
QuicUtils::GetHeadersStreamId(connection_->transport_version())));
}
#endif // !defined(OS_IOS)
TEST_P(QuicSpdySessionTestServer,
ConnectionFlowControlAccountingRstOutOfOrder) {
// Test that when we receive an out of order stream RST we correctly adjust
// our connection level flow control receive window.
// On close, the stream should mark as consumed all bytes between the highest
// byte consumed so far and the final byte offset from the RST frame.
TestStream* stream = session_.CreateOutgoingBidirectionalStream();
const QuicStreamOffset kByteOffset =
1 + kInitialSessionFlowControlWindowForTest / 2;
EXPECT_CALL(*connection_, SendControlFrame(_))
.Times(2)
.WillRepeatedly(Invoke(&ClearControlFrame));
if (!VersionHasIetfQuicFrames(transport_version())) {
// For version99 the call to OnStreamReset happens as a result of receiving
// the STOP_SENDING, so set up the EXPECT there.
EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _));
}
QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream->id(),
QUIC_STREAM_CANCELLED, kByteOffset);
session_.OnRstStream(rst_frame);
// Create and inject a STOP_SENDING frame. In GOOGLE QUIC, receiving a
// RST_STREAM frame causes a two-way close. For IETF QUIC, RST_STREAM causes a
// one-way close.
if (VersionHasIetfQuicFrames(transport_version())) {
// Only needed for version 99/IETF QUIC.
QuicStopSendingFrame stop_sending(
kInvalidControlFrameId, stream->id(),
static_cast<QuicApplicationErrorCode>(QUIC_STREAM_CANCELLED));
// Expect the RESET_STREAM that is generated in response to receiving a
// STOP_SENDING.
EXPECT_CALL(*connection_,
OnStreamReset(stream->id(), QUIC_STREAM_CANCELLED));
session_.OnStopSendingFrame(stop_sending);
}
EXPECT_EQ(kByteOffset, session_.flow_controller()->bytes_consumed());
}
TEST_P(QuicSpdySessionTestServer,
ConnectionFlowControlAccountingFinAndLocalReset) {
// Test the situation where we receive a FIN on a stream, and before we fully
// consume all the data from the sequencer buffer we locally RST the stream.
// The bytes between highest consumed byte, and the final byte offset that we
// determined when the FIN arrived, should be marked as consumed at the
// connection level flow controller when the stream is reset.
TestStream* stream = session_.CreateOutgoingBidirectionalStream();
const QuicStreamOffset kByteOffset =
kInitialSessionFlowControlWindowForTest / 2 - 1;
QuicStreamFrame frame(stream->id(), true, kByteOffset, ".");
session_.OnStreamFrame(frame);
EXPECT_TRUE(connection_->connected());
EXPECT_EQ(0u, stream->flow_controller()->bytes_consumed());
EXPECT_EQ(kByteOffset + frame.data_length,
stream->flow_controller()->highest_received_byte_offset());
// Reset stream locally.
EXPECT_CALL(*connection_, SendControlFrame(_));
EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _));
stream->Reset(QUIC_STREAM_CANCELLED);
EXPECT_EQ(kByteOffset + frame.data_length,
session_.flow_controller()->bytes_consumed());
}
TEST_P(QuicSpdySessionTestServer, ConnectionFlowControlAccountingFinAfterRst) {
// Test that when we RST the stream (and tear down stream state), and then
// receive a FIN from the peer, we correctly adjust our connection level flow
// control receive window.
// Connection starts with some non-zero highest received byte offset,
// due to other active streams.
const uint64_t kInitialConnectionBytesConsumed = 567;
const uint64_t kInitialConnectionHighestReceivedOffset = 1234;
EXPECT_LT(kInitialConnectionBytesConsumed,
kInitialConnectionHighestReceivedOffset);
session_.flow_controller()->UpdateHighestReceivedOffset(
kInitialConnectionHighestReceivedOffset);
session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed);
// Reset our stream: this results in the stream being closed locally.
TestStream* stream = session_.CreateOutgoingBidirectionalStream();
EXPECT_CALL(*connection_, SendControlFrame(_));
EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _));
stream->Reset(QUIC_STREAM_CANCELLED);
// Now receive a response from the peer with a FIN. We should handle this by
// adjusting the connection level flow control receive window to take into
// account the total number of bytes sent by the peer.
const QuicStreamOffset kByteOffset = 5678;
std::string body = "hello";
QuicStreamFrame frame(stream->id(), true, kByteOffset, QuicStringPiece(body));
session_.OnStreamFrame(frame);
QuicStreamOffset total_stream_bytes_sent_by_peer =
kByteOffset + body.length();
EXPECT_EQ(kInitialConnectionBytesConsumed + total_stream_bytes_sent_by_peer,
session_.flow_controller()->bytes_consumed());
EXPECT_EQ(
kInitialConnectionHighestReceivedOffset + total_stream_bytes_sent_by_peer,
session_.flow_controller()->highest_received_byte_offset());
}
TEST_P(QuicSpdySessionTestServer, ConnectionFlowControlAccountingRstAfterRst) {
// Test that when we RST the stream (and tear down stream state), and then
// receive a RST from the peer, we correctly adjust our connection level flow
// control receive window.
// Connection starts with some non-zero highest received byte offset,
// due to other active streams.
const uint64_t kInitialConnectionBytesConsumed = 567;
const uint64_t kInitialConnectionHighestReceivedOffset = 1234;
EXPECT_LT(kInitialConnectionBytesConsumed,
kInitialConnectionHighestReceivedOffset);
session_.flow_controller()->UpdateHighestReceivedOffset(
kInitialConnectionHighestReceivedOffset);
session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed);
// Reset our stream: this results in the stream being closed locally.
