| // Copyright 2019 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <arpa/inet.h> |
| #include <fcntl.h> |
| #include <net/if.h> |
| #include <netinet/in.h> |
| #include <sys/select.h> |
| #include <sys/socket.h> |
| #include <sys/types.h> |
| |
| #include "absl/base/optimization.h" |
| #include "quiche/quic/core/io/socket.h" |
| #include "quiche/quic/core/quic_udp_socket.h" |
| #include "quiche/quic/platform/api/quic_bug_tracker.h" |
| #include "quiche/quic/platform/api/quic_flag_utils.h" |
| #include "quiche/quic/platform/api/quic_udp_socket_platform_api.h" |
| |
| #if defined(__APPLE__) && !defined(__APPLE_USE_RFC_3542) |
| #error "__APPLE_USE_RFC_3542 needs to be defined." |
| #endif |
| |
| #if defined(__linux__) |
| #include <alloca.h> |
| // For SO_TIMESTAMPING. |
| #include <linux/net_tstamp.h> |
| #endif |
| |
| #if defined(__linux__) && !defined(__ANDROID__) |
| #define QUIC_UDP_SOCKET_SUPPORT_TTL 1 |
| #endif |
| |
| namespace quic { |
| namespace { |
| |
| // Explicit Congestion Notification is the last two bits of the TOS byte. |
| constexpr uint8_t kEcnMask = 0x03; |
| |
| constexpr int kIpv6RecvPacketInfo = IPV6_RECVPKTINFO; |
| |
| #if defined(__linux__) && !defined(__ANDROID_API__) |
| #define QUIC_UDP_SOCKET_SUPPORT_LINUX_TIMESTAMPING 1 |
| // This is the structure that SO_TIMESTAMPING fills into the cmsg header. |
| // It is well-defined, but does not have a definition in a public header. |
| // See https://www.kernel.org/doc/Documentation/networking/timestamping.txt |
| // for more information. |
| struct LinuxSoTimestamping { |
| // The converted system time of the timestamp. |
| struct timespec systime; |
| // Deprecated; serves only as padding. |
| struct timespec hwtimetrans; |
| // The raw hardware timestamp. |
| struct timespec hwtimeraw; |
| }; |
| const size_t kCmsgSpaceForRecvTimestamp = |
| CMSG_SPACE(sizeof(LinuxSoTimestamping)); |
| #else |
| const size_t kCmsgSpaceForRecvTimestamp = 0; |
| #endif |
| |
| const size_t kMinCmsgSpaceForRead = |
| CMSG_SPACE(sizeof(uint32_t)) // Dropped packet count |
| + CMSG_SPACE(sizeof(in_pktinfo)) // V4 Self IP |
| + CMSG_SPACE(sizeof(in6_pktinfo)) // V6 Self IP |
| + kCmsgSpaceForRecvTimestamp + CMSG_SPACE(sizeof(int)) // TTL |
| + kCmsgSpaceForGooglePacketHeader; |
| |
| void SetV4SelfIpInControlMessage(const QuicIpAddress& self_address, |
| cmsghdr* cmsg) { |
| QUICHE_DCHECK(self_address.IsIPv4()); |
| in_pktinfo* pktinfo = reinterpret_cast<in_pktinfo*>(CMSG_DATA(cmsg)); |
| memset(pktinfo, 0, sizeof(in_pktinfo)); |
| pktinfo->ipi_ifindex = 0; |
| std::string address_string = self_address.ToPackedString(); |
| memcpy(&pktinfo->ipi_spec_dst, address_string.c_str(), |
| address_string.length()); |
| } |
| |
| void SetV6SelfIpInControlMessage(const QuicIpAddress& self_address, |
| cmsghdr* cmsg) { |
| QUICHE_DCHECK(self_address.IsIPv6()); |
| in6_pktinfo* pktinfo = reinterpret_cast<in6_pktinfo*>(CMSG_DATA(cmsg)); |
| memset(pktinfo, 0, sizeof(in6_pktinfo)); |
| std::string address_string = self_address.ToPackedString(); |
| memcpy(&pktinfo->ipi6_addr, address_string.c_str(), address_string.length()); |
| } |
| |
| void PopulatePacketInfoFromControlMessage( |
| struct cmsghdr* cmsg, QuicUdpPacketInfo* packet_info, |
