blob: 65d1d32ee43acacd8c0fbd54d9d65f06f63fdb95 [file] [log] [blame] [edit]
// Copyright (c) 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/third_party/quiche/src/quic/core/quic_interval_set.h"
#include <stdarg.h>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <limits>
#include <vector>
#include "net/third_party/quiche/src/quic/platform/api/quic_test.h"
namespace quic {
namespace test {
namespace {
using ::testing::ElementsAreArray;
class QuicIntervalSetTest : public QuicTest {
protected:
virtual void SetUp() {
// Initialize two QuicIntervalSets for union, intersection, and difference
// tests
is.Add(100, 200);
is.Add(300, 400);
is.Add(500, 600);
is.Add(700, 800);
is.Add(900, 1000);
is.Add(1100, 1200);
is.Add(1300, 1400);
is.Add(1500, 1600);
is.Add(1700, 1800);
is.Add(1900, 2000);
is.Add(2100, 2200);
// Lots of different cases:
other.Add(50, 70); // disjoint, at the beginning
other.Add(2250, 2270); // disjoint, at the end
other.Add(650, 670); // disjoint, in the middle
other.Add(350, 360); // included
other.Add(370, 380); // also included (two at once)
other.Add(470, 530); // overlaps low end
other.Add(770, 830); // overlaps high end
other.Add(870, 900); // meets at low end
other.Add(1200, 1230); // meets at high end
other.Add(1270, 1830); // overlaps multiple ranges
}
virtual void TearDown() {
is.Clear();
EXPECT_TRUE(is.Empty());
other.Clear();
EXPECT_TRUE(other.Empty());
}
QuicIntervalSet<int> is;
QuicIntervalSet<int> other;
};
TEST_F(QuicIntervalSetTest, IsDisjoint) {
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(0, 99)));
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(0, 100)));
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(200, 200)));
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(200, 299)));
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(400, 407)));
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(405, 499)));
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(2300, 2300)));
EXPECT_TRUE(
is.IsDisjoint(QuicInterval<int>(2300, std::numeric_limits<int>::max())));
EXPECT_FALSE(is.IsDisjoint(QuicInterval<int>(100, 105)));
EXPECT_FALSE(is.IsDisjoint(QuicInterval<int>(199, 300)));
EXPECT_FALSE(is.IsDisjoint(QuicInterval<int>(250, 450)));
EXPECT_FALSE(is.IsDisjoint(QuicInterval<int>(299, 400)));
EXPECT_FALSE(is.IsDisjoint(QuicInterval<int>(250, 2000)));
EXPECT_FALSE(
is.IsDisjoint(QuicInterval<int>(2199, std::numeric_limits<int>::max())));
// Empty intervals.
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(90, 90)));
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(100, 100)));
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(100, 90)));
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(150, 150)));
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(200, 200)));
EXPECT_TRUE(is.IsDisjoint(QuicInterval<int>(400, 300)));
}
// Base helper method for verifying the contents of an interval set.
// Returns true iff <is> contains <count> intervals whose successive
// endpoints match the sequence of args in <ap>:
static bool VA_Check(const QuicIntervalSet<int>& is, int count, va_list ap) {
std::vector<QuicInterval<int>> intervals(is.begin(), is.end());
if (count != static_cast<int>(intervals.size())) {
LOG(ERROR) << "Expected " << count << " intervals, got " << intervals.size()
<< ": " << is;
return false;
}
if (count != static_cast<int>(is.Size())) {
LOG(ERROR) << "Expected " << count << " intervals, got Size " << is.Size()
<< ": " << is;
return false;
}
bool result = true;
for (int i = 0; i < count; i++) {
int min = va_arg(ap, int);
int max = va_arg(ap, int);
if (min != intervals[i].min() || max != intervals[i].max()) {
LOG(ERROR) << "Expected: [" << min << ", " << max << ") got "
<< intervals[i] << " in " << is;
result = false;
}
}
return result;
}
static bool Check(const QuicIntervalSet<int>& is, int count, ...) {
va_list ap;
va_start(ap, count);
const bool result = VA_Check(is, count, ap);
va_end(ap);
return result;
}
// Some helper functions for testing Contains and Find, which are logically the
// same.
