blob: e8009aa7019171b9fb1b529dfa4caf270e438c1c [file] [log] [blame]
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/third_party/quiche/src/quic/core/congestion_control/bbr2_sender.h"
#include <cstddef>
#include "net/third_party/quiche/src/quic/core/congestion_control/bandwidth_sampler.h"
#include "net/third_party/quiche/src/quic/core/congestion_control/bbr2_drain.h"
#include "net/third_party/quiche/src/quic/core/congestion_control/bbr2_misc.h"
#include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h"
#include "net/third_party/quiche/src/quic/core/quic_bandwidth.h"
#include "net/third_party/quiche/src/quic/core/quic_types.h"
#include "net/third_party/quiche/src/quic/platform/api/quic_logging.h"
namespace quic {
namespace {
// Constants based on TCP defaults.
// The minimum CWND to ensure delayed acks don't reduce bandwidth measurements.
// Does not inflate the pacing rate.
const QuicByteCount kDefaultMinimumCongestionWindow = 4 * kMaxSegmentSize;
const float kInitialPacingGain = 2.885f;
const int kMaxModeChangesPerCongestionEvent = 4;
} // namespace
// Call |member_function_call| based on the current Bbr2Mode we are in. e.g.
//
// auto result = BBR2_MODE_DISPATCH(Foo());
//
// is equivalent to:
//
// Bbr2ModeBase& Bbr2Sender::GetCurrentMode() {
// if (mode_ == Bbr2Mode::STARTUP) { return startup_; }
// if (mode_ == Bbr2Mode::DRAIN) { return drain_; }
// ...
// }
// auto result = GetCurrentMode().Foo();
//
// Except that BBR2_MODE_DISPATCH guarantees the call to Foo() is non-virtual.
//
#define BBR2_MODE_DISPATCH(member_function_call) \
(mode_ == Bbr2Mode::STARTUP \
? (startup_.member_function_call) \
: (mode_ == Bbr2Mode::PROBE_BW \
? (probe_bw_.member_function_call) \
: (mode_ == Bbr2Mode::DRAIN \
? (drain_.member_function_call) \
: (probe_rtt_or_die().member_function_call))))
Bbr2Sender::Bbr2Sender(QuicTime now,
const RttStats* rtt_stats,
const QuicUnackedPacketMap* unacked_packets,
QuicPacketCount initial_cwnd_in_packets,
QuicPacketCount max_cwnd_in_packets,
QuicRandom* random,
QuicConnectionStats* /*stats*/)
: mode_(Bbr2Mode::STARTUP),
rtt_stats_(rtt_stats),
unacked_packets_(unacked_packets),
random_(random),
params_(kDefaultMinimumCongestionWindow,
max_cwnd_in_packets * kDefaultTCPMSS),
model_(&params_,
rtt_stats->SmoothedOrInitialRtt(),
rtt_stats->last_update_time(),
/*cwnd_gain=*/1.0,
/*pacing_gain=*/kInitialPacingGain),
initial_cwnd_(
cwnd_limits().ApplyLimits(initial_cwnd_in_packets * kDefaultTCPMSS)),
cwnd_(initial_cwnd_),
pacing_rate_(kInitialPacingGain * QuicBandwidth::FromBytesAndTimeDelta(
cwnd_,
rtt_stats->SmoothedOrInitialRtt())),
startup_(this, &model_),
drain_(this, &model_),
probe_bw_(this, &model_),
probe_rtt_(this, &model_),
flexible_app_limited_(false),
last_sample_is_app_limited_(false) {
QUIC_DVLOG(2) << this << " Initializing Bbr2Sender. mode:" << mode_
<< ", PacingRate:" << pacing_rate_ << ", Cwnd:" << cwnd_
<< ", CwndLimits:" << cwnd_limits() << " @ " << now;
DCHECK_EQ(mode_, Bbr2Mode::STARTUP);
}
void Bbr2Sender::SetFromConfig(const QuicConfig& config,
Perspective perspective) {
if (config.HasClientRequestedIndependentOption(kBBR9, perspective)) {
flexible_app_limited_ = true;
}
}
Limits<QuicByteCount> Bbr2Sender::GetCwndLimitsByMode() const {
switch (mode_) {
case Bbr2Mode::STARTUP:
return startup_.GetCwndLimits();
case Bbr2Mode::PROBE_BW:
return probe_bw_.GetCwndLimits();
case Bbr2Mode::DRAIN:
return drain_.GetCwndLimits();
case Bbr2Mode::PROBE_RTT:
return probe_rtt_.GetCwndLimits();
default:
QUIC_NOTREACHED();
return Unlimited<QuicByteCount>();
}
}
const Limits<QuicByteCount>& Bbr2Sender::cwnd_limits() const {
return params_.cwnd_limits;
}
void Bbr2Sender::AdjustNetworkParameters(QuicBandwidth bandwidth,
QuicTime::Delta rtt,
bool allow_cwnd_to_decrease) {
model_.UpdateNetworkParameters(bandwidth, rtt);
if (mode_ == Bbr2Mode::STARTUP) {
const QuicByteCount prior_cwnd = cwnd_;
// Normally UpdateCongestionWindow updates |cwnd_| towards the target by a
// small step per congestion event, by changing |cwnd_| to the bdp at here
// we are reducing the number of updates needed to arrive at the target.