| QuicUdpPacketInfoBitMask packet_info_interested) { |
| #ifdef SOL_UDP |
| if (packet_info_interested.IsSet(QuicUdpPacketInfoBit::IS_GRO) && |
| cmsg->cmsg_level == SOL_UDP && cmsg->cmsg_type == UDP_GRO) { |
| packet_info->set_gso_size(*reinterpret_cast<uint16_t*>(CMSG_DATA(cmsg))); |
| } |
| #endif |
| |
| #if defined(__linux__) && defined(SO_RXQ_OVFL) |
| if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SO_RXQ_OVFL) { |
| if (packet_info_interested.IsSet(QuicUdpPacketInfoBit::DROPPED_PACKETS)) { |
| packet_info->SetDroppedPackets( |
| *(reinterpret_cast<uint32_t*> CMSG_DATA(cmsg))); |
| } |
| return; |
| } |
| #endif |
| |
| #if defined(QUIC_UDP_SOCKET_SUPPORT_LINUX_TIMESTAMPING) |
| if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SO_TIMESTAMPING) { |
| if (packet_info_interested.IsSet(QuicUdpPacketInfoBit::RECV_TIMESTAMP)) { |
| LinuxSoTimestamping* linux_ts = |
| reinterpret_cast<LinuxSoTimestamping*>(CMSG_DATA(cmsg)); |
| timespec* ts = &linux_ts->systime; |
| int64_t usec = (static_cast<int64_t>(ts->tv_sec) * 1000 * 1000) + |
| (static_cast<int64_t>(ts->tv_nsec) / 1000); |
| packet_info->SetReceiveTimestamp( |
| QuicWallTime::FromUNIXMicroseconds(usec)); |
| } |
| return; |
| } |
| #endif |
| |
| PopulatePacketInfoFromControlMessageBase(cmsg, packet_info, |
| packet_info_interested); |
| |
| if ((cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_TTL) || |
| (cmsg->cmsg_level == IPPROTO_IPV6 && cmsg->cmsg_type == IPV6_HOPLIMIT)) { |
| if (packet_info_interested.IsSet(QuicUdpPacketInfoBit::TTL)) { |
| packet_info->SetTtl(*(reinterpret_cast<int*>(CMSG_DATA(cmsg)))); |
| } |
| return; |
| } |
| |
| #if defined(__APPLE__) |
| if ((cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_RECVTOS) || |
| (cmsg->cmsg_level == IPPROTO_IPV6 && cmsg->cmsg_type == IPV6_TCLASS)) { |
| #else |
| if ((cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_TOS) || |
| (cmsg->cmsg_level == IPPROTO_IPV6 && cmsg->cmsg_type == IPV6_TCLASS)) { |
| #endif |
| if (packet_info_interested.IsSet(QuicUdpPacketInfoBit::ECN)) { |
| packet_info->SetEcnCodepoint(QuicEcnCodepoint( |
| *(reinterpret_cast<uint8_t*>(CMSG_DATA(cmsg))) & kEcnMask)); |
| } |
| } |
| |
| if (packet_info_interested.IsSet( |
| QuicUdpPacketInfoBit::GOOGLE_PACKET_HEADER)) { |
| BufferSpan google_packet_headers; |
| if (GetGooglePacketHeadersFromControlMessage( |
| cmsg, &google_packet_headers.buffer, |
| &google_packet_headers.buffer_len)) { |
| packet_info->SetGooglePacketHeaders(google_packet_headers); |
| } |
| } |
| } |
| |
| bool NextCmsg(msghdr* hdr, char* control_buffer, size_t control_buffer_len, |
| int cmsg_level, int cmsg_type, size_t data_size, |
| cmsghdr** cmsg /*in, out*/) { |
| // msg_controllen needs to be increased first, otherwise CMSG_NXTHDR will |
| // return nullptr. |
| hdr->msg_controllen += CMSG_SPACE(data_size); |
| if (hdr->msg_controllen > control_buffer_len) { |
| return false; |
| } |
| |
| if ((*cmsg) == nullptr) { |
| QUICHE_DCHECK_EQ(nullptr, hdr->msg_control); |
| memset(control_buffer, 0, control_buffer_len); |
| hdr->msg_control = control_buffer; |
| (*cmsg) = CMSG_FIRSTHDR(hdr); |
| } else { |
| QUICHE_DCHECK_NE(nullptr, hdr->msg_control); |
| (*cmsg) = CMSG_NXTHDR(hdr, (*cmsg)); |
| } |
| |