static void TestContainsAndFind(const QuicIntervalSet<int>& is, int value) {
EXPECT_TRUE(is.Contains(value)) << "Set does not contain " << value;
auto it = is.Find(value);
EXPECT_NE(it, is.end()) << "No iterator to interval containing " << value;
EXPECT_TRUE(it->Contains(value)) << "Iterator does not contain " << value;
}
static void TestContainsAndFind(const QuicIntervalSet<int>& is,
int min,
int max) {
EXPECT_TRUE(is.Contains(min, max))
<< "Set does not contain interval with min " << min << "and max " << max;
auto it = is.Find(min, max);
EXPECT_NE(it, is.end()) << "No iterator to interval with min " << min
<< "and max " << max;
EXPECT_TRUE(it->Contains(QuicInterval<int>(min, max)))
<< "Iterator does not contain interval with min " << min << "and max "
<< max;
}
static void TestNotContainsAndFind(const QuicIntervalSet<int>& is, int value) {
EXPECT_FALSE(is.Contains(value)) << "Set contains " << value;
auto it = is.Find(value);
EXPECT_EQ(it, is.end()) << "There is iterator to interval containing "
<< value;
}
static void TestNotContainsAndFind(const QuicIntervalSet<int>& is,
int min,
int max) {
EXPECT_FALSE(is.Contains(min, max))
<< "Set contains interval with min " << min << "and max " << max;
auto it = is.Find(min, max);
EXPECT_EQ(it, is.end()) << "There is iterator to interval with min " << min
<< "and max " << max;
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetBasic) {
// Test Add, Get, Contains and Find
QuicIntervalSet<int> iset;
EXPECT_TRUE(iset.Empty());
EXPECT_EQ(0, iset.Size());
iset.Add(100, 200);
EXPECT_FALSE(iset.Empty());
EXPECT_EQ(1, iset.Size());
iset.Add(100, 150);
iset.Add(150, 200);
iset.Add(130, 170);
iset.Add(90, 150);
iset.Add(170, 220);
iset.Add(300, 400);
iset.Add(250, 450);
EXPECT_FALSE(iset.Empty());
EXPECT_EQ(2, iset.Size());
EXPECT_TRUE(Check(iset, 2, 90, 220, 250, 450));
// Test two intervals with a.max == b.min, that will just join up.
iset.Clear();
iset.Add(100, 200);
iset.Add(200, 300);
EXPECT_FALSE(iset.Empty());
EXPECT_EQ(1, iset.Size());
EXPECT_TRUE(Check(iset, 1, 100, 300));
// Test adding two sets together.
iset.Clear();
QuicIntervalSet<int> iset_add;
iset.Add(100, 200);
iset.Add(100, 150);
iset.Add(150, 200);
iset.Add(130, 170);
iset_add.Add(90, 150);
iset_add.Add(170, 220);
iset_add.Add(300, 400);
iset_add.Add(250, 450);
iset.Add(iset_add);
EXPECT_FALSE(iset.Empty());
EXPECT_EQ(2, iset.Size());
EXPECT_TRUE(Check(iset, 2, 90, 220, 250, 450));
// Test begin()/end(), and rbegin()/rend()
// to iterate over intervals.
{
std::vector<QuicInterval<int>> expected(iset.begin(), iset.end());
std::vector<QuicInterval<int>> actual1;
std::copy(iset.begin(), iset.end(), back_inserter(actual1));
ASSERT_EQ(expected.size(), actual1.size());
std::vector<QuicInterval<int>> actual2;
std::copy(iset.begin(), iset.end(), back_inserter(actual2));
ASSERT_EQ(expected.size(), actual2.size());
for (size_t i = 0; i < expected.size(); i++) {
EXPECT_EQ(expected[i].min(), actual1[i].min());
EXPECT_EQ(expected[i].max(), actual1[i].max());
EXPECT_EQ(expected[i].min(), actual2[i].min());
EXPECT_EQ(expected[i].max(), actual2[i].max());
}
// Ensure that the rbegin()/rend() iterators correctly yield the intervals
// in reverse order.