cwnd_ = model_.BDP(model_.BandwidthEstimate());
UpdateCongestionWindow(0);
if (!allow_cwnd_to_decrease) {
cwnd_ = std::max(cwnd_, prior_cwnd);
}
}
}
void Bbr2Sender::SetInitialCongestionWindowInPackets(
QuicPacketCount congestion_window) {
if (mode_ == Bbr2Mode::STARTUP) {
// The cwnd limits is unchanged and still applies to the new cwnd.
cwnd_ = cwnd_limits().ApplyLimits(congestion_window * kDefaultTCPMSS);
}
}
void Bbr2Sender::OnCongestionEvent(bool /*rtt_updated*/,
QuicByteCount prior_in_flight,
QuicTime event_time,
const AckedPacketVector& acked_packets,
const LostPacketVector& lost_packets) {
QUIC_DVLOG(3) << this
<< " OnCongestionEvent. prior_in_flight:" << prior_in_flight
<< " prior_cwnd:" << cwnd_ << " @ " << event_time;
Bbr2CongestionEvent congestion_event;
congestion_event.prior_cwnd = cwnd_;
congestion_event.is_probing_for_bandwidth =
BBR2_MODE_DISPATCH(IsProbingForBandwidth());
model_.OnCongestionEventStart(event_time, acked_packets, lost_packets,
&congestion_event);
// Number of mode changes allowed for this congestion event.
int mode_changes_allowed = kMaxModeChangesPerCongestionEvent;
while (true) {
Bbr2Mode next_mode = BBR2_MODE_DISPATCH(
OnCongestionEvent(prior_in_flight, event_time, acked_packets,
lost_packets, congestion_event));
if (next_mode == mode_) {
break;
}
QUIC_DVLOG(2) << this << " Mode change: " << mode_ << " ==> " << next_mode
<< " @ " << event_time;
mode_ = next_mode;
BBR2_MODE_DISPATCH(Enter(congestion_event));
--mode_changes_allowed;
if (mode_changes_allowed < 0) {
QUIC_BUG << "Exceeded max number of mode changes per congestion event.";
break;
}
}
UpdatePacingRate(congestion_event.bytes_acked);
QUIC_BUG_IF(pacing_rate_.IsZero()) << "Pacing rate must not be zero!";
UpdateCongestionWindow(congestion_event.bytes_acked);
QUIC_BUG_IF(cwnd_ == 0u) << "Congestion window must not be zero!";
model_.OnCongestionEventFinish(unacked_packets_->GetLeastUnacked(),
congestion_event);
last_sample_is_app_limited_ = congestion_event.last_sample_is_app_limited;
QUIC_DVLOG(3)
<< this << " END CongestionEvent(acked:" << acked_packets
<< ", lost:" << lost_packets.size() << ") "
<< ", Mode:" << mode_ << ", RttCount:" << model_.RoundTripCount()
<< ", BytesInFlight:" << model_.bytes_in_flight()
<< ", PacingRate:" << PacingRate(0) << ", CWND:" << GetCongestionWindow()
<< ", PacingGain:" << model_.pacing_gain()
<< ", CwndGain:" << model_.cwnd_gain()
<< ", BandwidthEstimate(kbps):" << BandwidthEstimate().ToKBitsPerSecond()
<< ", MinRTT(us):" << model_.MinRtt().ToMicroseconds()
<< ", BDP:" << model_.BDP(BandwidthEstimate())
<< ", BandwidthLatest(kbps):"
<< model_.bandwidth_latest().ToKBitsPerSecond()
<< ", BandwidthLow(kbps):" << model_.bandwidth_lo().ToKBitsPerSecond()
<< ", BandwidthHigh(kbps):" << model_.MaxBandwidth().ToKBitsPerSecond()
<< ", InflightLatest:" << model_.inflight_latest()
<< ", InflightLow:" << model_.inflight_lo()
<< ", InflightHigh:" << model_.inflight_hi()
<< ", TotalAcked:" << model_.total_bytes_acked()
<< ", TotalLost:" << model_.total_bytes_lost()
<< ", TotalSent:" << model_.total_bytes_sent() << " @ " << event_time;
}
void Bbr2Sender::UpdatePacingRate(QuicByteCount bytes_acked) {
if (BandwidthEstimate().IsZero()) {
return;
}
if (model_.total_bytes_acked() == bytes_acked) {
// After the first ACK, cwnd_ is still the initial congestion window.