TestStream* stream = session_.CreateOutgoingBidirectionalStream();
EXPECT_CALL(*connection_, SendControlFrame(_));
EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _));
stream->Reset(QUIC_STREAM_CANCELLED);
EXPECT_TRUE(QuicStreamPeer::read_side_closed(stream));
// Now receive a RST from the peer. We should handle this by adjusting the
// connection level flow control receive window to take into account the total
// number of bytes sent by the peer.
const QuicStreamOffset kByteOffset = 5678;
QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream->id(),
QUIC_STREAM_CANCELLED, kByteOffset);
session_.OnRstStream(rst_frame);
EXPECT_EQ(kInitialConnectionBytesConsumed + kByteOffset,
session_.flow_controller()->bytes_consumed());
EXPECT_EQ(kInitialConnectionHighestReceivedOffset + kByteOffset,
session_.flow_controller()->highest_received_byte_offset());
}
TEST_P(QuicSpdySessionTestServer, InvalidStreamFlowControlWindowInHandshake) {
if (GetParam().handshake_protocol == PROTOCOL_TLS1_3) {
// IETF Quic doesn't require a minimum flow control window.
return;
}
// Test that receipt of an invalid (< default) stream flow control window from
// the peer results in the connection being torn down.
const uint32_t kInvalidWindow = kMinimumFlowControlSendWindow - 1;
QuicConfigPeer::SetReceivedInitialStreamFlowControlWindow(session_.config(),
kInvalidWindow);
EXPECT_CALL(*connection_,
CloseConnection(QUIC_FLOW_CONTROL_INVALID_WINDOW, _, _));
session_.OnConfigNegotiated();
}
TEST_P(QuicSpdySessionTestServer, InvalidSessionFlowControlWindowInHandshake) {
if (GetParam().handshake_protocol == PROTOCOL_TLS1_3) {
// IETF Quic doesn't require a minimum flow control window.
return;
}
// Test that receipt of an invalid (< default) session flow control window
// from the peer results in the connection being torn down.
const uint32_t kInvalidWindow = kMinimumFlowControlSendWindow - 1;
QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow(session_.config(),
kInvalidWindow);
EXPECT_CALL(*connection_,
CloseConnection(QUIC_FLOW_CONTROL_INVALID_WINDOW, _, _));
session_.OnConfigNegotiated();
}
TEST_P(QuicSpdySessionTestServer, TooLowUnidirectionalStreamLimitHttp3) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
QuicConfigPeer::SetReceivedMaxIncomingUnidirectionalStreams(session_.config(),
2u);
EXPECT_CALL(
*connection_,
CloseConnection(_, "New unidirectional stream limit is too low.", _));
session_.OnConfigNegotiated();
}
// Test negotiation of custom server initial flow control window.
TEST_P(QuicSpdySessionTestServer, CustomFlowControlWindow) {
QuicTagVector copt;
copt.push_back(kIFW7);
QuicConfigPeer::SetReceivedConnectionOptions(session_.config(), copt);
session_.OnConfigNegotiated();
EXPECT_EQ(192 * 1024u, QuicFlowControllerPeer::ReceiveWindowSize(
session_.flow_controller()));
}
TEST_P(QuicSpdySessionTestServer, FlowControlWithInvalidFinalOffset) {
// Test that if we receive a stream RST with a highest byte offset that
// violates flow control, that we close the connection.
const uint64_t kLargeOffset = kInitialSessionFlowControlWindowForTest + 1;
EXPECT_CALL(*connection_,
CloseConnection(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA, _, _))
.Times(2);
// Check that stream frame + FIN results in connection close.
TestStream* stream = session_.CreateOutgoingBidirectionalStream();
EXPECT_CALL(*connection_, SendControlFrame(_));
EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _));
stream->Reset(QUIC_STREAM_CANCELLED);
QuicStreamFrame frame(stream->id(), true, kLargeOffset, QuicStringPiece());
session_.OnStreamFrame(frame);
// Check that RST results in connection close.
QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream->id(),
QUIC_STREAM_CANCELLED, kLargeOffset);
session_.OnRstStream(rst_frame);
}
TEST_P(QuicSpdySessionTestServer, WindowUpdateUnblocksHeadersStream) {
if (VersionUsesHttp3(GetParam().transport_version)) {
// The test relies on headers stream, which no longer exists in IETF QUIC.
return;
}
// Test that a flow control blocked headers stream gets unblocked on recipt of
// a WINDOW_UPDATE frame.
// Set the headers stream to be flow control blocked.
QuicHeadersStream* headers_stream =
QuicSpdySessionPeer::GetHeadersStream(&session_);
QuicFlowControllerPeer::SetSendWindowOffset(headers_stream->flow_controller(),
0);
EXPECT_TRUE(headers_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_TRUE(session_.IsStreamFlowControlBlocked());
// Unblock the headers stream by supplying a WINDOW_UPDATE.
QuicWindowUpdateFrame window_update_frame(kInvalidControlFrameId,
headers_stream->id(),
2 * kMinimumFlowControlSendWindow);
session_.OnWindowUpdateFrame(window_update_frame);
EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.IsConnectionFlowControlBlocked());
EXPECT_FALSE(session_.IsStreamFlowControlBlocked());
}
TEST_P(QuicSpdySessionTestServer,
TooManyUnfinishedStreamsCauseServerRejectStream) {
// If a buggy/malicious peer creates too many streams that are not ended
// with a FIN or RST then we send an RST to refuse streams for versions other
// than version 99. In version 99 the connection gets closed.
const QuicStreamId kMaxStreams = 5;
if (VersionHasIetfQuicFrames(transport_version())) {
QuicSessionPeer::SetMaxOpenIncomingBidirectionalStreams(&session_,
kMaxStreams);
} else {
QuicSessionPeer::SetMaxOpenIncomingStreams(&session_, kMaxStreams);
}
// GetNth assumes that both the crypto and header streams have been
// open, but the stream id manager, using GetFirstBidirectional... only
// assumes that the crypto stream is open. This means that GetNth...(0)
// Will return stream ID == 8 (with id ==0 for crypto and id==4 for headers).
// It also means that GetNth(kMax..=5) returns 28 (streams 0/1/2/3/4 are ids
// 8, 12, 16, 20, 24, respectively, so stream#5 is stream id 28).
// However, the stream ID manager does not assume stream 4 is for headers.
// The ID manager would assume that stream#5 is streamid 24.