EXPECT_THAT(std::vector<QuicInterval<int>>(iset.rbegin(), iset.rend()),
ElementsAreArray(expected.rbegin(), expected.rend()));
}
TestNotContainsAndFind(iset, 89);
TestContainsAndFind(iset, 90);
TestContainsAndFind(iset, 120);
TestContainsAndFind(iset, 219);
TestNotContainsAndFind(iset, 220);
TestNotContainsAndFind(iset, 235);
TestNotContainsAndFind(iset, 249);
TestContainsAndFind(iset, 250);
TestContainsAndFind(iset, 300);
TestContainsAndFind(iset, 449);
TestNotContainsAndFind(iset, 450);
TestNotContainsAndFind(iset, 451);
TestNotContainsAndFind(iset, 50, 60);
TestNotContainsAndFind(iset, 50, 90);
TestNotContainsAndFind(iset, 50, 200);
TestNotContainsAndFind(iset, 90, 90);
TestContainsAndFind(iset, 90, 200);
TestContainsAndFind(iset, 100, 200);
TestContainsAndFind(iset, 100, 220);
TestNotContainsAndFind(iset, 100, 221);
TestNotContainsAndFind(iset, 220, 220);
TestNotContainsAndFind(iset, 240, 300);
TestContainsAndFind(iset, 250, 300);
TestContainsAndFind(iset, 260, 300);
TestContainsAndFind(iset, 300, 450);
TestNotContainsAndFind(iset, 300, 451);
QuicIntervalSet<int> iset_contains;
iset_contains.Add(50, 90);
EXPECT_FALSE(iset.Contains(iset_contains));
iset_contains.Clear();
iset_contains.Add(90, 200);
EXPECT_TRUE(iset.Contains(iset_contains));
iset_contains.Add(100, 200);
EXPECT_TRUE(iset.Contains(iset_contains));
iset_contains.Add(100, 220);
EXPECT_TRUE(iset.Contains(iset_contains));
iset_contains.Add(250, 300);
EXPECT_TRUE(iset.Contains(iset_contains));
iset_contains.Add(300, 450);
EXPECT_TRUE(iset.Contains(iset_contains));
iset_contains.Add(300, 451);
EXPECT_FALSE(iset.Contains(iset_contains));
EXPECT_FALSE(iset.Contains(QuicInterval<int>()));
EXPECT_FALSE(iset.Contains(QuicIntervalSet<int>()));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetContainsEmpty) {
const QuicIntervalSet<int> empty;
const QuicIntervalSet<int> other_empty;
const QuicIntervalSet<int> non_empty({{10, 20}, {40, 50}});
EXPECT_FALSE(empty.Contains(empty));
EXPECT_FALSE(empty.Contains(other_empty));
EXPECT_FALSE(empty.Contains(non_empty));
EXPECT_FALSE(non_empty.Contains(empty));
}
TEST_F(QuicIntervalSetTest, Equality) {
QuicIntervalSet<int> is_copy = is;
EXPECT_EQ(is, is);
EXPECT_EQ(is, is_copy);
EXPECT_NE(is, other);
EXPECT_NE(is, QuicIntervalSet<int>());
EXPECT_EQ(QuicIntervalSet<int>(), QuicIntervalSet<int>());
}
TEST_F(QuicIntervalSetTest, LowerAndUpperBound) {
QuicIntervalSet<int> intervals;
intervals.Add(10, 20);
intervals.Add(30, 40);
// [10, 20) [30, 40) end
// ^ LowerBound(5)
// ^ LowerBound(10)
// ^ LowerBound(15)
// ^ LowerBound(20)
// ^ LowerBound(25)
// ^ LowerBound(30)
// ^ LowerBound(35)
// ^ LowerBound(40)
// ^ LowerBound(50)
EXPECT_EQ(intervals.LowerBound(5)->min(), 10);
EXPECT_EQ(intervals.LowerBound(10)->min(), 10);
EXPECT_EQ(intervals.LowerBound(15)->min(), 10);
EXPECT_EQ(intervals.LowerBound(20)->min(), 30);
EXPECT_EQ(intervals.LowerBound(25)->min(), 30);
EXPECT_EQ(intervals.LowerBound(30)->min(), 30);
EXPECT_EQ(intervals.LowerBound(35)->min(), 30);
EXPECT_EQ(intervals.LowerBound(40), intervals.end());
EXPECT_EQ(intervals.LowerBound(50), intervals.end());
// [10, 20) [30, 40) end
// ^ UpperBound(5)
// ^ UpperBound(10)
// ^ UpperBound(15)
// ^ UpperBound(20)
// ^ UpperBound(25)
// ^ UpperBound(30)
// ^ UpperBound(35)
// ^ UpperBound(40)
// ^ UpperBound(50)
EXPECT_EQ(intervals.UpperBound(5)->min(), 10);
EXPECT_EQ(intervals.UpperBound(10)->min(), 30);
EXPECT_EQ(intervals.UpperBound(15)->min(), 30);
EXPECT_EQ(intervals.UpperBound(20)->min(), 30);
EXPECT_EQ(intervals.UpperBound(25)->min(), 30);
EXPECT_EQ(intervals.UpperBound(30), intervals.end());
EXPECT_EQ(intervals.UpperBound(35), intervals.end());
EXPECT_EQ(intervals.UpperBound(40), intervals.end());
EXPECT_EQ(intervals.UpperBound(50), intervals.end());
}
TEST_F(QuicIntervalSetTest, SpanningInterval) {
// Spanning interval of an empty set is empty:
{
QuicIntervalSet<int> iset;
const QuicInterval<int>& ival = iset.SpanningInterval();
EXPECT_TRUE(ival.Empty());
}
// Spanning interval of a set with one interval is that interval:
{
QuicIntervalSet<int> iset;
iset.Add(100, 200);
const QuicInterval<int>& ival = iset.SpanningInterval();