| if (nullptr == (*cmsg)) { |
| return false; |
| } |
| |
| (*cmsg)->cmsg_len = CMSG_LEN(data_size); |
| (*cmsg)->cmsg_level = cmsg_level; |
| (*cmsg)->cmsg_type = cmsg_type; |
| |
| return true; |
| } |
| } // namespace |
| |
| bool QuicUdpSocketApi::SetupSocket(QuicUdpSocketFd fd, int address_family, |
| int receive_buffer_size, |
| int send_buffer_size, bool ipv6_only) { |
| // Receive buffer size. |
| if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &receive_buffer_size, |
| sizeof(receive_buffer_size)) != 0) { |
| QUIC_LOG_FIRST_N(ERROR, 100) << "Failed to set socket recv size"; |
| return false; |
| } |
| |
| // Send buffer size. |
| if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &send_buffer_size, |
| sizeof(send_buffer_size)) != 0) { |
| QUIC_LOG_FIRST_N(ERROR, 100) << "Failed to set socket send size"; |
| return false; |
| } |
| |
| if (!(address_family == AF_INET6 && ipv6_only)) { |
| if (!EnableReceiveSelfIpAddressForV4(fd)) { |
| QUIC_LOG_FIRST_N(ERROR, 100) |
| << "Failed to enable receiving of self v4 ip"; |
| return false; |
| } |
| } |
| unsigned int set = 1; |
| if (address_family == AF_INET && |
| setsockopt(fd, IPPROTO_IP, IP_RECVTOS, &set, sizeof(set)) != 0) { |
| QUIC_LOG_FIRST_N(ERROR, 100) << "Failed to request to receive ECN on " |
| << "IPv4 socket"; |
| return false; |
| } |
| if (address_family == AF_INET6) { |
| if (setsockopt(fd, IPPROTO_IPV6, IPV6_RECVTCLASS, &set, sizeof(set)) != 0) { |
| QUIC_LOG_FIRST_N(ERROR, 100) << "Failed to request to receive ECN on " |
| << "IPv6 socket"; |
| return false; |
| } |
| if (!ipv6_only && |
| setsockopt(fd, IPPROTO_IP, IP_RECVTOS, &set, sizeof(set)) != 0) { |
| QUIC_LOG_FIRST_N(ERROR, 100) << "Could not receive IPv4 ECN on " |
| << "dual-stack socket"; |
| return false; |
| } |
| if (!EnableReceiveSelfIpAddressForV6(fd)) { |
| QUIC_LOG_FIRST_N(ERROR, 100) |
| << "Failed to enable receiving of self v6 ip"; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool QuicUdpSocketApi::WaitUntilReadable(QuicUdpSocketFd fd, |
| QuicTime::Delta timeout) { |
| fd_set read_fds; |
| FD_ZERO(&read_fds); |
| FD_SET(fd, &read_fds); |
| |
| timeval select_timeout; |
| select_timeout.tv_sec = timeout.ToSeconds(); |
| select_timeout.tv_usec = timeout.ToMicroseconds() % 1000000; |
| |
| return 1 == select(1 + fd, &read_fds, nullptr, nullptr, &select_timeout); |
| } |
| |
| void QuicUdpSocketApi::ReadPacket( |
| QuicUdpSocketFd fd, QuicUdpPacketInfoBitMask packet_info_interested, |
| ReadPacketResult* result) { |
| result->ok = false; |
| BufferSpan& packet_buffer = result->packet_buffer; |
| BufferSpan& control_buffer = result->control_buffer; |
| QuicUdpPacketInfo* packet_info = &result->packet_info; |
| |
| QUICHE_DCHECK_GE(control_buffer.buffer_len, kMinCmsgSpaceForRead); |
| |
| struct iovec iov = {packet_buffer.buffer, packet_buffer.buffer_len}; |
| struct sockaddr_storage raw_peer_address; |
| |
| if (control_buffer.buffer_len > 0) { |
| reinterpret_cast<struct cmsghdr*>(control_buffer.buffer)->cmsg_len = |
| control_buffer.buffer_len; |
| } |
| |
| msghdr hdr; |
| hdr.msg_name = &raw_peer_address; |
| hdr.msg_namelen = sizeof(raw_peer_address); |
| hdr.msg_iov = &iov; |
| hdr.msg_iovlen = 1; |
| hdr.msg_flags = 0; |