// In order to make this all work out properly, kFinalStreamId will
// be set to GetNth...(kMaxStreams-1)... but only for V99
const QuicStreamId kFirstStreamId = GetNthClientInitiatedBidirectionalId(0);
const QuicStreamId kFinalStreamId =
GetNthClientInitiatedBidirectionalId(kMaxStreams);
// Create kMaxStreams data streams, and close them all without receiving a
// FIN or a RST_STREAM from the client.
const QuicStreamId kNextId =
QuicUtils::StreamIdDelta(connection_->transport_version());
for (QuicStreamId i = kFirstStreamId; i < kFinalStreamId; i += kNextId) {
QuicStreamFrame data1(i, false, 0, QuicStringPiece("HT"));
session_.OnStreamFrame(data1);
// EXPECT_EQ(1u, session_.GetNumOpenStreams());
if (!VersionHasIetfQuicFrames(transport_version())) {
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&ClearControlFrame));
} else {
// V99 has two frames, RST_STREAM and STOP_SENDING
EXPECT_CALL(*connection_, SendControlFrame(_))
.Times(2)
.WillRepeatedly(Invoke(&ClearControlFrame));
}
// Close the stream only if not version 99. If we are version 99
// then closing the stream opens up the available stream id space,
// so we never bump into the limit.
EXPECT_CALL(*connection_, OnStreamReset(i, _));
session_.CloseStream(i);
}
// Try and open a stream that exceeds the limit.
if (!VersionHasIetfQuicFrames(transport_version())) {
// On versions other than 99, opening such a stream results in a
// RST_STREAM.
EXPECT_CALL(*connection_, SendControlFrame(_)).Times(1);
EXPECT_CALL(*connection_,
OnStreamReset(kFinalStreamId, QUIC_REFUSED_STREAM))
.Times(1);
} else {
// On version 99 opening such a stream results in a connection close.
EXPECT_CALL(
*connection_,
CloseConnection(QUIC_INVALID_STREAM_ID,
testing::MatchesRegex(
"Stream id \\d+ would exceed stream count limit 5"),
_));
}
// Create one more data streams to exceed limit of open stream.
QuicStreamFrame data1(kFinalStreamId, false, 0, QuicStringPiece("HT"));
session_.OnStreamFrame(data1);
}
TEST_P(QuicSpdySessionTestServer, DrainingStreamsDoNotCountAsOpened) {
// Verify that a draining stream (which has received a FIN but not consumed
// it) does not count against the open quota (because it is closed from the
// protocol point of view).
if (VersionHasIetfQuicFrames(transport_version())) {
// Simulate receiving a config. so that MAX_STREAMS/etc frames may
// be transmitted
QuicSessionPeer::set_is_configured(&session_, true);
// Version 99 will result in a MAX_STREAMS frame as streams are consumed
// (via the OnStreamFrame call) and then released (via
// StreamDraining). Eventually this node will believe that the peer is
// running low on available stream ids and then send a MAX_STREAMS frame,
// caught by this EXPECT_CALL.
EXPECT_CALL(*connection_, SendControlFrame(_)).Times(1);
} else {
EXPECT_CALL(*connection_, SendControlFrame(_)).Times(0);
}
EXPECT_CALL(*connection_, OnStreamReset(_, QUIC_REFUSED_STREAM)).Times(0);
const QuicStreamId kMaxStreams = 5;
if (VersionHasIetfQuicFrames(transport_version())) {
QuicSessionPeer::SetMaxOpenIncomingBidirectionalStreams(&session_,
kMaxStreams);
} else {
QuicSessionPeer::SetMaxOpenIncomingStreams(&session_, kMaxStreams);
}
// Create kMaxStreams + 1 data streams, and mark them draining.
const QuicStreamId kFirstStreamId = GetNthClientInitiatedBidirectionalId(0);
const QuicStreamId kFinalStreamId =
GetNthClientInitiatedBidirectionalId(kMaxStreams + 1);
for (QuicStreamId i = kFirstStreamId; i < kFinalStreamId; i += IdDelta()) {
QuicStreamFrame data1(i, true, 0, QuicStringPiece("HT"));
session_.OnStreamFrame(data1);
EXPECT_EQ(1u, session_.GetNumOpenIncomingStreams());
session_.StreamDraining(i);
EXPECT_EQ(0u, session_.GetNumOpenIncomingStreams());
}
}
class QuicSpdySessionTestClient : public QuicSpdySessionTestBase {
protected:
QuicSpdySessionTestClient()
: QuicSpdySessionTestBase(Perspective::IS_CLIENT) {}
};
INSTANTIATE_TEST_SUITE_P(Tests,
QuicSpdySessionTestClient,
::testing::ValuesIn(AllSupportedVersions()),
::testing::PrintToStringParamName());
TEST_P(QuicSpdySessionTestClient, UsesPendingStreams) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
EXPECT_TRUE(session_.UsesPendingStreams());
}
// Regression test for crbug.com/977581.
TEST_P(QuicSpdySessionTestClient, BadStreamFramePendingStream) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
EXPECT_EQ(0u, session_.GetNumOpenIncomingStreams());
QuicStreamId stream_id1 =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0);
// A bad stream frame with no data and no fin.
QuicStreamFrame data1(stream_id1, false, 0, 0);
EXPECT_CALL(*connection_, CloseConnection(_, _, _))
.WillOnce(
Invoke(connection_, &MockQuicConnection::ReallyCloseConnection));
EXPECT_CALL(*connection_, SendConnectionClosePacket(_, _));
session_.OnStreamFrame(data1);
}
TEST_P(QuicSpdySessionTestClient, PendingStreamKeepsConnectionAlive) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId(
transport_version(), Perspective::IS_SERVER);
QuicStreamFrame frame(stream_id, false, 1, "test");
EXPECT_FALSE(session_.ShouldKeepConnectionAlive());
session_.OnStreamFrame(frame);
EXPECT_TRUE(QuicSessionPeer::GetPendingStream(&session_, stream_id));
EXPECT_TRUE(session_.ShouldKeepConnectionAlive());
}
TEST_P(QuicSpdySessionTestClient, AvailableStreamsClient) {
ASSERT_TRUE(session_.GetOrCreateStream(
GetNthServerInitiatedBidirectionalId(2)) != nullptr);
// Both server initiated streams with smaller stream IDs should be available.
EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable(
&session_, GetNthServerInitiatedBidirectionalId(0)));
EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable(
&session_, GetNthServerInitiatedBidirectionalId(1)));
ASSERT_TRUE(session_.GetOrCreateStream(
GetNthServerInitiatedBidirectionalId(0)) != nullptr);
ASSERT_TRUE(session_.GetOrCreateStream(
GetNthServerInitiatedBidirectionalId(1)) != nullptr);
// And client initiated stream ID should be not available.
EXPECT_FALSE(QuicSessionPeer::IsStreamAvailable(
&session_, GetNthClientInitiatedBidirectionalId(0)));
}
// Regression test for b/130740258 and https://crbug.com/971779.
// If headers that are too large or empty are received (these cases are handled
// the same way, as QuicHeaderList clears itself when headers exceed the limit),
// then the stream is reset. No more frames must be sent in this case.
TEST_P(QuicSpdySessionTestClient, TooLargeHeadersMustNotCauseWriteAfterReset) {
// In IETF QUIC, HEADERS do not carry FIN flag, and OnStreamHeaderList() is
// never called after an error, including too large headers.
if (VersionUsesHttp3(transport_version())) {
return;
}
TestStream* stream = session_.CreateOutgoingBidirectionalStream();
// Write headers with FIN set to close write side of stream.
// Header block does not matter.
stream->WriteHeaders(SpdyHeaderBlock(), /* fin = */ true, nullptr);
// Receive headers that are too large or empty, with FIN set.
// This causes the stream to be reset. No frames must be written after this.
QuicHeaderList headers;
EXPECT_CALL(*connection_, SendControlFrame(_));
EXPECT_CALL(*connection_,
OnStreamReset(stream->id(), QUIC_HEADERS_TOO_LARGE));
stream->OnStreamHeaderList(/* fin = */ true,
headers.uncompressed_header_bytes(), headers);
}
TEST_P(QuicSpdySessionTestClient, RecordFinAfterReadSideClosed) {
// Verify that an incoming FIN is recorded in a stream object even if the read
// side has been closed. This prevents an entry from being made in
// locally_closed_streams_highest_offset_ (which will never be deleted).
TestStream* stream = session_.CreateOutgoingBidirectionalStream();
QuicStreamId stream_id = stream->id();
// Close the read side manually.
QuicStreamPeer::CloseReadSide(stream);
// Receive a stream data frame with FIN.
QuicStreamFrame frame(stream_id, true, 0, QuicStringPiece());
session_.OnStreamFrame(frame);
EXPECT_TRUE(stream->fin_received());
// Reset stream locally.
EXPECT_CALL(*connection_, SendControlFrame(_));
EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _));
stream->Reset(QUIC_STREAM_CANCELLED);
EXPECT_TRUE(QuicStreamPeer::read_side_closed(stream));
EXPECT_TRUE(connection_->connected());
EXPECT_TRUE(QuicSessionPeer::IsStreamClosed(&session_, stream_id));
EXPECT_FALSE(QuicSessionPeer::IsStreamCreated(&session_, stream_id));
// The stream is not waiting for the arrival of the peer's final offset as it
// was received with the FIN earlier.
EXPECT_EQ(
0u,
QuicSessionPeer::GetLocallyClosedStreamsHighestOffset(&session_).size());
}
TEST_P(QuicSpdySessionTestClient, WritePriority) {
if (VersionUsesHttp3(transport_version())) {
// IETF QUIC currently doesn't support PRIORITY.
return;
}
TestHeadersStream* headers_stream;
QuicSpdySessionPeer::SetHeadersStream(&session_, nullptr);
headers_stream = new TestHeadersStream(&session_);
QuicSpdySessionPeer::SetHeadersStream(&session_, headers_stream);
// Make packet writer blocked so |headers_stream| will buffer its write data.
MockPacketWriter* writer = static_cast<MockPacketWriter*>(
QuicConnectionPeer::GetWriter(session_.connection()));
EXPECT_CALL(*writer, IsWriteBlocked()).WillRepeatedly(Return(true));
const QuicStreamId id = 4;
const QuicStreamId parent_stream_id = 9;
const SpdyPriority priority = kV3HighestPriority;
const bool exclusive = true;
session_.WritePriority(id, parent_stream_id,
Spdy3PriorityToHttp2Weight(priority), exclusive);
QuicStreamSendBuffer& send_buffer =
QuicStreamPeer::SendBuffer(headers_stream);
ASSERT_EQ(1u, send_buffer.size());
SpdyPriorityIR priority_frame(
id, parent_stream_id, Spdy3PriorityToHttp2Weight(priority), exclusive);
SpdyFramer spdy_framer(SpdyFramer::ENABLE_COMPRESSION);
SpdySerializedFrame frame = spdy_framer.SerializeFrame(priority_frame);
const QuicMemSlice& slice =
QuicStreamSendBufferPeer::CurrentWriteSlice(&send_buffer)->slice;
EXPECT_EQ(QuicStringPiece(frame.data(), frame.size()),
QuicStringPiece(slice.data(), slice.length()));
}
TEST_P(QuicSpdySessionTestClient, Http3ServerPush) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
EXPECT_EQ(0u, session_.GetNumOpenIncomingStreams());
// Push unidirectional stream is type 0x01.
std::string frame_type1 = QuicTextUtils::HexDecode("01");
QuicStreamId stream_id1 =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0);
session_.OnStreamFrame(QuicStreamFrame(stream_id1, /* fin = */ false,
/* offset = */ 0, frame_type1));
EXPECT_EQ(1u, session_.GetNumOpenIncomingStreams());
QuicStream* stream = session_.GetOrCreateStream(stream_id1);
EXPECT_EQ(1u, stream->flow_controller()->bytes_consumed());
EXPECT_EQ(1u, session_.flow_controller()->bytes_consumed());
// The same stream type can be encoded differently.