EXPECT_EQ(100, ival.min());
EXPECT_EQ(200, ival.max());
}
// Spanning interval of a set with multiple elements is determined
// by the endpoints of the first and last element:
{
const QuicInterval<int>& ival = is.SpanningInterval();
EXPECT_EQ(100, ival.min());
EXPECT_EQ(2200, ival.max());
}
{
const QuicInterval<int>& ival = other.SpanningInterval();
EXPECT_EQ(50, ival.min());
EXPECT_EQ(2270, ival.max());
}
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetUnion) {
is.Union(other);
EXPECT_TRUE(Check(is, 12, 50, 70, 100, 200, 300, 400, 470, 600, 650, 670, 700,
830, 870, 1000, 1100, 1230, 1270, 1830, 1900, 2000, 2100,
2200, 2250, 2270));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersection) {
EXPECT_TRUE(is.Intersects(other));
EXPECT_TRUE(other.Intersects(is));
is.Intersection(other);
EXPECT_TRUE(Check(is, 7, 350, 360, 370, 380, 500, 530, 770, 800, 1300, 1400,
1500, 1600, 1700, 1800));
EXPECT_TRUE(is.Intersects(other));
EXPECT_TRUE(other.Intersects(is));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionBothEmpty) {
QuicIntervalSet<string> mine, theirs;
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
mine.Intersection(theirs);
EXPECT_TRUE(mine.Empty());
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionEmptyMine) {
QuicIntervalSet<string> mine;
QuicIntervalSet<string> theirs("a", "b");
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
mine.Intersection(theirs);
EXPECT_TRUE(mine.Empty());
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionEmptyTheirs) {
QuicIntervalSet<string> mine("a", "b");
QuicIntervalSet<string> theirs;
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
mine.Intersection(theirs);
EXPECT_TRUE(mine.Empty());
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionTheirsBeforeMine) {
QuicIntervalSet<string> mine("y", "z");
QuicIntervalSet<string> theirs;
theirs.Add("a", "b");
theirs.Add("c", "d");
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
mine.Intersection(theirs);
EXPECT_TRUE(mine.Empty());
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionMineBeforeTheirs) {
QuicIntervalSet<string> mine;
mine.Add("a", "b");
mine.Add("c", "d");
QuicIntervalSet<string> theirs("y", "z");
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
mine.Intersection(theirs);
EXPECT_TRUE(mine.Empty());
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
}
TEST_F(QuicIntervalSetTest,
QuicIntervalSetIntersectionTheirsBeforeMineInt64Singletons) {
QuicIntervalSet<int64_t> mine({{10, 15}});
QuicIntervalSet<int64_t> theirs({{-20, -5}});
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
mine.Intersection(theirs);
EXPECT_TRUE(mine.Empty());
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
}
TEST_F(QuicIntervalSetTest,
QuicIntervalSetIntersectionMineBeforeTheirsIntSingletons) {
QuicIntervalSet<int> mine({{10, 15}});
QuicIntervalSet<int> theirs({{90, 95}});
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
mine.Intersection(theirs);
EXPECT_TRUE(mine.Empty());
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionTheirsBetweenMine) {
QuicIntervalSet<int64_t> mine({{0, 5}, {40, 50}});
QuicIntervalSet<int64_t> theirs({{10, 15}});
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
mine.Intersection(theirs);
EXPECT_TRUE(mine.Empty());
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionMineBetweenTheirs) {
QuicIntervalSet<int> mine({{20, 25}});
QuicIntervalSet<int> theirs({{10, 15}, {30, 32}});
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
mine.Intersection(theirs);
EXPECT_TRUE(mine.Empty());
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionAlternatingIntervals) {
QuicIntervalSet<int> mine, theirs;
mine.Add(10, 20);
mine.Add(40, 50);
mine.Add(60, 70);
theirs.Add(25, 39);
theirs.Add(55, 59);
theirs.Add(75, 79);
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
mine.Intersection(theirs);
EXPECT_TRUE(mine.Empty());
EXPECT_FALSE(mine.Intersects(theirs));
EXPECT_FALSE(theirs.Intersects(mine));
}
TEST_F(QuicIntervalSetTest,
QuicIntervalSetIntersectionAdjacentAlternatingNonIntersectingIntervals) {
// Make sure that intersection with adjacent interval set is empty.