pacing_rate_ = QuicBandwidth::FromBytesAndTimeDelta(cwnd_, model_.MinRtt());
return;
}
QuicBandwidth target_rate = model_.pacing_gain() * model_.BandwidthEstimate();
if (startup_.FullBandwidthReached()) {
pacing_rate_ = target_rate;
return;
}
if (target_rate > pacing_rate_) {
pacing_rate_ = target_rate;
}
}
void Bbr2Sender::UpdateCongestionWindow(QuicByteCount bytes_acked) {
QuicByteCount target_cwnd = GetTargetCongestionWindow(model_.cwnd_gain());
const QuicByteCount prior_cwnd = cwnd_;
if (startup_.FullBandwidthReached()) {
target_cwnd += model_.MaxAckHeight();
cwnd_ = std::min(prior_cwnd + bytes_acked, target_cwnd);
} else if (prior_cwnd < target_cwnd || prior_cwnd < 2 * initial_cwnd_) {
cwnd_ = prior_cwnd + bytes_acked;
}
const QuicByteCount desired_cwnd = cwnd_;
cwnd_ = GetCwndLimitsByMode().ApplyLimits(cwnd_);
const QuicByteCount model_limited_cwnd = cwnd_;
cwnd_ = cwnd_limits().ApplyLimits(cwnd_);
QUIC_DVLOG(3) << this << " Updating CWND. target_cwnd:" << target_cwnd
<< ", max_ack_height:" << model_.MaxAckHeight()
<< ", full_bw:" << startup_.FullBandwidthReached()
<< ", bytes_acked:" << bytes_acked
<< ", inflight_lo:" << model_.inflight_lo()
<< ", inflight_hi:" << model_.inflight_hi() << ". (prior_cwnd) "
<< prior_cwnd << " => (desired_cwnd) " << desired_cwnd
<< " => (model_limited_cwnd) " << model_limited_cwnd
<< " => (final_cwnd) " << cwnd_;
}
QuicByteCount Bbr2Sender::GetTargetCongestionWindow(float gain) const {
return std::max(model_.BDP(model_.BandwidthEstimate(), gain),
cwnd_limits().Min());
}
void Bbr2Sender::OnPacketSent(QuicTime sent_time,
QuicByteCount bytes_in_flight,
QuicPacketNumber packet_number,
QuicByteCount bytes,
HasRetransmittableData is_retransmittable) {
QUIC_DVLOG(3) << this << " OnPacketSent: pkn:" << packet_number
<< ", bytes:" << bytes << ", cwnd:" << cwnd_
<< ", inflight:" << model_.bytes_in_flight() + bytes
<< ", total_sent:" << model_.total_bytes_sent() + bytes
<< ", total_acked:" << model_.total_bytes_acked()
<< ", total_lost:" << model_.total_bytes_lost() << " @ "
<< sent_time;
model_.OnPacketSent(sent_time, bytes_in_flight, packet_number, bytes,
is_retransmittable);
}
bool Bbr2Sender::CanSend(QuicByteCount bytes_in_flight) {
const bool result = bytes_in_flight < GetCongestionWindow();
return result;
}
QuicByteCount Bbr2Sender::GetCongestionWindow() const {
// TODO(wub): Implement Recovery?
return cwnd_;
}
QuicBandwidth Bbr2Sender::PacingRate(QuicByteCount /*bytes_in_flight*/) const {
return pacing_rate_;
}
void Bbr2Sender::OnApplicationLimited(QuicByteCount bytes_in_flight) {
if (bytes_in_flight >= GetCongestionWindow()) {
return;
}
if (flexible_app_limited_ && IsPipeSufficientlyFull()) {
return;
}
model_.OnApplicationLimited();
QUIC_DVLOG(2) << this << " Becoming application limited. Last sent packet: "
<< model_.last_sent_packet()
<< ", CWND: " << GetCongestionWindow();
}
bool Bbr2Sender::ShouldSendProbingPacket() const {
// TODO(wub): Implement ShouldSendProbingPacket properly.
if (!BBR2_MODE_DISPATCH(IsProbingForBandwidth())) {
return false;
}
// TODO(b/77975811): If the pipe is highly under-utilized, consider not
// sending a probing transmission, because the extra bandwidth is not needed.