std::string frame_type2 = QuicTextUtils::HexDecode("80000001");
QuicStreamId stream_id2 =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 1);
session_.OnStreamFrame(QuicStreamFrame(stream_id2, /* fin = */ false,
/* offset = */ 0, frame_type2));
EXPECT_EQ(2u, session_.GetNumOpenIncomingStreams());
stream = session_.GetOrCreateStream(stream_id2);
EXPECT_EQ(4u, stream->flow_controller()->bytes_consumed());
EXPECT_EQ(5u, session_.flow_controller()->bytes_consumed());
}
TEST_P(QuicSpdySessionTestClient, Http3ServerPushOutofOrderFrame) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
EXPECT_EQ(0u, session_.GetNumOpenIncomingStreams());
// Push unidirectional stream is type 0x01.
std::string frame_type = QuicTextUtils::HexDecode("01");
// The first field of a push stream is the Push ID.
std::string push_id = QuicTextUtils::HexDecode("4000");
QuicStreamId stream_id =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0);
QuicStreamFrame data1(stream_id,
/* fin = */ false, /* offset = */ 0, frame_type);
QuicStreamFrame data2(stream_id,
/* fin = */ false, /* offset = */ frame_type.size(),
push_id);
// Receiving some stream data without stream type does not open the stream.
session_.OnStreamFrame(data2);
EXPECT_EQ(0u, session_.GetNumOpenIncomingStreams());
session_.OnStreamFrame(data1);
EXPECT_EQ(1u, session_.GetNumOpenIncomingStreams());
QuicStream* stream = session_.GetOrCreateStream(stream_id);
EXPECT_EQ(3u, stream->flow_controller()->highest_received_byte_offset());
}
TEST_P(QuicSpdySessionTestServer, ZombieStreams) {
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
QuicStreamPeer::SetStreamBytesWritten(3, stream2);
EXPECT_TRUE(stream2->IsWaitingForAcks());
EXPECT_CALL(*connection_, SendControlFrame(_));
EXPECT_CALL(*connection_, OnStreamReset(stream2->id(), _));
session_.CloseStream(stream2->id());
EXPECT_FALSE(QuicContainsKey(session_.zombie_streams(), stream2->id()));
ASSERT_EQ(1u, session_.closed_streams()->size());
EXPECT_EQ(stream2->id(), session_.closed_streams()->front()->id());
session_.OnStreamDoneWaitingForAcks(2);
EXPECT_FALSE(QuicContainsKey(session_.zombie_streams(), stream2->id()));
EXPECT_EQ(1u, session_.closed_streams()->size());
EXPECT_EQ(stream2->id(), session_.closed_streams()->front()->id());
}
TEST_P(QuicSpdySessionTestServer, OnStreamFrameLost) {
InSequence s;
// Drive congestion control manually.
MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>;
QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm);
TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream();
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream4 = session_.CreateOutgoingBidirectionalStream();
QuicStreamFrame frame2(stream2->id(), false, 0, 9);
QuicStreamFrame frame3(stream4->id(), false, 0, 9);
// Lost data on cryption stream, streams 2 and 4.
EXPECT_CALL(*stream4, HasPendingRetransmission()).WillOnce(Return(true));
if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) {
EXPECT_CALL(*crypto_stream, HasPendingRetransmission())
.WillOnce(Return(true));
}
EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(true));
session_.OnFrameLost(QuicFrame(frame3));
if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) {
QuicStreamFrame frame1(
QuicUtils::GetCryptoStreamId(connection_->transport_version()), false,
0, 1300);
session_.OnFrameLost(QuicFrame(frame1));
} else {
QuicCryptoFrame crypto_frame(ENCRYPTION_INITIAL, 0, 1300);
session_.OnFrameLost(QuicFrame(&crypto_frame));
}
session_.OnFrameLost(QuicFrame(frame2));
EXPECT_TRUE(session_.WillingAndAbleToWrite());
// Mark streams 2 and 4 write blocked.
session_.MarkConnectionLevelWriteBlocked(stream2->id());
session_.MarkConnectionLevelWriteBlocked(stream4->id());
// Lost data is retransmitted before new data, and retransmissions for crypto
// stream go first.
// Do not check congestion window when crypto stream has lost data.
EXPECT_CALL(*send_algorithm, CanSend(_)).Times(0);
if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) {
EXPECT_CALL(*crypto_stream, OnCanWrite());
EXPECT_CALL(*crypto_stream, HasPendingRetransmission())
.WillOnce(Return(false));
}
// Check congestion window for non crypto streams.
EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true));
EXPECT_CALL(*stream4, OnCanWrite());
EXPECT_CALL(*stream4, HasPendingRetransmission()).WillOnce(Return(false));
// Connection is blocked.
EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(false));
session_.OnCanWrite();
EXPECT_TRUE(session_.WillingAndAbleToWrite());
// Unblock connection.
// Stream 2 retransmits lost data.
EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true));
EXPECT_CALL(*stream2, OnCanWrite());
EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(false));
EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true));
// Stream 2 sends new data.
EXPECT_CALL(*stream2, OnCanWrite());
EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true));
EXPECT_CALL(*stream4, OnCanWrite());
EXPECT_CALL(*send_algorithm, OnApplicationLimited(_));
session_.OnCanWrite();
EXPECT_FALSE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSpdySessionTestServer, DonotRetransmitDataOfClosedStreams) {
InSequence s;
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream4 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream6 = session_.CreateOutgoingBidirectionalStream();
QuicStreamFrame frame1(stream2->id(), false, 0, 9);
QuicStreamFrame frame2(stream4->id(), false, 0, 9);
QuicStreamFrame frame3(stream6->id(), false, 0, 9);
EXPECT_CALL(*stream6, HasPendingRetransmission()).WillOnce(Return(true));
EXPECT_CALL(*stream4, HasPendingRetransmission()).WillOnce(Return(true));
EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(true));
session_.OnFrameLost(QuicFrame(frame3));
session_.OnFrameLost(QuicFrame(frame2));
session_.OnFrameLost(QuicFrame(frame1));
session_.MarkConnectionLevelWriteBlocked(stream2->id());
session_.MarkConnectionLevelWriteBlocked(stream4->id());
session_.MarkConnectionLevelWriteBlocked(stream6->id());
// Reset stream 4 locally.
EXPECT_CALL(*connection_, SendControlFrame(_));
EXPECT_CALL(*connection_, OnStreamReset(stream4->id(), _));
stream4->Reset(QUIC_STREAM_CANCELLED);
// Verify stream 4 is removed from streams with lost data list.