const QuicIntervalSet<int> x1({{0, 10}});
const QuicIntervalSet<int> y1({{-50, 0}, {10, 95}});
QuicIntervalSet<int> result1 = x1;
result1.Intersection(y1);
EXPECT_TRUE(result1.Empty()) << result1;
const QuicIntervalSet<int16_t> x2({{0, 10}, {20, 30}, {40, 90}});
const QuicIntervalSet<int16_t> y2(
{{-50, -40}, {-2, 0}, {10, 20}, {32, 40}, {90, 95}});
QuicIntervalSet<int16_t> result2 = x2;
result2.Intersection(y2);
EXPECT_TRUE(result2.Empty()) << result2;
const QuicIntervalSet<int64_t> x3({{-1, 5}, {5, 10}});
const QuicIntervalSet<int64_t> y3({{-10, -1}, {10, 95}});
QuicIntervalSet<int64_t> result3 = x3;
result3.Intersection(y3);
EXPECT_TRUE(result3.Empty()) << result3;
}
TEST_F(QuicIntervalSetTest,
QuicIntervalSetIntersectionAlternatingIntersectingIntervals) {
const QuicIntervalSet<int> x1({{0, 10}});
const QuicIntervalSet<int> y1({{-50, 1}, {9, 95}});
const QuicIntervalSet<int> expected_result1({{0, 1}, {9, 10}});
QuicIntervalSet<int> result1 = x1;
result1.Intersection(y1);
EXPECT_EQ(result1, expected_result1);
const QuicIntervalSet<int16_t> x2({{0, 10}, {20, 30}, {40, 90}});
const QuicIntervalSet<int16_t> y2(
{{-50, -40}, {-2, 2}, {9, 21}, {32, 41}, {85, 95}});
const QuicIntervalSet<int16_t> expected_result2(
{{0, 2}, {9, 10}, {20, 21}, {40, 41}, {85, 90}});
QuicIntervalSet<int16_t> result2 = x2;
result2.Intersection(y2);
EXPECT_EQ(result2, expected_result2);
const QuicIntervalSet<int64_t> x3({{-1, 5}, {5, 10}});
const QuicIntervalSet<int64_t> y3({{-10, 3}, {4, 95}});
const QuicIntervalSet<int64_t> expected_result3({{-1, 3}, {4, 10}});
QuicIntervalSet<int64_t> result3 = x3;
result3.Intersection(y3);
EXPECT_EQ(result3, expected_result3);
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionIdentical) {
QuicIntervalSet<int> copy(is);
EXPECT_TRUE(copy.Intersects(is));
EXPECT_TRUE(is.Intersects(copy));
is.Intersection(copy);
EXPECT_EQ(copy, is);
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionSuperset) {
QuicIntervalSet<int> mine(-1, 10000);
EXPECT_TRUE(mine.Intersects(is));
EXPECT_TRUE(is.Intersects(mine));
mine.Intersection(is);
EXPECT_EQ(is, mine);
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionSubset) {
QuicIntervalSet<int> copy(is);
QuicIntervalSet<int> theirs(-1, 10000);
EXPECT_TRUE(copy.Intersects(theirs));
EXPECT_TRUE(theirs.Intersects(copy));
is.Intersection(theirs);
EXPECT_EQ(copy, is);
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetIntersectionLargeSet) {
QuicIntervalSet<int> mine, theirs;
// mine: [0, 9), [10, 19), ..., [990, 999)
for (int i = 0; i < 1000; i += 10) {
mine.Add(i, i + 9);
}
theirs.Add(500, 520);
theirs.Add(535, 545);
theirs.Add(801, 809);
EXPECT_TRUE(mine.Intersects(theirs));
EXPECT_TRUE(theirs.Intersects(mine));
mine.Intersection(theirs);
EXPECT_TRUE(Check(mine, 5, 500, 509, 510, 519, 535, 539, 540, 545, 801, 809));
EXPECT_TRUE(mine.Intersects(theirs));
EXPECT_TRUE(theirs.Intersects(mine));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetDifference) {
is.Difference(other);
EXPECT_TRUE(Check(is, 10, 100, 200, 300, 350, 360, 370, 380, 400, 530, 600,
700, 770, 900, 1000, 1100, 1200, 1900, 2000, 2100, 2200));
QuicIntervalSet<int> copy = is;
is.Difference(copy);
EXPECT_TRUE(is.Empty());
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceSingleBounds) {
std::vector<QuicInterval<int>> ivals(other.begin(), other.end());
for (const QuicInterval<int>& ival : ivals) {
