blob: 4ed9b4584c1016c41a8de7a97e9b0db2cec0acbb [file] [log] [blame] [edit]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "quic/core/quic_data_writer.h"
#include <algorithm>
#include <limits>
#include "absl/strings/string_view.h"
#include "quic/core/crypto/quic_random.h"
#include "quic/core/quic_constants.h"
#include "quic/platform/api/quic_bug_tracker.h"
#include "quic/platform/api/quic_flags.h"
#include "common/quiche_endian.h"
namespace quic {
QuicDataWriter::QuicDataWriter(size_t size, char* buffer)
: quiche::QuicheDataWriter(size, buffer) {}
QuicDataWriter::QuicDataWriter(size_t size,
char* buffer,
quiche::Endianness endianness)
: quiche::QuicheDataWriter(size, buffer, endianness) {}
QuicDataWriter::~QuicDataWriter() {}
bool QuicDataWriter::WriteUFloat16(uint64_t value) {
uint16_t result;
if (value < (UINT64_C(1) << kUFloat16MantissaEffectiveBits)) {
// Fast path: either the value is denormalized, or has exponent zero.
// Both cases are represented by the value itself.
result = static_cast<uint16_t>(value);
} else if (value >= kUFloat16MaxValue) {
// Value is out of range; clamp it to the maximum representable.
result = std::numeric_limits<uint16_t>::max();
} else {
// The highest bit is between position 13 and 42 (zero-based), which
// corresponds to exponent 1-30. In the output, mantissa is from 0 to 10,
// hidden bit is 11 and exponent is 11 to 15. Shift the highest bit to 11
// and count the shifts.
uint16_t exponent = 0;
for (uint16_t offset = 16; offset > 0; offset /= 2) {
// Right-shift the value until the highest bit is in position 11.
// For offset of 16, 8, 4, 2 and 1 (binary search over 1-30),
// shift if the bit is at or above 11 + offset.
if (value >= (UINT64_C(1) << (kUFloat16MantissaBits + offset))) {
exponent += offset;
value >>= offset;
}
}
QUICHE_DCHECK_GE(exponent, 1);
QUICHE_DCHECK_LE(exponent, kUFloat16MaxExponent);
QUICHE_DCHECK_GE(value, UINT64_C(1) << kUFloat16MantissaBits);
QUICHE_DCHECK_LT(value, UINT64_C(1) << kUFloat16MantissaEffectiveBits);
// Hidden bit (position 11) is set. We should remove it and increment the
// exponent. Equivalently, we just add it to the exponent.
// This hides the bit.
result = static_cast<uint16_t>(value + (exponent << kUFloat16MantissaBits));
}
if (endianness() == quiche::NETWORK_BYTE_ORDER) {
result = quiche::QuicheEndian::HostToNet16(result);
}
return WriteBytes(&result, sizeof(result));
}
bool QuicDataWriter::WriteConnectionId(QuicConnectionId connection_id) {
if (connection_id.IsEmpty()) {
return true;
}
return WriteBytes(connection_id.data(), connection_id.length());
}
bool QuicDataWriter::WriteLengthPrefixedConnectionId(
QuicConnectionId connection_id) {
return WriteUInt8(connection_id.length()) && WriteConnectionId(connection_id);
}
bool QuicDataWriter::WriteRandomBytes(QuicRandom* random, size_t length) {
char* dest = BeginWrite(length);
if (!dest) {
return false;
}
random->RandBytes(dest, length);
IncreaseLength(length);
return true;
}
bool QuicDataWriter::WriteInsecureRandomBytes(QuicRandom* random,
size_t length) {
char* dest = BeginWrite(length);
if (!dest) {
return false;
}
random->InsecureRandBytes(dest, length);
IncreaseLength(length);
return true;
}
// Converts a uint64_t into an IETF/Quic formatted Variable Length
// Integer. IETF Variable Length Integers have 62 significant bits, so
// the value to write must be in the range of 0..(2^62)-1.
//
// Performance notes
//
// Measurements and experiments showed that unrolling the four cases
// like this and dereferencing next_ as we do (*(next_+n)) gains about
// 10% over making a loop and dereferencing it as *(next_++)
//
// Using a register for next didn't help.
//
// Branches are ordered to increase the likelihood of the first being
// taken.
//
// Low-level optimization is useful here because this function will be
// called frequently, leading to outsize benefits.
bool QuicDataWriter::WriteVarInt62(uint64_t value) {
QUICHE_DCHECK_EQ(endianness(), quiche::NETWORK_BYTE_ORDER);
size_t remaining_bytes = remaining();
char* next = buffer() + length();
if ((value & kVarInt62ErrorMask) == 0) {
// We know the high 2 bits are 0 so |value| is legal.