EXPECT_CALL(*stream6, OnCanWrite());
EXPECT_CALL(*stream6, HasPendingRetransmission()).WillOnce(Return(false));
EXPECT_CALL(*stream2, OnCanWrite());
EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(false));
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillRepeatedly(Invoke(&ClearControlFrame));
EXPECT_CALL(*stream2, OnCanWrite());
EXPECT_CALL(*stream6, OnCanWrite());
session_.OnCanWrite();
}
TEST_P(QuicSpdySessionTestServer, RetransmitFrames) {
MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>;
QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm);
InSequence s;
TestStream* stream2 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream4 = session_.CreateOutgoingBidirectionalStream();
TestStream* stream6 = session_.CreateOutgoingBidirectionalStream();
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&ClearControlFrame));
session_.SendWindowUpdate(stream2->id(), 9);
QuicStreamFrame frame1(stream2->id(), false, 0, 9);
QuicStreamFrame frame2(stream4->id(), false, 0, 9);
QuicStreamFrame frame3(stream6->id(), false, 0, 9);
QuicWindowUpdateFrame window_update(1, stream2->id(), 9);
QuicFrames frames;
frames.push_back(QuicFrame(frame1));
frames.push_back(QuicFrame(&window_update));
frames.push_back(QuicFrame(frame2));
frames.push_back(QuicFrame(frame3));
EXPECT_FALSE(session_.WillingAndAbleToWrite());
EXPECT_CALL(*stream2, RetransmitStreamData(_, _, _)).WillOnce(Return(true));
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&ClearControlFrame));
EXPECT_CALL(*stream4, RetransmitStreamData(_, _, _)).WillOnce(Return(true));
EXPECT_CALL(*stream6, RetransmitStreamData(_, _, _)).WillOnce(Return(true));
EXPECT_CALL(*send_algorithm, OnApplicationLimited(_));
session_.RetransmitFrames(frames, TLP_RETRANSMISSION);
}
TEST_P(QuicSpdySessionTestServer, OnPriorityFrame) {
QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0);
TestStream* stream = session_.CreateIncomingStream(stream_id);
session_.OnPriorityFrame(stream_id,
spdy::SpdyStreamPrecedence(kV3HighestPriority));
EXPECT_EQ(spdy::SpdyStreamPrecedence(kV3HighestPriority),
stream->precedence());
}
TEST_P(QuicSpdySessionTestServer, SimplePendingStreamType) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
char input[] = {0x04, // type
'a', 'b', 'c'}; // data
QuicStringPiece payload(input, QUIC_ARRAYSIZE(input));
// This is a server test with a client-initiated unidirectional stream.
QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId(
transport_version(), Perspective::IS_CLIENT);
for (bool fin : {true, false}) {
QuicStreamFrame frame(stream_id, fin, /* offset = */ 0, payload);
// A STOP_SENDING frame is sent in response to the unknown stream type.
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&VerifyAndClearStopSendingFrame));
session_.OnStreamFrame(frame);
PendingStream* pending =
QuicSessionPeer::GetPendingStream(&session_, stream_id);
if (fin) {
// Stream is closed if FIN is received.
EXPECT_FALSE(pending);
} else {
ASSERT_TRUE(pending);
// The pending stream must ignore read data.
EXPECT_TRUE(pending->sequencer()->ignore_read_data());
}
stream_id += QuicUtils::StreamIdDelta(transport_version());
}
}
TEST_P(QuicSpdySessionTestServer, SimplePendingStreamTypeOutOfOrderDelivery) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
char input[] = {0x04, // type
'a', 'b', 'c'}; // data
QuicStringPiece payload(input, QUIC_ARRAYSIZE(input));
// This is a server test with a client-initiated unidirectional stream.
QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId(
transport_version(), Perspective::IS_CLIENT);
for (bool fin : {true, false}) {
QuicStreamFrame frame1(stream_id, /* fin = */ false, /* offset = */ 0,
payload.substr(0, 1));
QuicStreamFrame frame2(stream_id, fin, /* offset = */ 1, payload.substr(1));
// Deliver frames out of order.
session_.OnStreamFrame(frame2);
// A STOP_SENDING frame is sent in response to the unknown stream type.
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&VerifyAndClearStopSendingFrame));
session_.OnStreamFrame(frame1);
PendingStream* pending =
QuicSessionPeer::GetPendingStream(&session_, stream_id);
if (fin) {
// Stream is closed if FIN is received.
EXPECT_FALSE(pending);
} else {
ASSERT_TRUE(pending);
// The pending stream must ignore read data.
EXPECT_TRUE(pending->sequencer()->ignore_read_data());
}
stream_id += QuicUtils::StreamIdDelta(transport_version());
}
}
TEST_P(QuicSpdySessionTestServer,
MultipleBytesPendingStreamTypeOutOfOrderDelivery) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
char input[] = {0x41, 0x00, // type (256)
'a', 'b', 'c'}; // data
QuicStringPiece payload(input, QUIC_ARRAYSIZE(input));
// This is a server test with a client-initiated unidirectional stream.
QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId(
transport_version(), Perspective::IS_CLIENT);
for (bool fin : {true, false}) {
QuicStreamFrame frame1(stream_id, /* fin = */ false, /* offset = */ 0,
payload.substr(0, 1));
QuicStreamFrame frame2(stream_id, /* fin = */ false, /* offset = */ 1,
payload.substr(1, 1));
QuicStreamFrame frame3(stream_id, fin, /* offset = */ 2, payload.substr(2));
// Deliver frames out of order.
session_.OnStreamFrame(frame3);
// The first byte does not contain the entire type varint.
session_.OnStreamFrame(frame1);
// A STOP_SENDING frame is sent in response to the unknown stream type.
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&VerifyAndClearStopSendingFrame));
session_.OnStreamFrame(frame2);
PendingStream* pending =
QuicSessionPeer::GetPendingStream(&session_, stream_id);
if (fin) {
// Stream is closed if FIN is received.
EXPECT_FALSE(pending);
} else {
ASSERT_TRUE(pending);
// The pending stream must ignore read data.