| hdr.msg_control = control_buffer.buffer; |
| hdr.msg_controllen = control_buffer.buffer_len; |
| |
| #if defined(__linux__) |
| // If MSG_TRUNC is set on Linux, recvmsg will return the real packet size even |
| // if |packet_buffer| is too small to receive it. |
| int flags = MSG_TRUNC; |
| #else |
| int flags = 0; |
| #endif |
| |
| int bytes_read = recvmsg(fd, &hdr, flags); |
| if (bytes_read < 0) { |
| const int error_num = errno; |
| if (error_num != EAGAIN) { |
| QUIC_LOG_FIRST_N(ERROR, 100) |
| << "Error reading packet: " << strerror(error_num); |
| } |
| return; |
| } |
| |
| if (ABSL_PREDICT_FALSE(hdr.msg_flags & MSG_CTRUNC)) { |
| QUIC_BUG(quic_bug_10751_3) |
| << "Control buffer too small. size:" << control_buffer.buffer_len; |
| return; |
| } |
| |
| if (ABSL_PREDICT_FALSE(hdr.msg_flags & MSG_TRUNC) || |
| // Normally "bytes_read > packet_buffer.buffer_len" implies the MSG_TRUNC |
| // bit is set, but it is not the case if tested with config=android_arm64. |
| static_cast<size_t>(bytes_read) > packet_buffer.buffer_len) { |
| QUIC_LOG_FIRST_N(WARNING, 100) |
| << "Received truncated QUIC packet: buffer size:" |
| << packet_buffer.buffer_len << " packet size:" << bytes_read; |
| return; |
| } |
| |
| packet_buffer.buffer_len = bytes_read; |
| if (packet_info_interested.IsSet(QuicUdpPacketInfoBit::PEER_ADDRESS)) { |
| packet_info->SetPeerAddress(QuicSocketAddress(raw_peer_address)); |
| } |
| |
| if (hdr.msg_controllen > 0) { |
| for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&hdr); cmsg != nullptr; |
| cmsg = CMSG_NXTHDR(&hdr, cmsg)) { |
| QuicUdpPacketInfoBitMask prior_bitmask = packet_info->bitmask(); |
| PopulatePacketInfoFromControlMessage(cmsg, packet_info, |
| packet_info_interested); |
| if (packet_info->bitmask() == prior_bitmask) { |
| QUIC_DLOG(INFO) << "Ignored cmsg_level:" << cmsg->cmsg_level |
| << ", cmsg_type:" << cmsg->cmsg_type; |
| } |
| } |
| } |
| |
| result->ok = true; |
| } |
| |
| size_t QuicUdpSocketApi::ReadMultiplePackets( |
| QuicUdpSocketFd fd, QuicUdpPacketInfoBitMask packet_info_interested, |
| ReadPacketResults* results) { |
| #if defined(__linux__) && !defined(__ANDROID__) |
| if (packet_info_interested.IsSet(QuicUdpPacketInfoBit::IS_GRO)) { |
| size_t num_packets = 0; |
| for (ReadPacketResult& result : *results) { |
| result.ok = false; |
| } |
| for (ReadPacketResult& result : *results) { |
| ReadPacket(fd, packet_info_interested, &result); |
| if (!result.ok) { |
| break; |
| } |
| ++num_packets; |
| } |
| return num_packets; |
| } else { |
| // Use recvmmsg. |
| size_t hdrs_size = sizeof(mmsghdr) * results->size(); |
| mmsghdr* hdrs = static_cast<mmsghdr*>(alloca(hdrs_size)); |
| memset(hdrs, 0, hdrs_size); |
| |
| struct TempPerPacketData { |
| iovec iov; |
| sockaddr_storage raw_peer_address; |
| }; |
| TempPerPacketData* packet_data_array = static_cast<TempPerPacketData*>( |
| alloca(sizeof(TempPerPacketData) * results->size())); |
| |
| for (size_t i = 0; i < results->size(); ++i) { |
| (*results)[i].ok = false; |
| |
| msghdr* hdr = &hdrs[i].msg_hdr; |
| TempPerPacketData* packet_data = &packet_data_array[i]; |
| packet_data->iov.iov_base = (*results)[i].packet_buffer.buffer; |
| packet_data->iov.iov_len = (*results)[i].packet_buffer.buffer_len; |