// If flexible_app_limited is enabled, check if the pipe is sufficiently full.
if (flexible_app_limited_) {
const bool is_pipe_sufficiently_full = IsPipeSufficientlyFull();
QUIC_DVLOG(3) << this << " CWND: " << GetCongestionWindow()
<< ", inflight: " << model_.bytes_in_flight()
<< ", pacing_rate: " << PacingRate(0)
<< ", flexible_app_limited_: true, ShouldSendProbingPacket: "
<< !is_pipe_sufficiently_full;
return !is_pipe_sufficiently_full;
} else {
return true;
}
}
bool Bbr2Sender::IsPipeSufficientlyFull() const {
// See if we need more bytes in flight to see more bandwidth.
if (mode_ == Bbr2Mode::STARTUP) {
// STARTUP exits if it doesn't observe a 25% bandwidth increase, so the CWND
// must be more than 25% above the target.
return model_.bytes_in_flight() >= GetTargetCongestionWindow(1.5);
}
if (model_.pacing_gain() > 1) {
// Super-unity PROBE_BW doesn't exit until 1.25 * BDP is achieved.
return model_.bytes_in_flight() >=
GetTargetCongestionWindow(model_.pacing_gain());
}
// If bytes_in_flight are above the target congestion window, it should be
// possible to observe the same or more bandwidth if it's available.
return model_.bytes_in_flight() >= GetTargetCongestionWindow(1.1);
}
std::string Bbr2Sender::GetDebugState() const {
std::ostringstream stream;
stream << ExportDebugState();
return stream.str();
}
Bbr2Sender::DebugState Bbr2Sender::ExportDebugState() const {
DebugState s;
s.mode = mode_;
s.round_trip_count = model_.RoundTripCount();
s.bandwidth_hi = model_.MaxBandwidth();
s.bandwidth_lo = model_.bandwidth_lo();
s.bandwidth_est = BandwidthEstimate();
s.inflight_hi = model_.inflight_hi();
s.inflight_lo = model_.inflight_lo();
s.max_ack_height = model_.MaxAckHeight();
s.min_rtt = model_.MinRtt();
s.min_rtt_timestamp = model_.MinRttTimestamp();
s.congestion_window = cwnd_;
s.pacing_rate = pacing_rate_;
s.last_sample_is_app_limited = last_sample_is_app_limited_;
s.end_of_app_limited_phase = model_.end_of_app_limited_phase();
s.startup = startup_.ExportDebugState();
s.drain = drain_.ExportDebugState();
s.probe_bw = probe_bw_.ExportDebugState();
s.probe_rtt = probe_rtt_.ExportDebugState();
return s;
}
std::ostream& operator<<(std::ostream& os, const Bbr2Sender::DebugState& s) {
os << "mode: " << s.mode << "\n";
os << "round_trip_count: " << s.round_trip_count << "\n";
os << "bandwidth_hi ~ lo ~ est: " << s.bandwidth_hi << " ~ " << s.bandwidth_lo
<< " ~ " << s.bandwidth_est << "\n";
os << "min_rtt: " << s.min_rtt << "\n";
os << "min_rtt_timestamp: " << s.min_rtt_timestamp << "\n";
os << "congestion_window: " << s.congestion_window << "\n";
os << "pacing_rate: " << s.pacing_rate << "\n";
os << "last_sample_is_app_limited: " << s.last_sample_is_app_limited << "\n";
if (s.mode == Bbr2Mode::STARTUP) {
os << s.startup;
}
if (s.mode == Bbr2Mode::DRAIN) {
os << s.drain;
}
if (s.mode == Bbr2Mode::PROBE_BW) {
os << s.probe_bw;
}
if (s.mode == Bbr2Mode::PROBE_RTT) {
os << s.probe_rtt;
}
return os;
}
} // namespace quic