EXPECT_TRUE(pending->sequencer()->ignore_read_data());
}
stream_id += QuicUtils::StreamIdDelta(transport_version());
}
}
TEST_P(QuicSpdySessionTestServer, ReceiveControlStream) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
MockHttp3DebugVisitor debug_visitor;
// Use an arbitrary stream id.
QuicStreamId stream_id =
GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3);
char type[] = {kControlStream};
QuicStreamFrame data1(stream_id, false, 0, QuicStringPiece(type, 1));
EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(stream_id)).Times(0);
session_.OnStreamFrame(data1);
EXPECT_EQ(stream_id,
QuicSpdySessionPeer::GetReceiveControlStream(&session_)->id());
session_.set_debug_visitor(&debug_visitor);
SettingsFrame settings;
settings.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY] = 512;
settings.values[SETTINGS_MAX_HEADER_LIST_SIZE] = 5;
settings.values[SETTINGS_QPACK_BLOCKED_STREAMS] = 42;
std::string data = EncodeSettings(settings);
QuicStreamFrame frame(stream_id, false, 1, QuicStringPiece(data));
QpackEncoder* qpack_encoder = session_.qpack_encoder();
QpackHeaderTable* header_table =
QpackEncoderPeer::header_table(qpack_encoder);
EXPECT_NE(512u,
QpackHeaderTablePeer::maximum_dynamic_table_capacity(header_table));
EXPECT_NE(5u, session_.max_outbound_header_list_size());
EXPECT_NE(42u, QpackEncoderPeer::maximum_blocked_streams(qpack_encoder));
EXPECT_CALL(debug_visitor, OnSettingsFrameReceived(settings));
session_.OnStreamFrame(frame);
EXPECT_EQ(512u,
QpackHeaderTablePeer::maximum_dynamic_table_capacity(header_table));
EXPECT_EQ(5u, session_.max_outbound_header_list_size());
EXPECT_EQ(42u, QpackEncoderPeer::maximum_blocked_streams(qpack_encoder));
}
TEST_P(QuicSpdySessionTestServer, ReceiveControlStreamOutOfOrderDelivery) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
// Use an arbitrary stream id.
QuicStreamId stream_id =
GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3);
char type[] = {kControlStream};
SettingsFrame settings;
settings.values[3] = 2;
settings.values[SETTINGS_MAX_HEADER_LIST_SIZE] = 5;
std::string data = EncodeSettings(settings);
QuicStreamFrame data1(stream_id, false, 1, QuicStringPiece(data));
QuicStreamFrame data2(stream_id, false, 0, QuicStringPiece(type, 1));
session_.OnStreamFrame(data1);
EXPECT_NE(5u, session_.max_outbound_header_list_size());
session_.OnStreamFrame(data2);
EXPECT_EQ(5u, session_.max_outbound_header_list_size());
}
// Regression test for https://crbug.com/1009551.
TEST_P(QuicSpdySessionTestServer, StreamClosedWhileHeaderDecodingBlocked) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
session_.qpack_decoder()->OnSetDynamicTableCapacity(1024);
QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0);
TestStream* stream = session_.CreateIncomingStream(stream_id);
// HEADERS frame referencing first dynamic table entry.
std::string headers_payload = QuicTextUtils::HexDecode("020080");
std::unique_ptr<char[]> headers_buffer;
HttpEncoder encoder;
QuicByteCount headers_frame_header_length =
encoder.SerializeHeadersFrameHeader(headers_payload.length(),
&headers_buffer);
QuicStringPiece headers_frame_header(headers_buffer.get(),
headers_frame_header_length);
std::string headers = QuicStrCat(headers_frame_header, headers_payload);
stream->OnStreamFrame(QuicStreamFrame(stream_id, false, 0, headers));
// Decoding is blocked because dynamic table entry has not been received yet.
EXPECT_FALSE(stream->headers_decompressed());
// Stream is closed and destroyed.
CloseStream(stream_id);
session_.CleanUpClosedStreams();
// Dynamic table entry arrived on the decoder stream.
// The destroyed stream object must not be referenced.
session_.qpack_decoder()->OnInsertWithoutNameReference("foo", "bar");
}
// Regression test for https://crbug.com/1011294.
TEST_P(QuicSpdySessionTestServer, SessionDestroyedWhileHeaderDecodingBlocked) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
session_.qpack_decoder()->OnSetDynamicTableCapacity(1024);
QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0);
TestStream* stream = session_.CreateIncomingStream(stream_id);
// HEADERS frame referencing first dynamic table entry.
std::string headers_payload = QuicTextUtils::HexDecode("020080");
std::unique_ptr<char[]> headers_buffer;
HttpEncoder encoder;
QuicByteCount headers_frame_header_length =
encoder.SerializeHeadersFrameHeader(headers_payload.length(),
&headers_buffer);
QuicStringPiece headers_frame_header(headers_buffer.get(),
headers_frame_header_length);
std::string headers = QuicStrCat(headers_frame_header, headers_payload);
stream->OnStreamFrame(QuicStreamFrame(stream_id, false, 0, headers));
// Decoding is blocked because dynamic table entry has not been received yet.
EXPECT_FALSE(stream->headers_decompressed());
// |session_| gets destoyed. That destroys QpackDecoder, a member of
// QuicSpdySession (derived class), which destroys QpackHeaderTable.
// Then |*stream|, owned by QuicSession (base class) get destroyed, which
// destroys QpackProgessiveDecoder, a registered Observer of QpackHeaderTable.
// This must not cause a crash.
}
TEST_P(QuicSpdySessionTestClient, ResetAfterInvalidIncomingStreamType) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
ASSERT_TRUE(session_.UsesPendingStreams());
const QuicStreamId stream_id =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0);
// Payload consists of two bytes. The first byte is an unknown unidirectional
// stream type. The second one would be the type of a push stream, but it
// must not be interpreted as stream type.
std::string payload = QuicTextUtils::HexDecode("3f01");
QuicStreamFrame frame(stream_id, /* fin = */ false, /* offset = */ 0,
payload);
// A STOP_SENDING frame is sent in response to the unknown stream type.