| |
| hdr->msg_name = &packet_data->raw_peer_address; |
| hdr->msg_namelen = sizeof(sockaddr_storage); |
| hdr->msg_iov = &packet_data->iov; |
| hdr->msg_iovlen = 1; |
| hdr->msg_flags = 0; |
| hdr->msg_control = (*results)[i].control_buffer.buffer; |
| hdr->msg_controllen = (*results)[i].control_buffer.buffer_len; |
| |
| QUICHE_DCHECK_GE(hdr->msg_controllen, kMinCmsgSpaceForRead); |
| } |
| // If MSG_TRUNC is set on Linux, recvmmsg will return the real packet size |
| // in |hdrs[i].msg_len| even if packet buffer is too small to receive it. |
| int packets_read = recvmmsg(fd, hdrs, results->size(), MSG_TRUNC, nullptr); |
| if (packets_read <= 0) { |
| const int error_num = errno; |
| if (error_num != EAGAIN) { |
| QUIC_LOG_FIRST_N(ERROR, 100) |
| << "Error reading packets: " << strerror(error_num); |
| } |
| return 0; |
| } |
| |
| for (int i = 0; i < packets_read; ++i) { |
| if (hdrs[i].msg_len == 0) { |
| continue; |
| } |
| |
| msghdr& hdr = hdrs[i].msg_hdr; |
| if (ABSL_PREDICT_FALSE(hdr.msg_flags & MSG_CTRUNC)) { |
| QUIC_BUG(quic_bug_10751_4) << "Control buffer too small. size:" |
| << (*results)[i].control_buffer.buffer_len |
| << ", need:" << hdr.msg_controllen; |
| continue; |
| } |
| |
| if (ABSL_PREDICT_FALSE(hdr.msg_flags & MSG_TRUNC)) { |
| QUIC_LOG_FIRST_N(WARNING, 100) |
| << "Received truncated QUIC packet: buffer size:" |
| << (*results)[i].packet_buffer.buffer_len |
| << " packet size:" << hdrs[i].msg_len; |
| continue; |
| } |
| |
| (*results)[i].ok = true; |
| (*results)[i].packet_buffer.buffer_len = hdrs[i].msg_len; |
| |
| QuicUdpPacketInfo* packet_info = &(*results)[i].packet_info; |
| if (packet_info_interested.IsSet(QuicUdpPacketInfoBit::PEER_ADDRESS)) { |
| packet_info->SetPeerAddress( |
| QuicSocketAddress(packet_data_array[i].raw_peer_address)); |
| } |
| |
| if (hdr.msg_controllen > 0) { |
| for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&hdr); cmsg != nullptr; |
| cmsg = CMSG_NXTHDR(&hdr, cmsg)) { |
| PopulatePacketInfoFromControlMessage(cmsg, packet_info, |
| packet_info_interested); |
| } |
| } |
| } |
| return packets_read; |
| } |
| #else |
| size_t num_packets = 0; |
| for (ReadPacketResult& result : *results) { |
| result.ok = false; |
| } |
| for (ReadPacketResult& result : *results) { |
| errno = 0; |
| ReadPacket(fd, packet_info_interested, &result); |
| if (!result.ok && errno == EAGAIN) { |
| break; |
| } |
| ++num_packets; |
| } |
| return num_packets; |
| #endif |
| } |
| |
| WriteResult QuicUdpSocketApi::WritePacket( |
| QuicUdpSocketFd fd, const char* packet_buffer, size_t packet_buffer_len, |
| const QuicUdpPacketInfo& packet_info) { |
| if (!packet_info.HasValue(QuicUdpPacketInfoBit::PEER_ADDRESS)) { |
| return WriteResult(WRITE_STATUS_ERROR, EINVAL); |
| } |
| |
| char control_buffer[512]; |
| sockaddr_storage raw_peer_address = |
| packet_info.peer_address().generic_address(); |
| iovec iov = {const_cast<char*>(packet_buffer), packet_buffer_len}; |
| |
| msghdr hdr; |
| hdr.msg_name = &raw_peer_address; |
| hdr.msg_namelen = packet_info.peer_address().host().IsIPv4() |
| ? sizeof(sockaddr_in) |
| : sizeof(sockaddr_in6); |
| hdr.msg_iov = &iov; |
| hdr.msg_iovlen = 1; |
| hdr.msg_flags = 0; |
| hdr.msg_control = nullptr; |