is.Difference(ival.min(), ival.max());
}
EXPECT_TRUE(Check(is, 10, 100, 200, 300, 350, 360, 370, 380, 400, 530, 600,
700, 770, 900, 1000, 1100, 1200, 1900, 2000, 2100, 2200));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceSingleInterval) {
std::vector<QuicInterval<int>> ivals(other.begin(), other.end());
for (const QuicInterval<int>& ival : ivals) {
is.Difference(ival);
}
EXPECT_TRUE(Check(is, 10, 100, 200, 300, 350, 360, 370, 380, 400, 530, 600,
700, 770, 900, 1000, 1100, 1200, 1900, 2000, 2100, 2200));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceAlternatingIntervals) {
QuicIntervalSet<int> mine, theirs;
mine.Add(10, 20);
mine.Add(40, 50);
mine.Add(60, 70);
theirs.Add(25, 39);
theirs.Add(55, 59);
theirs.Add(75, 79);
mine.Difference(theirs);
EXPECT_TRUE(Check(mine, 3, 10, 20, 40, 50, 60, 70));
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceEmptyMine) {
QuicIntervalSet<string> mine, theirs;
theirs.Add("a", "b");
mine.Difference(theirs);
EXPECT_TRUE(mine.Empty());
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceEmptyTheirs) {
QuicIntervalSet<string> mine, theirs;
mine.Add("a", "b");
mine.Difference(theirs);
EXPECT_EQ(1, mine.Size());
EXPECT_EQ("a", mine.begin()->min());
EXPECT_EQ("b", mine.begin()->max());
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceTheirsBeforeMine) {
QuicIntervalSet<string> mine, theirs;
mine.Add("y", "z");
theirs.Add("a", "b");
mine.Difference(theirs);
EXPECT_EQ(1, mine.Size());
EXPECT_EQ("y", mine.begin()->min());
EXPECT_EQ("z", mine.begin()->max());
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceMineBeforeTheirs) {
QuicIntervalSet<string> mine, theirs;
mine.Add("a", "b");
theirs.Add("y", "z");
mine.Difference(theirs);
EXPECT_EQ(1, mine.Size());
EXPECT_EQ("a", mine.begin()->min());
EXPECT_EQ("b", mine.begin()->max());
}
TEST_F(QuicIntervalSetTest, QuicIntervalSetDifferenceIdentical) {
QuicIntervalSet<string> mine;
mine.Add("a", "b");
mine.Add("c", "d");
QuicIntervalSet<string> theirs(mine);
mine.Difference(theirs);
EXPECT_TRUE(mine.Empty());
}
TEST_F(QuicIntervalSetTest, EmptyComplement) {
// The complement of an empty set is the input interval:
QuicIntervalSet<int> iset;
iset.Complement(100, 200);
EXPECT_TRUE(Check(iset, 1, 100, 200));
}
TEST(QuicIntervalSetMultipleCompactionTest, OuterCovering) {
QuicIntervalSet<int> iset;
// First add a bunch of disjoint ranges
iset.Add(100, 150);
iset.Add(200, 250);
iset.Add(300, 350);
iset.Add(400, 450);
EXPECT_TRUE(Check(iset, 4, 100, 150, 200, 250, 300, 350, 400, 450));
// Now add a big range that covers all of these ranges
iset.Add(0, 500);
EXPECT_TRUE(Check(iset, 1, 0, 500));
}
TEST(QuicIntervalSetMultipleCompactionTest, InnerCovering) {
QuicIntervalSet<int> iset;
// First add a bunch of disjoint ranges
iset.Add(100, 150);
iset.Add(200, 250);
iset.Add(300, 350);
iset.Add(400, 450);
EXPECT_TRUE(Check(iset, 4, 100, 150, 200, 250, 300, 350, 400, 450));
// Now add a big range that partially covers the left and right most ranges.
iset.Add(125, 425);
EXPECT_TRUE(Check(iset, 1, 100, 450));
}
TEST(QuicIntervalSetMultipleCompactionTest, LeftCovering) {
QuicIntervalSet<int> iset;
// First add a bunch of disjoint ranges
iset.Add(100, 150);
iset.Add(200, 250);
iset.Add(300, 350);
iset.Add(400, 450);
EXPECT_TRUE(Check(iset, 4, 100, 150, 200, 250, 300, 350, 400, 450));
// Now add a big range that partially covers the left most range.