// We can do the encoding.
if ((value & kVarInt62Mask8Bytes) != 0) {
// Someplace in the high-4 bytes is a 1-bit. Do an 8-byte
// encoding.
if (remaining_bytes >= 8) {
*(next + 0) = ((value >> 56) & 0x3f) + 0xc0;
*(next + 1) = (value >> 48) & 0xff;
*(next + 2) = (value >> 40) & 0xff;
*(next + 3) = (value >> 32) & 0xff;
*(next + 4) = (value >> 24) & 0xff;
*(next + 5) = (value >> 16) & 0xff;
*(next + 6) = (value >> 8) & 0xff;
*(next + 7) = value & 0xff;
IncreaseLength(8);
return true;
}
return false;
}
// The high-order-4 bytes are all 0, check for a 1, 2, or 4-byte
// encoding
if ((value & kVarInt62Mask4Bytes) != 0) {
// The encoding will not fit into 2 bytes, Do a 4-byte
// encoding.
if (remaining_bytes >= 4) {
*(next + 0) = ((value >> 24) & 0x3f) + 0x80;
*(next + 1) = (value >> 16) & 0xff;
*(next + 2) = (value >> 8) & 0xff;
*(next + 3) = value & 0xff;
IncreaseLength(4);
return true;
}
return false;
}
// The high-order bits are all 0. Check to see if the number
// can be encoded as one or two bytes. One byte encoding has
// only 6 significant bits (bits 0xffffffff ffffffc0 are all 0).
// Two byte encoding has more than 6, but 14 or less significant
// bits (bits 0xffffffff ffffc000 are 0 and 0x00000000 00003fc0
// are not 0)
if ((value & kVarInt62Mask2Bytes) != 0) {
// Do 2-byte encoding
if (remaining_bytes >= 2) {
*(next + 0) = ((value >> 8) & 0x3f) + 0x40;
*(next + 1) = (value)&0xff;
IncreaseLength(2);
return true;
}
return false;
}
if (remaining_bytes >= 1) {
// Do 1-byte encoding
*next = (value & 0x3f);
IncreaseLength(1);
return true;
}
return false;
}
// Can not encode, high 2 bits not 0
return false;
}
bool QuicDataWriter::WriteVarInt62(
uint64_t value,
QuicVariableLengthIntegerLength write_length) {
QUICHE_DCHECK_EQ(endianness(), quiche::NETWORK_BYTE_ORDER);
size_t remaining_bytes = remaining();
if (remaining_bytes < write_length) {
return false;
}
const QuicVariableLengthIntegerLength min_length = GetVarInt62Len(value);
if (write_length < min_length) {
QUIC_BUG << "Cannot write value " << value << " with write_length "
<< write_length;
return false;
}
if (write_length == min_length) {
return WriteVarInt62(value);
}
if (write_length == VARIABLE_LENGTH_INTEGER_LENGTH_2) {
return WriteUInt8(0b01000000) && WriteUInt8(value);
}
if (write_length == VARIABLE_LENGTH_INTEGER_LENGTH_4) {
return WriteUInt8(0b10000000) && WriteUInt8(0) && WriteUInt16(value);
}
if (write_length == VARIABLE_LENGTH_INTEGER_LENGTH_8) {
return WriteUInt8(0b11000000) && WriteUInt8(0) && WriteUInt16(0) &&
WriteUInt32(value);
}
QUIC_BUG << "Invalid write_length " << static_cast<int>(write_length);
return false;
}
// static
QuicVariableLengthIntegerLength QuicDataWriter::GetVarInt62Len(uint64_t value) {
if ((value & kVarInt62ErrorMask) != 0) {
QUIC_BUG << "Attempted to encode a value, " << value
<< ", that is too big for VarInt62";
return VARIABLE_LENGTH_INTEGER_LENGTH_0;
}
if ((value & kVarInt62Mask8Bytes) != 0) {
return VARIABLE_LENGTH_INTEGER_LENGTH_8;
}
if ((value & kVarInt62Mask4Bytes) != 0) {
return VARIABLE_LENGTH_INTEGER_LENGTH_4;
}
if ((value & kVarInt62Mask2Bytes) != 0) {
return VARIABLE_LENGTH_INTEGER_LENGTH_2;
}
return VARIABLE_LENGTH_INTEGER_LENGTH_1;
}
bool QuicDataWriter::WriteStringPieceVarInt62(
const absl::string_view& string_piece) {
if (!WriteVarInt62(string_piece.size())) {
return false;
}
if (!string_piece.empty()) {
if (!WriteBytes(string_piece.data(), string_piece.size())) {
return false;
}
}
return true;
}
} // namespace quic