| hdr.msg_controllen = 0; |
| |
| cmsghdr* cmsg = nullptr; |
| |
| // Set self IP. |
| if (packet_info.HasValue(QuicUdpPacketInfoBit::V4_SELF_IP) && |
| packet_info.self_v4_ip().IsInitialized()) { |
| if (!NextCmsg(&hdr, control_buffer, sizeof(control_buffer), IPPROTO_IP, |
| IP_PKTINFO, sizeof(in_pktinfo), &cmsg)) { |
| QUIC_LOG_FIRST_N(ERROR, 100) |
| << "Not enough buffer to set self v4 ip address."; |
| return WriteResult(WRITE_STATUS_ERROR, EINVAL); |
| } |
| SetV4SelfIpInControlMessage(packet_info.self_v4_ip(), cmsg); |
| } else if (packet_info.HasValue(QuicUdpPacketInfoBit::V6_SELF_IP) && |
| packet_info.self_v6_ip().IsInitialized()) { |
| if (!NextCmsg(&hdr, control_buffer, sizeof(control_buffer), IPPROTO_IPV6, |
| IPV6_PKTINFO, sizeof(in6_pktinfo), &cmsg)) { |
| QUIC_LOG_FIRST_N(ERROR, 100) |
| << "Not enough buffer to set self v6 ip address."; |
| return WriteResult(WRITE_STATUS_ERROR, EINVAL); |
| } |
| SetV6SelfIpInControlMessage(packet_info.self_v6_ip(), cmsg); |
| } |
| |
| #if defined(QUIC_UDP_SOCKET_SUPPORT_TTL) |
| // Set ttl. |
| if (packet_info.HasValue(QuicUdpPacketInfoBit::TTL)) { |
| int cmsg_level = |
| packet_info.peer_address().host().IsIPv4() ? IPPROTO_IP : IPPROTO_IPV6; |
| int cmsg_type = |
| packet_info.peer_address().host().IsIPv4() ? IP_TTL : IPV6_HOPLIMIT; |
| if (!NextCmsg(&hdr, control_buffer, sizeof(control_buffer), cmsg_level, |
| cmsg_type, sizeof(int), &cmsg)) { |
| QUIC_LOG_FIRST_N(ERROR, 100) << "Not enough buffer to set ttl."; |
| return WriteResult(WRITE_STATUS_ERROR, EINVAL); |
| } |
| *reinterpret_cast<int*>(CMSG_DATA(cmsg)) = packet_info.ttl(); |
| } |
| #endif |
| |
| // TODO(b/270584616): This code block might go away when full support for |
| // marking ECN is implemented. |
| if (packet_info.HasValue(QuicUdpPacketInfoBit::ECN)) { |
| int cmsg_level = |
| packet_info.peer_address().host().IsIPv4() ? IPPROTO_IP : IPPROTO_IPV6; |
| int cmsg_type; |
| unsigned char value_buf[20]; |
| socklen_t value_len = sizeof(value_buf); |
| if (GetQuicRestartFlag(quic_support_ect1)) { |
| QUIC_RESTART_FLAG_COUNT_N(quic_support_ect1, 9, 9); |
| if (GetEcnCmsgArgsPreserveDscp( |
| fd, packet_info.peer_address().host().address_family(), |
| packet_info.ecn_codepoint(), cmsg_type, value_buf, |
| value_len) != 0) { |
| QUIC_LOG_FIRST_N(ERROR, 100) |
| << "Could not get ECN msg type for this platform."; |
| return WriteResult(WRITE_STATUS_ERROR, EINVAL); |
| } |
| } else { |
| cmsg_type = (cmsg_level == IPPROTO_IP) ? IP_TOS : IPV6_TCLASS; |
| *(int*)value_buf = static_cast<int>(packet_info.ecn_codepoint()); |
| value_len = sizeof(int); |
| } |
| if (!NextCmsg(&hdr, control_buffer, sizeof(control_buffer), cmsg_level, |
| cmsg_type, value_len, &cmsg)) { |
| QUIC_LOG_FIRST_N(ERROR, 100) << "Not enough buffer to set ECN."; |
| return WriteResult(WRITE_STATUS_ERROR, EINVAL); |
| } |
| memcpy(CMSG_DATA(cmsg), value_buf, value_len); |
| } |
| |
| int rc; |
| do { |
| rc = sendmsg(fd, &hdr, 0); |
| } while (rc < 0 && errno == EINTR); |
| if (rc >= 0) { |
| return WriteResult(WRITE_STATUS_OK, rc); |
| } |
| return WriteResult((errno == EAGAIN || errno == EWOULDBLOCK) |
| ? WRITE_STATUS_BLOCKED |
| : WRITE_STATUS_ERROR, |
| errno); |
| } |
| |
| } // namespace quic |