iset.Add(125, 500);
EXPECT_TRUE(Check(iset, 1, 100, 500));
}
TEST(QuicIntervalSetMultipleCompactionTest, RightCovering) {
QuicIntervalSet<int> iset;
// First add a bunch of disjoint ranges
iset.Add(100, 150);
iset.Add(200, 250);
iset.Add(300, 350);
iset.Add(400, 450);
EXPECT_TRUE(Check(iset, 4, 100, 150, 200, 250, 300, 350, 400, 450));
// Now add a big range that partially covers the right most range.
iset.Add(0, 425);
EXPECT_TRUE(Check(iset, 1, 0, 450));
}
// Helper method for testing and verifying the results of a one-interval
// completement case.
static bool CheckOneComplement(int add_min,
int add_max,
int comp_min,
int comp_max,
int count,
...) {
QuicIntervalSet<int> iset;
iset.Add(add_min, add_max);
iset.Complement(comp_min, comp_max);
bool result = true;
va_list ap;
va_start(ap, count);
if (!VA_Check(iset, count, ap)) {
result = false;
}
va_end(ap);
return result;
}
TEST_F(QuicIntervalSetTest, SingleIntervalComplement) {
// Verify the complement of a set with one interval (i):
// |----- i -----|
// |----- args -----|
EXPECT_TRUE(CheckOneComplement(0, 10, 50, 150, 1, 50, 150));
// |----- i -----|
// |----- args -----|
EXPECT_TRUE(CheckOneComplement(50, 150, 0, 100, 1, 0, 50));
// |----- i -----|
// |----- args -----|
EXPECT_TRUE(CheckOneComplement(50, 150, 50, 150, 0));
// |---------- i ----------|
// |----- args -----|
EXPECT_TRUE(CheckOneComplement(50, 500, 100, 300, 0));
// |----- i -----|
// |---------- args ----------|
EXPECT_TRUE(CheckOneComplement(50, 500, 0, 800, 2, 0, 50, 500, 800));
// |----- i -----|
// |----- args -----|
EXPECT_TRUE(CheckOneComplement(50, 150, 100, 300, 1, 150, 300));
// |----- i -----|
// |----- args -----|
EXPECT_TRUE(CheckOneComplement(50, 150, 200, 300, 1, 200, 300));
}
// Helper method that copies <iset> and takes its complement,
// returning false if Check succeeds.
static bool CheckComplement(const QuicIntervalSet<int>& iset,
int comp_min,
int comp_max,
int count,
...) {
QuicIntervalSet<int> iset_copy = iset;
iset_copy.Complement(comp_min, comp_max);
bool result = true;
va_list ap;
va_start(ap, count);
if (!VA_Check(iset_copy, count, ap)) {
result = false;
}
va_end(ap);
return result;
}
TEST_F(QuicIntervalSetTest, MultiIntervalComplement) {
// Initialize a small test set:
QuicIntervalSet<int> iset;
iset.Add(100, 200);
iset.Add(300, 400);
iset.Add(500, 600);
// |----- i -----|
// |----- comp -----|
EXPECT_TRUE(CheckComplement(iset, 0, 50, 1, 0, 50));
// |----- i -----|
// |----- comp -----|
EXPECT_TRUE(CheckComplement(iset, 0, 200, 1, 0, 100));
EXPECT_TRUE(CheckComplement(iset, 0, 220, 2, 0, 100, 200, 220));
// |----- i -----|
// |----- comp -----|
EXPECT_TRUE(CheckComplement(iset, 100, 600, 2, 200, 300, 400, 500));
// |---------- i ----------|
// |----- comp -----|
EXPECT_TRUE(CheckComplement(iset, 300, 400, 0));
EXPECT_TRUE(CheckComplement(iset, 250, 400, 1, 250, 300));
EXPECT_TRUE(CheckComplement(iset, 300, 450, 1, 400, 450));
EXPECT_TRUE(CheckComplement(iset, 250, 450, 2, 250, 300, 400, 450));
// |----- i -----|
// |---------- comp ----------|
EXPECT_TRUE(
CheckComplement(iset, 0, 700, 4, 0, 100, 200, 300, 400, 500, 600, 700));
// |----- i -----|
// |----- comp -----|
EXPECT_TRUE(CheckComplement(iset, 400, 700, 2, 400, 500, 600, 700));
EXPECT_TRUE(CheckComplement(iset, 350, 700, 2, 400, 500, 600, 700));
// |----- i -----|
// |----- comp -----|
EXPECT_TRUE(CheckComplement(iset, 700, 800, 1, 700, 800));
}
// Verifies ToString, operator<< don't assert.
TEST_F(QuicIntervalSetTest, ToString) {
QuicIntervalSet<int> iset;
iset.Add(300, 400);
iset.Add(100, 200);
iset.Add(500, 600);
EXPECT_TRUE(!iset.ToString().empty());
QUIC_VLOG(2) << iset;
// Order and format of ToString() output is guaranteed.