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&VerifyAndClearStopSendingFrame));
session_.OnStreamFrame(frame);
// There are no active streams.
EXPECT_EQ(0u, session_.GetNumOpenIncomingStreams());
// The pending stream is still around, because it did not receive a FIN.
PendingStream* pending =
QuicSessionPeer::GetPendingStream(&session_, stream_id);
ASSERT_TRUE(pending);
// The pending stream must ignore read data.
EXPECT_TRUE(pending->sequencer()->ignore_read_data());
// If the stream frame is received again, it should be ignored.
session_.OnStreamFrame(frame);
// Receive RESET_STREAM.
QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream_id,
QUIC_STREAM_CANCELLED,
/* bytes_written = */ payload.size());
session_.OnRstStream(rst_frame);
// The stream is closed.
EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&session_, stream_id));
}
TEST_P(QuicSpdySessionTestClient, FinAfterInvalidIncomingStreamType) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
ASSERT_TRUE(session_.UsesPendingStreams());
const QuicStreamId stream_id =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0);
// Payload consists of two bytes. The first byte is an unknown unidirectional
// stream type. The second one would be the type of a push stream, but it
// must not be interpreted as stream type.
std::string payload = QuicTextUtils::HexDecode("3f01");
QuicStreamFrame frame(stream_id, /* fin = */ false, /* offset = */ 0,
payload);
// A STOP_SENDING frame is sent in response to the unknown stream type.
EXPECT_CALL(*connection_, SendControlFrame(_))
.WillOnce(Invoke(&VerifyAndClearStopSendingFrame));
session_.OnStreamFrame(frame);
// The pending stream is still around, because it did not receive a FIN.
PendingStream* pending =
QuicSessionPeer::GetPendingStream(&session_, stream_id);
EXPECT_TRUE(pending);
// The pending stream must ignore read data.
EXPECT_TRUE(pending->sequencer()->ignore_read_data());
// If the stream frame is received again, it should be ignored.
session_.OnStreamFrame(frame);
// Receive FIN.
session_.OnStreamFrame(QuicStreamFrame(stream_id, /* fin = */ true,
/* offset = */ payload.size(), ""));
EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&session_, stream_id));
}
TEST_P(QuicSpdySessionTestClient, ResetInMiddleOfStreamType) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
ASSERT_TRUE(session_.UsesPendingStreams());
const QuicStreamId stream_id =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0);
// Payload is the first byte of a two byte varint encoding.
std::string payload = QuicTextUtils::HexDecode("40");
QuicStreamFrame frame(stream_id, /* fin = */ false, /* offset = */ 0,
payload);
session_.OnStreamFrame(frame);
EXPECT_TRUE(QuicSessionPeer::GetPendingStream(&session_, stream_id));
// Receive RESET_STREAM.
QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream_id,
QUIC_STREAM_CANCELLED,
/* bytes_written = */ payload.size());
session_.OnRstStream(rst_frame);
// The stream is closed.
EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&session_, stream_id));
}
TEST_P(QuicSpdySessionTestClient, FinInMiddleOfStreamType) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
ASSERT_TRUE(session_.UsesPendingStreams());
const QuicStreamId stream_id =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0);
// Payload is the first byte of a two byte varint encoding with a FIN.
std::string payload = QuicTextUtils::HexDecode("40");
QuicStreamFrame frame(stream_id, /* fin = */ true, /* offset = */ 0, payload);
session_.OnStreamFrame(frame);
EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&session_, stream_id));
}
TEST_P(QuicSpdySessionTestClient, DuplicateHttp3UnidirectionalStreams) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
MockHttp3DebugVisitor debug_visitor;
session_.set_debug_visitor(&debug_visitor);
QuicStreamId id1 =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0);
char type1[] = {kControlStream};
QuicStreamFrame data1(id1, false, 0, QuicStringPiece(type1, 1));
EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(id1));
session_.OnStreamFrame(data1);
QuicStreamId id2 =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 1);
QuicStreamFrame data2(id2, false, 0, QuicStringPiece(type1, 1));
EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(id2)).Times(0);
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_STREAM_ID,
"Control stream is received twice.", _));
EXPECT_QUIC_PEER_BUG(
session_.OnStreamFrame(data2),
"Received a duplicate Control stream: Closing connection.");
QuicStreamId id3 =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 2);
char type2[]{kQpackEncoderStream};
QuicStreamFrame data3(id3, false, 0, QuicStringPiece(type2, 1));
EXPECT_CALL(debug_visitor, OnPeerQpackEncoderStreamCreated(id3));
session_.OnStreamFrame(data3);
QuicStreamId id4 =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 3);
QuicStreamFrame data4(id4, false, 0, QuicStringPiece(type2, 1));
EXPECT_CALL(debug_visitor, OnPeerQpackEncoderStreamCreated(id4)).Times(0);
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_STREAM_ID,
"QPACK encoder stream is received twice.", _));
EXPECT_QUIC_PEER_BUG(
session_.OnStreamFrame(data4),
"Received a duplicate QPACK encoder stream: Closing connection.");
QuicStreamId id5 =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 4);
char type3[]{kQpackDecoderStream};
QuicStreamFrame data5(id5, false, 0, QuicStringPiece(type3, 1));
EXPECT_CALL(debug_visitor, OnPeerQpackDecoderStreamCreated(id5));
session_.OnStreamFrame(data5);
QuicStreamId id6 =
GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 5);
QuicStreamFrame data6(id6, false, 0, QuicStringPiece(type3, 1));
EXPECT_CALL(debug_visitor, OnPeerQpackDecoderStreamCreated(id6)).Times(0);
EXPECT_CALL(*connection_,
CloseConnection(QUIC_INVALID_STREAM_ID,
"QPACK decoder stream is received twice.", _));
EXPECT_QUIC_PEER_BUG(
session_.OnStreamFrame(data6),
"Received a duplicate QPACK decoder stream: Closing connection.");
}
TEST_P(QuicSpdySessionTestClient, EncoderStreamError) {
if (!VersionUsesHttp3(transport_version())) {
return;
}
std::string data = QuicTextUtils::HexDecode(
"02" // Encoder stream.
"00"); // Duplicate entry 0, but no entries exist.