EXPECT_EQ("{ [100, 200) [300, 400) [500, 600) }", iset.ToString());
EXPECT_EQ("{ [1, 2) }", QuicIntervalSet<int>(1, 2).ToString());
EXPECT_EQ("{ }", QuicIntervalSet<int>().ToString());
}
TEST_F(QuicIntervalSetTest, ConstructionDiscardsEmptyInterval) {
EXPECT_TRUE(QuicIntervalSet<int>(QuicInterval<int>(2, 2)).Empty());
EXPECT_TRUE(QuicIntervalSet<int>(2, 2).Empty());
EXPECT_FALSE(QuicIntervalSet<int>(QuicInterval<int>(2, 3)).Empty());
EXPECT_FALSE(QuicIntervalSet<int>(2, 3).Empty());
}
TEST_F(QuicIntervalSetTest, Swap) {
QuicIntervalSet<int> a, b;
a.Add(300, 400);
b.Add(100, 200);
b.Add(500, 600);
a.Swap(&b);
EXPECT_TRUE(Check(a, 2, 100, 200, 500, 600));
EXPECT_TRUE(Check(b, 1, 300, 400));
swap(a, b);
EXPECT_TRUE(Check(a, 1, 300, 400));
EXPECT_TRUE(Check(b, 2, 100, 200, 500, 600));
}
TEST_F(QuicIntervalSetTest, OutputReturnsOstreamRef) {
std::stringstream ss;
const QuicIntervalSet<int> v(QuicInterval<int>(1, 2));
auto return_type_is_a_ref = [](std::ostream&) {};
return_type_is_a_ref(ss << v);
}
struct NotOstreamable {
bool operator<(const NotOstreamable& other) const { return false; }
bool operator>(const NotOstreamable& other) const { return false; }
bool operator!=(const NotOstreamable& other) const { return false; }
bool operator>=(const NotOstreamable& other) const { return true; }
bool operator<=(const NotOstreamable& other) const { return true; }
bool operator==(const NotOstreamable& other) const { return true; }
};
TEST_F(QuicIntervalSetTest, IntervalOfTypeWithNoOstreamSupport) {
const NotOstreamable v;
const QuicIntervalSet<NotOstreamable> d(QuicInterval<NotOstreamable>(v, v));
// EXPECT_EQ builds a string representation of d. If d::operator<<()
// would be defined then this test would not compile because NotOstreamable
// objects lack the operator<<() support.
EXPECT_EQ(d, d);
}
class QuicIntervalSetInitTest : public QuicTest {
protected:
const std::vector<QuicInterval<int>> intervals_{{0, 1}, {2, 4}};
};
TEST_F(QuicIntervalSetInitTest, DirectInit) {
std::initializer_list<QuicInterval<int>> il = {{0, 1}, {2, 3}, {3, 4}};
QuicIntervalSet<int> s(il);
EXPECT_THAT(s, ElementsAreArray(intervals_));
}
TEST_F(QuicIntervalSetInitTest, CopyInit) {
std::initializer_list<QuicInterval<int>> il = {{0, 1}, {2, 3}, {3, 4}};
QuicIntervalSet<int> s = il;
EXPECT_THAT(s, ElementsAreArray(intervals_));
}
TEST_F(QuicIntervalSetInitTest, AssignIterPair) {
QuicIntervalSet<int> s(0, 1000); // Make sure assign clears.
s.assign(intervals_.begin(), intervals_.end());
EXPECT_THAT(s, ElementsAreArray(intervals_));
}
TEST_F(QuicIntervalSetInitTest, AssignInitList) {
QuicIntervalSet<int> s(0, 1000); // Make sure assign clears.
s.assign({{0, 1}, {2, 3}, {3, 4}});
EXPECT_THAT(s, ElementsAreArray(intervals_));
}
TEST_F(QuicIntervalSetInitTest, AssignmentInitList) {
std::initializer_list<QuicInterval<int>> il = {{0, 1}, {2, 3}, {3, 4}};
QuicIntervalSet<int> s;
s = il;
EXPECT_THAT(s, ElementsAreArray(intervals_));
}
TEST_F(QuicIntervalSetInitTest, BracedInitThenBracedAssign) {
QuicIntervalSet<int> s{{0, 1}, {2, 3}, {3, 4}};
s = {{0, 1}, {2, 4}};
EXPECT_THAT(s, ElementsAreArray(intervals_));
}
} // namespace
} // namespace test
} // namespace quic